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Wide-angle seismic profiling across an activerifted zonein the middle
lzu-Ogasawaraarc - KYO0511 cruise-

Narumi Takahashil, Aki Ito!, Shuichi Kodairal and Yoshiyuki Kaneda!

Abstract We carried out a deep wide-angle seismic experiment using a large airgun array and total 110 ocean bottom seismo-
graphs (OBSs) in the middle |zu-Ogasawara arc area, which was conducted by R/V Kaiyo of Japan Agency for Marine-Earth
Science and Technology (JAMSTEC) from October 5 to November 3, 2005 (K'Y 05-11 cruise). Objectives of this cruise are to
know avelocity structure of the across the northern 1zu arc, especially velocity variation between an old Eocene arc beneath the
forearc and a new active arc, and a relationship between the structural heterogeneity with the velocity variation and the active
backarc rifting. These are important keysto clarify nature of the oceanic arc growth. An airgun-OBS seismic line was set from a
trench slope break adjacent to the 1zu-Ogasawara trench to the western Shikoku Basin through the forearc basin, the volcanic
front, the Sumisu rift, the Miocene rear arc, the eastern Shikoku Basin and the Kinan seamount chain. We shot a large airgun
array with total volume 12,000 cu. in. and recorded the seismic signals on OBSs with four components and a 24-channel

hydrophone streamer. In this paper, we summarize information of the seismic experiments and introduce OBS data and reflec-

tion data.
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1. Introduction

The lzu-Ogasawara arc is typical oceanic island arc
having andesitic middle crust with P-wave velocity 6
km/s (e.g., Suyehiro et al., 1996) and one of best exam-
ples to study continental growth. Because the andesitic
oceanic island arc with relative light components has
been produced from the oceanic crust with basaltic com-
ponents through boninitic activities, the arc evolution
study is comparable to know a process to remove heavy
crustal components from the original crust.

The lzu-Ogasawara arc tectonic history is already
known well from previous studies (e.g., Karig and
Moore, 1975; Hall et a., 1995; Macpherson and Hall,
2001). At Eocene time, the initial island arc had been
produced by subduction of the basaltic oceanic crust
beneath the other basaltic oceanic crust. Then, theinitial
arc had developed there to Oligocene time. After the
active rifting within the old arc, the Shikoku basin had
spread during about 30-15 Ma (e.g., Okino et al., 1998)
and the old arc had been divided two parts, which are
the current Ogasawara ridge and the Kyushu Palau
ridge, respectively (e.g., Hall et a., 1995). The volcanic

activity within the arc during the opening of the
Shikoku basin is still poorly understood, and had been
activated again at the western adjacent region of the old
arc at Miocene time (Taylor, 1992). The western area of
the Izu-Ogasawara arc including en echelon seamount
chain corresponds to the Miocene arc.

Here, we identify three scientific issues to be resolved
considering above tectonics. These are (1) identification
of the Eocene-Oligocene arc and the comparison with
the Miocene arc and the current active arc based on a
seismic structure, (2) relationship between the velocity
variation and the rifting occurred behind the volcanic
front and (3) the structure of the transition zone between
the arc and the backarc. We summarize the objectives of
this cruise and the background.

First objective is a continuity of the old Eocene-
Oligocene arc. To understand nature of the crustal
growth and estimate a crustal production rate, the geo-
logic environment is important. It is clarified from
petrologic studies that the Ogasawara ridge corresponds
to the Eocene arc (e.g., Y uasa and Murakami, 1985) and
the continuity is confirmed by only topographic fea-
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tures. ODP Leg 125 found that boninites widely distrib-
ute around the outer arc high of the northern Izu-
Ogasawara arc (e.g., Pearce et a., 1992). From seismic
velocity model, there is a difference in the velocity gra-
dient of the middle crust between the current rifted zone
and the forearc (Takahashi et a., 1998). However, it is
still unknown that this velocity variation between the
rifted zone and the forearc can be applied at whole of
the Izu-Ogasawara arc. To confirm the commonality of
the distribution of the velocity variation and the continu-
ity of the Eocene arc is one of important keys to under-
stand past crustal growth history.

