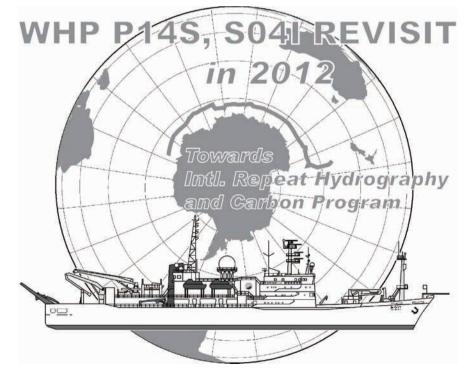
WHP P14S, S04I REVISIT IN 2012 DATA BOOK


Field Activity of JAMSTEC towards International Repeat Hydrography and Carbon Program

WHP P14S, S04I REVISIT IN 2012 DATA BOOK

Edited by Hiroshi Uchida (JAMSTEC), Katsuro Katsumata (JAMSTEC), Toshimasa Doi (JAMSTEC)

The photograph on the front and back cover of floating ice with an iceberg was taken at the southernmost station in the cruise MR12-05 by Ms. Aiko Miura. The photograph on the inside cover of a whale was also taken by Ms. Aiko Miura.

WHP P14S, S04I REVISIT IN 2012 DATA BOOK

March 27, 2015 Published

Edited by Hiroshi Uchida (JAMSTEC), Katsuro Katsumata (JAMSTEC) and Toshimasa Doi (JAMSTEC)

Published by © JAMSTEC, Yokosuka, Kanagawa, 2015

Japan Agency for Marine-Earth Science and Technology

2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan

Phone +81-46-867-9474, Fax +81-46-867-9835

Printed by Aiwa Enterprise, Ltd.

3-22-4 Takanawa, Minato-ku, Tokyo 108-0074, Japan

Contents

Contents		i	3.6 Chlorofluorocarbons and Sulfur Hexafluoride K. Sasaki (JAMSTEC) et al.		87
			3.7 Carbon Items (C_T , A_T and pH)		90
Preface		iii	A. Murata (JAMSTEC) et al.		
M. Fukasawa (JAMSTEC)		111	3.8 Chlorophyll a		95
m. Pakasawa (jimsibe)			H. Uchida (JAMSTEC) et al.		
			3.9 LADCP		96
Documents and station summary files			S. Kouketsu (JAMSTEC) et al.		50
1 Cruise Narrative		1	3.10 Expendable Microstructure Profiler		98
K. Katsumata and H. Uchida (JAMSTEC)			K. Katsumata (JAMSTEC)		30
2 Underway Measurements			II. Haiswiia (Jiino Ibe)		
2.1 Navigation		10			
S. Sueyoshi (GODI) et al.			Station Summary		
2.2 Swath Bathymetry		13	49NZ20121105 .sum file		100
T. Matsumoto (Univ. Ryukyus), M. Nakanishi (Chiba	a Univ.) et al.		49NZ20121128 .sum file		102
2.3 Surface Meteorological Observation		15	49NZ20130106 .sum file		109
S. Sueyoshi (GODI) et al.					
2.4 Thermo-Salinograph and Related Measurements		21			
H. Uchida (JAMSTEC) et al.			Figures		
2.5 Underway pCO_2		28	Figure captions		117
A. Murata (JAMSTEC) et al.			Station locations		100
2.6 Shipboard ADCP		30	Bathymetry		101
S. Kouketsu (JAMSTEC) et al.			Surface wind		100
2.7 XCTD		33	Sea surface temperature,		130
H. Uchida (JAMSTEC) et al.			salinity,		131
2.8 Photosynthetically Available Radiation (PAR)		37	oxygen,		132
H. Uchida (JAMSTEC)			chlorophyll a		100
			ΔpCO_2		
3 Hydrographic Measurement Techniques and Calibra	ations		Surface current		
3.1 CTDO ₂ Measurements		38	Cross-sections	•••••	100
H. Uchida (JAMSTEC) et al.			Potential temperature		136
3.2 Bottle Salinity		59	CTD salinity		138
H. Uchida (JAMSTEC) et al.			Absolute salinity		140
3.3 Density		63	Density $(\sigma_{0 \text{ and } \sigma_4})$ (EOS-80)		
H. Uchida (JAMSTEC)			Density $(\sigma_{0 \text{ and } \sigma_{4}})$ (EOS-30) Density $(\sigma_{0 \text{ and } \sigma_{4}})$ (TEOS-10)		144
3.4 Oxygen		67	Neutral Density (γ^n)		
Y. Kumamoto (JAMSTEC) et al.		٠.	CTD oxygen		146 148
3.5 Nutrients		72	CTD oxygen CTD chlorophyll a		148
M. Aoyama (MRI/JMA) et al.			CTD tenorophyn a CTD beam attenuation coefficient		
111. 110 ywn ou (111111/ J11111/ 60 W.			CID beam attenuation coefficient		152

	Bottle sampled oxygen		154
	Silicate		156
	Nitrate		158
	Nitrite		159
	Phosphate		162
	Dissolved inorganic carbon (C_T)		164
	Total alkalinity (A_T)		166
	pH		168
	CFC-11		170
	CFC-12		172
	CFC-113		174
	SF_6		176
	Current velocity		178
1	Difference between previous occupations and the revi	isit	
	Potential temperature		180
	(2012/13-1995/96)	l	
	CTD Salinity (2012/13-1995/96)		182
	CTD oxygen (2012/13-1995/96)		184
	Bottle oxygen (2012/13-1995/96)		186

.sum, .sea, .wct and other data files $\,$

CD-ROM on the back cover

Preface

Please forgive me for starting the preface of this data book with the sentence "At last, we have arrived at offshore of the Adelie Coast".

Also, one might be aware that JAMSTEC tends to select zonal lines of GO-SHIP (and WHP-revisit) plan as our target.

Concerning the revisit of WHP lines, we firstly undertook the revisit of P01 in 1999. Analysis of data from P01:1999 showed that there was a basin-wide warming of bottom layer compared to the former P01 cruise in 1985 carried out by US scientists. This finding of the bottom layer warming in the North Pacific received worldwide attention of scientists and generated quite a few studies for investigating/clarifying physical mechanisms of the warming.

As the results, several WHP-revisit cruises reported the same warming of bottom layer as found along P01 obviously along the pathway of the Lower Circumpolar Deep Water (LCDW) and/or the North Pacific Deep Water (NPDW).

On the other hand, a numerical model of bottom layer of the world ocean has suggested that such warming of bottom layer in the Pacific is likely to occur under an abrupt decrease in the formation rate of Antarctic Bottom Water (AABW) off the Adelie Coast. The model showed that the bottom layer, even in the northern most part of the Pacific, will be warmed by 0.005 °C within only 50 years after the abrupt decrease in the bottom water formation. We anticipated that our finding on P01 could be traced up to Adelie Coast and that an enormous change was occurring in the meridional overturn system in the Pacific. The most recent comprehensive analysis using ocean data assimilation including the data from WHP-revisits and/or GO-SHIP cruises concluded that the bottom layer warming in the Pacific might be traced up to the surface of Adelie Coast and to possible changes in the physical parameters of subducted water there.

Of course, JAMSTEC's contribution to WHP-revisits and/or GO-SHIP cruises has brought various scientific advancements not only in the fields of climate research but also of biogeochemical study as have been shown in

IPCC reports and other scientific magazines. All of those results have been strong driving forces of our effort toward each cruise and data sharing. However, it is also true that we have conducted our observational efforts of WHP-revisits and/or GO-SHIP cruises in line with our genuine scientific interest. And....this is the reasons why JAMSTEC, a scientific research organization, could have contributed so positively to any international frameworks of data acquisition and sharing such as GO-SHIP.

Lastly, I would like to thank all scientists for your referring our data book as often. As mentioned before, such reference from scientists also proves the scientific importance of GO-SHIP and consequently helps IAMSTEC to continue GO-SHIP activities.

On the memorial day after three years of the Tragic Earthquake and Tsunami

On National Foundation Day

Masao Fukasawa

Operating Executive Director, JAMSTEC

*Acronyum

JAMSTEC Japan Agency for Marine-Earth Science and Technology

WHP World Ocean Circulation Experiment Hydrographic Program

GO-SHIP Global Ocean Ship-Based Hydrographic Investigation Program

IPCC Inter-governmental Panel for Climate Change

1 Cruise Narrative

September 30, 2014

Katsuro Katsumata (JAMSTEC)

Hiroshi Uchida (JAMSTEC)

1.1 Highlights

Cruise code: MR12-05

Expocode: Leg 1: 49NZ20121105

Leg 2: 49NZ20121128

Leg 3: 49NZ20130106

WOCE section designation: P14S, S04I

Ship: R/V Mirai

Ports of call: Leg 1: Sekinehama, Japan; Hachinohe, Japan – Auckland, New Zealand

Leg 2: Auckland, New Zealand - Hobart, Australia

Leg 3: Hobart, Australia – Fremantle, Australia

Cruise date: Leg 1: 5 November 2012 – 26 November 2012

Leg 2: 28 November 2012 – 4 January 2013

Leg 3: 6 January 2013 – 15 February 2013

Chief scientists: Legs 1 and 2: Katsuro Katsumata (k.katsumata@jamstec.go.jp)

Leg 3: Hiroshi Uchida (huchida@jamstec.go.jp)

Ocean Climate Change Research Program

Research Institute for Global Change (RIGC)

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

2-15 Natsushima, Yokosuka, Kanagawa, Japan 237-0061

Fax: +81-46-867-9835

Number of Stations: Leg 1: 3 stations

Leg 2: 54 stations including 6 XCTD-only stations

Leg 3: 77 stations

Floats and drifters deployed:

3 Argo floats (Leg 1) and 4 Deep NINJA floats (Leg 2)

Mooring recovery: 2 including 1 emergency recovery of Southern Ocean Flux Buoy

(Bureau of Meteorology, Australia)

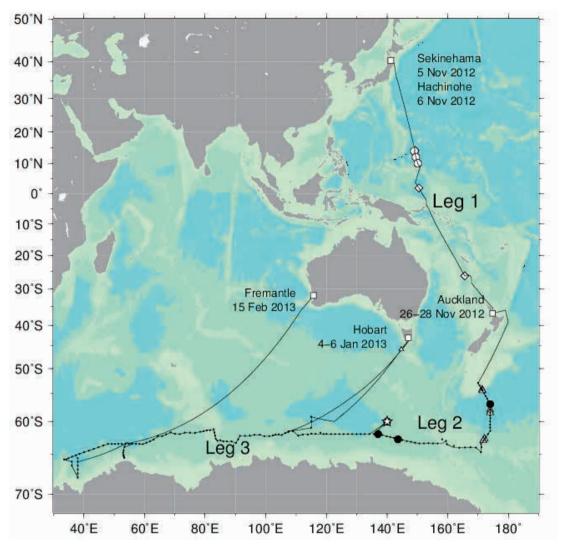


Figure 1.1.1. MR12-05 cruise track. White circles show the deployment position of Argo floats. White diamonds show neuston net sampling (the northernmost station overlaps the northern most Argo deployment). White large triangles show the XMP deployment stations. Star is the flux-buoy recovery position. Black dots show CTD/bottle sampling stations. Black circles show the Deep NINJA deployment positions (one position overlaps the flux-buoy position). Small white triangle shows Australian SOFS buoy recover position.

MR12-05

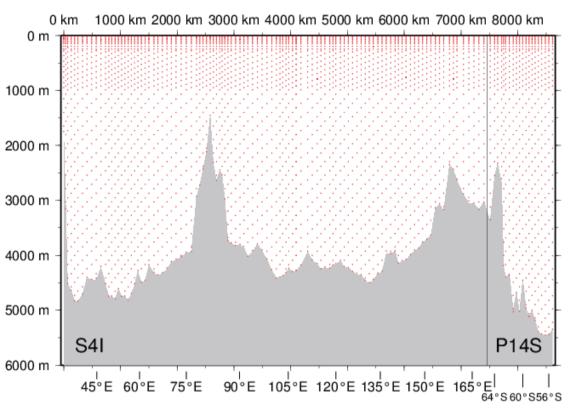


Figure 1.1.2. Water sampling positions. Meridional segments on S04I are not included.

1.2 Cruise Summary

(1) Geographic boundaries

MR12-05 cruise (Fig. 1.1.1) re-occupied two WOCE hydrographic sections; P14S and S04I. The P14S is a meridional section nominally along 174°E, between 53°S and 65°S. The S04I is a zonal section nominally along 62°S between 33°E and 170°E.

(2) Stations occupied

A total of 152 stations were occupied using a CTD/O₂/LADCP package equipped with 36 Niskin bottles. The package consists of a SBE911 plus, SBE35, SBE43, RINKO, Chlorophyll fluorometer, altimeter, transmissometer,, PAR and an RDI ADCP. At 5 stations, two or three casts were made to collect sufficient sample for radio-isotope analysis. A total of 7 stations were occupied using XCTD. All stations are shown on Fig.1.1.1.

(3) Sampling and measurement

Water samples were analyzed for salinity, oxygen, nutrients, CFC11, CFC12, CFC113, SF6, total alkalinity, DIC, pH, density and chlorophyll-a. Staggered sampling scheme was employed (see Fig.1.1.2). Samples for radio-isotopes were also collected. Underway measurements were conducted along the cruise track for pCO₂, temperature, salinity, oxygen, surface current, bathymetry and meteorological parameters.

(4) Floats and drifters deployed

Three ARGO floats were deployed on the Leg 1. Four Deep NINJA floats were launched on the Leg 2.

(5) Mooring deployed and recovered

One mooring at approximate location of 60°S, 140°E was recovered successfully. An emergency recovery was conducted of SOFS buoy (Bureau of Meteorology, Australia) at approximate location of 45.7°S, 144.6°E.

1.3 Principle investigators and personnel in charge onboard

The principal investigators (PI) and the persons responsible for major parameters are listed in Table 1.3.1.

Table 1.3.1. List of principal investigator and person in charge on the ship.

Item	Principal Investigator	Person in charge onboard
Underway		
Navigation	Data Management Group	Souichiro Sueyoshi (GODI) (legs 1, 3)
	(CEIST/JAMSTEC)	Kazuho Yoshida (GODI) (leg 2)
	dmo@jamstec.go.jp	
Bathymetry	Takeshi Matsumoto (Univ. of Ryukyus)	Souichiro Sueyoshi (GODI) (legs 1, 3)
	tak@sci.u-ryukyu.ac.jp	Kazuho Yoshida (GODI) (leg 2)
Meteorology	Data Management Group	Souichiro Sueyoshi (GODI) (legs 1, 3)
	(CEIST/JAMSTEC)	Kazuho Yoshida (GODI) (leg 2)
	dmo@jamstec.go.jp	
Thermo-salinograph		
	Hiroshi Uchida (JAMSTEC)	Kanako Yoshida (MWJ) (legs 1, 3)
	huchida@jamtec.go.jp	Misato Kuwahara (MWJ) (leg 2)
pCO_2	Akihiko Murata (JAMSTEC)	Yoshiko Ishikawa (MWJ)
	murataa@jamstec.go.jp	
pCO ₂ /pCH ₄ by Cavity	Ring-Down Spectroscopy	
	Sohiko Kameyama (Hokkaido Univ.)	Sohiko Kameyama (Hokkaido Univ.)
	skameyama@ees.hokkaido.ac.jp	

ADCP	Shinya Kouketsu (JAMSTEC)	Souichiro Sueyoshi (GODI) (legs 1, 3)		huchida@jamstec.go.jp	
	skouketsu@jamstec.go.jp	Kazuho Yoshida (GODI) (leg 2)	Salinity	Hiroshi Uchida (JAMSTEC)	Tatsuya Tanaka (MWJ)
Ceilometer	Data Management Group	Souichiro Sueyoshi (GODI) (legs 1, 3)		huchida@jamstec.go.jp	
	(CEIST/JAMSTEC)	Kazuho Yoshida (GODI) (leg 2)	Density	Hiroshi Uchida (JAMSTEC)	Hiroshi Uchida (JAMSTEC)
	dmo@jamstec.go.jp			huchida@jamstec.go.jp	
Water Isotopes	Yasushi Fujiyoshi (Hokkaido Univ.)	Souichiro Sueyoshi (GODI)	Oxygen	Yuichiro Kumamoto (JAMSTEC)	Misato Kuwahara (MWJ) (leg 2)
	fujiyo@lowtem.hokudai.ac.jp			kumamoto@jamstec.go.jp	Kanako Yoshida (MWJ) (leg 3)
Sky Radiomete	er Kazuma Aoki (Univ. of Toyama)	None	Nutrients	Michio Aoyama (Fukushima Univ.)	Minoru Kamata (MWJ)
	kazuma@sci.u-toyama.ac.jp			r706@ipc.fukushima-u.ac.jp	
Lidar	Nobuo Sugimoto (NIES)	None	CFCs/SF ₆	Ken'ichi Sasaki (JAMSTEC)	Ken'ichi Sasaki (JAMSTEC)
	nsugimot@nies.go.jp			ksasaki@jamstec.go.jp	
Gravity	Takeshi Matsumoto (Univ. of Ryukyus)	Souichiro Sueyoshi (GODI) (legs 1, 3)	DIC	Akihiko Murata (JAMSTEC)	Yoshiko Ishikawa (MWJ)
	tak@sci.u-ryukyu.ac.jp	Kazuho Yoshida (GODI) (leg 2)		murataa@jamstec.go.jp	
Magnetic Field	Takeshi Matsumoto (Univ. of Ryukyus)	Souichiro Sueyoshi (GODI) (legs 1, 3)	Alkalinity	Akihiko Murata (JAMSTEC)	Tomonori Watai (MWJ)
	tak@sci.u-ryukyu.ac.jp	Kazuho Yoshida (GODI) (leg 2)		murataa@jamstec.go.jp	
Cesium magne	etometer		pН	Akihiko Murata (JAMSTEC)	Tomonori Watai (MWJ)
	Masao Nakanishi (Chiba Univ.)	Souichiro Sueyoshi (GODI)		murataa@jamstec.go.jp	
	nakanisi@earth.s.chiba-u.ac.jp		DMS and Isoprene	Sohiko Kameyama (Hokkaido Univ.)	Sohiko Kameyama (Hokkaido Univ.)
Photosynthetic	eally Available Radiation			skameyama@ees.hokkaido.ac.jp	
	Hiroshi Uchida (JAMSTEC)	Hiroshi Uchida (JAMSTEC)	Chlorophyll-a	Hiroshi Uchida (JAMSTEC)	Hiroshi Uchida (JAMSTEC)
	huchida@jamstec.go.jp			huchida@jamstec.go.jp	
XCTD	Hiroshi Uchida (JAMSTEC)	Souichiro Sueyoshi (GODI) (Legs 1, 3)	Chlorophyll isotopes		
	huchida@jamstec.go.jp	Kazuho Yoshida (GODI) (Leg 2)		Osamu Yoshida (Rakuno Gakuen Univ.)	Osamu Yoshida (Rakuno Gakuen Univ.)
				yoshida@rakuno.ac.jp	
Hydrography			Pigment/Bacterial abu	indance	
CTD/O_2	Hiroshi Uchida (JAMSTEC)	Shinsuke Toyoda (MWJ)		Sohiko Kameyama (Hokkaido Univ.)	Sohiko Kameyama (Hokkaido Univ.)

	skameyama@ees.hokudai.ac.jp	
$\Delta^{14}C/\delta^{13}C$	Yuichiro Kumamoto (JAMSTEC)	Yuichiro Kumamoto (JAMSTEC)
	kumamoto@jamstec.go.jp	
¹³⁴ Cs/ ¹³⁷ Cs	Yuichiro Kumamoto (JAMSTEC)	Yuichiro Kumamoto (JAMSTEC)
	kumamoto@jamstec.go.jp	
$\delta^{18}O$	Shigeru Aoki (Hokkaido Univ.)	Katsuro Katsumata (JAMSTEC) (leg 2)
	shigeru@lowtem.hokudai.ac.jp	Kazuhiko Hayashi (JAMSTEC) (leg 3)
PFAS	Nobuyoshi Yamashita (AIST)	Nobuyoshi Yamashita (AIST) (leg 2)
	nob.yamashita@aist.go.jp	Hiroshi Uchida (JAMSTEC) (leg 3)
N_2O/CH_4	Osamu Yoshida (Rakuno Gakuen Univ.)	Osamu Yoshida (Rakuno Gakuen Univ.)
	yoshida@rakuno.ac.jp	
LADCP	Shinya Kouketsu (JAMSTEC)	Shinya Kouketsu (JAMSTEC) (leg 2)
	skouketsu@jamstec.go.jp	Hiroshi Uchida (JAMSTEC) (leg 3)
XMP	Katsuro Katsumata (JAMSTEC)	Katsuro Katsumata (JAMSTEC)
	k.katsumata@jamstec.go.jp	
Biology		
Oceanic Halobates	Tetsuo Harada (Kochi Univ.)	Tetsuo Harada (Kochi Univ.)
	haratets@kochi-u.ac.jp	
Floats		
ARGO/Deep NINJA flo	pats	
	Toshio Suga (JAMSTEC)	Tetsuya Tanaka (MWJ) (leg 1)
	sugat@jamstec.go.jp	Tomoyuki Takamori (MWJ) (leg 2)

Mooring

Southern Ocean Flux Mooring

Shoichiro Baba (JAMSTEC) Shoichiro Baba (JAMSTC)

sbaba@jamstec.go.jp

CEIST	Center for Earth Information Science and Technology
GODI	Global Ocean Development Inc.
JAMSTEC	Japan Agency for Marine-Earth Science and Technology
MWJ	Marine Works Japan, Ltd.
NIES	National Institute for Environmental Studies
AIST	National Institute of Advanced Industrial Science and Technology

1.4 Scientific programme and methods

(1) Objectives

It is well established that oceans play important roles in the global climate system, but quantitative description of the oceans' roles and their variabilities are still yet to be made. Given natural variabilities of the oceans, it is necessary to observe them as frequently as practicable and as accurate as possible. In this research cruise, we observed, with state-of-art precision, the Southwestern Pacific and Southern oceans, which are known to be one of the most sensitive regions in the world oceans to the global climate change, particularly as a likely source of the recently-established Pacific near-bottom warming. These oceans are also known to ventilate the intermediate-depth and deep oceans and exchange anthropogenic carbon. We also recovered a JAMSTEC southern ocean mooring, which continuously measured the air-sea flux in this region for almost a year for the first time. This expedition was conducted under the Global Ocean Ship-based Hydrographic Investigation Programme (GO-SHIP http://www.go-ship.org).

(2) Cruise narrative

The first leg was a shift from R/V Mirai's home – Sekinehama – to the Southern Hemisphere, although some observational activities were conducted including Argo float deployments and concurrent CTD casts for salinity calibration as well as hull pump water sampling for radio-isotope analysis after the 3.11 disaster in 2011 of the Japanese nuclear powerplant.

Most of the scientists and technicians joined the cruise at Auckland. It was anticipated some days might be lost in Roaring Fourties and Furious Fifties, but Mirai managed to steam through a narrow gap in the low pressure systems with 27 successful CTD and sampling casts. More serious problem was posed by sea ice. This leg of the expedition was initially planned to a much later season, but with logistic reasons we had to move up the schedule. With recent trend of ice area increase in and near the Ross Sea, the southern stations were unapproachable. We decided to skip stations in this region and to extend the S04I leg further to the west rather than spending ship-time wading through the icebergs. See the next section for detail. One of the big events in Leg 2 was a recovery of the JAMSTEC buoy which had been measuring the air-sea interaction for nearly 11 months. The window of best weather was sought on weather charts and a two-day window was found between 18th and 20th of December. The recovery was successful. After a CTD cast and a float deployment, reoccupation of S04I was resumed. The ice condition did not show much improvement and we had to cut short this leg to head to Hobart. The extra time was used to reoccupy southern 3 stations of the WOCE 109S section since its 2012 occupation did not have CFC sampling. On the way back to Hobart, a buoy was recovered that had broken loose.

Two days of resupply and six-day steaming (one way) gives almost 2 weeks between legs 2 and 3. During this period, sea ice condition was much improved and icebergs were not as much threat as were in leg 2. Weather was very kind in leg 3, although there were some casts under rough conditions (e.g., stations 112 to 115). We covered all stations as planned in this leg with successful sampling. The leg was completed after 13 days of steaming back to Australia, which gave us a plenty of time for packing and celebrating.

1.5 Major problems and goal not achieved

(1) Stations not occupied, position changed, not close to previous occupations

For the P14S reoccupation, data were not disclosed north of 55°S due to JAMSTEC in-house problem with cruise documentation. It was our intention to cover the P14S section to the southern most station at 66°S, but due to ice cover, southernmost 2 stations (south of 65°S) were not occupied. Our plan was to connect to the stations of WOCE S04P cruise (90KDIOFFE6_1) and work westward on the WOCE S04/S03 stations (09AR9404_1). To keep a safe distance to the ice edge, we had to place new stations (our station number 402, 404, 406, 408, 410) along 64°S and hastened with station distance of about 75 miles interpolated by XCTD casts in-between to re-connect to the WOCE S04 station (our station 50). After meeting the WOCE stations, however, fickle movements of the ice edge and icebergs kept us away from some of the WOCE location. Most of the stations, we managed to measure within 1 mile, but some stations (e.g. our station 70 to WOCE S04 station 28) were more than 3 miles away. Ice condition was much improved for leg 3 and all stations were located close to the WOCE stations.

(2) Misfiring and mistrip of water sampling

None.

(3) Time lost

At station 56, about half an hour during the cast and about 4 hours after the cast were lost due to mechanical trouble with the CTD winch. At station 139, CTD data from the first cast was noisy and the cast was repeated – approximately 45 minutes were lost. Similarly casts were re-started at station 143 and 165 and a total of approximately 40 minutes were lost. Weather condition had been kind to us. We only lost about 12 hours before the first cast of Leg 2 and about 1 hour between stations 11 and 12 due to bad weather.

1.6 Cruise Participants

List of Participants for leg 1

Katsuro Katsumata	Chief scientist	RIGC/JAMSTEC
Yuichiro Kumamoto	C14	RIGC/JAMSTEC
Hiroshi Uchida	Thermosalinograph/chlorophyll-a	RIGC/JAMSTEC
Tetsuo Harada	Halobates	Kochi University
Ryuta Ide	Halobates	Kochi University
Takero Sekimoto	Halobates	Kochi University
Kentaro Emi	Halobates	Kochi University
Tomonori Watai	Chief technician/carbon items preparation	MWJ
Tatsuya Tanaka	CTD/Float	MWJ
Makoto Takada	Carbon items preparation	MWJ
Shinsuke Toyoda	CTD	MWJ
Katsunori Sagishima	CFCs preparation	MWJ
Hironori Sato	CFCs preparation	MWJ
Kanako Yoshida	Thermosalinograph	MWJ
Emi Deguchi	Carbon items preparation	MWJ
Souichiro Sueyoshi	Chief technician/meteorology/ geophysics/ADCP	GODI
Koichi Inagaki	Meteorology/geophysics/ADCP	GODI

List of Participants for leg 2

Katsuro Katsumata	Chief scientist/XMP/water sampling	RIGC/JAMSTEC
Yuichiro Kumamoto	DO/thermosalinograph $/\Delta^{14}C$	RIGC/JAMSTEC
Hiroshi Uchida	LADCP/density/chlorophyll-a	RIGC/JAMSTEC
Shinya Kouketsu	LADCP/ADCP/water sampling	RIGC/JAMSTEC
Kazuhiko Hayashi	Water sampling	RIGC/JAMSTEC
Ken'ichi Sasaki	CFCs	MIO/JAMSTEC
Shoichiro Baba	Mooring/water sampling	MARITEC/JAMSTEC
Takero Sekimoto	Halobates/water sampling	Kochi University
Nobuyoshi Yamashita	PFASs/water sampling	AIST
Eriko Yamazaki	PFASs/water sampling	AIST
Sohiko Kameyama	DMS/isoprene/water sampling	Hokkaido University
Tomohide Noguchi	Chief technician/mooring/water sampling	MWJ
Tomonori Watai	pH/total alkalinity	MWJ
Tatsuya Tanaka	Salinity/mooring	MWJ
Shinsuke Toyoda	CTD/mooring/water sampling	MWJ
Atsushi Ono	DIC	MWJ
Emi Deguchi	pH/total alkalinity	MWJ
Shungo Oshitani	CTD/mooring/water sampling	MWJ
Tomoyuki Takamori	CTD/mooring/water sampling	MWJ
Rei Ito	CTD/mooring/water sampling	MWJ
Minoru Kamata	Nutrients	MWJ
Yoshiko Ishikawa	DIC	MWJ

Yasuhiro Arii	Nutrients	MWJ
Hideki Yamamoto	CFCs	MWJ
Shoko Tatamisashi	CFCs	MWJ
Misato Kuwahara	DO/thermosalinograph	MWJ
Masahiro Orui	CFCs	MWJ
Keitaro Matsumoto	DO/mooring/water sampling	MWJ
Keisuke Tsubata	Salinity	MWJ
Takuhiro Osumi	DO	MWJ
Kohei Miura	Nutrients	MWJ
Yuki Komuro	Water sampling	MWJ
Takehiro Shibuya	Water sampling	MWJ
Saeko Kumagai	Water sampling	MWJ
Mizuho Yasui	Water sampling	MWJ
Hitomi Takahashi	Water sampling	MWJ
Ai Ozaki	Water sampling	MWJ
Kazuho Yoshida	Chief technician/meterology/ geophysics/ADCP/XCTD	GODI
Shinya Okumura	Meteorlology/geophysics/ADCP/ XCTD	GODI
Masanori Murakami	Meteorology/geophysics/ADCP/ XCTD	GODI

List of Participants for leg 3

Hiroshi Uchida	Chief scientist/LADCP/density/chlorophyll- a	RIGC/JAMSTEC
Akihiko Murata	Carbon items/water sampling	RIGC/JAMSTEC
Toshimasa Doi	LADCP/water sampling	RIGC/JAMSTEC
Kazuhiko Hayashi	Water sampling	RIGC/JAMSTEC
Ken'ichi Sasaki	CFCs	MIO / JAMSTEC
Osamu Yoshida	CH ₄ and N ₂ O/water sampling	Rakuno Gakuen University
Haruka Tamada	CH ₄ and N ₂ O/water sampling	Rakuno Gakuen University
Yuko Kanayama	CH ₄ and N ₂ O/water sampling	Rakuno Gakuen University
Okura Shinozaki	CH ₄ and N ₂ O/water sampling	Rakuno Gakuen University
Sohiko Kameyama	DMS/isoprene/water sampling	Hokkaido University
Hideki Yamamoto	Chief technician/water sampling	MWJ
Tomonori Watai	pH/total alkalinity	MWJ
Minoru Kamata	Nutrients	MWJ
Yoshiko Ishikawa	DIC	MWJ
Misato Kuwahara	DO/thermosalinograph/water sampling	MWJ
Masahiro Orui	CFCs	MWJ
Satoshi Ozawa	CTD/water sampling	MWJ
Tamami Ueno	Salinity	MWJ
Hiroshi Matsunaga	CTD/water sampling	MWJ
Naoko Miyamoto	CTD/water sampling	MWJ
Hiroki Ushiromura	Salinity	MWJ

Takami Mori	CTD/water sampling	MWJ
Masanori Enoki	Nutrients	MWJ
Atsushi Ono	pH/total alkalinity	MWJ
Elena Hayashi	Nutrients	MWJ
Kanako Yoshida	DO	MWJ
Katsunori Sagishima	CFCs	MWJ
Hironori Sato	CFCs	MWJ
Keisuke Tsubata	DIC	MWJ
Takuhiro Osumi	DO/water sampling	MWJ
Aiko Miura	Water sampling	MWJ
Manami Kamei	Water sampling	MWJ
Sachi Miyake	Water sampling	MWJ
Yuta Furukawa	Water sampling	MWJ
Iori Fujiwara	Water sampling	MWJ
Yuki Kawabuchi	Water sampling	MWJ
Souichiro Sueyoshi	Chief technician/meteorology/ geophysics/ADCP/XCTD	GODI
Katsuhisa Maeno	Meteorology/geophysics/ADCP/ XCTD	GODI
Koichi Inagaki	Meteorology/geophysics/ADCP/ XCTD	GODI
IXVICIII IIIAGANI		

AIST	National Institute of Advanced Industrial Science and Technology
GODI	Global Ocean Development Inc.
JAMSTEC	Japan Agency for Marine-Earth Science and Technology
MARITEC	Marine Technology and Engineering Center

MIO Mutsu Institute of Oceanography

MWJ Marine Works Japan Ltd.

RIGC Research Institute for Global Change

2 Underway Measurements

2.1 Navigation

(1) Personnel

Souichiro Sueyoshi	(Global Ocean Development Inc., GODI)	-leg1, leg3-
Koichi Inagaki	(GODI)	-leg1, leg3-
Kazuho Yoshida	(GODI)	-leg2-
Shinya Okumura	(GODI)	-leg2-
Masanori Murakami	(GODI)	-leg2-
Katsuhisa Maeno	(GODI)	-leg3-
Ryo Kimura	(MIRAI Crew)	-leg1, leg2-
Ryo Ohyama	(MIRAI Crew)	-leg3-

(2) System description

Ship's position and velocity were provided by Radio Navigation System on R/V Mirai. This system integrates GPS position, log speed, gyro compass heading and other basic data for navigation, and calculated speed/course over ground on workstation. Radio navigation System also distributed ship's standard time synchronized to GPS time server via Network Time Protocol. These data were logged on the network server as "SOJ" data every 5 seconds.

Sensors for navigation data are listed below;

i) GPS system: MultiFix6 (software version 1.01), Differential GPS system.

Receiver: Trimble SPS751, with two GPS antennas located on navigation

deck, starboard side and port side, manually switched as to

GPS receiving state and offset to radar-mast position, datum

point.

Decoder: Fugro STARFIX 4100LR

ii) Doppler log: Furuno DS-30, which use three acoustic beam for current measurement

under the hull.

iii) Gyrocompass: Tokimec TG-6000, sperry type mechanical gyrocompass.

iv) GPS time server: SEIKO TS-2540 Time Server, synchronizing to GPS satellite every 1

second.

(3) Data period (Times in UTC)

Leg1: 07:00, 05 Nov. 2012 - 20:30, 25 Nov. 2012

Leg2: 21:10, 27 Nov. 2012 - 23:20, 03 Jan. 2013

Leg3: 22:50, 05 Jan. 2013 - 06:23, 15 Feb. 2013

(4) Remarks (Times in UTC)

i) The following periods, navigation data was invalid due to the system error.

23:25:05, 22 Nov. 2012

23:30:40, 22 Nov. 2012 - 23:36:30, 22 Nov. 2012

23:38:15, 22 Nov. 2012 - 23:38:30, 22 Nov. 2012

23:38:40, 22 Nov. 2012 - 23:38:55, 22 Nov. 2012

23:39:05, 22 Nov. 2012

18:07:50, 04 Dec. 2012

15:26:05, 05 Dec. 2012

21:32:10, 07 Dec. 2012

18:01:50, 09 Dec. 2012

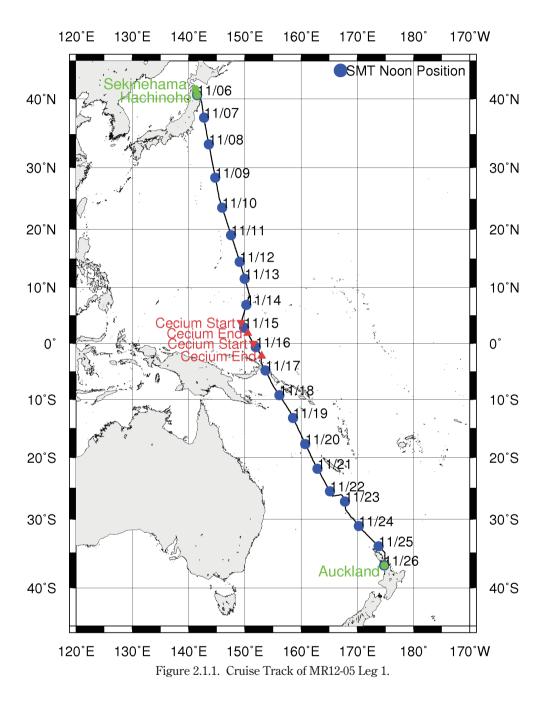
15:33:50, 10 Dec. 2012

15:16:20, 15 Dec. 2012

16:07:00, 16 Dec. 2012

16:07:05, 16 Dec. 2012

20:50:55, 20 Dec. 2012


ii) The following periods, navigation data was invalid due to GPS position fix error.

12:14:15, 22 Dec. 2012

12:15:45, 22 Dec. 2012

11:47:40, 28 Dec. 2012 - 11:52:40, 28 Dec. 2012

12:39:25, 28 Dec. 2012 - 12:41:55, 28 Dec. 2012

11

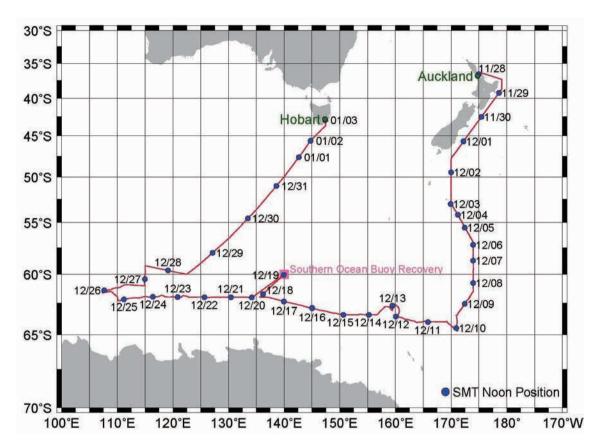
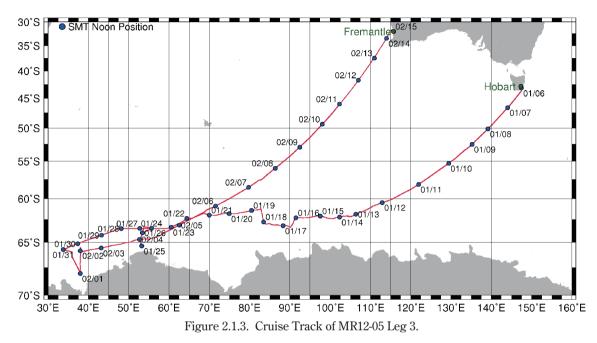



Figure 2.1.2. Cruise Track of MR12-05 Leg 2.

MR12-05 Leg3 Cruise Track

2.2 Swath Bathymetry

(1) Personnel

Takeshi Matsumoto	(University of the Ryukyus): Principal investigator (not on-board)			
Masao Nakanishi	(Chiba University): Principal investigator (not on-boa	(Chiba University): Principal investigator (not on-board)		
Souichiro Sueyoshi	(Global Ocean Development Inc., GODI)	-leg1, leg3-		
Koichi Inagaki	(GODI)	-leg1, leg3-		
Kazuho Yoshida	(GODI)	-leg2-		
Shinya Okumura	(GODI)	-leg2-		
Masanori Murakami	(GODI)	-leg2-		
Katsuhisa Maeno	(GODI)	-leg3-		
Ryo Kimura	(MIRAI Crew)	-leg1, leg2-		
Ryo Ohyama	(MIRAI Crew)	-leg3-		

(2) Introduction

R/V MIRAI is equipped with a Multi narrow Beam Echo Sounding system (MBES), SEABEAM 3012 Upgraded Model (L3 Communications ELAC Nautik). The objective of MBES is collecting continuous bathymetric data along ship's track to make a contribution to geological and geophysical investigations and global datasets.

(3) Data Acquisition

The "SEABEAM 3012 Upgrade Model" on R/V MIRAI was used for bathymetry mapping during the MR12-05 cruise from 5th November 2012 to 15th February 2013.

To get accurate sound velocity of water column for ray-path correction of acoustic multibeam, we used Surface Sound Velocimeter (SSV) data to get the sea surface sound velocity (at 6.62m), and the deeper depth sound velocity profiles were calculated by temperature and salinity profiles from CTD and XCTD data by the

equation in Del Grosso (1974) during this cruise.

Table 2.2.1 shows system configuration and performance of SEABEAM 3012Upgraded Model.

Table 2.2.1. System configuration and performance.

SEABEAM 3012 (12 kHz system)	
Frequency:	12 kHz
Transmit beam width:	1.6 degree
Transmit power:	$20~\mathrm{kW}$
Transmit pulse length:	2 to 20 msec.
Receive beam width:	1.8 degree
Depth range:	100 to 11,000 m
Beam spacing:	0.5 degree athwart ship
Swath width:	150 degree (max)
	120 degree to 4,500 m
	100 degree to 6,000 m
	90 degree to 11,000 m
Depth accuracy:	Within < 0.5% of depth or +/-1m, whichever is greater, ove
	the entire swath.
	(Nadir beam has greater accuracy; typically within < 0.29
	of depth or +/-1m, whichever is greater)

(4) Data processing

i. Sound velocity correction

Each bathymetry data was corrected with a sound velocity profile calculated from the nearest CTD or XCTD data in the distance. The equation of Del Grosso (1974) was used for calculating sound velocity. The data correction was carried out using the HIPS software version 7.1 (CARIS, Canada).

ii. Editing and Gridding

Gridding for the bathymetry data were carried out using the HIPS. Firstly, the bathymetry data during ship's turning was basically deleted, and spike noise of each swath data was removed. Then the bathymetry data was gridded by "Interpolate" function of the software with the parameters shown as Table 2.2.2.

Finally, interpolated data were exported as ASCII data, and converted to 150m grid data using "xyz2grd" utility of GMT (Generic Mapping Tool) software.

Table 2.2.2. Parameters for interpolate of bathymetry data.

BASE surface resolution:	50m	
Interpolate matrix size:	5 x 5	
Minimum number of neighbors for	10	
interpolate:	10	

(5) Data Archives

Bathymetric data obtained during this cruise will be submitted to the Data Management Group (DMG) of JAMSTEC, and will be archived there.

(6) Remarks (Times in UTC)

1) The following periods, the observation was carried out.

Leg1: 14:24, 06 Nov. 2012 - 13:05, 16 Nov. 2012

04:28, 17 Nov. 2012 - 07:00, 25 Nov. 2012

Leg2: 08:15, 28 Nov. 2012 - 07:00, 01 Jan. 2013

Leg3: 02:35, 6 Jan. 2013 - 12:06, 13 Feb 2013.

2) The following periods, data acquisition was suspended due to the system error and maintenance.

12:22 - 13:12, 11 Dec. 2012

07:12 - 09:02, 12 Dec. 2012

08:06 - 08:31, 23 Jan. 2013

3) The following periods, navigation data was invalid due to GPS position fix error.

23:30:30 - 23:39:05, 22 Nov. 2012 (intermittently)

11:47:37 - 11:52:42, 28 Dec. 2012

12:39:23 - 12:41:55, 28 Dec. 2012

2.3 Surface Meteorological Observations

(1) Personnel

Souichiro Sueyoshi	(Global Ocean Development Inc., GODI)	-leg1, leg3-
Koichi Inagaki	(GODI)	-leg1, leg3-
Kazuho Yoshida	(GODI)	-leg2-
Shinya Okumura	(GODI)	-leg2-
Masanori Murakami	(GODI)	-leg2-
Katsuhisa Maeno	(GODI)	-leg3-
Ryo Kimura	(MIRAI Crew)	-leg1, leg2-
Ryo Ohyama	(MIRAI Crew)	-leg3-

(2) Objectives

Surface meteorological parameters are observed as a basic dataset of the meteorology. These parameters provide the temporal variation of the meteorological condition surrounding the ship.

(3) Methods

Surface meteorological parameters were observed during the MR12-05 cruise from 5th November 2012 to 15th February 2013. In this cruise, we used two systems for the observation.

i. MIRAI Surface Meteorological observation (SMet) system

Instruments of SMet system are listed in Table 2.3.1 and measured parameters are listed in Table 2.3.2. Data were collected and processed by KOAC-7800 weather data processor made by Koshin-Denki, Japan. The data set consists of 6-second averaged data.

ii. Shipboard Oceanographic and Atmospheric Radiation (SOAR) measurement system
 SOAR system designed by BNL (Brookhaven National Laboratory, USA) consists of major three parts.

- a) Portable Radiation Package (PRP) designed by BNL short and long wave downward radiation.
- b) Zeno Meteorological (Zeno/Met) system designed by BNL wind, air temperature, relative humidity, pressure, and rainfall measurement.
- c) Scientific Computer System (SCS) developed by NOAA (National Oceanic and Atmospheric Administration, USA) – centralized data acquisition and logging of all data sets.

SCS recorded PRP data every 6 seconds, Zeno/Met data every 10 seconds. Instruments and their locations are listed in Table 2.3.3 and measured parameters are listed in Table 2.3.4.

For the quality control as post processing, we checked the following sensors, before and after the cruise.

i. Young Rain gauge (SMet and SOAR)

Inspect of the linearity of output value from the rain gauge sensor to change Input value by adding fixed quantity of test water.

ii. Barometer (SMet and SOAR)

Comparison with the portable barometer value, PTB220, VAISALA

iii. Thermometer (air temperature and relative humidity) (SMet and SOAR)

Comparison with the portable thermometer value, HMP41/45, VAISALA

(4) Preliminary results

Figs. 2.3.1, 2.3.2, and 2.3.3 show the time series of the following parameters;

Wind (SMet)

Air temperature (SMet)

Relative humidity (SOAR)

Precipitation (SOAR, rain gauge)

Short/long wave radiation (SOAR)

Pressure (SMet)

Sea surface temperature (SMet)

Significant wave height (SMet)

(5) Data archives

These meteorological data will be submitted to the Data Management Group (DMG) of JAMSTEC just after the cruise.

(6) Remarks (Times in UTC)

1) The following periods, observation was carried out.

Leg1: 00:00, 05 Nov. 2012 to 15:00, 16 Nov. 2012

03:00, 17 Nov. 2012 to 07:00, 25 Nov. 2012

Leg2: 06:00, 28 Nov. 2012 to 07:00, 01 Jan. 2013

Leg3: 02:00, 07 Jan. 2013 to 12:00, 13. Feb 2013

2) The following periods, navigation data of SMet data was invalid due to GPS position fix error.

Leg1: 23:30 - 23:39, 22 Nov. 2012 (intermittently)

Leg2: 2:21, 18 Dec. 2012

11:47 to 11:51, 28 Dec. 2012

12:39 to 12:41, 28 Dec. 2012

 The following periods, FRSR data acquisition was suspended to prevent damage to the shadow-band from freezing.

Leg2: 08:01, 08 Dec. 2012 to 20:45, 28 Dec. 2012

Leg3: 19:20, 12 Jan. 2013 to 10:21, 08 Feb. 2013

4) The following time, SMet rain gauge amount values were increased because of test transmitting for MF/HF radio.

Leg1: 23:01 - 23:16, 11 Nov. 2012

Leg2: 08:54, 06 Dec. 2012

00:35, 18 Dec. 2012

22:41, 25 Dec. 2012

Leg3: 06:15, 24 Jan. 2013

01:25, 13 Feb. 2013

Table 2.3.1. Instruments and installation locations of MIRAI Surface Meteorological observation system.

Sensors	Туре	Manufacturer	Location (altitude from surface)
Anemometer	KE-500	Koshin Denki, Japan	foremast (24 m)
Tair/RH	HMP45A	Vaisala, Finland	
with 43408 Gill aspirated r	adiation shield	R.M. Young, USA	compass deck (21 m)
			starboard side and port side
Thermometer: SST	RFN1-0	Koshin Denki, Japan	4th deck (-1m, inlet -5m)
Barometer	Model-370	Setra System, USA	captain deck (13 m)
			weather observation room
Rain gauge	50202	R. M. Young, USA	compass deck (19 m)
Optical rain gauge	ORG-815DR	Osi, USA	compass deck (19 m)
Radiometer (short wave)	MS-802	Eko Seiki, Japan	radar mast (28 m)
Radiometer (long wave)	MS-202	Eko Seiki, Japan	radar mast (28 m)
Wave height meter	WM-2	Tsurumi-seiki, Japan	bow (10 m)

Table 2.3.2. Parameters of MIRAI Surface Meteorological observation system.

Par	ameter	Units	Remarks
1	Latitude	degree	
2	Longitude	degree	
3	Ship's speed	knot	Mirai log, DS-30 Furuno
4	Ship's heading	degree	Mirai gyro, TG-6000, Tokimec
5	Relative wind speed	m/s	6sec./10min. averaged
6	Relative wind direction	degree	6sec./10min. averaged
7	True wind speed	m/s	6sec./10min. averaged
8	True wind direction	degree	6sec./10min. averaged
9	Barometric pressure	hPa	adjusted to sea surface level
			6sec. averaged
10	Air temperature (starboard side)	$\deg C$	6sec. averaged
11	Air temperature (port side)	$\deg C$	6sec. averaged
12	Dewpoint temperature (starboard side)	$\deg C$	6sec. averaged
13	Dewpoint temperature (port side)	$\deg C$	6sec. averaged
14	Relative humidity (starboard side)	%	6sec. averaged
15	Relative humidity (port side)	%	6sec. averaged
16	Sea surface temperature	$\deg C$	6sec. averaged
17	Rain rate (optical rain gauge)	mm/hr	hourly accumulation
18	Rain rate (capacitive rain gauge)	mm/hr	hourly accumulation
19	Down welling shortwave radiation	W/m^2	6sec. averaged
20	Down welling infra-red radiation	W/m^2	6sec. averaged
21	Significant wave height (bow)	m	hourly

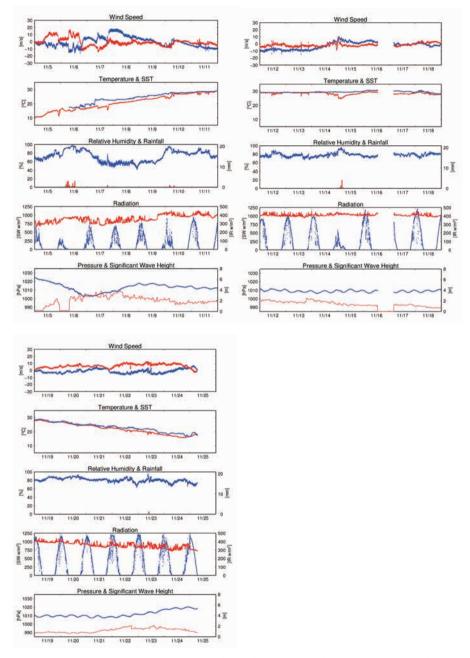

22	Significant wave height (aft)	m	hourly
23	Significant wave period (bow)	second	hourly
24	Significant wave period (aft)	second	hourly

Table 2.3.3. Instruments and installation locations of SOAR system.

Sensors	Type	Manufacturer	Location (altitude from surface)
Zeno/Met			
Anemometer	05106	R.M. Young, USA	foremast (25 m)
Tair/RH	HMP45A	Vaisala, Finland	
with 43408 Gill aspirated r	radiation shield	R.M. Young, USA	foremast (23 m)
Barometer	61302V	R.M. Young, USA	
with 61002 Gill pressure port		R.M. Young, USA	foremast (23 m)
Rain gauge	50202	R.M. Young, USA	foremast (24 m)
Optical rain gauge	ORG-815DA	Osi, USA	foremast (24 m)
PRP			
Radiometer (short wave)	PSP	Epply Labs, USA	foremast (25 m)
Radiometer (long wave)	PIR	Epply Labs, USA	foremast (25 m)
Fast rotating shadowband radiometer		Yankee, USA	foremast (25 m)

Table 2.3.4. Parameters of SOAR system.

Para	nmeter	Units	Remarks
1	Latitude	degree	
2	Longitude	degree	
3	SOG	knot	
4	COG	degree	
5	Relative wind speed	m/s	
6	Relative wind direction	degree	
7	Barometric pressure	hPa	
8	Air temperature	$\deg C$	
9	Relative humidity	%	
10	Rain rate (optical rain gauge)	mm/hr	
11	Precipitation (capacitive rain gauge)	mm	reset at 50 mm
12	Down welling shortwave radiation	W/m^2	
13	Down welling infra-red radiation	W/m^2	
14	Defuse irradiance	W/m^2	

 $Figure\ 2.3.1.\ Time\ series\ of\ surface\ meteorological\ parameters\ during\ the\ MR12-05\ leg 1\ cruise.$

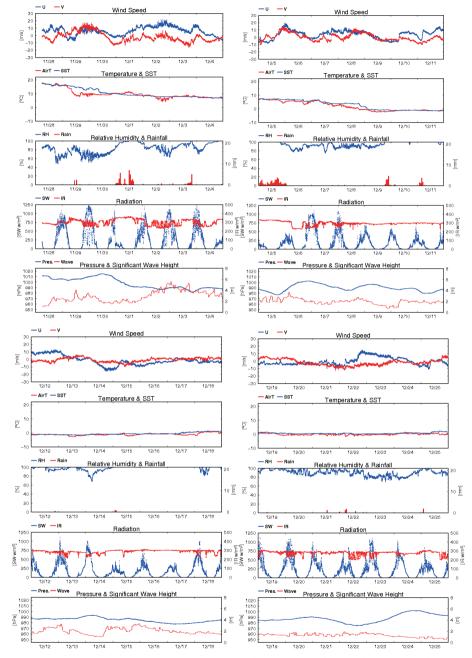


Figure 2.3.2. Time series of surface meteorological parameters during the MR12-05 leg2 cruise.

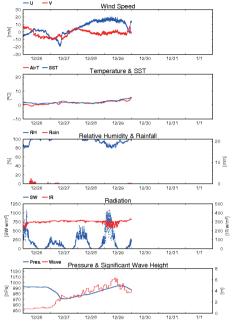


Figure 2.3.2. (Continued)

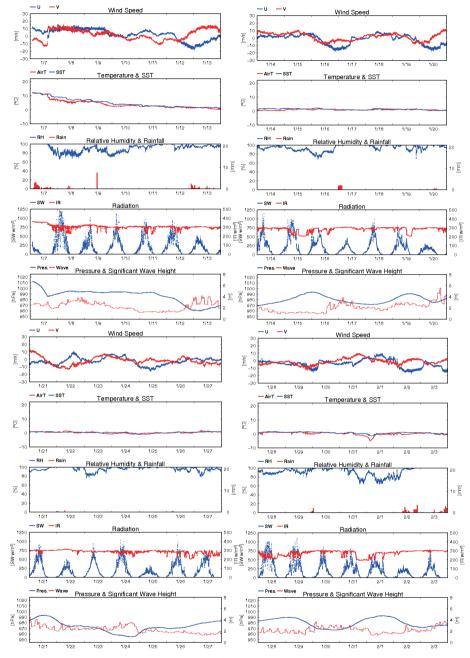


Figure 2.3.3. Time series of surface meteorological parameters during the MR12-05 leg3 cruise.

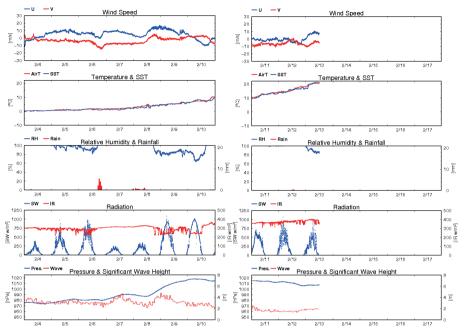


Figure 2.3.3. (Continued)

2.4 Thermo-Salinograph and Related Measurements

October 8, 2014

(1) Personnel

Hiroshi Uchida (JAMSTEC)

Kanako Yoshida (MWJ) (Legs 1, 3)

Misato Kuwahara (MWJ) (Legs 2, 3)

Keitaro Matsumoto (MWJ) (Leg 2)

(2) Objectives

The objective is to collect sea surface salinity, temperature, dissolved oxygen, and fluorescence data continuously along the cruise track.

(3) Materials and methods

The Continuous Sea Surface Water Monitoring System (Marine Works Japan Co, Ltd.) has six sensors and automatically measures salinity, temperature, dissolved oxygen, and fluorescence in sea surface water every one minute. This system is located in the sea surface monitoring laboratory and connected to shipboard LAN system. Measured data along with time and location of the ship were displayed on a monitor and stored in a desktop computer. The sea surface water was continuously pumped up to the laboratory from about 5 m water depth and flowed into the system through a vinyl-chloride pipe. The flow rate of the surface seawater was controlled to be 1.2 L/min.

Software and sensors used in this system are listed below.

i. Software

Seamoni-kun Ver.1.30

ii. Sensors

Temperature and conductivity sensor

Model: SBE-45, SEA-BIRD ELECTRONICS, INC.

Serial number: 4563325-0362

Bottom of ship thermometer

Model: SBE 38, SEA-BIRD ELECTRONICS, INC.

Serial number: 3857820-0540

Dissolved oxygen sensors

Model: OPTODE 3835, Aanderaa Data Instruments, AS.

Serial number: 985

Medel: RINKO-II, JFE Advantech Co. Ltd.

Serial number: 0013

Fluorometer

Model: C3, TURNER DESIGNS

Serial number: 2300123

(4) Data Processing and Quality Control

Data from the Continuous Sea Surface Water Monitoring System were processed as follows. Data gaps were linearly interpolated when the gap was ≤ 7 minutes. Spikes in the temperature and salinity data were removed using a median filter with a window of 3 scans (3 minutes) when difference between the original data and the median filtered data was larger than $0.1\,^{\circ}$ C for temperature and 0.5 for salinity. Fluorometer data were low-pass filtered using a median filter with a window of 3 scans (3 minutes) to remove spikes. Raw data from the RINKO oxygen sensor and the fluorometer data were low-pass filtered using a Hamming filter with a window of 15 scans (15 minutes).

Salinity (S [PSU]), dissolved oxygen (O [µmol/kg]) and fluorescence (Fl [RFU]) data were corrected using the water sampled data. Details of the measurement methods are described in Sections 3.2, 3.4, and 3.8

for salinity, dissolved oxygen and chlorophyll-a, respectively. Corrected salinity (S_{cor}), dissolved oxygen (O_{cor}), and estimated chlorophyll a (Chl-a) were calculated from following equations

$$\begin{split} S_{cor} \ [PSU] &= c_0 + c_1 \, S + c_2 \, t \\ O_{cor} \ [\mu mol/kg] &= c_0 + c_1 \, O + c_2 \, T + c_3 \, t \\ Chl-a \ [\mu g/L] &= c_0 + c_1 \, Fl \end{split}$$

where t is days from a reference time, T is temperature in $^{\circ}$ C. The best fit sets of calibration coefficients ($c_0 \sim c_3$) were determined by a least square technique to minimize the deviation from the water sampled data. The reference times were listed in Table 2.4.1. The calibration coefficients were listed in Table 2.4.2. Comparisons between the Continuous Sea Surface Water Monitoring System data and water sampled data are shown in from Figs. 2.4.1 to 2.4.9. For fluorometer data, water sampled data obtained at night [PAR (Photosynthetically Available Radiation) < 50 μ E/(m^2 sec), see Section 2.15] were used for the calibration, since sensitivity of the fluorometer to chlorophyll a is different at nighttime and daytime (Fig. 2.4.10). For leg 1, sensitivity of the fluorometer to chlorophyll a is also different at around Solomon Sea and other area. Therefore, slope (c_1) of the calibration coefficients was changed for each area (Table 2.4.2). For latitude between 14°S and 13°S, chlorophyll a was estimated from weighted mean of the two equations as

Chl-a = Chl-a₁
$$f_1$$
 + Chl-a₂ f_2
 f_1 = 1 - (latitude+14)
 f_2 = 1 - f_1

where Chl-a1 is chlorophyll a calculated by using the set of coefficients A, and Chl-a₂ is chlorophyll a calculated by using the set of coefficients B (Table 2.4.2).

Table 2.4.1. Reference time used in the calibration equations for salinity and dissolved oxygen.

Leg	Date	Time (UTC)
1	2012/11/06	08:09
2	2012/11/28	06:00
3	2013/01/07	02:00

Table 2.4.2. Calibration coefficients for the salinity, dissolved oxygen, and chlorophyll a.

•	0	_	0	0	
Leg	c0	c1	c2	c3	
Salinity					
1	-8.264243e-04	1.000025	-3.094205e-06		
2	-4.901493e-04	1.000014	-8.007142e-08		
3	4.116161e-04	0.9999879	1.490024e-07		
Dissolved oxygen					
1	8.682632e-03	0.9999764	-1.111354e-04	-3.665007e-05	
2	9.983204e-03	0.9999737	-1.391134e-04	-3.103317e-05	
3	-1.566883e-02	1.000044	2.854348e-04	8.284769e-06	
Chlorophyll a					
1	5.352958e-02	0.1296275 (A: for	0.1296275 (A: for latitude $\leq 14^{\circ}$ S or latitude $\geq 5^{\circ}$ S)		
	5.352958e-02	0.3467123 (B: for	0.3467123 (B: for latitude > 13° S and latitude < 5° S)		
2	0.1141853	5.968889e-02	5.968889e-02		
3	1.445487e-02	5.716477e-02			

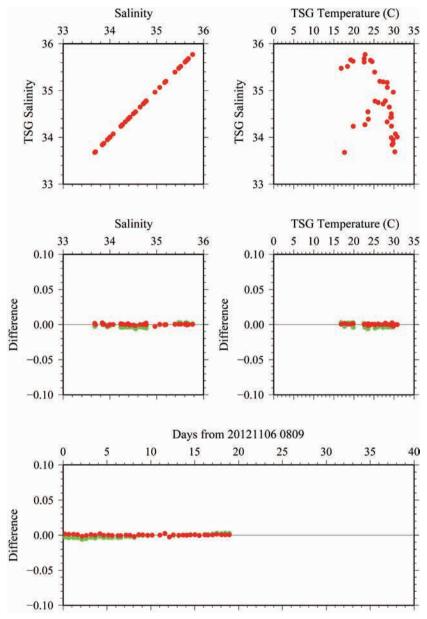


Figure 2.4.1. Comparison between TSG salinity (green: before correction, red: after correction) and sampled salinity for leg 1.

Figure 2.4.2. Same as Fig. 2.4.1, but for leg 2.



Figure 2.4.3. Same as Fig. 2.4.1, but for leg 3.

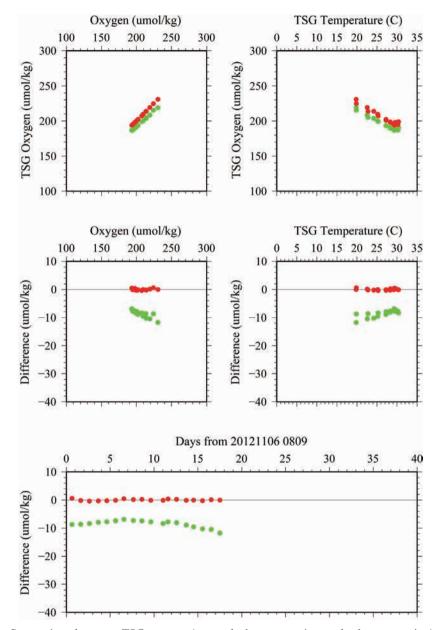


Figure 2.4.4. Comparison between TSG oxygen (green: before correction, red: after correction) and sampled oxygen for leg 1.

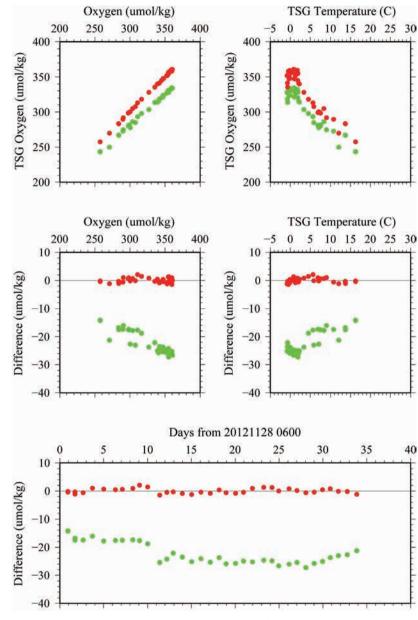


Figure 2.4.5. Same as Fig. 2.4.4, but for leg 2.

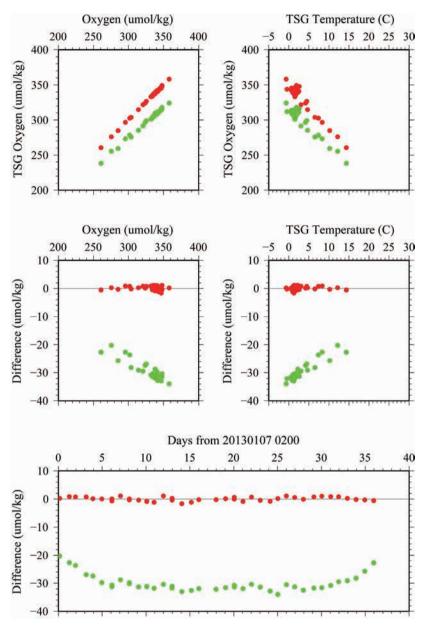


Figure 2.4.6. Same as Fig. 2.4.4, but for leg 3.

25

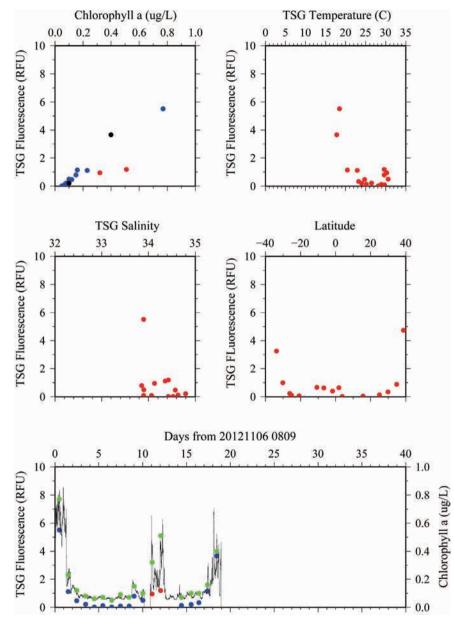


Figure 2.4.7. Comparison between TSG fluorescence and sampled chlorophyll a for leg 1. Black dots indicate the daytime data. For bottom panel, blue or red dots indicate fluorescence and green dots indicate water sampled chlorophyll a. Line indicates chlorophyll a estimated from fluoremeter.

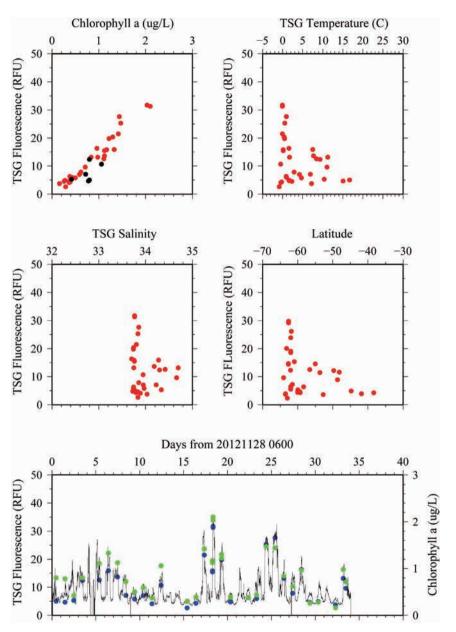


Figure 2.4.8. Same as Fig. 2.4.7, but for leg 2.

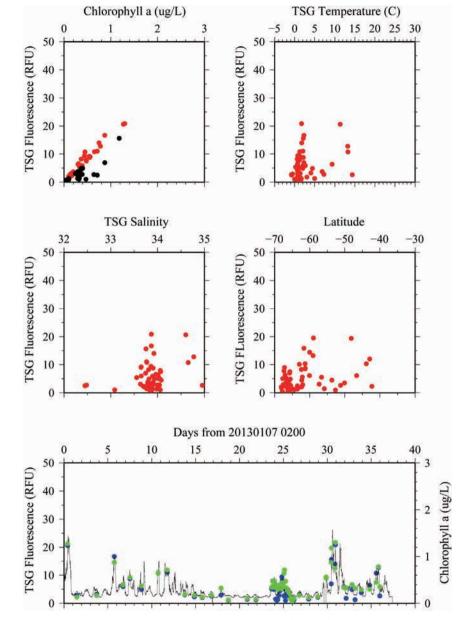


Figure 2.4.9. Same as Fig. 2.4.7, but for leg 3.



Figure 2.4.10. Diurnal variation of the chlorophyll a estimated from the fluorometer. Water sampled chlorophyll a (blue and green dots) does not show such diurnal variation.

27

2.5 Underway pCO₂

October 2, 2014

(1) Personnel

Akihiko Murata (JAMSTEC)
Yoshiko Ishikawa (MWJ)
Tomonori Watai (MWJ)
Emi Deguchi (MWJ)
Atsushi Ono (MWJ)
Keisuke Tsubata (MWJ)

(2) Introduction

According to the latest report from Intergovernmental Panel on Climate Change, concentrations of CO_2 in the atmosphere have increased by 40% since pre-industrial times owing to human activities such as burning of fossil fuels, deforestation, and cement production. It is evaluated that the ocean has absorbed about 30% of the emitted anthropogenic CO_2 . It is an urgent task to estimate as accurately as possible the absorption capacity of the oceans against the increased atmospheric CO_2 , and to clarify the mechanism of the CO_2 absorption, because the magnitude of future global warming depends on the levels of CO_2 in the atmosphere.

The Southern Ocean is one of the regions where uncertainty of uptake of anthropogenic CO_2 is large. In this cruise, therefore, we were aimed at quantifying how much anthropogenic CO_2 is absorbed in the ocean interior of the Southern Ocean. For the purpose, we measured atmospheric and surface seawater partial pressures of CO_2 (p CO_2) along the WHP P14S and S04I lines at ~170°E and ~60°S, respectively, in the Southern Ocean.

