Wide-angle seismic profiling across the middle Izu-Ogasawara Arc – KR07-13 cruise –

Seiichi Miura¹, Mikiya Yamashita¹, Narumi Takahashi¹, Shuichi Kodaira¹ and Yoshiyuki Kaneda¹

Abstract We carried out a wide-angle reflection and refraction experiment using 102 ocean bottom seismographs on a 679km long seismic line crossing the middle Izu-Ogasawara Arc. The cruise was conducted by R/V Kairei of Japan Agency for Marine-Earth Science and Technology from September to October, 2007. The objectives of the cruise are to reveal the crustal and uppermantle structures across the middle Izu-Ogasawara Arc from Ogasawara Ridge to Shikoku Basin illuminating the structural variations associated with the arc evolution and back-arc openings. In this paper, we summarize the seismic experiment and show the acquired data of ocean bottom seismographs.

Keywords: Izu, Ogasawara, OBS, oceanic island arc, seismic

1. Introduction

The Izu-Ogasawara (Bonin)-Mariana Arc (IBM) is an oceanic island arc well studied, since oceanic island arcs are one of important tectonic region to generate continental crust of the earth. This was strongly promoted by the collaborated results of seismological and petrological studies¹⁾².

The IBM is located eastern edge of the Philippine Sea Plate subducting the Pacific Plate at the Izu-Ogasawara and Mariana Trenches (Figure 1). The Shikoku and Parece Vela Basins are well developed at the back-arc side of the IBM. Between the back-arc basins and the IBM, there are en echelon seamount chains with NE-SW directions. In the middle of the Izu-Ogasawara Arc, there is a tectonic line named Sofugan Tectonic Line (STL) with NE-SW trend bordering the northern and southern part of the Izu-Ogasawara Arc. In the southern part, the Ogasawara Ridge and the Ogasawara Trough are elongated parallel to the Izu-Ogasawara Arc.

The history of the Philippine Sea Plate development is well revealed by many papers³). In this part, the history of the Philippine Sea Plate is overviewed mainly with the review of Stern et al.³). At the beginning of the history which is about 50-45 Ma, the convergence of oceanic lithospheres occurred and the boninitic activity was also confirmed in this time⁴). First arc activity was occurred about 40-30Ma, followed by the back-arc openings of the

Shikoku and Parece Vela Basins in the period of 30-15 Ma, which is well documented by the geophysical papers⁵⁾. According to Okino et al.⁵⁾, the rifting before the seafloor spreading was timing of 30-27 Ma, followed by the spreadings in E-W direction. The spreadings were continued during 27-23 Ma with the northward and southward propagations of Parece Vela Basin and Shikoku Basin, respectively. The propagations were reached and united together at 23 Ma and started the stable spreading until 20 Ma. Around 19 Ma, the spreading direction was changed to NE-SW direction with ridge segmentations and continued until 15 Ma. After the cease of the spreading, axial seamounts were formed in the Shikoku Basin until 12 Ma, although there was no axial seamount in the Parece Vela Basin⁶⁾. The Mariana Trough opening was initiated sometime after 10 Ma for rifting stage, followed by the seafloor spreading from 3-4 Ma⁷⁾⁸⁾. As mentioned here, the IBM area has a cyclic history of arc evolutions and back-arc openings.

Around the IBM, many seismic surveys have been conducted intensely to reveal the crustal structure understanding the arc evolution associated with the continental crustal forming since 1960's⁹⁾. The northern Izu-Ogasawara Arc transect using ocean bottom seismographs (OBS) reveals the middle crust with P-wave velocity of 6 km/s, which is thought to be an intermediate layer suggesting the formation of continental crust¹⁾. The seismic

1. Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

survey using OBS in Mariana region confirmed the similar crustal characteristics with those of northern Izu-Ogasawara Arc suggesting transformation of the dense crustal materials to the upper mantle throughout the crustal evolution²⁾. According to Takahashi et al.²⁾, observed lower crustal volume is much less than those of calculated volume with petrological modeling, which requires the evolution process returning the crustal materials to the mantle. Moreover, the seismic surveys on the Izu-Ogasawara volcanic arc show the structural variation along the arc¹⁰⁾, which indicates that the evolution process varies along the arc.

The STL is a lineament with NE-SW trend bordering the northern and southern Izu-Ogasawara Arcs¹¹⁾ indicating the differences in topographic, geological and structural features and in distribution of hypocenters and back-arc depressions. Yuasa¹¹⁾ also suggests that the trend change of the minor ridge on the Shikoku and Parece Vela Basins seems to correspond the western extension of the STL. From the along-arc transect of OBS survey, crustal thickness is smallest around the STL about 10 km bordering the southern juvenile and northern mature arcs¹⁰⁾. The isotopic characteristics of rock samples also show the alongarc variation and two gaps at Latitudes 27.5 and 25 degrees, of which former gap locates around the STL¹²⁾.

The Ogasawara Ridge is a topographic high locating in the forearc region of the Izu-Ogasawara Arc, thought to be a region holding the characteristics of old arc activity of the IBM because of the discovery of boninite⁴⁾. The middle crust of the Ogasawara Ridge has P-wave velocity of 6.5 km/s, which is meaningfully higher than those of current Izu-Ogasawara Arc, suggesting the difference of evolution process of arc activity ¹³.