Another objective is arole of the backarc opening for
the crustal growth. The andesitic middle crust with P-
wave velocity of 6 km/s was detected in the northern
|zu-Ogasawara arc (Suyehiro et a., 1996, Takahashi et
al., 1998) and the Tonga arc (Crowford et al.,2003), but
not in the central and eastern Aleutian arc (Holbrock et
al., 1999; Fliedner and Klemperer, 2000), nevertheless
above all arcs are the same oceanic island arcs. So, a
crustal growth model, which could explain such struc-
tural variation is needed. One candidate reason for the
difference might be a degree of crustal growth.
Recently, it is suggested that the velocity model of the
Mariana arc-backarc system has advanced crustal
growth area adjacent to the Mariana trough backarc
basin (Takahashi et al., in Prep). Because the Izu-
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Ogasawara and the Tonga arcs have backarc basin and
the central Aleutian arcs does not have, the backarc
opening might be one of candidates to contribute to the
crustal growth. The Sumisu rift is initial backarc basin,
and it is possible that we can understand an influence of
the backarc opening for the velocity structure. If rising
magmas through the upper mantle are underplated
beneath the Moho actively, the velocities of the lower
crust and the upper mantle may have anomaly just
beneath the Sumisu rift. If the backarc opening pro-
motes the crustal growth, the velocity of the lower crust
just benesath the Sumisu rift might be relatively slower
than 7 km/s according to example of Mariana arc.
Recently, Nishizawa et al. (2003) indicated that the
velocity structure across the middle |zu-Ogasawara arc
(30 degree north), however, the above influence of the
velocity structure by the backarc opening was not
detected due to lack of number of ocean bottom seismo-
graphs (OBSs). Understanding of the backarc opening at
theinitial stage isone of the targets in this study.

The other objective is velocity variation of the arc-
backarc transition region. In particular, the lower crust
with high velocity of over 7km/s at the arc-backarc tran-
sition region is reported frequently. The northern |zu-
Ogasawara arc, the Mariana arc, the West Marianaridge
and the Tonga arc have such high velocity lower crust
(Suyehiro et al., 1996; Takahashi et al., 2005; Crowford
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Figure 1: Map of the experimental area. Solid circlesindicate OBSs. We shot an airgun array on athick black line.
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et a., 2003). The anomalous structure is detected well at
the continental margin, and there are two processes to
make the high velocity lower crust. One is underplated
gabbroic complex beneath the Moho accompanied with
the backarc opening as active margin (e.g., Berndt et al .,
2001), and the other is serpentinite materials added to
bottom of the crust during period between the rifting to
the spreading as passive margin (e.g., Chain et al.,
1995). According to this story, if the current eastern end
of the Shikoku basin has the high velocity lower crust as
passive margin, this means that there is a fragment of
the Eocene-Oligocene old arc just before the backarc
opening located at the position of the current western
Izu-Ogasawara arc. However, Yamazaki and Y uasa
(1998) indicated that the Miocene arc had been con-
structed on the past eastern end of the Shikoku basin,
and Okino et al., (1994) also suggested that the past
magnetic anomaly before the construction of the
Miocene arc can be detected at the western |zu-
Ogasawara arc. If such a high velocity lower crust is
detected commonly along the western |zu-Ogasawara
arc, it might indicate other tectonic story.

To clarify above objectives, we carried out the deep
seismic profiling with 110 OBSs, a large airgun array
and a 24-channel streamer along a line across the arc
including the initial backarc region, the Sumisu rift, in
the middle |zu-Ogasawara arc.
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2. Experiments

We performed a wide-angle seismic profiling using
110 ocean bottom seismographs (OBSs), a large airgun
array with capacity of 12,000 cubic inches and a 24-
channel analogue streamer in middle 1zu-Ogasawara arc
(Figure 1). The period of this cruise using the R/V
"Kaiyo" of Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) is from October 5 to
November 3, 2005 (Figure 2). A main seismic line runs
from atrench slope break neat the 1zu-Ogasawara trench
to the western Shikoku Basin through the forearc basin,
the volcanic front, the Sumisu rift, the Miocene arc, the
eastern Shikoku Basin and the Kinan seamount chain.
We divided the main line into two parts, which are the
eastern part from the trench slope break to the eastern
edge of the Shikoku basin and the western part from the
rift zone to the western Shikoku basin (Figure 3). The
R/V Kaiyo departed from Y okohama shinko at October
5, and 77 OBSs deployment on the eastern part of the
main line was carried out from October 6 to 9. We shot
the airgun from October 10 to 12 on the eastern half
(Line IBr6_obs 0). Then, after long standing by due to
tottery typhoon attack, we recovered 46 OBSs deployed
in eastern part during October 21 to 23. After we
deployed 33 OBSs again on the western half to October
25, airgun shooting was carried out to October 27 (Line
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Figure 2: Map for ship'strack line. Cross marks indicates ship position of every 6 hours.
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IBré_obs 1), and then we recovered 66 OBSs until
October 30. An additional multichannel seismic survey
with a 24-channel streamer was performed between
October 30 and November 1 along an extended main
lineto east (Line IBr6_mcs 0). Thisaimisto clarify the
crustal deformation of a subducting oceanic crust.
Finally, we arrived at JAMSTEC at November 3. The
actual activities are shown in Table 1 and Figure 2.