Apparatus and shipboard measurement

Continuous underway measurements of atmospheric and surface seawater pCO₂ were made with the CO₂ measuring system (Nippon ANS, Ltd) installed in the R/V *Mirai* of JAMSTEC. The system comprises of a non-dispersive infrared gas analyzer (Li-COR LI-7000), an air-circulation module and a showerhead-type equilibrator. To measure concentrations (mole fraction) of CO₂ in dry air (xCO₂a), air sampled from the bow of the ship (approx. 30 m above the sea level) was introduced into the NDIR through a dehydrating route with an electric dehumidifier (kept at ~2 °C), a Perma Pure dryer (GL Sciences Inc.), and a chemical desiccant (Mg(ClO₄)₂). The flow rate of the air was 500 ml min⁻¹. To measure surface seawater concentrations of CO₂ in dry air (xCO₂s), the air equilibrated with seawater within the equilibrator was introduced into the NDIR through the same flow route as the dehydrated air used in measuring xCO₂a. The flow rate of the equilibrated air was 700 – 800 ml min⁻¹. The seawater was taken by a pump from the intake placed at the approx. 4.5 m below the sea surface. The flow rate of seawater in the equilibrator was 400 – 500 ml min⁻¹.

The CO_2 measuring system was set to repeat the measurement cycle such as 4 kinds of CO_2 standard gases (Table 2.5.1), xCO_2 a (twice), xCO_2 s (7 times). This measuring system was run automatically throughout the cruise by a PC control.

Quality control

Concentrations of CO₂ of the standard gases are listed in Table 2.5.1, which were calibrated after cruise by the JAMSTEC primary standard gases. The CO₂ concentrations of the primary standard gases were calibrated by the Scripps Institution of Oceanography, La Jolla, CA, USA.

In actual shipboard observations, the signals of NDIR usually reveal a trend. The trends were adjusted linearly using the signals of the standard gases analyzed before and after the sample measurements.

Effects of water temperature increased between the inlet of surface seawater and the equilibrator on xCO₂s were adjusted based on Takahashi *et al.* (1993), although the temperature increases were slight, being ~0.3 °C.

We checked values of xCO₂a and xCO₂s by examining signals of the NDIR by plotting the xCO₂a and

xCO₂s as a function of sequential day, longitude, sea surface temperature and sea surface salinity.

Reference

Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, and S. C. Southerland (1993) Seasonal variation of CO₂ and nutrients in the high-latitude surface oceans: a comparative study, *Global Biogeochem. Cycles*, 7, 843 – 878.

Table 2.5.1. Concentrations of CO₂ standard gases used during the Southern Ocean cruise.

Cylinder no.	Concentrations (ppmv)	
CRC00049	270.14	
CRC00046	330.29	
CRC00047	360.31	
CRC00048	420.22	

2.6 Shipboard ADCP

September 30, 2014

(1) Personnel

Shinya Kouketsu	(JAMSTEC)	: Principal Investigator		
Souichiro Sueyoshi	(Global Ocean Development I	nc., GODI)	-leg1, leg3-	
Koichi Inagaki	(GODI)	-leg1, leg3-		
Kazuho Yoshida	(GODI)	-leg2-		
Shinya Okumura	(GODI)	-leg2-		
Masanori Murakami	(GODI)	-leg2-		
Katsuhisa Maeno	(GODI)	-leg3-		
Ryo Kimura	(MIRAI Crew)	-leg1, leg2-		
Ryo Ohyama	(MIRAI Crew)	-leg3-		

(2) Objective

To obtain continuous measurement of the current profile along the ship's track.

(3) Methods

Upper ocean current measurements were made in the MR12-05 cruise, using the hull-mounted Acoustic Doppler Current Profiler (ADCP) system. For most of its operation the instrument was configured for water-tracking mode. Bottom-tracking mode, interleaved bottom-ping with water-ping, was made to get the calibration data for evaluating transducer misalignment angle in the shallow water. The system consists of following components;

1) R/V MIRAI has installed vessel-mount ADCP (75 kHz "Ocean Surveyor", Teledyne RD Instruments). It has a phased-array transducer with single assembly and creates 4 acoustic beams electronically.

- 2) For heading source, we use ship's gyro compass (Tokimec, Japan), continuously providing heading to the ADCP system directory. Also we have Inertial Navigation System (PHINS, iXSEA) which provide high-precision heading and attitude information are stored in ".N2R" data files.
- 3) DGPS system (Trimble SPS751 & StarFixXP) providing position fixes.
- 4) We used VmDas version 1.46.5 (TRDI) for data acquisition.
- 5) To synchronize time stamp of pinging with GPS time, the clock of the logging computer is adjusted to GPS time every 8 minutes.
- 6) The sound speed at the transducer does affect the vertical bin mapping and vertical velocity measurement, is calculated from temperature, salinity (constant value; 35.0 psu) and depth (6.5 m; transducer depth) by equation in Medwin (1975).

Data was configured for 8-m intervals starting 23-m below the surface. Every ping was recorded as raw ensemble data (.ENR). Also, 60 seconds and 300 seconds averaged data were recorded as short term average (.STA) and long term average (.LTA) data, respectively. Major parameters for the measurement (Direct Command) are shown in Table 2.6.1.

(4) Processed data

We corrected the misalignment of ADCP with the bottom track measurements and provided 9 sminutes averaged velocity profiles.

(5) Data archive

These data obtained in this cruise will be submitted to the Data Management Group (DMG) of JAMSTEC, and will be opened to the public via JAMSTEC home page.

(6) Remarks (Times in UTC)

1) The observation was carried out within following periods

Leg1: 07:00, 05 Nov. 2012 - 15:00, 16 Nov. 2012

03:00, 17 Nov. 2012 - 07:00, 25 Nov. 2012

Leg2: 06:00, 28 Nov. 2012 - 07:00, 01 Jan. 2013

Leg3: 02:00, 07 Jan. 2013 - 12:00, 13 Feb 2013

2) RSSI (Echo Intensity) became weak deeper layers than 300m around southern part of P14S line as shown in Fig 2.6-1. The following periods, we changed temporally some of parameters (Depth cell size (WS), number of cells (WN) and blanking distance (WF)) due to trying to improve of the state.

01:30 - 01:44, 10 Dec. 2012 : WS;400[cm], WN;128, WF; 400[cm] 01:45 - 02:51, 10 Dec. 2012 : WS;400[cm], WN;128, WF; 800[cm]

3) The following periods, navigation data was invalid due to GPS position fix error.

Leg1: 23:25:06 - 23:39:07, 22 Nov. 2012 (intermittently)

Leg2: 11:47:39 - 13:41:46, 28 Dec. 2012

Table 2.6.1. Major parameters.

Rottom	Track	Comman	de
DOHOM:	· I TACK	Comman	(15

BP = 000 Pings per Ensemble (almost over 1300m depth)

Leg1: 01:19UTC 07 Nov. 2012 – 15:00UTC 16 Nov. 2012
03:00UTC 17 Nov. 2012 – 04:39UTC 17 Nov. 2012
06:48UTC 17 Nov. 2012 – 09:43UTC 18 Nov. 2012
10:59UTC 18 Nov. 2012 – 18:41UTC 22 Nov. 2012

20:56UTC 22 Nov. 2012 – 08:09UTC 23 Nov. 2012 09:16UTC 23 Nov. 2012 – 02:32UTC 23 Nov. 2012

Leg2 06:00UTC 28 Nov. 2012 – 02:31UTC 30 Nov. 2012

17:30UTC 30 Nov. 2012 – 20:54UTC 01 Dec. 2012

16:17UTC 03 Dec. 2012 – 07:00UTC 01 Jan. 2013

Leg3: 17:43UTC 06 Jan. 2013 – 14:35UTC 06 Feb. 2013 05:15UTC 07 Feb. 2013 – 12:00UTC 13 Feb. 2013

BP = 001 Pings per Ensemble (almost less than 1300m depth)

Leg1: 04:16UTC 05 Nov. 2012 – 01:19UTC 07 Nov. 2012

04:39UTC 17 Nov. 2012 – 06:47UTC 17 Nov. 2012

09:43UTC 18 Nov. 2012 – 10:59UTC 18 Nov. 2012

18:41UTC 22 Nov. 2012 – 20:56UTC 22 Nov. 2012 08:09UTC 23 Nov. 2012 – 09:16UTC 23 Nov. 2012

02:32UTC 23 Nov. 2012 – 07:00UTC 25 Nov. 2012

Leg2: 02:32UTC 30 Nov. 2012 - 17:30UTC 30 Nov. 2012

20:54UTC 01 Dec. 2012 – 16:17UTC 03 Dec. 2012

Leg3: 06:18UTC 05 Jan. 2013 – 17:43UTC 06 Jan. 2013

14:35UTC 06 Feb. 2013 - 05:15UTC 07 Feb. 2013

Environmental Sensor Commands

EA = +04500	Heading Alignment (1/100 deg)			
EB = +00000	Heading Bias (1/100 deg)			
ED = 00065	Transducer Depth (0 - 65535 dm)			
EF = +001	Pitch/Roll Divisor/Multiplier (pos/neg) [1/99 - 99]			
EH = 00000	Heading (1/100 deg)			
ES = 35	Salinity (0-40 pp thousand)			
EX = 00000	Coord Transform (Xform:Type; Tilts; 3Bm; Map)			
EZ = 10200010	Sensor Source (C; D; H; P; R; S; T; U)			
	C (1): Sound velocity calculates using ED, ES, ET (temp.)			
	D (0): Manual ED			
	H (2): External synchro			
	P (0), R (0): Manual EP, ER (0 degree)			
	S (0): Manual ES			
	T (1): Internal transducer sensor			
	U (0): Manual EU			

Timing Commands

TE = 00:00:02.00	Time per Ensemble (hrs:min:sec.sec/100)
TP = 00:02.00	Time per Ping (min:sec.sec/100)

Water-Track Commands

WA = 255	False Target Threshold (Max) (0-255 count)
WB = 1	Mode 1 Bandwidth Control (0=Wid, 1=Med, 2=Nar)
WC = 120	Low Correlation Threshold (0-255)
WD = 111 100 000	Data Out (V; C; A; PG; St; Vsum; Vsum^2;#G;P0)
WE = 1000	Error Velocity Threshold (0-5000 mm/s)
WF = 0800	Blank After Transmit (cm)

WG = 001	Percent Good Minimum (0-100%)
WI = 0	Clip Data Past Bottom (0 = OFF, 1 = ON)
WJ = 1	Rcvr Gain Select (0 = Low, 1 = High)
WM = 1	Profiling Mode (1-8)
WN = 100	Number of depth cells (1-128)
WP = 00001	Pings per Ensemble (0-16384)
WS= 0800	Depth Cell Size (cm)
WT = 000	Transmit Length (cm) [0 = Bin Length]
WV = 0390	Mode 1 Ambiguity Velocity (cm/s radial)



Figure 2.6.1. Time series of Echo Intensity profile between P14S-26 and P14S-27.

2.7 XCTD

May 6, 2013

(1) Personnel

Hiroshi Uchida (JAMSTEC)

Souichiro Sueyoshi (GODI) (Legs 1 and 3)

Koichi Inagaki (GODI) (Legs 1 and 3)

Kazuho Yoshida (GODI) (Leg 2)

Shinya Okumura (GODI) (Leg 2)

Masanori Murakami (GODI) (Leg 2)

Katsuhisa Maeno (GODI) (Leg 3)

(2) Objectives

In this cruise, XCTD (eXpendable Conductivity, Temperature and Depth profiler) measurements were carried out to evaluate the fall rate equation and temperature by comparing with CTD (Conductivity, Temperature and Depth profiler) measurements, and to substitute for CTD measurements.

(3) Instrument and Method

The XCTDs used were XCTD-1, XCTD-2 and XCTD-4 (Tsurumi-Seiki Co., Ltd., Yokohama, Kanagawa, Japan) with an MK-150N deck unit (Tsurumi-Seiki Co., Ltd.). The manufacturer's specifications are listed in Table 2.7.1. In this cruise, the XCTD probes were deployed by using 8-loading automatic launcher or hand launcher (Tsurumi-Seiki Co., Ltd.). For comparison with CTD, XCTD was deployed at about 10 minutes after the beginning of the down cast of the CTD (999_C02, 999_C03, P14S_25, S04_402, S04I_166, and S04I_167).

The fall-rate equation provided by the manufacturer was used to infer depth Z (m), $Z = at - bt^2$, where t is the elapsed time in seconds from probe entry into the water, and a (terminal velocity) and b (acceleration) are the empirical coefficients (Table 2.7.2).

Table 2.7.1. Manufacturer's specifications of XCTD-1, XCTD-2 and XCTD-4.

Parameter	Range	Accuracy
Conductivity	$0 \sim 60 \text{ mS cm}^{-1}$	±0.03 mS cm ⁻¹
Temperature	−2 ~ 35 °C	±0.02 °C
Depth	0 ~ 1000 m (for XCTD-1)	5 m or 2%, whichever is greater *
	0 ~ 1850 m (for XCTD-2 and XC	CTD-4)

^{*} Depth error is shown in Kizu et al (2008).

Table 2.7.2. Manufacturer's coefficients for the fall-rate equation.

Model	a (terminal velocity, m/s)	b (acceleration, m/s²)	e (terminal velocity error, m/s)
XCTD-1	3.42543	0.00047	not estimated
XCTD-2	3.43898	0.00031	-0.0239
XCTD-4	3.68081	0.00047	-0.0075

(4) Data Processing and Quality Control

The XCTD data were processed and quality controlled based on a method by Uchida et al. (2011). Differences between XCTD and CTD depths were shown in Fig. 2.7.1. The terminal velocity error was estimated for the XCTD-2 and for the XCTD-4 (Table 2.7.2). Difference of temperature on pressure surfaces were examined by using side-by-side XCTD and CTD data (Fig. 2.7.2). The XCTD data were corrected for the depth error by using the estimated terminal velocities. Average thermal bias below 400 dbar was 0.009 °C. Mean of the thermal biases of XCTD data estimated from four cruises was 0.015 ± 0.004 °C (Table 2.7.3). The mean thermal bias (0.015 °C) was corrected for the XCTD data obtained in this cruise. Difference of salinity on reference temperature surfaces were examined by using neighboring CTD data (Table 2.7.4). The estimated salinity biases were corrected for the XCTD data (Fig. 2.7.3) except for the XCTD data obtained at 999_326 and 999_329, because neighboring CTD data was not available in this cruise.

Table 2.7.3. Thermal biases of the XCTD temperature data.

Cruise	Average thermal bias (°C)	Depth range	Source
MR09-01	0.016	>= 1100 dbar	Uchida et al. (2011)
KH-02-3	0.019	>= 1100 dbar	Uchida et al. (2011)
MR11-08	0.014	>= 1100 dbar	Uchida et al. (2013)
MR12-05	0.009	>= 400 dbar	This report
Mean	0.015 ± 0.004		

Table 2.7.4. Salinity biases of the XCTD data.

XCTD station	Salinity bias	Reference temperature (°C)	Reference salinity	Reference CTD stations
999_C02	0.007	2.3	34.6251	999_C02
999_C03	0.018	2.3	34.6293	999_C03
P14S_25	0.001	0.9	34.7122	*1
S04_401	0.001	0.9	34.7122	*1
S04_402	0.001	0.9	34.7122	*1
S04_403	-0.006	0.9	34.7122	*1
S04_405	-0.009	0.9	34.7122	*1
S04_407	-0.009	0.9	34.7122	*1
S04_409	0.004	0.9	34.7122	*1
S04_411	-0.003	0.9	34.7122	*1
999_C04	0.017	1.2	34.7279	999_C04
S04I_166	-0.015	0.9	34.7065	S04I_166, S04I_167
S04I_167	-0.021	0.9	34.7065	S04I_166, S04I_167

^{*1:} P14S_25, P14S_27, S04_50, S04_402, S04_404, S04_406, S04_408, S04_410

References

Kizu, S., H. Onishi, T. Suga, K. Hanawa, T. Watanabe, and H. Iwamiya (2008): Evaluation of the fall rates of the present and developmental XCTDs. *Deep-Sea Res I*, **55**, 571–586.

Uchida, H., K. Shimada, and T. Kawano (2011): A method for data processing to obtain high-quality XCTD data. *J. Atmos. Oceanic Technol.*, **28**, 816–826.

Uchida, H., A. Murata, and T. Doi (2014): WHP P10 Revisit in 2011 Data Book, 179 pp., JAMSTEC.

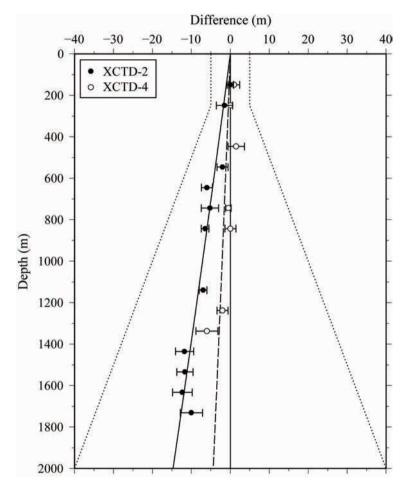


Figure 2.7.1. Differences between XCTD and CTD depths for XTD-2 and XCTD-4. Differences were estimated with the same method as Uchida et al. (2011). Standard deviation of the estimates (horizontal bars) and the manufacturer's specification for XCTD depth error (dotted lines) are shown. The regressions for the XCTD-2 data (solid line) and for the XCTD-4 data (broken line) are also shown.

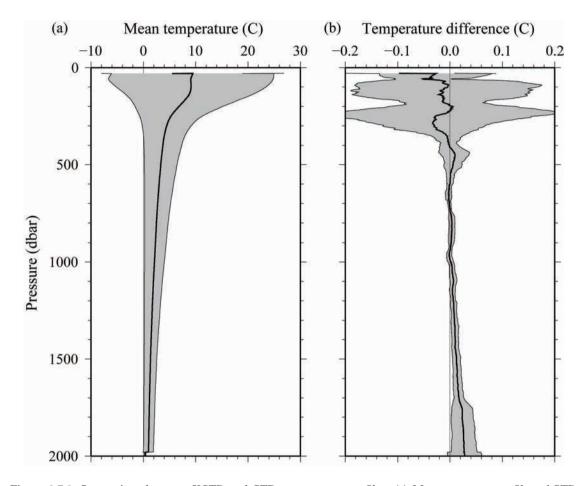


Figure 2.7.2. Comparison between XCTD and CTD temperature profiles. (a) Mean temperature files of CTD profiles with standard deviation (shade) and (b) mean temperature difference with standard deviation (shade) between the XCTD and CTD. Mean profiles were low-pass filtered by a running mean with a window of 51 dbar.

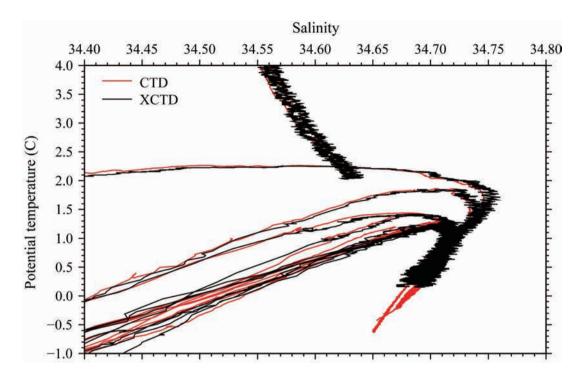


Figure 2.7.3. Comparison of temperature-salinity profiles of CTD (red lines) data used for the XCTD salinity bias estimation and salinity bias-corrected XCTD (black lines) data.

2.8 Photosynthetically Available Radiation (PAR)

May 6, 2013

(1) Personnel

Hiroshi Uchida (JAMSTEC)

(2) Objectives

The PAR sensor is used to measure surface Photosynthetically Available Radiation (PAR) continuously along the cruise track for a study of primary production.

(3) Instrument and method

The PAR is measured by a PUV-510B (Biospherical Instruments Inc., San Diego, CA, USA) at one minute intervals. The PAR sensor was installed on the roof top of the anti-rolling system by looking upward. The PAR sensor was calibrated before the cruise by the K-Engineering Co., Ltd., Japan.

Serial no.: 19209

Date of calibration: September 28, 2012

Slope: -6.220

Offset: $0.000109 \,\mu\text{E/(cm}^2\,\text{sec)}$

(4) Comparison with another PAR sensor

Data measured by a PUV-510B were compared with the data measured by another PAR sensor (Serial no.: 049, Satlantic LP, Halifax, NS, Canada) used in the CTD profiler measurement. The Satlantic's PAR sensor was attached to the body of the surface PAR (PUV-510B) sensor and the PAR data were compared for four hours of daytime (2:54-6:53 [UTC], February 9, 2013) (Figure 2.8.1).

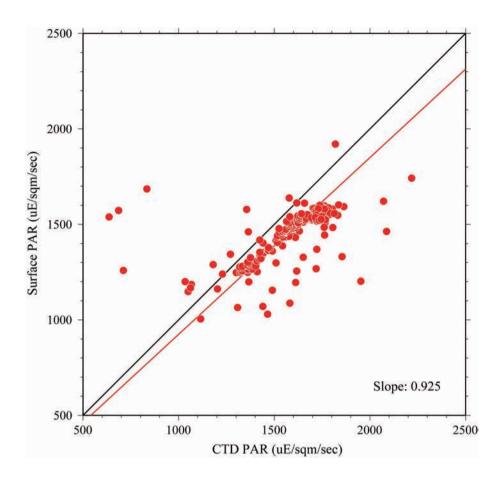


Figure 2.8.1. Comparison of two PAR sensors used for the surface PAR measurement and the CTD profiler measurement.

3 Hydrographic Measurement Techniques and Calibrations

3.1 CTDO₂ Measurements

October 22, 2014

(1) Personnel

Hiroshi Uchida (JAMSTEC)

Shinsuke Toyoda (MWJ) (legs 1, 2)

Satoshi Ozawa (MWJ) (leg 3)

Tomohide Noguchi (MWJ) (leg 2)

Tomoyuki Takamori (MWJ) (leg 2)

Shungo Oshitani (MWJ) (leg 2)

Naoko Miyamoto (MWJ) (leg 3)

Hiroshi Matsunaga (MWJ) (leg 3)

Takami Mori (MWJ) (leg 3)

(2) Winch arrangements

The CTD package was deployed by using 4.5 Ton Traction Winch System (Dynacon, Inc., Bryan, Texas, USA), which was installed on the R/V Mirai in April 2001 (Fukasawa et al., 2004). Primary system components include a complete CTD Traction Winch System with up to 8000 m of 9.53 mm armored cable (Ocean Cable and Communications Co., Yokohama, Kanagawa, Japan).

(3) Overview of the equipment

The CTD system was SBE 911plus system (Sea-Bird Electronics, Inc., Bellevue, Washington, USA). The SBE 911plus system controls 36-position SBE 32 Carousel Water Sampler. The Carousel accepts 12-litre Niskin-X water sample bottles (General Oceanics, Inc., Miami, Florida, USA). The SBE 9plus was mounted horizontally in a 36-position carousel frame. SBE's temperature (SBE 3) and conductivity (SBE 4) sensor modules were used with the SBE 9plus underwater unit. The pressure sensor is mounted in the main housing

of the underwater unit and is ported to outside through the oil-filled plastic capillary tube. A modular unit of underwater housing pump (SBE 5T) flushes water through sensor tubing at a constant rate independent of the CTD's motion, and pumping rate (3000 rpm) remain nearly constant over the entire input voltage range of 12-18 volts DC. Flow speed of pumped water in standard TC duct is about 2.4 m/s. Two sets of temperature and conductivity modules were used. An SBE's dissolved oxygen sensor (SBE 43) was placed between the primary conductivity sensor and the pump module. Auxiliary sensors, a Deep Ocean Standards Thermometer (SBE 35), an altimeter (PSA-916T; Teledyne Benthos, Inc., North Falmous, Massachusetts, USA), two oxygen optodes (RINKO-III; JFE Alec Co., Ltd, Kobe Hyogo, Japan), two fluorometers (Seapoint sensors, Inc., Kingston, New Hampshire, USA), a transmissometer (C-Star Transmissometer; WET Labs, Inc., Philomath, Oregon, USA), and a Photosynthetically Active Radiation (PAR) sensor (Satlantic, LP, Halifax, Nova Scotia, Canada) were also used with the SBE 9plus underwater unit. To minimize rotation of the CTD package, a heavy stainless frame (total weight of the CTD package without sea water in the bottles is about 1000 kg) was used with an aluminum plate (54 × 90 cm).

Summary of the system used in this cruise

Deck unit:

SBE 11plus, S/N 0272 (leg 1, leg 2 stations from 001_1 to 076_1)

SBE 11plus, S/N 0344 (leg 2 stations from 076_2 to 503_1, leg 3)

Under water unit:

SBE 9plus, S/N 117457 (Pressure sensor: S/N 1027)

Temperature sensor:

SBE 3plus, S/N 4815 (primary)

SBE 3plus, S/N 1464 (secondary)

Conductivity sensor:

SBE 4, S/N 2854 (leg 1 primary, legs 2 and 3 secondary)

SBE 4, S/N 2435 (leg 1 secondary, legs 2 and 3 primary)

Oxygen sensor:

SBE 43, S/N 2211 (legs 2 and 3)

SBE 43, S/N 0949 (leg 3)

JFE Advantech RINKO-III, S/N 0024 (foil batch no. 144002A) (primary)

JFE Advantech RINKO-III, S/N 0079 (foil batch no. 160002A) (secondary: legs 1 and 2)

JFE Advantech RINKO-III, S/N 0037 (foil batch no. 160005A) (secondary: leg 3)

Pump:

SBE 5T, S/N 4598 (primary)

SBE 5T, S/N 4595 (secondary)

Altimeter:

PSA-916T, S/N 1100

Deep Ocean Standards Thermometer:

SBE 35, S/N 0022

Fluorometer:

Seapoint Sensors, Inc., S/N 3054 (measurement range: 0-5 ug/L)

Seapoint Sensors, Inc., S/N 3497 (measurement range: 0-15 ug/L)

Transmissometer:

C-Star, S/N CST-1363DR

PAR:

Satlantic LP, S/N 0049

Carousel Water Sampler:

SBE 32, S/N 0278

Water sample bottle:

12-litre Niskin-X model 1010X (no TEFLON coating)

(4) Pre-cruise calibration

i. Pressure

The Paroscientific series 4000 Digiquartz high pressure transducer (Model 415K: Paroscientific, Inc., Redmond, Washington, USA) uses a quartz crystal resonator whose frequency of oscillation varies with pressure induced stress with 0.01 per million of resolution over the absolute pressure range of 0 to 15000 psia (0 to 10332 dbar). Also, a quartz crystal temperature signal is used to compensate for a wide range of temperature changes at the time of an observation. The pressure sensor has a nominal accuracy of 0.015 % FS (1.5 dbar), typical stability of 0.0015 % FS/month (0.15 dbar/month), and resolution of 0.001 % FS (0.1 dbar). Since the pressure sensor measures the absolute value, it inherently includes atmospheric pressure (about

Pre-cruise sensor calibrations for linearization were performed at SBE, Inc.

14.7 psi). SEASOFT subtracts 14.7 psi from computed pressure automatically.

S/N 1027, 4 February 2011

The time drift of the pressure sensor is adjusted by periodic recertification corrections against a dead-weight piston gauge (Model 480DA, S/N 23906; Piston unit, S/N 079K; Weight set, S/N 3070; Bundenberg Gauge Co. Ltd., Irlam, Manchester, UK). The corrections are performed at JAMSTEC, Yokosuka, Kanagawa, Japan by Marine Works Japan Ltd. (MWJ), Yokohama, Kanagawa, Japan, usually once in a year in order to monitor sensor time drift and linearity.

S/N 1027, 23 August 2012

slope = 1.00003946

offset = -0.42611

ii. Temperature (SBE 3)

The temperature sensing element is a glass-coated thermistor bead in a stainless steel tube, providing a pressure-free measurement at depths up to 10500 (6800) m by titanium (aluminum) housing. The SBE 3 thermometer has a nominal accuracy of 1 mK, typical stability of 0.2 mK/month, and resolution of 0.2 mK at 24 samples per second. The premium temperature sensor, SBE 3plus, is a more rigorously tested and calibrated version of standard temperature sensor (SBE 3).

Pre-cruise sensor calibrations were performed at SBE, Inc.

S/N 4815, 1 March 2012

S/N 1464, 20 September 2012

Pressure sensitivities of SBE 3s were corrected according to a method by Uchida et al. (2007), for the following sensors.

S/N 4815, -3.45974716e-7 [°C/dbar]

S/N 1464, -7.75293156e-9 [°C/dbar]

iii. Conductivity (SBE 4)

The flow-through conductivity sensing element is a glass tube (cell) with three platinum electrodes to provide in-situ measurements at depths up to 10500 (6800) m by titanium (aluminum) housing. The SBE 4 has a nominal accuracy of 0.0003 S/m, typical stability of 0.0003 S/m/month, and resolution of 0.00004 S/m at 24 samples per second. The conductivity cells have been replaced to newer style cells for deep ocean measurements.

Pre-cruise sensor calibrations were performed at SBE, Inc.

S/N 2854, 21 September 2012

S/N 2435, 21 September 2012

The value of conductivity at salinity of 35, temperature of 15 $^{\circ}$ C (IPTS-68) and pressure of 0 dbar is 4.2914 S/m.

iv. Oxygen (SBE 43)

The SBE 43 oxygen sensor uses a Clark polarographic element to provide in-situ measurements at depths up to 7000 m. The range for dissolved oxygen is 120 % of surface saturation in all natural waters, nominal accuracy is 2 % of saturation, and typical stability is 2 % per 1000 hours.

Pre-cruise sensor calibration was performed at SBE, Inc.

S/N 2211, 19 October 2012

S/N 0949, 18 September 2012

v. Deep Ocean Standards Thermometer

Deep Ocean Standards Thermometer (SBE 35) is an accurate, ocean-range temperature sensor that can be standardized against Triple Point of Water and Gallium Melt Point cells and is also capable of measuring temperature in the ocean to depths of 6800 m. The SBE 35 was used to calibrate the SBE 3 temperature sensors in situ (Uchida et al., 2007).

Pre-cruise sensor linearization was performed at SBE, Inc.

S/N 0022, 4 March 2009

Then the SBE 35 is certified by measurements in thermodynamic fixed-point cells of the TPW (0.01 °C) and GaMP (29.7646 °C). The slow time drift of the SBE 35 is adjusted by periodic recertification corrections. Pre-cruise sensor calibration was performed at SBE, Inc. From the end of 2011, the SBE has been applying a NIST correction to the fixed-point cells used for the calibration.

S/N 0022, 6 March 2012 (slope and offset correction)

Slope = 1.000012

Offset = -0.000023

The time required per sample = 1.1 × NCYCLES + 2.7 seconds. The 1.1 seconds is total time per an acquisition cycle. NCYCLES is the number of acquisition cycles per sample and was set to 4. The 2.7 seconds is required for converting the measured values to temperature and storing average in EEPROM.

vi. Altimeter

Benthos PSA-916T Sonar Altimeter (Teledyne Benthos, Inc.) determines the distance of the target from the unit by generating a narrow beam acoustic pulse and measuring the travel time for the pulse to bounce back from the target surface. It is rated for operation in water depths up to 10000 m. The PSA-916T uses the nominal speed of sound of 1500 m/s.

vii. Oxygen optode (RINKO)

RINKO (JFE Alec Co., Ltd.) is based on the ability of selected substances to act as dynamic fluorescence quenchers. RINKO model III is designed to use with a CTD system which accept an auxiliary analog sensor, and is designed to operate down to 7000 m.

Data from the RINKO can be corrected for the time-dependent, pressure-induced effect by means of the same method as that developed for the SBE 43 (Edwards et al., 2010). The calibration coefficients, H1 (amplitude of hysteresis correction), H2 (curvature function for hysteresis), and H3 (time constant for hysteresis) were determined empirically as follows.

H1 = 0.007 (for S/N 0024)

H1 = 0.008 (for S/N 0079 and 0037)

H2 = 5000 dbar

H3 = 2000 seconds

Outputs from RINKO are the raw phase shift data. The RINKO can be calibrated by the Stern-Volmer equation, according to a method by Uchida et al. (2010):

$$O_2 \text{ (}\mu\text{mol/l)} = [(V_0 / V) - 1] / K_{sv}$$

where V is voltage, V_0 is voltage in the absence of oxygen and K_{sv} is Stern-Volmer constant. The V_0 and the K_{sv} are assumed to be functions of temperature as follows.

$$K_{sv} = C_0 + C_1 \times T + C_2 \times T^2$$

$$V_0 = 1 + C_3 \times T$$

$$V = C_4 + C_5 \times V_b$$

where T is CTD temperature (${}^{\circ}$ C) and V_b is raw output (volts). V_0 and V are normalized by the output in the absence of oxygen at $0{}^{\circ}$ C. The oxygen concentration is calculated using accurate temperature data from the CTD temperature sensor instead of temperature data from the RINKO. The pressure-compensated oxygen concentration O_{2a} can be calculated as follows.

$$O_{2c} = O_2 (1 + C_p p / 1000)^{1/3}$$

where p is CTD pressure (dbar) and C_p (0.013 for S/N0024) is the compensation coefficient.

Since the sensing foil of the optode is permeable only to gas and not to water, the optode oxygen must be corrected for salinity. The salinity-compensated oxygen can be calculated by multiplying the factor of the effect of salt on the oxygen solubility. The coefficients of the equation by García and Gordon (1992) were modified based on the laboratory experiment (Uchida et al., in prep.) and used for the compensation (B0 = -6.33568e-3, B1 = -6.84389e-3, B2 = -1.18326e-2, B3 = -5.51960e-2, C0 = 3.40543e-6).

Pre-cruise sensor calibrations were performed at RIGC/JAMSTEC.

S/N 0024, 21 May 2012

S/N 0079, 21 May 2012

S/N 0037, 18 September 2012

viii. Fluorometer

The Seapoint Chlorophyll Fluorometer (Seapoint Sensors, Inc., Kingston, New Hampshire, USA) provides in-situ measurements of chlorophyll-a at depths up to 6000 m. The instrument uses modulated blue LED lamps and a blue excitation filter to excite chlorophyll-a. The fluorescent light emitted by the chlorophyll-a passes through a red emission filter and is detected by a silicon photodiode. The low level signal is then processed using synchronous demodulation circuitry, which generates an output voltage proportional to chlorophyll-a concentration.

ix. Transmissometer

The C-Star Transmissometer (WET Labs, Inc., Philomath, Oregon, USA) measures light transmittance at a single wavelength (650 nm) over a know path (25 cm). In general, losses of light propagating through water can be attributed to two primary causes: scattering and absorption. By projecting a collimated beam of light through the water and placing a focused receiver at a known distance away, one can quantify these losses. The ratio of light gathered by the receiver to the amount originating at the source is known as the beam transmittance. Suspended particles, phytoplankton, bacteria and dissolved organic matter contribute to the losses sensed by the instrument. Thus, the instrument provides information both for an indication of the total concentrations of matter in the water as well as for a value of the water clarity.

Light transmission T_r (in %) and beam attenuation coefficient c_p are calculated from the sensor output (V in volt) as follows.

$$T_r = c_0 + c_1 V$$

 $c_b = -(1 / 0.25) \ln(T_r / 100)$

The pre-cruise calibration coefficients were determined by using the data obtained in the R/V Mirai MR12-02 cruise.

x. PAR

Satlantic's Photosynthetically Active Radiation (PAR) sensors provide highly accurate measurements of PAR (400 – 700 nm) for a wide range of aquatic and terrestrial applications. The ideal spectral response for a PAR sensor is one that gives equal emphasis to all photons between 400 – 700 nm. Satlantic PAR sensors use a high quality filtered silicon photodiode to provide a near equal spectral response across the entire wavelength range of the measurement.

Pre-cruise sensor calibration was performed at Satlantic, LP.

S/N 0049, 22 January 2009

(5) Data collection and processing

i. Data collection

CTD system was powered on at least 20 minutes in advance of the data acquisition to stabilize the pressure sensor and was powered off at least two minutes after the operation in order to acquire pressure data on the ship's deck.

The package was lowered into the water from the starboard side and held 10 m beneath the surface in order to activate the pump. After the pump was activated, the package was lifted to the surface and lowered at a rate of 1.0 m/s to 200 m (or 300 m when significant wave height was high) then the package was stopped to operate the heave compensator of the crane. The package was lowered again at a rate of 1.2 m/s to the bottom. For the up cast, the package was lifted at a rate of 1.1 m/s except for bottle firing stops. As a rule, the bottle was fired after waiting from the stop for 30 seconds and the package was stayed at least 5 seconds for measurement of the SBE 35 at each bottle firing stops. For depths where vertical gradient of water properties were expected to be large, the bottle was exceptionally fired after waiting from the stop for 60 seconds to enhance exchanging the water between inside and outside of the bottle (depths \leq 500 dbar for station from C01_1 to C03_1, depths \leq 100 dbar for station from 063_1 to 068_1, depths \leq 200 dbar for station from C04_1 to 073_1, depths \leq 250 dbar for station from 074_1 to 166_1). At 200 m (or 300 m) from the surface, the package was stopped to stop the heave compensator of the crane.

Water samples were collected using a 36-bottle (or 12-bottles) SBE 32 Carousel Water Sampler with 12-litre Niskin-X bottles. Before a cast taken water for CFCs, the bottle frame and Niskin-X bottles were wiped with acetone.

Data acquisition software

SEASAVE-Win32, version 7.22

ii. Data collection problems

(a) Miss trip and miss fire

Niskin bottles did not trip correctly at the following stations.

Miss trip Miss fire

None None

(b) Noise of the primary temperature and conductivity sensors

Data quality for the primary temperature and conductivity sensors were bad at the following stations, so that data from the secondary temperature and conductivity sensors were used.

Down cast profile data: 015_1, 123_1, 126_1

Up cast bottle data: 064_1, 123_1, 124_1, 134_1

(c) Noise of the transmissometer

Data quality of the down cast of the transmissometer was bad at the following stations, so that data from the up cast was used.

135 1: from surface to bottom

145_1: pressure deeper than 1000 dbar

148_1: pressure deeper than 3600 dbar

(d) Over range of the fluorometer

Over range of the primary fluorometer (measurement range: 0-5 ug/L) were frequently occurred. Therefore, the secondary fluorometer (measurement range: 0-15 ug/L) was basically used for the dataset. However, the primary fluorometer was used for stations from 149_1, because the secondary fluorometer was drifted in time from station 149_1.

(e) Winch trouble

The CTD package was stopped relatively for a long time due to a mechanical problem of the winch system at 502 dbar of up cast for station 004_1 (50 minutes) and at 2780 dbar of up cast for station 056_1 (25 minutes).

(f) RS-232C communications timeout

Communications timeout of RS-232C was occurred at following stations. The fuse of the CTD deck unit blew due to unknown reason.

076_1: 2888 dbar of up cast: Deck unit was replaced after the cast.

088_2: 3125 dbar of up cast: The end connection to the armored cable was reprocessed.

130 1: 4085 dbar of down cast: The cast was aborted

iii. Data processing

SEASOFT consists of modular menu driven routines for acquisition, display, processing, and archiving of oceanographic data acquired with SBE equipment. Raw data are acquired from instruments and are stored as unmodified data. The conversion module DATCNV uses instrument configuration and calibration coefficients to create a converted engineering unit data file that is operated on by all SEASOFT post processing modules. The following are the SEASOFT and original software data processing module sequence and specifications used in the reduction of CTD data in this cruise.

Data processing software

SBEDataProcessing-Win32, version 7.22

DATCNV converted the raw data to engineering unit data. DATCNV also extracted bottle information where scans were marked with the bottle confirm bit during acquisition. The duration was set to 4.4 seconds, and the offset was set to 0.0 second. The hysteresis correction for the SBE 43 data (voltage) was applied for both profile and bottle information data.

TCORP (original module, version 1.1) corrected the pressure sensitivity of the SBE 3 for both profile and

bottle information data.

RINKOCOR (original module, version 1.0) corrected the time-dependent, pressure-induced effect (hysteresis) of the RINKO for both profile data.

RINKOCORROS (original module, version 1.0) corrected the time-dependent, pressure-induced effect (hysteresis) of the RINKO for bottle information data by using the hysteresis-corrected profile data.

BOTTLESUM created a summary of the bottle data. The data were averaged over 4.4 seconds (or 1 second for the bottle fired without stop).

ALIGNCTD converted the time-sequence of sensor outputs into the pressure sequence to ensure that all calculations were made using measurements from the same parcel of water. For a SBE 9plus CTD with the ducted temperature and conductivity sensors and a 3000-rpm pump, the typical net advance of the conductivity relative to the temperature is 0.073 seconds. So, the SBE 11plus deck unit was set to advance the primary and the secondary conductivity for 1.73 scans (1.75/24 = 0.073 seconds). Oxygen data are also systematically delayed with respect to depth mainly because of the long time constant of the oxygen sensor and of an additional delay from the transit time of water in the pumped plumbing line. This delay was compensated by 6 seconds advancing the SBE 43 oxygen sensor output (voltage) relative to the temperature data. Delay of the RINKO data was also compensated by 1 second advancing sensor output (voltage) relative to the temperature data. Delay of the transmissometer data was also compensated by 2 seconds advancing sensor output (voltage) relative to the temperature data.

WILDEDIT marked extreme outliers in the data files. The first pass of WILDEDIT obtained an accurate estimate of the true standard deviation of the data. The data were read in blocks of 1000 scans. Data greater than 10 standard deviations were flagged. The second pass computed a standard deviation over the same 1000 scans excluding the flagged values. Values greater than 20 standard deviations were marked bad. This process was applied to pressure, temperature, conductivity, SBE 43, and RINKO output.

CELLTM used a recursive filter to remove conductivity cell thermal mass effects from the measured conductivity. Typical values used were thermal anomaly amplitude alpha = 0.03 and the time constant 1/beta = 7.0.

FILTER performed a low pass filter on pressure with a time constant of 0.15 seconds. In order to produce zero phase lag (no time shift) the filter runs forward first then backwards.

WFILTER performed as a median filter to remove spikes in fluorometer and transmissometer data. A median value was determined by 49 scans of the window.

SECTIONU (original module, version 1.1) selected a time span of data based on scan number in order to reduce a file size. The minimum number was set to be the start time when the CTD package was beneath the sea-surface after activation of the pump. The maximum number was set to be the end time when the depth of the package was 1 dbar below the surface. The minimum and maximum numbers were automatically calculated in the module.

LOOPEDIT marked scans where the CTD was moving less than the minimum velocity of 0.0 m/s (traveling backwards due to ship roll).

DESPIKE (original module, version 1.0) removed spikes of the data. A median and mean absolute deviation was calculated in 1-dbar pressure bins for both down- and up-cast, excluding the flagged values. Values greater than 4 mean absolute deviations from the median were marked bad for each bin. This process was performed 2 times for temperature, conductivity, SBE 43, and RINKO output.

DERIVE was used to compute oxygen (SBE 43).

BINAVG averaged the data into 1-dbar pressure bins. The center value of the first bin was set equal to the bin size. The bin minimum and maximum values are the center value plus and minus half the bin size. Scans with pressures greater than the minimum and less than or equal to the maximum were averaged. Scans were interpolated so that a data record exist every dbar.

DERIVE was re-used to compute salinity, potential temperature, and density (σ_0) .

SPLIT was used to split data into the down cast and the up cast.

Remaining spikes in the CTD data were manually eliminated from the 1-dbar-averaged data. The data gaps resulting from the elimination were linearly interpolated with a quality flag of 6. Especially for the transmissometer data, relatively large data gaps were linearly interpolated for depth range of 257-563 dbar of station 135_1, 177-182 dbar of station 141_1, and 1794-1849 dbar of station 145_1.

(6) Post-cruise calibration

i. Pressure

The CTD pressure sensor offset in the period of the cruise was estimated from the pressure readings on the ship deck. For best results the Paroscientific sensor was powered on for at least 20 minutes before the operation. In order to get the calibration data for the pre- and post-cast pressure sensor drift, the CTD deck pressure was averaged over first and last one minute, respectively. Then the atmospheric pressure deviation from a standard atmospheric pressure (14.7 psi) was subtracted from the CTD deck pressure to check the pressure sensor time drift. The atmospheric pressure was measured at the captain deck (20 m high from the base line) and sub-sampled one-minute interval as a meteorological data. Time series of the CTD deck pressure is shown in Fig. 3.1.1. The CTD pressure sensor offset was estimated from the deck pressure. Mean of the pre- and the post-casts data over the whole period gave an estimation of the pressure sensor offset (–0.01 dbar) from the pre-cruise calibration. The post-cruise correction of the pressure data is not deemed necessary for the pressure sensor.

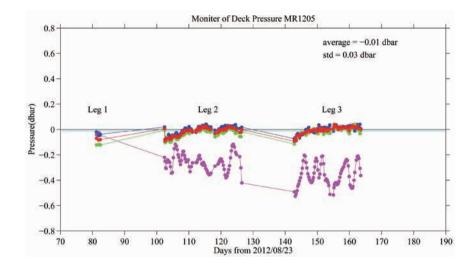


Figure 3.1.1. Time series of the CTD deck pressure. Atmospheric pressure deviation (magenta dots) from a standard atmospheric pressure was subtracted from the CTD deck pressure. Blue and green dots indicate pre- and post-cast deck pressures, respectively. Red dots indicate averages of the pre- and the post-cast deck pressures.

ii. Temperature

The CTD temperature sensors (SBE 3) were calibrated with the SBE 35 under the assumption that discrepancies between SBE 3 and SBE 35 data were due to pressure sensitivity, the viscous heating effect, and time drift of the SBE 3, according to a method by Uchida et al. (2007).

Post-cruise sensor calibration for the SBE 35 was performed at SBE, Inc.

S/N 0022, 3 September 2013 (2nd step: fixed point calibration)

Slope = 1.000006

Offset = 0.000187

Offset of the SBE 35 data from the pre-cruise calibration was estimated to be smaller than 0.2 mK. So the post-cruise correction of the SBE 35 temperature data was not deemed necessary for the SBE 35.

The CTD temperature was preliminary calibrated as

Calibrated temperature = $T - (c_0 \times P + c_1 \times t + c_2)$

where T is CTD temperature in ${}^{\circ}$ C, P is pressure in dbar, t is time in days from pre-cruise calibration date of the CTD temperature and c0, c_1 , and c_2 are calibration coefficients. The coefficients were determined using the data for the depths deeper than 950 dbar.

The primary temperature data were basically used for the post-cruise calibration. The secondary temperature sensor was also calibrated and used instead of the primary temperature data when the data quality of the primary temperature data was bad. The calibration coefficients are listed in Table 3.1.1. The results of the post-cruise calibration for the CTD temperature are summarized in Table 3.1.2 and shown in from Fig. 3.1.2 to Fig. 3.1.6.

Table 3.1.1. Calibration coefficients for the CTD temperature sensors.

Leg	Serial number	c ₀ (°C/dbar)	c ₁ (°C/day)	c ₂ (°C)	Station
1	4815	-	-	0.0009	
2	4815	-1.54321e-8	2.87072e-5	-0.0071	~025
		1.72901e-8	-8.25355e-6	0.0035	026~
2	1464	9.52754e-8	7.92269e-5	-0.0057	~025
		1.09093e-7	-3.12326e-6	0.0011	026~
3	4815	-4.63955e-9	3.34095e-6	0.0001	
3	1464	7.28496e-8	1.32368e-5	-0.0006	

Table 3.1.2. Difference between the CTD temperature and the SBE 35 after the post-cruise calibration. Mean and standard deviation (Sdev) are calculated for the data below and above 950 dbar. Number of data used is also shown.

Leg	Serial number	Pressure ≥ 950 dbar			Pressure < 950 dbar		
		Number	Mean (mK)	Sdev (mK)	Number	Mean (mK)	Sdev (mK)
1	4815	18	0.0	0.5	45	1.2	6.9
2	4815	1056	0.0	0.2	1295	0.4	5.3
2	1464	1054	0.0	0.2	1306	-0.0	4.8
3	4815	1010	-0.0	0.2	1246	0.3	4.7
3	1525	1002	0.0	0.3	1251	-0.6	4.4

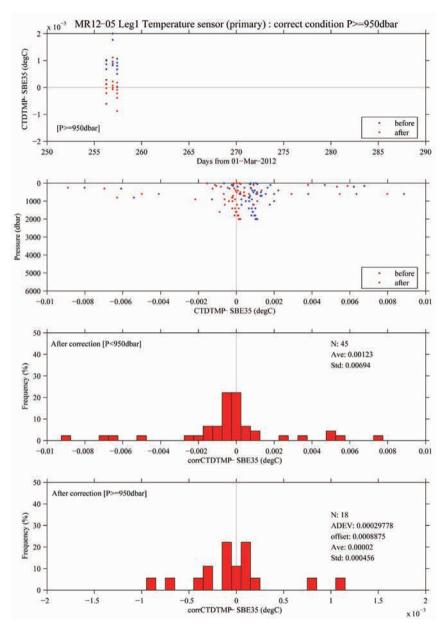


Figure 3.1.2. Difference between the CTD temperature (primary) and the SBE 35 for leg 1. Blue and red dots indicate before and after the post-cruise calibration using the SBE 35 data, respectively. Lower two panels show histogram of the difference after the calibration.

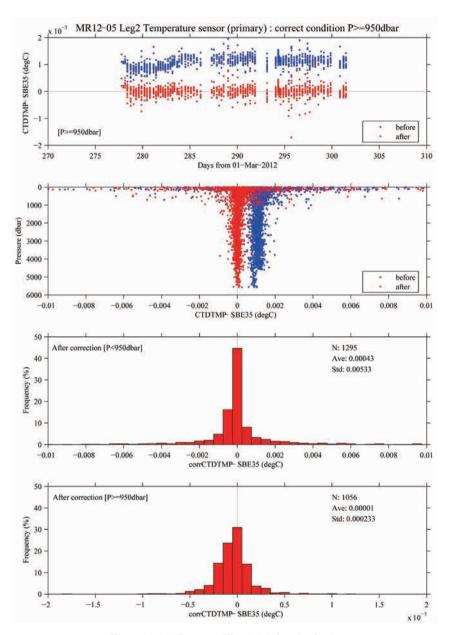


Figure 3.1.3. Same as Fig. 3.1.2, but for leg2.

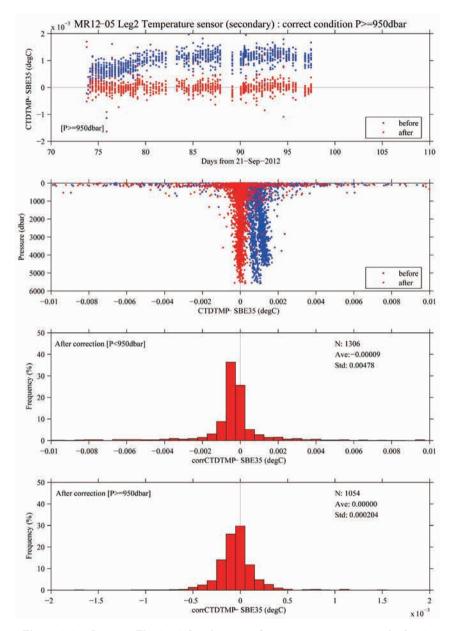


Figure 3.1.4. Same as Fig. 3.1.2, but for secondary temperature sensor for leg 2.

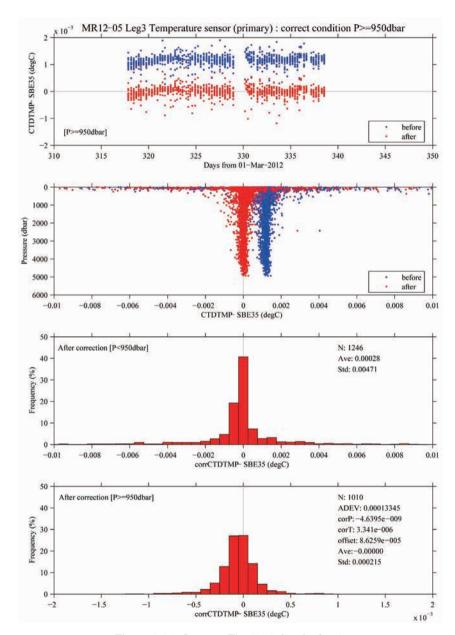


Figure 3.1.5. Same as Fig. 3.1.2, but for leg 3.

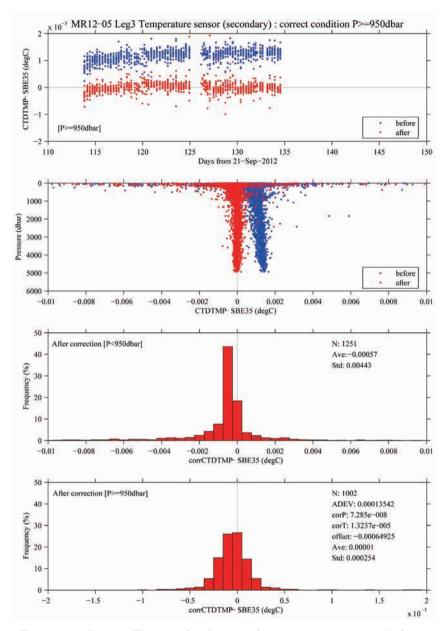


Figure 3.1.6. Same as Fig. 3.1.2, but for secondary temperature sensor for leg 3.

iii. Salinity

The discrepancy between the CTD conductivity and the conductivity calculated from the bottle salinity data with the CTD temperature and pressure data is considered to be a function of conductivity, pressure and time. The CTD conductivity was calibrated as

Calibrated conductivity =
$$c_0 \times C + c_1 \times P + c_2 \times C \times P + c_3 \times t + c_4$$

where C is CTD conductivity in S/m, P is pressure in dbar, t is time in days from 14 April 2009 and c_0 , c_1 , c_2 , c_3 and c_4 are calibration coefficients. The best fit sets of coefficients were determined by a least square technique to minimize the deviation from the conductivity calculated from the bottle salinity data.

The primary conductivity data created by the software module ROSSUM were basically used after the post-cruise calibration for the temperature data. The secondary conductivity sensor was also calibrated and used instead of the primary conductivity data when the data quality of the primary temperature or conductivity data was bad. The coefficients were determined for each leg. The calibration coefficients are listed in Table 3.1.3. The results of the post-cruise calibration for the CTD salinity are summarized in Table 3.1.4 and shown in from Fig. 3.1.7 to Fig. 3.1.11.

Table 3.1.3. Calibration coefficients for the CTD conductivity sensors.

Leg	Serial Number	c ₀ [S/(m dbar)]	c ₁ (1/dbar)	c ₂ [S/(m day)]	c ₃ (S/m)	c_4	Station
1 2 2 3	2854 2435 2854 2435	-7.70527e-5 1.31818e-4 1.02000e-4 3.18511e-4	1.39303e-6 4.00954e-7 1.61048e-7 1.06019e-6	-1.14786e-7 -4.41938e-8 -3.37484e-7	_,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-5.06603e-4 -4.38375e-4 -1.11175e-3	
3	2854	2.04845e-4 1.96052e-4 8.92585e-5	5.84160e-7 8.09425e-7 -9.12391e-8	-2.62172e-7	-4.40484e-6 -3.45533e-5 -7.47841e-7		111~

Table 3.1.4. Difference between the CTD salinity and the bottle salinity after the post-cruise calibration. Mean and standard deviation (Sdev) (in 10–3) are calculated for the data below and above 950 dbar. Number of data used is also shown.

Leg	Serial number	Pressure ≥ 9	Pressure ≥ 950 dbar		Pressure < 9	Pressure < 950 dbar	
		Number	Mean	Sdev	Number	Mean	Sdev
1	2854	18	0.1	0.3	39	1.3	7.5
2	2435	989	0.0	0.4	1156	-0.5	3.6
2	2854	987	-0.0	0.4	1167	-0.2	3.6
3	2435	1006	-0.0	0.4	1225	-0.0	5.5
3	2854	996	-0.0	0.4	1230	0.1	5.8

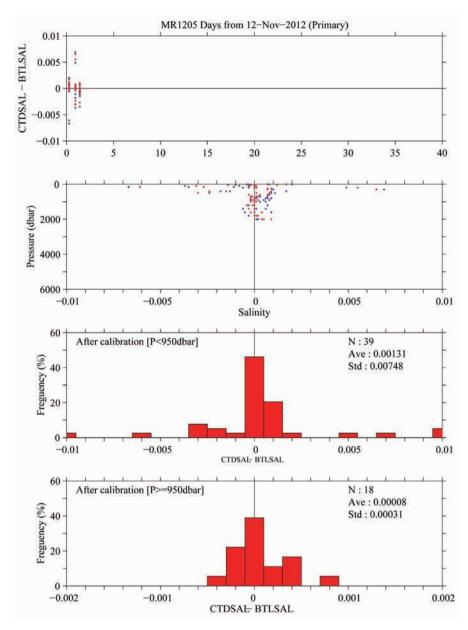


Figure 3.1.7. Difference between the CTD salinity (primary) and the bottle salinity for leg 1. Blue and red dots indicate before and after the post-cruise calibration, respectively. Lower two panels show histogram of the difference after the calibration.

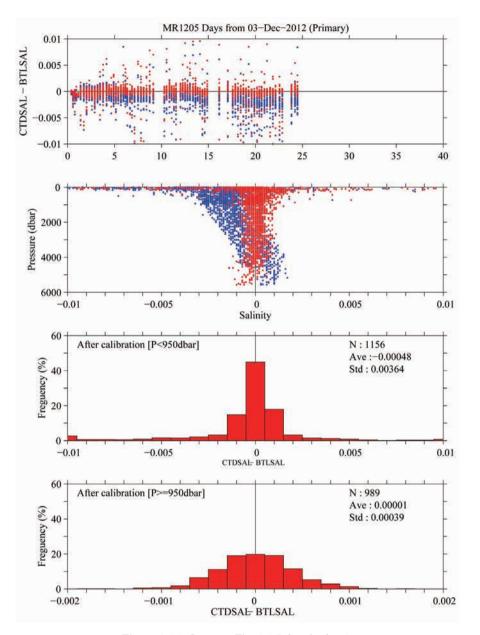


Figure 3.1.8. Same as Fig. 3.1.7, but for leg 2.

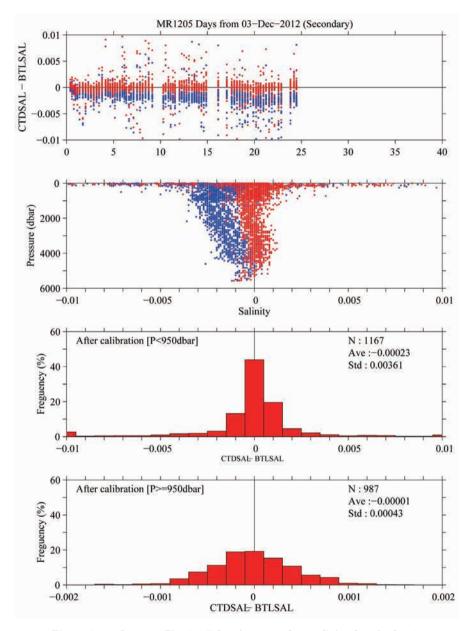


Figure 3.1.9. Same as Fig. 3.1.7, but for secondary salinity data for leg 2.

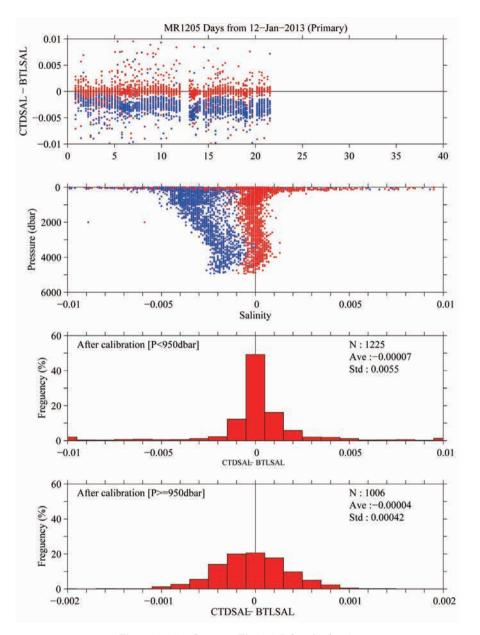


Figure 3.1.10. Same as Fig. 3.1.7, but for leg 3.

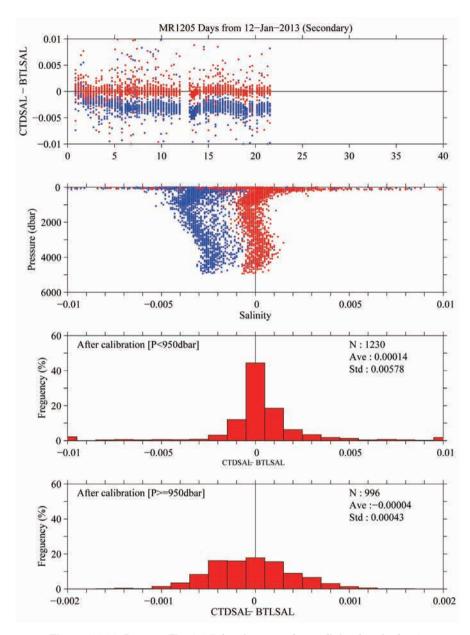


Figure 3.1.11. Same as Fig. 3.1.7, but for secondary salinity data for leg 3.

iv. Oxygen

The RINKO oxygen optode (S/N 0024) was calibrated and used as the CTD oxygen data, since the RINKO has a fast time response. The pressure-hysteresis corrected RINKO data was calibrated by the modified Stern-Volmer equation, basically according to a method by Uchida et al. (2010) with slight modification:

[O₂] (
$$\mu$$
mol/l) = [(V₀ / V)^{1.2} - 1] / K_{sv}
 $K_{sv} = C_0 + C_1 \times T + C_2 \times T^2$
 $V_0 = 1 + C_3 \times T$
 $V = C_4 + C_5 \times V_b + C_6 \times t + C_7 \times t \times V_b$

where V_b is the RINKO output (voltage), V_0 is voltage in the absence of oxygen, T is temperature in ${}^{\circ}$ C, and t is exciting time (days) integrated from the first CTD cast for each leg. Time drift of the RINKO output was corrected. The calibration coefficients were determined by minimizing the sum of absolute deviation with a weight from the bottle oxygen data. The revised quasi-Newton method (DMINF1) was used to determine the sets.

The post-cruise calibrated temperature and salinity data were used for the calibration. The calibration coefficients are listed in Table 3.1.5. The results of the post-cruise calibration for the RINKO oxygen are summarized in Table 3.1.6 and shown in from Fig. 3.1.12 to Fig. 3.1.14.

Table 3.1.5 Calibration coefficients for the RINKO oxygen sensors.

Leg	\mathbf{c}_0	c_1	c_2	\mathbf{c}_3	C ₄	\mathbf{c}_{5}
1	4.733362e-3	1.729522e-4	2.164708e-6	-1.431144e-3	-7.402308e-2	3.205825e-1
2	5.644516e-3	2.046661e-4	2.784686e-6	-3.090264e-3	-0.1119851	0.3162570
3	4.729148e-3	2.002866e-4	3.871103e-6	8.659935e-4	-9.234123e-2	0.3306834

Table 3.1.5 Continue.

Leg	\mathbf{c}_6	c_7
1	-	-
2	-1.036494e-4	2.598641e-4
3	-2.497366e-4	2.824747e-4

Table 3.1.6 Difference between the RINKO oxygen and the bottle ooxygen after the post-cruise calibration.

Mean and standard deviation (Sdev) are calculated for the data below and above 950 dbar. Number of data used is also shown.

Leg	Serial number	Pressure ≥ 950 dbar		Pressure < 950 dbar			
		Number	Mean [μmo	Sdev 1/kg]	Number	Mean [μmo	Sdev l/kg]
1	0024	52	0.00	0.11	40	0.02	0.45
2	0024	987	-0.01	0.29	1157	0.09	1.00
3	0024	1009	-0.04	0.29	1245	-0.02	0.90

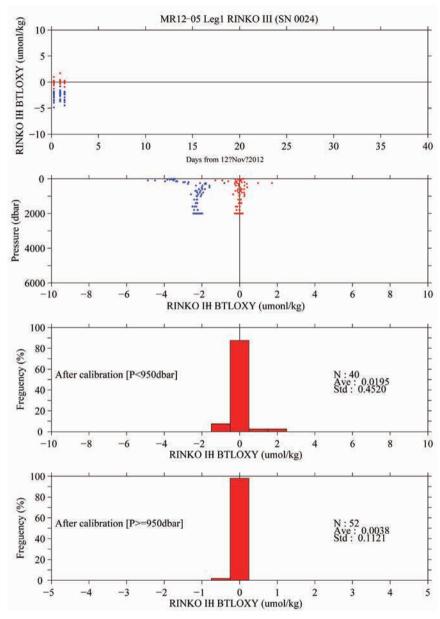


Figure 3.1.12. Difference between the CTD oxygen and the bottle oxygen for leg 1. Blue and red dots indicate before and after the post-cruise calibration, respectively. Lower two panels show histogram of the difference after the calibration.

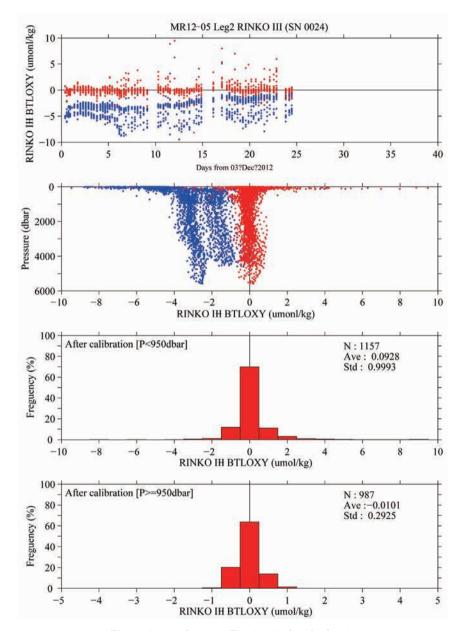


Figure 3.1.13. Same as Fig. 3.1.12, but for leg 2.

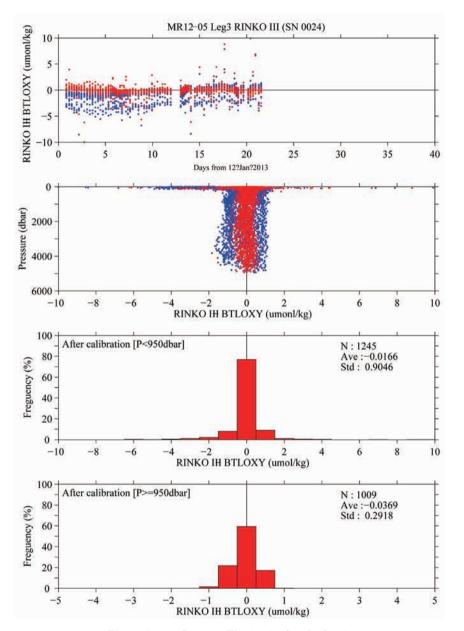


Figure 3.1.14. Same as Fig. 3.1.12, but for leg 3.

v. Fluorometer

The CTD fluorometer (FLUOR in $\mu g/L)$ was calibrated by comparing with the bottle sampled chlorophyll-a as

FLUORc =
$$c_0 + c_1 \times FLUOR + c_2 \times ln (c_3 \times FLUOR + 1)$$

where c_0 , c_1 , c_2 and c_3 are calibration coefficients (Fig. 3.1.15). The CTD fluorometer data is slightly noisy so that the up cast profile data which was averaged over one decibar agree with the bottle sampled data better than the discrete CTD fluorometer data obtained at bottle-firing stop. Therefore, the CTD fluorometer data at water sampling depths extracted from the up cast profile data were compared with the bottle sampled chlorophyll-a data. The bottle sampled data obtained at dark condition [PAR (Photosynthetically Available Radiation) < $50 \mu E/(m^2 sec)$] were used for the calibration, since sensitivity of the fluorometer to chlorophyll a is different at nighttime and daytime (see Section 2.4). The calibration coefficients are listed in Table 3.1.7. The results of the post-cruise calibration for the fluorometer are summarized in Table 3.1.8.

Table 3.1.7. Calibration coefficients for the CTD fluorometer.

Sensor	c_0	\mathbf{c}_1	c_2	\mathbf{c}_3
Secondary (leg 1)	-0.0245343	0.953320	0.0	0.0
Secondary (legs 2 and 3 [for s	-7.51097e-2 stations 88_2 ~ 148_1])	0.234395	5.43321e–2	107.923
Primary (leg 3 [for stations	-0.127043 149_1 ~ 166_1])	0.246599	8.41309e-2	61.0197

Table 3.1.8. Difference between the CTD fluorometer and the bottle chlorophyll-a after the post-cruise calibration. Mean, standard deviation (Sdev), and number of data used are shown. Data obtained at daytime are also used in this calculation.

Number	Mean	Sdev
178	0.03 μg/L	$0.10\mu\mathrm{g/L}$

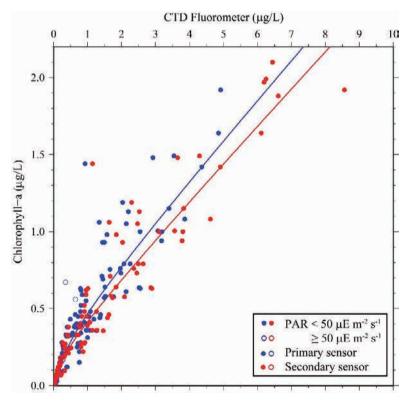


Figure 3.1.15. Comparison of the CTD fluorometer and the bottle sampled chlorophyll-a. The regression lines are also shown.

vi. Transmissometer

The transmissometer (T_r in %) is calibrated as

$$T_{r} = (V - V_{d}) / (V_{r} - V_{d}) \times 100$$

wehre V is the measured signal (voltage), V_d is the dark offset for the instrument, and V_r is the signal for clear water. V_d can be obtained by blocking the light path. V_d and V_{air} , which is the signal for air, were measured on deck before each cast after wiping the optical windows with ethanol. V_d was constant (0.0012) during the cruise. V_r is estimated from the measured maximum signal in the deep ocean at each cast. Since the transmissometer drifted in time (Fig. 3.1.16), V_r is expressed as

$$V_r = c_0 + c_1 \times t$$

where t is time (in days) from the first cast for each leg, and c_0 , c_1 , and c_2 are calibration coefficients.