The tectonics at the transition zone between the arc and back-arc region is also an important to understand the evolutions of arcs and back-arc basins. According to Takahashi et al.¹⁴, the lower crust of the transition zone in northern Izu-Ogasawara Arc has high P-wave velocity about 7 km/s. This characteristic is also discovered in the transition zone in Mariana Region²). From the MCS study,

Figure1: Bathymetric map of the experimental area. A black line with white and yellow circles, which are ocean bottom seismographs (OBS), is a seismic line for wide-angle reflection/refraction experiment using OBS. Yellow circles with three digits indicate every 10 OBS.

there are normal faults cutting the sedimentary layer and the basement thought to be active not only the back-arc opening period before 15 Ma but also the period after the back-arc opening suspend¹⁵.

The objectives of this survey are following five points: 1) to confirm the existence of high velocity (~6.5 km/s) middle crust in the northern part of the Ogasawara Ridge, 2) to confirm the P-wave velocity of lower crust in northern part of the Ogasawara Trough, 3) to reveal the across arc distribution of the thin crust around the STL, 4) to confirm the existence of high velocity (~7 km/s) and reflective lower crust in the transition zone between the arc and back-arc basin, and 5) to reveal the crustal and mantle structure of the Shikoku Basin including the axial seamount (Hakuho Seamount). To reveal the crustal structure

ture of the middle Izu-Ogasawara Arc achieving the objectives, a wide-angle reflection and refraction experiment of OBS has been conducted on a seismic line (IBr10: Figure 1) from September to October, 2007. The cruise was KR07-13 conducted by the R/V Kairei of Japan Agency for Marine-Earth Science and Technology (JAM-STEC).

2. Experiment

The outline of the KR07-13 cruise and shiptracks are respectively shown by Table 1 and Figure 2. The R/V Kairei left the Yokohama port in September 30. OBS deployment was conducted from October 1 to 11, including first avoidance due to typhoon attack in the Mikawa Bay from October 6 to 9. During the OBS deployment,

Figure2: Map for ship's track. Red crosses and yellow four-digits indicate the position at noon in global standard time and date, respectively.

three OBS were re-deployed since deployment troubles in Site005, Site073 and Site075. In October 12, float towing test for the new MCS system of R/V Kairei was conducted. The airgun shooting on the Line IBr10 was continued from October12 to 17 with 200-m interval for the OBS survey. After the airgun shooting, OBS were retrieved from October 17 to 25 including avoidance due to second typhoon attack off Shionomisaki from October 20 to 21. During the OBS retrievals, one OBS could not retrieve because of a recovery trouble in Site024. Finally, third avoidance due to typhoon attack in the Tokyo Bay from October 26 to 28 including transit from the survey area. The cruise was finished in October 29 arriving to the JAMSTEC port. Although there were three times of avoidance due to typhoon attack, a wide-angle reflection and refraction survey using 102 OBS was completed. The specifications of the OBS survey were basically same as those of surveys in Izu-Ogasawara region¹⁶⁾¹⁷⁾.

2.1 Airgun shooting

The seismic source of the cruise was an airgun array of BOLT1500LL type on the R/V Kairei. Total chamber size was 12000 cu. in. (2001), which was composed of eight 1500 cu. in. airguns. Air pressure was 2000 psi (140 atm). Towing depth of the airgun array was about 10 m. The eight airguns were shot simultaneously within 1msec. The center of source (COS) was located 198.6 m behind from the vessel reference point (VRP), which was addition of 76.7 m from the VRP to the stern and 121.9 m from the stern to the COS (Figure 3).

The Line IBr10 was 679-km length from the Shikoku Basin to the Pacific Plate subducting beneath the Izu-Ogasawara Arc. The western and eastern ends of the Line IBr10 were extended outside of OBS locations: the western end was 62-km west from OBS102 and the eastern end was 111-km east from OBS001. The shooting interval was 200-m, which was about 97 s with 4 knot ship speed. Total shot number was 3396, which was continuously conducted without shooting interruption on the Line IBr10 (Table 2).

2.2 **OBS**

One hundred and two OBS were deployed with 5-km interval on the Line IBr10. The OBS and the digital recorder system were originally designed by Kanazawa and Shiobara¹⁸⁾ and Shinohara et al.¹⁹⁾. The sensors of the OBS are 4.5 Hz geophones for one vertical and two horizontal components and one hydrophone. The signals recorded by hard disk drive (HDD) after 16 bit A/D converter with 100 Hz sampling rate (10 ms). The power supply for the electric is rechargeable battery, which is effec-