In this cruise, we performed OBS recorder test using
different sampling rate and different dynamic range to
investigate waveform distortion by digital conversion.
As shown in 2.2 section, because we have two types of
our OBS digital recorder, we deployed three OBSs at
the same location on the forearc region (Site#21). One
OBS has a 16 hit recorder with sampling rate of 100 Hz.
Another has a 20 bit recorder with sampling rate of 100
Hz. The other has a 20 hit recorder with sampling rate
of 250 Hz.

2.1 Airgun shooting

As above description, we shot the airgun array sepa-
rately for the eastern half (Line IBr6_obs 0) and the
western half (Line IBr6_obs 1). The overlap between
the eastern and the western lines was about 150 km,
because the offset of 150 km from the OBS should have
refractions through the upper mantle. The airgun array
with total capacity of 12,000 cubic inches consists of
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eight airguns (BOLT Technology Corporation, PAR Air
Gun Model 1500LL) with 1,500 cubic inches capacity
each. The gun array was shot with the shot interval of
200 m and the accuracy of the shot times was 1 msec.
These guns were shot with the same timing within 2
msec. The gun depth was 10 m. The air pressure sent to
the chamber was 2,000 psi. The geometry of the seismic
experiment is shown in Figure 4. The two floats with
two airguns each were deployed from port and starboard
sides, respectively. The airgun array's size is 14 m
length x 20 m width. Airgun's position was kept 134.5
m behind the ship position (distances from ship antenna
to the stern, and from the stern to center of the airgun
array, are 29.5 m and 105 m, respectively). The shot
times was measured by a TrueTime system (TrueTime
GPS time & freguency receive, MODEL XL-AK) using
GPS signals and the accuracy was 1 nsec.

For the MCS survey with a 24-channel streamer
along the extended main line to east, a small airgun
array with total capacity of 3,000 cubic inches (two air-
guns with 1,500 cubic inches capacity each) was shot.
The shot interval was 50 m. A length of the airgun array
was 5.5 m. Other specification of the airgun shooting,
for example, accuracy of shot timing, the gun depth and
the air pressure, were the same to that of shooting with
interval of 200m.

Skyfix system was used as the differential global
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Figure 3: Map of airgun shooting. Blue arrows show a direction and aregion of the shooting.
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Table 1: Activity log during KY 0511 cruise.

Date (UTC) |Remarks
October 05 |Departure from Yokohama shinko
October 06 |Transit and beginning OBS deployment on the eastern line (Site#1-Site#15)
October 07 |OBS deployment (Site#16-Site#39)
October 08 |OBS deployment (Site#40-Site#65)
October 08 |Finish of OBS deployment (Site#66-Site#77)
QOctober 10 |Beginning |Bré_obs_0 airgun shooting on the eastern line
Qctober 11 |IBr6_obs_0 airgun shooting
October 12 |Finish of IBré_obs_0 airgun shooting and aveidance due to bad sea states
Oclober 13 |Avoidance due to typhoon attack
October 14 |Avoidance due to typhoon attack
October 15 |Avoidance due to typhoon attack
October 16 |Avoidance due to typhoon attack
QOctober 17 |Avoidance due to typhoon attack
Oclober 18 |Avoidance due to typhoon attack
October 18 |Avoidance due to typhoon attack
October 20 |Transit and beginning OBS retrieval to Site#46 (Site#1)
October 21 |OBS retrieval (Site#2-Site#28)
October 22 |Finish of OBS retrieval (Site#29-Site#46)
October 23 |Beginning OBS deployment on the western line (Site#78-Site#90)
October 24 |Finish of OBS deployment (Site#91-Site#110)
October 25 |IBré_obs_1 airgun shooting on the western line
October 26 |IBré_obs_1 airgun shooting
October 27 |Finish of IBr6_obs_1 airgun shooting and beginning OBS retreival (Site#47-Site#63)
October 28 |OBS retreival (OBS#63-0OBS#91)
October 29 |OBS retreival (OBS#92-Site#110)
October 30 |OBS#11 retrieval and beginning IBré_mes_0 airgun shooting
October 31 |IBr6_mcs_0 airgun shooting
November 01 |Finish of IBré_mcs_0 airgun shooting and transit to JAMSTEC
November 02 |Transit and arrived at JAMSTEC
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Figure 4: Side and up views for geometry of airgun system and the hydrophone streamer.
(a) LinesIBr6_obs 0and IBr6_obs 1. (b) IBr6_mcs 0.
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positioning system (DGPS) of the R/V Kaiyo's naviga
tion system. The base station was Naha, Okinawa,
Japan. Because we have experienced the emergency
stop of airgun shooting due to non-succession of GPS
data in the past, we have adapted StarFire system as the
seismic navigation system since 2004. Ship navigation
system by Skyfix was used as backup of the seismic
navigation system. The accuracy of shot position was
about 40 cm.