The calibration coefficients are listed in Table 3.1.9.

Table 3.1.9. Calibration coefficients for the CTD transmissometer.

Leg	\mathbf{c}_0	c_1	$ m V_d$	Note
1	4.79000	-	0.0012	estimated from station C01
2	4.78998	-1.05177e-3	0.0012	for stations 001~068
	4.77840	-1.05177e-3	0.0012	for stations C04~074
	4.75812	-1.05177e-3	0.0012	for stations 075~503
3	4.72956	-1.66124e-3	0.0012	

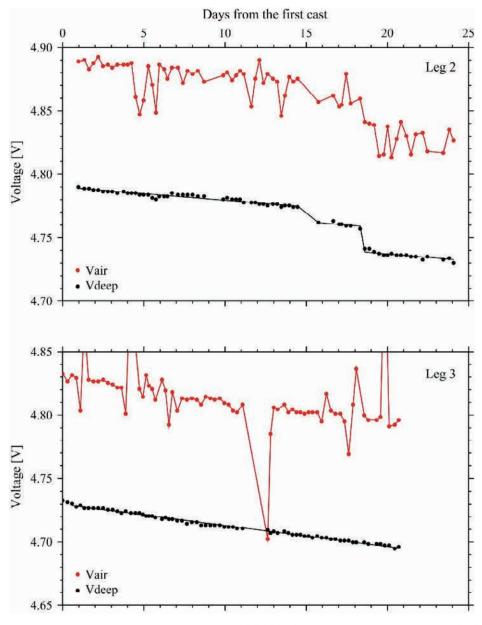


Figure 3.1.16. Time series of an output signal (voltage) from transmissometer at on deck before CTD casts (Vair) and deep ocean (Vdeep) for leg 2 (upper panel) and leg 3 (lower panel). The black solid line indicates the modeled signal in the deep clear ocean.

vii. PAR

The PAR sensor was calibrated with an offset correction. The offset was estimated from the data measured in the deep ocean during the cruise. The corrected data (PARc) is calculated from the raw data (PAR) as follows:

PARc $[\mu E m^{-2} s^{-1}] = PAR - 0.046$.

References

- Edwards, B., D. Murphy, C. Janzen and N. Larson (2010): Calibration, response, and hysteresis in deep-sea dissolved oxygen measurements, *J. Atmos. Oceanic Technol.*, 27, 920–931.
- Fukasawa, M., T. Kawano and H. Uchida (2004): Blue Earth Global Expedition collects CTD data aboard Mirai, BEAGLE 2003 conducted using a Dynacon CTD traction winch and motion-compensated crane, *Sea Technology*, 45, 14–18.
- García, H. E. and L. I. Gordon (1992): Oxygen solubility in seawater: Better fitting equations. *Limnol. Oceanogr.*, 37 (6), 1307–1312.
- Uchida, H., G. C. Johnson, and K. E. McTaggart (2010): CTD oxygen sensor calibration procedures, The GO-SHIP Repeat Hydrography Manual: A collection of expert reports and guidelines, IOCCP Rep., No. 14, ICPO Pub. Ser. No. 134.
- Uchida, H., K. Ohyama, S. Ozawa, and M. Fukasawa (2007): In situ calibration of the Sea-Bird 9plus CTD thermometer, *J. Atmos. Oceanic Technol.*, 24, 1961–1967.

3.2 Bottle Salinity

October 2, 2014

(1) Personnel

Hiroshi Uchida (JAMSTEC)

Tatsuya Tanaka (MWJ) (Legs 1 and 2)

Hiroki Ushiromura (MWJ) (Leg 3)

Tamami Ueno (MWJ) (Leg 3)

Keisuke Tsubata (MWJ) (Leg 2)

(2) Objectives

Bottle salinities were measured to calibrate CTD salinity data.

(3) Instrument and Method

Salinity measurement was conducted basically based on a method by Kawano (2010).

i. Salinity Sample Collection

The bottles in which the salinity samples were collected and stored were 250 ml Phoenix brown glass bottles with screw caps. Each bottle was rinsed three times with sample water and was filled to the shoulder of the bottle. The caps were also thoroughly rinsed. Salinity samples were stored more than 24 hours in the same laboratory as the salinity measurement was made.

ii. Instruments and Methods

Salinity of water samples was measured with two salinometers (Autosal model 8400B; Guildline Instruments Ltd., Ontario, Canada; S/N 62556 for leg 1 and S/N 62827 for legs 2 and 3), which was modified by adding an peristaltic-type intake pump (Ocean Scientific International Ltd., Hampshire, UK) and two

platinum thermometers (Guildline Instruments Ltd., model 9450). One thermometer monitored an ambient temperature and the other monitored a salinometer's bath temperature. The resolution of the thermometers was 0.001 °C. The measurement system was almost same as Aoyama et al. (2002). The salinometer was operated in the air-conditioned laboratory of the ship at a bath temperature of 24 °C.

The ambient temperature varied from approximately 20 to 24 °C, while the bath temperature was stable and varied within ±0.002 °C. A measure of a double conductivity ratio of a sample was taken as a median of 31 readings. Data collection was started after 10 seconds and it took about 10 seconds to collect 31 readings by a personal computer. Data were sampled for the sixth and seventh filling of the cell. In case where the difference between the double conductivity ratio of this two fillings was smaller than 0.00002, the average value of the two double conductivity ratios was used to calculate the bottle salinity with the algorithm for practical salinity scale, 1978 (UNESCO, 1981). When the difference was grater than or equal to the 0.00003, we measured another additional filling of the cell. In case where the double conductivity ratio of the additional filling did not satisfy the criteria above, we measured other additional fillings of the cell within 10 fillings in total. In case where the number of fillings was 10 and those fillings did not satisfy the criteria above, the median of the double conductivity ratios of five fillings were used to calculate the bottle salinity.

The measurement was conducted about from 6 to 23 hours per day and the cell was cleaned with soap after the measurement for each day. A total of about 5700 water samples were measured during the cruise.

(4) Results

i. Standard Seawater

Standardization control was set to 688 (leg 1), 509 (leg 2), and 514 (leg 3). The value of STANDBY was 5197±0001 (leg 1), 5432±0002 (leg 2), and 5438±0002 (leg 3), and that of ZERO was 0.00000 or -0.00001 for all legs. We used IAPSO Standard Seawater batch P154 whose conductivity ratio is 0.99990 (double conductivity ratio is 1.99980) as the standard for salinity measurement. We measured 8 (leg 1), 98 (leg 2), and 115 (leg 3) bottles of the Standard Seawater during the cruise. Histories of double conductivity ratio measurement of the Standard Seawater are shown in Figs. 3.2.1 (leg 1), 3.2.2 (leg 2), and 3.2.3 (leg 3).

Time drift of the salinometer was corrected by using the Standard Seawater measurements. For leg 1, offset of the salinometer was estimated from the average of the Standard Seawater measurement for each day because number of data was small. For legs 2 and 3, linear time drift of the salinometer was estimated from the Standard Seawater measurement by using the least square method (thin black lines in Figs. 3.2.2 and 3.2.3). For leg 2, linear time drift was calculated for two periods before and after December 15, 2013, because tendency of the time drift was changed during the cruise. The average of double conductivity ratio was 1.99980 and the standard deviation was 0.00001, which is equivalent to 0.0002 in salinity after the time drift correction.

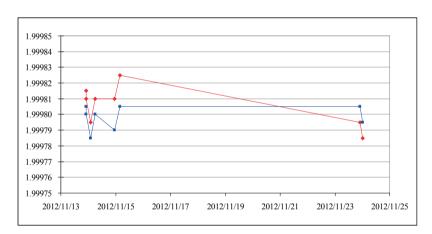


Figure 3.2.1. History of double conductivity ratio measurement of the Standard Seawater (P154) during leg1.

Horizontal and vertical axes represents date and double conductivity ratio, respectively. Blue dots indicate raw data and red dots indicate corrected data.

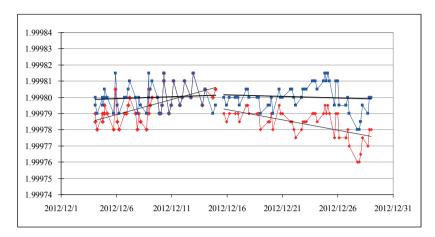


Figure 3.2.2. Same as Fig. 3.2.1, but for leg 2.

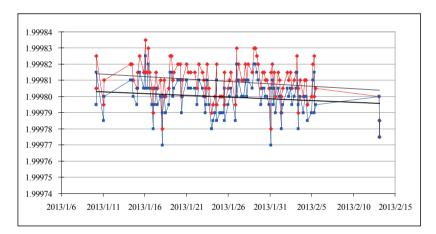


Figure 3.2.3. Same as Fig. 3.2.1, but for leg 3.

ii. Sub-Standard Seawater

We also used sub-standard seawater which was deep-sea water filtered by pore size of $0.45~\mu m$ and stored in a 20 liter cubitainer made of polyethylene and stirred for at least 24 hours before measuring. It was measured every 6 samples in order to check the possible sudden drift of the salinometer. During the whole measurements, there was no detectable sudden drift of the salinometer.

iii. Replicate Samples

We took 12 (leg 1), 419 (leg 2), and 437 (leg 3) pairs of replicate samples during the cruise. Histograms of the absolute difference between replicate samples are shown in Figs. 3.2.4 (leg 1), 3.2.5 (leg 2), and 3.2.6 (leg 3). The root-mean-squares of the absolute deference were 0.00015 (leg 1), 0.00018 (leg 2), and 0.00020 (leg 3).

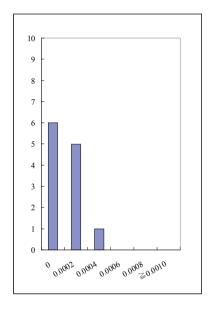


Figure 3.2.4. Histogram of the absolute difference between replicate samples for leg 1. Horizontal axis is absolute difference in salinity and vertical axis is frequency.

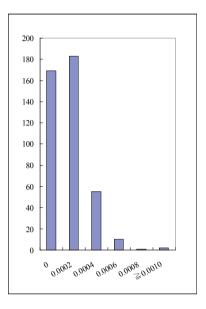


Figure 3.2.5. Same as Fig. 3.2.4, but for leg 2.

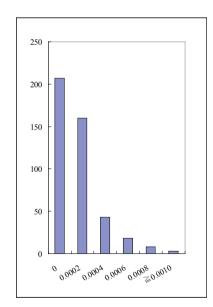


Figure 3.2.6. Same as Fig. 3.2.4, but for leg 3.

References

- Aoyama, M., T. Joyce, T. Kawano and Y. Takatsuki (2002): Standard seawater comparison up to P129. Deep-Sea Research, I, Vol. 49, 1103-1114.
- Kawano (2010): Salinity. The GO-SHIP Repeat Hydrography Manual: A collection of Expert Reports and Guidelines, IOCCP Report No. 14, ICPO Publication Series No. 134, Version 1.
- UNESCO (1981): Tenth report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Papers in Mar. Sci., 36, 25 pp.

3.3 Density

March 21, 2015

(1) Personnel

Hiroshi Uchida (JAMSTEC)

(2) Objectives

The objective of this study is to collect absolute salinity (also called "density salinity") data, and to evaluate an algorithm to estimate absolute salinity provided along with TEOS-10 (the International Thermodynamic Equation of Seawater 2010) (IOC et al., 2010).

(3) Materials and methods

Seawater densities were measured during the cruise with an oscillation-type density meter (DMA 5000M, serial no. 80570578, Anton-Paar GmbH, Graz, Austria) with a sample changer (Xsample 122, serial no. 80548492, Anton-Paar GmbH). The sample changer was used to load samples automatically from up to ninety-six 12-mL glass vials. AC power was supplied to the density meter through a frequency conversion AC power supply unit (AA500F, Takasago, Ltd., Japan).

The water samples were collected in 100-mL aluminum bottles (Mini Bottle Can, Daiwa Can Company, Japan). The bottles were stored at room temperature (~23 °C) upside down. The bottles were warmed up in a water bath (~30 °C) for about one hour before measurement. The water sample was filled in a 12-mL glass vial and the glass vial was sealed with Parafilm M (Pechiney Plastic Packaging, Inc., Menasha, Wisconsin, USA) immediately after filling. Densities of the samples were measured at 20 °C by the density meter two times for each bottle and averaged to estimate the density. When the difference between the two measurements was greater than 0.002, additional measurements were conducted until two samples satisfying the above criteria were obtained.

Time drift of the density meter was monitored by periodically measuring the density of ultra-pure water (Milli-Q water, Millipore, Billerica, Massachusetts, USA) prepared from Yokosuka (Japan) tap water in October 2012. The true density at 20 °C of the Milli-Q water was estimated to be 998.2042 kg m⁻³ from the isotopic composition ($\delta D = -8.76$ %, $\delta^{18}O = -56.86$ %) and International Association for the Properties of Water and Steam (IAPWS)-95 standard. An offset correction was applied to the measured density by using the Milli-Q water measurements ($\rho_{Milli-Q}$) with a slight modification of the density dependency (Uchida et al., 2011). The offset (ρ_{offset}) of the measured density (ρ) was estimated from the following equation:

```
\begin{split} &\rho_{offset} = (\rho_{Milli\text{-}Q} - 998.2042) - (\rho - 998.2042) \times C \text{ [kg m}^{-3}\text{]}. \\ &C = 0.000241 \text{ [leg 2]} \\ &C = 0.000296 \text{ [leg 3]} \end{split}
```

The offset correction was verified by measuring Reference Material for Density in Seawater (prototypes Dn-RM1 [100 ml PFA bottle sealed with double aluminum bags], Reference Material for Nutrients in Seawater (RMNS) lot BF (Kanso Technos Co., Ltd.), and International Association of the Physical Sciences of the Ocean (IAPSO) Standard Seawater (SSW) (Ocean Scientific International Ltd., Havant, UK) batch P154 along with the Milli-Q water. The correction factor (C) for leg 3 was reevaluated on 20 March 2015 by examining measured density of the Dn-RM1.

Density salinity can be back calculated from measured density and temperature (20 °C) with TEOS-10.

(4) Results

Results of density measurements of the Reference Material for Density in Seawater (Dn-RM1, RMNS, and IAPSO SSW) were shown in Table 3.3.1 and Table 3.3.2. Mean densities of the Dn-RM1 were similar for legs 2 and 3, except for the results on January 15 and February 2, 2013 (Table 3.3.2). Density of Dn-RM1 measured at first, middle and last of the series of the measurement of sea water samples drifted in time (-0.0004 kg/m³/hour) for the results on January 15 and biased (about +0.0196 kg/m³) for the results on February 2. Therefore, densities measured on these days were corrected by a time drift correction for January 15 and offset correction for February 2 to match the mean density of the Dn-RM1 with the average (1024.2618 kg/m³) for leg 3.

A total of 26 pairs of replicate samples were measured. The root-mean square of the absolute difference of replicate samples was $0.0016 \, \text{g/kg}$.

The measured density salinity anomalies (δS_A) are shown in Fig. 3.3.1. The measured δS_A well agree with calculated δS_A from Pawlowicz et al. (2011) which exploits the correlation between δS_A and nutrient concentrations and carbonate system parameters based on mathematical investigation using a model relating composition, conductivity and density of arbitrary seawaters.

Table 3.3.1. Result of density measurements of the Reference Material for Density in Seawater (prototype Dn-RM1).

Date	Stations (sample no.)	Mean density of Dn-RM1 (kg/m³)	Note
Leg 2			
2012/12/04	(001,004)	1024.2608	
2012/12/06	011	1024.2626	
2012/12/08	018	1024.2618	
2012/12/10	023,027	1024.2624	
2012/12/11	404	1024.2603	
2012/12/15	053	1024.2605	
2012/12/17	059	1024.2604	
2012/12/19	064	1024.2634	
2012/12/23	071	1024.2632	
2012/12/25	078	1024.2618	
2012/12/27	085	1024.2631	
2012/12/28	081,083,087,501	1024.2621	bottles #7,9-36 for station 501
2012/12/30	501,503	1024.2611	bottles #1,8 for station 501
	Average:	1024.2618 ± 0.0011	(n = 13)
Leg 3			
2013/01/15	090	1024.2580*	1024.2613 after drift correction
2013/01/15	094	1024.2608	1024.2013 after drift correction
2013/01/18	100	1024.2618	
2013/01/19	104		
		1024.2625	
2013/01/21	111,116	1024.2633	
2013/01/23	123	1024.2621	

2013/01/25	128	1024.2646	
2013/01/27	140,138	1024.2307*	1024.2619 after bias correction
2013/01/28	133	1024.2611	
2013/01/30	none	1024.2612	
2013/01/31	146,151	1024.2621	
2013/02/02	156	1024.2815*	1024.2621 after bias correction
			bottles #1,17-30,32,33,35,36
2013/02/03	162,156,166	1024.2604	bottles #31,34 for station 156
	Average:	1024.2620 ± 0.0013	s(n = 10: exclude data labeled by asterisk)

Table 3.3.2. Comparison of density measurement of the Reference Material for Nutrients in Seawater (lot BF) and IAPSO SSW (batch 154).

=======================================		=======================================	
Date	Reference	Density [kg/m ³]	Note
Leg 2			
2012/12/04	RMNS BF	1024.4815	
2012/12/06	RMNS BF	1024.4832	
2012/12/08	RMNS BF	1024.4824	
2012/12/30	RMNS BF	1024.4838	
	Average:	1024.4827 ± 0.0010	
2012/12/08	SSW P154	1024.7631	
2012/12/08	SSW P154	1024.7640	
2012/12/10	SSW P154	1024.7642	
2012/12/15	SSW P154	1024.7618	
2012/12/23	SSW P154	1024.7631	
2012/12/28	SSW P154	1024.7640	
	Average:	1024.7634 ± 0.0009	
Leg 3			
2013/01/16	SSW P154	1024.7640	
2013/01/21	SSW P154	1024.7659	
2013/01/31	SSW P154	1024.7636	
2010, 01/01		1024.7645 ± 0.0012	

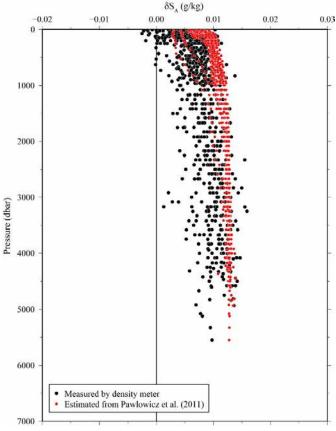


Figure 3.3.1. Vertical distribution of density salinity anomaly measured by the density meter. Absolute Salinity anomaly estimated from nutrients and carbonate parameters (Pawlowicz et al., 2011) are also shown for comparison.

(5) References

IOC, SCOR and IAPSO (2010): The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, United Nations Educational, Scientific and Cultural Organization (English), 196 pp.

Pawlowicz, R., D. G. Wright and F. J. Millero (2011): The effects of biogeochemical processes on ocean conductivity/salinity/density relationships and the characterization of real seawater. *Ocean Science*, 7, 363–387.

Uchida, H., T. Kawano, M. Aoyama and A. Murata (2011): Absolute salinity measurements of standard seawaters for conductivity and nutrients. *La mer*, 49, 237–244.

3.4 Oxygen

September 29, 2014

(1) Personnel

Yuichiro Kumamoto (Japan Agency for Marine-Earth Science and Technology)

Misato Kuwahara (Marine Works Japan Co. Ltd)

Kanako Yoshida (Marine Works Japan Co. Ltd)

Keitaro Matsumoto (Marine Works Japan Co. Ltd)

TakuhiroOsumi (Marine Works Japan Co. Ltd)

(2) Objectives

Dissolved oxygen is one of good tracers for the ocean circulation. Climate models predict a decline in oceanic dissolved oxygen concentration and a consequent expansion of the oxygen minimum layers under global warming conditions, which results mainly from decreased interior advection and ongoing oxygen consumption by remineralization. The mechanism of the decrease, however, is still unknown. During MR12-05 cruise, we measured dissolved oxygen concentration from surface to bottom layers at all the hydrocast stations in the western Pacific and Southern Oceans. Most of the stations reoccupied the WOCE Hydrographic Program P14S and S4 stations in the 1990s. Our purpose is to evaluate temporal change in dissolved oxygen concentration in the western Pacific and Southern Oceans between the 1990s and 2012/13.

(3) Reagents

Pickling Reagent I: Manganous chloride solution (3M)

Pickling Reagent II: Sodium hydroxide (8M) / sodium iodide solution (4M)

Sulfuric acid solution (5M)

Sodium thiosulfate (0.025M)

Potassium iodate (0.001667M): Wako Pure Chemical Industries, Ltd., volumetric standard, reference

material for iodometry, Lot No.EPR3227, Purity: 99.96±0.01%

CSK standard of potassium iodate: Lot DCE2131, Wako Pure Chemical Industries Ltd., 0.0100N

(4) Instruments

Burette for sodium thiosulfate and potassium iodate;

APB-620 and APB-510 manufactured by Kyoto Electronic Co. Ltd. / 10 cm³ of titration vessel

Detector; Automatic photometric titrator, DOT-01X manufactured by Kimoto Electronic Co. Ltd.

(5) Seawater sampling

Following procedure is based on a determination method in the WHP Operations Manual (Dickson, 1996). Seawater samples were collected from 12-liters Niskin sampler bottles attached to the CTD-system. Seawater for bottle oxygen measurement was transferred from the Niskin sampler bottle to a volume calibrated glass flask (ca. 100 cm³). Three times volume of the flask of seawater was overflowed. Sample temperature was measured by a thermometer during the overflowing. Then two reagent solutions (Reagent I, II) of 0.5 cm³ each were added immediately into the sample flask and the stopper was inserted carefully into the flask. The sample flask was then shaken vigorously to mix the contents and to disperse the precipitate finely throughout. After the precipitate has settled at least halfway down the flask, the flask was shaken again to disperse the precipitate. The sample flasks containing pickled samples were stored in a laboratory until they were titrated.

(6) Sample measurement

At least two hours after the re-shaking, the pickled samples were measured on board. A magnetic stirrer bar and 1 cm³ sulfuric acid solution were added into the sample flask and stirring began. Samples were titrated by sodium thiosulfate solution whose molarity was determined by potassium iodate solution. Temperature of sodium thiosulfate during titration was recorded by a thermometer. We measured dissolved oxygen concentration using two sets of the titration apparatus, named DOT-7 and DOT-8. Dissolved oxygen

concentration (µmol kg⁻¹) was calculated by the sample temperature during the sampling, bottle salinity, flask volume, and titrated volume of the sodium thiosulfate solution. When the bottle salinity data is flagged to be 3 (questionable), 4 (bad), or 5 (missing), CTD salinity (primary) data is referred in the calculation alternatively.

(7) Standardization

Concentration of sodium thiosulfate titrant (ca. 0.025M) was determined by potassium iodate solution. Pure potassium iodate was dried in an oven at 130°C. 1.7835 g potassium iodate weighed out accurately was dissolved in deionized water and diluted to final volume of 5 dm³ in a calibrated volumetric flask (0.001667M). 10 cm³ of the standard potassium iodate solution was added to a flask using a volume-calibrated dispenser. Then 90 cm³ of deionized water, 1 cm³ of sulfuric acid solution, and 0.5 cm³ of pickling reagent solution II and I were added into the flask in order. Amount of titrated volume of sodium thiosulfate (usually 5 times measurements average) gave the molarity of the sodium thiosulfate titrant. Table 3.4.1 shows result of the standardization during this cruise. Coefficient of variation (C.V.) for the standardizations was 0.02±0.01 % (n = 67), c.a. 0.05 µmol kg⁻¹.

(8) Determination of the blank

The oxygen in the pickling reagents I (0.5 cm³) and II (0.5 cm³) was assumed to be 3.8×10^8 mol (Murray *et al.*, 1968). The blank from the presence of redox species apart from oxygen in the reagents (the pickling reagents I, II, and the sulfuric acid solution) was determined as follows. 1 and 2 cm³ of the standard potassium iodate solution were added to two flasks respectively. Then 100 cm³ of deionized water, 1 cm³ of sulfuric acid solution, and 0.5 cm³ of pickling reagent solution II and I each were added into the two flasks in order. The blank was determined by difference between the two times of the first (1 cm³ of KIO₃) titrated volume of the sodium thiosulfate and the second (2 cm³ of KIO₃) one. The results of 3 times blank determinations were averaged (Table 3.4.1). The averaged blank values for DOT-7 and DOT-8 were 0.003±0.001 (standard deviation, S.D., n=34) and 0.001±0.001 (S.D., n=33) cm³, respectively.

(9) Replicate sample measurement

From a routine CTD cast at all the stations, a pair of replicate samples was collected at four layers of 25, 400, 1500, and 3500 dbars. In order to estimate uncertainty including instrumental error, one and the other of the replicate sample pair were measured using DOT-7 and DOT-8, respectively. The total number of the replicate sample pairs in good measurement (flagged 2) was 550 (Fig. 3.4.1). The standard deviation of the replicate measurement was 0.09 µmol kg⁻¹ calculated by a procedure (SOP23) in DOE (1994). The results of the replicate measurements are not included in the data sheet.

(10) Duplicate sample measurement

During the leg-1 duplicate samples were taken from 36 Niskin bottles at stations C01 and C02 (Table 3.4.2). One and the other of the duplicate sample pair were measured using DOT-7 and DOT-8, respectively, in order to estimate uncertainty depends on the apparatus. The standard deviation of the duplicate measurements at the stations C01 and C02 were calculated to be 0.12 and 0.07 µmol kg⁻¹, respectively, which were equivalent with that of the replicate measurements (see section 9).

(11) CSK standard measurements

The CSK standard is a commercial potassium iodate solution (0.0100 N) for analysis of dissolved oxygen. We titrated the CSK standard solutions (Lot DCE2131) against our KIO_3 standards as samples before and during the cruise (Table 3.4.3). A good agreement among them confirms that concentration of the KIO_3 standards did not change between preparation of the standards onshore and the sample measurements on board.

(12) Quality control flag assignment

Quality flag values were assigned to oxygen measurements using the code defined in Table 0.2 of WHP Office Report WHPO 91-1 Rev.2 section 4.5.2 (Joyce *et al.*, 1994). Measurement flags of 2 (good), 3 (questionable), 4 (bad), and 5 (missing) have been assigned (Table 3.4.4). For the choice between 2, 3, or 4, we basically followed a flagging procedure as listed below:

- a. Bottle oxygen concentration at the sampling layer was plotted against sampling pressure. Any points not lying on a generally smooth trend were noted.
- b. Difference between bottle oxygen and CTD oxygen was then plotted against sampling pressure. If a datum deviated from a group of plots, it was flagged 3.
- c. Vertical sections against pressure and potential density were drawn. If a datum was anomalous on the section plots, datum flag was degraded from 2 to 3, or from 3 to 4.
- d. If there was problem in the measurement, the datum was flagged 4.
- e. If the bottle flag was 4 (did not trip correctly), a datum was flagged 4 (bad). In case of the bottle flag 3 (leaking) or 5 (unknown problem), a datum was flagged based on steps a, b, c, and d.

(13) Results

A notable decrease (increase) in dissolved apparent oxygen utilization (oxygen) on density surfaces was found near the bottom (Fig. 3.4.2). The increase appears due to density decrease of near-bottom water, which can be explained by a change in the mixing ratio of bottom water from near the Ad'elie Depresion (Ad'elie Land Bottom Water (ALBW), higher oxygen) with that from the more distant Ross Sea (Ross Sea Bottom Water (RSBW), lower oxygen): an increased contribution of ALBW and a decreased contribution of RSBW. This change might be associated with a decrease in the RSBW supply following an earlier ice-calving event in the polynya region. Oxygen rich and dense bottom water observed in 1995/96 in troughs near 130oE disappeared in 2012/13, which also might reflect changes in bottom water production along the coast, possibly in Mertz and Dibble Polynyas.

References

- Dickson, A. (1996) Determination of dissolved oxygen in sea water by Winkler titration, in WHPO Pub. 91-1 Rev. 1, November 1994, Woods Hole, Mass., USA.
- DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. A.G. Dickson and C. Govet (eds), ORNL/CDIAC-74.
- Joyce, T., and C. Corry, eds., C. Corry, A. Dessier, A. Dickson, T. Joyce, M. Kenny, R. Key, D. Legler, R. Millard, R. Onken, P. Saunders, M. Stalcup (1994) Requirements for WOCE Hydrographic Programme Data Reporting, WHPO Pub. 90-1 Rev. 2, May 1994 Woods Hole, Mass., USA.
- Katsumata, K., H. Nakano, and Y. Kumamoto (in press) Dissolved oxygen change and freshening of Antarctic Bottom Water along 62oS in the Australian-Antarctic Basin between 1995/96 and 2012/13, Deep-Sea Res. II.
- Murray, C.N., J.P. Riley, and T.R.S. Wilson (1968) The solubility of oxygen in Winkler reagents used for determination of dissolved oxygen, Deep-Sea Res., 15, 237-238.

Table 3.4.1. Results of the standardization (End point, E.P.) and the blank determinations (cm³).

Date		KIO3 No.	No C O No	DOT-7		DO	T-8	Stations
(UTC)	#	ID No.	Na ₂ S ₂ O ₃ No.	E.P.	blank	E.P.	blank	
2012/11/06		20120417-03-03	20120615-16	3.970	0.003	3.964	0.002	C01,C02,C03
2012/12/04		20120417-03-11	20120615-16	3.972	0.003	3.967	0.001	008-011
2012/12/06	03	20120417-03-09	20120615-17	3.969	0.004	3.965	0.001	012-022
2012/12/09		20120417-03-06	20120615-17	3.967	0.002	3.963	0.001	023-027,402,404,406
2012/12/11		20120417-03-10	20120615-18	3.968	0.003	3.964	-0.001	408,410,050-054
2012/12/14		20120419-04-01	20120615-18	3.966	0.001	3.962	0.002	055-062
2012/12/16	04	20120419-04-09	20120615-19	3.969	0.002	3.965	0.001	063-068,C04,069-071
2012/12/21		20120419-04-07	20120615-19	3.966	0.002	3.962	0.001	072-078

2012/12/23		20120419-04-08	20120615-20	3.968	0.002	3.964	0.001	079-085
2012/12/25		20120419-04-03	20120615-20	3.966	0.003	3.962	0.002	086-088,501,502,503
2013/01/08		20120419-04-05	20120615-21	3.970	0.003	3.966	0.001	088-091
2013/01/14		20120419-04-06	20120615-21	3.970	0.002	3.966	0.002	092-102
2013/01/17		20120419-04-02	20120615-22	3.970	0.002	3.967	0.000	103-116
2013/01/20		20120419-05-01	20120615-22	3.969	0.003	3.966	0.000	117-122
2013/01/21		20120419-05-02	20120615-23	3.970	0.002	3.966	0.001	123-130,140,139,138,137
2013/01/25	05	20120419-05-03	20120615-23	3.969	0.004	3.966	0.003	136,135,134,131,132,133
2013/01/27	03	20120419-05-05	20120615-24	3.975	0.002	3.971	0.000	141-150
2013/01/29		20120419-05-04	20120615-24	3.970	0.001	3.967	0.000	151-158
2013/02/01		20120419-05-07	20120615-25	3.967	0.002	3.962	0.001	162-165,167,166

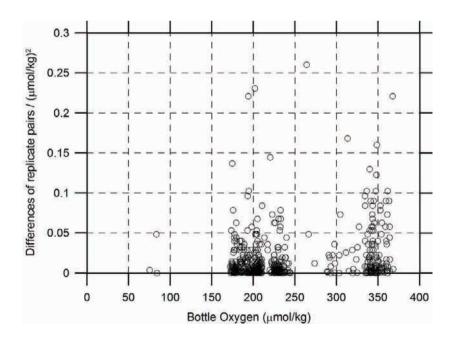


Figure 3.4.1. Oxygen difference between measurements of a replicate pair against oxygen concentration.

Table 3.4.2. Results of duplicate sample measurements.

	Leg	Stations	Pressure	Niskins		Apparatus	Oxygen
			(dbar)			11	[umol/kg]
1	1	C01	2001.9	18	X12J18	DOT-8	107.29
2	1	C01	2001.6	17	X12J17	DOT-8	107.42
3	1	C01	2001.2	16	X12J16	DOT-8	107.41
4	1	C01	2001.1	15	X12J15	DOT-8	107.56
5	1	C01	2001.0	14	X12J14	DOT-8	107.48
6	1	C01	2000.8	13	X12J13	DOT-8	107.45
7	1	C01	2000.5	12	X12J12	DOT-8	107.45
8	1	C01	2000.6	11	X12J11	DOT-8	107.47
9	1	C01	2000.4	10	X12J10	DOT-8	107.34
10	1	C01	2000.6	9	X12J09	DOT-7	107.23
11	1	C01	2000.4	8	X12J08	DOT-7	107.16
12	1	C01	2000.4	7	X12J07	DOT-7	107.23
13	1	C01	2000.6	6	X12J06	DOT-7	107.21
14	1	C01	2000.4	5	X12J05	DOT-7	107.27
15	1	C01	2000.6	4	X12J04	DOT-7	107.18
16	1	C01	2001.1	3	X12J03	DOT-7	107.32
17	1	C01	2000.4	2	X12J02	DOT-7	107.38
18	1	C01	2001.0	1	X12J01	DOT-7	107.33
19	1	C02	2003.6	36	X12J36	DOT-8	110.46
20	1	C02	2003.2	35	X12J35	DOT-8	110.35
21	1	C02	2003.5	34	X12J34	DOT-8	110.43
22	1	C02	2003.8	33	X12J33	DOT-8	110.51
23	1	C02	2003.3	32	X12J32	DOT-8	110.51

24	1	C02	2003.3	31	X12J31	DOT-8	110.47
25	1	C02	2003.2	30	X12J30	DOT-8	110.43
26	1	C02	2003.1	29	X12J29	DOT-8	110.50
27	1	C02	2002.7	28	X12J28	DOT-8	110.44
28	1	C02	2002.5	27	X12J27	DOT-7	110.43
29	1	C02	2003.0	26	X12J26	DOT-7	110.36
30	1	C02	2002.8	25	X12J25	DOT-7	110.41
31	1	C02	2002.3	24	X12J24	DOT-7	110.34
32	1	C02	2002.1	23	X12J23	DOT-7	110.40
33	1	C02	2002.4	22	X12J22	DOT-7	110.31
34	1	C02	2002.4	21	X12J21	DOT-7	110.41
35	1	C02	2001.6	20	X12J20	DOT-7	110.30
36	1	C02	2001.4	19	X12J19	DOT-7	110.34

Table 3.4.3. Results of the CSK standard (Lot DCE2131) measurements.

Data (UTC)	MO ID N	DO	T-1		-	Remarks
Date (UTC)	KIO ₃ ID No.	Conc. (N)	error (N)	-	-	Remarks
2012/4/25	20120419-04-10	0.010004 0.000002		-	-	Onshore lab.
2012/4/25	20120419-05-10	0.010011 0.000004		-	-	Onshore lab.
		DOT-7		DOT-8		
		Conc. (N)	error (N)	Conc. (N)	error (N)	
2012/10/6	20120417-03-01	0.009997	0.000004	0.010000	0.000003	MR12-E03
2012/12/14	20120419-04-01	0.009996	0.000003	0.009999	0.000004	MR12-05 Leg-2
2013/01/20	20120419-05-01	0.010012	0.000004	0.010009	0.000004	MR12-05 Leg-3

Table 3.4.4. Summary of assigned quality control flags.

Flag	Definition	
2	Good	5657
3	Questionable	4
4	Bad	0
5	Not report (missing)	0
	Total	5661

AOU (2012)-(1995)

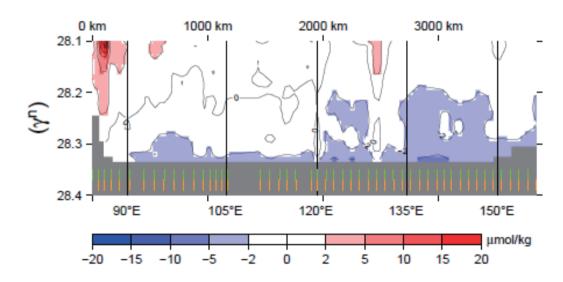


Figure 3.4.2. Differences in apparent oxygen utilization (AOU, µmol kg¹) on density surfaces along WHP-S4 line between 1995/96 and 2012/13 (Katsumata *et al.*, in press).

3.5 Nutrients

January 6, 2015

(1) Personnel

Michio AOYAMA (Meteorological Research Institute /

Japan Meteorological Agency, Principal Investigator)

LEG 2

Minoru KAMATA (Department of Marine Science, Marine Works Japan Ltd.)

Yasuhiro ARII (Department of Marine Science, Marine Works Japan Ltd.)

Kohei MIURA (Department of Marine Science, Marine Works Japan Ltd.)

LEG 3

Minoru KAMATA (Department of Marine Science, Marine Works Japan Ltd.)

Masanori ENOKI (Department of Marine Science, Marine Works Japan Ltd.)

Elena HAYASHI (Department of Marine Science, Marine Works Japan Ltd.)

(2) Objectives

The objectives of nutrients analyses during the R/V Mirai MR12-05 cruise, WOCE P14S, S04 and S04I revisited cruise in 2012/2013, in the Southern Ocean are as follows;

- Describe the present status of nutrients concentration with excellent comparability.
- The determinants are nitrate, nitrite, silicate and phosphate.
- Study the temporal and spatial variation of nutrients concentration based on the previous high quality experiments data of WOCE previous P14S, S04 and S04I cruises in 1993 and 2005, GEOSECS, IGY and so on
- Study of temporal and spatial variation of nitrate: phosphate ratio, so called Redfield ratio.
- Obtain more accurate estimation of total amount of nitrate, silicate and phosphate in the interested area.
- Provide more accurate nutrients data for physical oceanographers to use as tracers of water mass movement.

(3) Summary of nutrients analysis

We made 142 QuAAtro 2-HR runs for the samples at 145 stations in MR12-05. The total amount of layers of the seawater sample reached up to 4292 for MR12-05. We made duplicate measurement at all layers.

(4) Instrument and Method

(4.1) Analytical detail using QuAAtro 2-HR systems (BL-Tech)

Nitrate + nitrite and nitrite were analyzed according to the modification method of Grasshoff (1970). The sample nitrate was reduced to nitrite in a cadmium tube inside of which was coated with metallic copper. The sample streamed with its equivalent nitrite was treated with an acidic, sulfanilamide reagent and the nitrite forms nitrous acid which reacted with the sulfanilamide to produce a diazonium ion. N-1-Naphthylethylene-diamine added to the sample stream then coupled with the diazonium ion to produce a red, azo dye. With reduction of the nitrate to nitrite, both nitrate and nitrite reacted and were measured; without reduction, only nitrite reacted. Thus, for the nitrite analysis, no reduction was performed and the alkaline buffer was not necessary. Nitrate was computed by difference.

The silicate method was analogous to that described for phosphate. The method used was essentially that of Grasshoff et al. (1983), wherein silicomolybdic acid was first formed from the silicate in the sample and added molybdic acid; then the silicomolybdic acid was reduced to silicomolybdous acid, or "molybdenum blue" using ascorbic acid as the reductant. The analytical methods of the nutrients, nitrate, nitrite, silicate and phosphate, during this cruise were same as the methods used in (Kawano et al. 2009).

The phosphate analysis was a modification of the procedure of Murphy and Riley (1962). Molybdic acid was added to the seawater sample to form phosphomolybdic acid which was in turn reduced to phosphomolybdous acid using L-ascorbic acid as the reductant.

The details of modification of analytical methods used in this cruise are also compatible with the methods described in nutrients section in GO-SHIP repeat hydrography manual (Hydes et al., 2010). The flow diagrams and reagents for each parameter are shown in Figures 3.5.1 to 3.5.4.

(4.2) Nitrate Reagents

Imidazole (buffer), 0.06 M (0.4 % w/v)

Dissolve 4 g imidazole, $C_3H_4N_2$, in ca. 1000 ml DIW; add 2 ml concentrated HCl. After mixing, 1 ml Triton(R) X-100 (50 % solution in ethanol) is added.

Sulfanilamide, 0.06 M (1 % w/v) in 1.2 M HCl

Dissolve 10 g sulfanilamide, $4\text{-NH}_2\text{C}_6\text{H}_4\text{SO}_3\text{H}$, in 900 ml of DIW, add 100 ml concentrated HCl. After mixing, 2 ml Triton (R) X-100 (50 %f solution in ethanol) is added.

N-1-Napthylethylene-diamine dihydrochloride, 0.004 M (0.1 %f w/v)

Dissolve 1 g NEDA, $C_{10}H_7NHCH_2CH_2NH_2 \bullet 2HCl$, in 1000 ml of DIW and add 10 ml concentrated HCl. After mixing, 1 ml Triton(R)X-100 (50 %f solution in ethanol) is added.

Stored in a dark bottle.

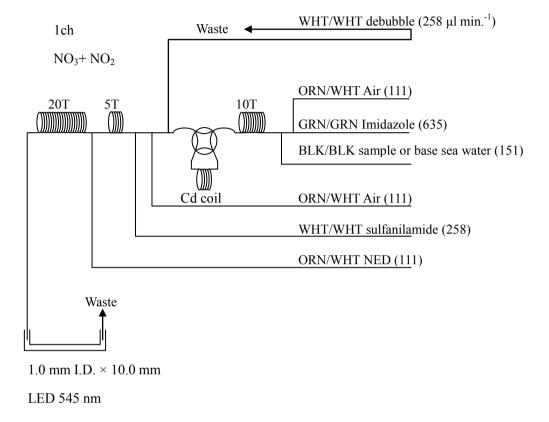


Figure 3.5.1. NO₃ + NO₂ (1ch.) Flow diagram.

(4.3) Nitrite Reagents

Sulfanilamide, 0.06 M (1 % w/v) in 1.2 M HCl

Dissolve 10 g sulfanilamide, $4\text{-NH}_2\text{C}_6\text{H}_4\text{SO}_3\text{H}$, in 900 ml of DIW, add 100 ml concentrated HCl. After mixing, 2 ml Triton (R) X-100 (50 % solution in ethanol) is added.

N-1-Napthylethylene-diamine dihydrochloride, 0.004 M (0.1 % w/v)

Dissolve 1 g NEDA, $C_{10}H_7NHCH_2CH_2NH_2$ •2HCl, in 1000 ml of DIW and add 10 ml concentrated HCl. After mixing, 1 ml Triton (R)X-100 (50 %f solution in ethanol) is added. This reagent was stored in a dark bottle.

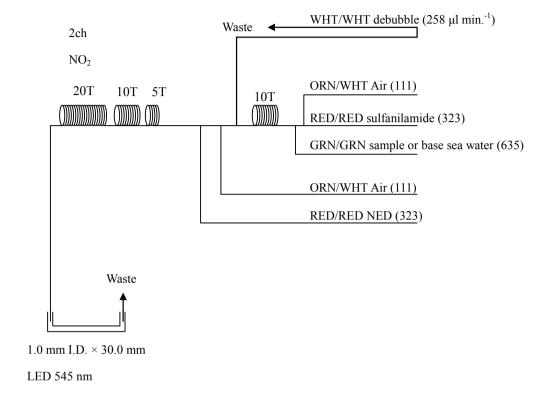


Figure 3.5.2. NO₂ (2ch.) Flow diagram.

(4.4) Silicate Reagents

Molybdic acid, 0.06 M (2 % w/v)

Dissolve 15 g disodium Molybdate (VI) dihydrate, $Na_2M_0O_4 \bullet 2H_2O$, in 980 ml DIW, add 8 ml concentrated H_2SO_4 . After mixing, 20 ml sodium dodecyl sulphate (15 % solution in water) is added.

Oxalic acid, 0.6 M (5 % w/v)

Dissolved 50 g oxalic acid anhydrous, HOOC: COOH, in 950 ml of DIW.

Ascorbic acid, 0.01 M (3 % w/v)

Dissolved 2.5g L (+)- ascorbic acid, $C_6H_8O_6$, in 100 ml of DIW. This reagent was freshly prepared before every measurement.

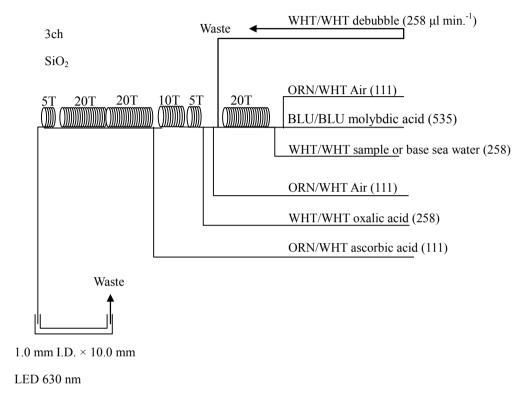


Figure 3.5.3. SiO₂ (3ch.) Flow diagram.

(4.5) Phosphate Reagents

Stock molybdate solution, 0.03 M (0.8 % w/v)

Dissolved 8 g disodium molybdate(VI) dihydrate, $Na_2M_oO_4 \bullet 2H_2O$, and 0.17 g antimony potassium tartrate, $C_8H_4K_2O_{12}Sb_2 \bullet 3H_2O$, in 950 ml of DIW and added 50 ml concentrated H_2SO_4 .

Mixed Reagent

Dissolved 1.2 g L (+)-ascorbic acid, $C_6H_8O_6$, in 150 ml of stock molybdate solution. After mixing, 3 ml sodium dodecyl sulphate (15 % solution in water) was added in leg 3 of this cruise, 4 mL sodium dodecyl sulphate (15 % solution in water) was added in leg 2 because to reduce relatively noisy signals. This reagent was freshly prepared before every measurement.

Reagent for sample dilution

Dissolved sodium chloride, NaCl, 10 g in ca. 950 ml of DIW, added 50 ml acetone and 4 ml concentrated H₂SO₄. After mixing, 5 ml sodium dodecyl sulphate (15 % solution in water) was added.

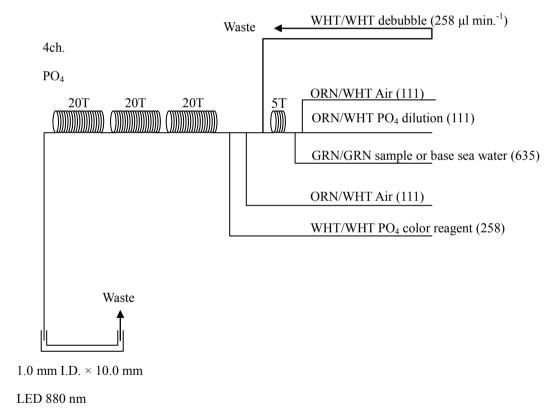


Figure 3.5.4. PO4 (4ch.) Flow diagram.

(4.6) Sampling procedures

Sampling of nutrients followed that oxygen, salinity and trace gases. Samples were drawn into two of virgin 10 ml polyacrylates vials without sample drawing tubes. These were rinsed three times before filling and vials were capped immediately after the drawing. The vials were put into water bath adjusted to ambient temperature, 24 ± 2 °C, in about 30 minutes before use to stabilize the temperature of samples in MR12-05.

No transfer was made and the vials were set an auto sampler tray directly. Samples were analyzed after collection basically within 24 hours in MR12-05.

(4.7) Data processing

Raw data from QuAAtro 2-HR was treated as follows:

- Checked baseline shift.
- Checked the shape of each peak and positions of peak values taken, and then changed the positions of peak values taken if necessary.
- Carry-over correction and baseline drift correction were applied to peak heights of each samples followed by sensitivity correction.
- Baseline correction and sensitivity correction were done basically using liner regression.
- Loaded pressure and salinity from CTD data to calculate density of seawater.
- Calibration curves to get nutrients concentration were assumed second order equations.

(5) Nutrients standards

(5.1) Volumetric laboratory ware of in-house standards

All volumetric glass ware and polymethylpentene (PMP) ware used were gravimetrically calibrated. Plastic volumetric flasks were gravimetrically calibrated at the temperature of use within 0 to 4 K.

Volumetric flasks

Volumetric flasks of Class quality (Class A) are used because their nominal tolerances are 0.05 % or less over the size ranges likely to be used in this work. Class A flasks are made of borosilicate glass, and the standard solutions were transferred to plastic bottles as quickly as possible after they are made up to volume and well mixed in order to prevent excessive dissolution of silicate from the glass. High quality plastic (polymethylpentene, PMP, or polypropylene) volumetric flasks were gravimetrically calibrated and used only within 0 to 4 K of the calibration temperature.

The computation of volume contained by glass flasks at various temperatures other than the calibration temperatures were done by using the coefficient of linear expansion of borosilicate crown glass.

Because of their larger temperature coefficients of cubical expansion and lack of tables constructed for these materials, the plastic volumetric flasks were gravimetrically calibrated over the temperature range of intended use and used at the temperature of calibration within 0 to 4 K. The weights obtained in the calibration weightings were corrected for the density of water and air buoyancy.

Pipettes and pipettors

All pipettes have nominal calibration tolerances of 0.1 % or better. These were gravimetrically calibrated in order to verify and improve upon this nominal tolerance.

(5.2) Reagents, general considerations

Specifications

For nitrate standard, "potassium nitrate 99.995 suprapur®" provided by Merck, CAS No.: 7757-91-1, was used.

For nitrite standard, "sodium nitrite" provided by Wako, CAS No.: 7632-00-0, was used. The assay of nitrite salts was determined according JIS K8019 were 98.73 %. We use that value to adjust the weights taken.

For the silicate standard, we use "Silicon standard solution SiO_2 in NaOH 0.5 mol/1 CertiPUR®" provided by Merck, CAS No.: 1310-73-2, of which lot number is HC097572 is used. The silicate concentration is

certified by NIST-SRM3150 with the uncertainty of 0.5 %. Factor of HC097572 was signed 1.000, however we reassigned the factor as 0.976 from the result of comparison among RMNS in MR11-E02 cruise. A history of assigned factor of Merck solutions are shown in Table 3.5.1.

For phosphate standard, "potassium dihydrogen phosphate anhydrous 99.995 suprapur®" provided by Merck, CAS No.: 7778-77-0, was used.

Table 3.5.1. A history of assigned factor of Merck solutions.

Lot	Factor	Date	Reference
Merck OC551722	1.001	2006/5/24	
Merck HC623465	1.000		
Merck HC751838	0.998	2007/4/13	
Merck HC814662	0.999	2008/8/27	
Merck HC074650	0.975		
M1- HC007579	0.070	MR11-E02	DMNC DA AV DD DE DE
Merck HC097572	0.976	(2011/06/20)	RMNS_BA, AY, BD, BE, BF

Ultra pure water

Ultra pure water (MilliQ water) freshly drawn was used for preparation of reagents, standard solutions and for measurement of reagent and system blanks.

Low-Nutrient Seawater (LNSW)

Surface water having low nutrient concentration was taken and filtered using 0.45 µm pore size membrane filter. This water is stored in 20 liter cubitainer with paper box. The concentrations of nutrient of this water were measured carefully in August 2012.

Treatment of silicate standard due to high alkalinity

Since the silicon standard solution Merck CertiPUR® is in NaOH 0.5 mol/l, we need to dilute and neutralize to avoid make precipitation of $MgOH_2$ etc. When we make B standard, silicon standard solution is diluted by factor 12 with pure water and neutralized by HCl 1.0 mol/l to be about 7. After that B standard solution is used to prepare C standards.

(5.3) Concentrations of nutrients for A, B and C standards

Concentrations of nutrients for A, B and C standards are set as shown in Table 3.5.2. The C standard is prepared according recipes as shown in Table 3.5.3. All volumetric laboratory tools were calibrated prior the cruise as stated in chapter (i). Then the actual concentration of nutrients in each fresh standard was calculated based on the ambient, solution temperature and determined factors of volumetric lab. wares.

The calibration curves for each run were obtained using 6 levels, C-1, C-2, C-3, C-4, C-5 and C-6.

Table 3.5.2. Nominal concentrations of nutrients for A, B and C standards.

	A	В	C-1	C-2	C-3	C-4	C-5	C-6
NO ₃ (μM)	22500	900	BS	BU	BT	BD	BF	45
$NO_2(\mu M)$	4000	20	BS	BU	BT	BD	BF	1.0
$SiO_2(\mu M)$	36000	2160	BS	BU	BT	BD	BF	105
$\mathrm{PO_4}(\mu\mathrm{M})$	3000	60	BS	BU	BT	BD	BF	3.0

Table 3.5.3. Working calibration standard recipes.

C Std.	B-1 Std.	B-2 Std.
C-6	25 ml	25 ml

B-1 Std.: Mixture of nitrate, silicate and phosphate

B-2 Std.: Nitrite

(5.4) Renewal of in-house standard solutions

In-house standard solutions as stated in (iii) were renewed as shown in Table 3.5.4 (a) to (c).

Table 3.5.4(a). Timing of renewal of in-house standards.

NO ₃ , NO ₂ , SiO ₂ , PO ₄	Renewal		
A-1 Std. (NO ₃)	maximum 1 month		
A-2 Std. (NO ₂)	maximum 1 month		
A-3 Std. (SiO ₂)	commercial prepared solution		
A-4 Std. (PO ₄)	maximum 1 month		
B-1 Std.			
(mixture of NO ₃ , SiO ₂ , PO ₄)	8 days		
B-2 Std. (NO ₂)	8 days		

Table 3.5.4(b). Timing of renewal of in-house standards.

Working standards	Renewal	
C-6 Std.	24 hours	
(mixture of B-1 and B-2 Std.)		

Table 3.5.4(c). Timing of renewal of in-house standards for reduction estimation.

Reduction estimation	Renewal		
D-1 Std.(3600 μM NO ₃)	8 days		
$43~\mu\mathrm{M~NO_3}$	when C Std. renewed		
$39~\mu\mathrm{M~NO}_2$	when C Std. renewed		

(6) Reference material of nutrients in seawater

To get the more accurate and high quality nutrients data to achieve the objectives stated above, huge numbers of the bottles of the reference material of nutrients in seawater (hereafter RMNS) are prepared (Aoyama et al., 2006, 2007, 2008, 2009). In the previous worldwide expeditions, such as WOCE cruises, the higher reproducibility and precision of nutrients measurements were required (Joyce and Corry, 1994). Since no standards were available for the measurement of nutrients in seawater at that time, the requirements were described in term of reproducibility. The required reproducibility was 1 %, 1 to 2 %, 1 to 3 % for nitrate, phosphate and silicate, respectively. Although nutrient data from the WOCE one-time survey was of unprecedented quality and coverage due to much care in sampling and measurements, the differences of nutrients concentration at crossover points are still found among the expeditions (Aoyama and Joyce, 1996, Mordy et al., 2000, Gouretski and Jancke, 2001). For instance, the mean offset of nitrate concentration at deep waters was 0.5 μmol kg⁻¹ for 345 crossovers at world oceans, though the maximum was 1.7 μmol kg⁻¹ (Gouretski and Jancke, 2001). At the 31 crossover points in the Pacific WHP one-time lines, the WOCE standard of reproducibility for nitrate of 1 % was fulfilled at about half of the crossover points and the maximum difference was 7 % at deeper layers below 1.6 °C in potential temperature (Aoyama and Joyce, 1996).

During the period from 2003 to 2010, RMNS were used to keep comparability of nutrients measurement among the 8 cruises of CLIVAR project (Sato et al., 2010), MR10-05 cruise for Arctic research (Aoyama et al., 2010) and MR10-06 cruise for "Change in material cycles and ecosystem by the climate change and its feedback" (Aoyama et al., 2011).

(6.1) RMNSs for this cruise

RMNS lots BS, BU, BT, BD and BF, which cover full range of nutrients concentrations in the Southern Ocean are prepared. 82 sets of BS, BU, BT, BD and BF are prepared.

One hundred seventy bottles of RMNS lot BV are prepared for MR12-05. Lot BV was used all stations. These RMNS assignment were completely done based on random number. The RMNS bottles were stored at

a room in the ship, REAGENT STORE, where the temperature was maintained around 15 - 33 °C.

(6.2) Assigned concentration for RMNSs

We assigned nutrients concentrations for RMNS lots BS, BU, BT, BD, BV, and BF as shown in Table 3.5.5.

Table 3.5.5. Assigned concentration of RMNSs.

				unit: µmol kg
	Nitrate	Phosphate	Silicate	Nitrite
BS*	0.07	0.063	1.61	0.02
BU*	3.96	0.378	20.27	0.07
BT*	18.18	1.318	40.94	0.47
BD*	29.82	2.191	64.30	0.05
BV**	35.32	2.541	99.55	0.06
BF***	41.39	2.809	149.71†	0.02

^{*} The values are assigned for this cruise on 27 July 2011.

(6.3) The homogeneity of RMNSs

The homogeneity of lot BV used in MR12-05 cruise and analytical precisions are shown in Table 3.5.6. These are for the assessment of the magnitude of homogeneity of the RMNS bottles those are used during the cruise. As shown in Table 3.5.6 and Figures 3.5.5 to 3.5.7, homogeneity of RMNS lot BV for nitrate, phosphate and silicate are the same magnitude of analytical precision derived from fresh raw seawater in January 2009.

^{**} The values are assigned for this cruise on 4 April 2009 (Table 3.4.4 in WHP P21 REVISIT DATA BOOK).

^{***} The values are assigned for this cruise on 21 August 2012.

[†] This value is changed for MR12-05 cruise.

Table 3.5.6. Homogeneity of lot BV derived from simultaneous 298 samples measurements and analytical precision onboard R/V Mirai in MR12-05.

	Nitrate	Phosphate	Silicate
	CV %	CV %	CV %
BV	0.13	0.19	0.15
Precision	0.10	0.16	0.11

BV: N=298

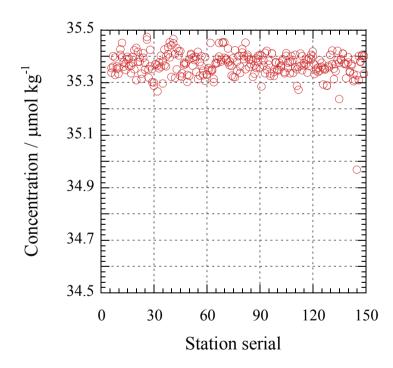


Figure 3.5.5. Time series of RMNS-BV of nitrate for MR12-05.

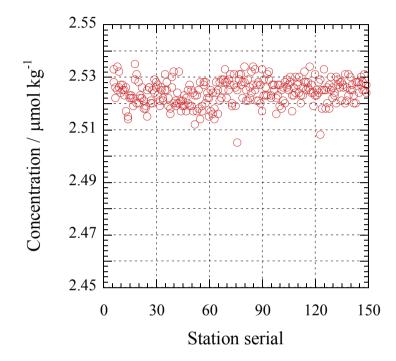


Figure 3.5.6. Time series of RMNS-BV of phosphate for MR12-05.

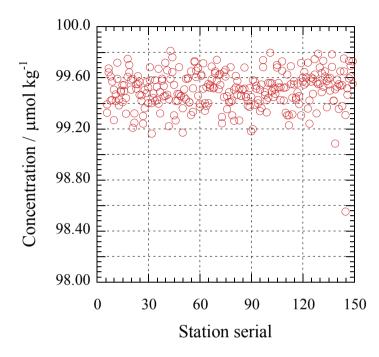


Figure 3.5.7. Time series of RMNS-BV of silicate for MR12-05.

(6.4) Comparability of RMNSs during the periods from 2003 to 2011

Cruise-to-cruise comparability has examined based on the results of the previous results of RMNSs measurements obtained among cruises and RMNS international comparison experiments in 2003 and 2009. The uncertainties for each value were obtained similar method described in 7.1 in this chapter at the measurement before each cruise and inter-comparison study, shown as precruise and intercomparison, and mean of uncertainties during each cruise, only shown cruise code, respectively. As shown in Table 3.5.7, the nutrients concentrations of RMNSs were in good agreement among the measurements during the period from 2003 to 2011. For the silicate measurements, we show lot numbers and chemical company names of each cruise/measurement in the footnote. As shown in Table 3.5.7, there shows less comparability among the measurements due to less comparability among the standard solutions provided by chemical companies in the silicate measurements.

Table 3.5.7(a). Comparability for nitrate.

										ι	ınit: µn	nol kg ⁻¹			
	RM Lots														
Cruise	BS	unc.	BU	unc.	ВТ	unc.	BD	unc.	BV	unc.	BF	unc.			
	Nitrate														
MR07-04											41.34	0.083			
MR10-05							29.80	0.097							
MR10-06							29.81	0.053			41.41	0.036			
MR11-02							29.83	0.047			41.39	0.058			
MR11-03					18.11	0.073	29.80	0.053			41.39	0.051			
MR11-05					18.04	0.025	29.89	0.073			41.40	0.075			
MR11-08	0.10	0.031	3.97	0.031	18.19	0.054	29.85	0.082			41.45	0.082			
MR12-E03	0.08	0.012	3.97	0.017	18.23	0.030	29.86	0.054							
MR12-05	0.07	0.011	3.96	0.012	18.19	0.039	29.82	0.043	35.37	0.046	41.40	0.042			

Table 3.5.7(b). Comparability for Phosphate.

unit: µmol kg⁻¹ RM Lots Cruise BU BDBVBS BTunc. BFunc. unc. unc. unc. unc. Phosphate MR07-04 2.803 0.006 MR10-05 2.184 0.011 MR10-06 2.182 0.006 2.807 0.007 MR11-02 0.003 0.006 2.187 2.810 MR11-03 1.316 0.004 0.007 0.011 2.187 2.815 MR11-05 0.007 0.007 1.313 0.009 2.183 2.808 MR11-08 0.064 0.010 0.377 0.007 1.317 0.010 2.190 0.011 2.821 0.009 MR12-E03 0.070 0.385 0.007 MR12-05 0.063 0.003 0.377 0.003 1.319 0.004 2.190 0.004 2.524 0.005 2.818 0.005

Table 3.5.7(c). Comparability for Silicate.

											unit: m	ol kg ⁻¹
0.						RM	Lots					
Cruise	BS	unc.	BU	unc.	BT	unc.	BD	unc.	BV	unc.	BF	unc.
						Sili	cate					
MR07-04 ^{\$\$}											150.69	1.02
MR10-05							64.40	0.10				
MR10-06							64.47	0.07			150.40	0.17
MR11-02							64.40	0.11			150.12	0.33
MR11-03					40.97	0.16	64.43	0.11			150.14	0.16
MR11-05					40.96	0.09	64.40	0.07			150.18	0.13
MR11-08 ⁺⁺	1.46	0.15	20.24	0.13	41.02	0.16	64.38	0.19			149.97	0.32
MR12-E03	1.61	0.04	20.25	0.08	40.89	0.12	64.11	0.18				
MR12-05	1.58	0.08	20.23	0.07	40.88	0.10	64.13	0.13	99.50	0.15	149.64	0.26

List of lot numbers: \$\$: Merck HC623465; ++: HC097572

(7) Quality control

(7.1) Precision of nutrients analyses during the cruise

Precision of nutrients analyses during the cruise was evaluated based on the 9 to 11 measurements, which are measured every 10 to 12 samples, during a run at the concentration of C-6 std. Summary of precisions are shown in Table 3.5.8 and Figures 3.5.8 to 3.5.10, the precisions for each parameter are generally good considering the analytical precisions during the Mirai cruses conducted in 2009 – 2012. During this cruise, analytical precisions were 0.10 % for nitrate, 0.16 % for phosphate and 0.11 % for silicate in terms of median of precision, respectively.

Table 3.5.8. Summary of precision based on the replicate analyses.

	Nitrate	Phosphate	Silicate
	CV %	CV %	CV %
Median	0.10	0.11	0.16
Mean	0.10	0.11	0.18
Maximum	0.23	0.24	0.40
Minimum	0.04	0.03	0.08
N	144	144	144

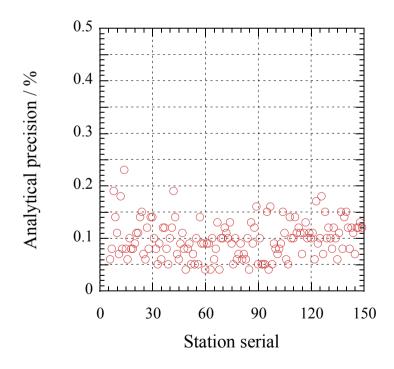


Figure 3.5.8. Time series of precision of nitrate for MR12-05.

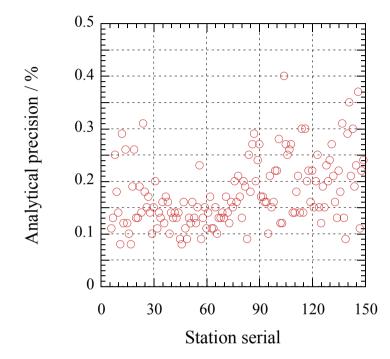


Figure 3.5.9. Time series of precision of phosphate for MR12-05.

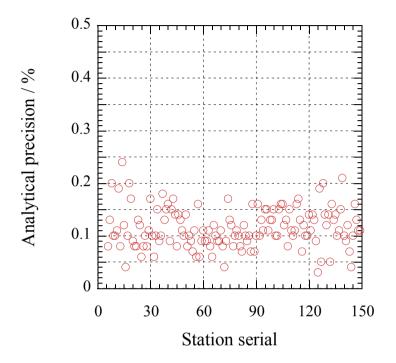


Figure 3.5.10. Time series of precision of silicate for MR12-05.

(7.2) Carry over

We also summarize the magnitudes of carry over throughout the cruise. These are small enough within acceptable levels as shown in Table 3.5.9 and Figures 3.5.11 - 3.5.13.

Table 3.5.9. Summary of carry over throughout MR12-05 cruise.

	Nitrate	Phosphate	Silicate
	CV %	CV %	CV %
Median	0.14	0.20	0.34
Mean	0.14	0.20	0.39
Maximum	0.23	0.37	0.95
Minimum	0.03	0.08	0.01
N	144	144	144

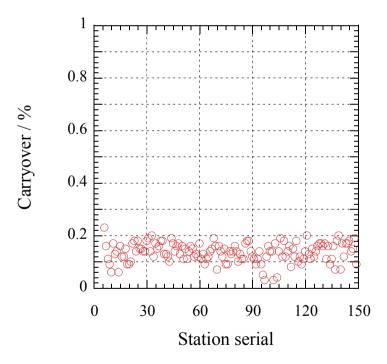


Figure 3.5.11. Time series of carryover of nitrate for MR12-05.

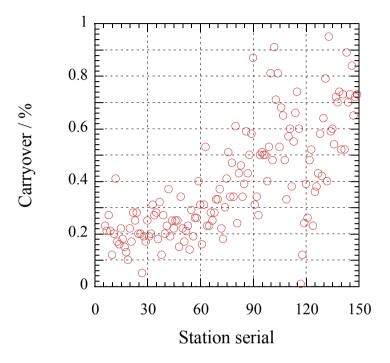


Figure 3.5.12. Time series of carryover of phosphate for MR12-05.

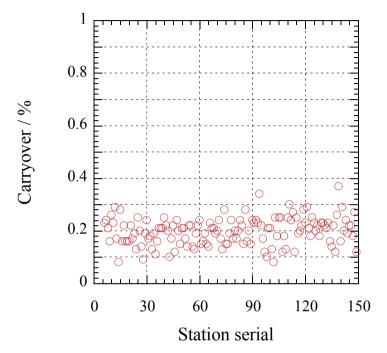


Figure 3.5.13. Time series of carryover of silicate for MR12-05.

(7.2) Estimation of uncertainty of phosphate, nitrate and silicate concentrations

Empirical equations, eq. (1), (2) and (3) to estimate uncertainty of measurement of phosphate, nitrate and silicate are used based on measurements of 72 sets of RMNSs during the this cruise. These empirical equations are as follows, respectively.

Phosphate Concentration Cp in µmol kg⁻¹:

Uncertainty of measurement of phosphate (%) = 0.05668 + 0.3158 / Cp — (1) where Cp is phosphate concentration of sample.

Nitrate Concentration Cn in µmol kg⁻¹:

Uncertainty of measurement of nitrate (%) = 0.09216 + 1.0861 / Cn — (2)

where Cn is nitrate concentration of sample.

Silicate Concentration Cs in µmol kg⁻¹:

Uncertainty of measurement of silicate (%) = 0.06383 + 7.436 / Cs — (3) where Cs is silicate concentration of sample.

(8) Problems/improvements occurred and solutions

(8.1)

During this cruise we observed relatively large carryover of phosphate measurement especially in leg 3 as shown in Figure 3.5.12. We washed assemblies and a flow cell of phosphate channel a few times in leg 3, however relatively large carry over did not changed.

We also found that carry over correction on the raw data was considered only "High to Low". An equation of carry over correction is as below

$$A(i)$$
 corrected = $A(i) - A(i-1) \times k$ — (4)

where A(i) is absorbance of sample I, k is carry over coefficient. Although this carryover correction method is adopted in AACE software ver 6.07, this might make systematic underestimate on the nutrient concentration. A magnitude might depend a gradient of nutrient concentration and in case of phosphate it is estimated to be about $0.002 \, \mu \text{mol kg}^{-1}$ at $0.005 \, \mu \text{mol kg}^{-1}$ m⁻¹.

(8.2)

After the cruise, we found that LNSW concentration used in this cruise did not determined appropriately, especially for phosphate. We overestimate about 0.03 μmol kg⁻¹. Therefore we corrected these overestimation and decided to report phosphate concentration x.xx μmol kg⁻¹ NOT x.xxx μmol kg⁻¹ considering the larger uncertainty of phosphate concentration of seawater samples.