Table1: Activity log during KR0713 cruise

Date	Remarks							
September 30	Departure from Yokohama							
October 01	OBS deployment (Site#001-Site#005)							
October 02	OBS deployment (Site#006-Site#023)							
October 03	OBS deployment (Site#024-Site#039)							
October 04	OBS deployment (Site#040-Site#058)							
October 05	OBS deployment (Site#059-Site#074)							
October 06	Avoidance due to typhoon attack							
October 07	Avoidance due to typhoon attack							
October 08	Avoidance due to typhoon attack							
October 09	Avoidance due to typhoon attack							
October 10	OBS deployment (Site#075-Site#085)							
October 11	OBS deployment (Site#086-Site#102)							
October 12	Float towing test & IBr10 airgun shooting							
October 13	IBr10 airgun shooting							
October 14	IBr10 airgun shooting							
October 15	IBr10 airgun shooting							
October 16	IBr10 airgun shooting							
October 17	IBr10 airgun shooting & OBS retrieval (Site#001-Site#005)							
October 18	OBS retrieval (Site#007-Site#023)							
October 19	OBS retrieval (Site#025-Site#038)							
October 20	OBS retrieval (Site#039-Site#046) & Avoidance due to typhoon attack							
October 21	Avoidance due to typhoon attack							
October 22	OBS retrieval (Site#102-Site#091)							
October 23	OBS retrieval (Site#090-Site#074)							
October 24	OBS retrieval (Site#073-Site#053)							
October 25	OBS retrieval (Site#052-Site#047)							
October 26	Avoidance due to typhoon attack							
October 27	Avoidance due to typhoon attack							
October 28	Avoidance due to typhoon attack							
October 29	Arrival to JAMSTEC							

tive for one month survey. The time shifts between the internal clock of OBS and reference time (GPS) were measured before the deployment and after the retrieval for calibration during OBS deployment on seafloor.

The transponders of Kaiyodenshi type (KYD) and System Giken type (SYG) were used for communication in seawater to cut iron anchor and to measure the distance. Although the descending speeds for both types are about 82 m per minute, cutting time and ascending speed are different each other. The cutting times for iron anchor are about 15 minutes for KYD and 22 minutes for SYG, respectively. The ascending speeds for KYD and SYG are respectively 63 m per minutes and 68 m per minutes. For this survey, 60 KYD and 42 SYG were used (Table 3).

We deployed 102 OBS taking acoustic communication between the R/V Kairei and OBS to measure the location on seafloor. Most OBS were located within 200-m diameter from planned position, which was the airgun shooting interval. However, several OBS were positioned about 300-m away from the aimed position because of currents. Moreover, several OBS were deployed away from the first planned position avoiding the steep slope depending on the bathymetry.

2.3 Navigation Systems

The navigation of the survey was StarFire system, which was a Differential Global Positioning System (DGPS), enabling to navigate the R/V Kairei within 0.4 m

Figure3: Geometry of the airgun system for OBS survey

Figure4: Navigation system of R/V Kairei.

accuracy. The software SPECTRA of Concept Inc. was used to control the navigation system. The positioning data from the StarFire was sent to RTN μ (a network interface made by Concept Inc.) via a terminal server in the LAN system of the R/V Kairei. The RTN μ acquire the time signal of the StarFire from the original antenna. The navigation data is sent to the PC Linux machine installing the SPECTRA. The shottime and shotpoint (SP) were set by the SPECTRA and trigger signals were sent to the recording system and the airgun control system (GCS90).

The schematic diagrams of navigation and recording system is shown by Figure 4. At first, SPECTRA send the starting signal (System-start-signal) to the central control device bia RTNµ (Real Time Navigation Unit). Secondly, SPECTRA send the trigger signal (Shot-trigger) to the airgun control system (GCS90). The GCS90 sends the signal (Internal-time-break-signal) back to the RTNµ, and simultaneously send the trigger signal to each airgun. The wave forms recorded by the monitor hydrophone are sent to the GCS90 and the airgun position is sent to the RTNµ.

3. OBS Data

The recording condition was good enough to identify the airgun signals to 250-km offset distances in some data. Figure 5 shows vertical component data of OBS019, 048 and 078. All traces were processed by 3-12 Hz band pass filter, deconvolution, and auto gain control of 2 sec.

OBS019 was located in the Ogasawara Trough, which is between the Ogasawara Ridge and the Izu-Ogasawara Arc. Apparent velocities of first arrivals in eastern side of the OBS in 9-12 km, 18-40 km, 40-54 km, 54-76 km and 76-93 km are 4.4 km/s, 6-7 km/s, 9 km/s, 5.2 km/s and 6.2 km/s, respectively. Those in western side of the OBS in 9-13 km, 13-17 km, 20-42 km, 45-57 km and 57-72 km are 3.1 km/s, 6.4 km/s, 7 km/s, 8 km/s and 8.6 km/s, respectively. The apparent velocity over 72 km west is continuously changed by seafloor topography until 200 km offset. The later reflection phases are observed in east side of the OBS in 15 km, 60 km and 100 km, and in west side of the OBS in 40 km, 60 km and 70 km.