2.2 Ocean Bottom Seismographs

We deployed 110 OBSs on the seismic line with the
interval of 5 km (Figure 1, Table 3). Our seismic group
in JAMTSEC has used 5 km as the OBS interval for the
wide-angle seismic profiling carried out at the Izu-
Ogasawara arc area to simplify comparison among the
velocity models with the same resolution obtained along
many seismic lines.

All OBSs were equipped with three-component geo-
phones (vertical and two horizontal components perpen-
dicular each other) using gimbal-leveling mechanisms
and a hydrophone sensor. Natural frequency of these
geophones was 4.5 Hz. The sensitivities of a geophone
and hydrophone sensors are shown in Table 4. Our
OBSs and the digital recorder system were originally
designed by Kanazawa and Shiobara (1994) and
Shinohara et al. (1993). The digital recorder used a 16-
bit/20-bit A/D converter and stored data on digital audio-
tape or a hard disk sampling continuously with original
format (Shinohara et al., 1993). The sampling rate is 10
msec. The electronic power for the recorder system of
each OBSis supplied by rechargeable lithium-ion batter-
ies. Above geophone sensors with gimbal-leveling
mechanism, batteries and a recorder system are installed
in 17-inch glass spheres made by Benthos, Inc, USA and
Nautilus Marine Service GMGH, Germany. To enable
easy OBS retrieval after arriving at sea surface, each
OBS is attached to a flash light and a beacon with coded

signals.

An OBS is deployed by free fall and retrieved by
melting releaser composed of stainless steel plates con-
necting the OBS with a weight when a transponder sys-
tem receives acoustic signal sent from a vessel. This
acoustic communication between the OBS and the vessel
was performed using transducers installed on the vessdl.
Positions of OBSs on sea bottom are estimated by SSBL
of the vessels positioning system during the cruise. The
accuracy of the OBS position determined by SSBL was
about 100 m.

After the cruise, we edited the continuous OBS data
with length of 70 sec and SEG-Y format. At the same
time, the OBS clock was corrected by estimation of time
differences between OBS original time and GPS time,
which were measured immediately before OBS deploy-
ment and after OBS retrieval.

2.3 Multichannel hydrophone streamer

During airgun shooting, we towed a 24-channel
hydrophone streamer to investigate the shallow struc-
tures, in particular, a distribution of sediments with low
P-wave velocity and the fault configuration (Figure 4).
Because one of the objectives of this cruise is to under-
stand relationship between the velocity structure and the
backarc opening, it isimportant to know the fault config-
uration within the Sumisu rift area. The hydrophone
streamer (ITI, Stealtharray ST-48) cableis solid type and
the interval of each channel was 25m. The lengths of
active section and read-in cable from the stern are 600 m
and 150 m, respectively, and a distance from the ship
stern to near channel is 161 m. The streamer depth was
15 m. Hydrophone sensors (TY PE Bruel & Kjaer Free-
field 1/2 Microphone) with sensitivity of -197.5 dB re
1Vp Pa (13.3V/Bar) were used and analog signals from
five sensors in the same channel were stacked before
A/D conversion. The A/D conversion kit was attached in
the recording system, the StrataVisor NX Marine made

Table 2: Airgun shooting log.

1Br6_obs_0 Time (UTC) Latitude (N) Longitude (E) Depth (m) _SP
First shot 2005/10/10 0:3¢  30° 28.9902" 137° 49.9950 4124 1964
First good 2005/10/10 0:38  30° 28.9902° 137° 49.8950' 4124 1964
Last good 2005/10/12 5:03 31° 253819 141° 49.3926' 3940
Last shot 2005/10/125:03 31° 253819 141° 49.3926' 3940
IBré_obs_1 Time (UTC) Latitude (N) Longitude (E) Depth (m) SP
First shot 2005/10/25 2:00  30° 3.4256" 136" 12.1903 4366 1145
shot 2005/10/25 2:00 30° 3.4256' 136° 12.1903' 4366 1145
Last good 2005/10/26 22:34  30° 53.2208" 139° 28.6550 1520 2783
Last shot 2005/10/26 22:34  30° 53.2208' 139° 28.6550' 1520 2783
IBré_mcs _hr Time (UTC) Latitude (N) Longitude (E) Depth (m) SP
First shot 2005/10/29 6:15 317 23.0232° 141° 38.6257 5607 21405
shot 2005/10/29 6:21 31° 230759 141° 389715 5534 21416
Last good 2005/11/17:00  32° 8.4868°  145° 22.1362° 5787

Last shot 2005/11/1 7:00 32° 8.4868 145° 22,1362 5787
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Table 3: OBS information. Each recorder using DAT or hard disk is shown by each
abbreviation of D or "H". The "B" and "H" means that makers of the hydrophone

sensor are Benthos Inc. and High Tech Inc., respectively.
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102
103
104
105
108/
107
108/
108