References

- Aminot, A. and Kerouel, R. 1991. Autoclaved seawater as a reference material for the determination of nitrate and phosphate in seawater. Anal. Chim. Acta, 248: 277–283.
- Aminot, A. and Kirkwood, D.S. 1995. Report on the results of the fifth ICES intercomparison exercise for nutrients in sea water, ICES coop. Res. Rep. Ser., 213.
- Aminot, A. and Kerouel, R. 1995. Reference material for nutrients in seawater: stability of nitrate, nitrite, ammonia and phosphate in autoclaved samples. Mar. Chem., 49: 221–232.
- Aoyama M., and Joyce T.M. 1996, WHP property comparisons from crossing lines in North Pacific. In Abstracts, 1996 WOCE Pacific Workshop, Newport Beach, California.
- Aoyama, M., 2006: 2003 Intercomparison Exercise for Reference Material for Nutrients in Seawater in a Seawater Matrix, Technical Reports of the Meteorological Research Institute No.50, 91pp, Tsukuba, Japan.
- Aoyama, M., Susan B., Minhan, D., Hideshi, D., Louis, I. G., Kasai, H., Roger, K., Nurit, K., Doug, M., Murata, A., Nagai, N., Ogawa, H., Ota, H., Saito, H., Saito, K., Shimizu, T., Takano, H., Tsuda, A., Yokouchi, K., and Agnes, Y. 2007. Recent Comparability of Oceanographic Nutrients Data: Results of a 2003 Intercomparison Exercise Using Reference Materials. Analytical Sciences, 23: 1151–1154.
- Aoyama M., J. Barwell-Clarke, S. Becker, M. Blum, Braga E. S., S. C. Coverly, E. Czobik, I. Dahllof, M. H. Dai, G. O. Donnell, C. Engelke, G. C. Gong, Gi-Hoon Hong, D. J. Hydes, M. M. Jin, H. Kasai, R. Kerouel, Y. Kiyomono, M. Knockaert, N. Kress, K. A. Krogslund, M. Kumagai, S. Leterme, Yarong Li, S. Masuda, T. Miyao, T. Moutin, A. Murata, N. Nagai, G.Nausch, M. K. Ngirchechol, A. Nybakk, H. Ogawa, J. van Ooijen, H. Ota, J. M. Pan, C. Payne, O. Pierre-Duplessix, M. Pujo-Pay, T. Raabe, K. Saito, K. Sato, C. Schmidt, M. Schuett, T. M. Shammon, J. Sun, T. Tanhua, L. White, E.M.S. Woodward, P. Worsfold, P. Yeats, T. Yoshimura, A.Youenou, J. Z. Zhang, 2008: 2006 Intercomparison Exercise for Reference Material for Nutrients in Seawater in a Seawater Matrix, Technical Reports of the Meteorological Research Institute No. 58, 104pp.
- Aoyama, M., Nishino, S., Nishijima, K., Matsushita, J., Takano, A., Sato, K., 2010a. Nutrients, In: R/V Mirai

- Cruise Report MR10-05. JAMSTEC, Yokosuka, pp. 103-122.
- Aoyama, M., Matsushita, J., Takano, A., 2010b. Nutrients, In: MR10-06 preliminary cruise report. JAMSTEC, Yokosuka, pp. 69–83
- Gouretski, V.V. and Jancke, K. 2001. Systematic errors as the cause for an apparent deep water property variability: global analysis of the WOCE and historical hydrographic data REVIEW ARTICLE, Progress In Oceanography, 48: Issue 4, 337–402.
- Grasshoff, K., Ehrhardt, M., Kremling K. et al. 1983. Methods of seawater anylysis. 2nd rev. Weinheim: VerlagChemie, Germany, West.
- Hydes, D.J., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S., Daniel, A., Dickson, A.G., Grosso, O., Kerouel, R., Ooijen, J. van, Sato, K., Tanhua, T., Woodward, E.M.S., Zhang, J.Z., 2010. Determination of Dissolved Nutrients (N, P, Si) in Seawater with High Precision and Inter-Comparability Using Gas-Segmented Continuous Flow Analysers, In: GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. IOCCP Report No. 14, ICPO Publication Series No 134.
- Joyce, T. and Corry, C. 1994. Requirements for WOCE hydrographic programmed data reporting. WHPO Publication, 90-1, Revision 2, WOCE Report No. 67/91.
- Kawano, T., Uchida, H. and Doi, T. WHP P01, P14 REVISIT DATA BOOK, (Ryoin Co., Ltd., Yokohama, 2009).
- Kirkwood, D.S. 1992. Stability of solutions of nutrient salts during storage. Mar. Chem., 38: 151-164.
- Kirkwood, D.S. Aminot, A. and Perttila, M. 1991. Report on the results of the ICES fourth intercomparison exercise for nutrients in sea water. ICES coop. Res. Rep. Ser., 174.
- Mordy, C.W., Aoyama, M., Gordon, L.I., Johnson, G.C., Key, R.M., Ross, A.A., Jennings, J.C. and Wilson. J. 2000. Deep water comparison studies of the Pacific WOCE nutrient data set. Eos Trans-American Geophysical Union. 80 (supplement), OS43.
- Murphy, J., and Riley, J.P. 1962. Analyticachim. Acta 27, 31–36.
- Sato, K., Aoyama, M., Becker, S., 2010. RMNS as Calibration Standard Solution to Keep Comparability for Several Cruises in the World Ocean in 2000s. In: Aoyama, M., Dickson, A.G., Hydes, D.J., Murata, A., Oh, J.R., Roose, P., Woodward, E.M.S., (Eds.), Comparability of nutrients in the world's ocean. Tsukuba,

JAPAN: MOTHER TANK, pp 43–56.

Uchida, H. and Fukasawa, M. WHP P6, A10, I3/I4 REVISIT DATA BOOK Blue Earth Global Expedition 2003 1, 2, (Aiwa Printing Co., Ltd., Tokyo, 2005).

3.6 Chlorofluorocarbons and Sulfur Hexafluoride

February 1, 2015

(1) Personnel

Ken'ichi Sasaki (MIO, JAMSTEC)

Hironori Sato (MWJ)

Hideki Yamamoto (MWJ)

Katsunori Sagishima (MWJ)

Shoko Tatamisashi (MWJ)

Masahiro Ohrui (MWJ)

(2) Objectives

Chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF₆) are man – made stable gases. These gases can slightly dissolve in sea surface water by air-sea gas exchange and then are spread into the ocean interior. These dissolved gases could be used as transient chemical tracers for the ocean circulation. We measured concentrations of three chemical species of CFCs, CFC-11 (CCl₃F), CFC-12 (CCl₂F₂) and CFC-113 (C2Cl₃F₃), and SF₆ in seawater on board.

(3) Apparatuses

Measurement of CFCs and SF_6 were made with three gas chromatographs attached with purging and trapping systems (modified from the original design of Bullister and Weiss (1988)). Two of them were SF_6 / CFCs simultaneous analyzing systems (System A & B). Another one was CFCs analyzing system (System D). These purging and trapping systems were developed in JAMSTEC.

(3.1) SF₆/CFCs simultaneous analyzing systems (System A &B)

Cold trap columns are 30 cm length stainless steel tubing packed the section of 5 cm with 100/120 mesh

Porapak T and followed by the section of 5 cm of 100/120 mesh Carboxen 1000. Outer diameters of the main and focus trap columns are 1/8" and 1/16", respectively.

Each gas chromatograph (GC-14B, Shimadzu LTD) has two electron capture detectors, ECD1 and ECD2 (both ECDs: ECD-14, Shimadzu LTD). A pre-column is Silica Plot capillary column [i.d.: 0.32 mm, length: 10 m, film thickness: $4 \mu m$]. There are two main analytical columns. Main column 1 (MC1) is MS 5A packed column [1/16" OD, 10 cm length stainless steel tubing packed the section of 7 cm with 80/100 mesh Molecular Sieve 5A] followed by Gas Pro capillary column [i.d.: 0.32 mm, length: 35μ connected up to ECD1 for SF₆ and CFC-12. Main column 2 (MC2) is Silica Plot capillary column [i.d.: 0.32μ mm, length: 30μ m, film thickness: $4 \mu m$] connected up to ECD2 for CFC-11 and CFC-113.

(3.2) CFCs System (System D)

Cold trap column is 1/16" stainless steel tubing packed with 5 cm of 100/120 mesh Porapak T.

A Gas chromatograph (GC-14B, Shimadzu LTD) in this system has single ECD (ECD-14, Shimadzu LTD). A pre column is Silica Plot capillary column [i.d.: 0.53 mm, length: 6 m, film thickness: 6 μm]. A main column is Pola Bond-Q capillary column [i.d.: 0.53 mm, length: 9 m, film thickness: 10 μm] followed by Silica Plot capillary column [i. d.: 0.53 mm, length: 18 m, film thickness: 6 μm].

(4) Shipboard measurements

(4.1) Sampling

The marine water sampler was cleaned by diluted acetone before every CTD cast. Seawater sub-samples were collected from 12 litter Niskin bottles to 450 ml of glass bottles. The sub-sampling bottles were filled by pure nitrogen gas before sub-sampling. Two times of the bottle volumes of seawater sample were overflowed. The bottles filled by seawater samples were kept in thermostatic water bath (7°C) . The CFC and SF₆ concentrations were determined within 24 hours.

In order to confirm stabilities of standard gases and to check saturation levels of CFCs and SF₆ in sea surface water, mixing ratios of CFCs and SF₆ in background air collected on high sea were periodically

analyzed. Air sample was continuously led into the Environmental Research Laboratory of R/V MIRAI by 10 mm OD Dekaron tubing. The end of the tubing was put on a head of the Compass Deck and another end was connected onto an air pump in the laboratory. The tubing was relayed by a T-type union which had a small stop cock. Air sample was collected from the continuously flowing air into a 200 ml glass syringe attached on the cock. Average mixing ratios of the atmospheric CFC-11, CFC-12, CFC-113, and SF₆ were 229.7 \pm 11.7 ppt, 525.4 \pm 5.9 ppt, 71.0 \pm 3.2 (n \sim 140), and 7.60 \pm 0.22 ppt (n \sim 90), respectively.

(4.2) Analyses

(4.2.1) SF₆/CFCs simultaneous analyses (System A &B)

Constant volume of sample water (200 ml) was taken into a sample loop. The aliquot was send into stripping chamber and dissolved gases were extracted by pure nitrogen gas purging for 8 minutes. The gaseous sample was dried by magnesium perchlorate desiccant and concentrated on a main trap column cooled to -80°C. Stripping efficiencies were frequently confirmed by re-stripping of surface layer samples and more than 98 % of dissolved SF₆ and CFCs were extracted on the first purge. Following purging & trapping, the main trap column was isolated and heated to 170°C for 1 minute. The desorbed gases were sent onto focusing trap cooled to -80°C for 30 sec and then the trap was isolated. Gaseous sample on the focusing trap were desorbed by heating to 170°C for 1 minute and led into the pre-column. Sample gases were roughly separated in the pre-column. When SF₆ and CFC-12 were sent onto MC1 (and CFC-11 and CFC-113 still remain on the pre-column), main columns were switched (pre-column was followed by MC2 and another carrier gas line was connected up to MC1). SF₆ and CFC-12 were further separated and detected by the ECD1. CFC-11 and CFC-113 led onto MC 2 were detected by ECD2. When CFC-113 eluted from pre-column onto MC 2, the pre-column was switched onto another line and remaining compounds on the pre-column were back flushed. Temperature of the analytical column and ECD was 95 and 300°C. Mass flow rates of nitrogen gas were 5, 32, 6 and 220 ml/min for carrier gases, detector make up gases, back flush gas and seawater sample purging, respectively. Gas loops whose volumes were 0.05, 0.15, 0.3, 1, 3 and 10 ml were used for introducing standard gases into the analytical system. Calibration curves were made every several days and standard

gas analyses using largest loop (10 ml) were performed more frequently to monitor change in the detector sensitivity.

(4.2.2) CFCs analyses (System D)

These systems were somewhat simple compared with the system A & B. Volume of water sample loop was 50 ml. Gas extraction time was for 8 minutes. Cooling and heating temperatures of trap column were –50 and 140°C, respectively. There was not focusing trap in the system. Stripping efficiencies were more than 99.5 % of dissolved CFCs on the first purge. Temperatures of the analytical column and ECD were 95 and 240°C. Mass flow rates of nitrogen gas were 10, 27, 15 and 120 ml/min for carrier, detector make up, back flush and seawater sample purging gases, respectively. There were three gas loops whose volumes were 1, 3 and 10 ml, respectively.

(4.2.3) Standard gases

The standard gasses had been made by Japan Fine Products co. ltd. Standard gas cylinder numbers used in this cruise were listed in Table 3.6.1. Cylinder of CPB15651 was used as reference gas. Precise mixing ratios of CFCs/SF₆ in the standard gases were calculated by gravimetric data. The standard gases have not been calibrated to SIO scale standard gases yet because SIO scale standard gases were hard to obtain due to legal difficulties for CFCs import into Japan. The data would be corrected as soon as possible when we obtained the SIO scale standard gases.

(5) Quality control

(5.1) Blanks

Blanks (from sub-sampling and analytical systems) are confirmed by several analyses of CFC free water which is made from deep water purging by moist nitrogen gas in a glass chamber (10 L). Concentrations of CFC-11 and CFC-12 in the CFC free water are 0.015 ± 0.009 , 0.005 ± 0.004 pmol kg⁻¹ (n = 3), respectively. These values are close to previous blanks (0.011 ± 0.003 and 0.005 ± 0.002 pmol kg⁻¹ for CFC-11 and CFC-

12, respectively) estimated from a number of analyses (N \approx 700) of deep water in the North Pacific in 2011 (Sasaki et al., 2014). Blank values in this cruise are assumed as equivalent to the previously estimated blanks and were subtracted from all data. Significant CFC-113 and SF $_6$ were not detected in the CFC free water.

(5.2) Major problems

Sensitivities of detectors on the System B were dramatically varied during seawater sample analysis for stations P14S-001,-003,-012, -015, -018, -020, -023, S04-404. A number of measurements for these stations are flagged '4' because it is too difficult to define adequate correction factors for the sensitivity variations.

(5.3) Precisions

The analytical precisions were estimated from replicate sample analyses (N ~ 530 pairs for CFC-12, CFC-11, and CFC-113, and 340 pairs for SF₆ measurements). The replicate samples were collected from four sampling depths which were around 50, 600, 1300, and 4000 m depths in every station. Precisions were estimated as better than ± 0.002 pmol kg⁻¹ or 1 % for CFC-11, ± 0.004 pmol kg⁻¹ or 1 % for CFC-12, ± 0.002 pmol kg⁻¹ or 5 % for CFC-113, and ± 0.030 fmol kg⁻¹ or 6% for SF₆ (whichever is greater), respectively.

(6) References

Bullister, J.L and Weiss, R.F., Determination of CCl3F and CCl2F2 in seawater and air. Deep Sea *Research*, **35**, 839-853 (1988).

Sasaki, K., K. Sagishima, S. Tatamisashi, H. Sato, and M. Orui, Chlorofluorocarbons and Sulfur Hexafluoride, WHP P10 Revisit in 2011 Data Book, H. Uchida et al. (Eds.), JAMSTEC, Yokosuka, Kanagawa, Japan, 72–75 (2014).

Table 3.6.1. Standard gas cylinder list (Japan Fine Products co. ltd.).

Cylinder No.	Base	CFC-11	CFC-12	CFC-113	SF6	remarks
		ppt	ppt	ppt	ppt	
CPB26845	Air	1304	649	130	9.99	SF ₆ /CFC, Leg 2
CPB25863	Air	1301	649	130	10.00	SF ₆ /CFC, Leg 2,3
CPB17252	Air	1304	652	130	9.93	SF ₆ /CFC, Leg 3
CPB30572	Air	1301	651	130	9.98	SF ₆ /CFC, Leg 3
CPB07911	N_2	302	159	30.0	0.0	CFC, Leg 2,3
CPB15651	N_2	299	159	30.2	0.0	CFC, Reference

3.7 Carbon Items (C_T , A_T and pH)

December 19, 2014

(1) Personnel

Akihiko Murata (JAMSTEC)

Yoshiko Ishikawa (MWJ)

Tomonori Watai (MWJ)

Emi Deguchi (MWJ)

Atsushi Ono (MWJ)

Keisuke Tsubata (MWJ)

(2) Objectives

According to the latest report from Intergovernmental Panel on Climate Change, concentrations of CO_2 in the atmosphere have increased by 40% since pre-industrial times owing to human activities such as burning of fossil fuels, deforestation, and cement production. It is evaluated that the ocean has absorbed about 30% of the emitted anthropogenic CO_2 . It is an urgent task to estimate as accurately as possible the absorption capacity of the oceans against the increased atmospheric CO_2 , and to clarify the mechanism of the CO_2 absorption, because the magnitude of future global warming depends on the levels of CO_2 in the atmosphere.

The Southern Ocean is one of the regions where uncertainty of uptake of anthropogenic CO_2 is large. In this cruise, therefore, we were aimed at quantifying how much anthropogenic CO_2 is absorbed in the ocean interior of the Southern Ocean. For the purpose, we measured CO_2 -system parameters such as dissolved inorganic carbon (C_T), total alkalinity (A_T) and pH mainly along the WHP P14S and S04I lines at ~170°E and ~60°S, respectively, in the Southern Ocean.

(3) Apparatus

i. C_T

Measurement of C_T was made with two total CO_2 measuring systems (called as Systems C and D, respectively; Nippon ANS, Inc.), which were slightly different from each other. The systems comprised of a seawater dispensing system, a CO_2 extraction system and a coulometer. In this cruise, we used a same type (Model 3000, Nippon ANS) of coulometers, for Systems C and D, respectively. Each of the two systems had almost a same specification as follows:

The seawater dispensing system has an auto-sampler (6 ports), which dispenses seawater from a 300 ml borosilicate glass bottle into a pipette of about 15 ml volume by PC control. The pipette is kept at 20 °C by a water jacket, in which water from a water bath set at 20 °C is circulated. CO_2 dissolved in a seawater sample is extracted in a stripping chamber of the CO_2 extraction system by adding phosphoric acid (~ 10 % v/v) of about 2 ml. The stripping chamber is approx. 25 cm long and has a fine frit at the bottom. The acid is added to the stripping chamber from the bottom of the chamber by pressurizing an acid bottle for a given time to push out the right amount of acid. The pressurizing is made with nitrogen gas (99.9999 %). After the acid is transferred to the stripping chamber, a seawater sample kept in a pipette is introduced to the stripping chamber by the same method as in adding an acid. The seawater reacted with phosphoric acid is stripped of CO_2 by bubbling the nitrogen gas through a fine frit at the bottom of the stripping chamber. The CO_2 stripped in the chamber is carried by the nitrogen gas (flow rates is 140 ml min⁻¹) to the coulometer through a dehydrating module. The modules of Systems C and D consist of two electric dehumidifiers (kept at ~4 °C) and a chemical desiccant (Mg(CIO_2)₂).

The measurement sequence such as system blank (phosphoric acid blank), $1.865 \% CO_2$ gas in a nitrogen base, sea water samples (6) is programmed to repeat. The measurement of $1.865 \% CO_2$ gas is made to monitor response of coulometer solutions purchased from UIC, Inc. or laboratory-made.

ii. A_T

Measurement of A_T was made based on spectrophotometry using a custom-made system (Nippon ANS, Inc.). The system comprises of a water dispensing unit, an auto-burette (765 Dosimat, Metrohm), and a spectrophotometer (Carry 50 Bio, Varian), which are automatically controlled by a PC. The water dispensing unit has a water-jacketed pipette and a water-jacketed titration cell. The spectrophotometer has a water-jacketed quartz cell, length and volume of which are 8 cm and 13 ml, respectively. To circulate sample seawater between the titration and the quartz cells, PFA tubes are connected to the cells.

A seawater of approx. 42 ml is transferred from a sample bottle (borosilicate glass bottle; 130 ml) into the water-jacketed (25 °C) pipette by pressurizing the sample bottle (nitrogen gas), and is introduced into the water-jacketed (25 °C) titration cell. The seawater is circulated between the titration and the quartz cells by a peristaric pump to rinse the route. Then, Milli-Q water is introduced into the titration cell, and is circulated in the route twice to rinse the route. Next, a seawater of approx. 42 ml is weighted again by the pipette, and is transferred into the titration cell. The weighted seawater is introduced into the quartz cell. Then, for seawater blank, absorbances are measured at three wavelengths (750, 616 and 444 nm). After the measurement, an acid titrant, which is a mixture of approx. 0.05 M HCl in 0.65 M NaCl and bromocresol green (BCG) is added (about 2.1 ml) into the titration cell. The seawater + acid titrant solution is circulated for 6 minutes between the titration and the quartz cells, with stirring by a stirring tip and bubbling by wet nitrogen gas in the titration cell. Then, absorbances at the three wavelengths are measured.

Calculation of A_T is made by the following equation:

$$A_{T} = (-[H^{+}]_{T}V_{SA} + M_{A}V_{A})/V_{S}$$

where M_A is the molarity of the acid titrant added to the seawater sample, $[H^*]_T$ is the total excess hydrogen ion concentration in the seawater, and V_S , V_A and V_{SA} are the initial seawater volume, the added acid titrant volume, and the combined seawater plus acid titrant volume, respectively. $[H^*]_T$ is calculated from the measured absorbances based on the following equation (Yao and Byrne, 1998):

$$pH_{T} = -\log[H^{+}]_{T} = 4.2699 + 0.002578(35 - S) + \log((R - 0.00131)/(2.3148 - 0.1299R))$$
$$-\log(1 - 0.001005S),$$

where S is the sample salinity, and R is the absorbance ratio calculated as:

$$R = (A_{616} - A_{750})/(A_{444} - A_{750}),$$

where A_i is the absorbance at wavelength i nm.

The HCl in the acid titrant is standardized on land. The concentrations of BCG were estimated to be approx. 2.0×10^6 M in the sample seawater.

iii. pH

Measurement of pH was made by a pH measuring system (Nippon ANS, Inc.). For the detection of pH, spectrophotometry was adopted. The system comprises of a water dispensing unit and a spectrophotometer (Bio 50 Scan, Varian). For an indicator, m-cresol purple (2 mM) was used.

Seawater is transferred from borosilicate glass bottle (300 ml) to a sample cell in the spectrophotometer. The length and volume of the cell are 8 cm and 13 ml, respectively, and the sample cell is kept at 25.00 ± 0.05 °C in a thermostated compartment. First, absorbance of seawater only is measured at three wavelengths (730, 578 and 434 nm). Then the indicator is injected and circulated for about 4 minutes to mix the indicator and seawater sufficiently. After the pump is stopped, the absorbance of seawater + indicator is measured at the same wavelengths. The pH is calculated based on the following equation (Clayton and Byrne, 1993):

$$pH = pK_2 + log\left(\frac{A_1/A_2 - 0.00691}{2.2220 - 0.1331(A_1/A_2)}\right),$$

where A_1 and A_2 indicate absorbance at 578 and 434 nm, respectively, and pK_2 is calculated as a function of water temperature and salinity.

(4) Shipboard measurement

(4.1) Sampling

i. C_T

All seawater samples were collected from depth with 12 liter Niskin bottles basically at every other stations. The seawater samples for C_T were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into a 300 ml borosilicate glass bottle. The glass bottle was filled with seawater smoothly from the bottom following a rinse with a seawater of 2 full, bottle volumes. The glass bottle was closed by a stopper, which was fitted to the bottle mouth gravimetrically without additional force.

At a chemical laboratory on ship, a headspace of approx. 1 % of the bottle volume was made by removing seawater with a plastic pipette. A saturated mercuric chloride of 100 µl was added to poison seawater samples. The glass bottles were sealed with a greased (Apiezon M, M&I Materials Ltd) ground glass stopper and the clips were secured. The seawater samples were kept at 5 °C in a refrigerator until analysis. A few hours just before analysis, the seawater samples were kept at 20 °C in a water bath.

ii. A_T

All seawater samples were collected from depth using 12 liter Niskin bottles basically at every other stations. The seawater samples for A_T were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into borosilicate glass bottles of 130 ml. The glass bottle was filled with seawater smoothly from the bottom after rinsing it with a seawater of half a or a full bottle volume. A few hours before analysis, the seawater samples were kept at 25 $^{\circ}$ C in a water bath.

iii. pH

All seawater samples were collected from depth with 12 liter Niskin bottles basically at every other stations. The seawater samples for pH were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into a 300 ml borosilicate glass bottle, which was the same as used for C_T sampling. The glass bottle was filled with seawater smoothly from the bottom following a rinse with a sea water of 2 full, bottle volumes. The glass bottle was closed by a stopper, which was fitted to the bottle mouth gravimetrically without additional force.

A few hours just before analysis, the seawater samples were kept at 25 °C in a water bath.

(4.2) Analysis

i. C_T

At the start of each leg, we calibrated the measuring systems by blank and 5 kinds of Na_2CO_3 solutions (nominally 500, 1000 1500, 2000, 2500 μ mol/L). As it was empirically known that coulometers do not show a stable signal (low repeatability) with fresh (low absorption of carbon) coulometer solutions. Therefore we measured 2% CO_2 gas repeatedly until the measurements became stable. Then we started the calibration.

The measurement sequence such as system blank (phosphoric acid blank), 2 % CO₂ gas in a nitrogen base, seawater samples (6) was programmed to repeat. The measurement of 2 % CO₂ gas was made to monitor response of coulometer solutions (from UIC, Inc. or in-house made). For every renewal of coulometer solutions, certified reference materials (CRMs, batch 121, certified value = 2039.26 μmol kg⁻¹) provided by Prof. A. G. Dickson of Scripps Institution of Oceanography were analyzed. In addition, in-house reference materials (RM) (batch QRM Q23 and Q26 for leg 2 and leg 3, respectively) were measured at the initial, intermediate and end times of a coulometer solution's lifetime.

The preliminary values were reported in a data sheet on the ship. Repeatability and vertical profiles of C_T based on raw data for each station helped us check performances of the measuring systems.

In the cruise, we finished all the analyses for C_T on board the ship. As we used two systems, we had not encountered such a situation as we had to abandon the measurement due to time limitation.

ii. A_T

We analyzed reference materials (RM), which were produced for C_T measurement by JAMSTEC, but were efficient also for the monitor of A_T measurement. In addition, certified reference materials (CRM, batches 121, certified value = 2225.01 μ mol kg⁻¹) were also analyzed periodically to monitor systematic differences of measured A_T . The reported values of A_T were set to be traceable to the certified value of the batch 121.

The preliminary values were reported in a data sheet on ship. Repeatability calculated from replicate samples and vertical profiles of A_T based on raw data for each station helped us check performance of the measuring system.

In the cruise, we finished all the analyses for A_T on board the ship. We did not encounter so serious problems as we had to give up the analyses.

iii. pH

For an indicator solution, *m*-cresol purple (2 mM) was used. The indicator solution was produced on board a ship, and retained in a 1000 ml DURAN® laboratory bottle. We renewed an indicator solution 3 times when the headspace of the bottle became large, and monitored pH or absorbance ratio of the indicator solution by another spectrophotometer (Carry 50 Scan, Varian) using a cell with a short path length of 0.5 mm. In most indicator solutions, the absorbance ratios of the indicator solution were kept mostly between 1.4 and 1.6 by adding acid or alkali solution appropriately.

It is difficult to mix seawater with an indicator solution sufficiently under no headspace condition. However, by circulating the mixed solution with a peristaltic pump, a well-mixed condition came to be attained rather shortly, leading to a rapid stabilization of absorbance. We renewed a TYGON® tube of a peristaltic pump periodically, when a tube deteriorated.

Absorbances of seawater only and seawater + indicator solutions were measured 11 times each, and the last value was used for the calculation of pH.

The preliminary values of pH were reported in a data sheet on the ship. Repeatability calculated from

replicate samples and vertical profiles of pH based on raw data for each station helped us check performance of the measuring system.

We finished all the analyses for pH on board the ship. We did not encounter so serious a problem as we had to give up the analyses.

(5) Quality control

i. C_T

We conducted quality control of the data after return to a laboratory on land. With calibration factors, which had been determined on board a ship based on blank and 5 kinds of Na_2CO_3 solutions, we calculated C_T of CRM (batches 121), and plotted the values as a function of sequential day, separating legs and the systems used. There were no statistically-significant trends of CRM measurements.

The repeatability of measurements was estimated to be 0.6 µmol kg⁻¹, which was calculated from 274 differences of replicate measurements.

ii. A_T

Temporal changes of A_T , which originate from analytical problems, were monitored by measuring A_T of CRM. We found no abnormal measurements during the cruises.

The repeatability of measurements was estimated to be $0.6~\mu mol~kg^{-1}$, which was calculated from 211 differences of replicate measurements.

iii. pH

It is recommended that correction for pH change resulting from addition of indicator solutions is made (Dickson et al., 2007). To check the perturbation of pH due to the addition, we measured absorbance ratios by doubling the volume of indicator solutions added to a same seawater sample. We corrected absorbance ratios based on an empirical method (Dickson et al., 2007), although the perturbations were small. Figure 3.7.1 illustrates a perturbation of absorbance ratios by adding indicator solutions for leg 2 in MR12-05 cruise. For

leg 3, the tendency was not significant statistically. Thus for correction, a value of 6.3364×10^5 was subtracted from the measured values. The reported values, which are the total scale, were set to the values at 25° C by the CO_2 system calculation using data for pH and C_T with K1 and K2 from Mehrbach *et al.* (1973) refit by Dickson and Millero (1987).

The repeatability of measurements was estimated to be 0.0005 pH unit, which was calculated from 318 differences of replicate measurements.

During the cruise, we measured in-house TRIS buffers to monitor performance of the measuring system. Different lots of TRIS buffers were used for legs 2 and 3 of MR12-05. Averaged differences between measured and calculated pH of the TRIS buffers were 0.0089 ± 0.0011 (n=37) and 0.0140 ± 0.0012 (n=36) for legs 2 and 3, respectively. From these results, we decided to correct measured values of pH by subtracting 0.0089 and 0.0140 from the measured values for each cruise.

After correction, we evaluated accuracy of pH values by comparing the corrected values with those computed from measured C_T and A_T . Averaged differences (corrected – computed) were 0.0059 \pm 0.0054 and -0.0019 \pm 0.0056 for legs 2 and 3, respectively.

References

- Clayton T. D. and R. H. Byrne (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Research 40, 2115-2129.
- Dickson A. G. and F. J. Millero (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Research, 34, 1733–1743.
- Dickson, A. G., C. L. Sabine and J. R. Christian eds. (2007), Guide to best practices for ocean CO2 measurements, PICES Special Publication 3, 191 pp.
- Mehrbach, C., C. H. Culberson, J. E. Hawley and R. M. Pytkowicz (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceangography, 18, 897-907.
- Yao, W. and R. B. Byrne (1998) Simplified seawater alkalinity analysis: Use of linear array spectrometers.

Deep-Sea Research 45, 1383-1392.

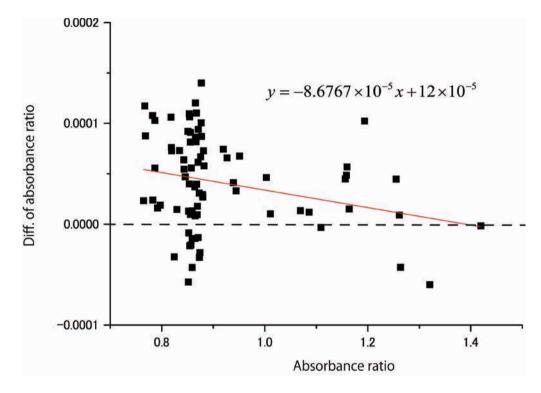


Figure 3.7.1. Perturbation of absorbance ratios by adding indicator. The line was determined by the method of least squares.

3.8 Chlorophyll a

May 10, 2013

(1) Personnel

Hiroshi Uchida (JAMSTEC)

Osamu Yoshida (Rakuno Gakuen University) (Leg 3)

Haruka Tamada (Rakuno Gakuen University) (Leg 3)

Yuko Kanayama (Rakuno Gakuen University) (Leg 3)

Okura Shinozaki (Rakuno Gakuen University) (Leg 3)

Kanako Yoshida (MWJ) (Legs 1, 3)

Hideki Yamamoto (MWJ) (Leg 2)

(2) Objectives

Chlorophyll a is one of the most convenient indicators of phytoplankton stock, and has been used extensively for the estimation of phytoplankton abundance in various aquatic environments. In this study, we investigate horizontal and vertical distribution of phytoplankton. The chlorophyll a data is also used for calibration of fluorometers used in the surface water monitoring and the CTD profiler measurements.

(3) Instrument and Method

Seawater samples were collected in 500 or 250 ml brown Nalgene bottles without head-space. The whole sampled water were gently filtrated by low vacuum pressure (<0.02 MPa) through Whatman GF/F filter (diameter 25 mm) in the dark room. Whole volume of each sampling bottle was precisely measured in advance. Phytoplankton pigments were immediately extracted in 7 ml of N,N-dimethylformamide (DMF) after filtration and then, the samples were stored at -20° C under the dark condition to extract chlorophyll a for more than 24 hours. Fluorescence of the extracted samples was measured by the Turner fluorometer (10-AU-005, TURNER DESIGNS) which was previously calibrated against a pure chlorophyll a (Sigma-Aldrich Co.,

LLC). We applied the fluorometric "Non-acidification method" (Welschmeyer, 1994).

(4) Results

Chlorophyll a data obtained during the cruise are shown in Fig. 3.8.1. To estimate measurement precision, 20 pairs of replicate samples were obtained from hydrographic casts during leg 3. Ten pairs of the replicate samples were collected in 500 ml and 250 ml bottles. Difference between samples collected in 500 ml and 250 ml was small ($\leq 0.02 \,\mu\text{g/L}$). Standard deviation from 20 pairs of the replicate samples was 0.018 $\,\mu\text{g/L}$, although absolute difference was smaller than 0.01 $\,\mu\text{g/L}$ for 16 pairs of the replicate samples.

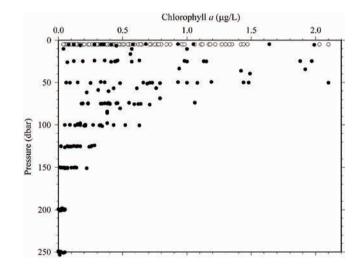


Figure 3.8.1. Vertical distribution of chlorophyll a obtained from hydrographic casts (closed circles) and surface water monitoring system (open circles).

Reference

Welschmeyer, N. A. (1994): Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnor. Oceanogr., 39, 1985-1992.

3.9 LADCP

September 30, 2014

(1) Personnel

Shinya Kouketsu (JAMSTEC)

Hiroshi Uchida (JAMSTEC)

Katsuro Katsumata (JAMSTEC)

Toshimasa Doi (JAMSTEC)

(2) Overview of the equipment

An acoustic Doppler current profiler (ADCP) was integrated with the CTD/RMS package. The lowered ADCP (LADCP), Workhorse Monitor WHM300 (Teledyne RD Instruments, San Diego, California, USA), which has 4 downward facing transducers with 20-degree beam angles, rated to 6000 m. The LADCP makes direct current measurements at the depth of the CTD, thus providing a full profile of velocity. The LADCP was powered during the CTD casts by a 50.4 volts expendable Alkali battery pack. The LADCP unit was set for recording internally prior to each cast. After each cast the internally stored observed data was uploaded to the computer on-board. By combining the measured velocity of the sea water and bottom with respect to the instrument, and shipboard navigation data during the CTD cast, the absolute velocity profile can be obtained (e.g., Visbeck, 2002).

The instrument used in this cruise was Teledyne RD Instruments, WHM300(S/N 183240).

(3) Data collection

In this cruise, data were collected with the following configuration.

Bin size: 4 m

Number of bins: 25

Pings per ensemble: 1

Ping interval: 1 sec

(4) Data collection problems

Echo intensities are sufficiently high along the section (Fig. 3.9.1), except at the stations of 9. Since the weak echo were observed for all the beams, the weakness was not due to the instrument problem.

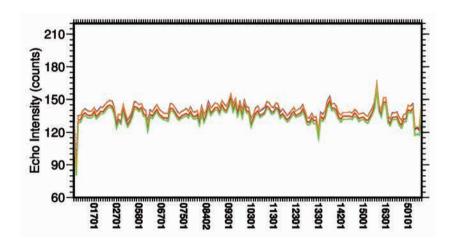


Figure 3.9.1. Cast-averaged echo intensities at the first bin. Red, blue, green and orange denote beam 1, 2, 3, and 4 respectively.

(4) Data process

Vertical profiles of velocity are obtained by the inversion method (Visbeck, 2002). Since the first bin from LADCP is influenced by the turbulence generated by CTD frame, the weight for the inversion is set to 0.1. GPS navigation data and the bottom-track data are used in the calculation of the reference velocities. Shipboard ADCP data averaged for 9 minute are also included in the calculation. The CTD data are used for the sound speed and depth calculation. The directions of velocity are corrected using the magnetic deviation estimated with International Geomagnetic reference field data.

However, the inversion method doesn't work well due to no-good velocity data due to the instrument problems as well as weak echo intensity at deep layers.

Reference

Visbeck, M. (2002): Deep velocity profiling using Lowered Acoustic Doppler Current Profilers: Bottom track and inverse solutions. *J. Atmos. Oceanic Technol.*, 19, 794-807.

3.10 Expendable Microstructure Profiler

September 30, 2014

(1) Personnel

Katsuro Katsumata (JAMSTEC)

(2) Objectives

Turbulence mixing in the ocean has been a difficult quantity to measure directly despite its important role in the ocean energy budget and general circulation dynamics. Recent improvements on materials such as optic fibre and on sensors such as high precision shear probes now enable the measurement using expendable microstructure profilers (XMP).

(3) Apparatus

XMP probe and its tow frame were manufactured by Rockland Scientific International, Canada. The expendable sensor has a cylindrical shape with a length of about 152 cm and a diameter of 18 cm. Two shear sensors, one temperature sensor, a pressure sensor, and an accelerometer are mounted on the deeper tip of the cylinder. The tail is fringed with plastic drag brushes to stabilise its drop rate.

The shear sensors measure the shear at a 2.5×10^3 s⁻¹ rms resolution. Least squares fit of the shear spectrum to the Nasmyth theoretical curve yields an estimate of the turbulent kinetic energy dissipation rate. The instrument oscillation is measured by the accelerometer and corrected during the spectrum estimation

R/V Mirai's A-frame was used to deploy the prove attached to the tow frame. The prove was released underwater. The measured data were transmitted to a computer in a laboratory through an optic fibre. Twelve kilometre of the fibre on a spool was used and the fibre freely came off the spool as the prove descended underwater. The fall rate was about 0.8 m/s initially but slowed down to less than 0.5 m/s at 2000 dbar as more fibre was dragged in the water. The fibre spool was mounted underwater (about 10 m depth) in a tow frame which was towed from the stern of the vessel. The vessel travelled no faster than 2 knots *relative*

to water.

The turbulent kinetic energy dissipation rate ϵ was estimated by

$$\varepsilon = \frac{15}{2} v \overline{u_z^2} ,$$

where v is the kinematic molecular viscosity of water and u_z is the vertical derivative of the horizontal velocity and the overbar denotes a spatial or ensemble averaging. Detailed description of the principle and sensors can lsbe found in Lueck *et al.* (2002).

(4) Deployments

Six probes were deployed at six different CTD stations right after the CTD cast. Two were deployed within an area where, at the time of writing, a problem was detected in foreign clearance request documents, hence the data are not disclosed. The details of other deployments are shown below. The year is 2012.

S/N	Latitude	Longitude	Depth	Start (UT)	End (UT)
30	58-01.52°S	173-59.97°E	5201 m	6 Dec 13:06	6 Dec 14:47
31	58-30.33°S	173-58.98°E	5005 m	6 Dec 20:42	7 Dec 00:11
28	62-45.99°S	172-12.97°E	4264 m	9 Dec 05:34	9 Dec 05:37
26	63-59.72°S	171-07.46°E	2557 m	9 Dec 20:55	9 Dec 22:23

(5) Results

The realtime pressure reading indicated that Serial Number (SN) 31 and 26 survived to the sea bottom. SN 30 and 28 lost connection at about 2500 dbar and 30 dbar, respectively. Fig. 3.10.1 shows the vertical distribution of the eddy kinetic energy dissipation rate, tentatively estimated by quick_look_XMP.m in the ODAS library. The method for estimating the dissipation rate follows that of Lueck *et al.* (2002).

References

Lueck, R.G., F. Wolk, and H. Yamazaki (2002) Oceanic Velocity Microstructure Measurements in the 20th Century. Journal of Oceanography 58, 153-174.

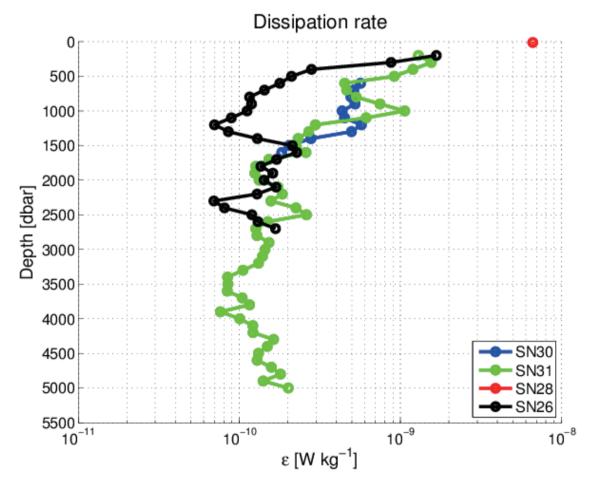


Figure 3.10.1. Kinetic energy dissipation rate estimated at intervals of 100-300 dbar, 200-400 dbar and so forth using quick_look_XMP.m in the ODAS library. Out of two sensors, the one which produced smaller dissipation estimate was plotted.

Station Summary

R/V MIRAI CE SHIP/CRS	RUISE M	IR1205 LE	G1	CAST	TIMO	EVENT I	POSITION		UNC	COR	HT ABOVE	WIRE	MAX NO. OF	
EXPOCODE	SECT			TYPE DATE	TIME	CODE LATITUDE	LONGITUDE		DEPTH	DEPTH	BOTTOM	OUT	PRESS BOTTLES PARAMETER	
9NZ20121105		301	1	UNK 110612		UN 40 29.82 N			 -9	 -9	-9		89	THROUGH HULL PUMP
9NZ20121105	999	302	1	UNK 110612	1239	UN 39 59.48 N	142 8.49 E	GPS	-9	-9	-9		89	THROUGH HULL PUMP
9NZ20121105	999	303	1	UNK 110612	1527	UN 39 31.61 N	142 20.15 E	GPS	-9	668	-9		89	THROUGH HULL PUMP
NZ20121105	999	304	1	UNK 110612	1826	UN 39 1.84 N	142 26.01 E	GPS	-9	1079	-9		89	THROUGH HULL PUMP
NZ20121105	999	305	1	UNK 110612	2117	UN 38 28.75 N	142 32.48 E	GPS	-9	1141	-9		89	THROUGH HULL PUMP
NZ20121105	999	306	1	UNK 110612	2337	UN 38 3.27 N	142 37.03 E	GPS	-9	1286	-9		89	THROUGH HULL PUMP
NZ20121105		307	1	UNK 110712	0224	UN 37 30.97 N	142 43.39 E	GPS	-9	2157	-9		89	THROUGH HULL PUMP
NZ20121105		308	1	UNK 110712		UN 37 3.50 N			-9	4160	-9		89	THROUGH HULL PUMP
NZ20121105		309	1	UNK 110712	0732	UN 36 31.65 N	142 55.32 E	GPS	-9	6676	-9		89	THROUGH HULL PUMP
NZ20121105		310	1	UNK 110712		UN 36 5.60 N			-9	4197	-9		89	THROUGH HULL PUMP
NZ20121105		311	1	UNK 110712		UN 35 32.57 N			-9	6072	-9		89	THROUGH HULL PUMP
NZ20121105		312	1	UNK 110712		UN 35 3.79 N			-9	5485	-9		89	THROUGH HULL PUMP
NZ20121105		313	1	UNK 110812		UN 34 0.85 N			-9	5357	-9		89	THROUGH HULL PUMP
NZ20121105		314	1	UNK 110812			143 43.68 E		-9	5382	-9		89	THROUGH HULL PUMP
NZ20121105		315	1	UNK 110812		UN 32 2.33 N			-9	5659	-9		89	THROUGH HULL PUMP
NZ20121105		316		UNK 110812		UN 31 5.49 N			-9	5778	-9		89	THROUGH HULL PUMP
NZ20121105		317	1	UNK 110912		UN 29 2.20 N			-9	6000	-9		89	THROUGH HULL PUMP
NZ20121105		318	1	UNK 110912			145 3.14 E		-9	3720	-9		89	THROUGH HULL PUMP
NZ20121105		319	1	UNK 110912			145 29.51 E		-9	5595	-9		89	THROUGH HULL PUMP
NZ20121105		320	1	UNK 111212			149 14.03 E		-9	4638	-9		89	THROUGH HULL PUMP
NZ20121105		321	1	UNK 111212		BE 14 7.07 N			-9	5707	-9			3-AXIS MAGNETOMETER CALIBRATION
NZ20121105		321	1	UNK 111212			149 13.51 E		-9	5693	-9			3-AXIS MAGNETOMETER CALIBRATION
NZ20121105		C01		ROS 111212			149 16.00 E		-9	5130	-9			
NZ20121105		C01	1	ROS 111212			149 15.84 E		-9	5110	-9	1983	2001 36 1,2	
NZ20121105		C01		ROS 111212			149 15.70 E		-9	5037	-9			
NZ20121105		C01		FLT 111212		DE 14 0.21 N			-9	5020	-9			ARGO 112258
NZ20121105		322	1	BIO 111212		BE 13 59.90 N			-9	5111	-9			NEUSTON NET
NZ20121105		322	1	BIO 111212		EN 13 56.82 N			-9	5977	-9			NEUSTON NET
NZ20121105		C02	1	ROS 111212		BE 11 59.90 N			-9	5922	-9			
NZ20121105		C02		XCT 111212		DE 11 59.95 N			-9	5920	-9			XCTD-2 SN11021853
NZ20121105		C02		ROS 111212		BO 12 0.01 N			-9	5927	-9	1981	2002 36 1,2,34	
NZ20121105		C02	1			EN 12 0.20 N			-9	5917	-9			
NZ20121105		C02	1	FLT 111212			149 50.82 E		-9	5918	-9			ARGO 112255
NZ20121105		C03	1	ROS 111312			150 26.95 E		-9	5728	-9			
NZ20121105		C03	1	XCT 111312			150 26.83 E		-9	5732	-9			XCTD-2 SN12026191
NZ20121105		C03	1	ROS 111312			150 26.82 E		-9	5730	-9	1980	2001 36 1,2	
NZ20121105		C03		ROS 111312		EN 10 0.42 N			-9	5734	-9			
NZ20121105		C03	1				150 26.62 E		-9	5730	-9			ARGO 112256
NZ20121105		323		UNK 111412		BE 03 44.14 N			-9	4385	-9			TOWED MAGNETOMETER
NZ20121105		324	1	UNK 111412		BE 03 42.26 N			-9	4408	-9			MAGNETOMETER CALIBRATION
NZ20121105		324	1	UNK 111412		EN 03 42.32 N			-9	4411	-9			MAGNETOMETER CALIBRATION
NZ20121105		325	1	UNK 111512		UN 03 1.36 N			-9	5635	-9		89	THROUGH HULL PUMP
9NZ20121105	999	326	1	XCT 111512	0230	DE 02 45.51 N	149 55.02 E	GPS	-9	5596	-9			XCTD-1 SN11011546

49NZ20121105	999	323	1	UNK	111512	0817	EN	01	51.90	N	150	31.42	E	GPS	-9	5167	-9		
49NZ20121105	999	327	1	BIO	111512	0842	BE	01	55.34	N	150	31.25	E	GPS	-9	4752	-9		
49NZ20121105	999	327	1	BIO	111512	1047	EN	02	0.01	N	150	31.07	E	GPS	-9	5113	-9		
49NZ20121105	999	328	1	UNK	111512	2156	BE	00	0.89	N	151	31.92	E	GPS	-9	5130	-9		
49NZ20121105	999	329	1	XCT	111612	0330	DE	00	53.80	N	152	7.69	E	GPS	-9	5060	-9		
49NZ20121105	999	330	1	UNK	111612	1117	BE	02	12.47	s	153	0.25	E	GPS	-9	3559	-9		
49NZ20121105	999	330	1	UNK	111612	1157	EN	02	13.12	s	153	0.61	E	GPS	-9	3531	-9		
49NZ20121105	999	328	1	UNK	111612	1235	EN	02	14.75	s	153	1.39	E	GPS	-9	3196	-9		
49NZ20121105	999	331	1	UNK	112212	0550	BE	26	17.98	s	165	36.06	E	GPS	-9	3302	-9		
49NZ20121105	999	332	1	UNK	112212	0605	UN	26	17.97	s	165	36.29	E	GPS	-9	3300	-9	8	89
49NZ20121105	999	331	1	UNK	112212	0618	EN	26	17.93	S	165	36.24	E	GPS	-9	3300	-9		
49NZ20121105	999	333	1	BIO	112212	0731	BE	26	18.33	s	165	35.83	E	GPS	-9	3297	-9		
49NZ20121105	999	333	1	BIO	112212	0930	EN	26	19.46	s	165	31.62	E	GPS	-9	3188	-9		

TOWED MAGNETOMETER

NEUSTON NET

NEUSTON NET

TOWED MAGNETOMETER

XCTD-1 SN11011547

MAGNETOMETER CALIBRATION
MAGNETOMETER CALIBRATION

TOWED MAGNETOMETER

3-AXIS MAGNETOMETER CALIBRATION

THROUGH HULL PUMP

3-AXIS MAGNETOMETER CALIBRATION

NEUSTON NET

NEUSTON NET

SHIP/CRS	WOCE			CAST		UTC	EVENT	:	POSITION		UNC	COR	HT ABOVE	WIRE	MAX	NO. OF	
XPOCODE	SECT	STNNBR	CASTNO	TYPE	DATE	TIME	CODE	LATITUDE	LONGITU	E NAV	DEPTH	DEPTH	BOTTOM	OUT	PRESS	BOTTLES PARAMETERS	COMMENTS
 9NZ20121128	P14S	8	1	ROS	120412	2315	BE 5	 55 30.37 s	 3 172 27.04	E GPS	 -9	5345					
9NZ20121128	9 P14S	8	1	BUC	120412	2325	UN 5	55 30.26 8	3 172 27.02	E GPS	-9	5339				1,20	7.1C
9NZ20121128	B P14S	8	1	ROS	120512	0039	во 5	55 29.85 8	172 27.62	E GPS	-9	5355	10	5356	5462	35 1-8,20,27,93	
19NZ20121128		8			120512				3 172 28.83		-9	5345					
49NZ20121128	9 P14S	9	1	ROS	120512	0557	BE 5	55 59.96 8	3 173 0.42	E GPS	-9	5451					
19NZ20121128	9 P14S	9	1	BUC	120512	0605	UN 5	55 59.96 8	173 0.31	E GPS	-9	5450				1,20	7.4C
19NZ20121128		9			120512				3 173 0.04		-9	5445				22,89	THROUGH HULL PUMP
19NZ20121128	9 P14S	9	1	ROS	120512	0721	во 5	55 59.90 8	172 59.70	E GPS	-9	5441	8	5472	5565	36 1-8,20,23,24,26,27,93	
9NZ20121128		9			120512				3 172 57.68		-9	5444					
9NZ20121128	9 P14S	10	1	ROS	120512	1245	BE 5	56 29.26 S	173 30.08	E GPS	-9	5372					
9NZ20121128		10			120512				173 29.97		-9	5389				1,20	7.4C
9NZ20121128		10			120512				173 28.81		-9	5464	11	5499	5572	36 1-8,20,27,34,93	
9NZ20121128		10			120512				173 27.21		-9	5500					
19NZ20121128		11			120512				173 58.67		-9	5444					
9NZ20121128		11			120512				173 58.73		-9	5448				1,20	7.1c
9NZ20121128		11			120512				173 59.16		-9	5442	9	5433	5552	35 1-8,12,13,20,23,24,26,27,37,42,92-95	
9NZ20121128		11			120512				173 59.55		-9	5443	-				
9NZ20121128		11			120512				173 59.31		-9	5457					DEEP ARGO #4/ID30023401198057
9NZ20121128		12			120612				173 58.42		-9	5379					DEED 11100 114/125002540115005
9NZ20121128		12			120612				173 58.51		-9	5380				1,20	7.1C
9NZ20121128		12			120612				173 58.84		-9	5399	9	5400	5517	36 1-8,20,27,93	
9NZ20121128		12			120612				173 50.04		-9	5463	,	3400	3317	30 1 0/20/27/33	
9NZ20121128		13			120612				173 59.60		-9	5202					
9NZ20121128		13			120612				173 59.50 173 59.57		-9	5199				1,20	6.7C
9NZ20121128		13			120612				3 173 59.83 3 173 59.83		-9	5194	10	5196	5297	35 1-8,20,27,93	0.70
9NZ20121128		13			120612				3 174 0.10		-9	5196		0200	0257	30 1 3/23/21/33	
9NZ20121128		13			120612				3 173 59.97		-9	5201					#30
9NZ20121120		13			120612				3 173 53.57 3 173 58.44		-9	5265					FAIL AT 3000 DBAR
9NZ20121128		14			120612				173 58.26		-9	5013					11111 111 3000 <i>D</i> MIK
9NZ20121128		14			120612				173 58.20 173 58.37		-9	5016				1,20	5.7C
9NZ20121128		14			120612				173 58.69		-9	5015	10	5008	5110	33 1-8,20,23,24,26,27,31,37,42,93-95	3.70
9NZ20121128		14			120612				173 58.96		-9	5012		3000	3110	33 1 0/20/23/24/20/27/31/37/42/33 33	
19NZ20121128		14			120612				173 58.98		-9	5005					#31
9NZ20121128		14			120712				3 173 50.90 3 173 57.47		-9	5081					REACH BTM
9NZ20121128		15			120712				3 173 57.47 3 173 59.96		-9	5135					2122022 2222
9NZ20121126 9NZ20121128		15			120712				3 173 59.90 3 173 59.94		-9	5133				1,20	6.5C
9NZ20121126 9NZ20121128		15			120712				3 173 39.94 3 174 0.23		-9 -9	5132	9	5117	5224	35 1-8,12,13,20,23,24,26,27,93	0.50
9NZ20121126 9NZ20121128		15			120712				3 174 0.23 3 174 0.67		-9 -9	5072	9	J11 /	J224	33 1 0,12,13,20,23,24,20,21,33	
9NZ20121126 9NZ20121128		16			120712				3 174 0.67 3 173 59.82		-9 -9	5016					
9NZ20121128 9NZ20121128		16			120712				3 173 59.82 3 173 59.93		-9 -9	5016				1,20	5.3C
9NZ20121126 9NZ20121128		16			120712				3 173 39.93 3 174 0.98		-9 -9	4968	10	4985	5066	34 1-8,20,27,93	3.30
9NZ20121128 9NZ20121128		16			120712				3 174 0.98 3 174 2.83		-9 -9	4968	10	4200	2000	J4 1-0,20,21,33	
		16 17			120712						-9 -9	4978					
19NZ20121128	PI4S	1/	1	RUS	120/12	1431	BE 5	DE 21.83 E	173 57.92	E GPS	-9	4454					

10 4469 4547

-9 4468

-9 4443

-9 4427

1,20,90

31 1-8,20,23,24,26,27,31,37,42,90,93-95

22,89

4.8C

THROUGH HULL PUMP

1 BUC 120712 1438 UN 59 57.82 S 173 57.92 E GPS -9 4480

1 UNK 120712 1459 UN 59 57.83 S 173 57.99 E GPS

1 ROS 120712 1542 BO 59 57.90 S 173 58.08 E GPS

1 ROS 120712 1734 EN 59 58.02 S 173 58.10 E GPS

49NZ20121128 P14S

49NZ20121128 P14S

49NZ20121128 P14S

49NZ20121128 P14S

17

17

17

17

49NZ20121128 P14S	18	1 ROS 120712 2021	BE 60 30.36 S 173 57.91 E GPS	-9	5038					
49NZ20121128 P14S	18	1 BUC 120712 2029	UN 60 30.38 S 173 58.04 E GPS	-9	5024				1,20	4.0C
49NZ20121128 P14S	18	1 ROS 120712 2139	BO 60 30.65 S 173 58.37 E GPS	-9	5048	10	5024	5124	34 1-8,20,23,24,26,27,92,93	
49NZ20121128 P14S	18	1 ROS 120712 2341	EN 60 30.95 S 173 58.65 E GPS	-9	5047					
49NZ20121128 P14S	19	1 ROS 120812 0217	BE 60 59.22 S 173 58.73 E GPS	-9	4708					
49NZ20121128 P14S	19	1 BUC 120812 0227	UN 60 59.27 S 173 58.59 E GPS	-9	4708				1,20	4.1C
49NZ20121128 P14S	19	1 ROS 120812 0331	BO 60 59.40 S 173 58.56 E GPS	-9	4674	9	4679	4772	32 1-8,20,27,93	
49NZ20121128 P14S	19	1 ROS 120812 0524	EN 60 59.82 S 173 58.34 E GPS	-9	4723					
49NZ20121128 P14S	20	1 ROS 120812 0807	BE 61 30.04 S 174 0.37 E GPS	-9	5036					
49NZ20121128 P14S	20	1 BUC 120812 0814	UN 61 30.09 S 174 0.51 E GPS	-9	5036				1,20	3.1C
49NZ20121128 P14S	20	1 ROS 120812 0926	BO 61 30.39 S 174 0.92 E GPS	-9	5005	9	5053	5134	34 1-8,12,13,20,23,24,26,27,93	
49NZ20121128 P14S	20	1 ROS 120812 1124	EN 61 30.70 S 174 1.53 E GPS	-9	4879					
49NZ20121128 P14S	21	1 ROS 120812 1502	BE 62 0.16 S 173 16.45 E GPS	-9	4451					
49NZ20121128 P14S	21	1 BUC 120812 1514	UN 62 0.31 S 173 16.80 E GPS	-9	4404				1,20	3.7C
49NZ20121128 P14S	21	1 ROS 120812 1613	BO 62 0.84 S 173 18.18 E GPS	-9	4330	3	4441	4459	31 1-8,20,23,24,26,27,31,37,42,93-95	
49NZ20121128 P14S	21	1 ROS 120812 1805	EN 62 1.68 S 173 20.43 E GPS	-9	4088					
49NZ20121128 P14S	22	1 ROS 120812 2114	BE 62 26.99 S 172 35.24 E GPS	-9	4420					
49NZ20121128 P14S	22	1 BUC 120812 2122	UN 62 27.12 S 172 35.45 E GPS	-9	4424				1,20	1.8C
49NZ20121128 P14S	22	1 ROS 120812 2225	BO 62 27.69 S 172 36.20 E GPS	-9	4412	8	4458	4483	31 1-8,20,27,93	
49NZ20121128 P14S	22	1 ROS 120912 0013	EN 62 28.70 S 172 38.35 E GPS	-9	4427					
49NZ20121128 P14S	23	1 ROS 120912 0234	BE 62 44.68 S 172 9.00 E GPS	-9	4212					
49NZ20121128 P14S	23	1 BUC 120912 0243	UN 62 44.75 S 172 9.35 E GPS	-9	4205				1,20	-0.1C
49NZ20121128 P14S	23	1 ROS 120912 0340	BO 62 45.06 S 172 10.19 E GPS	-9	4217	10	4201	4272	30 1-8,20,23,24,26,27,92,93	
49NZ20121128 P14S	23	1 ROS 120912 0524	EN 62 45.87 S 172 12.94 E GPS	-9	4265					
49NZ20121128 P14S	23	1 XMP 120912 0534	DE 62 45.99 S 172 12.97 E GPS	-9	4264					#28
49N42U121120 P145	23	1 XMP 120912 0534	DE 62 45.99 S 1/2 12.9/ E GPS	-9	4204					#28
49NZ20121128 P14S	23	1 XMP 120912 0534 1 XMP 120912 0537	EN 62 46.04 S 172 12.89 E GPS	-9 -9	4261					#28 FAIL AT 26DBAR
										 -
49NZ20121128 P14S	23	1 XMP 120912 0537	EN 62 46.04 S 172 12.89 E GPS	-9	4261				1,20	 -
49NZ20121128 P14S 49NZ20121128 P14S	23 24	1 XMP 120912 0537 1 ROS 120912 0749	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS	-9 -9	4261 2610	8	2612	2648	1,20 24 1-8,20,27,34,93	FAIL AT 26DBAR
49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S	23 24 24	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS	-9 -9 -9	4261 2610 2625	8	2612	2648	•	FAIL AT 26DBAR
49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S	23 24 24 24	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS	-9 -9 -9	4261 2610 2625 2697	8	2612	2648	24 1-8,20,27,34,93	FAIL AT 26DBAR
49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S	23 24 24 24 24	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.09 S 171 45.44 E GPS	-9 -9 -9 -9	4261 2610 2625 2697 2697	8	2612	2648	24 1-8,20,27,34,93	FAIL AT 26DBAR
49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S 49NZ20121128 P14S	23 24 24 24 24 24	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.09 S 171 45.44 E GPS EN 63 0.24 S 171 46.16 E GPS	-9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637	8	2612	2648	24 1-8,20,27,34,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP
49NZ20121128 P14S	23 24 24 24 24 24 24	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.09 S 171 45.44 E GPS EN 63 0.24 S 171 46.16 E GPS DE 63 59.72 S 171 7.46 E GPS	-9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637 2557	8	2612	2648	24 1-8,20,27,34,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26
49NZ20121128 P14S	23 24 24 24 24 24 24 24	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.09 S 171 45.44 E GPS EN 63 0.24 S 171 46.16 E GPS DE 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS	-9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637 2557 2645	8	2612	2648	24 1-8,20,27,34,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26
49NZ20121128 P14S	23 24 24 24 24 24 24 24 25	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.09 S 171 45.44 E GPS EN 63 0.24 S 171 46.16 E GPS DE 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS BE 63 30.17 S 170 59.53 E GPS	-9 -9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637 2557 2645 2385	8	2612	2648	24 1-8,20,27,34,93 22,89	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM
49NZ20121128 P14S	23 24 24 24 24 24 24 25 25	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.09 S 171 45.44 E GPS EN 63 0.24 S 171 46.16 E GPS DE 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS	-9 -9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357	8	2612	2648	24 1-8,20,27,34,93 22,89	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C
49NZ20121128 P14S	23 24 24 24 24 24 24 24 25 25 25	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1514	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.09 S 171 45.44 E GPS EN 63 0.24 S 171 46.16 E GPS DE 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS DE 63 30.26 S 170 59.34 E GPS	-9 -9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357 2349				24 1-8,20,27,34,93 22,89	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C
49NZ20121128 P14S	23 24 24 24 24 24 24 24 25 25 25 25	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1544 1 ROS 120912 1542	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.09 S 171 45.44 E GPS EN 63 0.24 S 171 46.16 E GPS DE 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS BO 63 30.33 S 170 58.98 E GPS	-9 -9 -9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357 2349				24 1-8,20,27,34,93 22,89	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C
49NZ20121128 P14S	23 24 24 24 24 24 24 25 25 25 25 25	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0845 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1542 1 ROS 120912 1546	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS DE 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS BO 63 30.33 S 170 58.98 E GPS EN 64 3 0.40 S 170 58.51 E GPS	-9 -9 -9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357 2349 2338 2297				24 1-8,20,27,34,93 22,89	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C
49NZ20121128 P14S	23 24 24 24 24 24 24 25 25 25 25 25 25	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1542 1 ROS 120912 1546 1 ROS 120912 1646 1 ROS 120912 1948	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS EN 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS BO 63 30.26 S 170 59.34 E GPS BO 63 30.33 S 170 58.98 E GPS EN 63 30.40 S 170 58.51 E GPS BE 63 59.72 S 171 7.05 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2557 2645 2385 2357 2349 2338 2297 2557		2336		24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852
49NZ20121128 P14S	23 24 24 24 24 24 24 25 25 25 25 25 26 26	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0845 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1542 1 ROS 120912 1546 1 ROS 120912 1948 1 BUC 120912 1948	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 46.16 E GPS DE 63 59.72 S 171 7.46 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS DE 63 30.26 S 170 59.34 E GPS BO 63 30.33 S 170 58.98 E GPS EN 63 30.40 S 170 58.51 E GPS BE 63 59.72 S 171 7.05 E GPS UN 63 59.67 S 171 7.16 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357 2349 2338 2297 2557	9	2336	2362	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852
49NZ20121128 P14S	23 24 24 24 24 24 25 25 25 25 25 26 26 26	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0845 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1542 1 ROS 120912 1542 1 ROS 120912 1646 1 ROS 120912 1948 1 BUC 120912 1955 1 ROS 120912 1955 1 ROS 120912 1955	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 46.16 E GPS DE 63 59.72 S 171 7.46 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS DE 63 30.26 S 170 59.34 E GPS BO 63 30.33 S 170 58.98 E GPS EN 63 30.40 S 170 58.51 E GPS BE 63 59.72 S 171 7.05 E GPS UN 63 59.67 S 171 7.16 E GPS BO 63 59.68 S 171 7.16 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	4261 2610 2625 2697 2697 2557 2645 2385 2357 2349 2338 2297 2557 2556 2558	9	2336	2362	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852
49NZ20121128 P14S	23 24 24 24 24 24 25 25 25 25 25 26 26 26	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1544 1 ROS 120912 1544 1 ROS 120912 1646 1 ROS 120912 1948 1 BUC 120912 1955 1 ROS 120912 2031 1 ROS 120912 2031 1 ROS 120912 2031	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS EN 63 59.72 S 171 7.46 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS DE 63 30.26 S 170 59.34 E GPS BO 63 30.33 S 170 58.98 E GPS EN 63 30.40 S 170 58.51 E GPS BE 63 59.72 S 171 7.05 E GPS UN 63 59.67 S 171 7.16 E GPS BO 63 59.68 S 171 7.16 E GPS BO 63 59.68 S 171 7.37 E GPS BO 63 59.49 S 171 7.88 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	4261 2610 2625 2697 2697 2557 2645 2385 2357 2349 2338 2297 2557 2556 2558	9	2336	2362	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852
49NZ20121128 P14S	23 24 24 24 24 24 25 25 25 25 26 26 26 26 27	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1544 1 ROS 120912 1544 1 ROS 120912 1646 1 ROS 120912 1948 1 BUC 120912 1955 1 ROS 120912 2031 1 ROS 120912 2031 1 ROS 120912 2141 1 ROS 120912 2141	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS EN 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS BO 63 30.33 S 170 59.34 E GPS EN 64 5.972 S 171 7.05 E GPS EN 63 59.72 S 171 7.05 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.68 S 171 7.37 E GPS EN 63 59.49 S 171 7.88 E GPS EN 63 59.49 S 171 7.88 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	4261 2610 2625 2697 2697 2557 2645 2385 2357 2349 2338 2297 2557 2556 2558 2562 3378	9	2336	2362	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95 1,20 23 1-8,20,27,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852
49NZ20121128 P14S	23 24 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1544 1 ROS 120912 1544 1 ROS 120912 1646 1 ROS 120912 1948 1 BUC 120912 1955 1 ROS 120912 2031 1 ROS 120912 2031 1 ROS 120912 2141 1 ROS 121012 0211 1 BUC 121012 0219 1 ROS 121012 0307 1 ROS 121012 0436	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS EN 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS UN 63 30.23 S 170 59.42 E GPS EN 63 30.33 S 170 59.42 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 64 41.34 S 170 59.53 E GPS UN 64 41.35 S 170 59.54 E GPS EN 64 41.34 S 170 59.55 E GPS EN 64 41.38 S 170 59.54 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357 2349 2338 2297 2557 2556 2558 2562 3378 3376 3379 3366	9	2336 2519	2362 2586	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95 1,20 23 1-8,20,27,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852 -0.6C
49NZ20121128 P14S	23 24 24 24 24 24 25 25 25 25 26 26 26 27 27	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1544 1 ROS 120912 1544 1 ROS 120912 1646 1 ROS 120912 1948 1 BUC 120912 1955 1 ROS 120912 2031 1 ROS 120912 2031 1 ROS 120912 2141 1 ROS 121012 0211 1 BUC 121012 0219 1 ROS 121012 0307	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS EN 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS BE 63 30.17 S 170 59.53 E GPS UN 63 30.23 S 170 59.42 E GPS EN 64 30.40 S 170 58.51 E GPS EN 63 59.72 S 171 7.05 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 64 41.34 S 170 59.53 E GPS UN 64 41.35 S 170 59.52 E GPS EN 64 41.34 S 170 59.55 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	4261 2610 2625 2697 2697 2557 2645 2385 2357 2349 2338 2297 2557 2556 2558 2562 3378 3376 3379	9	2336 2519	2362 2586	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95 1,20 23 1-8,20,27,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852
49NZ20121128 P14S	23 24 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1544 1 ROS 120912 1544 1 ROS 120912 1646 1 ROS 120912 1948 1 BUC 120912 1955 1 ROS 120912 2031 1 ROS 120912 2031 1 ROS 120912 2141 1 ROS 121012 0211 1 BUC 121012 0219 1 ROS 121012 0307 1 ROS 121012 0436	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS EN 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS UN 63 30.23 S 170 59.42 E GPS EN 63 30.33 S 170 59.42 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 64 41.34 S 170 59.53 E GPS UN 64 41.35 S 170 59.54 E GPS EN 64 41.34 S 170 59.55 E GPS EN 64 41.38 S 170 59.54 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357 2349 2338 2297 2557 2556 2558 2562 3378 3376 3379 3366	9	2336 2519	2362 2586	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95 1,20 23 1-8,20,27,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852 -0.6C
49NZ20121128 P14S 49NZ20121128 S04 49NZ20121128 S04	23 24 24 24 24 24 25 25 25 26 26 26 26 27 27 401 402 402	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1544 1 ROS 120912 1544 1 ROS 120912 1646 1 ROS 120912 1948 1 BUC 120912 1955 1 ROS 120912 2031 1 ROS 120912 2031 1 ROS 120912 2141 1 ROS 121012 0219 1 ROS 121012 0219 1 ROS 121012 0307 1 ROS 121012 0436 1 XCT 121012 0756 1 ROS 121012 1115 1 BUC 121012 1115	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS EN 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS UN 63 30.23 S 170 59.42 E GPS EN 63 30.26 S 170 59.42 E GPS EN 63 30.33 S 170 59.42 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.68 S 171 7.88 E GPS EN 63 59.49 S 171 7.88 E GPS EN 63 59.49 S 171 7.88 E GPS EN 64 41.34 S 170 59.53 E GPS UN 64 41.35 S 170 59.54 E GPS EN 64 41.38 S 170 59.52 E GPS EN 64 41.38 S 170 59.54 E GPS EN 64 41.38 S 170 59.54 E GPS EN 64 41.38 S 170 59.54 E GPS EN 64 40.31 S 170 7.77 E GPS EN 64 0.04 S 169 17.24 E GPS UN 64 0.09 S 169 17.26 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357 2349 2338 2297 2557 2556 2558 2562 3378 3376 3379 3366 3139	9	2336 2519	2362 2586	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95 1,20 23 1-8,20,27,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852 -0.6C TSK XCTD-2 #11021857 -0.7C
49NZ20121128 P14S	23 24 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27 27 401 402	1 XMP 120912 0537 1 ROS 120912 0749 1 BUC 120912 0757 1 ROS 120912 0834 1 UNK 120912 0834 1 ROS 120912 0945 1 XMP 120912 2055 1 XMP 120912 2223 1 ROS 120912 1501 1 BUC 120912 1509 1 XCT 120912 1544 1 ROS 120912 1544 1 ROS 120912 1646 1 ROS 120912 1948 1 BUC 120912 1955 1 ROS 120912 2031 1 ROS 120912 2031 1 ROS 120912 2141 1 ROS 121012 0211 1 BUC 121012 0219 1 ROS 121012 0307 1 ROS 121012 0436 1 XCT 121012 0756 1 ROS 121012 115	EN 62 46.04 S 172 12.89 E GPS BE 63 0.01 S 171 45.02 E GPS UN 63 0.02 S 171 45.09 E GPS BO 63 0.09 S 171 45.44 E GPS UN 63 0.24 S 171 45.44 E GPS EN 63 59.72 S 171 7.46 E GPS EN 64 6.16 S 171 6.71 E GPS UN 63 30.23 S 170 59.42 E GPS EN 63 30.26 S 170 59.42 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.72 S 171 7.16 E GPS EN 63 30.40 S 170 58.51 E GPS EN 63 59.68 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 63 59.69 S 171 7.16 E GPS EN 64 41.34 S 170 59.53 E GPS UN 64 41.35 S 170 59.54 E GPS EN 64 41.38 S 170 59.52 E GPS EN 64 41.38 S 170 59.52 E GPS EN 64 41.38 S 170 59.54 E GPS EN 64 41.38 S 170 59.54 E GPS EN 64 40.31 S 170 7.77 E GPS EN 64 0.04 S 169 17.24 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	4261 2610 2625 2697 2697 2637 2557 2645 2385 2357 2349 2338 2297 2557 2556 2558 2562 3378 3376 3379 3366 3139 3041	9	2336 2519	2362 2586	24 1-8,20,27,34,93 22,89 1,20 23 1-8,12,13,20,23,24,26,27,31,37,42,93-95 1,20 23 1-8,20,27,93 1,20 27 1-8,20,23,24,26,27,92,93	FAIL AT 26DBAR -0.5C THROUGH HULL PUMP #26 REACH BTM -0.8C TSK XCTD-2 #11021852 -0.6C TSK XCTD-2 #11021857