OBS048 was on the Izu-Ogasawara Arc region. Apparent velocities of first arrivals in eastern side of the OBS in 4-12 km, 12-25 km, 25-32 km, 32-41 km, 41-48 km, 72-82 km, 82-110 km and 110-127 km are respectively 4.1 km/s, 5.0 km/s, 8.9 km/s, 5.8 km/s, 5.0 km/s, 5.5 km/s, 6.3 km/s and 8.6 km/s. Those in western side of the OBS in 4-6 km, 6-9 km, 18-32 km, 32-40 km, 40-53 km, 53-77 km and 77-89 km are 3.1 km/s, 5.4 km/s, 5.2 km/s, 7.1 km/s, about 10 km/s, 7.5 km/s and 7.0 km/s, respectively. The apparent velocity between 48 and 72 km east of the OBS was continuously changed about 8 km/s for seafloor topography. In both sides of the OBS, there are clear later phases thought to be reflection signals from deep interfaces in 40-km offset distances.

OBS096 was positioned near the eastern edge of the Shikoku Basin. Apparent velocities of first arrivals in eastern side of the OBS in 6-9 km, 9-14 km, 14-21 km, 34-53 km, 63-100 km and 100-115 km are 4.3 km/s, 5.6 km/s, 6.7 km/s, 7 km/s, 8.6 km/s and 6.3 km/s, respectively. The apparent velocity between 48 and 72 km are continuously changed about 8 km/s. Those in western side of the OBS in 6-8 km, 8-13 km and 13-17 km are 4.0 km/s, 4.9 km/s and 6.3 km/s, respectively. The apparent velocity over 17 km west is about 8 km/s and continuously changed by seafloor topography.

From the general information of these OBS records, the crustal thickness is suggested as thick in arc and forearc region. For example, the OBS019 data shows that the intercept time of the first arrival of 7 km/s in west side is about 6 s. On the other hand in backarc region, the crustal thickness seemed to be thin, especially in the Shikoku Basin.

For an example of horizontal component, figure 6 shows the two horizontal component data of OBS078. All traces were processed by 3-12 Hz band pass filter, deconvolution, and auto gain control of 2 sec. In the western side of the OBS between 20 and 40 km offset and 11 sec, there are clear signals with 4.2 km/s apparent velocity, which are thought to be converted signals from P to S at deep interfaces.

4. Summary

We have conducted a seismic survey in the middle Izu-Ogasawara region of wide-angle reflection and refraction experiment using 102 OBS during September to October, 2007. The data acquisition of the OBS survey was successfully finished, although there were three interruptions of typhoon attacks. Acquired data quality is good. For example, some of the OBS data of vertical component have clear first arrivals until an offset of 250 km. Some clear signals in horizontal component data are thought to be P-S converted signals at the deep interfaces. From the information of apparent velocities and intercept times of OBS data, the crustal thicknesses of the middle Izu-Ogasawara Arc and the forearc region are thick, whereas the crustal thickness in the Shikoku Vela Basin is thin. In the future, we will constrain the velocity model transecting the middle Izu-Ogasawara Arc, followed by the interpretation for arc evolution and formation of back-arc basins using the OBS data.

Table2: Airgun shooting log

IBr10obs_0	Time (UTC)	Latitude (N)	Longitude (E)	Depth (m)	SP	
First shot	2007/10/12 10:30	27° 49.6308'	136° 45.1800'	4579	963	
First good shot	2007/10/12 10:30	27° 49.6308'	136° 45.1800'	4579	963	
Last good shot	2007/10/16 14:59	29° 25.1894'	143° 27.4072'	6108	4358	
Last shot	2007/10/16 14:59	29° 25.1894'	143° 27.4072'	6108	4358	

Table3: OBS information. The "KYD" and "SYG" indicate the type of transponder Kaiyodenshi and System-Giken, respectively.