106256
108435
108610

31°23.7593' 141°42.0283°
31°23.0950" 141°30.5049"
31722.4541" 141735.9926"
10/67:44 31°21.780T" 141°32.9729"
10/69:12 31°21.0523' 141729.8857"
10/ 10:36 31°20.4257" 141°26.8614"
10/6 12:03 31°19.6627" 141°23.7925"
10/8 13119 31718.8436° 141720 6436"
10/8 14:35 31°18.2671' 141717.5451"
107 1544 31°17.6219 141°14.5957
10/6 18:36 31°17.7035' 141°14.5297"
10/6 1951 31°16.9947 141°11.4611°
10/ 21:02 31°16.2782 141°08.5280°
10/6 22:12 31°15.6667" 141°05.4714"
10/6 23:19 31°14.9314° 141°02.3349"
10/70:29 31°14.2422 140°59.2525"
10/71:34  31°13.5878' 140°56.2557"
107240 31°12.8367 140°53.1355"
10/73:46 31121011 140°50.1501"
10/7 4:55 31°11.4972 140°47.0604"
10/78:02 31°10.8127" 140°44.0304"
10/7 6:14 31710.8051' 140°44.0098"
10/7 617  31°10.7943" 140°44.0374"
10/7 16:24 31°10.1323' 140°41.0656"
10/7 17:30 31°09.4343' 140°38.0199"
10/7 1833 31°08.7378" 140°34.9673"
10/7 1934 31°08.0358' 140°31.9375"
10/7 20:32 31°07.2775' 140°28.8924°
1007 21:27 31°06.5700' 140°25.8167"
10/7 2221 31057962 140°22 6388
107 23:11 31°05.1093' 140°19.6283"
108 0:05 31°04.4201" 140°16.6087"
10/21:01 31°03.7330° 140°13.5345°
108156 31°03.0373' 140°10.4886"
10/82°51 31°02.3850° 140°07 4207
10/83:47 31°01.6664' 140°04.3848"
10/8 439 31°00.9685" 140701.3379"
10/8530 31°00.3060° 1397582557
10/86:16 30°59.6448 139755.3353"
10/8 7:10 30758.9222 139°52.3352"
10/8 8:12 30°58.2232 139°49.3232"
10/89:06 30°57.4739 139°46.2567"
10/8 10:02 30°56.7461" 139°43.2073"
10/8 10:58 30°56.0379" 139°40.1858"
10/2 11:56 30°55.3099" 139°37.1468"
10/8 1256 30°54.5180° 139°34.1256"
10/8 13:47 30°53.7938" 139°31.0883°
10/8 14:36 30°53.0675' 139°28.0653"
10/8 15:28 30°52.3856' 139°25.06858"
10/8 16119 30°51 6171 139°22.0015
10/8 17:10 30°50.976% 139°19.0089"
1078 17:48 30°50.1876 139°15.9596"
10/8 1835 30°49.5205' 139°12.9523°
10/3 19:32 30°46.8060° 139°00.9404°
10/8 20:25 30°48.0350° 139°06.8910"
10/8 21:19 30°47.2538" 139°03.8482"

10/8 22:14
108 23:10
10/2 005

30°46.5380" 139°00.6762"
30°45.7949' 138°57.8113"
30°45.0433' 138°54 7988"

108 1:00
108 1:57
1058253
10/9 3:50
10/9 4:51
108 553
108 6:58

30°44.3218' 138°51 7623°
30°43 5834' 138°48 7504"
30°42.8293 136°45.7252
30°42.0893 1367427166
30°41.3520° 138°39.7022"
30°40.6061' 138°36.6809"
30°39.1636" 138733 .6575"
10/38:06 30°39.1288" 138°30.6534"
10/89:17 30°38.3774' 138°27.6395"
103 10:30 30°37.6241" 138°24.6249"

10/9 11:40 30°36.8816' 138°21.6157"
10/2 1252 30°36.1322 138°18.6070°
10/ 1402 30735.3702 138°15.6434"
108 15:15 30°34.664%° 138°12.6600"
10/8 16:34 30°33.9165' 138709 6807
10/8 17:50 30°33.1919' 138°06.6507"
10/9 19:04 30°32.3627" 138°03.6048"
10/8 20:14 30°31.6191" 138°00.6417"
10/821:29 30°30.8610° 137°57.6275"
10/8 22:45 30°30.1089" 137°54.6112"
1023 13:49 30°29.3563' 137°51.5209"
[10/23 15:18 30°28.5818' 137°48.5005"
1023 16:49 30°27.8326' 137°45.5551"
[10/23 18:16 30°27.0438' 137°42.5365"
1023 19:39 30°26.2751" 137°39.5301°
1023 21:03 30°25.504% 137°36.3521"
10723 22:26 30°24.7538' 137°33.5319"
1023 23:51 30°23.9586' 137°30.5362"
10/24 1:19 30°23.1962 137°27.5355"
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Table 4: Sensitivities of geophone and hydrophone sensors.