49NZ20121128	S04	402	1 ROS 121012 1327	EN 64 0.52 S 169 17.08 E GPS	-9	3012					
49NZ20121128	S04	403	1 XCT 121012 1551	DE 64 0.10 S 168 22.73 E GPS	-9	3159					TSK XCTD-2 #11021854
49NZ20121128	S04	404	1 ROS 121012 1830	BE 63 59.59 S 167 27.89 E GPS	-9	3176					
49NZ20121128	S04	404	1 BUC 121012 1841	UN 63 59.60 S 167 27.86 E GPS	-9	3178				1,20	-0.8C
49NZ20121128	S04	404	1 ROS 121012 1925	BO 63 59.71 S 167 27.69 E GPS	-9	3168	9	3177	3222	26 1-8,12,13,20,23,24,26,27,31,37,42,92-95	
49NZ20121128	S04	404	1 ROS 121012 2047	EN 64 0.05 S 167 27.52 E GPS	-9	3151					
49NZ20121128	S04	405	1 XCT 121012 2302	DE 63 59.20 S 166 33.97 E GPS	-9	2933					TSK XCTD-2 #11021856
49NZ20121128	S04	406	1 ROS 121112 0137	BE 64 0.63 S 165 38.97 E GPS	-9	3057					
49NZ20121128	S04	406	1 BUC 121112 0145	UN 64 0.66 S 165 39.06 E GPS	-9	3056				1,20	-1.0C
49NZ20121128	S04	406	1 ROS 121112 0228	BO 64 0.65 S 165 39.28 E GPS	-9	3064	10	3054	3101	26 1-8,20,27,93	
49NZ20121128	S04	406	1 ROS 121112 0351	EN 64 0.85 S 165 39.23 E GPS	-9	3064					
49NZ20121128		407	1 XCT 121112 0621	DE 64 0.46 S 164 44.68 E GPS	-9	3096					TSK XCTD-2 #11021855
49NZ20121128	S04	408	1 ROS 121112 0900	BE 64 2.65 S 163 49.18 E GPS	-9	3033					
		408	1 BUC 121112 0907	UN 64 2.64 S 163 49.16 E GPS	-9	3027				1,20	-1.2C
49NZ20121128	S04	408	1 ROS 121112 0949	BO 64 2.72 S 163 49.05 E GPS	-9	3053	8	3016	3065	26 1-8,20,23,24,26,27,34,93	
49NZ20121128		408	1 ROS 121112 1107	EN 64 2.82 S 163 48.71 E GPS	-9	3138					
49NZ20121128	S04	409	1 XCT 121112 1415	DE 63 55.26 S 162 54.70 E GPS	-9	2968					TSK XCTD-2 #11021859
49NZ20121128		410	1 ROS 121112 1701	BE 63 47.58 S 162 0.23 E GPS	-9	2899					
49NZ20121128		410	1 BUC 121112 1708	UN 63 47.63 S 162 0.27 E GPS	-9	2900				1,20	-1.3C
		410	1 ROS 121112 1749	BO 63 47.94 S 162 0.41 E GPS	-9	2904	10	2921	2932	25 1-8,20,27,93	
49NZ20121128		410	1 ROS 121112 1907	EN 63 48.39 S 162 0.95 E GPS	-9	2806					
49NZ20121128		411	1 XCT 121112 2157	DE 63 39.12 S 161 5.26 E GPS	-9	2808					TSK XCTD-2 #11021858
		50	1 ROS 121212 0207	BE 63 33.55 S 159 43.40 E GPS	-9	2546					1011 1012 1 111011000
		50	1 BUC 121212 0216	UN 63 33.62 S 159 43.55 E GPS	-9	2570				1,20	-1.3C
49NZ20121128		50	1 ROS 121212 0255	BO 63 33.94 S 159 43.74 E GPS	-9	2640	10	2643	2662	24 1-8,12,13,20,23,24,26,27,31,37,42,93-95	1.00
		50	1 ROS 121212 0408	EN 63 34.39 S 159 43.91 E GPS	-9	2644		_0.0		11 1 0,11,10,10,10,11,10,11,101,01,11,101,01	
49NZ20121128	S04	801									3-AXIS MAGNETOMETER CALIBRATION
49NZ20121128 49NZ20121128		801 51	1 UNK 121212 2001	UN 62 38.09 S 160 0.56 E GPS	-9	2489					3-AXIS MAGNETOMETER CALIBRATION
49NZ20121128	S04	51	1 UNK 121212 2001 1 ROS 121312 0456	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS	-9 -9	2489 2446	-9	593	602	36 22.89	3-AXIS MAGNETOMETER CALIBRATION
49NZ20121128 49NZ20121128	S04 S04	51 51	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS	-9 -9 -9	2489 2446 2457	-9	593	602	36 22,89	3-AXIS MAGNETOMETER CALIBRATION
49NZ20121128 49NZ20121128 49NZ20121128	S04 S04 S04	51 51 51	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS	-9 -9 -9	2489 2446 2457 2457	-9	593	602	36 22,89	3-AXIS MAGNETOMETER CALIBRATION
49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128	S04 S04 S04 S04	51 51 51 51	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS	-9 -9 -9 -9	2489 2446 2457 2457 2456	-9	593	602		
49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128	S04 S04 S04 S04 S04	51 51 51 51 51	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS	-9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454				1,20	3-AXIS MAGNETOMETER CALIBRATION -1.1C
49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128	S04 S04 S04 S04 S04	51 51 51 51 51	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638 2 ROS 121312 0710	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS	-9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451	-9 10	593 2437	602	1,20 23 1-8,20,22,27,89,93	-1.1C
49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128	S04 S04 S04 S04 S04 S04	51 51 51 51 51 51	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638 2 ROS 121312 0710 2 UNK 121312 0733	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS	-9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437				1,20	
49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128	S04 S04 S04 S04 S04 S04 S04	51 51 51 51 51 51 51 51	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638 2 ROS 121312 0710 2 UNK 121312 0733 2 ROS 121312 0816	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS	-9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437				1,20 23 1-8,20,22,27,89,93	-1.1C
49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 51	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638 2 ROS 121312 0710 2 UNK 121312 0733 2 ROS 121312 0816 1 ROS 121312 1214	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS	-9 -9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437 2437 2373				1,20 23 1-8,20,22,27,89,93 22,89	-1.1C THROUGH HULL PUMP
49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128 49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638 2 ROS 121312 0710 2 UNK 121312 0733 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS	-9 -9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437 2437 2373 2361	10	2437	2473	1,20 23 1-8,20,22,27,89,93 22,89	-1.1C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 51 52 52	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638 2 ROS 121312 0710 2 UNK 121312 0733 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS BO 62 47.55 S 158 9.59 E GPS	-9 -9 -9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437 2437 2373 2361 2349				1,20 23 1-8,20,22,27,89,93 22,89	-1.1C THROUGH HULL PUMP
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638 2 ROS 121312 0710 2 UNK 121312 0733 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.24 E GPS	-9 -9 -9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437 2437 2373 2361 2349 2350	10	2437	2473	1,20 23 1-8,20,22,27,89,93 22,89	-1.1C THROUGH HULL PUMP
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0638 2 ROS 121312 0710 2 UNK 121312 0733 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS UN 63 2.71 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.24 E GPS BE 63 25.91 S 156 38.95 E GPS	-9 -9 -9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163	10	2437	2473	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93	-1.1C THROUGH HULL PUMP -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 0733 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS UN 63 2.71 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.24 E GPS BE 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161	10	2437	2473	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93	-1.1C THROUGH HULL PUMP
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 0733 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926 1 ROS 121312 1926 1 ROS 121312 2011	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS UN 63 2.71 S 159 26.22 E GPS EN 63 2.77 S 159 26.08 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.24 E GPS BE 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187	10	2437	2473	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93	-1.1C THROUGH HULL PUMP -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53 53	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 0773 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926 1 ROS 121312 2011 1 ROS 121312 2011 1 ROS 121312 2011	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS UN 63 2.71 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.24 E GPS UN 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS EN 63 26.26 S 156 39.36 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187 3269	10	2437	2473	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93	-1.1C THROUGH HULL PUMP -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53 53 53	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 0773 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926 1 ROS 121312 2011 1 ROS 121312 2011 1 ROS 121312 2011 1 ROS 121312 2139 1 ROS 121312 1398	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.24 E GPS BE 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS EN 63 26.26 S 156 39.36 E GPS BE 63 25.95 S 155 10.70 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187 3269 3053	10	2437	2473	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93 1,20 27 1-8,12,13,20,23,24,26,27,31,37,42,92-95	-1.1C THROUGH HULL PUMP -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53 53 53 54 54	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 0773 2 ROS 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926 1 ROS 121312 2011 1 ROS 121312 2139 1 ROS 121312 2139 1 ROS 121312 1393 1 ROS 121312 1318 1 BUC 121312 1318 1 BUC 121312 1319	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS BE 62 47.40 S 158 9.70 E GPS UN 62 47.44 S 158 9.66 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.24 E GPS BE 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS EN 63 26.26 S 156 39.36 E GPS BE 63 25.95 S 155 10.70 E GPS UN 63 25.97 S 155 10.67 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187 3269 3053 3062	10 11 7	2437 2351 3174	2473 2381 3223	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93 1,20 27 1-8,12,13,20,23,24,26,27,31,37,42,92-95 1,20	-1.1C THROUGH HULL PUMP -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53 53 53 54 54	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 07710 2 UNK 121312 0783 2 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926 1 ROS 121312 2011 1 ROS 121312 2139 1 ROS 121312 2139 1 ROS 121412 0118 1 BUC 121412 0127 1 ROS 121412 0120	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS EN 63 2.77 S 159 26.08 E GPS UN 62 47.40 S 158 9.70 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.59 E GPS EN 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS EN 63 25.95 S 155 10.70 E GPS UN 63 25.97 S 155 10.70 E GPS UN 63 25.97 S 155 10.67 E GPS BO 63 26.08 S 155 10.67 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187 3269 3053 3062 3072	10	2437	2473	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93 1,20 27 1-8,12,13,20,23,24,26,27,31,37,42,92-95	-1.1C THROUGH HULL PUMP -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53 53 53 54 54 54	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 07710 2 UNK 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926 1 ROS 121312 2011 1 ROS 121312 2139 1 ROS 121312 2139 1 ROS 121412 0118 1 BUC 121412 0127 1 ROS 121412 0210 1 ROS 121412 0230	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS UN 63 2.71 S 159 26.22 E GPS UN 63 2.71 S 159 26.08 E GPS EN 63 2.77 S 159 26.08 E GPS EN 63 2.77 S 159 26.08 E GPS UN 62 47.40 S 158 9.70 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.59 E GPS UN 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS EN 63 25.95 S 155 10.70 E GPS UN 63 25.97 S 155 10.70 E GPS UN 63 25.97 S 155 10.67 E GPS BO 63 26.08 S 155 10.98 E GPS EN 63 26.08 S 155 10.98 E GPS EN 63 26.08 S 155 10.98 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187 3269 3053 3062 3072 2994	10 11 7	2437 2351 3174	2473 2381 3223	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93 1,20 27 1-8,12,13,20,23,24,26,27,31,37,42,92-95 1,20	-1.1C THROUGH HULL PUMP -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53 53 53 54 54 54 54 55	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 07710 2 UNK 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926 1 ROS 121312 2011 1 ROS 121312 2139 1 ROS 121312 2139 1 ROS 121412 0118 1 BUC 121412 0127 1 ROS 121412 0210 1 ROS 121412 0337 1 ROS 121412 0356	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS EN 63 2.77 S 159 26.08 E GPS UN 62 47.40 S 158 9.70 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.59 E GPS UN 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS EN 63 25.95 S 155 10.70 E GPS UN 63 25.97 S 155 10.67 E GPS BO 63 26.08 S 155 10.98 E GPS EN 63 26.08 S 155 11.13 E GPS EN 63 26.36 S 155 11.13 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187 3269 3053 3062 3072 2994 3138	10 11 7	2437 2351 3174	2473 2381 3223	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93 1,20 27 1-8,12,13,20,23,24,26,27,31,37,42,92-95 1,20 26 1-8,20,27,93	-1.1C THROUGH HULL PUMP -1.2C -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53 53 53 54 54 54 54 55	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 07710 2 UNK 121312 0783 2 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 19918 1 BUC 121312 19926 1 ROS 121312 2011 1 ROS 121312 2139 1 ROS 121312 2139 1 ROS 121412 0118 1 BUC 121412 0127 1 ROS 121412 0210 1 ROS 121412 0337 1 ROS 121412 0337 1 ROS 121412 0656 1 BUC 121412 0703	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.27 E GPS EN 63 2.77 S 159 26.08 E GPS EN 63 2.77 S 159 26.08 E GPS UN 62 47.40 S 158 9.70 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.59 E GPS UN 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS BD 63 26.08 S 156 39.16 E GPS UN 63 25.97 S 155 10.70 E GPS UN 63 25.97 S 155 10.67 E GPS BO 63 26.08 S 155 10.70 E GPS BO 63 26.08 S 155 10.98 E GPS BO 63 26.08 S 155 10.98 E GPS BO 63 26.08 S 155 11.13 E GPS BO 63 23.16 S 153 41.15 E GPS UN 63 23.11 S 153 41.10 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187 3269 3053 3062 3072 2994 3138 3143	10 11 7	2437 2351 3174 3072	2473 2381 3223 3114	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93 1,20 27 1-8,12,13,20,23,24,26,27,31,37,42,92-95 1,20 26 1-8,20,27,93 1,20,90	-1.1C THROUGH HULL PUMP -1.2C
49NZ20121128	\$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04 \$04	51 51 51 51 51 51 51 51 52 52 52 52 52 53 53 53 53 54 54 54 54 55	1 UNK 121212 2001 1 ROS 121312 0456 1 ROS 121312 0511 1 ROS 121312 0533 2 ROS 121312 0630 2 BUC 121312 0710 2 UNK 121312 07710 2 UNK 121312 0816 1 ROS 121312 1214 1 BUC 121312 1223 1 ROS 121312 1255 1 ROS 121312 1403 1 ROS 121312 1918 1 BUC 121312 1926 1 ROS 121312 2011 1 ROS 121312 2139 1 ROS 121312 2139 1 ROS 121412 0118 1 BUC 121412 0127 1 ROS 121412 0210 1 ROS 121412 0337 1 ROS 121412 0356	UN 62 38.09 S 160 0.56 E GPS BE 63 2.56 S 159 26.51 E GPS BO 63 2.53 S 159 26.39 E GPS EN 63 2.54 S 159 26.36 E GPS BE 63 2.57 S 159 26.29 E GPS UN 63 2.59 S 159 26.25 E GPS BO 63 2.66 S 159 26.22 E GPS UN 63 2.71 S 159 26.17 E GPS EN 63 2.77 S 159 26.08 E GPS EN 63 2.77 S 159 26.08 E GPS UN 62 47.40 S 158 9.70 E GPS BO 62 47.55 S 158 9.59 E GPS EN 62 47.65 S 158 9.59 E GPS UN 63 25.91 S 156 38.95 E GPS UN 63 25.94 S 156 38.96 E GPS BO 63 26.08 S 156 39.16 E GPS EN 63 25.95 S 155 10.70 E GPS UN 63 25.97 S 155 10.67 E GPS BO 63 26.08 S 155 10.98 E GPS EN 63 26.08 S 155 11.13 E GPS EN 63 26.36 S 155 11.13 E GPS	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	2489 2446 2457 2457 2456 2454 2451 2437 2373 2361 2349 2350 3163 3161 3187 3269 3053 3062 3072 2994 3138	10 11 7	2437 2351 3174	2473 2381 3223	1,20 23 1-8,20,22,27,89,93 22,89 1,20 23 1-8,20,23,24,26,27,93 1,20 27 1-8,12,13,20,23,24,26,27,31,37,42,92-95 1,20 26 1-8,20,27,93	-1.1C THROUGH HULL PUMP -1.2C -1.2C

49NZ20121128	S04	56	1	ROS 121412 1220	0	BE 63 25.68 S 152 10.85 E GPS	-9	3644					
49NZ20121128	S04	56	1	BUC 121412 1229	9	UN 63 25.70 S 152 10.77 E GPS	-9	3649				1,20	-0.7C
49NZ20121128	S04	56	1	ROS 121412 1318	3	BO 63 25.71 S 152 10.79 E GPS	-9	3644	10	3636	3698	28 1-8,20,27,93	STOP 25MIN AT 2140M UP CAST DUE TO
													WINCH TROUBLE
49NZ20121128	S04	56	1	ROS 121412 1526	6	EN 63 25.69 S 152 10.77 E GPS	-9	3652					
49NZ20121128	S04	57	1	ROS 121412 2332	2	BE 63 26.00 S 150 39.77 E GPS	-9	3715					
49NZ20121128	S04	57	1	BUC 121412 2343	3	UN 63 26.02 S 150 39.75 E GPS	-9	3719				1,20	-0.7C
49NZ20121128	S04	57	1	ROS 121512 0034	4	BO 63 26.04 S 150 39.76 E GPS	-9	3717	9	3707	3776	28 1-8,12,13,20,23,24,26,27,31,37,42,93-95	
49NZ20121128	S04	57	1	ROS 121512 0212	2	EN 63 26.06 S 150 39.78 E GPS	-9	3728					
49NZ20121128	S04	58	1	ROS 121512 0531	1	BE 63 18.55 S 149 12.51 E GPS	-9	3754					
49NZ20121128	S04	58	1	BUC 121512 0538	В	UN 63 18.50 S 149 12.50 E GPS	-9	3760				1,20	-0.8C
49NZ20121128	S04	58	1	ROS 121512 0630	0	BO 63 18.32 S 149 12.39 E GPS	-9	3770	9	3762	3829	28 1-8,20,27,93	
49NZ20121128	S04	58		ROS 121512 0806		EN 63 18.13 S 149 12.37 E GPS	-9	3770					
49NZ20121128	S04	59		ROS 121512 1119		BE 63 10.77 S 147 50.78 E GPS	-9	3878					
49NZ20121128	S04	59		BUC 121512 1128		UN 63 10.82 S 147 50.71 E GPS	-9	3883				1,20	-0.2C
49NZ20121128	S04	59		ROS 121512 1222		BO 63 10.98 S 147 50.41 E GPS	-9	3875	9	3872	3943	29 1-8,20,23,24,26,27,34,92,93	0.20
49NZ20121128	S04	59		ROS 121512 1402		EN 63 10.98 S 147 50.04 E GPS	-9	3880		5572	0010		
49NZ20121128	S04	60	1			BE 63 4.34 S 146 28.05 E GPS	-9	3925					
49NZ20121128	S04	60		BUC 121512 1732		UN 63 4.28 S 146 28.09 E GPS	-9	3923				1,20	-0.4C
49NZ20121128	S04	60		ROS 121512 1732		BO 63 4.14 S 146 28.09 E GPS	-9	3924	12	3908	3980	29 1-8,20,27,93	0.40
49NZ20121128 49NZ20121128	S04	60		ROS 121512 1826		EN 63 3.86 S 146 26.32 E GPS	-9 -9	3924	12	3906	3900	29 1-0,20,27,93	
49NZ20121128		61		ROS 121512 2332		BE 62 54.23 S 145 3.18 E GPS	-9	3990				1.00	0.60
49NZ20121128	S04	61		BUC 121512 2340		UN 62 54.26 S 145 3.02 E GPS	-9	3991		4000	40.00	1,20	-0.6C
49NZ20121128	S04	61		ROS 121612 0035		BO 62 54.06 S 145 2.60 E GPS	-9	3994	8	4007	4062	29 1-8,12,13,20,23,24,26,27,93	
49NZ20121128	S04	61		ROS 121612 0218		EN 62 53.58 S 145 1.69 E GPS	-9	3999					
49NZ20121128	S04	62		ROS 121612 0540		BE 62 45.83 S 143 36.07 E GPS	-9	4087					
49NZ20121128	S04	62		ROS 121612 0554		BO 62 45.89 S 143 35.85 E GPS	-9	4086	-9	564	572	36 22,89	
49NZ20121128	S04	62		ROS 121612 0616		EN 62 45.89 S 143 35.65 E GPS	-9	4087					
49NZ20121128	S04	62		ROS 121612 0726		BE 62 45.88 S 143 36.20 E GPS	-9	4088					
49NZ20121128	S04	62		BUC 121612 0733		UN 62 45.90 S 143 36.15 E GPS	-9	4088				1,20	-0.4C
49NZ20121128		62		UNK 121612 0750		UN 62 45.90 S 143 36.12 E GPS	-9	4086				22,89	THROUGH HULL PUMP
49NZ20121128	S04	62		ROS 121612 0829		BO 62 45.91 S 143 36.11 E GPS	-9	4089	10	4086	4155	36 1-8,20,22,23,24,26,27,89,93	
49NZ20121128	S04	62		ROS 121612 1010		EN 62 45.85 S 143 35.92 E GPS	-9	4089					
49NZ20121128	S04	62	1	FLT 121612 1020	0	DE 62 45.73 S 143 36.05 E GPS	-9	4088					DEEP ARGO #6/ID300234011988560
49NZ20121128	S04	63	1	ROS 121612 1346	6	BE 62 35.85 S 142 12.65 E GPS	-9	4103					
49NZ20121128	S04	63	1	BUC 121612 1355	5	UN 62 35.83 S 142 12.90 E GPS	-9	4104				1,20	-0.4C
49NZ20121128	S04	63	1	ROS 121612 1452	2	BO 62 35.73 S 142 13.80 E GPS	-9	4110	8	4103	4175	30 1-8,20,27,93	
49NZ20121128	S04	63	1	ROS 121612 1637	7	EN 62 35.32 S 142 15.62 E GPS	-9	4111					
49NZ20121128	S04	64	1	ROS 121612 1938	3	BE 62 28.16 S 141 2.98 E GPS	-9	4165					
49NZ20121128	S04	64	1	BUC 121612 1946	6	UN 62 28.16 S 141 2.75 E GPS	-9	4160				1,20	-0.3C
49NZ20121128	S04	64	1	ROS 121612 2043	3	BO 62 28.03 S 141 2.04 E GPS	-9	4156	9	4151	4222	30 1-8,12,13,20,23,24,26,27,92,93	STOP 3MIN AT UPCAST 720M DUE TO C
													SESOR TROUBLE
49NZ20121128	S04	64	1	ROS 121612 2233	3	EN 62 27.79 S 141 1.26 E GPS	-9	4144					
49NZ20121128	S04	65	1	ROS 121712 0114	4	BE 62 21.48 S 139 53.55 E GPS	-9	3930					
49NZ20121128	S04	65	1	BUC 121712 0124	4	UN 62 21.44 S 139 53.47 E GPS	-9	3932				1,20	-0.4C
49NZ20121128	S04	65	1	ROS 121712 0219	9	BO 62 21.30 S 139 53.21 E GPS	-9	3927	11	3924	3994	30 1-8,20,27,93	
49NZ20121128	S04	65	1	ROS 121712 0405	5	EN 62 20.91 S 139 52.81 E GPS	-9	3932					
49NZ20121128	S04	66	1	ROS 121712 0735	5	BE 62 9.53 S 138 27.15 E GPS	-9	3977					
49NZ20121128	S04	66	1	BUC 121712 0743	3	UN 62 9.56 S 138 27.20 E GPS	-9	3977				1,20	-0.6C
49NZ20121128	S04	66	1	ROS 121712 0837	7	BO 62 9.64 S 138 27.12 E GPS	-9	3973	9	3972	4043	30 1-8,20,23,24,26,27,93	
49NZ20121128	S04	66	1	ROS 121712 1016	6	EN 62 9.72 S 138 27.08 E GPS	-9	3971					

49NZ20121128	S04	67	1	ROS 121712 1336	BE 61 59.96 S 137 1.19 E GPS	-9	3905					
49NZ20121128	S04	67	1	BUC 121712 1346	UN 62 0.01 S 137 1.15 E GPS	-9	3908				1,20	0.0C
49NZ20121128	S04	67	1	ROS 121712 1441	BO 62 0.16 S 137 0.81 E GPS	-9	3969	10	3932	3997	29 1-8,12,13,20,23,24,26,27,37,42,93-95	
49NZ20121128	S04	67	1	ROS 121712 1623	EN 62 0.41 S 137 0.79 E GPS	-9	4064					
49NZ20121128	S04	67	1	FLT 121712 1633	DE 62 0.38 S 137 0.42 E GPS	-9	4066					DEEP ARGO #5/ID300234011981560
49NZ20121128	S04	68	1	ROS 121712 1950	BE 62 0.24 S 135 35.02 E GPS	-9	4308					
49NZ20121128	S04	68	1	BUC 121712 1957	UN 62 0.24 S 135 34.92 E GPS	-9	4308				1,20	0.8C
49NZ20121128	S04	68	1	ROS 121712 2057	BO 62 0.25 S 135 34.41 E GPS	-9	4306	10	4297	4376	31 1-8,20,27,93	
49NZ20121128	S04	68	1	ROS 121712 2246	EN 62 0.26 S 135 33.49 E GPS	-9	4305					
49NZ20121128	999	802	1	UNK 121812 1315	UN 60 2.70 S 139 53.99 E GPS	-9	4441					3-AXIS MAGNETOMETER CALIBRATION
49NZ20121128	999	C04	1	XCT 121812 1359	DE 60 1.63 S 139 56.93 E GPS	-9	4445					TSK XCTD-2 #11021991
49NZ20121128	999	C04	1	MOR 121812 1857	BE 60 1.48 S 139 57.90 E GPS	-9	4445					SOUTHERN OCEAN BUOY RECOVERY
49NZ20121128	999	C04	1	ROS 121912 0229	BE 60 0.59 S 139 59.07 E GPS	-9	4448					
49NZ20121128	999	C04	1	MOR 121912 0046	RE 60 2.46 S 139 56.13 E GPS	-9	4442					
49NZ20121128	999	C04	1	BUC 121912 0238	UN 60 0.58 S 139 59.01 E GPS	-9	4446				1,20,90	1.4C
49NZ20121128	999	C04	1	ROS 121912 0340	BO 60 0.57 S 139 58.95 E GPS	-9	4446	9	4440	4526	31 1-8,20,27,90,93	
49NZ20121128	999	C04	1	ROS 121912 0531	EN 60 0.55 S 139 58.99 E GPS	-9	4448					
49NZ20121128	999	C04	1	FLT 121912 0542	DE 60 0.62 S 139 56.12 E GPS	-9	4447					DEEP ARGO #3/ID300234010565570
49NZ20121128	S04	69	1	ROS 122012 0029	BE 62 1.39 S 134 11.18 E GPS	-9	4337					
49NZ20121128	S04	69	1	BUC 122012 0037	UN 62 1.35 S 134 11.23 E GPS	-9	4337				1,20,90	0.8C
49NZ20121128	S04	69	1	ROS 122012 0137	BO 62 1.16 S 134 11.67 E GPS	-9	4337	9	4338	4413	31 1-8,20,23,24,26,27,31,37,42,90,93-95	
49NZ20121128	S04	69	1	ROS 122012 0330	EN 62 0.87 S 134 12.07 E GPS	-9	4337					
49NZ20121128	S04	70	1	ROS 122012 0711	BE 61 59.92 S 132 45.55 E GPS	-9	4440					
49NZ20121128	S04	70	1	ROS 122012 0746	BO 61 59.81 S 132 45.71 E GPS	-9	4441	-9	2054	2082	36 22,89	
	S04	70		ROS 122012 0827	EN 61 59.74 S 132 45.77 E GPS	-9	4441				,,,,	
	S04	70		UNK 122012 0910	UN 61 59.98 S 132 36.06 E GPS	-9	4451				22,89	THROUGH HULL PUMP
	S04	70		ROS 122012 0930	BE 61 59.91 S 132 36.47 E GPS	-9	4446				,	
	S04	70		ROS 122012 1039	BO 61 59.76 S 132 36.67 E GPS	-9	4447	9	4445	4530	36 22,89	
	S04	70		ROS 122012 1152	EN 61 59.67 S 132 36.74 E GPS	-9	4448			1000	30 11/03	
	S04	70		ROS 122012 1302	BE 61 59.90 S 132 36.21 E GPS	-9	4448					
	S04	70		BUC 122012 1310	UN 61 59.84 S 132 36.13 E GPS	-9	4449				1,20	0.6C
	S04	70		ROS 122012 1412	BO 61 59.67 S 132 36.28 E GPS	-9	4449	9	4445	4530	35 1-8,20,22,27,89,93	0.00
49NZ20121128		70		ROS 122012 1603	EN 61 59.26 S 132 36.37 E GPS	-9	4452			1000	35 1 6/20/22/21/35/35	
	S04	71		ROS 122012 1928	BE 62 0.53 S 131 19.91 E GPS	-9	4505					
	S04	71		BUC 122012 1935	UN 62 0.51 S 131 19.83 E GPS	-9	4505				1,20	0.7C
	S04	71		ROS 122012 2037	BO 62 0.40 S 131 19.50 E GPS	-9	4508	9	4507	4589	32 1-8,12,13,20,23,24,26,27,31,37,42,92-95	0.70
	S04	71		ROS 122012 2230	EN 62 0.20 S 131 18.89 E GPS	-9	4505	,	4507	1303	32 1 0/12/13/20/23/24/20/27/31/37/42/32 33	
	S04	72		ROS 122012 2230	BE 62 0.21 S 129 56.78 E GPS	-9	4462					
	S04	72		BUC 122112 0226	UN 62 0.20 S 129 56.71 E GPS	-9	4462				1,20	0.8C
49NZ20121128		72		ROS 122112 0220	BO 62 0.09 S 129 56.31 E GPS	-9	4466	9	4465	4544	32 1-8,20,27,93	0.00
	S04	72		ROS 122112 0527	EN 61 59.78 S 129 55.90 E GPS	-9	4465	,	4403	4544	32 1-0,20,21,93	
49NZ20121128 :		72		ROS 122112 0920	BE 62 0.82 S 128 31.49 E GPS	-9	4366					
	S04	73		BUC 122112 0928	UN 62 0.85 S 128 31.48 E GPS	-9	4366				1,20	0.6C
	S04	73		ROS 122112 1028	BO 62 0.86 S 128 31.40 E GPS	-9	4366	10	4361	4443	31 1-8,20,23,24,26,27,34,93	0.00
	S04	73 73		ROS 122112 1028	EN 62 0.92 S 128 31.34 E GPS	-9 -9	4366	10	420T	4443	JI I 0/20/23/24/20/2//34/33	
	S04	73 74		ROS 122112 1218 ROS 122112 1613	BE 62 0.47 S 127 5.45 E GPS	-9 -9	4343					
	S04	74 74		BUC 122112 1613	UN 62 0.48 S 127 5.44 E GPS						1 20	0.7C
	S04 S04	74 74		ROS 122112 1621	BO 62 0.48 S 127 5.44 E GPS BO 62 0.47 S 127 5.43 E GPS	-9 -9	4345 4351	9	4330	4412	1,20 31 1-8,20,27,93	0.70
		74 74				-9 -9	4331	9	4330	4412	31 1-0,20,21,33	
49NZ20121128 3 49NZ20121128 3		74 75		ROS 122112 1916	EN 62 0.51 S 127 5.18 E GPS		4339					
49NZ20121128 : 49NZ20121128 :	S04	75 75		ROS 122112 2305 BUC 122112 2314	BE 62 0.23 S 125 39.50 E GPS UN 62 0.22 S 125 39.43 E GPS	-9 -9	4302 4303				1 20	0.7C
43N2ZUIZIIZ8 ;	504	/5	1	DUC 122112 2314	UN 02 U.22 S 125 39.43 E GPS	-9	4303				1,20	0.70

49NZ20121128	S04	75	1	ROS 122212 0013	I	3O 62 0.18 S 125 39.35 E GPS	-9	4302	9	4298	4379	31 1-8,12,13,20,23,24,26,27,31,37,42,93-95	
49NZ20121128	S04	75	1	ROS 122212 0205	I	EN 62 0.27 S 125 39.04 E GPS	-9	4301					
	S04	76		ROS 122212 0557		BE 62 0.12 S 124 15.41 E GPS	-9	4232					
	S04	76		BUC 122212 0605		JN 62 0.14 S 124 15.37 E GPS	-9	4230				1,20	0.9C
	S04	76		ROS 122212 0702		30 62 0.15 S 124 15.24 E GPS	-9	4231	9	4225	4306	30 1-8,20,27,93	0.50
				ROS 122212 0702			-9 -9	4231	9	4223	4500	30 1-6,20,27,33	REPLACED CTD DECK UNIT AT UP CAST
49NZZUIZIIZ8	S04	76	1	ROS 122212 0910	1	EN 62 0.14 S 124 15.23 E GPS	-9	4231					
													(2888DB)
	S04	77		ROS 122212 1258		BE 62 0.22 S 122 50.32 E GPS	-9	4214					
49NZ20121128	S04	77		BUC 122212 1306		JN 62 0.22 S 122 50.23 E GPS	-9	4215				1,20	0.3C
49NZ20121128	S04	77	1	ROS 122212 1404	I	30 62 0.17 S 122 50.31 E GPS	-9	4216	9	4208	4285	31 1-8,20,27,34,93	
49NZ20121128	S04	77	1	ROS 122212 1600	I	EN 62 0.13 S 122 50.15 E GPS	-9	4213					
49NZ20121128	S04	78	1	ROS 122212 2017	I	BE 61 59.87 S 121 31.48 E GPS	-9	4103					
49NZ20121128	S04	78	1	BUC 122212 2025	τ	JN 61 59.93 S 121 31.52 E GPS	-9	4102				1,20	0.5C
49NZ20121128	S04	78	1	ROS 122212 2134	I	30 61 59.98 S 121 31.57 E GPS	-9	4104	10	4098	4173	30 1-8,12,13,20,23,24,26,27,31,37,42,92-95	
49NZ20121128	S04	78	1	ROS 122212 2306	I	EN 62 0.18 S 121 31.78 E GPS	-9	4108					
49NZ20121128	S04	79	1	ROS 122312 0314	I	BE 61 56.98 S 120 1.41 E GPS	-9	4165					
49NZ20121128	S04	79	1	BUC 122312 0324		JN 61 57.00 S 120 1.43 E GPS	-9	4166				1,20	0.4C
49NZ20121128	S04	79		ROS 122312 0422		30 61 57.22 S 120 1.46 E GPS	-9	4169	9	4161	4234	30 1-8,20,27,93	
	S04	79		ROS 122312 0415		EN 61 57.60 S 120 1.56 E GPS	-9	4167	,	1101	1231	30 1 0/20/21/33	
	S04	80		ROS 122312 0013		BE 61 59.08 S 119 2.28 E GPS	-9	4183					
												1.00	0.50
49NZ20121128	S04	80		BUC 122312 0910		JN 61 59.12 S 119 2.38 E GPS	-9	4182	_			1,20	0.5C
	S04	80		ROS 122312 1006		30 61 59.16 S 119 2.34 E GPS	-9	4183	9	4177	4234	31 1-8,20,27,93	
	S04	80		ROS 122312 1152		EN 61 59.28 S 119 2.23 E GPS	-9	4184					
	S04	81		ROS 122312 1443		BE 61 50.03 S 118 1.54 E GPS	-9	4246					
49NZ20121128	S04	81	1	BUC 122312 1451	τ	JN 61 50.04 S 118 1.48 E GPS	-9	4246				1,20,90	0.6C
49NZ20121128	S04	81	1	ROS 122312 1550	I	30 61 50.14 S 118 1.39 E GPS	-9	4248	10	4234	4315	31 1-8,20,23,24,26,27,31,37,42,90,92-95	
49NZ20121128	S04	81	1	ROS 122312 1747	I	EN 61 50.48 S 118 1.24 E GPS	-9	4243					
49NZ20121128	S04	82	1	ROS 122312 2206	I	BE 61 57.41 S 116 24.10 E GPS	-9	4232					
49NZ20121128	S04	82	1	BUC 122312 2215	τ	JN 61 57.42 S 116 24.11 E GPS	-9	4229				1,20	0.5C
49NZ20121128	S04	82	1	ROS 122312 2314	I	30 61 57.51 S 116 24.15 E GPS	-9	4223	10	4224	4295	30 1-8,20,27,93	
49NZ20121128	S04	82	1	ROS 122412 0103	I	EN 61 57.60 S 116 24.48 E GPS	-9	4227					
49NZ20121128	S04	83		ROS 122412 0436		BE 61 56.12 S 115 3.90 E GPS	-9	4255					
	S04	83		BUC 122412 0444		JN 61 56.14 S 115 3.98 E GPS	-9	4255				1,20	1.1C
49NZ20121128	S04	83		ROS 122412 0543		30 61 56.29 S 115 4.34 E GPS	-9	4252	9	4252	4329	31 1-8,12,13,20,23,24,26,27,92,93	1.10
	S04	83		ROS 122412 0343		EN 61 56.40 S 115 4.68 E GPS	-9 -9	4254	9	4232	4329	31 1-0,12,13,20,23,24,20,21,32,33	
49NZ20121128				ROS 122412 0738 ROS 122412 1052			-9 -9	4162					
		84				BE 62 2.98 S 113 49.83 E GPS						05.00.00	
49NZ20121128		84		ROS 122412 1109		30 62 3.05 S 113 49.74 E GPS	-9	4160	-9	595	603	36 22,89	
49NZ20121128		84		ROS 122412 1130		EN 62 3.12 S 113 49.59 E GPS	-9	4160					
49NZ20121128		84		UNK 122412 1215		JN 62 3.96 S 113 49.86 E GPS	-9	4156				22,89	THROUGH HULL PUMP
49NZ20121128	S04I	84	2	ROS 122412 1230	I	BE 62 4.03 S 113 49.78 E GPS	-9	4158					
49NZ20121128	S04I	84	2	BUC 122412 1237	τ	JN 62 4.11 S 113 49.71 E GPS	-9	4157				1,20	1.4C
49NZ20121128	S04I	84	2	ROS 122412 1334	E	3O 62 4.27 S 113 49.48 E GPS	-9	4162	9	4151	4227	34 1-8,20,27,93	
49NZ20121128	S04I	84	2	ROS 122412 1519	E	EN 62 4.58 S 113 48.85 E GPS	-9	4162					
49NZ20121128	S04I	85	1	ROS 122412 1941	E	BE 62 5.28 S 112 10.07 E GPS	-9	4100					
49NZ20121128	S04I	85	1	BUC 122412 1949	τ	JN 62 5.27 S 112 10.01 E GPS	-9	4098				1,20	1.2C
49NZ20121128	S04I	85	1	ROS 122412 2046	E	3O 62 5.23 S 112 9.77 E GPS	-9	4095	10	4088	4161	30 1-8,20,23,24,26,27,31,37,42,92-95	
49NZ20121128	S04I	85	1	ROS 122412 2232	I	EN 62 5.22 S 112 9.08 E GPS	-9	4094					
49NZ20121128	S04I	86	1	ROS 122512 0227	E	BE 62 15.91 S 110 40.06 E GPS	-9	3942					
49NZ20121128		86		BUC 122512 0236		JN 62 15.87 S 110 40.02 E GPS	-9	3942				1,20	0.9C
49NZ20121128		86		ROS 122512 0330		30 62 15.71 S 110 39.84 E GPS	-9	3939	10	3931	3999	31 1-8,20,27,93	
49NZ20121128		86		ROS 122512 0530		EN 62 15.40 S 110 39.19 E GPS	-9	3933	10	3331	3333		
3311020121120			_		-	J_ 13.40 5 110 33.13 E GFS	,	2,23					

49NZ20121128 S04I	87	1 ROS 12	2512 1231	BE 61 31.53 S 108 57.32	E GPS	-9	4197					
49NZ20121128 S04I	87	1 BUC 12:	2512 1240	UN 61 31.54 S 108 57.48	E GPS	-9	4192				1,20	1.8C
49NZ20121128 S04I	87	1 ROS 12:	2512 1338	BO 61 31.55 S 108 57.72	E GPS	-9	4192	9	4180	4259	30 1-8,12,13,20,23,24,26,27,31,37,42,92-95	
49NZ20121128 S04I	87	1 ROS 12	2512 1525	EN 61 31.62 S 108 58.18	E GPS	-9	4192					
49NZ20121128 S04I	88	1 ROS 12	2512 1931	BE 61 38.48 S 107 26.57	E GPS	-9	4285					
49NZ20121128 S04I	88	1 BUC 12:	2512 1939	UN 61 38.49 S 107 26.59	E GPS	-9	4285				1,20	2.0C
49NZ20121128 S04I	88	1 ROS 12	2512 2039	BO 61 38.45 S 107 26.74	E GPS	-9	4285	10	4273	4353	30 1-8,20,27,93	
49NZ20121128 S04I	88	1 ROS 12	2512 2227	EN 61 38.28 S 107 26.75	E GPS	-9	4285					
49NZ20121128 I09S	501	1 ROS 12	2612 1908	BE 61 0.60 S 115 0.22	E GPS	-9	4395					
49NZ20121128 I09S	501	1 BUC 12	2612 1916	UN 61 0.63 S 115 0.15	E GPS	-9	4387				1,20	1.5C
49NZ20121128 I09S	501	1 ROS 12	2612 2018	BO 61 0.70 S 114 59.80	E GPS	-9	4390	10	4379	4466	31 1-8,20,23,24,26,27,92,93	
49NZ20121128 I09S	501	1 ROS 12	2612 2213	EN 61 0.86 S 114 58.76	E GPS	-9	4390					
49NZ20121128 I09S	502	1 ROS 12	2712 0359	BE 59 48.24 S 115 2.10	E GPS	-9	4493					
49NZ20121128 I09S	502	1 BUC 12	2712 0408	UN 59 48.27 S 115 2.13	E GPS	-9	4494				1,20	1.8C
49NZ20121128 I09S	502	1 ROS 12	2712 0511	BO 59 48.33 S 115 2.28	E GPS	-9	4493	9	4479	4577	31 1-8,20,23,24,26,27,93	
49NZ20121128 I09S	502	1 ROS 12	2712 0707	EN 59 48.41 S 115 2.20	E GPS	-9	4494					
49NZ20121128 I09S	503	1 ROS 12	2712 1014	BE 59 12.23 S 114 59.97	E GPS	-9	4524					
49NZ20121128 I09S	503	1 BUC 12	2712 1024	UN 59 12.21 S 114 59.79	E GPS	-9	4523				1,20	2.2C
49NZ20121128 I09S	503	1 ROS 12	2712 1126	BO 59 12.17 S 114 59.56	E GPS	-9	4525	10	4518	4606	32 1-8,20,23,24,26,27,92,93	
49NZ20121128 I09S	503	1 ROS 12	2712 1318	EN 59 11.97 S 114 58.84	E GPS	-9	4522					
49NZ20121128 999	803	1 MOR 01	0213 0437	BE 45 41.68 S 144 43.61	E GPS	-9	-9					SOFS BUOY
49NZ20121128 999	803	1 MOR 01	0213 0828	RE 45 43.40 S 144 41.16	E GPS	-9	-9					

D/17	MTDAT	CRUISE	MD1205	T.FC3

Marie Mari	SHIP/CRS	WOCE			CAST	UTC	EVENT	POSITION		UNC	COR I	HT ABOVE	WIRE	MAX	K NO. OF	
March Marc	EXPOCODE	SECT	STNNBR	CASTNO	TYPE DATE	TIME	CODE LATITUDE	LONGITUDE	NAV D	EPTH	DEPTH	BOTTOM	OUT	PRES	S BOTTLES PARAMETERS	COMMENTS
Autoministration of the content of																
Semigration of the content of the																
Marke Mark																2.1C
Semigracia Sem												9	4282	4362	32 1-8,20,27,34,93	
AMERICAN 19	49NZ20130106	S04I	88	2	ROS 011213	2228	EN 61 36.89 S	3 107 26.61 E GE	S	-9	4291					
Memorphosis of the content of the	4037720120106	0047	00		DOG 011212	0024	DE 61 E0 27 6	106 01 7E B OF		0	420E					3000DB
AMERICATION 1															1 00	1.70
AMERICAN 10												0	4200	4200		1.70
######################################												9	4302	4380	31 1-8,20,27,34,93	
94222103006 8014 90 1 1 80011313 912 10 62 8.83 5 105 16.78 1678 1679 -9 4244 9 4218 9 12 1-8,12,13,20,23,42,42,62,73,13,37,44,92-95 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																
### PARKEN 1															1 20 21 22	1.00
49820101006 901 90 1 1 00 011313 1219 81 62 8.38 8 105 16.36 8 089 -9 4244 49820101006 901 91 1 0 00 101313 1359 81 62 8.08 8 10 18.98 8 1089 8 089 8 1089 8												۵	1210	1210		1.90
### Seminary 1												9	4243	4310	31 1-0,12,13,20,23,24,20,21,31,33,31,42,32-33	
MARKADIOLION 6 004																
4MRZ6130106 804T 91 1 1 NOS 011313 1694 NO 62 2.02 8104 18.51 E OF 8 -9 4324 4400 318,00,07,93 4MRZ6130106 804T 92 1 1 NOS 011313 1394 NE 62 4.92 8103 15.76 E OF 8 -9 4324 4MRZ6130106 804T 92 1 1 NOS 011313 1314 UN 62 4.91 8 103 15.76 E OF 8 -9 4324 4MRZ6130106 804T 92 1 1 NOS 01131 2245 UN 62 4.91 8 103 11.67 E OF 8 -9 4337 4MRZ6130106 804T 93 1 1 NOS 01131 2245 UN 62 5.68 8 103 14.79 E OF 8 -9 4347 4MRZ6130106 804T 93 1 1 NOS 01131 2245 UN 62 5.68 8 103 14.79 E OF 8 -9 4401 4MRZ6130106 804T 93 1 1 NOS 01141 0316 UN 62 12.88 8 102 2.07 E OF 8 -9 4401 4MRZ6130106 804T 93 1 1 NOS 01141 0410 UN 62 12.88 8 102 2.07 E OF 8 -9 4401 4MRZ6130106 804T 93 1 1 NOS 01141 0420 UN 62 12.88 8 102 2.06 E OF 8 -9 4401 4MRZ6130106 804T 94 1 NOS 01141 0420 UN 62 12.88 8 102 2.06 E OF 8 -9 4402 4MRZ6130106 804T 94 1 NOS 01141 0420 UN 62 12.88 8 102 2.08 E OF 8 -9 4402 4MRZ6130106 804T 94 1 NOS 01141 0420 UN 62 12.88 8 102 2.08 E OF 8 -9 4402 4MRZ6130106 804T 94 1 NOS 01141 0420 UN 62 12.88 8 102 2.08 E OF 8 -9 4402 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4402 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4402 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4402 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4402 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 12.78 E OF 13.5 E OF 8 -9 4002 4MRZ6130106 804T 95 1 NOS 01141 1040 UN 62 1															1 20	1.70
49MEZPOINTON 6914 9 1 1 NOS 011313 1829 NH 62 2 1.08 10.1 1.7 9 1 2008 9 9 4300 4308 1 1.20 1 1.50												ρ	4314	4400		1.70
49M20131016 694												o	4314	4400	31 1 0,20,27,33	
ANNEX_1031006 SOLT 2																
49NZ20130106 9041 92 1 NOS 011313 2245 80 62 5.06 8 103 14.79 E 0PS -9 487 9 4380 4458 31 1-8,20,23,24,26,27,37,42,93-95 49NZ20130106 8041 93 1 1 80C 011413 0340 8E 62 12.89 8 102 20.76 E GPS -9 4401															1 20	1.50
49NEZ0130106 8041 92 1 808 011413 0316 86 2 12.89 8 102 20.76 E GPS -9 4807 49NEZ0130106 8041 93 1 8 050 11413 0324 0 06 2 12.88 8 102 20.77 E GPS -9 4401 8 4396 4482 11.20 1.20 1.9C 49NEZ0130106 8041 93 1 8 050 11413 0324 0 06 2 12.88 8 102 20.78 E GPS -9 4401 8 4396 4482 31 1-8.20,27,93 49NEZ0130106 8041 94 1 8 050 11413 0432 8 06 2 12.89 8 102 20.73 E GPS -9 4412 4503 31 1-8.20,27,93 49NEZ0130106 8041 94 1 8 050 11413 0432 8 06 2 12.89 8 102 20.73 E GPS -9 4412 4503 31 1-8.20,27,93 49NEZ0130106 8041 94 1 8 050 11413 0435 8 05 2 19.78 8 101 5.08 E GPS -9 4412 4503 31 1-8.12,03,133 2.10 49NEZ0130106 8041 94 1 8 050 11413 1045 8 05 2 19.78 8 101 5.08 E GPS -9 4412 4503 31 1-8.12,03,133 2.10 49NEZ0130106 8041 94 1 8 050 11413 1045 8 05 2 19.88 8 102 20.58 809 31.58 E GPS -9 4412 4503 31 1-8.12,13,20,23,24,26,27,31,33,92,93,96 49NEZ0130106 8041 95 1 8 050 11413 1045 8 06 2 2 0.58 8 099 31.58 E GPS -9 4273 473 8 10 4 4882 4882 4882 4882 4882 4882 4882 4												9	4380	4458	•	1.50
49NEZ0130106 8041 93													1300	1130	31 1 0/20/23/24/20/27/37/42/33 33	
49NEZ0130106 8041 93																
49NEZ0130106 804T 93															1.20	1.9C
49N220130106 SO4I 93												8	4396	4482		-100
49NZ20130106 SO4T 94 1 80S 011413 098												· ·	1000		01 1 0,11,130	
49N220130106 SO41 94 1 80C 01413 045 08 62 19.75 \$101 5.05 GPS -9 4419 9 4419 4503 33 1-8,12,13,20,23,24,26,27,31,33,92,93,96 49N220130106 SO41 94 1 80C 01413 1204 180 2 19.82 \$101 6.33 E GPS -9 4419 9 4419 4503 33 1-8,12,13,20,23,24,26,27,31,33,92,93,96 49N220130106 SO41 95 1 80C 01413 1802 18 62 2.0.5 S 099 33.53 E GPS -9 4272 49N220130106 SO41 95 1 80C 01413 1802 18 62 2.0.5 S 099 33.53 E GPS -9 4272 49N220130106 SO41 95 1 80C 01413 1802 18 62 2.0.1 S 099 33.53 E GPS -9 4272 49N220130106 SO41 95 1 80C 01413 1802 18 62 2.0.1 S 099 34.8 E GPS -9 4272 49N220130106 SO41 95 1 80C 01413 1802 18 62 2.0.1 S 099 34.9 E GPS -9 4274 49N220130106 SO41 95 1 80C 01513 0010 18 62 6.61 S 098 1.24 E GPS -9 4080 49N220130106 SO41 96 1 1 80C 01513 0010 18 62 6.64 S 098 1.45 E GPS -9 4080 49N220130106 SO41 96 1 1 80C 01513 0010 18 62 6.64 S 098 1.45 E GPS -9 4080 49N220130106 SO41 96 1 1 80C 01513 0010 18 62 6.64 S 098 1.45 E GPS -9 4080 49N220130106 SO41 97 1 80C 01513 0010 18 62 7.17 S 096 18.94 E GPS -9 4080 49N220130106 SO41 97 1 80C 01513 0010 18 62 7.17 S 096 18.94 E GPS -9 4080 49N220130106 SO41 97 1 80C 01513 0010 18 62 7.17 S 096 18.94 E GPS -9 3925 49N220130106 SO41 97 1 80C 01513 0010 18 62 7.17 S 096 18.94 E GPS -9 3925 49N220130106 SO41 97 1 80C 01513 0010 18 62 7.17 S 096 18.94 E GPS -9 3925 49N220130106 SO41 97 1 80C 01513 0010 18 62 7.17 S 096 18.94 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 0010 18 62 7.18 S 096 19.24 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 0010 18 62 7.18 S 096 19.24 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 0010 18 62 7.18 S 096 19.24 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 0010 18 62 7.18 S 096 19.24 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 0010 18 62 7.18 S 096 19.24 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 0010 18 62 7.18 S 096 19.24 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 0010 18 62 7.18 S 096 19.24 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 0010 18 62 7.18 S 096 19.24 E GPS -9 3925 49N220130106 SO41 98 1 80C 01513 001																
49N22013016 5041 94 1 ROS 011413 1046 B 6 2 19.78 S 101 5.36 E GPS 9 4419 99 4414 4503 33 1-8,12,13,20,23,24,26,27,31,33,92,93,96 49N22013016 5041 95 1 ROS 011413 1056 BE 62 20.05 S 099 33.55 E GPS 9 4271 49N22013016 5041 95 1 ROS 011413 1050 UN 62 20.05 S 099 33.55 E GPS 9 4273 49N22013016 5041 95 1 ROS 011413 1050 UN 62 20.04 S 099 33.55 E GPS 9 4274 49N22013016 5041 95 1 ROS 011413 1050 UN 62 20.04 S 099 33.55 E GPS 9 4274 49N22013016 5041 96 1 ROS 011413 1050 UN 62 20.04 S 099 33.55 E GPS 9 4274 49N22013016 5041 96 1 ROS 011413 1050 UN 62 6.62 S 098 1.24 E GPS 9 4274 49N22013016 5041 96 1 ROS 011513 000 UN 62 6.62 S 098 1.24 E GPS 9 4081 49N22013016 5041 96 1 ROS 011513 000 UN 62 6.62 S 098 1.29 E GPS 9 4081 49N22013016 5041 96 1 ROS 011513 010 UN 62 6.62 S 098 1.39 E GPS 9 4080 49N22013016 5041 96 1 ROS 011513 010 UN 62 6.62 S 098 1.39 E GPS 9 4080 49N22013016 5041 96 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 4080 49N22013016 5041 96 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 4080 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 4080 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 4080 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 4080 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 4080 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 4080 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 3925 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 3825 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 3825 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 3825 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 3825 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 3825 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 3825 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098 1.45 E GPS 9 9 3825 49N22013016 5041 97 1 ROS 011513 010 UN 62 6.62 S 098															1,20,31,33	2.1C
49NZ2013016 804T 9												9	4414	4503		
49NZ20130106 504T 95 1 80C 01413 1705 UN 62 20.01 8 099 33.55 E GBS	49NZ20130106	S04I	94	1	ROS 011413	1247	EN 62 19.82 S	3 101 6.33 E GE	s	-9	4421					
49NZ20130106 S041 95 1 80S 011413 1802 80 62 20.01 8 099 34.26 E GPS	49NZ20130106	S04I	95	1	ROS 011413	1656	BE 62 20.05 S	S 099 33.53 E GE	s	-9	4273					
49NZ20130106 S04I 95 1 ROS 011513 0002 E 6 2 0.61 8 09 34.26 E GPS 9 4081 49NZ20130106 S04I 96 1 ROS 011513 0002 E 6 2 6.61 8 09 1.24 E GPS 9 4081 49NZ20130106 S04I 96 1 ROS 011513 0002 U 6 2 6.62 8 09 1.24 E GPS 9 4081 49NZ20130106 S04I 96 1 ROS 011513 0002 U 6 2 6.62 8 09 1.45 E GPS 9 4081 49NZ20130106 S04I 96 1 ROS 011513 0003 U 6 2 6.62 8 09 1.45 E GPS 9 4082 49NZ20130106 S04I 96 1 ROS 011513 0005 U 6 2 6.64 8 09 1.45 E GPS 9 4082 49NZ20130106 S04I 96 1 ROS 011513 0005 U 6 2 6.64 8 09 1.45 E GPS 9 4082 49NZ20130106 S04I 97 1 ROS 011513 0005 U 6 2 7.17 8 096 18.94 E GPS 9 4082 49NZ20130106 S04I 97 1 ROS 011513 0010 U 6 2 7.17 8 096 19.24 E GPS 9 4924 49NZ20130106 S04I 97 1 ROS 011513 0010 U 7 1 ROS 011513	49NZ20130106	S04I	95	1	BUC 011413	1705	UN 62 20.05 S	S 099 33.55 E GE	s	-9	4272				1,20	1.5C
49N220130106 8041 96	49NZ20130106	S04I	95	1	ROS 011413	1802	BO 62 20.01 S	S 099 33.98 E GE	s	-9	4274	9	4265	4347	31 1-8,20,27,34,93	
49NZ20130106 804I 96 1 8UK 011513 010 UN 62 6.62 8 098 1.29 E GPS 9 4080 49NZ20130106 804I 96 1 UNK 011513 0100 UN 62 6.62 8 098 1.29 E GPS 9 4080 49NZ20130106 804I 96 1 ROW 011513 0100 UN 62 6.64 8 098 1.45 E GPS 9 4080 49NZ20130106 804I 96 1 ROW 011513 0100 UN 62 6.64 8 098 1.45 E GPS 9 4080 49NZ20130106 804I 97 1 ROW 011513 0100 UN 62 6.64 8 098 1.45 E GPS 9 4080 49NZ20130106 804I 97 1 ROW 011513 0100 UN 62 6.64 8 098 1.89 E GPS 9 4080 49NZ20130106 804I 97 1 ROW 011513 0100 UN 62 7.17 8 096 18.94 E GPS 9 3925 49NZ20130106 804I 97 1 ROW 011513 0100 UN 62 7.18 8 096 19.24 E GPS 9 3925 49NZ20130106 804I 97 1 ROW 011513 1000 UN 62 7.03 8 096 19.94 E GPS 9 3914 49NZ20130106 804I 97 1 ROW 011513 1100 UN 62 7.03 8 096 19.94 E GPS 9 3914 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 44.65 E GPS 9 3914 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 44.65 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 44.65 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 44.65 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 44.65 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.58 E GPS 9 3805 49NZ20130106 804I 98 1 ROW 011513 1118 UN 62 15.11 8 094 45.5	49NZ20130106	S04I	95	1	ROS 011413	1956	EN 62 20.04 S	S 099 34.26 E GE	s	-9	4279					
49NZ20130106 S04I 96 1 VNK 011513 032 VN 62 6.62 8 098 1.39 E GPS -9 4087 49NZ20130106 S04I 96 1 ROS 011513 0106 BO 62 6.64 8 098 1.45 E GPS -9 4082 49NZ20130106 S04I 97 1 ROS 011513 0710 BE 62 7.17 8 096 18.94 E GPS -9 3925 49NZ20130106 S04I 97 1 ROS 011513 0710 BE 62 7.17 8 096 18.98 E GPS -9 3925 49NZ20130106 S04I 97 1 ROS 011513 0710 BE 62 7.17 8 096 18.98 E GPS -9 3925 49NZ20130106 S04I 97 1 ROS 011513 0710 BE 62 7.17 8 096 18.98 E GPS -9 3925 49NZ20130106 S04I 97 1 ROS 011513 0710 BE 62 7.17 8 096 19.94 E GPS -9 3925 49NZ20130106 S04I 97 1 ROS 011513 1000 BF 62 7.18 8 096 19.24 E GPS -9 3924 49NZ20130106 S04I 98 1 ROS 011513 1410 BE 62 15.18 8 094 44.57 E GPS -9 3805 49NZ20130106 S04I 98 1 ROS 011513 1410 BE 62 15.18 8 094 44.58 E GPS -9 3805 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.18 8 094 44.58 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1500 BO 62 15.18 8 094 47.78 E GPS -9 3799 49NZ20130106 S04I 99 1 ROS 01	49NZ20130106	S04I	96	1	ROS 011513	0002	BE 62 6.61 S	S 098 1.24 E GE	s	-9	4081					
49NZ20130106 SO4I 96 1 ROS 011513 0106 BO 62 6.64 S 098 1.45 E GPS -9 4082 49NZ20130106 SO4I 96 1 ROS 011513 0250 EN 62 6.54 S 098 1.68 E GPS -9 4088 49NZ20130106 SO4I 97 1 ROS 011513 0710 BE 62 7.17 S 096 18.94 E GPS -9 3925 49NZ20130106 SO4I 97 1 BUC 011513 1710 EN 62 7.18 S 096 19.24 E GPS -9 3929 49NZ20130106 SO4I 97 1 ROS 011513 100 EN 62 7.18 S 096 19.24 E GPS -9 3929 49NZ20130106 SO4I 97 1 ROS 011513 1410 EN 62 7.18 S 096 19.24 E GPS -9 3929 49NZ20130106 SO4I 98 1 ROS 011513 1410 EN 62 15.11 S 094 44.57 E GPS -9 3807 49NZ20130106 SO4I 98 1 BUC 011513 1418 UN 62 15.14 S 094 44.57 E GPS -9 3807 49NZ20130106 SO4I 98 1 ROS 011513 1418 UN 62 15.14 S 094 44.58 E GPS -9 3807 49NZ20130106 SO4I 98 1 ROS 011513 1418 UN 62 15.14 S 094 44.58 E GPS -9 3807 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.14 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 1510 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 165 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 165 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 165 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 165 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 165 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 165 EN 62 15.15 S 094 47.78 E GPS -9 3799 49NZ20130106 SO4I 98 1 ROS 011513 165 EN 62 15.15 EN 62 15.	49NZ20130106	S04I	96	1	BUC 011513	0010	UN 62 6.62 S	S 098 1.29 E GE	s	-9	4080				1,20	2.0C
49NZ20130106 S041 96 1 ROS 01513 0250 EN 62 6.54 S 098 1.68 E GPS -9 4088 49NZ20130106 S041 97 1 ROS 01513 0710 BE 62 7.17 S 096 18.94 E GPS -9 3925 49NZ20130106 S041 97 1 BUC 01513 0718 UN 62 7.17 S 096 18.94 E GPS -9 3925 49NZ20130106 S041 97 1 ROS 01513 0812 BU 01513 BU 01513 0812 BU 01513 B	49NZ20130106	S04I	96	1	UNK 011513	0032	UN 62 6.62 S	S 098 1.39 E GE	s	-9	4087				90	THROUGH HULL PUMP
49NZ20130106 S04I 97 1 80S 011513 0710 BE 62 7.17 S 096 18.94 E GPS -9 3925 49NZ20130106 S04I 97 1 80C 011513 0718 UN 62 7.17 S 096 18.94 E GPS -9 3929 49NZ20130106 S04I 97 1 80S 011513 100 EN 62 7.18 S 096 19.94 E GPS -9 3929 49NZ20130106 S04I 97 1 80S 011513 100 EN 62 7.03 S 096 19.99 E GPS -9 3914 49NZ20130106 S04I 98 1 80S 011513 1410 BE 62 15.11 S 094 44.57 E GPS -9 3805 49NZ20130106 S04I 98 1 80S 011513 1418 UN 62 15.14 S 094 44.68 E GPS -9 3807 49NZ20130106 S04I 98 1 80S 011513 1510 BO 62 15.13 S 094 45.58 E GPS -9 3799 49NZ20130106 S04I 98 1 80S 011513 1510 BO 62 15.15 S 094 47.73 E GPS -9 3799 49NZ20130106 S04I 98 1 80S 011513 1655 EN 62 15.15 S 094 47.73 E GPS -9 3799	49NZ20130106	S04I	96	1	ROS 011513	0106	BO 62 6.64 S	S 098 1.45 E GE	s	-9	4082	10	4078	4147	30 1-8,20,23,24,26,27,37,42,93-95	
49NZ20130106 S04I 97 1 8UC 011513 0718 UN 62 7.17 S 096 18.98 E GPS -9 3929 1.20 49NZ20130106 S04I 97 1 ROS 011513 0812 BO 62 7.18 S 096 19.99 E GPS -9 3914 49NZ20130106 S04I 98 1 ROS 011513 1410 BE 62 15.11 S 094 44.57 E GPS -9 3805 49NZ20130106 S04I 98 1 BUC 011513 1410 BE 62 15.14 S 094 44.57 E GPS -9 3805 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.15 S 094 45.58 E GPS -9 3807 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.15 S 094 47.73 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.15 S 094 47.73 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1655 EN 62 15.15 S 094 47.73 E GPS -9 3799	49NZ20130106	S04I	96	1	ROS 011513	0250	EN 62 6.54 S	S 098 1.68 E GE	s	-9	4088					
49NZ20130106 S04I 97 1 ROS 011513 0812 BO 62 7.18 S 096 19.24 E GPS -9 3914 49NZ20130106 S04I 97 1 ROS 011513 1000 EN 62 7.03 S 096 19.99 E GPS -9 3914 49NZ20130106 S04I 98 1 ROS 011513 1410 BE 62 15.11 S 094 44.57 E GPS -9 3805 49NZ20130106 S04I 98 1 ROS 011513 1418 UN 62 15.14 S 094 44.68 E GPS -9 3807 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.13 S 094 45.58 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.15 S 094 47.73 E GPS -9 3799	49NZ20130106	S04I	97	1	ROS 011513	0710	BE 62 7.17 S	S 096 18.94 E GP	s	-9	3925					
49NZ20130106 S04I 97 1 ROS 011513 1000 EN 62 7.03 S 096 19.99 E GPS -9 3914 49NZ20130106 S04I 98 1 ROS 011513 1410 BE 62 15.11 S 094 44.57 E GPS -9 3805 49NZ20130106 S04I 98 1 ROS 011513 1418 UN 62 15.14 S 094 44.68 E GPS -9 3807 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.13 S 094 45.58 E GPS -9 3799 49NZ20130106 S04I 98 1 ROS 011513 1655 EN 62 15.15 S 094 47.73 E GPS -9 3799	49NZ20130106	S04I	97	1	BUC 011513	0718	UN 62 7.17 S	S 096 18.98 E GE	S	-9	3929				1,20	2.2C
49NZ20130106 S04I 98 1 ROS 011513 1410 BE 62 15.11 S 094 44.57 E GPS -9 3805 49NZ20130106 S04I 98 1 BUC 011513 1418 UN 62 15.14 S 094 44.68 E GPS -9 3807 1,20,31,33 1.7C 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.13 S 094 45.58 E GPS -9 3799 9 3815 3860 31 1-8,12,13,20,23,24,26,27,31,33,93,96	49NZ20130106	S04I	97	1	ROS 011513	0812	BO 62 7.18 S	S 096 19.24 E GE	S	-9	3923	10	3906	3977	29 1-8,20,27,93	
49NZ20130106 S04I 98 1 BUC 011513 1418 UN 62 15.14 S 094 44.68 E GPS -9 3807 1,20,31,33 1.7C 49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.13 S 094 45.58 E GPS -9 3799 9 3815 3860 31 1-8,12,13,20,23,24,26,27,31,33,93,96 49NZ20130106 S04I 98 1 ROS 011513 1655 EN 62 15.15 S 094 47.73 E GPS -9 3799	49NZ20130106	S04I	97	1	ROS 011513	1000	EN 62 7.03 S	S 096 19.99 E GE	s	-9	3914					
49NZ20130106 S04I 98 1 ROS 011513 1510 BO 62 15.13 S 094 45.58 E GPS -9 3799 9 3815 3860 31 1-8,12,13,20,23,24,26,27,31,33,93,96 49NZ20130106 S04I 98 1 ROS 011513 1655 EN 62 15.15 S 094 47.73 E GPS -9 3799	49NZ20130106	S04I	98	1	ROS 011513	1410	BE 62 15.11 S	S 094 44.57 E GP	S	-9	3805					
49NZ20130106 S04I 98 1 ROS 011513 1655 EN 62 15.15 S 094 47.73 E GPS -9 3799	49NZ20130106	S04I	98	1	BUC 011513	1418	UN 62 15.14 S	S 094 44.68 E GE	S	-9	3807				1,20,31,33	1.7C
	49NZ20130106	S04I	98	1	ROS 011513	1510	BO 62 15.13 S	S 094 45.58 E GE	S	-9	3799	9	3815	3860	31 1-8,12,13,20,23,24,26,27,31,33,93,96	
49NZ20130106 S04I 99 1 ROS 011513 2120 BE 62 16.43 S 093 8.48 E GPS -9 3924	49NZ20130106	S04I	98	1	ROS 011513	1655	EN 62 15.15 S	S 094 47.73 E GE	S	-9	3799					
	49NZ20130106	S04I	99	1	ROS 011513	2120	BE 62 16.43 S	8 093 8.48 E GE	S	-9	3924					