	9 1000	Cast Versel position The			-	Recovery Vested position			OBS Calibration position					-
Site	UTC	Lat(N)	lon/E)	Depth	UTC	Latini	Lon(E)	Denth	Lat(N)	Lon/F)	Denth			Transponder
1	2007/10/01 04:31:50	29 10.8913	142 20 6809	5049	2007/10/17 06:23:00	29 10 8993	142 20,4959	5045	29 10.9591	142 20:6017	5037.5	108.0	-154.7	SYG
2	2007/10/01 06:13:55	29 10.2393	142 17.6986	4717	2007/10/17 08:01:00	29 10 2094	142_17.4531	4709	29_10.2734	142 17.6061	4711.9	54.0	-152.0	SYG
3	2007/10/01 07:50:19	29,09.5832	142_14.7030	4419	2007/10/17 11:28:00	29,09.4086	142 14 3180	4390	29,09.5359	142,14.6454	4401.2	-94.0	-94.0	SYG
4	2007/10/01 09:11:59	29_08.9264	142_11.6889	3961	2007/10/17 14:32:13	29_08.9724	142,11,3301	3913	29_08.9596	142_11.5718	3953.8	58.0	-220.0	KYD
5.2	2007/10/01 10:35:32	29.08.2077	142.08.7009	3660	2007/10/17 144847	20.08.4001	149 08 9704	3624	20 08 2067	142 08 5335	3639.7	52.0	-200.0	KYD
6	2007/10/01 17.09.00	29.07.6140	142 05 7183	3425	2007/10/17 15:53:00	29 07 8614	142 05 5780	3437	29 07.7030	142 05 7830	3433.5	176.0	106.0	KYD
7	2007/10/01 18:31:51	29,08.9450	142_02.7164	3077	2007/10/17 16:59:00	29,07.1579	142_02.5689	3027	29,06.9859	142 02 7350	3069.3	74.0	20.0	KYD
8	2007/10/01 19:47:04	29,06.2822	141_59.7200	2648	2007/10/17 17:57:00	29,06.4413	141_59.4974	2644	29_06.2666	141,59.7279	2637.9	-30.0	-4.0	KYD
9	2007/10/01 20:57:57	29.05.6195	141_56.7337	2695	2007/10/17 18:59:00	29.05.8469	141_56.2944	2678	29,05.8630	141_56.6391	2584.2	82.0	-180.0	KYD
11	2007/10/01 22:05:11	29 04 9547	141_53.7685	2588	2007/10/17 20:11:00	29.05.2819	141 53 2609	2500	29 04 3542	141 50 8174	2574.4	124.0	-14.0	KYD
12	2007/10/02 00:23:31	29 03 6183	141 47 7581	2543	2007/10/17 22:04:00	29 03 8190	141 47 4077	2553	29 03.8576	141 47,6600	25501	70.0	-168.0	KYD
13	2007/10/02 01:37:59	29,02,9555	141 44.7781	2593	2007/10/17 23:08:44	29,03.1163	141,44,4988	2551	29 02.9890	141 44 7278	2597.8	70.0	-74.0	KYD
14	2007/10/02 02:43:02	29,02.2849	141_41.7843	2818	2007/10/18 00:09:53	29,02,4286	141_41.5823	2902	29_02.3312	141,41.7703	2835.6	92.0	-22.0	KYD
15	2007/10/02 03:51:43	29.01.6081	141.38.7825	3278	2007/10/18 01:20:26	29,01.7576	141.38.6291	3239	29,01.6518	141,38.8123	3274.2	76.0	28.0	KYD
12	2007/10/02 05:27:28	29,00.9138	141_30.0909	3894	2007/10/18 02:37:52	29.01.0305	141_35.5056	3891	29.00.8973	141,35,5982	3909.4	-8.0	-112.0	SYG
18	2007/10/02 08:03:49	28 59 5900	141 29.8317	3978	2007/10/18 05:29:00	28 59 6293	141 29.6751	3984	28 59 59 18	141 29 7612	3976.2	0.0	-116.0	SYG
19	2007/10/02 09:25:16	28,58.9157	141,26.8459	4014	2007/10/18 06:55:00	28,58,9659	141_26.6621	4015	28,58.9578	141,26.7539	4014.6	76.0	-150.0	SYG
20	2007/18/02 10:47:05	28,58.2408	141_23.8501	4026	2007/10/18 08:19:00	28,58.3144	141 23 5688	4028	28,58.2891	141,23.7180	4028.2	90.0	-232.0	SYG
21	2007/10/02 12:04:23	28_57.5641	141_20.8670	4034	2007/10/18 09:40:00	28_57.8538	141_20.5874	4034	28,57,6194	141_20.7528	4134.5	104.0	-200.0	SYG
23	2007/10/02 13:25:15	28.56.2052	141 14 8958	4036	2007/10/18 12 48:30	28,56 3835	141 14 4991	4038	28,56,9452	141 14 8772	4033.1	112.0	-50.0	syg
24	2007/10/02 16:10:51	28 55 5261	141 11.9164	4024		20,00,0000		-	28 55.5428	141 11.9288	4025.6	34.0	6.0	SYG
25	2007/10/02 17:33:20	28.54.8469	141_08.9412	4023	2007/10/17 22 18:00	28,54,9841	141_08.7648	4020	28_54.8773	141.08.9585	4025.8	64.0	42.0	SYG
26	2007/10/02 18:57:30	28,54,1580	141_05.9568	4014	2007/10/18 23:43:40	28,54.3318	141_05.6878	4013	28_54.1641	141_05.9513	4024.2	8.0	-16.0	SYG
27	2007/10/02 20:23:03	28,53,4763	141_02.9819	3989	2007/10/19 01:11:06	28,53,6256	141_02 7524	3977	28_53.4965	141_03.0096	3985.7	38.0	48.0	SYG
20	2007/10/02 23:10:56	28 52 1039	140 57 0181	3600	2007/10/19 03:45:00	28 52 1723	140 56 7161	3731	28 52 0431	140.55.9950	3752.3	-114.0	-38.0	KYD
30	2007/10/03 00:30:08	28 51 4133	140 54.0359	3611	2007/10/19 04:57:00	28 51.4340	140 53.7087	3600	28,51,4003	140 53.9586	3594.5	-32.0	-134.0	KYD
31	2007/10/03 01:44:22	28,50.7315	140,51.0570	3463	2007/10/19 06:16:00	28,50,7332	140,50.8038	3433	28,50.6600	140,51.0515	3451.0	-128.0	-18.0	KYD
32	2007/10/03 04:51:52	28,50.0413	140,48.0792	3343	2007/10/19 07:27:00	28,50.0950	140_47.8084	3350	28,50.0486	140,48.0297	3349.7	16.0	-90.0	KYD