Sensor type Sensor name Maker Sensitivity

Geophone

(three components) | 1-28LB.H.V | Mark Products | 0.69 Viin/sec | 4.5Hz (natural freq.)
Hydrophone AQ-18 Benthos, inc. -169 dB 1Hz - 12kHz

Hydrophone HTT-99DY |HIGH TECH, inc| '166dB 2Hz - 20kHz

Frequency

by Geometrics Inc, and digitized data was recorded on
DLT tapes with SEG-D 8048 4byte floating point for-
mat. System delay, which equals recording start time
minus system start time, was 50 msec. The sampling rate
was 4 msec and the record length was 13.5 sec. Because
seismic records from fifth and sixteenth channels were
not good during this cruise, we omitted the traces.

2.4 Seismic recor ding/shooting system

A seismic system of R/V Kaiyo consists of a naviga
tion system with software SPECTRA, a recording sys-
tem (StrataVisor NX Marine) and a gun controller sys-
tem (GCS90), and these systems are connected via
RTNu as described by Takahashi et al. (2004).
Navigation data collected from Starfire and Skyfix for
the ship's navigation system was sent to the PC Linux
machine installed SPECTRA software via the RTN.
The Linux PC controls shot timing, assignment of shot
number, and so on. Ship position (reference point of the
vessel), shot time (sec), channel position estimated
using cable leveler data and length of the read-in cable,
water depth obtained by multi-narrow beam data system
(Seabeam 2100 systrem), gun position, and shot number
are stored with UKOOA P1/90 format. Added to above
P1/90 format data, navigation data with interval of 1
sec, depth and direction of all cable leveler for al shots,
gyrocompass data of the vessel, shot time received from
GCS90 as time break signal (1 sec) and so on are stored
with UKOOA P2/91 format. The system start signal
generated by the SPECTRA was sent to the gun con-
troller and the recording system as a trigger signal and
the recording system started to store data on DLT tape.
Then, the gun controller sends back the internal time
break signal to the SPECTRA just after getting trigger
signals. After 50 msec from arrival of system start sig-
nal to the gun controller, the trigger signals are sent to
eight airguns as shot signals, and the recording system
starts to record seismic data from a hydrophone stream-
er. It is reasonable to regard the time zero of recording
start as just same timing to the gun fire.

3. Data

In this chapter, we introduce some representative
examples of the seismic data obtained by OBSs and
MCS. Vertical components of Site#13 on the forearc
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region, Site#35 near the volcanic front, Site#55 on the
western side of the arc, Site#77 on the arc-backarc tran-
sition zone, and OBS#93 on the eastern Shikoku basin,
and horizontal components of OBSH77 are described in
Section 3.1. Multichannel sesimic data (MCS data) are
described in section 3.2.

3.10BS

We retrieved all OBSs, however, recording system of
one OBS had troubles. Almost data quality of available
OBSs s basically good and we can trace the first phases
on vertical records until 150-200 km distance from each
OBS. Horizontal records aso show good quality despite
of poorer S/N ratio than the vertical, and we can see
converted S arrivals until about 100 km from the OBS.
We describe characteristics of OBS data using vertical
record sections of Site#13 (Figure 5), Site#35 (Figure
6), Sitet#77 (Figure 7) and Site#93 (Figure 8) asfollows.

OBS#13 was deployed on the eastern forearc region
over the outer arc high. We can trace first phases to the
western offset of 200 km from the OBS (Figure 5). The
apparent velocities of the first phases in the eastern side
are 2.5 km/s, 4.3 km/s, 6.5 km/s and 5.6 km/s for offsets
of 3-7 km, 7-12 km, 12-28 km and over 28 km, respec-
tively. The apparent velocity becomes small at the offset
of 28 km due to the bathymetric change at the trench
slope break. In the western side, we can trace them with
apparent velocities of 3.3 km/s, 5.7 km/s, 7.2 km/s, 8.6
km/s and 8.0 km/s to offsets of 3-10 km, 10-20 km, 20-
60 km except for 25-35 km, 60-100 km and over 130
km, respectively. Phases from the western side of over
130 km likely correspond to the refractions from the
upper mantle (Pn). Severe variations of these apparent
velocities at western offsets of 25-35 km and 100-130
km are due to topographic highs. Reflections from the
Moho (PmP) with high amplitudes can be also seen at a
western offset from 40 km. It is possible that a reflector
with high amplitude at western offsets of 60-110 km
indicates existence of alarge faults developed within the
arc.