49NZ20130106 S04I	99	1 BUC 011513 2127	UN 62 16.45 S 093 8.56 E GPS	-9	3928				1,20	1.7C
49NZ20130106 S04I	99	1 ROS 011513 2222	BO 62 16.54 S 093 8.91 E GPS	-9	3935	10	3914	3989	29 1-8,20,27,93	
49NZ20130106 S04I	99	1 ROS 011613 0002	EN 62 16.73 S 093 9.42 E GPS	-9	3934					
49NZ20130106 S04I	100	1 ROS 011613 0409	BE 62 16.71 S 091 31.16 E GPS	-9	4032					
49NZ20130106 S04I	100	1 BUC 011613 0418	UN 62 16.77 S 091 31.12 E GPS	-9	4033				1,20	2.4C
49NZ20130106 S04I	100	1 ROS 011613 0512	BO 62 17.10 S 091 31.06 E GPS	-9	4035	9	4026	4098	30 1-8,20,23,24,26,27,34,37,42,92-95	
49NZ20130106 S04I	100	1 ROS 011613 0701	EN 62 17.49 S 091 30.54 E GPS	-9	4032					
49NZ20130106 S04I	101	1 ROS 011613 1022	BE 62 48.77 S 090 51.83 E GPS	-9	3855					
49NZ20130106 S04I	101	1 BUC 011613 1029	UN 62 48.73 S 090 51.83 E GPS	-9	3870				1,20	1.6C
49NZ20130106 S04I	101	1 ROS 011613 1121	BO 62 48.62 S 090 51.52 E GPS	-9	3863	8	3841	3911	29 1-8,20,27,93	
49NZ20130106 S04I	101	1 ROS 011613 1302	EN 62 48.46 S 090 51.01 E GPS	-9	3852					
49NZ20130106 S04I	102	1 ROS 011613 1630	BE 63 21.44 S 090 10.72 E GPS	-9	3809					
49NZ20130106 S04I	102	1 BUC 011613 1639	UN 63 21.44 S 090 10.64 E GPS	-9	3812				1,20,31,33,34,82	1.5C
49NZ20130106 S04I	102	1 UNK 011613 1713	UN 63 21.43 S 090 10.59 E GPS	-9	3811				90	THROUGH HULL PUMP
49NZ20130106 S04I	102	1 ROS 011613 1731	BO 63 21.44 S 090 10.65 E GPS	-9	3812	10	-9	3871	31 1-8,20,23,24,26,27,31,33,34,37,42,93-96	
49NZ20130106 S04I	102	1 ROS 011613 1915	EN 63 21.45 S 090 10.50 E GPS	-9	3813					
49NZ20130106 S04I	103	1 ROS 011713 0018	BE 63 7.11 S 088 41.29 E GPS	-9	3828					
49NZ20130106 S04I	103	1 BUC 011713 0027	UN 63 7.14 S 088 41.26 E GPS	-9	3829				1,20	1.1C
49NZ20130106 S04I	103	1 ROS 011713 0119	BO 63 7.12 S 088 41.25 E GPS	-9	3830	9	3823	3892	29 1-8,20,27,93	
49NZ20130106 S04I	103	1 ROS 011713 0257	EN 63 6.97 S 088 41.72 E GPS	-9	3830					
49NZ20130106 S04I	104	1 ROS 011713 0659	BE 63 6.74 S 087 7.80 E GPS	-9	3786					
49NZ20130106 S04I	104	1 BUC 011713 0708	UN 63 6.71 S 087 7.81 E GPS	-9	3788				1,20	1.1C
49NZ20130106 S04I	104	1 ROS 011713 0759	BO 63 6.55 S 087 7.94 E GPS	-9	3780	9	-9	3843	29 1-8,12,20,23,24,26,27,92,93	
49NZ20130106 S04I	104	1 ROS 011713 0943	EN 63 6.35 S 087 7.75 E GPS	-9	3776					
49NZ20130106 S04I	105	1 ROS 011713 1254	BE 63 6.24 S 085 58.74 E GPS	-9	3739					
49NZ20130106 S04I	105	1 BUC 011713 1303	UN 63 6.21 S 085 58.72 E GPS	-9	3738				1,20	1.0C
49NZ20130106 S04I	105	1 UNK 011713 1322	UN 63 6.21 S 085 58.61 E GPS	-9	3737				90	THROUGH HULL PUMP
49NZ20130106 S04I	105	1 ROS 011713 1353	BO 63 6.24 S 085 58.55 E GPS	-9	3735	10	3736	3801	29 1-8,20,27,93	
49NZ20130106 S04I	105	1 ROS 011713 1533	EN 63 6.40 S 085 58.36 E GPS	-9	3727					
49NZ20130106 S04I	106	1 ROS 011713 1813	BE 62 57.68 S 084 59.33 E GPS	-9	2972					
49NZ20130106 S04I	106	1 BUC 011713 1822	UN 62 57.64 S 084 59.30 E GPS	-9	2972				1,20,31,33	1.0C
49NZ20130106 S04I	106	1 ROS 011713 1902	BO 62 57.41 S 084 59.23 E GPS	-9	2982	9	-9	3024	26 1-8,20,23,24,26,27,31,33,34,37,42,93-96	
49NZ20130106 S04I	106	1 ROS 011713 2028	EN 62 57.12 S 084 59.22 E GPS	-9	2992					
49NZ20130106 S04I	107	1 ROS 011713 2303	BE 63 0.70 S 084 1.20 E GPS	-9	2544					
49NZ20130106 S04I	107	1 BUC 011713 2310	UN 63 0.69 S 084 1.21 E GPS	-9	2545				1,20	0.8C
49NZ20130106 S04I	107	1 UNK 011713 2332	UN 63 0.67 S 084 1.22 E GPS	-9	2547				90	THROUGH HULL PUMP
49NZ20130106 S04I	107	1 ROS 011713 2345	BO 63 0.66 S 084 1.23 E GPS	-9	2545	9	2523	2578	24 1-8,20,27,93	
49NZ20130106 S04I	107	1 ROS 011813 0101	EN 63 0.66 S 084 1.53 E GPS	-9	2548					
49NZ20130106 S04I	108	1 ROS 011813 0310	BE 62 44.88 S 083 28.32 E GPS	-9	2461					
49NZ20130106 S04I	108	1 BUC 011813 0319	UN 62 44.87 S 083 28.35 E GPS	-9	2462				1,20	1.1C
49NZ20130106 S04I	108	1 ROS 011813 0353	BO 62 44.86 S 083 28.42 E GPS	-9	2460	9	2437	2489	23 1-8,20,23,24,26,27,93	
49NZ20130106 S04I	108	1 ROS 011813 0506	EN 62 44.76 S 083 28.82 E GPS	-9	2463					
49NZ20130106 S04I	109	1 ROS 011813 0758	BE 62 15.02 S 083 14.92 E GPS	-9	2653					
49NZ20130106 S04I	109	1 BUC 011813 0806	UN 62 15.02 S 083 14.90 E GPS	-9	2651				1,20	1.8C
49NZ20130106 S04I	109	1 ROS 011813 0841	BO 62 15.00 S 083 15.01 E GPS	-9	2649	8	2580	2681	24 1-8,20,27,93	
49NZ20130106 S04I	109	1 ROS 011813 1002	EN 62 15.14 S 083 15.57 E GPS	-9	2662					
49NZ20130106 S04I	110	1 ROS 011813 1253	BE 61 45.47 S 083 1.53 E GPS	-9	2321					
49NZ20130106 S04I	110	1 BUC 011813 1303	UN 61 45.50 S 083 1.56 E GPS	-9	2322				1,20	2.0C
49NZ20130106 S04I	110	1 ROS 011813 1332	BO 61 45.55 S 083 1.60 E GPS	-9	2325	9	2316	2349	23 1-8,20,23,24,26,27,93	
49NZ20130106 S04I	110	1 ROS 011813 1443	EN 61 45.67 S 083 1.72 E GPS	-9	2322					
49NZ20130106 S04I	111	1 ROS 011813 1742	BE 61 16.00 S 082 49.62 E GPS	-9	1479					

49NZ20130106 S04I	111	1 BUC 011813 1750	UN 61 15.97 S 082 49.67 E GPS	-9	1472				1,20,31,33,34,96	1.8C
49NZ20130106 S04I	111	1 ROS 011813 1810	BO 61 15.97 S 082 49.69 E GPS	-9	1470	9	1456	1475	20 1-8,20,23,24,26,27,31,33,34,37,42,92-96	
49NZ20130106 S04I	111	1 ROS 011813 1907	EN 61 16.03 S 082 49.85 E GPS	-9	1458					
49NZ20130106 S04I	112	1 ROS 011813 2250	BE 61 23.21 S 081 37.25 E GPS	-9	2129					
49NZ20130106 S04I	112	1 BUC 011813 2257	UN 61 23.23 S 081 37.30 E GPS	-9	2132				1,20	1.5C
49NZ20130106 S04I	112	1 ROS 011813 2327	BO 61 23.31 S 081 37.60 E GPS	-9	2126	10	2124	2149	22 1-8,20,27,93	
49NZ20130106 S04I	112	1 ROS 011913 0032	EN 61 23.37 S 081 38.09 E GPS	-9	2125					
49NZ20130106 S04I	113	1 ROS 011913 0342	BE 61 24.95 S 080 29.36 E GPS	-9	2436					
49NZ20130106 S04I	113	1 BUC 011913 0350	UN 61 24.94 S 080 29.37 E GPS	-9	2438				1,20	1.5C
49NZ20130106 S04I	113	1 UNK 011913 0408	UN 61 24.93 S 080 29.38 E GPS	-9	2440				90	THROUGH HULL PUMP
49NZ20130106 S04I	113	1 ROS 011913 0422	BO 61 24.93 S 080 29.39 E GPS	-9	2438	7	2428	2467	24 1-8,12,13,20,23,24,26,27,93	
49NZ20130106 S04I	113	1 ROS 011913 0537	EN 61 24.95 S 080 29.53 E GPS	-9	2439	,	2420	2407	24 1 0/12/13/20/23/24/20/27/33	
49NZ20130106 S04I	114	1 ROS 011913 0837	BE 61 32.94 S 079 27.87 E GPS	-9	2731					
49NZ20130106 S04I	114	1 BUC 011913 0844	UN 61 32.93 S 079 27.98 E GPS	-9	2731				1,20	1.4C
49NZ20130106 S041	114	1 ROS 011913 0922	BO 61 32.95 S 079 28.51 E GPS	-9	2727	9	2739	2767	24 1-8,20,27,93	1.40
49NZ20130106 S04I	114	1 ROS 011913 1045	EN 61 33.12 S 079 29.69 E GPS	-9	2711	,	2733	2707	24 1 0,20,21,33	
49NZ20130106 S04I	115	1 ROS 011913 1354	BE 61 38.82 S 078 24.79 E GPS	-9	2950					
49NZ20130106 S04I	115	1 BUC 011913 1402	UN 61 38.81 S 078 24.75 E GPS	-9	2945				1,20,31,33,34,82	1.6C
49NZ20130106 S041	115	1 ROS 011913 1442	BO 61 38.82 S 078 24.85 E GPS	-9	2942	9	2937	2983	26 1-8,20,23,24,26,27,31,33,34,82,93,96	1.00
49NZ20130106 S04I	115	1 ROS 011913 1609	EN 61 38.80 S 078 24.03 E GPS	-9	2943	,	2337	2303	20 1 0,20,23,24,20,27,31,33,34,02,33,30	
49NZ20130106 S041	116	1 ROS 011913 2050	BE 61 48.51 S 076 41.07 E GPS	-9	3939					
49NZ20130106 S041 49NZ20130106 S04I	116	1 BUC 011913 2058	UN 61 48.52 S 076 41.04 E GPS	-9 -9	3940				1,20	1.5C
49NZ20130106 S041 49NZ20130106 S04I	116	1 ROS 011913 2058	BO 61 48.54 S 076 40.87 E GPS	-9 -9	3940	7	3934	4007	30 1-8,12,13,20,23,24,26,27,37,42,92-95	1.50
49NZ20130106 S041	116	1 ROS 011913 2340	EN 61 48.66 S 076 39.97 E GPS	-9 -9	3942	,	3934	4007	30 1-0,12,13,20,23,24,20,27,37,42,92-93	
49NZ20130106 S041 49NZ20130106 S041	117	1 ROS 011913 2340 1 ROS 012013 0355	BE 61 48.28 S 074 58.74 E GPS	-9 -9	3956					
49NZ20130106 S041 49NZ20130106 S04I	117	1 BUC 012013 0404	UN 61 48.23 S 074 58.66 E GPS	-9 -9	3955				1,20	0.9C
49NZ20130106 S041 49NZ20130106 S04I	117	1 ROS 012013 0458	BO 61 48.12 S 074 58.50 E GPS		3958	8	3951	4021	29 1-8,20,27,93	0.90
49NZ20130106 S041 49NZ20130106 S04I				-9 -0	3958	0	3931	4021	29 1-0,20,27,93	
49NZ20130106 S041 49NZ20130106 S04I	117 118	1 ROS 012013 0645 1 ROS 012013 1104	EN 61 47.96 S 074 58.19 E GPS BE 61 47.86 S 073 15.58 E GPS	-9 -9	4035					
49NZ20130106 S041 49NZ20130106 S04I	118	1 ROS 012013 1104 1 BUC 012013 1114	UN 61 47.85 S 073 15.58 E GPS	-9 -9	4033				1,20	1.2C
49NZ20130106 S041 49NZ20130106 S04I	118	1 ROS 012013 1114 1 ROS 012013 1209	BO 61 47.82 S 073 15.39 E GPS	-9 -9	4037	9	4031	4102	•	1.20
49NZ20130106 S041 49NZ20130106 S04I	118	1 ROS 012013 1209 1 ROS 012013 1403	EN 61 47.86 S 073 15.40 E GPS	-9 -9	4032	9	4031	4102	30 1-8,20,27,93	
49NZ20130106 S041 49NZ20130106 S04I	119			-9 -9	4033					
49NZ20130106 S041 49NZ20130106 S04I	119	1 ROS 012013 1829 1 BUC 012013 1840	BE 62 0.78 S 071 38.02 E GPS UN 62 0.72 S 071 38.06 E GPS	-9 -9	4088				1 20	0.6C
49NZ20130106 S041 49NZ20130106 S04I	119	1 BUC 012013 1840 1 UNK 012013 1913	UN 62 0.72 S 071 38.06 E GPS UN 62 0.62 S 071 38.04 E GPS	-9 -9	4088				1,20 90	THROUGH HULL PUMP
49NZ20130106 S041 49NZ20130106 S041	119		BO 62 0.58 S 071 38.06 E GPS	-9 -9	4083	0	4076	4152		THROUGH HULL PUMP
						9	4076	4152	30 1-8,12,13,23,24,26,27,37,42,93-95	
49NZ20130106 S04I	119	1 ROS 012013 2124	EN 62 0.14 S 071 38.32 E GPS	-9	4080					
49NZ20130106 S04I 49NZ20130106 S04I	120 120	1 ROS 012113 0136 1 BUC 012113 0146	BE 61 57.81 S 070 0.70 E GPS UN 61 57.79 S 070 0.76 E GPS	-9 -9	4121 4121				1,20	1.0C
							4110	41.01		1.00
49NZ20130106 S04I	120	1 ROS 012113 0242	BO 61 57.71 S 070 0.97 E GPS	-9	4124	9	4118	4191	30 1-8,20,27,93	
49NZ20130106 S04I	120	1 ROS 012113 0426	EN 61 57.67 S 070 1.49 E GPS	-9	4119					
49NZ20130106 S04I	121	1 ROS 012113 0804	BE 61 46.07 S 068 36.31 E GPS	-9	4261				1 20 21 22	1.00
49NZ20130106 S04I	121	1 BUC 012113 0812	UN 61 46.04 S 068 36.32 E GPS	-9 -9	4264	0	4056	4224	1,20,31,33	1.0C
49NZ20130106 S04I	121	1 ROS 012113 0911	BO 61 45.89 S 068 36.50 E GPS		4262	-9	4256	4334	31 1-8,20,23,24,26,27,31,33,34,93,96	
49NZ20130106 S04I	121	1 ROS 012113 1104	EN 61 45.68 S 068 36.51 E GPS	-9	4261					
49NZ20130106 S04I	122	1 ROS 012113 1444	BE 62 3.00 S 067 12.22 E GPS	-9	4327				1.00	1.10
49NZ20130106 S04I	122	1 BUC 012113 1452	UN 62 2.94 S 067 12.18 E GPS	-9	4328	^	4204	4406	1,20	1.1C
49NZ20130106 S04I	122	1 ROS 012113 1551	BO 62 2.82 S 067 12.06 E GPS	-9	4328	9	4324	4406	31 1-8,20,27,34,93	
49NZ20130106 S04I	122	1 ROS 012113 1744	EN 62 2.76 S 067 12.18 E GPS	-9	4327					
49NZ20130106 S04I	123	1 ROS 012113 2139	BE 62 18.96 S 065 47.85 E GPS	-9	4373				1.00	0.70
49NZ20130106 S04I	123	1 BUC 012113 2147	UN 62 18.94 S 065 47.77 E GPS	-9	4370				1,20	0.7C

49NZ20130106 S04I	123	1 UNK 012113 2214	UN 62 18.88 S 065 47.61 E GPS	-9	4376				90	THROUGH HULL PUMP
49NZ20130106 S04I	123	1 ROS 012113 2248	BO 62 18.82 S 065 47.43 E GPS	-9	4371	10	4365	4443	31 1-8,12,13,20,23,24,26,27,37,42,92-95	
49NZ20130106 S04I	123	1 ROS 012213 0038	EN 62 18.65 S 065 46.98 E GPS	-9	4371					
49NZ20130106 S04I	124	1 ROS 012213 0406	BE 62 21.68 S 064 24.42 E GPS	-9	4331					
49NZ20130106 S04I	124	1 BUC 012213 0415	UN 62 21.63 S 064 24.44 E GPS	-9	4326				1,20	0.7C
49NZ20130106 S04I	124	1 ROS 012213 0514	BO 62 21.63 S 064 24.28 E GPS	-9	4327	10	4319	4400	31 1-8,20,27,93	
49NZ20130106 S04I	124	1 ROS 012213 0707	EN 62 21.50 S 064 23.86 E GPS	-9	4327					
49NZ20130106 S04I	125	1 ROS 012213 1139	BE 62 50.00 S 062 59.84 E GPS	-9	4185					
49NZ20130106 S04I	125	1 BUC 012213 1148	UN 62 50.00 S 062 59.76 E GPS	-9	4194				1,20,31,33	0.7C
49NZ20130106 S04I	125	1 ROS 012213 1246	BO 62 49.98 S 062 59.80 E GPS	-9	4187	10	4176	4256	32 1-8,20,23,24,26,27,31,33,34,93	
49NZ20130106 S04I	125	1 ROS 012213 1436	EN 62 50.05 S 062 59.77 E GPS	-9	4189					
49NZ20130106 S04I	126	1 ROS 012213 1812	BE 63 5.42 S 061 48.94 E GPS	-9	4469					
49NZ20130106 S04I	126	1 BUC 012213 1820	UN 63 5.42 S 061 48.90 E GPS	-9	4466				1,20	0.7C
49NZ20130106 S04I	126	1 ROS 012213 1922	BO 63 5.40 S 061 48.78 E GPS	-9	4465	10	4457	4542	31 1-8,20,27,93	
49NZ20130106 S04I	126	1 ROS 012213 2115	EN 63 5.53 S 061 48.11 E GPS	-9	4466					
49NZ20130106 S04I	127	1 ROS 012313 0033	BE 63 19.88 S 060 39.91 E GPS	-9	4503					
49NZ20130106 S04I	127	1 BUC 012313 0043	UN 63 19.91 S 060 39.89 E GPS	-9	4507				1,20	0.4C
49NZ20130106 S04I	127	1 ROS 012313 0143	BO 63 19.96 S 060 39.88 E GPS	-9	4502	10	4494	4580	31 1-8,20,23,24,26,27,37,42,93-95	
49NZ20130106 S04I	127	1 ROS 012313 0336	EN 63 20.02 S 060 40.02 E GPS	-9	4502					
49NZ20130106 S04I	128	1 ROS 012313 0655	BE 63 30.41 S 059 27.12 E GPS	-9	4292					
49NZ20130106 S04I	128	1 BUC 012313 0704	UN 63 30.42 S 059 27.10 E GPS	-9	4296				1,20	0.4C
49NZ20130106 S04I	128	1 ROS 012313 0803	BO 63 30.37 S 059 26.84 E GPS	-9	4294	10	4291	4365	31 1-8,12,13,20,23,24,26,27,92,93	V. 15
49NZ20130106 S04I	128	1 ROS 012313 0954	EN 63 30.22 S 059 26.01 E GPS	-9	4300	10	1231	4505	31 1 0/12/13/20/23/24/20/27/32/33	
49NZ20130106 S04I	129	1 ROS 012313 0354	BE 63 30.13 S 058 20.24 E GPS	-9	4533					
49NZ20130106 S041	129	1 BUC 012313 1259	UN 63 30.11 S 058 20.21 E GPS	-9	4537				1,20	0.1C
49NZ20130106 S041	129	1 ROS 012313 1400	BO 63 30.06 S 058 20.16 E GPS	-9	4535	10	4526	4614	32 1-8,20,27,93	0.10
49NZ20130106 S04I	129	1 ROS 012313 1555	EN 63 30.04 S 058 20.35 E GPS	-9	4537	10	4320	4014	32 1 0,20,27,33	
49NZ20130106 S041	130	1 ROS 012313 1901	BE 63 29.95 S 057 9.55 E GPS	-9	4703					
49NZ20130106 S041	130	1 BUC 012313 1909	UN 63 29.95 S 057 9.59 E GPS	-9	4700				1,20	0.6C
49NZ20130106 S041	130	1 ROS 012313 1909	BO 63 30.00 S 057 9.67 E GPS	-9	4702	-9	3904	4085	0	A FUSE OF CTD DECK UNIT BLEW, ABORTED
49NZ20130106 S041	130	1 ROS 012313 2014 1 ROS 012313 2113	EN 63 29.96 S 057 9.74 E GPS	-9	4702	-9	3904	4005	O .	AT 10M, NOT ON DECK
49NZ20130106 S041 49NZ20130106 S04I	130	2 ROS 012313 2113	BE 63 29.96 S 057 9.74 E GPS	-9 -9	4702					AT TOM, NOT ON DECK
49NZ20130106 S041	130	2 ROS 012313 2113 2 ROS 012313 2226	BO 63 29.95 S 057 9.81 E GPS	-9	4702	10	4699	4793	32 1-8,20,23,24,26,27,37,42,93-95	
49NZ20130106 S041 49NZ20130106 S04I	130	2 ROS 012313 2226 2 ROS 012413 0023	EN 63 29.99 S 057 10.17 E GPS	-9 -9	4703 4701	10	4099	4/93	32 1-0,20,23,24,20,27,37,42,93-95	
49NZ20130106 S041 49NZ20130106 999	901	1 UNK 012413 0023	BE 63 18.00 S 053 50.06 E GPS	-9 -9	4939					WEIGHT OF 300KG WITHOUT CTD/RMS
49NZ20130106 999		1 UNK 012413 0033			4939					WEIGHT OF SOURG WITHOUT CID/RMS
	901	1 UNK 012413 1104 1 UNK 012413 1112	EN 63 18.04 S 053 50.23 E GPS	-9						2 AVIG MACNEMUMED CALIDRATION
49NZ20130106 999	902		BE 63 18.45 S 053 49.91 E GPS	-9	4936					3-AXIS MAGNETMETER CALIBRATION
49NZ20130106 999	902	1 UNK 012413 1137	EN 63 18.62 S 053 49.91 E GPS	-9	4937					
49NZ20130106 S04I	140	1 ROS 012413 2359	BE 65 27.33 S 053 21.69 E GPS	-9	465				1 00 01 00	0.00
49NZ20130106 S04I	140	1 BUC 012513 0001	UN 65 27.32 S 053 21.68 E GPS	-9	464	9	440	455	1,20,31,33	-0.9C
49NZ20130106 S04I	140	1 ROS 012513 0013	BO 65 27.28 S 053 21.66 E GPS	-9	463	9	449	455	13 1-8,20,23,24,26,27,31,33,34,37,42,92-95	
49NZ20130106 S04I	140	1 ROS 012513 0043	EN 65 27.26 S 053 21.60 E GPS	-9	464					
49NZ20130106 S04I	139	1 ROS 012513 0245	BE 65 22.35 S 053 14.85 E GPS	-9	1161				4.00	0.55
49NZ20130106 S04I	139	1 BUC 012513 0254	UN 65 22.34 S 053 14.80 E GPS	-9	1167			4455	1,20	-0.7C
49NZ20130106 S04I	139	1 ROS 012513 0310	BO 65 22.30 S 053 14.76 E GPS	-9	1177	9	1143	1157	0	ABORTED DUT TO ERROR
49NZ20130106 S04I	139	1 UNK 012513 0312	UN 65 22.31 S 053 14.76 E GPS	-9	1173				90	THROUGH HULL PUMP
49NZ20130106 S04I	139	1 ROS 012513 0330	EN 65 22.26 S 053 14.77 E GPS	-9	1202					
49NZ20130106 S04I	139	2 ROS 012513 0358	BE 65 22.10 S 053 14.98 E GPS	-9	1280	_	46	4055	10 1 0 00 00 01 05 00 00 00	
49NZ20130106 S04I	139	2 ROS 012513 0423	BO 65 22.09 S 053 14.77 E GPS	-9	1261	9	1238	1253	18 1-8,20,23,24,26,27,37,42,93-95	
49NZ20130106 S04I	139	2 ROS 012513 0514	EN 65 22.12 S 053 14.18 E GPS	-9	1267					
49NZ20130106 S04I	138	1 ROS 012513 0714	BE 65 13.49 S 053 7.98 E GPS	-9	1875					

49NZ20130106 S04I	138	1 BUC 012513 0722	UN 65 13.47 S 053 7.95 E GPS	-9	1879				1,20	-0.6C
49NZ20130106 S04I	138	1 ROS 012513 0747	BO 65 13.45 S 053 7.91 E GPS	-9	1878	9	1865	1892	21 1-8,20,23,24,26,27,37,42,92-95	
49NZ20130106 S04I	138	1 ROS 012513 0849	EN 65 13.33 S 053 7.80 E GPS	-9	1882					
49NZ20130106 S04I	137	1 ROS 012513 1050	BE 65 6.25 S 053 1.06 E GPS	-9	2468					
49NZ20130106 S04I	137	1 BUC 012513 1058	UN 65 6.24 S 053 1.05 E GPS	-9	2479				1,20	-0.3C
49NZ20130106 S04I	137	1 ROS 012513 1133	BO 65 6.21 S 053 1.00 E GPS	-9	2492	11	2484	2522	24 1-8,20,27,93	
49NZ20130106 S04I	137	1 ROS 012513 1245	EN 65 6.19 S 053 0.87 E GPS	-9	2499					
49NZ20130106 S04I	136	1 ROS 012513 1448	BE 64 47.00 S 052 59.12 E GPS	-9	3434					
49NZ20130106 S04I	136	1 BUC 012513 1457	UN 64 46.99 S 052 59.11 E GPS	-9	3426				1,20	0.0C
49NZ20130106 S04I	136	1 ROS 012513 1544	BO 64 46.92 S 052 59.29 E GPS	-9	3418	7	3446	3497	27 1-8,20,27,93	
49NZ20130106 S04I	136	1 ROS 012513 1719	EN 64 46.93 S 052 59.40 E GPS	-9	3422					
49NZ20130106 S04I	135	1 ROS 012513 1924	BE 64 26.06 S 053 4.21 E GPS	-9	4149					
49NZ20130106 S04I	135	1 BUC 012513 1931	UN 64 26.05 S 053 4.27 E GPS	-9	4146				1,20,31,33,34,82	0.1C
49NZ20130106 S04I	135	1 UNK 012513 1955	UN 64 26.05 S 053 4.29 E GPS	-9	4149				90	THROUGH HULL PUMP
49NZ20130106 S04I	135	1 ROS 012513 2030	BO 64 26.03 S 053 4.29 E GPS	-9	4146	10	4172	4243	32 1-8,20,23,24,26,27,31,33,34,37,42,82,93-95	
49NZ20130106 S04I	135	1 ROS 012513 2217	EN 64 25.88 S 053 4.18 E GPS	-9	4160					
49NZ20130106 S04I	134	1 ROS 012613 0106	BE 63 58.10 S 053 25.15 E GPS	-9	4347					
49NZ20130106 S04I	134	1 BUC 012613 0114	UN 63 58.09 S 053 25.15 E GPS	-9	4350				1,20	0.3C
49NZ20130106 S04I	134	1 ROS 012613 0214	BO 63 58.07 S 053 25.21 E GPS	-9	4345	8	4337	4420	31 1-8,20,27,93	
49NZ20130106 S04I	134	1 ROS 012613 0408	EN 63 58.12 S 053 25.13 E GPS	-9	4343					
49NZ20130106 S04I	131	1 ROS 012613 1048	BE 63 30.00 S 055 59.59 E GPS	-9	4820					
49NZ20130106 S04I	131	1 BUC 012613 1056	UN 63 29.99 S 055 59.57 E GPS	-9	4818				1,20,31,33	0.7C
49NZ20130106 S04I	131	1 UNK 012613 1118	UN 63 30.00 S 055 59.50 E GPS	-9	4818				90	THROUGH HULL PUMP
49NZ20130106 S04I	131	1 ROS 012613 1202	BO 63 30.00 S 055 59.54 E GPS	-9	4820	10	4814	4912	34 1-8,20,23,24,26,27,31,33,34,93,96	
49NZ20130106 S04I	131	1 ROS 012613 1403	EN 63 29.96 S 055 59.43 E GPS	-9	4822					
49NZ20130106 S04I	132	1 ROS 012613 1643	BE 63 29.95 S 054 49.38 E GPS	-9	4751					
49NZ20130106 S04I	132	1 BUC 012613 1651	UN 63 29.93 S 054 49.32 E GPS	-9	4751				1,20,90	0.6C
49NZ20130106 S04I	132	1 ROS 012613 1754	BO 63 29.92 S 054 49.37 E GPS	-9	4750	9	4743	4839	33 1-8,20,27,90,93	
49NZ20130106 S04I	132	1 ROS 012613 1956	EN 63 29.95 S 054 49.34 E GPS	-9	4749					
49NZ20130106 S04I	133	1 ROS 012613 2251	BE 63 29.87 S 053 40.77 E GPS	-9	4757					
49NZ20130106 S04I	133	1 BUC 012613 2259	UN 63 29.93 S 053 40.73 E GPS	-9	4755				1,20	0.8C
49NZ20130106 S04I	133	1 ROS 012713 0005	BO 63 30.10 S 053 40.61 E GPS	-9	4751	8	4752	4843	32 1-8,12,13,20,23,24,26,27,37,42,92-95	
49NZ20130106 S04I	133	1 ROS 012713 0201	EN 63 30.13 S 053 40.78 E GPS	-9	4754					
49NZ20130106 S04I	141	1 ROS 012713 0448	BE 63 29.53 S 052 29.70 E GPS	-9	4622					
49NZ20130106 S04I	141	1 BUC 012713 0455	UN 63 29.56 S 052 29.76 E GPS	-9	4624				1,20	0.8C
49NZ20130106 S04I	141	1 ROS 012713 0559	BO 63 29.66 S 052 30.45 E GPS	-9	4616	10	4621	4703	32 1-8,20,27,93	
49NZ20130106 S04I	141	1 ROS 012713 0758	EN 63 29.74 S 052 31.14 E GPS	-9	4614					
49NZ20130106 S04I	142	1 ROS 012713 1031	BE 63 30.01 S 051 24.71 E GPS	-9	4799				1.00	1.00
49NZ20130106 S04I	142	1 BUC 012713 1039	UN 63 30.00 S 051 24.68 E GPS	-9	4797	•	4701	4000	1,20	1.0C
49NZ20130106 S04I	142	1 ROS 012713 1145	BO 63 29.99 S 051 24.65 E GPS	-9	4798	9	4791	4888	33 1,20,23,24,26,27,93	
49NZ20130106 S04I	142	1 ROS 012713 1344	EN 63 30.01 S 051 24.64 E GPS	-9	4797					
49NZ20130106 S04I	143	1 ROS 012713 1625 1 BUC 012713 1633	BE 63 29.99 S 050 15.12 E GPS UN 63 30.00 S 050 15.11 E GPS	-9	4753				1.20	1 10
49NZ20130106 S04I 49NZ20130106 S04I	143 143	1 ROS 012713 1641	EN 63 29.99 S 050 15.11 E GPS	-9 -9	4751 4755				1,20	1.1C
										AT SURFACE, NOT ON DECK
49NZ20130106 S04I 49NZ20130106 S04I	143 143	2 ROS 012713 1644 2 ROS 012713 1753	BE 63 30.00 S 050 15.11 E GPS BO 63 29.98 S 050 15.10 E GPS	-9 -9	4755 4753	0	4745	4840	33 1-8,20,27,37,93,94	
49NZ20130106 S041 49NZ20130106 S04I		2 ROS 012713 1753 2 ROS 012713 1952	EN 63 29.98 S 050 15.10 E GPS EN 63 29.98 S 050 15.04 E GPS	-9 -9	4753 4753	9	4/43	4040	JJ 1-0,20,21,31,33,34	
49NZ20130106 S041 49NZ20130106 S04I	143 144	1 ROS 012713 1932	BE 63 29.94 S 049 9.96 E GPS	-9 -9	4753 4760					
49NZ20130106 S041	144	1 BUC 012713 2244	UN 63 29.95 S 049 9.90 E GPS	-9 -9	4755				1,20	1.2C
49NZ20130106 S041	144	1 ROS 012713 2349	BO 63 29.99 S 049 9.79 E GPS	-9 -9	4758	9	4748	4845	33 1-8,20,23,24,26,27,37,42,93-95	1.20
49NZ20130106 S041	144	1 ROS 012813 0147	EN 63 30.06 S 049 10.04 E GPS	-9	4759	,	2,10	1010	55 - 0/20/23/24/20/2//3//42/33 33	
1344250130100 0041	7-4-2	1 100 012013 0147	05 50.00 5 049 10.04 E GF5	,	4,33					

49NZ20130106 S04I	145	1	ROS 012813 0431	BE 63 29.98 S 048 0.11 E GPS	-9	4534					
49NZ20130106 S04I	145	1	BUC 012813 0438	UN 63 29.97 S 048 0.08 E GPS	-9	4533				1,20	1.6C
49NZ20130106 S04I	145	1	ROS 012813 0540	BO 63 30.00 S 048 0.19 E GPS	-9	4531	9	4526	4614	32 1-8,20,27,93	
49NZ20130106 S04I	145	1	ROS 012813 0734	EN 63 30.03 S 048 0.12 E GPS	-9	4536					
49NZ20130106 S04I	146	1	ROS 012813 1119	BE 63 44.18 S 046 24.31 E GPS	-9	4213					
49NZ20130106 S04I	146	1	BUC 012813 1127	UN 63 44.20 S 046 24.23 E GPS	-9	4220				1,20,31,33,34	1.5C
49NZ20130106 S04I	146	1	ROS 012813 1225	BO 63 44.22 S 046 24.18 E GPS	-9	4225	9	4204	4284	32 1-8,12,13,20,23,24,26,27,31,33,34,92,93	
49NZ20130106 S04I	146	1	ROS 012813 1417	EN 63 44.25 S 046 24.10 E GPS	-9	4214					
49NZ20130106 S04I	147	1	ROS 012813 1758	BE 63 59.01 S 044 50.73 E GPS	-9	4436					
49NZ20130106 S04I	147	1	BUC 012813 1806	UN 63 59.03 S 044 50.71 E GPS	-9	4441				1,20	1.4C
49NZ20130106 S04I	147	1	ROS 012813 1906	BO 63 58.97 S 044 50.61 E GPS	-9	4451	8	4423	4507	32 1-8,20,27,93	
49NZ20130106 S04I	147	1	ROS 012813 2059	EN 63 58.89 S 044 50.50 E GPS	-9	4434					
49NZ20130106 S04I	148	1	ROS 012913 0102	BE 64 13.43 S 043 15.55 E GPS	-9	4449					
49NZ20130106 S04I	148	1	BUC 012913 0110	UN 64 13.44 S 043 15.54 E GPS	-9	4445				1,20	1.3C
49NZ20130106 S04I	148	1	ROS 012913 0211	BO 64 13.40 S 043 15.52 E GPS	-9	4447	8	4449	4530	31 1-8,20,23,24,26,27,37,42,93-95	
49NZ20130106 S04I	148	1	ROS 012913 0402	EN 64 13.30 S 043 15.36 E GPS	-9	4452					
49NZ20130106 S04I	149	1	ROS 012913 0745	BE 64 27.82 S 041 37.00 E GPS	-9	4408					
49NZ20130106 S04I	149	1	BUC 012913 0753	UN 64 27.79 S 041 36.87 E GPS	-9	4414				1,20	1.5C
49NZ20130106 S04I	149	1	ROS 012913 0854	BO 64 27.74 S 041 36.93 E GPS	-9	4414	9	4406	4491	31 1-8,20,27,93	
49NZ20130106 S04I	149	1	ROS 012913 1048	EN 64 27.69 S 041 37.00 E GPS	-9	4413					
49NZ20130106 S04I	150	1	ROS 012913 1416	BE 64 41.28 S 040 5.19 E GPS	-9	4712					
49NZ20130106 S04I	150	1	BUC 012913 1424	UN 64 41.30 S 040 5.16 E GPS	-9	4714				1,20,31,33	1.6C
49NZ20130106 S04I	150	1	ROS 012913 1529	BO 64 41.31 S 040 5.10 E GPS	-9	4714	9	4709	4805	34 1-8,20,23,24,26,27,31,33,34,93	
49NZ20130106 S04I	150	1	ROS 012913 1729	EN 64 41.29 S 040 4.99 E GPS	-9	4713					
49NZ20130106 S04I	151	1	ROS 012913 2132	BE 64 56.19 S 038 28.26 E GPS	-9	4839					
49NZ20130106 S04I	151	1	BUC 012913 2140	UN 64 56.19 S 038 28.25 E GPS	-9	4842				1,20	1.5C
49NZ20130106 S04I	151	1	ROS 012913 2247	BO 64 56.10 S 038 28.14 E GPS	-9	4843	9	4834	4934	33 1-8,20,23,24,26,27,37,42,92-95	
49NZ20130106 S04I	151	1	ROS 013013 0050	EN 64 55.89 S 038 27.84 E GPS	-9	4841					
49NZ20130106 S04I	152	1	ROS 013013 0344	BE 65 8.07 S 037 20.95 E GPS	-9	4836					
49NZ20130106 S04I	152	1	BUC 013013 0352	UN 65 8.07 S 037 20.90 E GPS	-9	4836				1,20	1.3C
49NZ20130106 S04I	152	1	ROS 013013 0458	BO 65 7.95 S 037 20.74 E GPS	-9	4836	8	4841	4932	33 1-8,20,27,93	
49NZ20130106 S04I	152	1	ROS 013013 0659	EN 65 7.77 S 037 20.66 E GPS	-9	4836					
49NZ20130106 S04I	153	1	ROS 013013 0951	BE 65 18.04 S 036 7.42 E GPS	-9	4647					
49NZ20130106 S04I	153	1	BUC 013013 0959	UN 65 18.01 S 036 7.33 E GPS	-9	4650				1,20	1.1C
49NZ20130106 S04I	153	1	ROS 013013 1104	BO 65 18.03 S 036 7.26 E GPS	-9	4645	10	4642	4734	33 1-8,12,13,20,23,24,26,27,37,42,93-95	
49NZ20130106 S04I	153	1	ROS 013013 1307	EN 65 17.98 S 036 7.17 E GPS	-9	4648					
49NZ20130106 S04I	154	1	ROS 013013 1615	BE 65 32.53 S 034 55.75 E GPS	-9	4529					
49NZ20130106 S04I	154	1	BUC 013013 1624	UN 65 32.53 S 034 55.73 E GPS	-9	4527				1,20	1.0C
49NZ20130106 S04I	154	1	ROS 013013 1726	BO 65 32.49 S 034 55.54 E GPS	-9	4526	10	4523	4610	32 1-8,20,27,93	
49NZ20130106 S04I	154	1	ROS 013013 1921	EN 65 32.27 S 034 55.49 E GPS	-9	4528				, , ,	
49NZ20130106 S04I	155	1	ROS 013013 2119	BE 65 41.84 S 034 14.85 E GPS	-9	3155					
49NZ20130106 S04I	155	1	BUC 013013 2127	UN 65 41.82 S 034 14.84 E GPS	-9	3154				1,20	0.3C
49NZ20130106 S04I	155	1		BO 65 41.78 S 034 14.84 E GPS	-9	3158	10	3157	3207	26 1-8,20,23,24,26,27,93	
49NZ20130106 S04I	155		ROS 013013 2339	EN 65 41.74 S 034 14.72 E GPS	-9	3162					
49NZ20130106 S04I	156	1	ROS 013113 0141	BE 65 41.97 S 033 29.30 E GPS	-9	1757					
49NZ20130106 S04I	156	1		UN 65 41.95 S 033 29.30 E GPS	-9	1761				1,20,31,33,34,82	0.5C
49NZ20130106 S04I	156	1		BO 65 41.91 S 033 29.29 E GPS	-9	1761	10	1748	1769	23 1-8,20,23,24,26,27,31,33,34,82,92,93,96	
49NZ20130106 S04I	156	1		EN 65 41.77 S 033 29.21 E GPS	-9	1767			×=	-, -, -, , -, ,-,-,-,-,-,-,-,-,-,-,-	
49NZ20130106 S04I	157	1	ROS 013113 0903	BE 66 0.01 S 036 0.00 E GPS	-9	4366					
49NZ20130106 S04I	157	1		UN 66 0.01 S 035 59.97 E GPS	-9	4361				1,20,90	1.1C
49NZ20130106 S04I	157	_	ROS 013113 1011	BO 66 0.02 S 036 0.14 E GPS	-9	4365	10	4356	4441	32 1-8,20,23,24,26,27,37,42,90,93-95	
		_					_•			, -,,,,,,,	

49NZ201301	106 S04I	157	1 R	os 013113 1202	EN 65 59.87 S 0	36 0.34 E GPS	-9	4360					
49NZ201301	106 S04I	158	1 R	os 013113 1456	BE 66 29.96 S 0	35 59.93 E GPS	-9	4514					
49NZ201301	106 S04I	158	1 B	UC 013113 1504	UN 66 29.95 S 0	35 59.97 E GPS	-9	4512				1,20	0.3C
49NZ201301	106 S04I	158	1 U	NK 013113 1520	UN 66 29.96 S 0	36 0.00 E GPS	-9	4511				90	THROUGH HULL PUMP
49NZ201301	106 S04I	158	1 R	os 013113 1606	BO 66 29.97 S 0	35 59.97 E GPS	-9	4510	7	4507	4597	32 1-8,20,23,24,26,27,37,42,93-95	
49NZ201301	106 S04I	158	1 R	os 013113 1801	EN 66 29.91 S 0	36 0.27 E GPS	-9	4509					
49NZ201301	106 S04I	162	1 R	os 020113 0326	BE 68 3.65 S 0	37 58.64 E GPS	-9	3271					
49NZ201301	106 S04I	162	1 B	UC 020113 0335	UN 68 3.60 S 0	37 58.64 E GPS	-9	3274				1,20,31,33,34	-1.2C
49NZ201301	106 S04I	162	1 R	os 020113 0421	BO 68 3.41 S 0	37 58.96 E GPS	-9	3277	9	3282	3324	28 1-8,20,23,24,26,27,31,33,34,37,42,92-96	
49NZ201301	106 S04I	162	1 R	os 020113 0550	EN 68 3.08 S 0	37 59.05 E GPS	-9	3287					
49NZ201301	106 S04I	163	1 R	os 020113 0909	BE 67 29.99 S 0	37 59.97 E GPS	-9	4094					
49NZ201301	106 S04I	163	1 B	UC 020113 0917	UN 67 30.00 S 0	37 59.99 E GPS	-9	4095				1,20	0.4C
49NZ201301	106 S04I	163	1 R	os 020113 1013	BO 67 30.05 S 0	38 0.04 E GPS	-9	4089	9	4088	4165	31 1-8,20,27,93	
49NZ201301	106 S04I	163	1 R	os 020113 1209	EN 67 30.00 S 0	37 59.94 E GPS	-9	4091					
49NZ20130	106 S04I	164	1 R	os 020113 1513	BE 66 60.00 S 0	37 59.81 E GPS	-9	4415					
49NZ201301	106 S04I	164	1 B	UC 020113 1521	UN 67 0.03 S 0	37 59.71 E GPS	-9	4416				1,20	0.5C
49NZ20130	106 S04I	164	1 R	os 020113 1620	BO 67 0.09 S 0	37 59.78 E GPS	-9	4413	8	4417	4500	33 1-8,20,23,24,26,27,34,37,42,93-95	
49NZ20130	106 S04I	164	1 R	os 020113 1815	EN 67 0.19 S 0	37 59.56 E GPS	-9	4417					
49NZ20130	106 S04I	165	1 R	os 020113 2110	BE 66 30.11 S 0	37 59.88 E GPS	-9	4604					
49NZ20130	106 S04I	165	1 B	UC 020113 2118	UN 66 30.17 S 0	37 59.87 E GPS	-9	4603				1,20	0.9C
49NZ20130	106 S04I	165	1 R	os 020113 2125	EN 66 30.19 S 0	37 59.86 E GPS	-9	4603					ABORTED, A JELLYFISH IN TC-DUCT
49NZ201301	106 S04I	165	2 R	os 020113 2140	BE 66 30.22 S 0	37 59.90 E GPS	-9	4601					
49NZ201301	106 S04I	165	2 R	os 020113 2251	BO 66 30.30 S 0	37 59.98 E GPS	-9	4601	9	4596	4688	33 1-8,20,27,34,93	
49NZ201301	106 S04I	165	2 R	os 020213 0050	EN 66 30.33 S 0	38 0.07 E GPS	-9	4604					
49NZ201301	106 S04I	167	1 R	os 020213 0550	BE 65 29.97 S 0	37 59.99 E GPS	-9	4788					
49NZ201301	106 S04I	167	1 B	UC 020213 0558	UN 65 29.96 S 0	38 0.01 E GPS	-9	4787				1,20	1.3C
49NZ201301	106 S04I	167	1 X	CT 020213 0603	DE 65 29.95 S 0	38 0.03 E GPS	-9	4788					TSK XCTD-4 #12099194
49NZ201301	106 S04I	167	1 R	os 020213 0703	BO 65 29.85 S 0	37 59.88 E GPS	-9	4787	10	4786	4879	34 1-8,20,27,34,93	
49NZ20130	106 S04I	167	1 R	os 020213 0911	EN 65 29.60 S 0	37 59.58 E GPS	-9	4786					
49NZ201301	106 S04I	166	1 R	os 020213 1159	BE 66 0.11 S 0	38 0.09 E GPS	-9	4722					
49NZ201301	106 S04I	166	1 B	UC 020213 1206	UN 66 0.12 S 0	38 0.09 E GPS	-9	4721				1,20	1.1c
49NZ201301	106 S04I	166	1 X	CT 020213 1212	DE 66 0.11 S 0	38 0.09 E GPS	-9	4720					TSK XCTD-4 #12099193
49NZ201301	106 S04I	166	1 R	os 020213 1311	BO 65 59.99 S 0	38 0.05 E GPS	-9	4723	8	4719	4813	33 1-8,20,23,24,26,27,34,37,42,92-95	
49NZ201301	106 S04I	166	1 R	os 020213 1512	EN 65 59.93 S 0	38 0.02 E GPS	-9	4720					
49NZ201301	106 999	903	1 U	NK 020213 1524	BE 66 0.01 S 0	38 1.93 E GPS	-9	4720					3-AXIS MAGNETMETER CALIBRATION
49NZ201301	106 999	903	1 U	NK 020213 1554	EN 66 0.32 S 0	38 2.11 E GPS	-9	4723					
49NZ201301	106 999	904	1 U	NK 020913 0000	BE 53 23.66 S 0	91 38.02 E GPS	-9	4361					3-AXIS MAGNETMETER CALIBRATION
49NZ201301	106 999	904	1 U	NK 020913 0030	EN 53 23.21 S 0	91 38.89 E GPS	-9	4362					
49NZ201301	106 999	905	1 U	NK 021313 0702	BE 37 43.65 S 1	10 38.18 E GPS	-9	4319					3-AXIS MAGNETMETER CALIBRATION
49NZ201301	106 999	905	1 U	NK 021313 0729	EN 37 44.19 S 1	10 38.49 E GPS	-9	4301					

Water sample parameters:

Number	Parameter	Mnemonic	Mnemonic for		
			expected error		
1	Salinity	ALNTY			
2	Oxygen	OXYGEN			
3	Silicate	SILCAT	SILUNC *1		
4	Nitrate	NITRAT	NRAUNC *1		
5	Nitrite	NITRIT	NRIUNC *1		
6	Phosphate	PHSPHT	PHPUNC *1		
7	Freon-11	CFC-11			
8	Freon-12	CFC-12			
12	14Carbon	DELC14	C14ERR		
13	13Carbon	DELC13	C13ERR		
20	Ratio of O18 to O16	018/016			
22	137Cesium	CS-137	CS137ER *2		
23	Total carbon	TCARBN			
24	Total alkalinity	ALKALI			
26	рН	PH			
27	Freon-113	CFC113			
28	Carbon tetrachloride	CCL4			
31	Methane	CH4			
33	Nitrous oxide	N20			
34	Chlorophyll-a	CHLORA			
37	Biogenic sulfur compounds	DMS			
40	Particulate organic carbon	PO14C			
42	Abundance of bacteriaBACT				
47	Plutonium	PLUTO	PLUTOER *2		
64	Incubation				
81	Particulate organic matter	POM			
82	15N-Nitrate	15NO3			
83	Particulate inorganic matter	PIM			
89	134Cesium	CS-134	CS134ER		
90	Perfluoroalkyl substances	PFAS			
91	Iodine-129	I-129			
92	Density salinity	DNSSAL			
93	Sulfur hexafluoride	SF6			
94	Isoprene				
95	Pigment				
96	Chlorophyll-a isotope				

Figure captions

Figure 1	Station locations for WHP P14S, S04I revisit in 2012 cruise with bottom topography.		
		Figure 10	Density (upper: σ_0 , lower: σ_4) (kg/m³) cross sections calculated by using CTD temperature and
Figure 2	Bathymetry measured by Multi Narrow Beam Echo Sounding system.		salinity data. Vertical exaggeration of the 0-1500 m and 1500-6500 m section are 2500:1 and 1000:1,
			respectively, except for short meridional sections (38°E, 53°E). For the short sections, vertical
Figure 3	Surface wind measured at 25 m above sea level. Wind data is averaged over 6-hour.		exaggeration of the 0-1500 m and 1500-6500 m section are 250:1 and 625:1, respectively. (a) EOS- $$
			80 and (b) TEOS-10 definition.
Figure 4	(a) Sea surface temperature (°C), (b) sea surface salinity (psu), (c) sea surface oxygen (µmol/		
	kg), and (d) sea surface chlorophyll $a (\text{mg/m}^3)$ measured by the Continuous Sea Surface Water	Figure 11	Neutral density (γ^{n}) (kg/m³) cross sections calculated by using CTD temperature and salinity
	Monitoring System.		data. Vertical exaggeration is same as Fig. 7.
Figure 5	Difference in the partial pressure of CO_2 between the ocean and the atmosphere, ΔpCO_2 .	Figure 12	CTD oxygen (µmol/kg) cross sections. Vertical exaggeration is same as Fig. 7.
Figure 6	Surface current at 100 m depth measured by ship board acoustic Doppler current profiler (ADCP).	Figure 13	CTD chlorophyll a (µg/L) cross sections. Vertical exaggeration of the upper 1000 m section is
			same as Fig. 7.
Figure 7	Potential temperature (°C) cross sections calculated by using CTD temperature and salinity data		
	calibrated by bottle salinity measurements. Vertical exaggeration of the 0-6500 m section is 1000:1,	Figure 14	CTD beam attenuation coefficient (m ⁻¹) cross sections. Vertical exaggeration is same as Fig. 7.
	and expanded section of the upper 1000 m is made with a vertical exaggeration of 2500:1, except		
	for short meridional sections (38°E, 53°E). For the short sections, vertical exaggeration of the	Figure 15	Bottle sampled dissolved oxygen (μ mol/kg) cross sections. Data with quality flags of 2 were
	0-6500 m and 0-1000 m section are 250:1 and 625:1, respectively.		plotted. Vertical exaggeration is same as Fig. 7.
Figure 8	CTD salinity (psu) cross sections calibrated by bottle salinity measurements. Vertical exaggeration	Figure 16	Silicate (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration
	is same as Fig. 7.		is same as Fig. 7.

Figure 9 Absolute salinity (g/kg) cross sections calculated by using CTD salinity data. Vertical

exaggeration is same as Fig. 7.

Figure 17	Nitrate (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration	Figure 26	SF_6 (fmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is
	is same as Fig. 7.		same as Fig. 7.
F: 10	Nitrite (E: 97	Constructions of comment and effective (control or constitution of the LADCD
rigure 18	Nitrite (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration of	rigure 21	Cross sections of current velocity (cm/s) normal to the cruise track measured by LADCP
	the upper 1000 m section is same as Fig. 7.		(eastward or northward is positive). Vertical exaggeration is same as Fig. 7.
F' 10		D' 00	D'''
Figure 19	Phosphate (μmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical	Figure 28	Difference in potential temperature (°C) between results from the WOCE cruise in 1995/96 and
	exaggeration is same as Fig. 7.		the revisit in 2012/13. Red and blue areas show areas where potential temperature increased and
			decreased in the revisit cruise, respectively. On white areas differences in temperature do not
Figure 20	Dissolved inorganic carbon ($\mu mol/kg$) cross sections. Data with quality flags of 2 were plotted.		exceed the detection limit of 0.002 $^{\circ}\text{C}.$ Vertical exaggeration is same as Fig. 7.
	Vertical exaggeration is same as Fig. 7.		
		Figure 29	Same as Fig. 28, but for salinity (psu). CTD salinity data with SSW batch correction ¹ were used.
Figure 21	Total alkalinity (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical		On white areas differences in salinity do not exceed the detection limit of 0.002 psu.
	exaggeration is same as Fig. 7.		
		Figure 30	Same as Fig. 28, but for dissolved oxygen (µmol/kg). CTD oxygen data were used. On white areas
Figure 22	pH cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig.		differences in dissolved oxygen do not exceed the detection limit of 2 $\mu mol/kg$.
	7.		
		Figure 31	Same as Fig. 30, but for bottle sampled dissolved oxygen (µmol/kg).
Figure 23	CFC-11 (pmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration		
	is same as Fig. 7.		
		Note	

Figure 24 CFC-12 (pmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration

Figure 25 CFC-113 (pmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration

1. As for the traceability of SSW to Kawano's value (Kawano et al., 2006), the offset for the batches P108

the recent batches are listed in Table A1 (Uchida et al., in preparation).

(WOCE S04P), P114 (WOCE P14S), P123 (WOCE S04), P124 (WOCE I09S), P125 (WOCE S04I) and P155 (the revisit) are 0.0017, 0.0020, 0.0007, 0.0006, 0.0002 and 0.0001, respectively. The offset values for

is same as Fig. 7.

is same as Fig. 7.

Table A1. SSW batch to batch differences from P145 to P157 (Uchida et al., in preparation). The difference of P145 is reevaluated.

Batch no.	Production date	K15	Sp	Batch to batch difference (×10 ⁻³)	
				Mantyla's standard	Kawano's standard
P145	2004/07/15	0.99981	34.9925	-2.3	-1.0
P146	2005/05/12	0.99979	34.9917	-2.8	-1.5
P147	2006/06/06	0.99982	34.9929	-1.9	-0.6
P148	2006/10/01	0.99982	34.9929	-1.3	0.0
P149	2007/10/05	0.99984	34.9937	-0.6	0.7
P150	2008/05/22	0.99978	34.9913	-0.6	0.7
P151	2009/05/20	0.99997	34.9984	-1.7	-0.4
P152	2010/05/05	0.99981	34.9926	-1.3	0.0
P153	2011/03/08	0.99979	34.9918	-0.9	0.4
P154	2011/10/20	0.99990	34.9961	-0.7	0.6
P155	2012/09/19	0.99981	34.9925	-1.2	0.1
P156	2013/07/23	0.99984	34.9937	-0.9	0.4
P157	2014/05/15	0.99985	34.9941	-2.0	-0.7

Reference

Kawano, T., M. Aoyama, T. Joyce, H. Uchida, Y. Takatsuki and M. Fukasawa (2006): The latest batch-to-batch difference table of standard seawater and its application to the WOCE onetime sections, J. Oceanogr., 62, 777–792.