33	2007/10/03 06:06:13	28,49.3486	140,45,1066	3093	2007/10/19 08:31:00	28,49,3875	140 44 8909	3079	28 49.3667	140,45,0440	3090.4	32.0	-104.0	KYD
35	2007/10/03 08 47 31	28,47,9548	140 39 1468	3136	2007/10/19 10:50:00	28 48 0353	140 38,7535	3149	28,47,9327	140 39 0784	3143.4	-60.0	-126.0	KYD
36	2007/10/03 09:55:51	28,47,2670	140,35.1632	3785	2007/10/19 12:07:45	28,47.3348	140_35.7359	3791	28 47.2314	140,35,0307	3862.5	-74.0	-244.0	KYD
37	2007/10/03 11:38:54	28_46.6336	140_33.4813	3646	2007/10/19 13:27:33	28,46.6223	140_33.0332	3580	28_46.5277	140_33.2562	3658.1	-168.0	-294.0	KYD
38	2007/10/03 12:52:58	28,45.8789	140_30.2263	3315	2007/10/19 14:40:43	28.45.9293	140_29.9300	3362	28_45.9024	140_30.1293	3331.5	40.0	-168.0	KYD
39	2007/10/03 14:05:03	28 45 1775	140,27,2559	3361	2007/10/19 15:48:00	28 45 2784	140 26 9834	3304	28,45,1913	140,27,1586	3333.6	14.0	-164.0	KYD
41	2007/10/03 16:41:17	28 43 7824	140 21 3040	2207	2007/10/19 17:45:00	28 43 9771	140 21 1475	2196	28 43 8742	140 21 2783	2195.8	162.0		KYD
42	2007/10/03 17.46.18	28 43.0938	140 18 3307	2403	2007/10/19 18:41:00	28 43 2872	140 18 22 11	2421	28 43.1782	140 18 2986	2407.4	170.0	-74.0	KYD
43	2007/10/03 18:53:08	28,42.3879	140_15.3724	2958	2007/10/19 19:42:00	28_42.5611	140_15.3459	2971	28,42.4564	140_15.4055	2959.3	132.0	52.0	KYD
44	2007/10/03 20:10:08	28,41,6833	140,12,4023	2908	2007/10/19 20:45:00	28,41.7704	140_12.4441	2922	28,41.7063	140,12,4333	2909.8	44.0	48.0	KYD
45	2007/10/03 21:19:59	28,40,9819	140,09.4283	2653	2007/10/19 21:44:00	28,40,9891	140_09.4289	2551	28,40.9877	140,09,4863	2545.5	16.0	84.0	KYD
47	2007/10/03 23:33:24	28 39 5688	140 03 4826	2302	2007/10/24 20 40:00	28 39 6470	140 03 3722	2296	28 39 5438	140 03 5169	2287.9	-46.0	30.0	KYD
48	2007/10/04 00:37:20	28,38,8509	140,00.5250	2400	2007/10/24 19:42:00	28.38.9409	140.00.3478	2421	28.38.8545	140.00.5068	2400.7	-14.0	-40.0	KYD
49	2007/10/04 01:40:41	28_38.1588	139_57.5587	2594	2007/10/24 18:48:00	28,38,2458	139_57.3660	2620	28_38.1824	139_57.5354	2609.8	52.0	-48.0	KYD
50	2007/10/04 02:47:12	28 37.4413	139_54.5836	2417	2007/10/24 17:48:00	28 37 4387	139 54 3612	2216	28.37.4193	139 54 5476	2394.4	~48.0	-64.0	KYD
52	2007/10/04 03:51:31	28,35,6513	139_51.3943	2681	2007/10/24 16:27:00	28,35,7055	139.51.2668	2882	28,38,0001	139_51.4225	2653.3	-36.0	-18.0	KYD.
53	2007/10/04 06:03:24	28 35 2978	139 45,7023	3074	2007/10/24 14:28:59	28 35 2480	139 45 6551	3049	28 35,2885	139 45 6898	3074.3	-44.0	-26.0	KYD
54	2007/10/04 07:16:38	28.34.5989	139,42.7426	3613	2007/10/24 13:21:14	28.34.6674	139,42.7316	3615	28,34.5894	139,42.7303	3616.6	-18.0	-20.0	KYD
55	2007/10/04 08:37:57	28_33,8930	139_39.7716	3610	2007/10/24 12:00:05	28_34.0674	139_39.6553	3615	28_33.9216	139,39.7704	3610.0	68.0	-16.0	KYD
56	2007/10/04 10:11:18	28,33,1683	139_36.8164	3529	2007/10/24 10:49:00	28_33.1820	139_36.7240	3527	28_33.0742	139,38.7215	3513.3	-176.0	-158.0	KYD
58	2007/10/04 11:451 28	28.32.4000	139 33 8942	3183	2001/10/24 09:35:00	28 31 6754	139 33 6336	3145	29.32.3043	139,33,7354	3166.3	-105.0	-278.0	KYD
59	2007/10/04 15:20:22	28 31.0053	139 27.9384	3088	2007/10/24 07:13:00	28 30 9735	139 27.6388	3103	28 30.9933	139 27.8120	3091.6	-44.0	-204.0	KYD
60	2007/10/04 16:39:13	28,30,3004	139,24.9829	3129	2007/10/24 06:07:00	28.30.2356	139,24,7008	3131	28.30.2639	139,24,9009	3124.2	~62.0	-126.0	KYD
61	2007/10/04 17:56:01	28,29.5716	139_22.0204	3142	2007/10/24 05:05:00	28,29,5153	139_21.7905	3140	28,29.5324	139_21.9338	3145.2	-B2.0	-140.0	KYD
62	2007/10/04 19:06:40	28,28,8524	139 19.0640	3242	2007/10/24 04:03:00	28,28,6985	139_18.9399	3242	28,28.8540	139,19.0668	3245.8	-2.0	8.0	KYD
64	2007/10/04 21:33:16	28 27 4098	139 13.1529	3223	2007/10/24 01.45.37	28 27 3301	139 13 2071	3224	28 27.4084	139 13 1914	3226.2	0.0	70.0	KYD
65	2007/10/04 22:43:38	28,26.6785	139_10.1898	3209	2007/10/24 00:43:05	28,26.6155	139,10.3378	3210	28,26.6586	139,10,2160	3210.2	-46.0	38.0	KYD
66	2007/10/04 23:58:41	28,25.9553	139_07.2339	3210	2007/10/23 23:34:34	28,25,8622	139_07.3343	3209	28,25.8774	139,07,2291	3208.1	-148.0	-14.0	KYD
67	2007/10/05 01:09:00	28.25.2258	139,04,2789	3178	2007/10/23 22 25:00	28,25,1682	139_04.3399	3178	28.25.1849	139,04,2000	3179.9	-84.0	-38.0	KYD
68	2007/10/05 02 22:44	28,24,4934	138 59 1490	2908	2007/10/23 21 22:00	28,24,3855	138 58 1425	28.78	28,24,4633	138 58 1429	2982.0	-72.0	-10.0	KYD KYD