OBS#35 was deployed near the volcanic front. The
first phases could be traced 180 km (Figure 6). On the
eastern side, we can trace first phases with apparent
velocities of 3.0 km/s, 4.4 km/s, 5.7 km/s, 7.2 km/s and
7.8 km/s at offsets of 3-13 km, 13-20 km, 20-43 km, 43-
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KY05-11 Line IBré_obs_0 Site#13 vertical section (deconvolution filtered)
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Figure 5: Vertical record section recorded by OBS#13. All traces are applied by deconvo-

lution filter and the bandpass filter with 5-15 Hz. Vertical and horizontal axes

are offsets (km) from OBS and traveltimes (sec) reduced by 8 km/s.

KY05-11 Line IBr6_obs_0 Site#35 vertical section (deconvolution filtered)
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Figure 6: Vertical record section recorded by OBS#35. The details are same as for Figure 5.

KY05-11 Line IBré_obs_1 Site#77 vertical section (deconvolution filtered)
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Figure 7: Vertical record section recorded by OBS#77. The details are same as for Figure 5.
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55 km and over 55 km, respectively. In the western side,
the apparent velocities of these phases are 3.4 km/s, 5.5
km/s, 6.3 km/s, 6.6 km/s and 7.8 km/s for offsets of 3-
14 km, 24-40 km, 45-66 km and over 120 km, respec-
tively. The phases with apparent velocity 7.8 km/s
might correspond to the Pn. The PmP phases with high
amplitudes can be seen at the western offset of 50-130
km.

OBSH77 was deployed on the arc-backarc transition
zone. The first phases from distances of 100-150 km in
both sides can be identified (Figure 7). In the eastern
side, we can trace the first phases with apparent veloci-
tiesof 2.2 km/s, 4.0 km/s, 7.2 km/s and 8.9 km/s for off-
sets of 3-5 km, 5-10 km, 23-35 km and 48-105 km,
respectively. Two concave shapes at offsets of 10-23
km and 35-48 km are affected Miocene volcanoes at the
western side of the arc. In the western side, the apparent
velocity of the first phases are 2.5 km/s, 4.8 km/s, 6.3
km/s, 7.0 km/s and 8.6 km/s for offsets of 3-5 km, 5-10
km, 10-27, 27-37 km and over 37 km, respectively.
Clear PmP phases identified at the eastern offsets of 15-
55 km and the western offsets of 10-50 km indicate that
the crustal thicknessisrelatively thinner than the arc.

OBS#93 was deployed on the eastern Shikoku basin.
The first phases from distances of 120 km can be seen
(Figure 8). In the eastern side, we can trace the first
phases with apparent velocities of 5.3 km/s, 6.0 km/s,
and 8.0 km/s for offsets of 5-10 km, 10-35 km and over
35 km, respectively. Small amplitude refractions with
apparent velocity of 8.0 km/s possibly correspond to the
Pn. High amplitude reflections identified at offsets of
30-85 km possibly corresponds to the PmP. In the west-
ern side, the apparent velocity of the first phases are 5.2
km/sand 7.1 km/s for offsets of 5-10 km and 10-26 km,
respectively. Large concave shape seen at offsets of 26-
65 km/s are affected by the Kinan seamount chain.
Because the apparent velocity of first phases becomes
over 8 km/s and the velocity corresponds to the Pn, thin
crust is expected.

Above record sections indicate that the arc area has
relative thick crust and the backarc area has thin crust.
In particular, it is interesting that the arc-backarc area
has relative thin crust despite the water depth is shal-
lower than the typical oceanic crust. The high velocity
lower crust beneath the arc-backarc transition zone or
slow mantle velocity are expected. This is an important
key to understand the crustal growth of this area.

Figures 9a and 9b indicate two horizontal compo-
nents of OBS#77 crossing perpendicular with each
other. Because only P-waves are shot in the sea, we
have to observe phases converted from the P-wave to S-
wave to understand S-wave structure. In the eastern
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side, we can see the converted S-waves with apparent
velocities of 3.0 km/s and 5.0 km/s at offsets of 15-30
km and over 30 km, respectively. In the western side,
the clear converted S-waves with apparent velocities
of 3.8 km/s and 5.0-5.5 km/s were observed at offsets
of 15-25 km and over 15 km, respectively.

3.2MCS

The MCS data recorded by a 24-channel hydrophone
streamer has enough quality to understand shallow
fault configuration. The eastern part of MCS profile
(Line IBr6_obs _0) and the western part (Line
IBré_obs 1) are shown in Figures 10 and 11. Applied
tentative flows were a collection of spherical diver-
gence, editing bad quality traces, a time variant filter
(3-125 Hz), brute stacking of shot gather, a time vari-
ant bandpass filter of 20-50 Hz and the auto gain con-
trol. Because of the channel interval of 25m and the
shot interval of 200 m, the fold number was 1 or 2.