Figure 1 Station locations

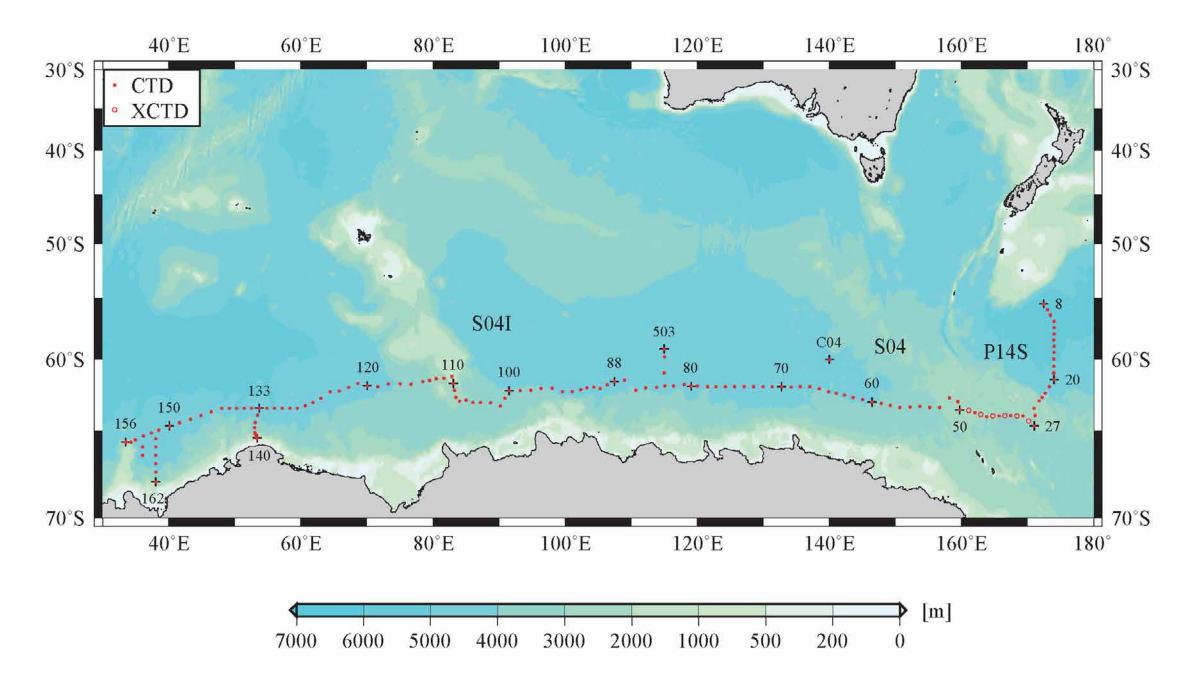


Figure 2
Bathymetry measured by Multi Narrow Beam Echo Sounding system

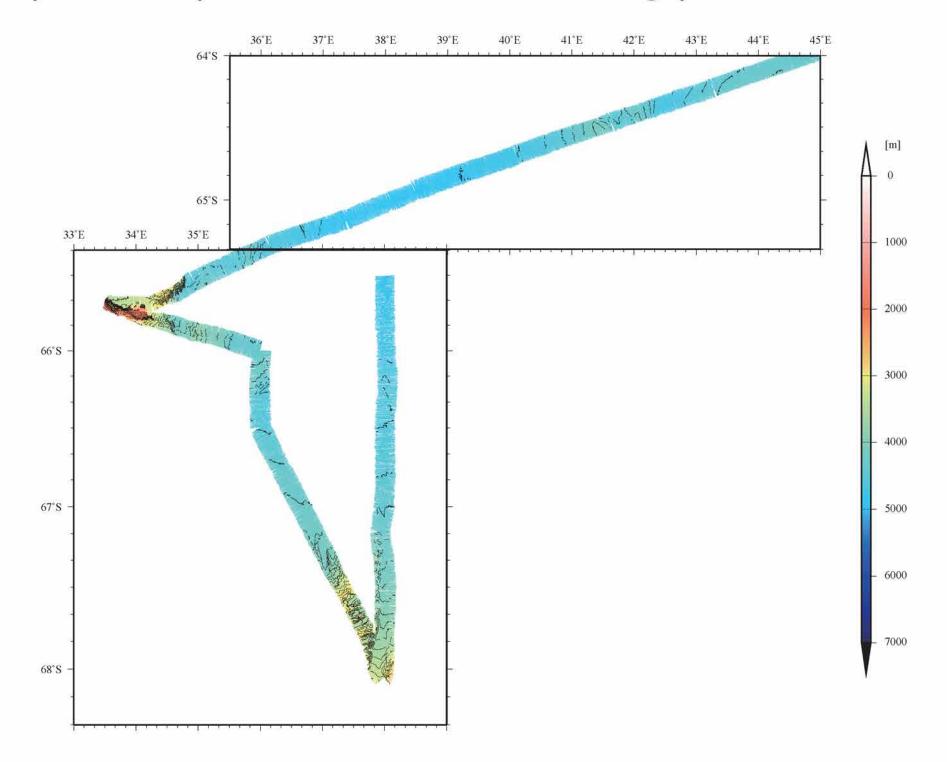


Figure 2 Continued

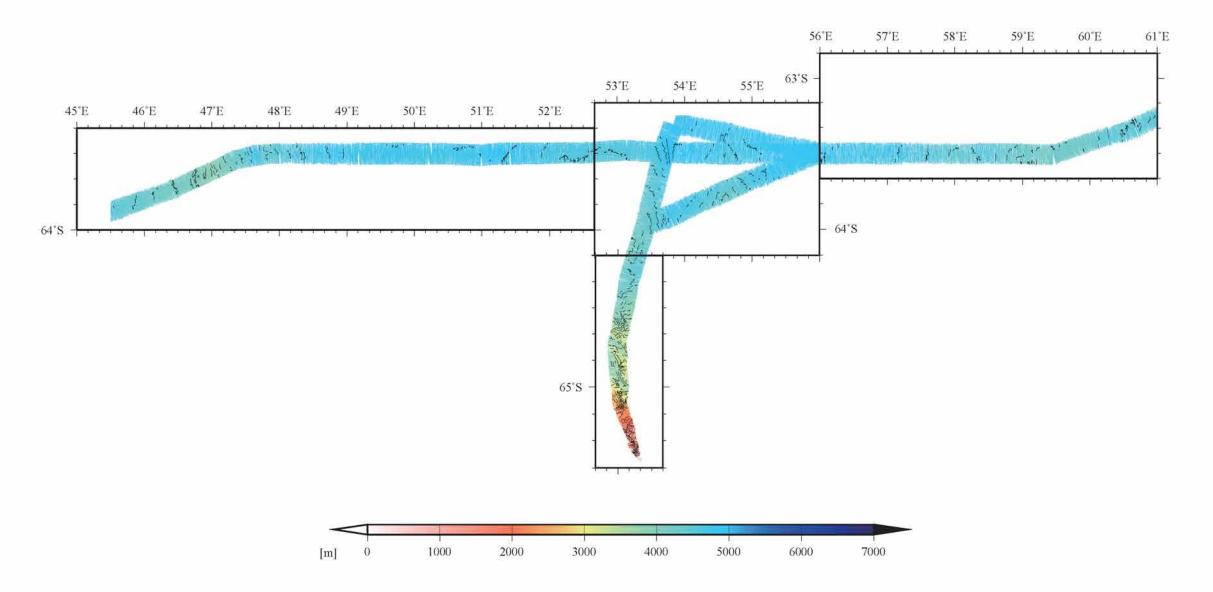


Figure 2 Continued

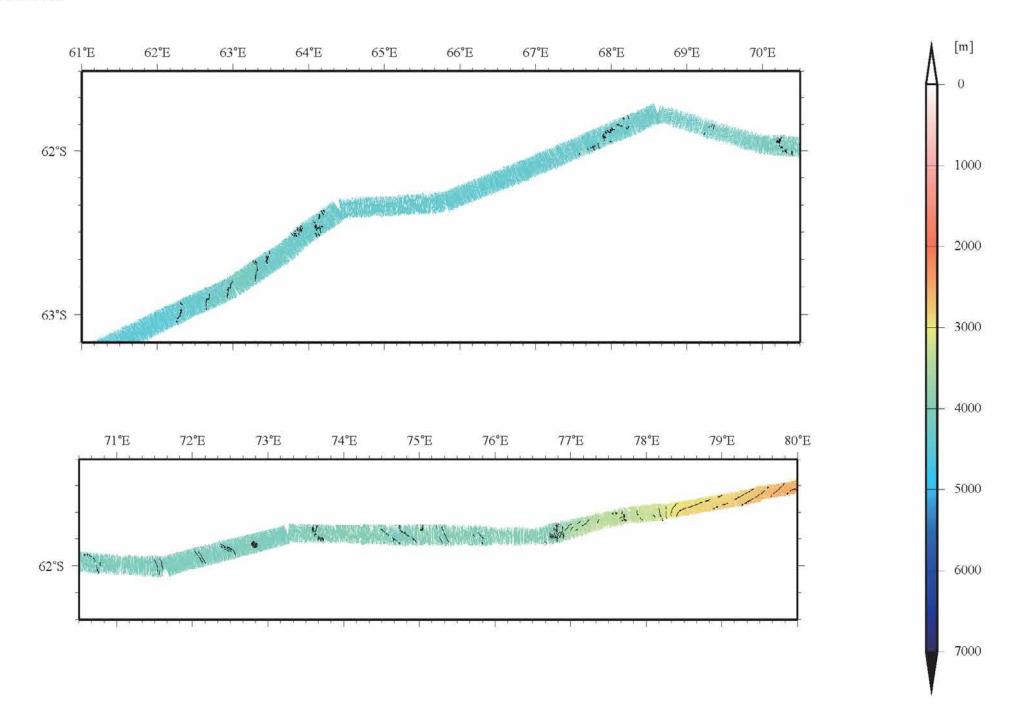


Figure 2 Continued

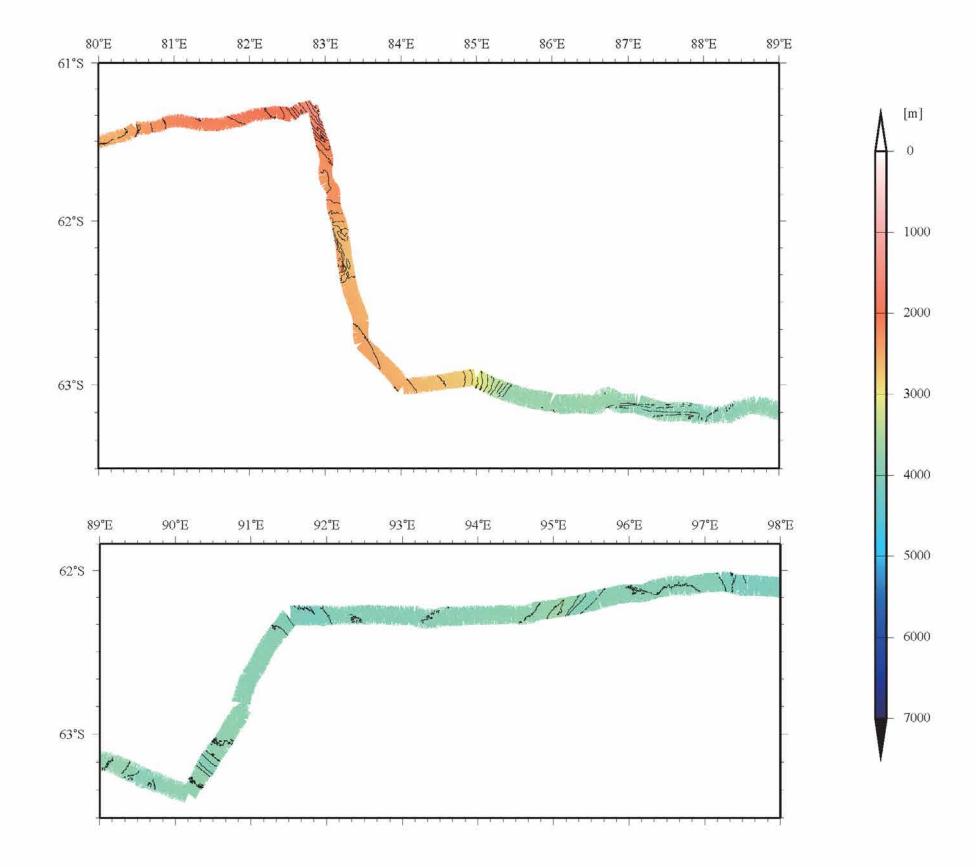


Figure 2 Continued

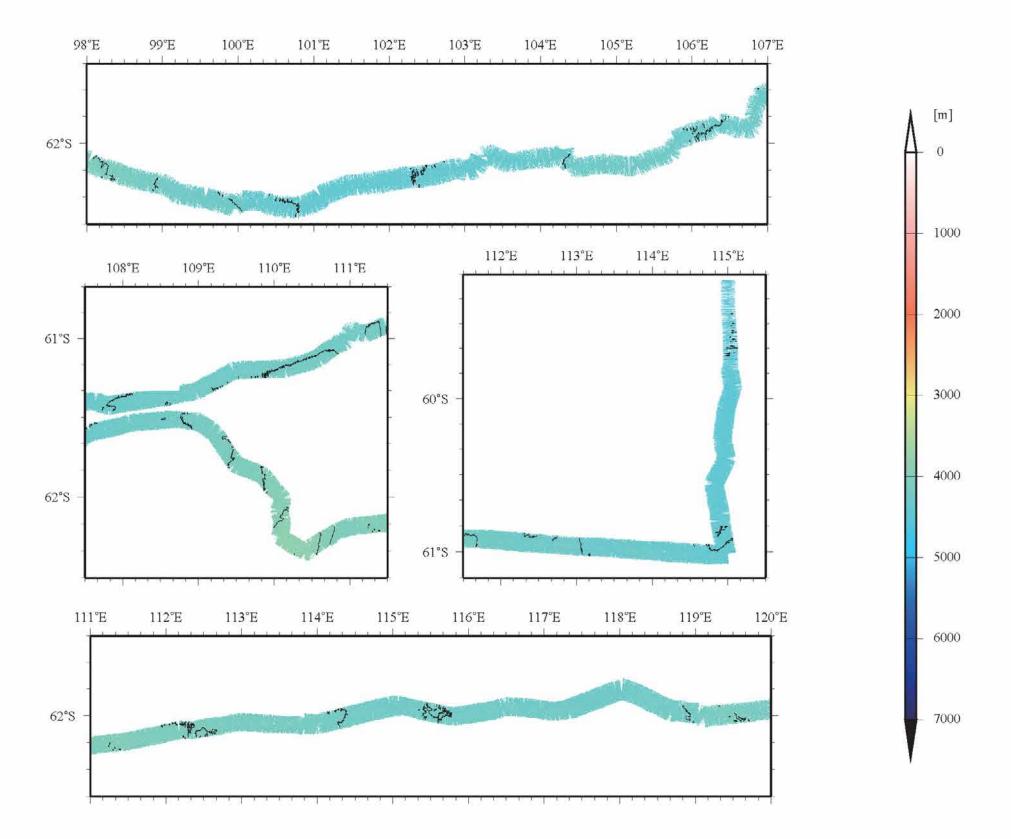


Figure 2
Continued

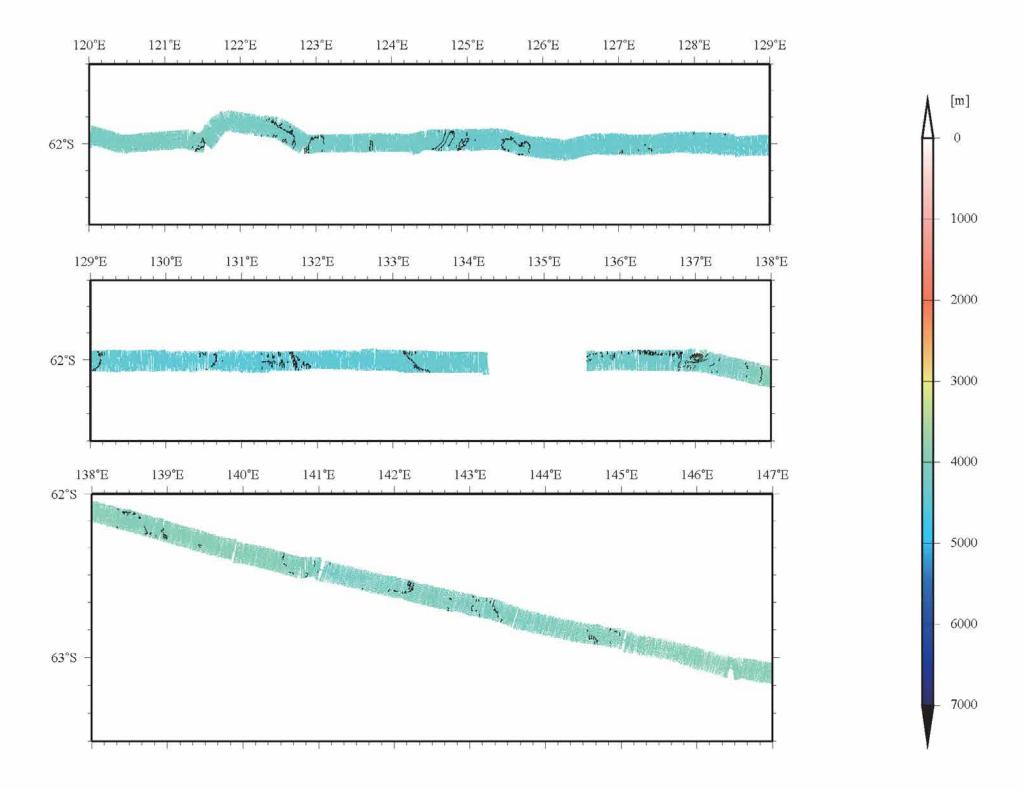


Figure 2
Continued

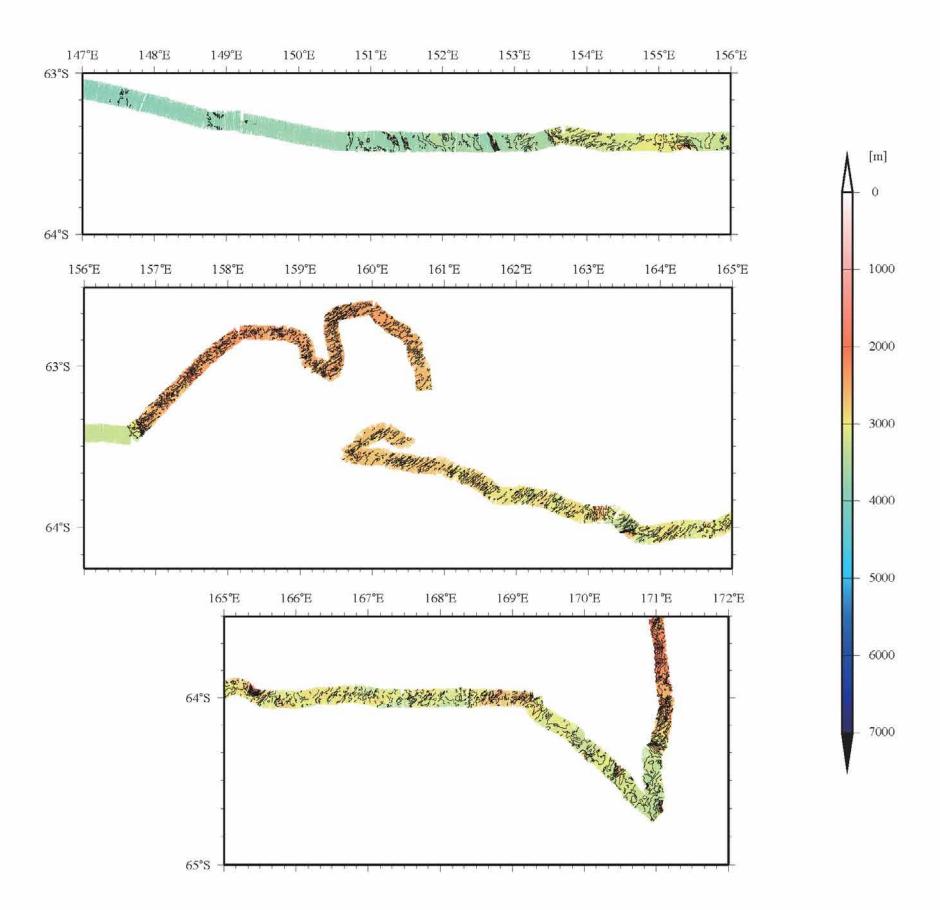


Figure 2 Continued

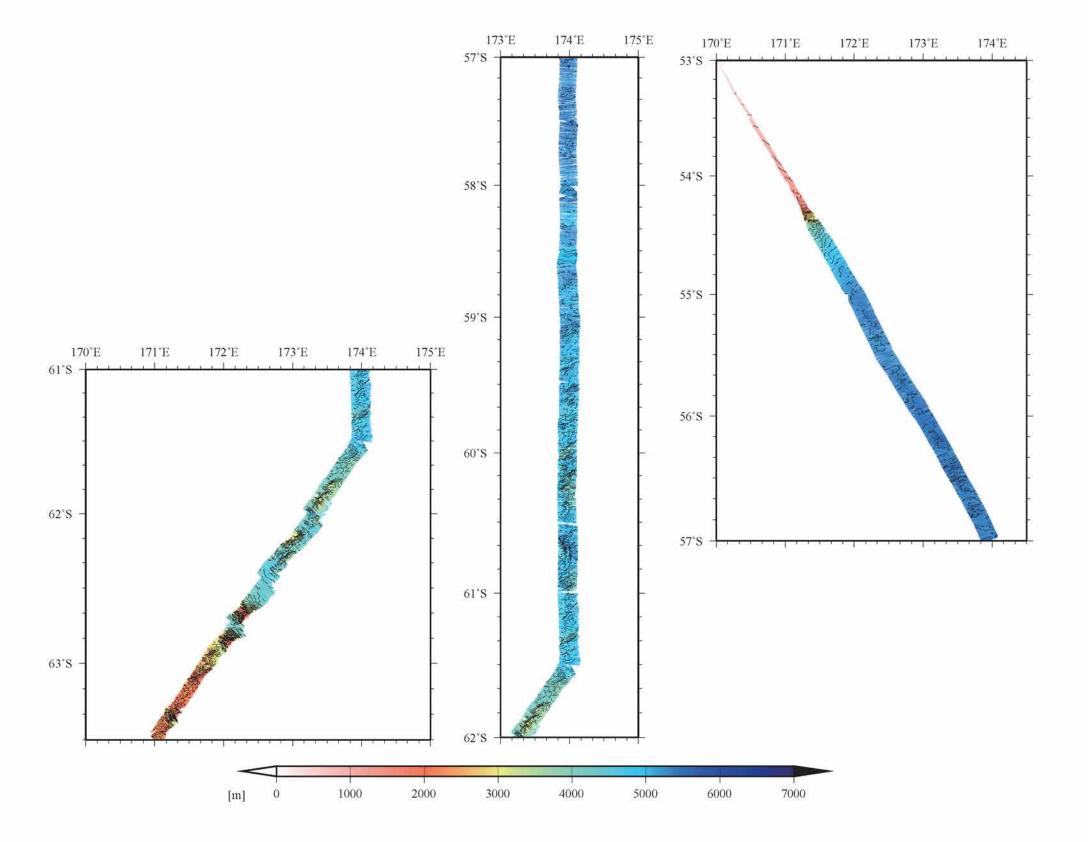


Figure 3
Surface wind measured at 25 m above sea level

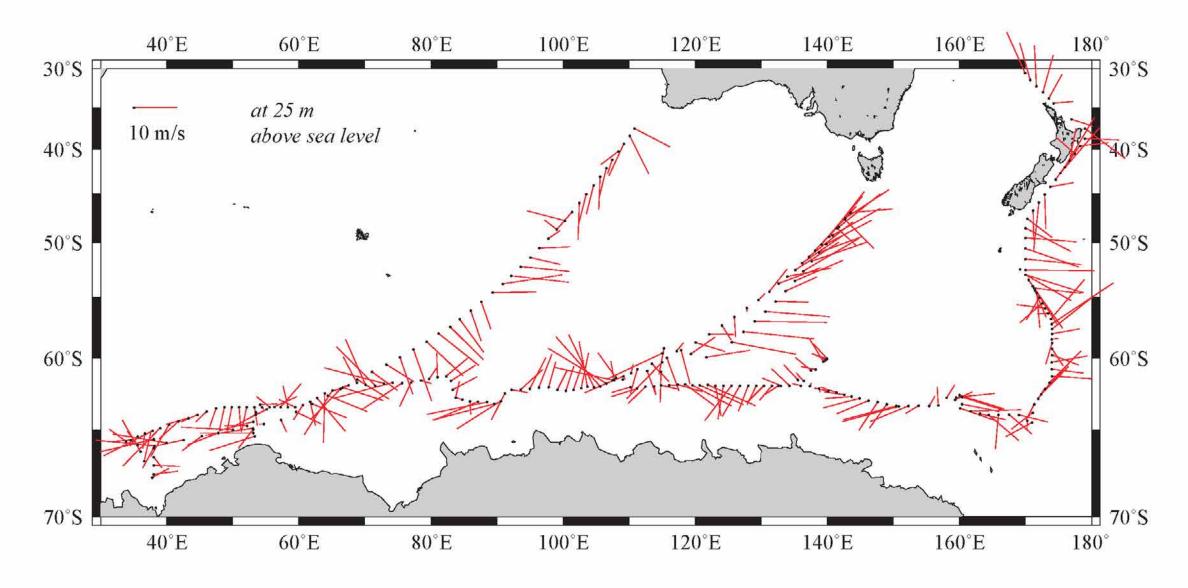


Figure 4a Sea surface temperature (°C)

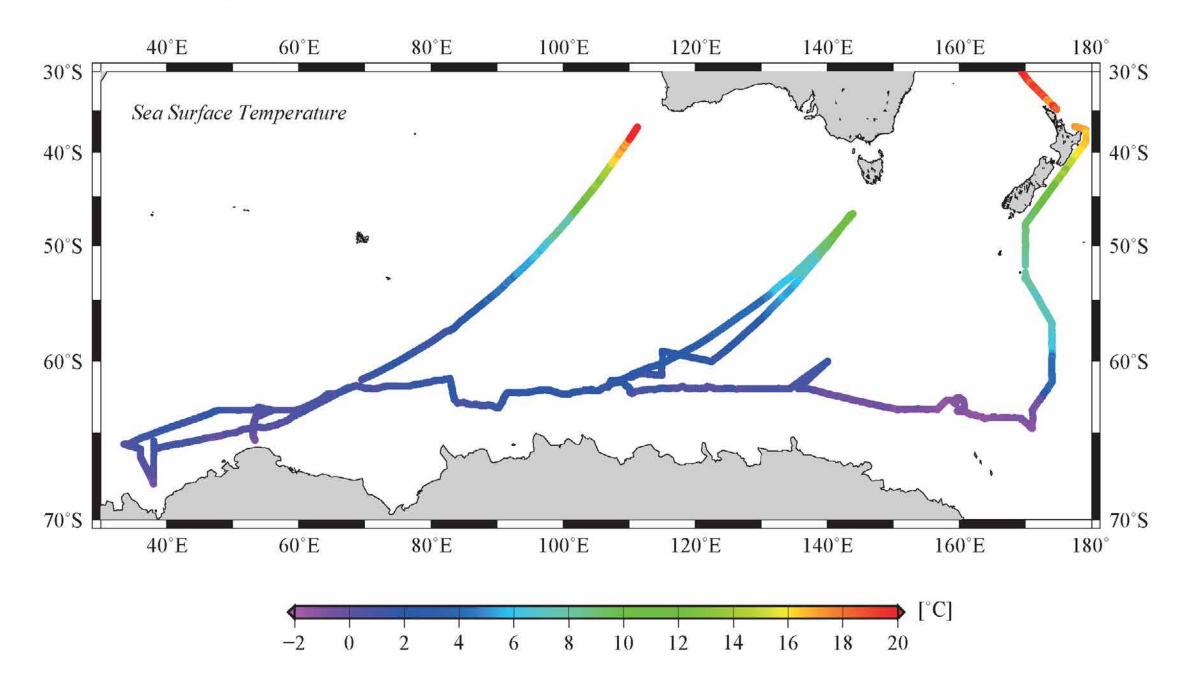


Figure 4b Sea surface salinity (psu)

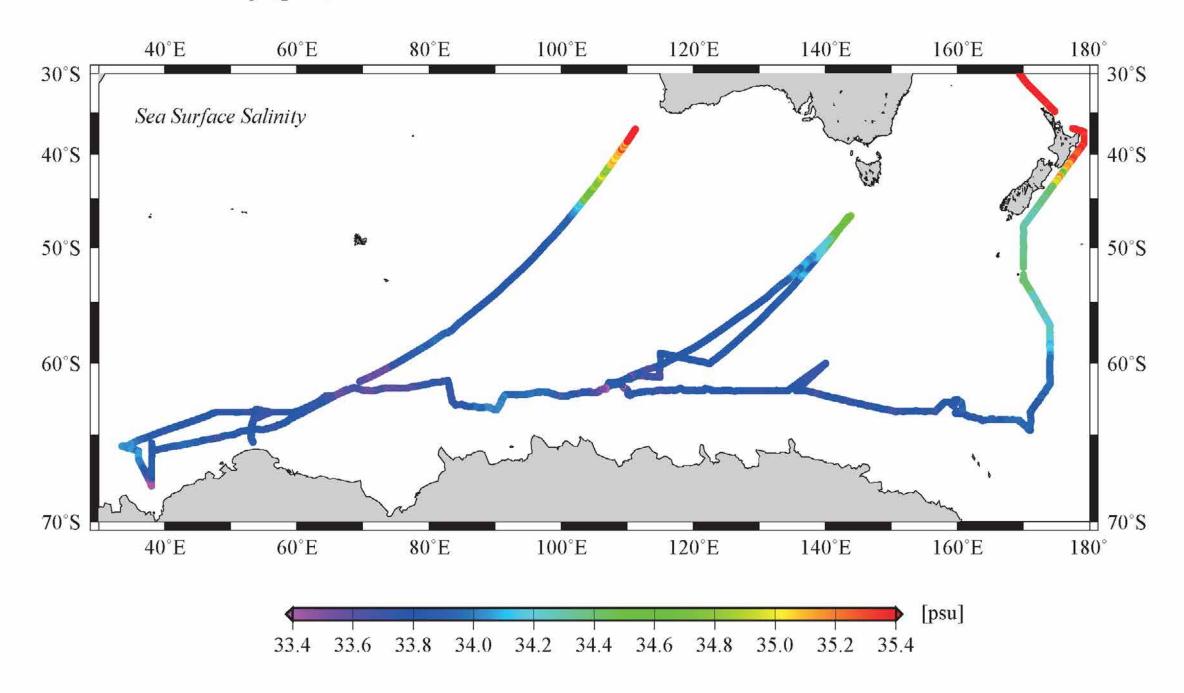


Figure 4c Sea surface oxygen (µmol/kg)

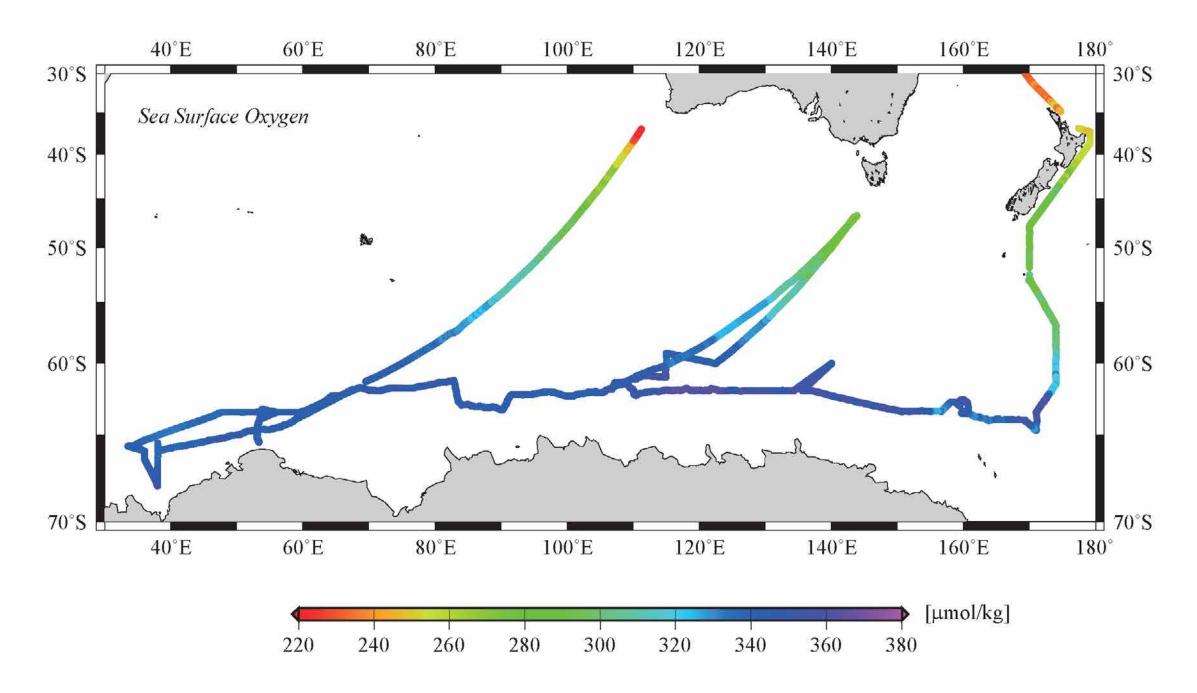


Figure 4d Sea surface chlorophyll *a* (mg/m³)

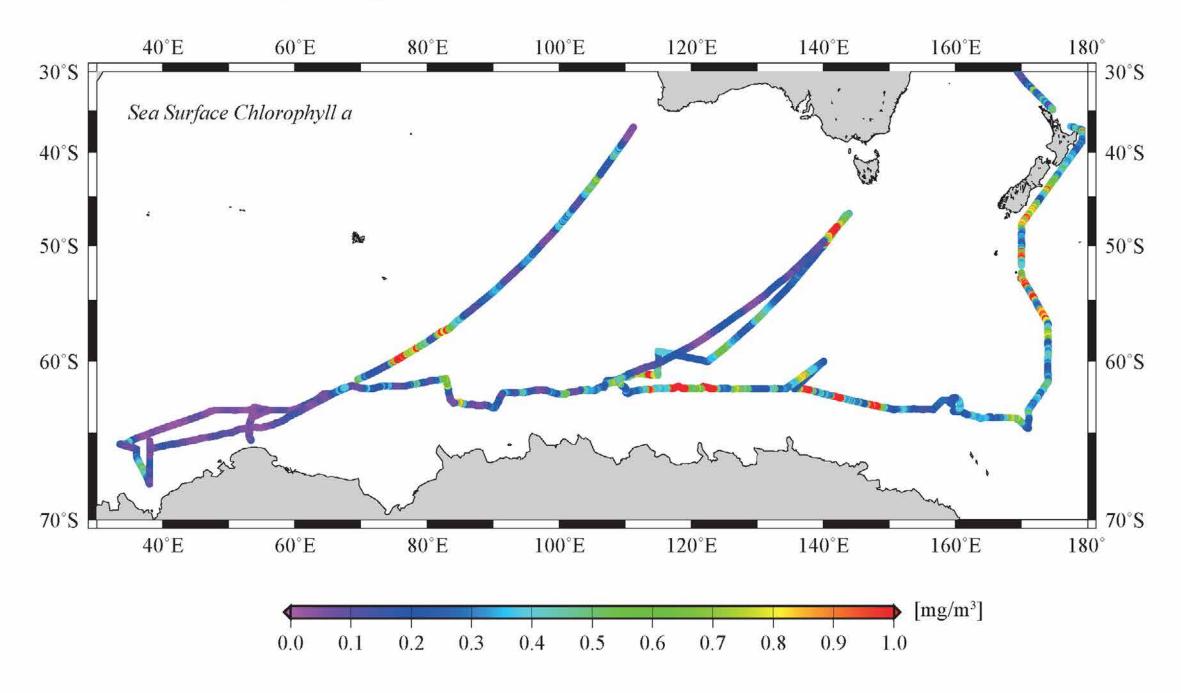


Figure 5 ΔpCO_2 (ppmv)

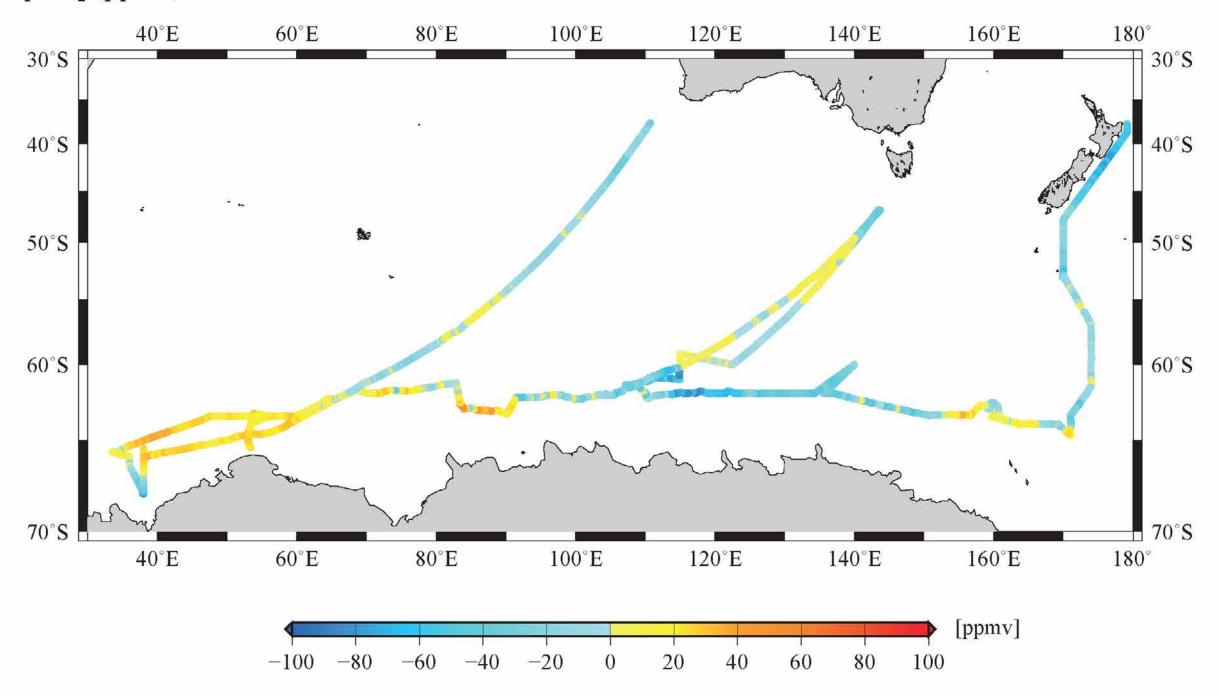


Figure 6
Surface current measured by shipboard ADCP

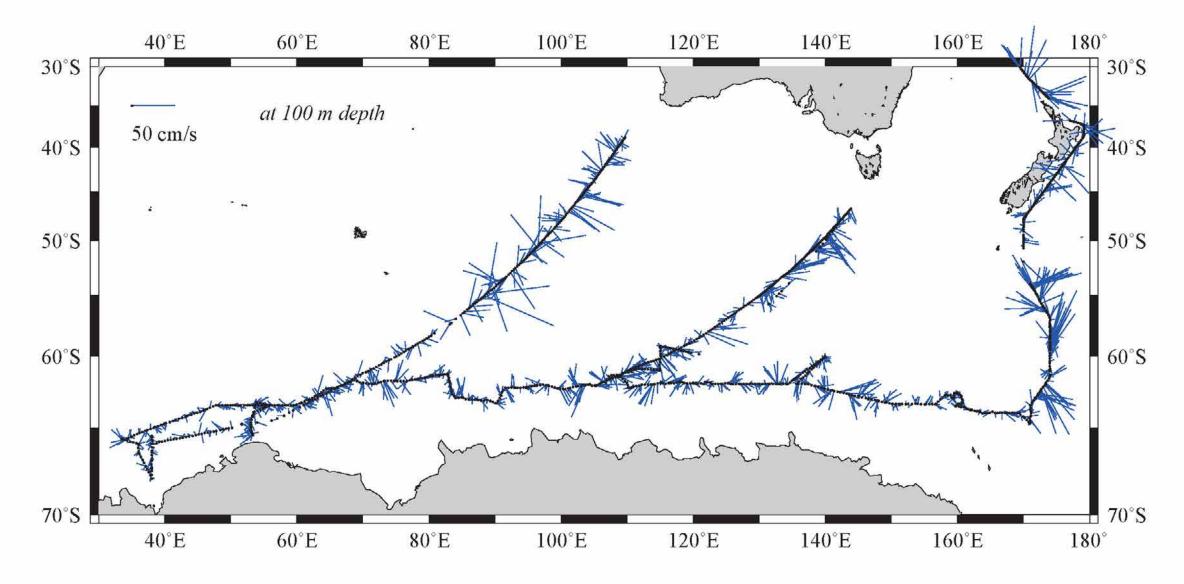
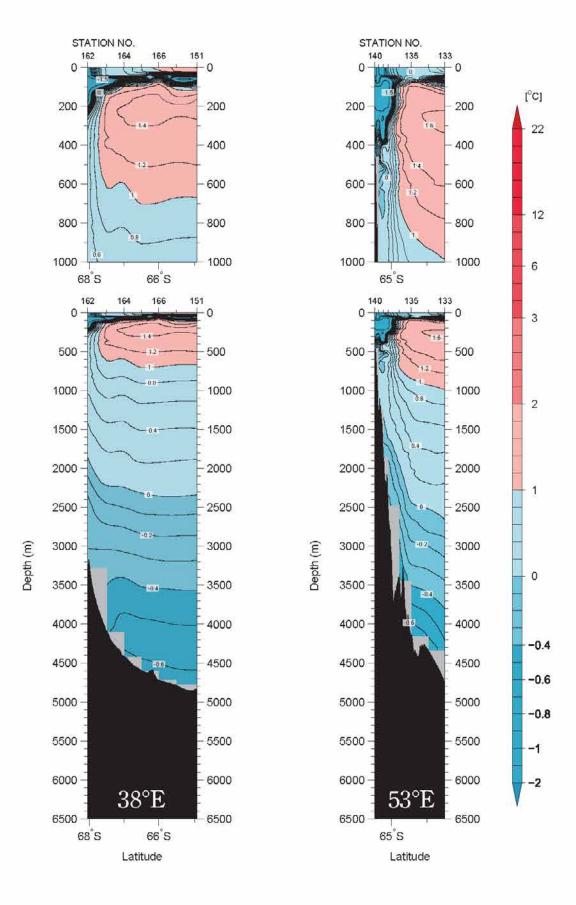



Figure 7
Potential temperature (°C)

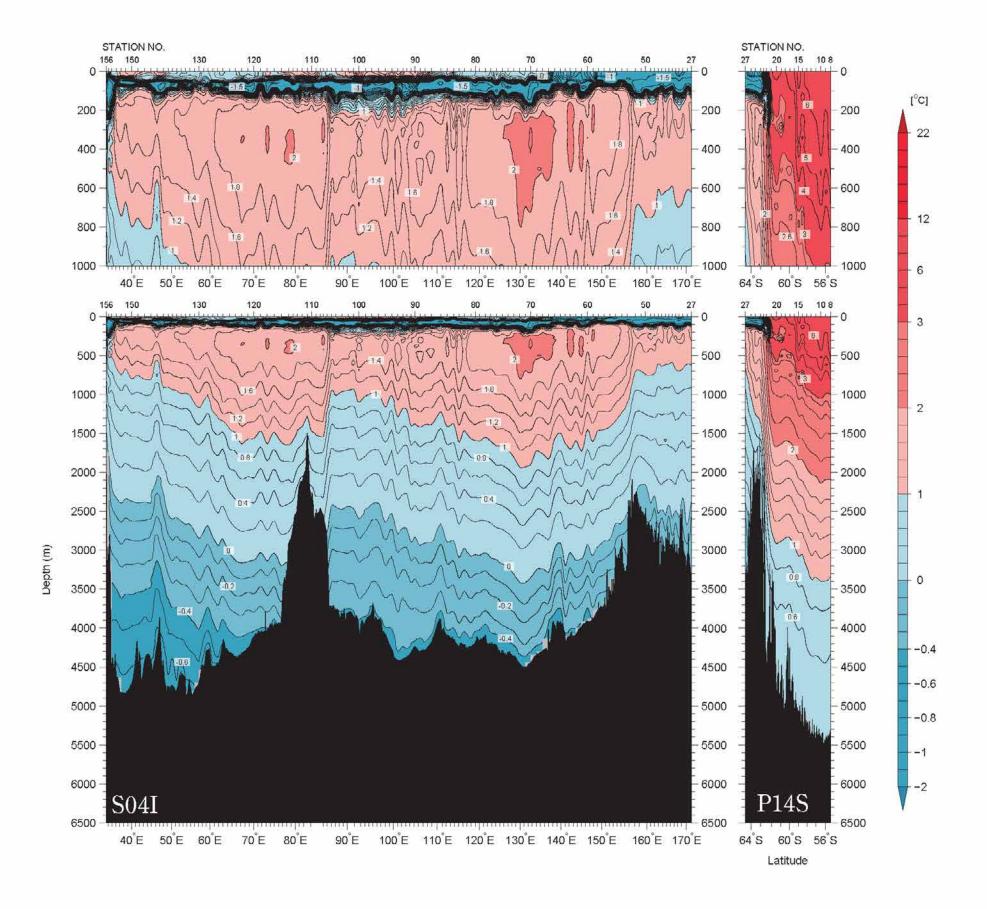
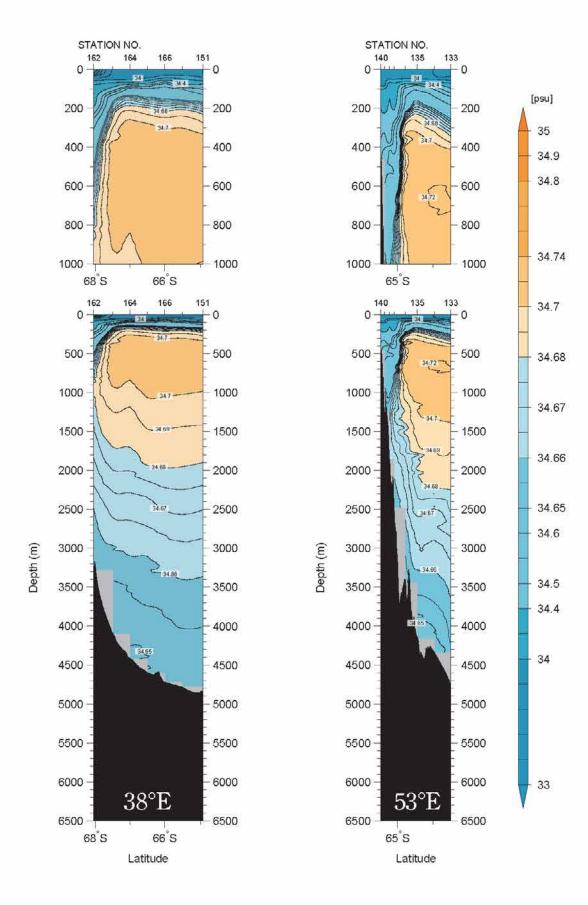



Figure 8
CTD salinity

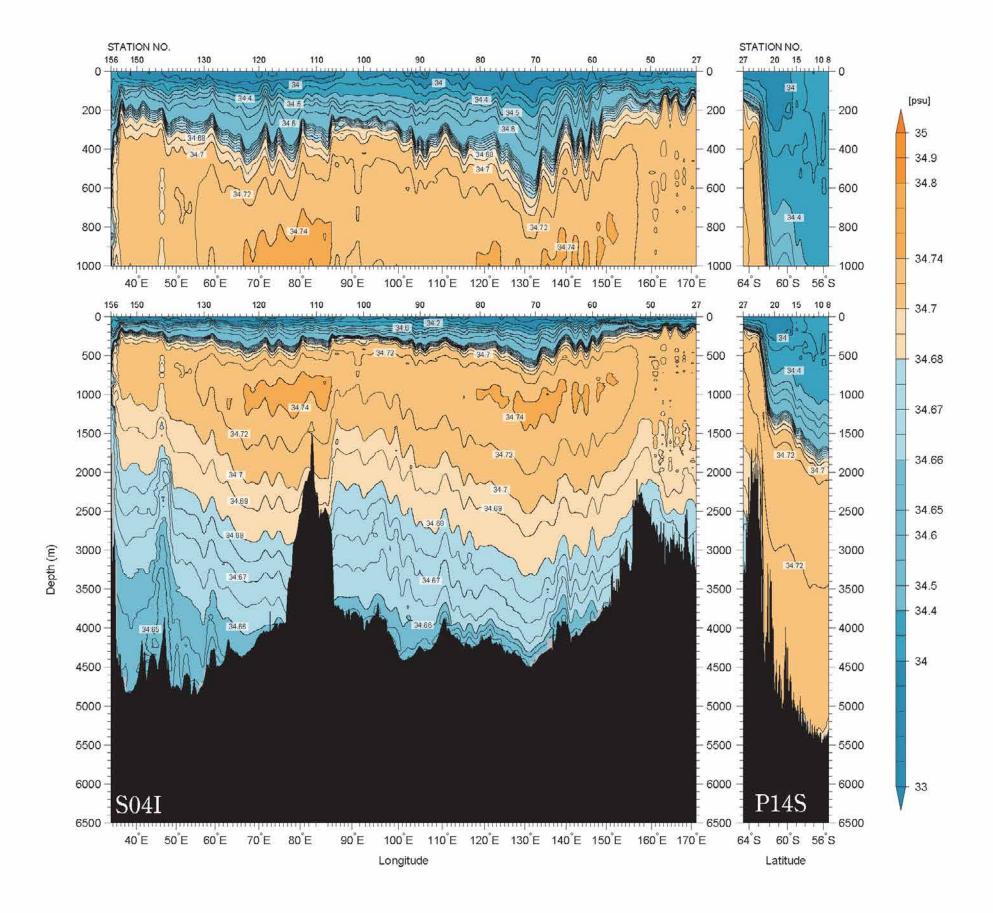
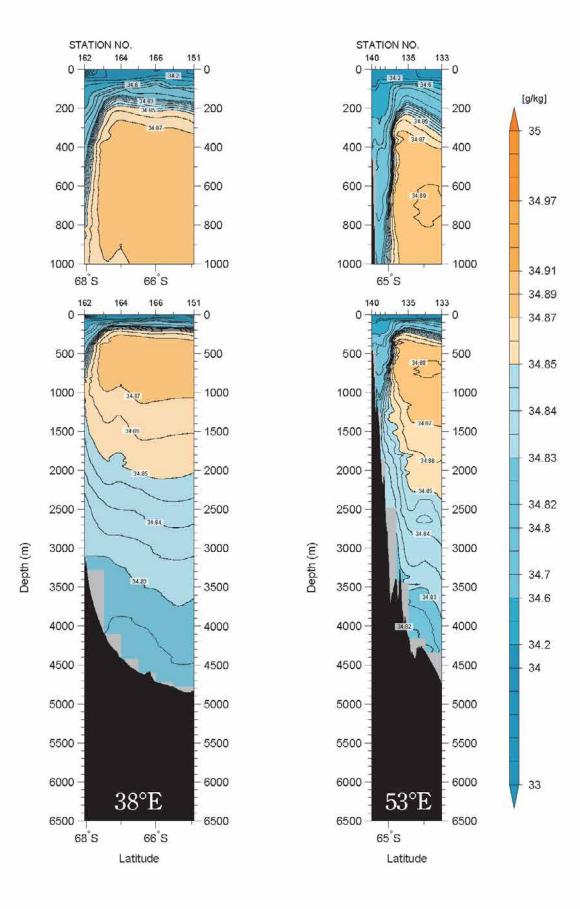



Figure 9 Absolute Salinity (g/kg)

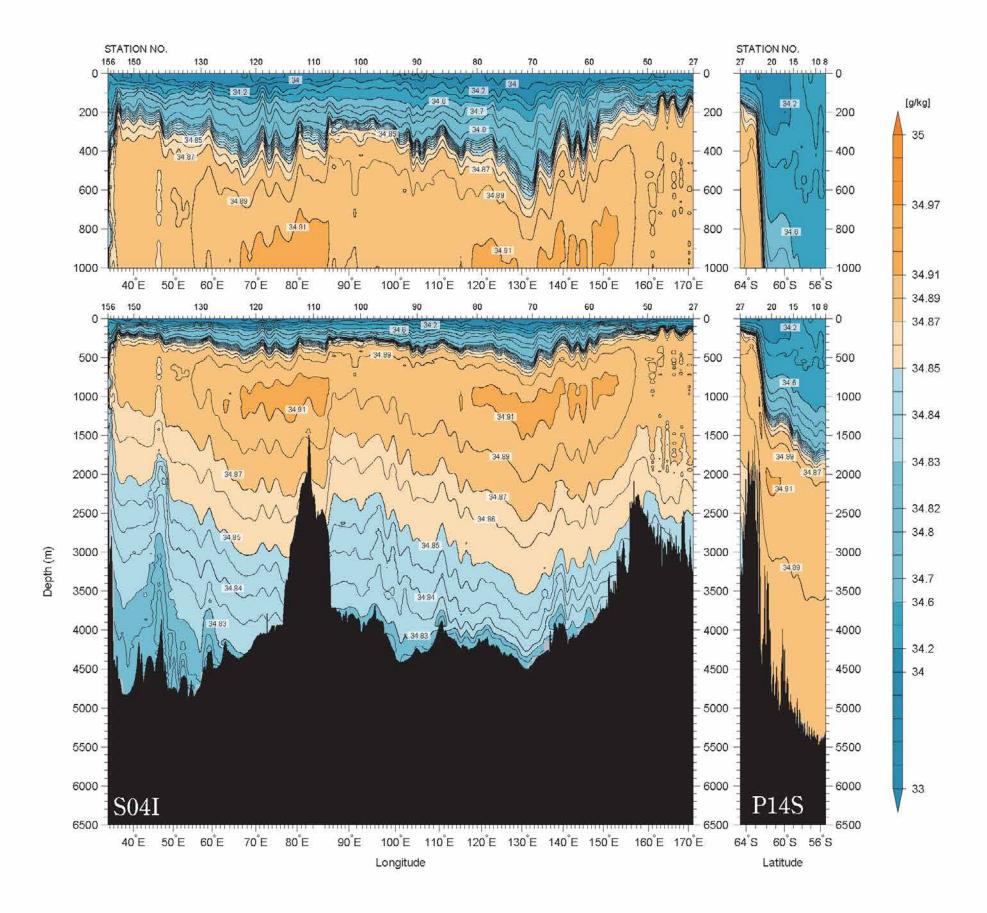
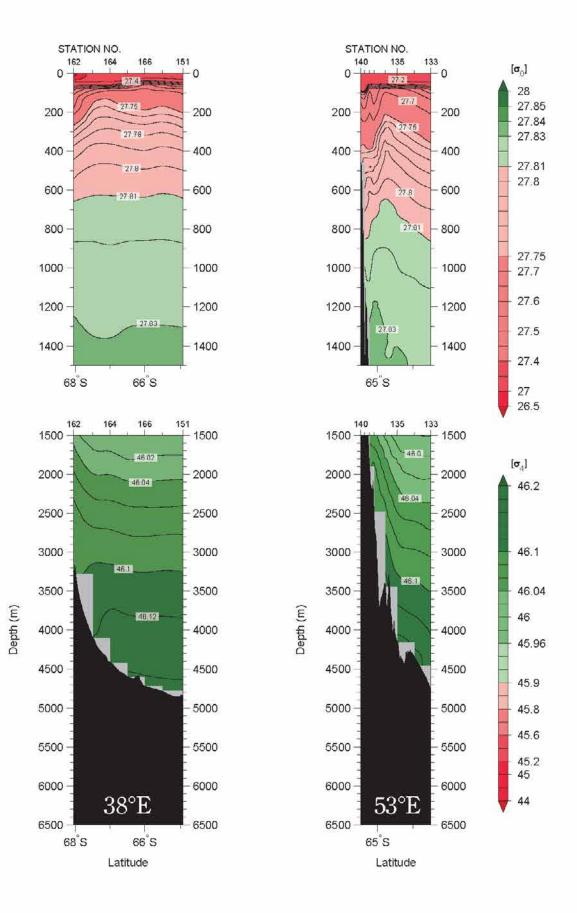



Figure 10a Density (upper: σ_0 , lower: σ_4) (kg/m³) (EOS-80)

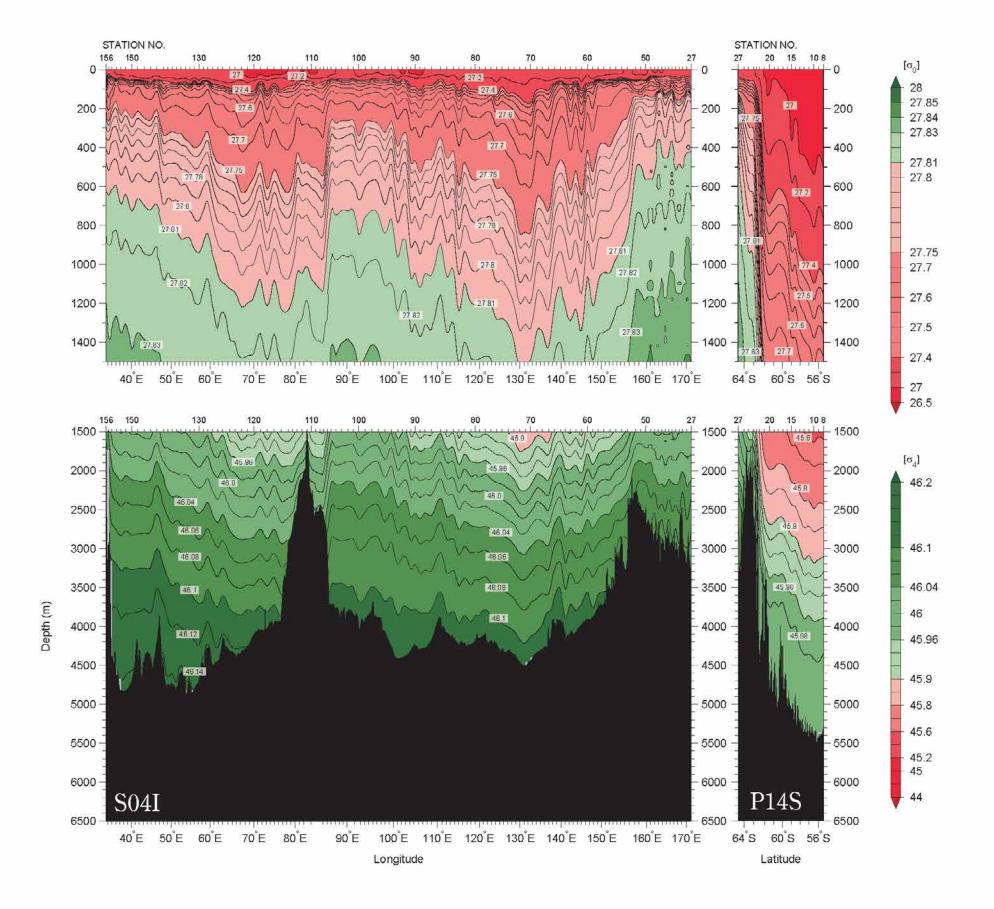
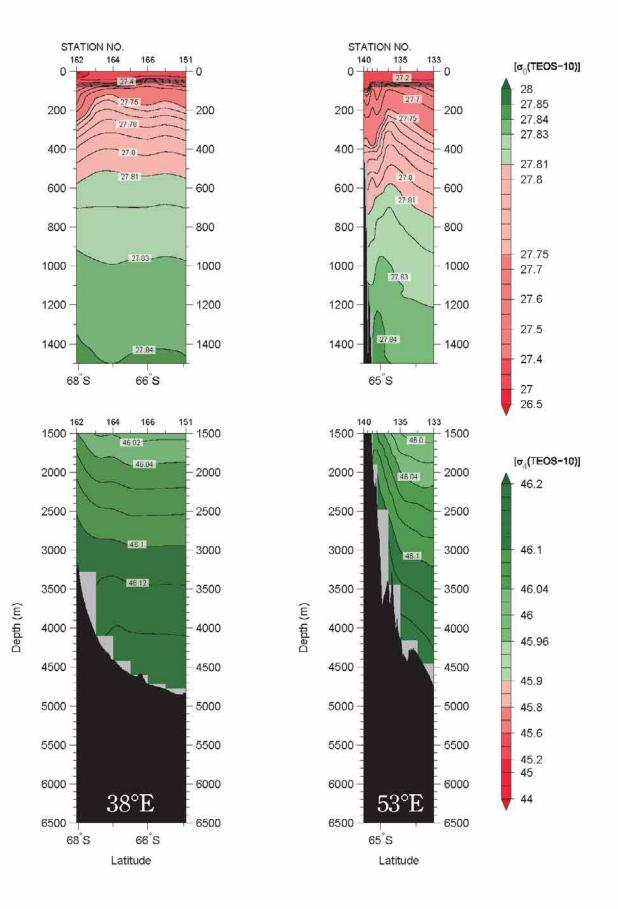



Figure 10b Density (upper: σ_0 , lower: σ_4) (kg/m³) (TEOS-10)

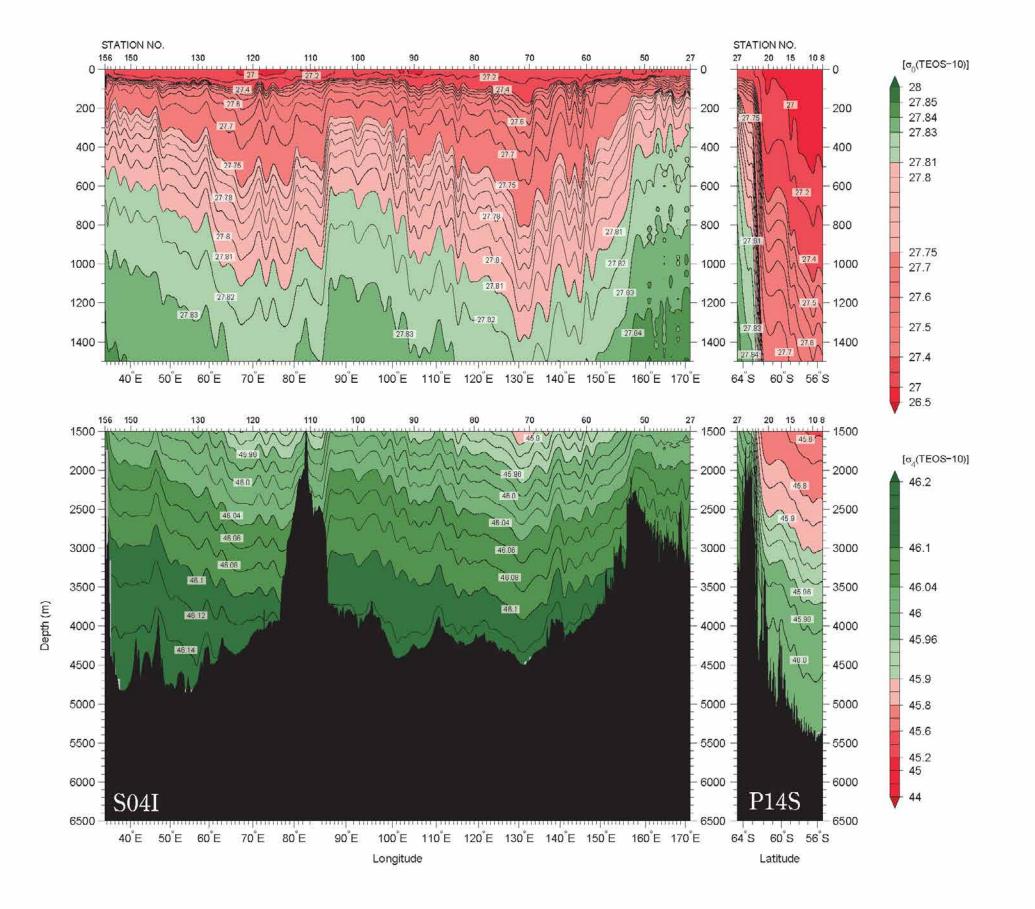


Figure 11 Density (γ^n) (kg/m^3)

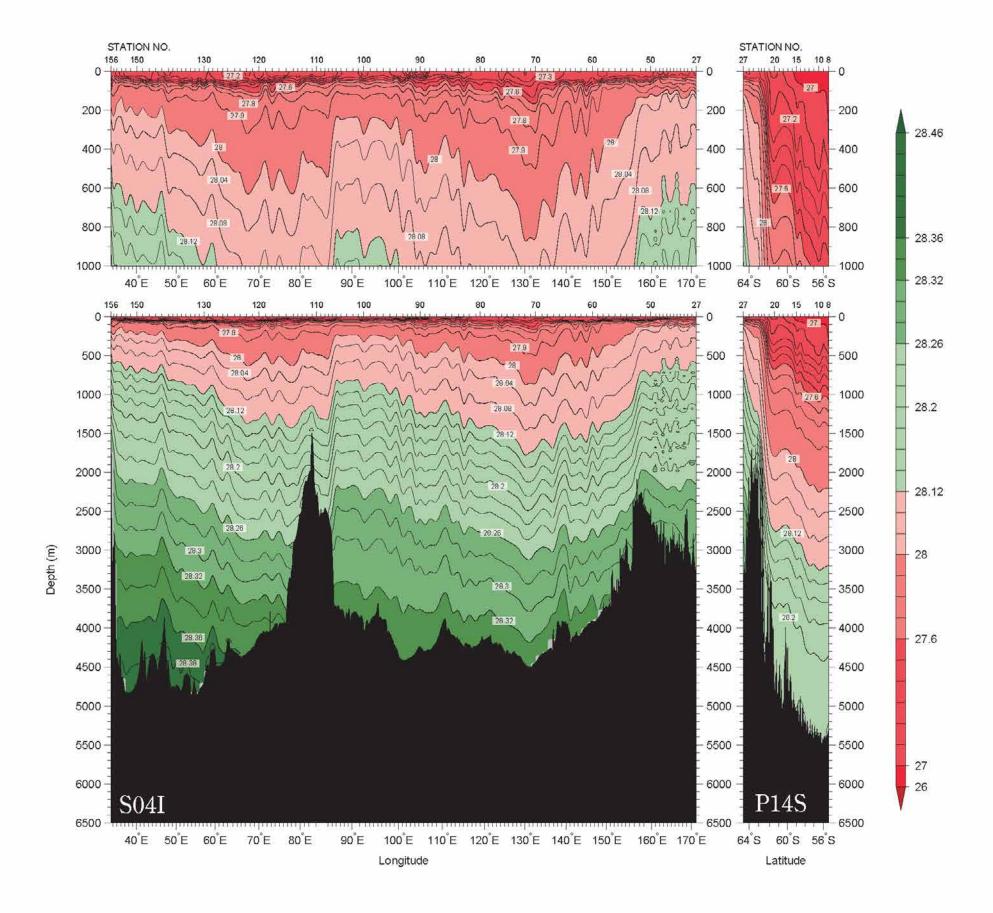
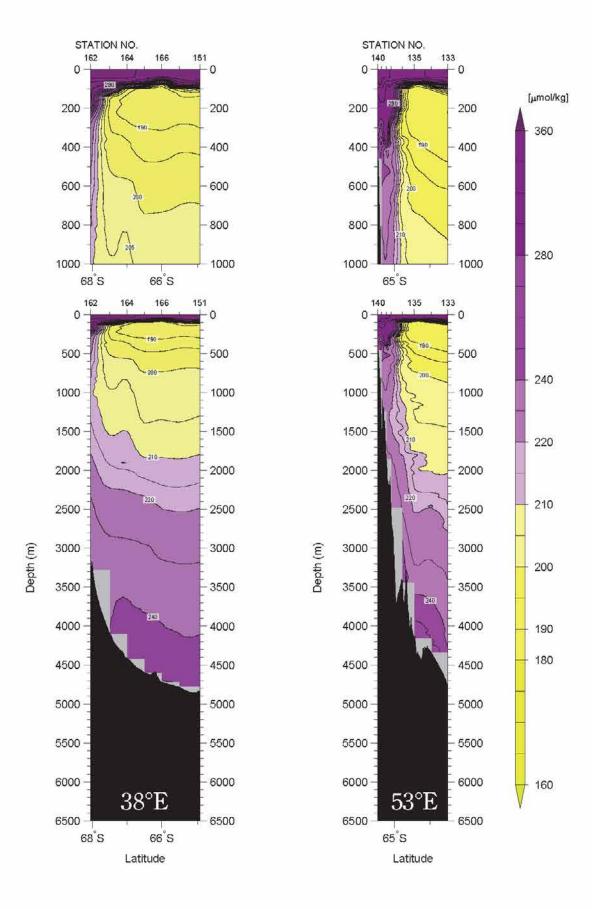



Figure 12 CTD oxygen (µmol/kg)

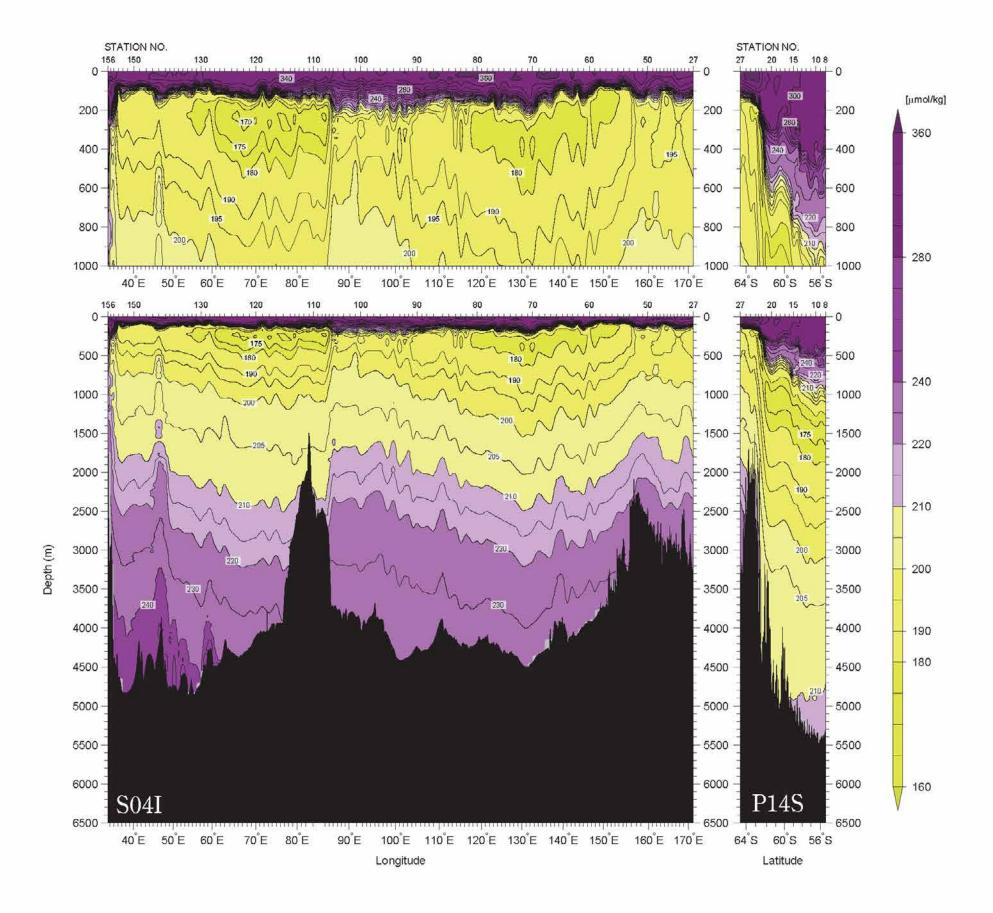
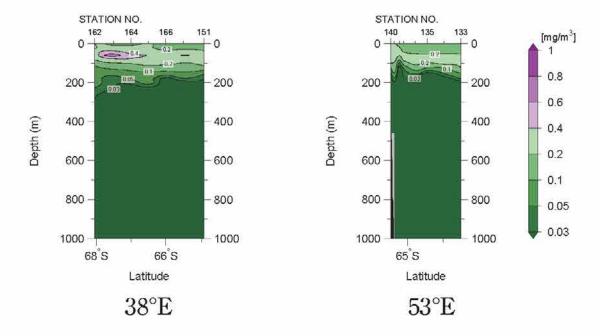



Figure 13 CTD chlorophyll *a* (mg/m³)

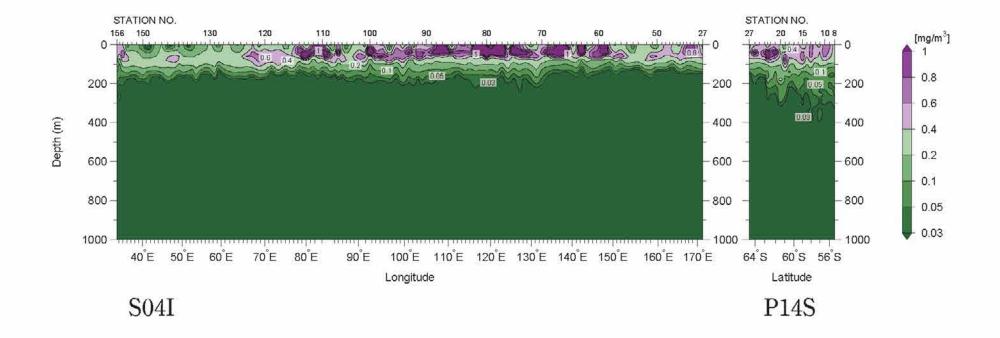
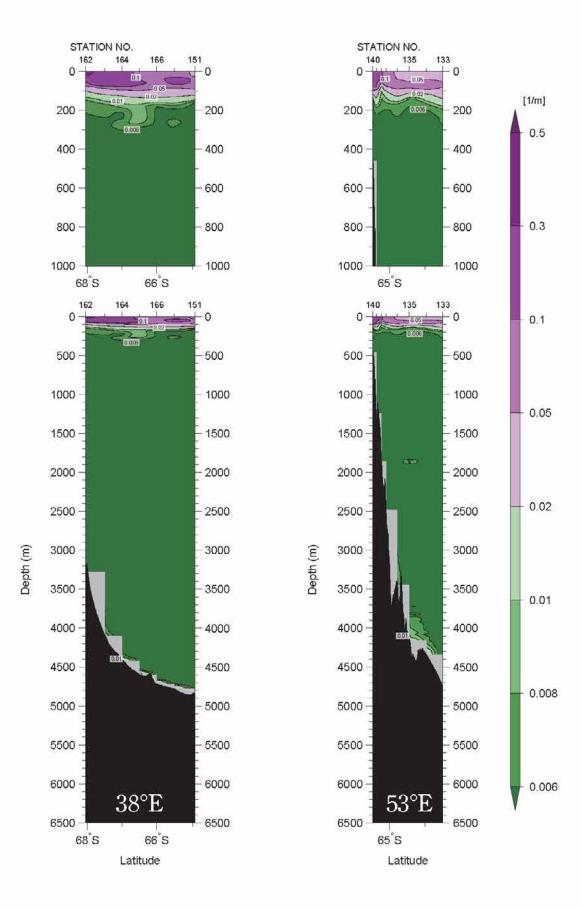



Figure 14
CTD beam attenuation coefficient (m⁻¹)

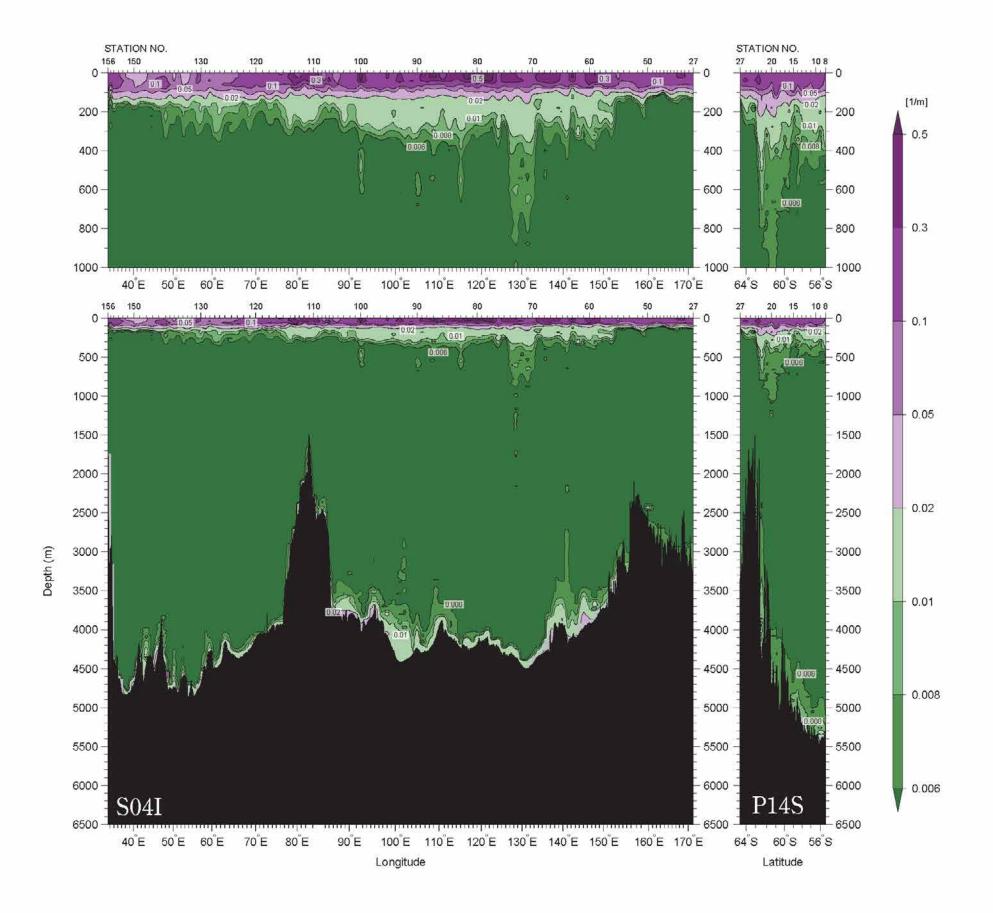
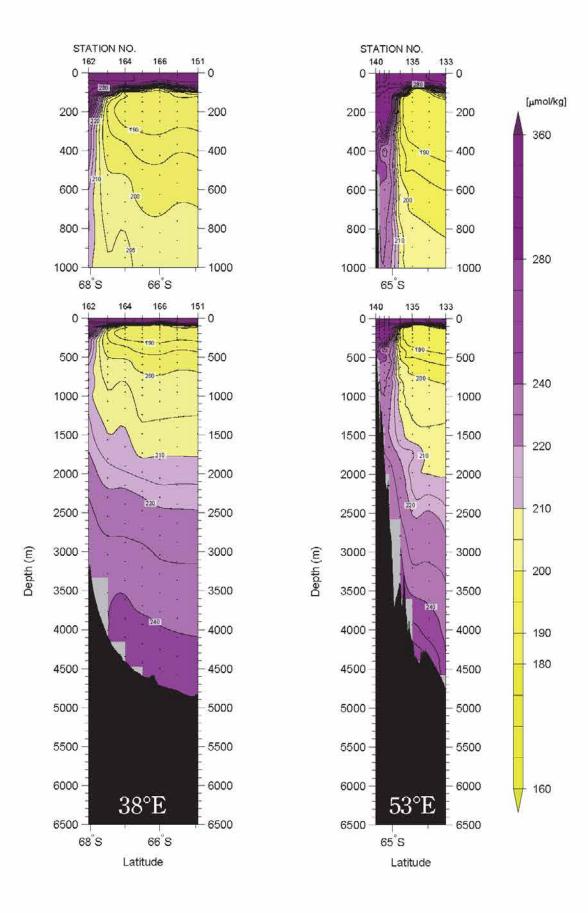



Figure 15
Bottle sampled dissolved oxygen (µmol/kg)