70	2007/10/05 04:43:19	28.23.0456	138,55,4176	2817	2007/10/23 19:15:00	28.22.9549	138.55.4022	2827	28,23.0461	138,55 4304	2818.9	6.0	10.0	KYD
71	2007/10/05 05:52:52	28,22,3094	138_52.4653	2710	2007/10/23 18:09:00	28,22,2069	138_52.3621	2713	28 22.3267	138_52.4236	2711.1	28.0	-80.0	KYD
72	2007/10/05 07:00:37	28,21.6616	138_49.7558	3044	2007/10/23 17:07:00	28,21.5738	138_49.6706	2999	28_21.6673	138_49.7745	3056.6	38.0	-20.0	KYD
73,1	2007/10/05 08:10:01	28,20,8498	138,46,5728	3517	2007/10/05 10:26:00	28.20.5913	138 46 399	3531	28 20 7861	138.44.5394	3523.8	-110.0	-66.7	KYD
74	2007/10/05 11:55 33	28 20.1125	138,43,6167	3546	2007/10/23 14:45:36	28 19.8856	138 43 6775	3566	28 19.9471	138 43 6973	3553.7	-303.3	123.3	KYD
75.1	2007/10/05 13:12:24	28,19.3726	138,40,6634	3607	2007/10/05 14:58:00	28,19.1012	138,40.5773	3613	-	-	1000 CO	-	200	KYD
75_2	2007/10/10 01:05:12	28_19.3744	138,40.6799	3606	2007/10/23 13 35:55	28,19,2613	138,40.7424	3507	28, 19, 3465	138,40,7794	3603.9	-54.0	174.0	SYG
76	2007/10/10 02:27:14	28,18,6376	138_37.7276	3678	2007/10/23 12:10:42	28,18,5091	138_37.8700	3671	28,18.6109	138_37.9078	3669.7	-52.0	136.0	SYG
78	2007/10/10 03:46:38	28 17 1569	138 31 8229	36/2	2007/10/23 10:50:00	28 17 2935	138 31 9999	3870	28 17 4216	138 31 8449	3974.1	478.0	24 0	SVG
79	2007/10/10 06:27:43	28_16.4239	138,28.8777	3967	2007/10/23 08:01:00	28 16 2723	138,28.7734	3988	28,16.3927	138,28,8827	3956.3	-56.0	-2.0	SYG
80	2007/10/10 07:50:23	28_15.6827	138 25 9314	4095	2007/10/23 06:36:00	28 15 5060	138 25 8405	4121	28_15.6551	138 25.9372	4105.3	~50.0	-2.0	SYG
81	2007/10/10 09:12:00	28_14.9355	138_22.9907	4180	2007/10/23 05:11:00	28,14,8149	138,22.8961	4179	28_14.9447	138_23.0486	4182.0	8.0	90.0	SYG
82	2007/10/10 10:32:55	28_14.1897	138,20.0523	4222	2007/10/23 03 43:00	28_14.0957	138,20,0582	4222	28,14,2386	138_20.1264	4218.4	76.0	126.0	SYG
83	2007/10/10 11:57:24	28 12 7144	138 14 1471	4487	2007/10/23 02:19:38	28 12 7002	138 14 1325	4467	28 12 7789	138 14 1863	44821	130.0	38.0	SYG
85	2007/10/10 14:48:49	28_11.9558	138 11.2180	4462	2007/10/22 23:18:34	28,11.8974	138,11.3599	4469	28,11.9743	138 11 3322	4456.8	22.0	182.0	SYG
86	2007/10/10 16:21:03	28,11.2130	138_08.2781	4554	2007/10/22 21:43:00	28_11.1457	138_08.3492	4559	28,11.2467	138,08.3309	4548.2	58.0	84.0	SYG
87	2007/10/10 17:53:04	28,10.4584	138,05.3315	4550	2007/10/22 20:19:00	28 10 3570	138.05.3035	4544	28,10.4433	138,05,3242	4534.1	-44.0	-24.0	SYG
88	2007/10/10 19:23:17	28,09.7171	138,02.3972	4382	2007/10/22 18:45:00	28,09,4495	138_02.3358	4386	28_09.6615	138_02.4086	4379.7	-104.0	16.0	SYG
90	2007/10/10 22:02:35	28.08.9657	137 58 5154	4/89	2007/10/22 17:17:00	28.08.7419	137 58 4507	4216	28.08.9957	137.56.5489	4169.3	36.0	48.0	SYG
91	2007/10/10 23:44:55	28.07.4626	137,53 5890	4607	2007/10/23 14:11:07	28,07.3149	137_53.6363	4538	28.07.4747	137_53.6194	4524.0	20.0	60.0	SYG
92	2007/10/11 01:12:00	28_06.7162	137_50.6521	4648	2007/10/23 12:40:50	28.06.5790	137_50.7683	4652	28_06.7301	137,50.7053	4673.9	36.0	98.0	SYG
93	2007/10/11 02:39:42	28.05.9817	137,47.7918	4445	2007/10/23 11:06:03	28.05.8781	137 47.8496	4480	28.05.9897	137 47 8219	4443.8	24.0	52.0	SYG
94	2007/10/11 04:02:49	28.05.1986	137 41 8360	4484	2007/10/22 09:35:00	28.00.1305	137 41 8455	4057	28.04.4789	137 41 7809	4968.2	64.0	-84.0	SYG
96	2007/10/11 06:42:22	28 03 6826	137 38 9020	4088	2007/10/22 06:38:00	28 03 6962	137 38 8832	4084	28 03 7061	137 38 9422	4080.6	36.0	64.0	SYG
97	2007/10/11 08:00:49	28.02.9239	137,35.9677	3981	2007/10/22 05 14:00	28.02.9311	137_35.9622	3983	28.02.9562	137,35.9998	3981.3	52.0	50.0	SYG
98	2007/10/11 09:23:47	28,02.1706	137,33.0377	3212	2007/10/22 03:54:00	28.02.1711	137_33.0871	3191	28.02.1900	137_33.0324	3217.7	40.0	-6.0	SYG
99	2007/10/11 10:39:00	28,01.3347	137,29,8198	1872	2007/10/22 02:38:09	28,01.3083	137 29.8926	1896	28,01.3678	137,29.8800	1857.7	66.0	98.0	SYG
100	2007/10/11 12:39:59	27 59 8524	137 24 1682	4077	2007/10/22 01:38:09	27 59 7957	137 24 2087	4061	28 00 7480	137 24 1515	4054.1	-78.0	-16.0	SYG
102	2007/10/11 14:01:01	27 59.1198	137 21.3089	4704	2007/10/21 23:03:30	27 59 1869	137 21.4892	4699	27 59.1985	137 21.3859	4700.1	146.0	124.0	SYG