Figure 10 indicates the MCS profile from the east-
ern part of the l1zu-Ogasawara arc (Site#78) to near
trench (5 km west from Site#tl) and its interpretation.
This part runs from the Miocene old arc at the arc-
back arc transition area to the adjacent to the lzu-
Ogasawara trench through the Sumisu rift (distance
from the western end of the line: 340-375 km), the
volcanic front (380 km), the forearc basin (385-510
km) and the trench slope break (510 km). Figure 11
indicates the MCS profile from the western side of the
arc to the western Shikoku basin through the arc-back
arc transition zone (130-260 km), the eastern Shikoku
basin (70-240 km) and the Kinan seamount chain (30-
70 km).

Uppermost sediments are deformed and collapsed.
The deep reflections seen at about 10 sec might be cor-
responds to a top of the subducting oceanic crust.
Beneath the forearc basin, the basement of the possible
Eocene-Oligocene old arc with rough topography and
thick sediments are remarkable characteristics. The
basement traced continuously beneath the forearc is
interrupted at the eastern adjacency of the volcanic
front (410 km). We can see a thick sedimentary basin
at the eastern half of the forearc region (460-490 km).
This sedimentary basin isfilled by three sequences and
the lowest one likely pinches out at both ends of this
basin. Because the sedimentary layer thickens toward
the western part of the forearc, and because the inter-
nal interfaces incline toward east, these sedimentary
layers is likely volcanoclastic materials from volca-
noes |located on the volcanic front.

The rift zone has the some seamounts and the small
basins including the Sumisu rift. Inside the Sumisu
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Figure 8: Vertical record section recorded by OBS#93. The details are same as for Figure 5.
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Figure 9: Horizontal record sections recorded by OBS#77. All traces are filtered by 5-15
Hz. The reduced velocity is 4.62 km/s. (a) Horizontal component-1. (b)

Horizontal component-2.
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rift, we can see some faults inclining toward east and a
steep fault inclining toward west at the eastern edge of
this rift. Some events with high amplitude also likely
exist beneath the Sumisu rift. It is suggested that the ini-
tial backarc opening of this rift begins from forming
asymmetric structure. At the western adjacent area of
the Sumisu rift (295-335 km), events inclining toward
east are detected. It might be speculated that the inclin-
ing events indicate existence of tilted block accompa
nied with the initial backarc opening. Between the dis-
tances of 270 km and 290 km, we can confirm a small
basin bounded by intrusive seamounts.

In the arc-backarc transition zone, the water depth
deepens gradually toward west. The height of
seamounts lowers toward west. At the western side from
distance of 200 km, seamounts and/or topographic high
are covered with thick sediments. Sedimentary structure
is also different between the eastern and the western
sidesin this area. The eastern side has relative thick sed-
iments and the sedimentary structure consists of two or
three layers. At the western side from 115 km distance,
the sedimentary structure becomes simple with one
acoustic transparency layer. The deeper events are also
detected at depth of 8 sec and might correspond to the
Moho.

The Kinan seamount chain consists of basaltic
seamounts produced in last stage of the backarc opening
(e.g., Okino et a., 1998). The seismic line goes across
the summit of one of basaltic seamounts. The basement
of the seamount in both sides has some terraces with the
height of about 500-1500 msec. The seamount covered
with the thin sediments has gentle and steep slope relat-
ing to the terraces of basement topography.

Line IBr6_mcs O runs from a trench slope break on
the eastern forearc end to 145 degree east across a large
transform fault. We can see the Moho interface at about
10 sec at western part of Figure 12. At east side from
shot number of 26200, Moho interface indicates strong
distortion changing the depth. We can confirm the
severe topography at shot numbers between 27600 and
28200 and a normal and a reverse faults on western and
eastern sides, respectively. The flower structure show-
ing the transform components can not be seen, however,
it look like that the fault configuration might indicate
the slumping structure.

4. Summary

We carried out the large active seismics using 110
OBSs, alarge airgun array with total capacity of 12,000
cubic inches and a 24-channel hydrophone streamer.
Qualities of OBS and MCS data are good to understand
the velocity structure and discuss the crustal growth in
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this area. The OBSs recorded clear phases to the offsets
of 150-200 km from each OBS. A part of horizontal
components of OBSs are also good and the converted S-
waves could be recorded to the offsets of over 100 km.
The OBS data suggests that the crustal thickness
beneath the arc-backarc transition zone is relatively thin.
The MCS data indicates the variation of the sedimentary
structures, topography of the basement and the configu-
ration of faults developed within the rift zone. We will
construct the velocity model and understand structural
variation suggesting crustal heterogeneity due to differ-
ent age, the relationship between the crustal growth and
the backarc opening, and structural characteristics of
arc-backarc transition zone.
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