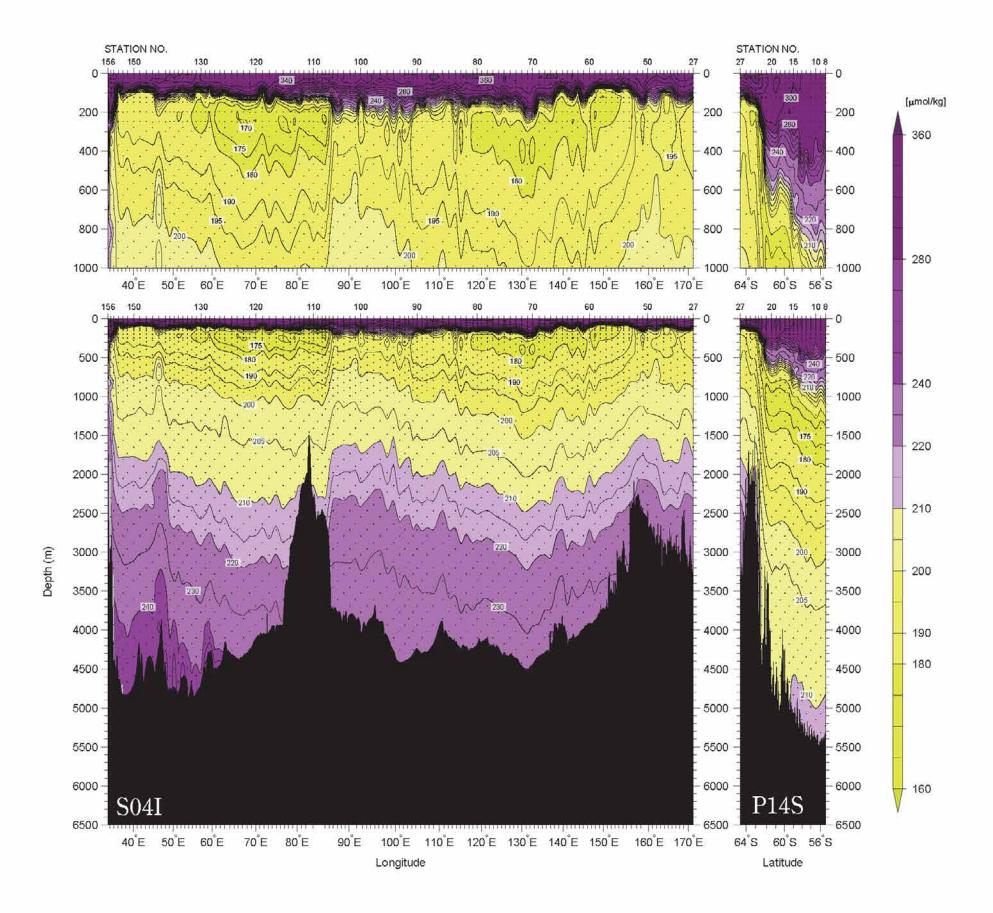
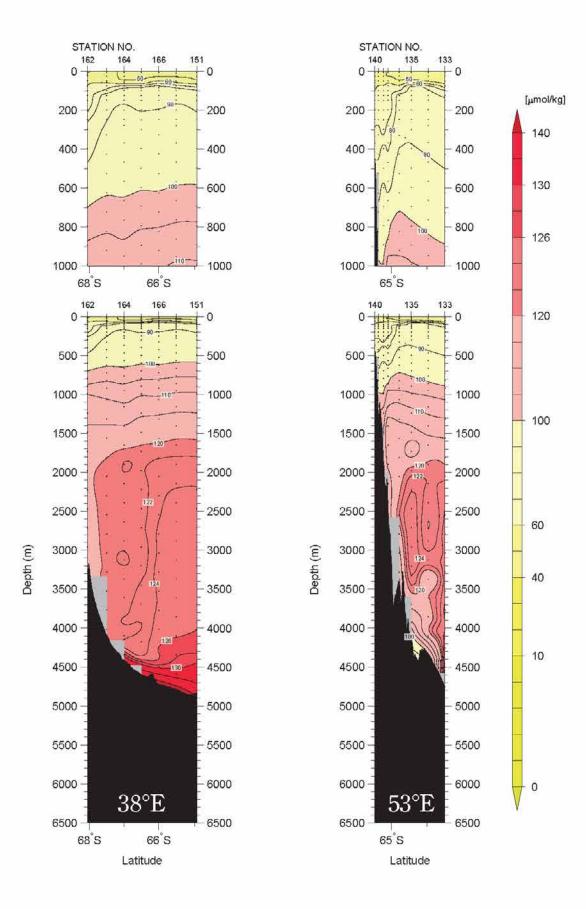



Figure 16 Silicate (µmol/kg)

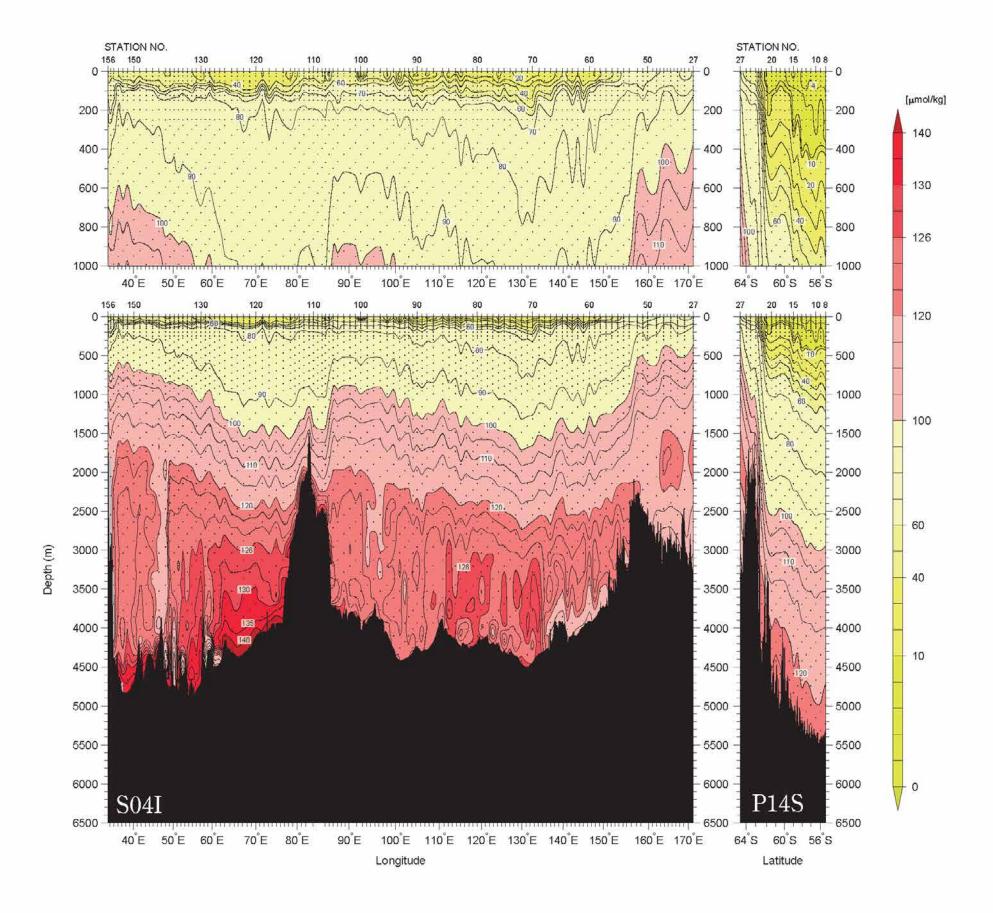
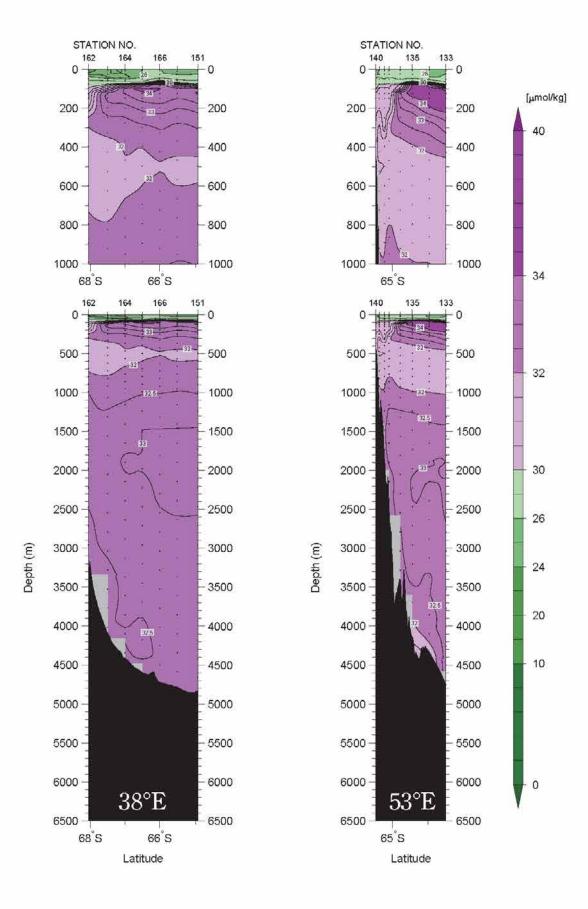



Figure 17 Nitrate (μmol/kg)

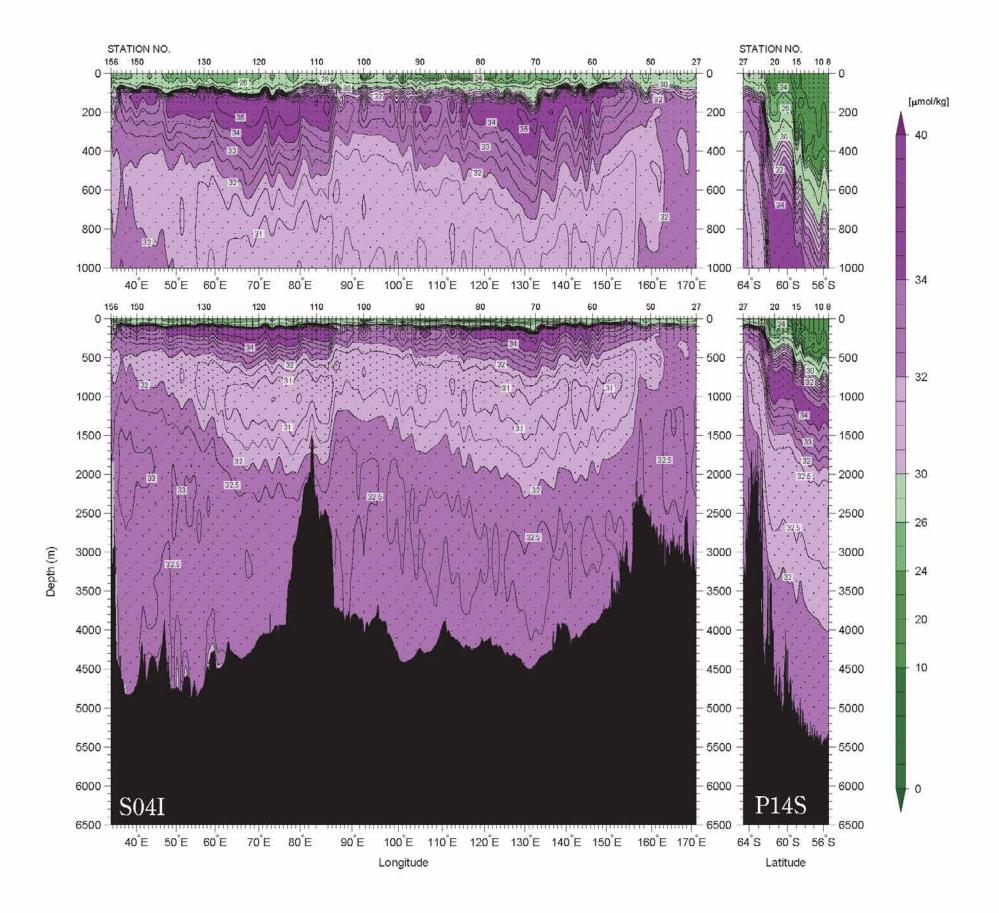
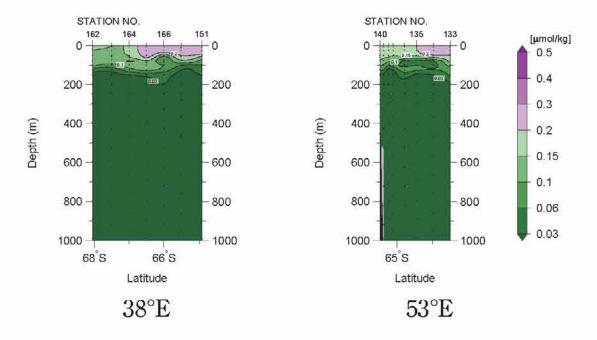



Figure 18 Nitrite (µmol/kg)

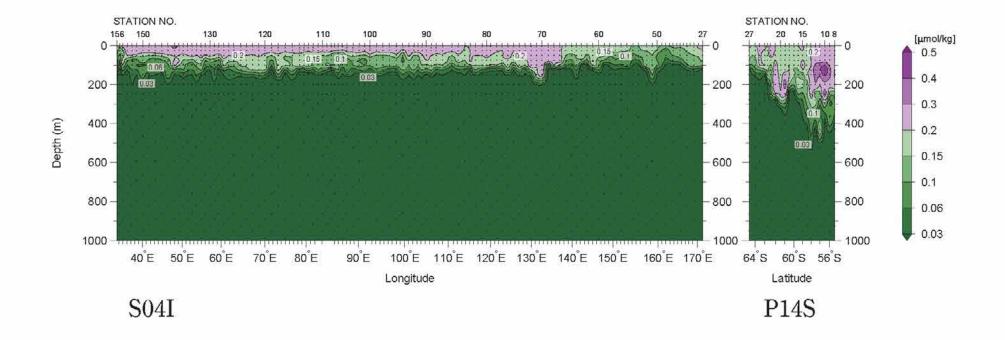
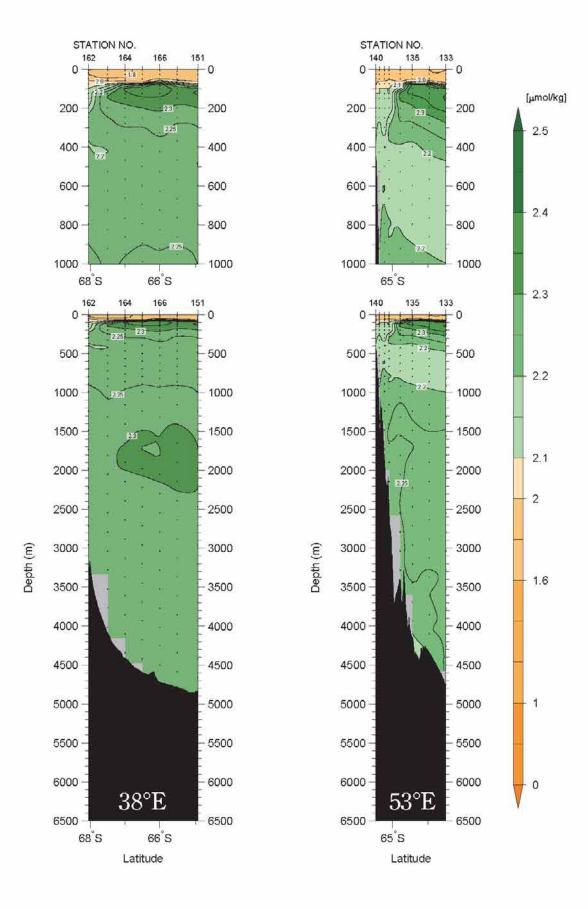



Figure 19 Phosphate (µmol/kg)

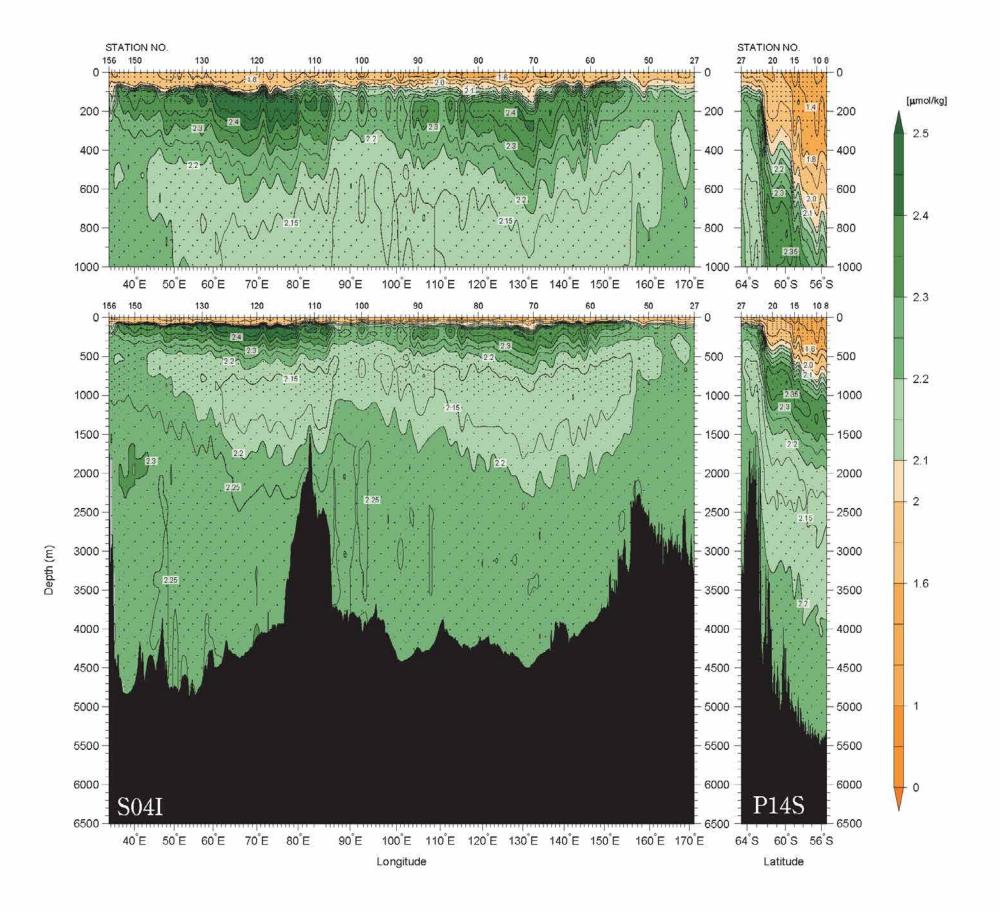
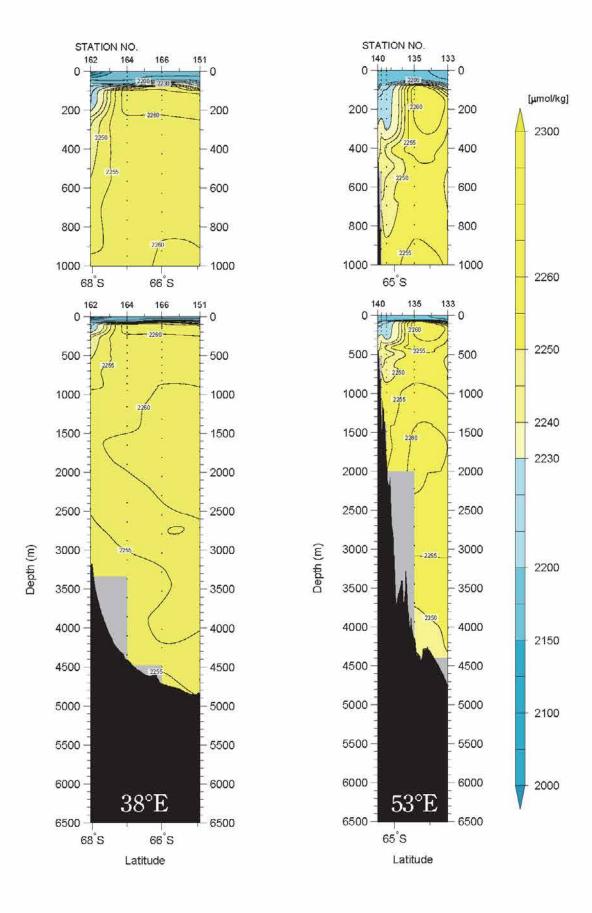
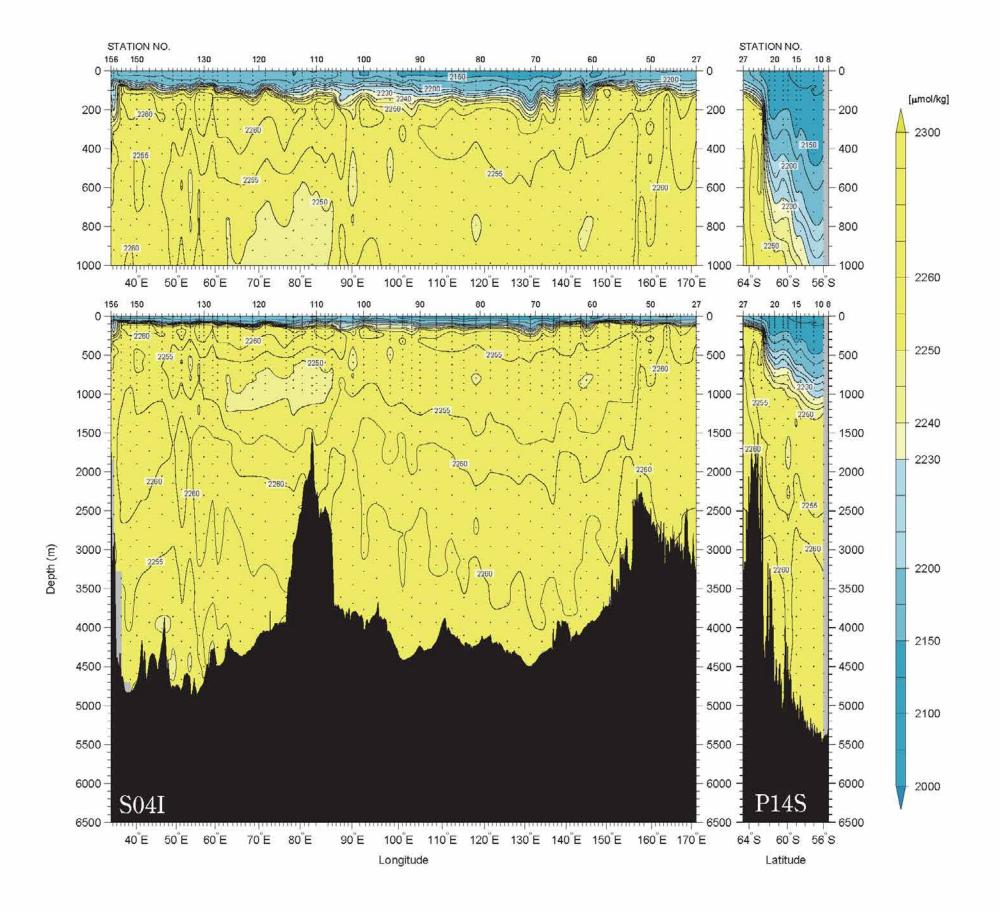
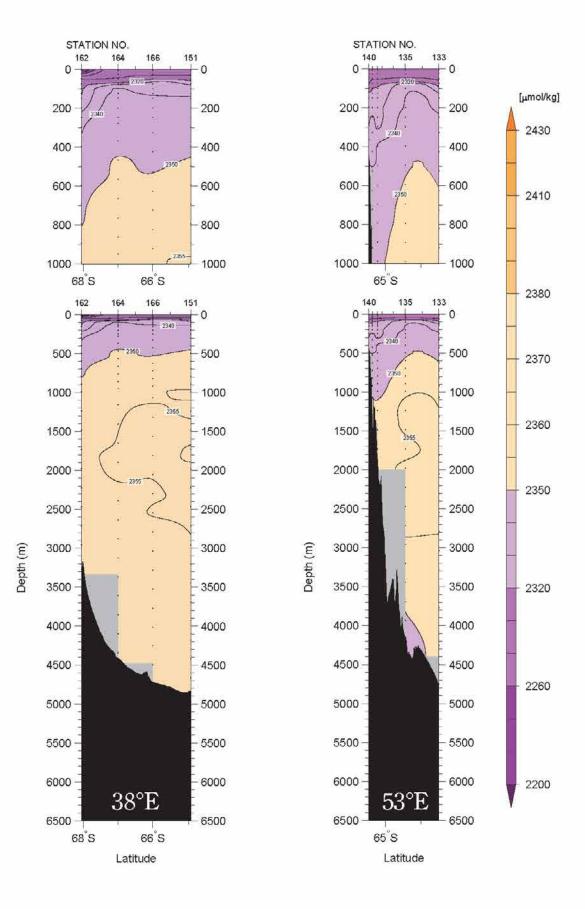





Figure 20 Dissolved inorganic carbon (C_T) (μ mol/kg)

 $Figure \ 21$ $Total \ alkalinity \ (A_T) \ (\mu mol/kg)$

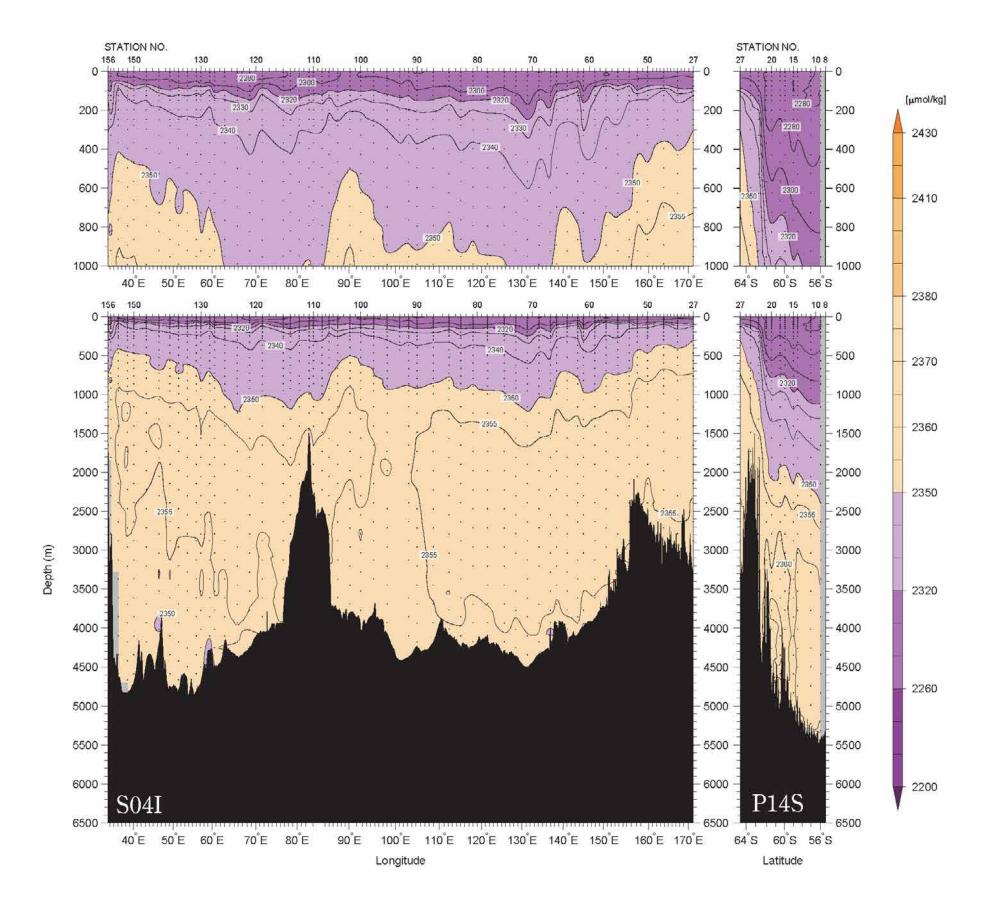
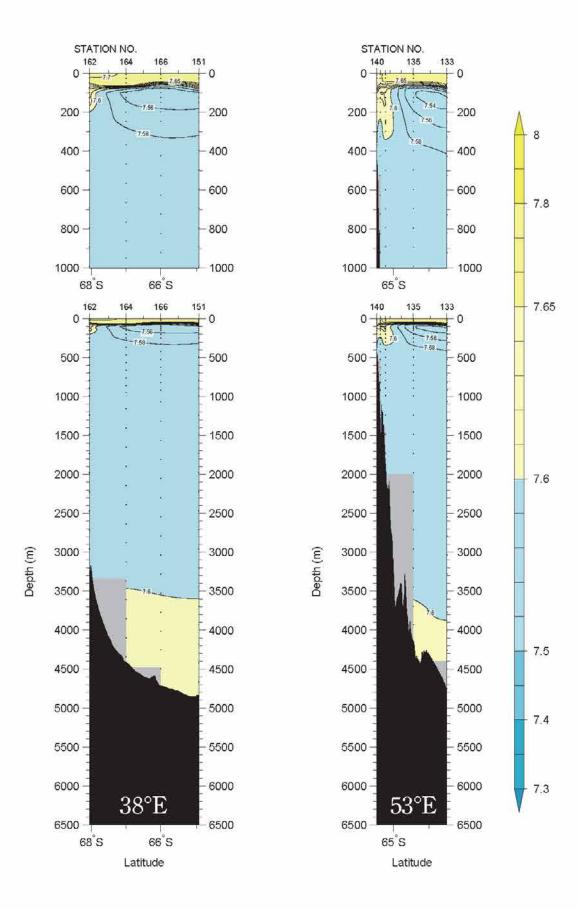



Figure 22 pH (pH_T)

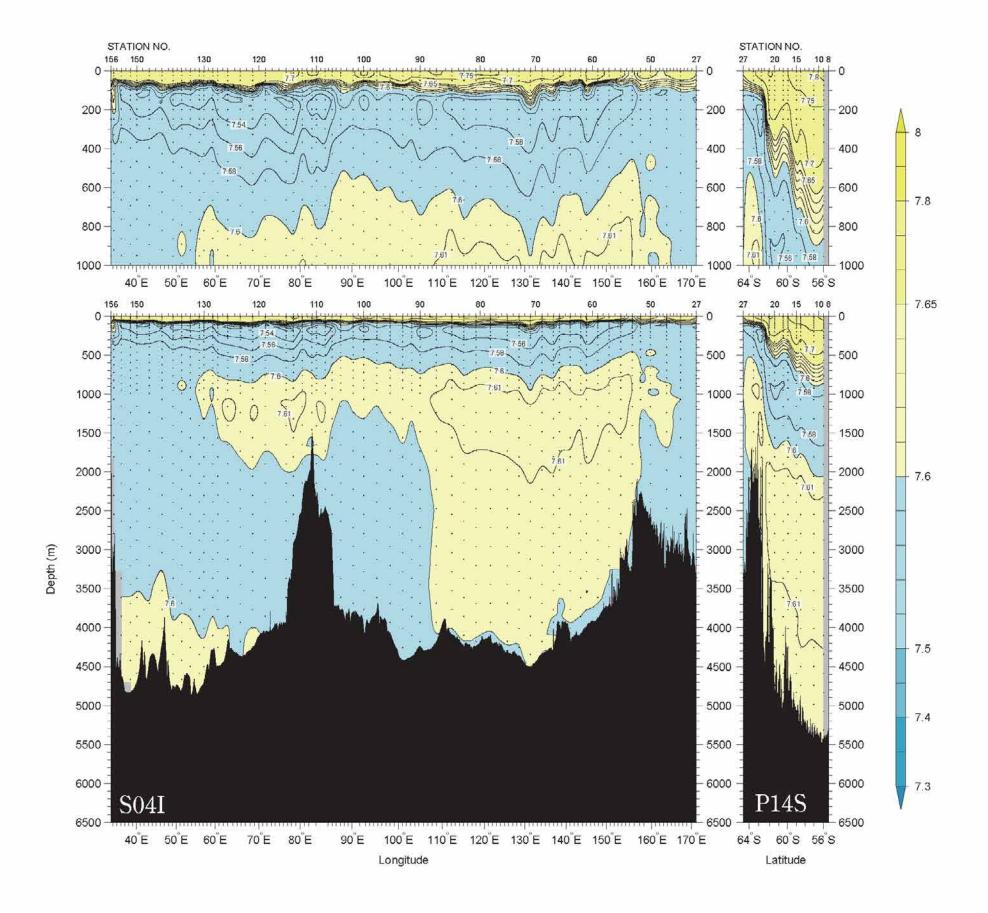
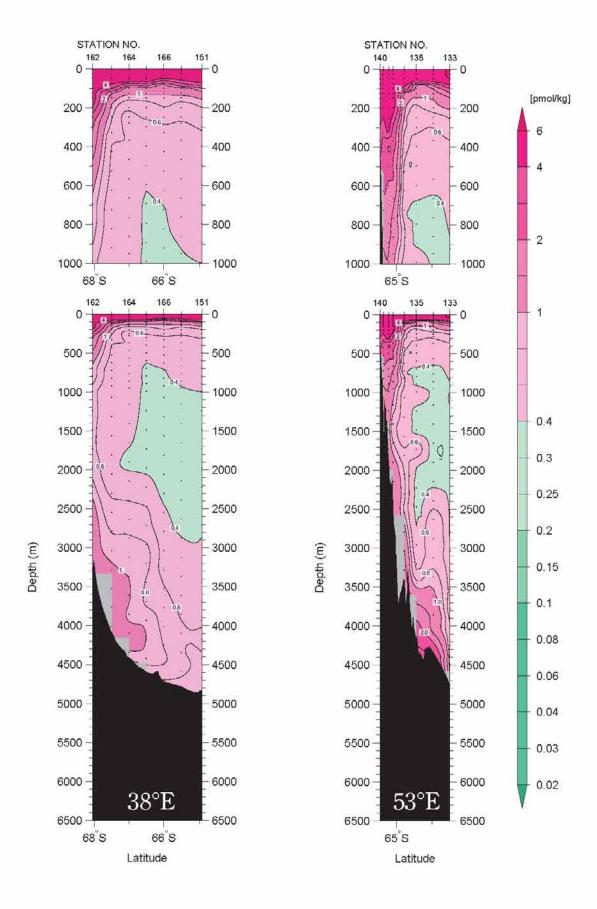



Figure 23 CFC-11 (pmol/kg)

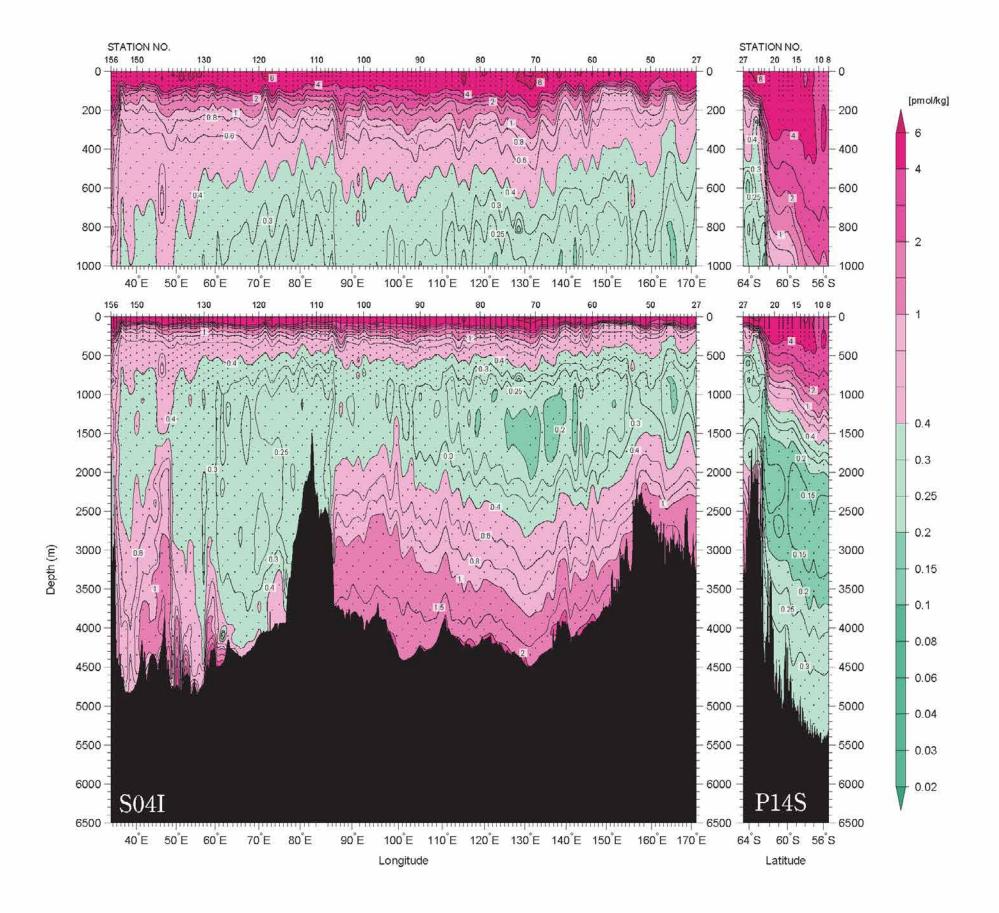
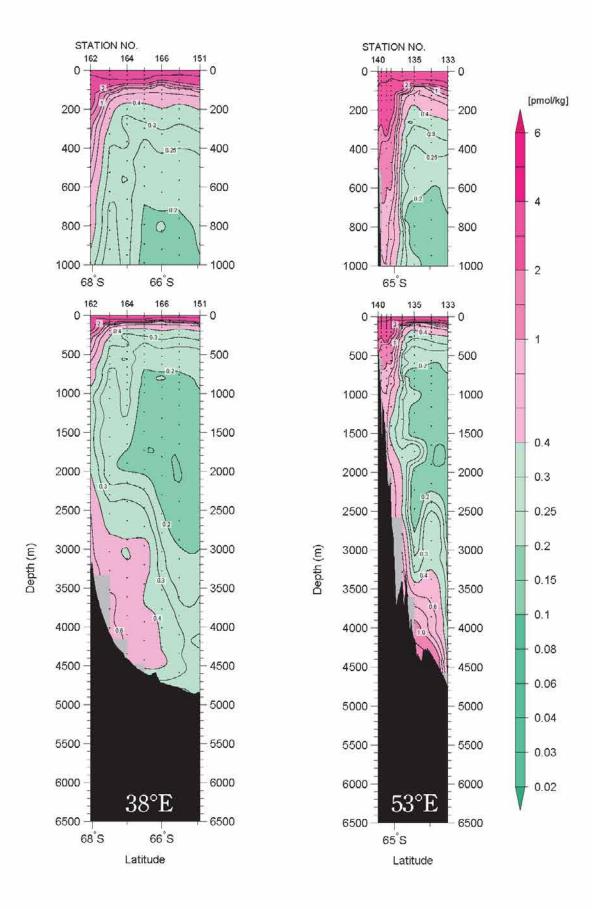



Figure 24 CFC-12 (pmol/kg)

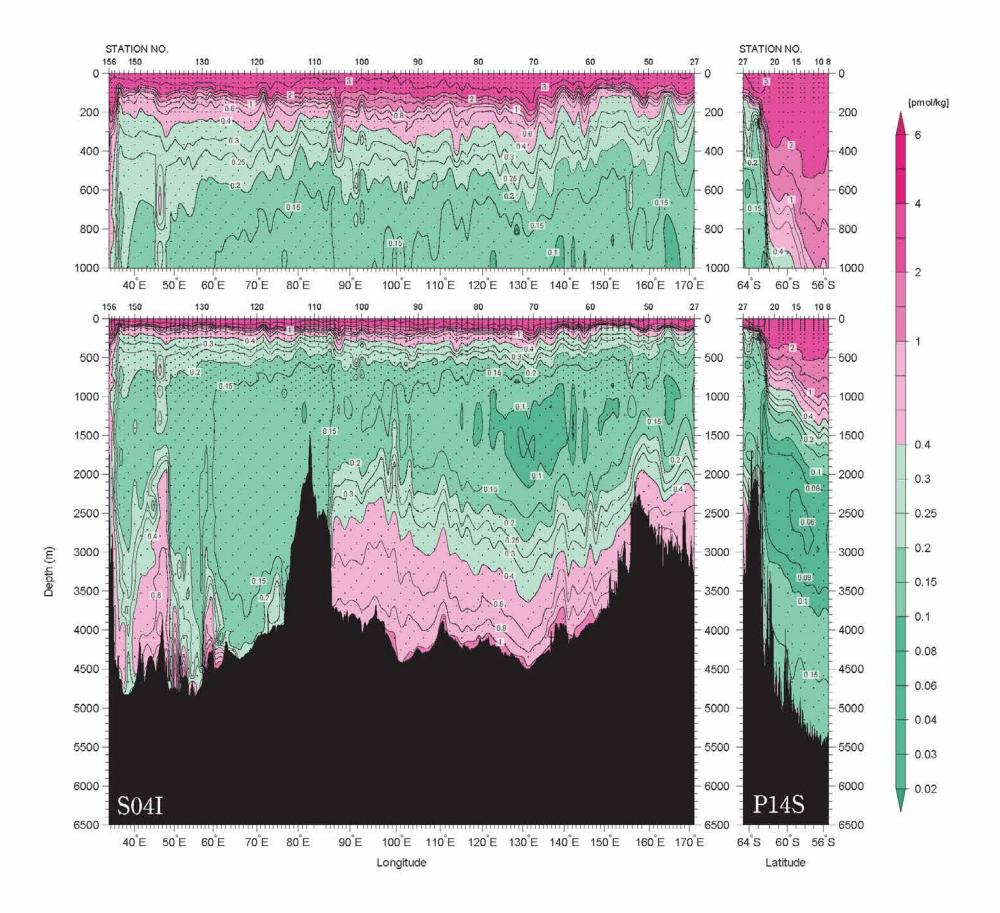
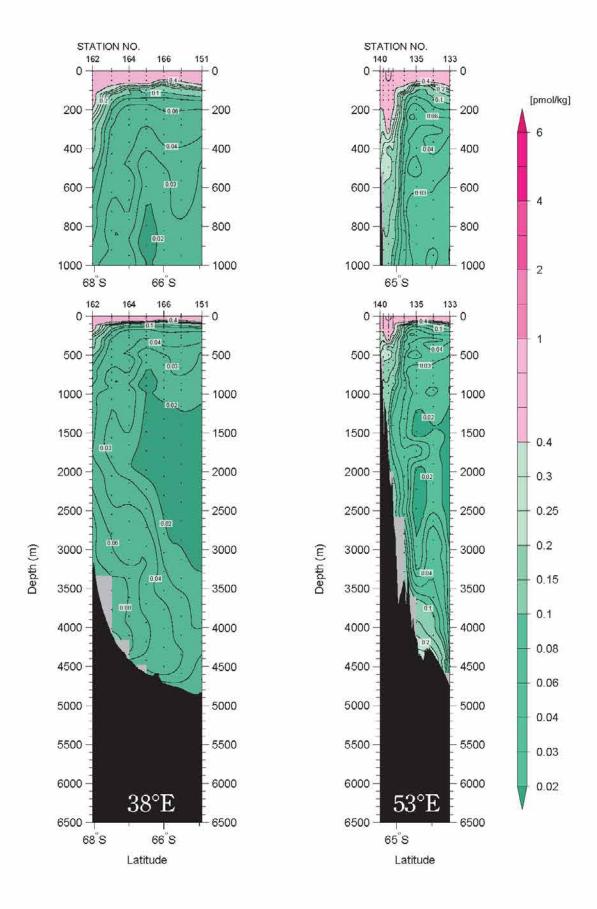



Figure 25 CFC-113 (pmol/kg)

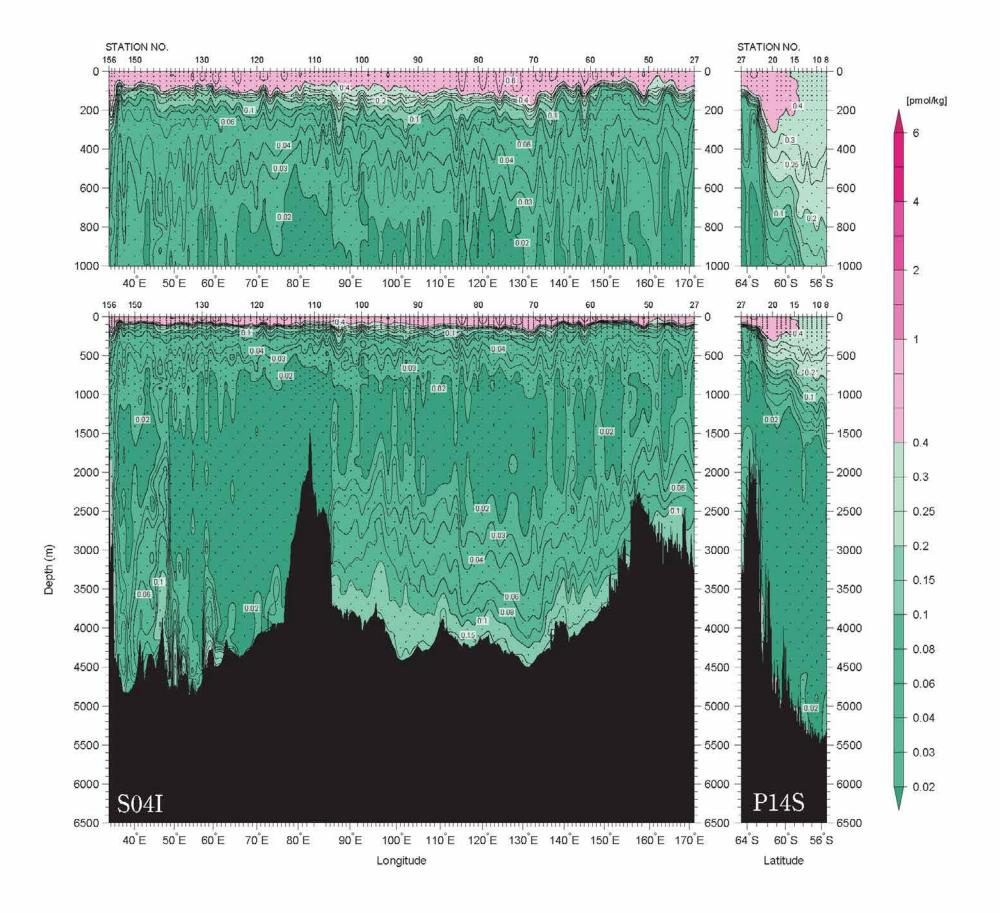
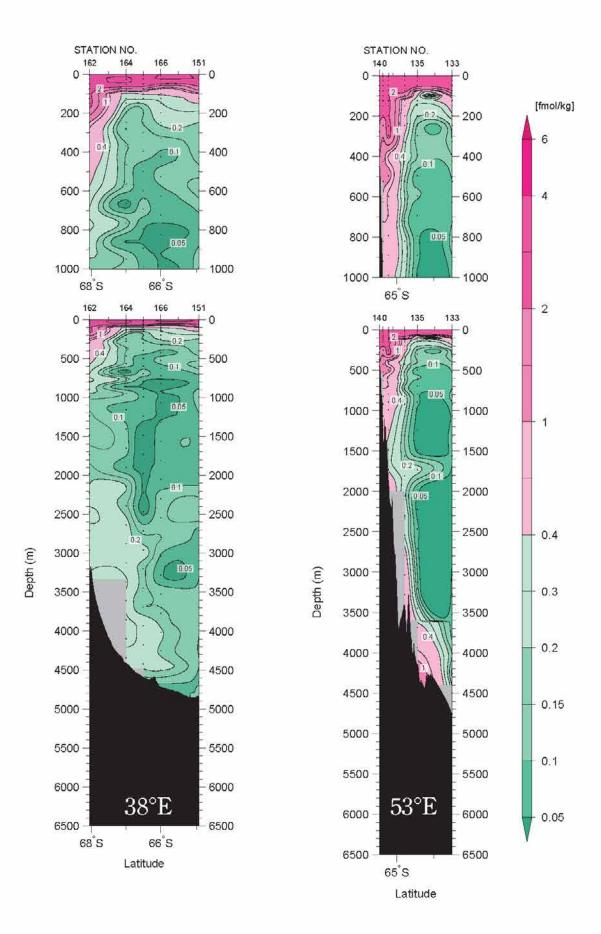



Figure 26 SF₆ (fmol/kg)

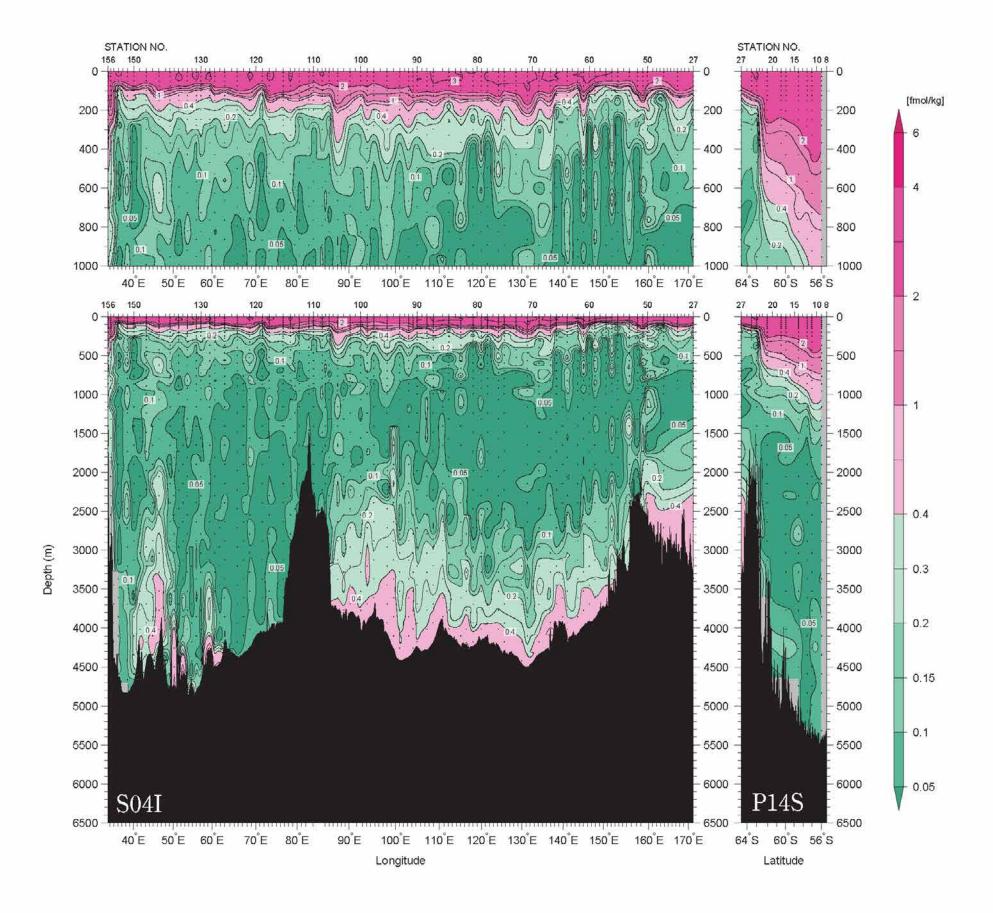
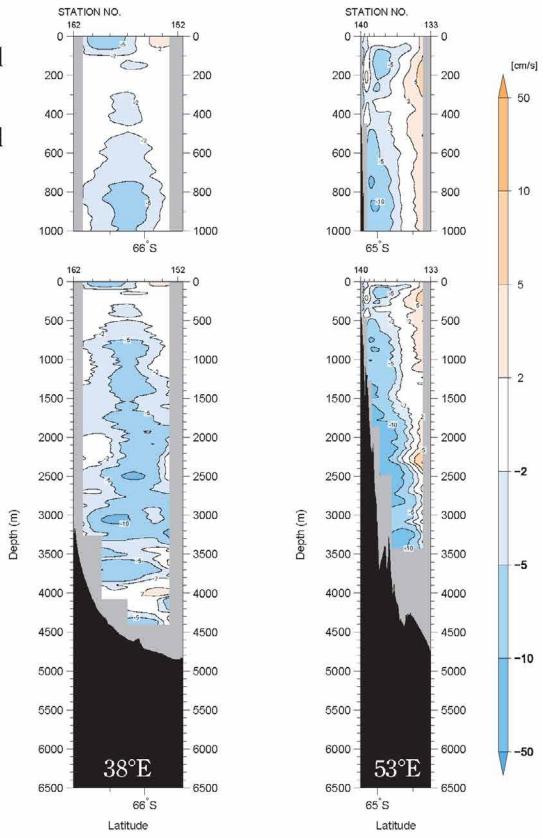



Figure 27
Current velocity (cm/s) normal to the cruise track measured
By LADCP (eastward or northward is positive)

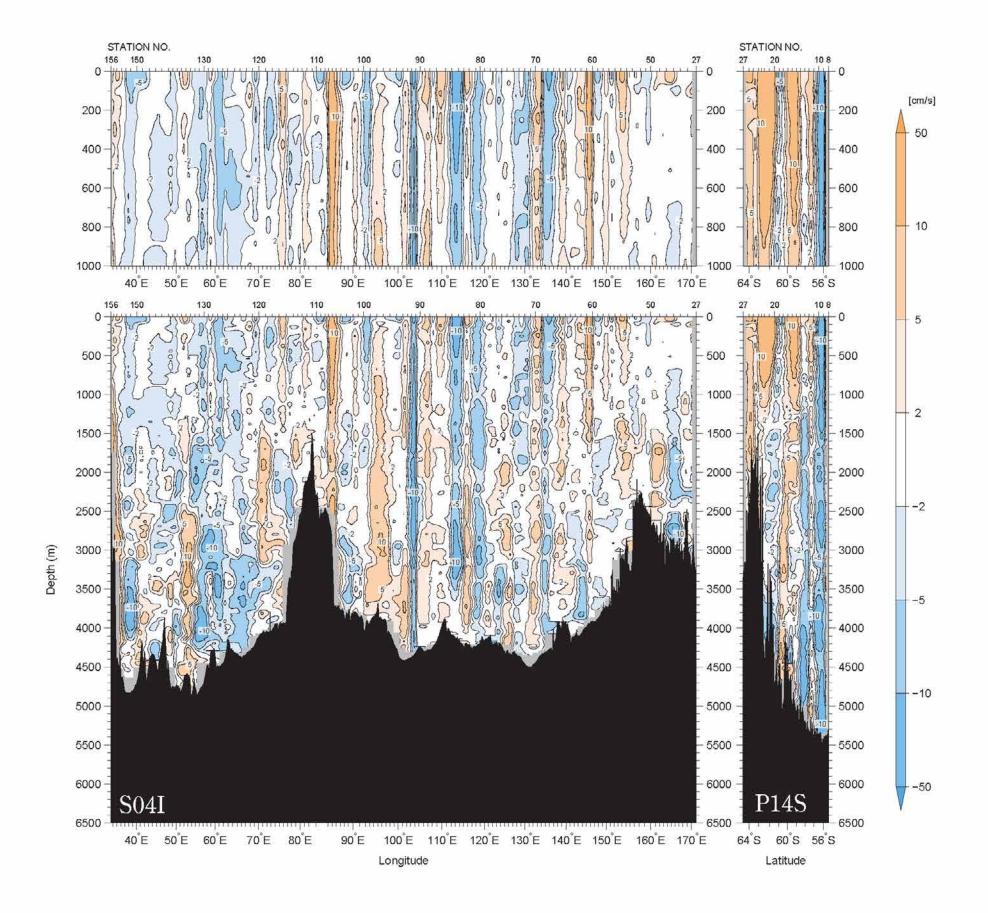
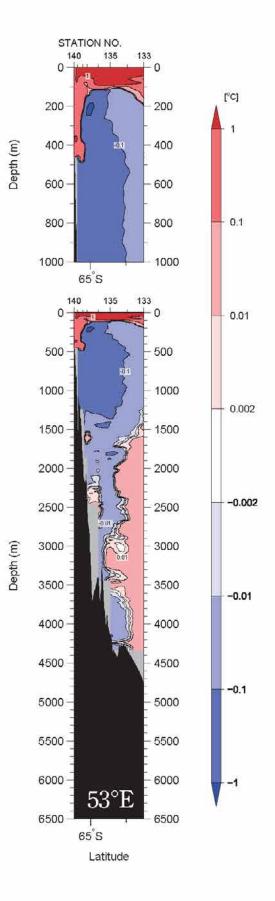



Figure 28
Difference in potential temperature (°C)
between results from WOCE in 1995/96
and the revisit in 2012/13

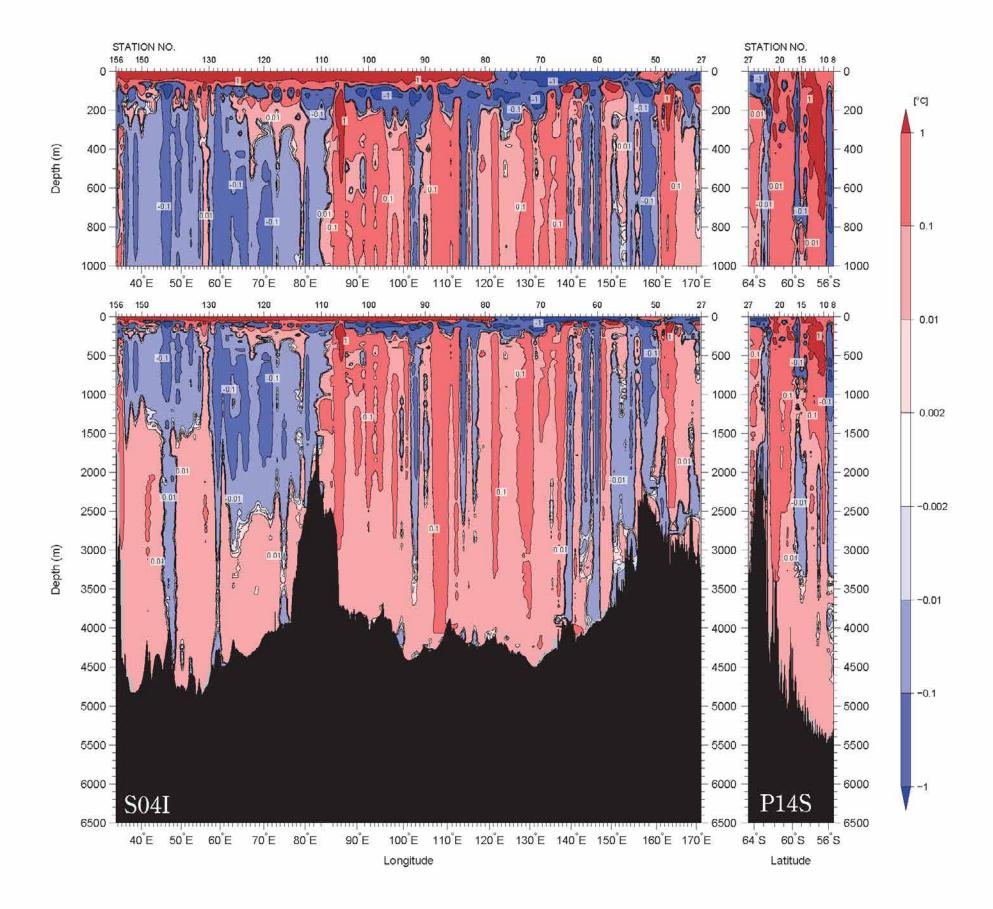
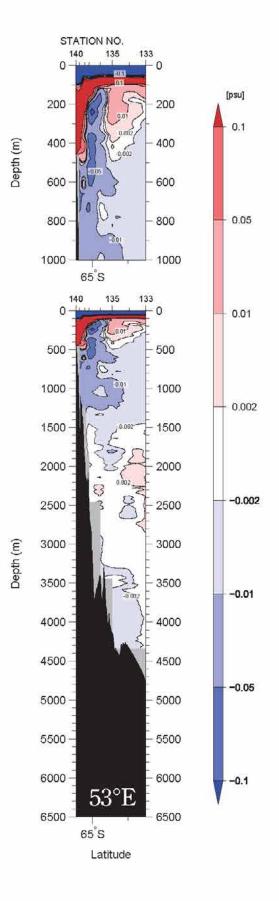



Figure 29
Difference in CTD salinity between results from WOCE in 1995/96 and the revisit in 2012/13

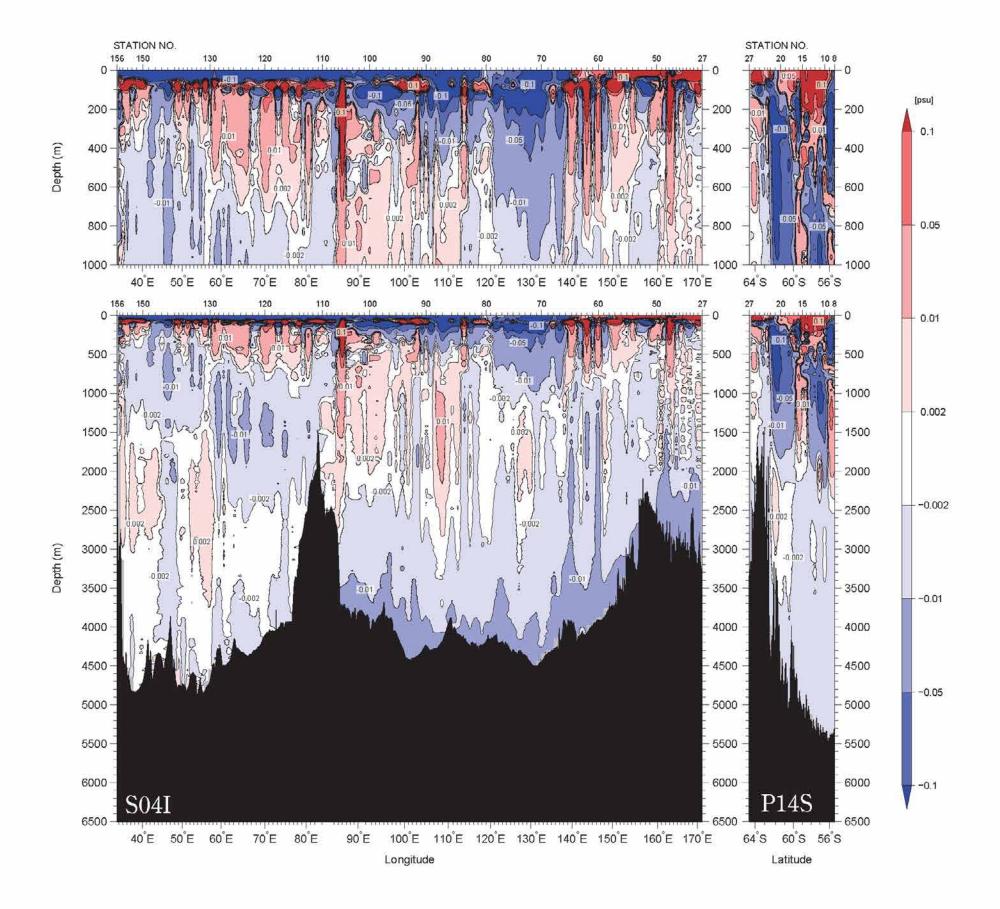
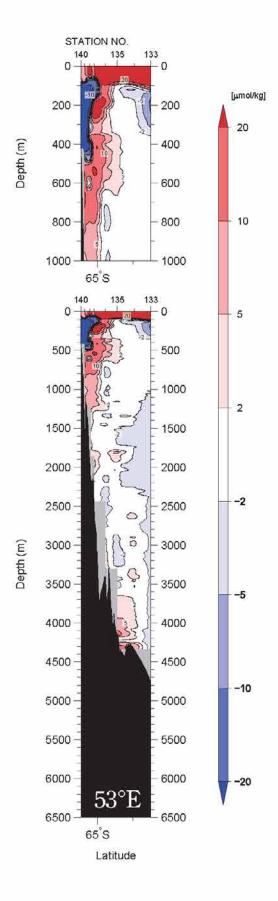



Figure 30 Difference in CTD oxygen (μ mol/kg) between results from WOCE in 1995/96 and the revisit in 2012/13

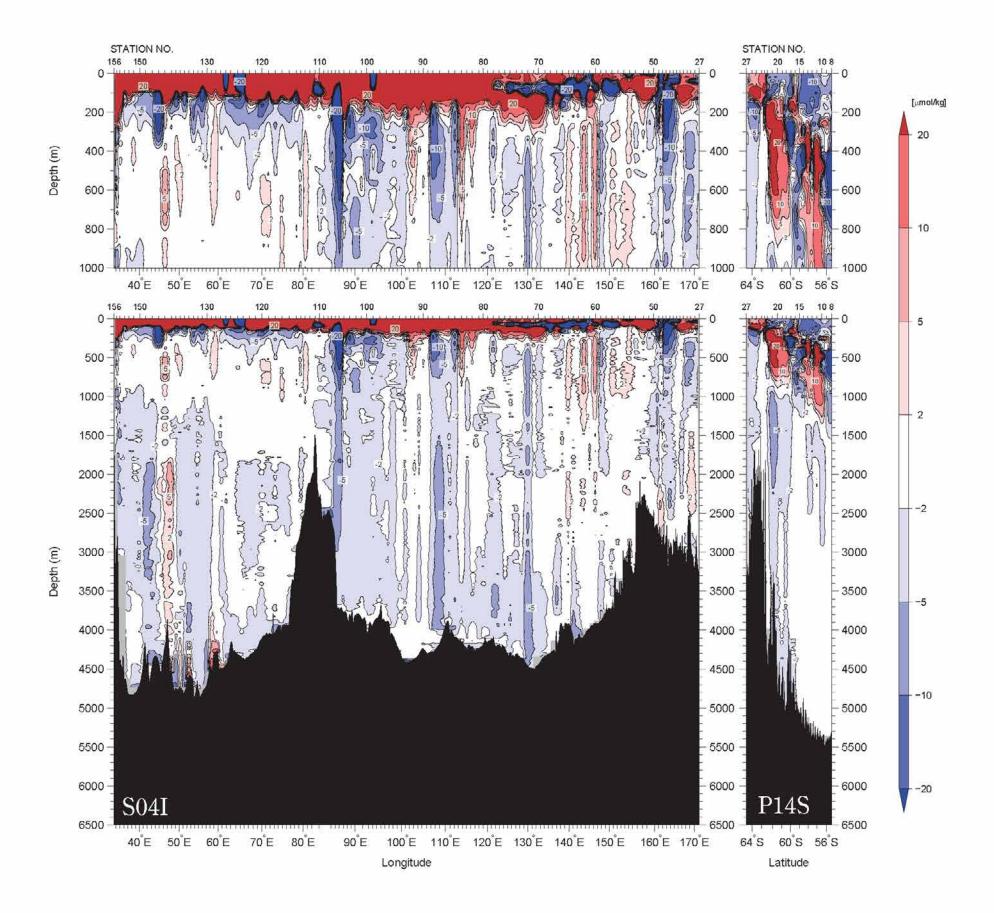
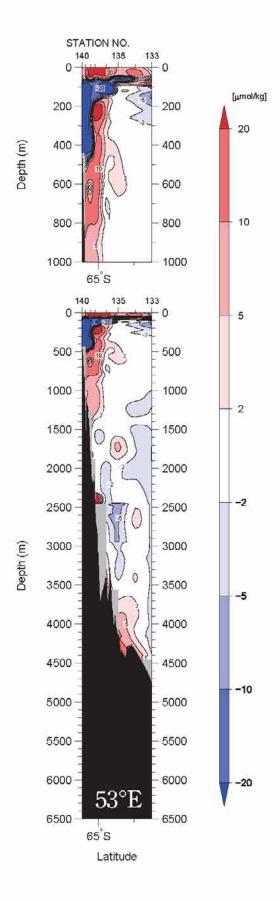
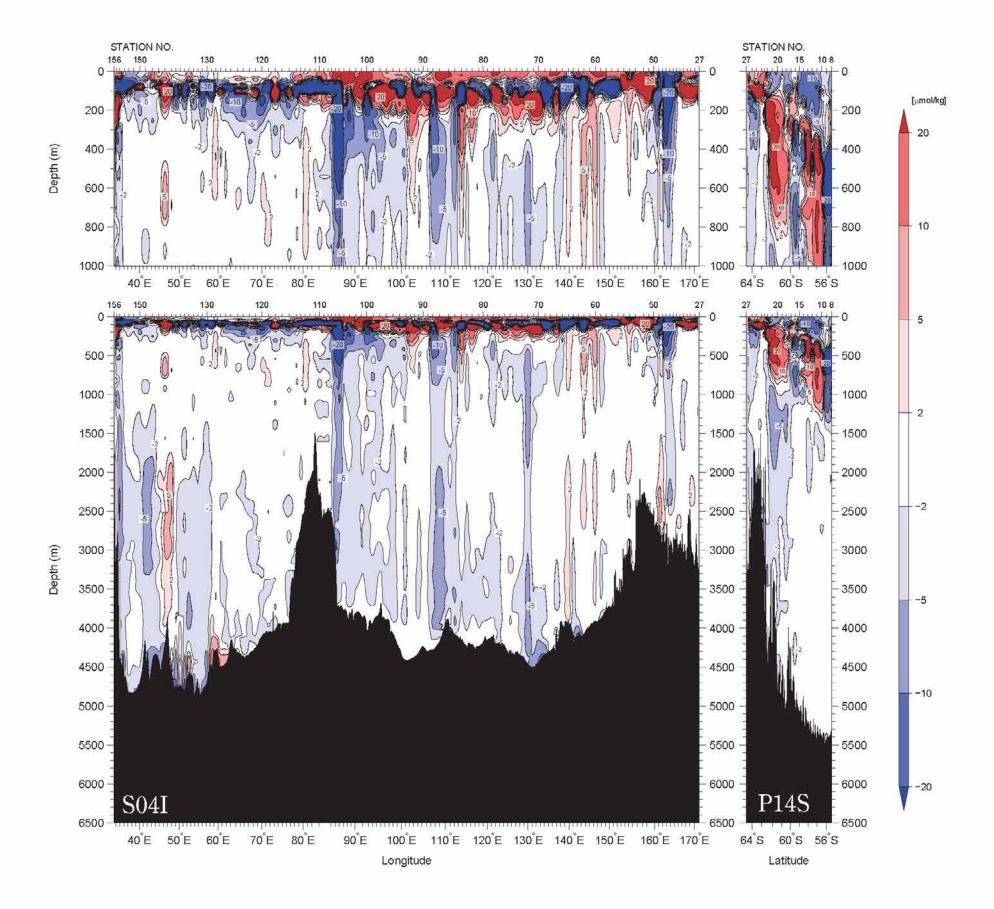




Figure 31 Difference in bottle sampled dissolved oxygen (μ mol/kg) between results from WOCE in 1995/96 and the revisit in 2012/13