Figure5: OBS data of vertical component of three sites: (a) Site019, (b) Site048, and (c) Site078. All traces are filtered by 3-12 Hz. Vertical and horizontal axes are offsets from OBS and reduced travel-times by 8 km/s, respectively. The bathymetries of the OBS data are also shown above the sections.

Figure6: OBS data of horizontal component of Site078: (a) H1, and (b) H2. All traces are filtered by 3-12 Hz. Vertical and horizontal axes are offsets from OBS and reduced traveltimes by 4.6 km/s, respectively. The bathymetries of the OBS data are also shown above the sections.

Acknowledgements

We would like to appreciate the following members of KR07-13 cruise shipboard party for their skilled work. We thank Dr. Y. Kaiho, Dr. T. Sato, Mr. T. No and Ms. K. Takizawa for discussions of cruise planning and supports.

Marine technicians

	Chief Technician	Makoto Ito
	Technician	Masato Sugano
	Technician	Satoshi Takaesu
	Technician	Kozue Kurihara
	Technician	Miho Ido
	Technician	Yuta Watarai
	Technician	Takuya Maekawa
	Technician	Mitsuteru Kuno
	Technician	Ami Iwaki
	Technician	Kimiko Serizawa
	Technician	Keisuke Ohnishi
	Technician	Yoshinao Takita
	Technician	Takahiro Iwasa
Crew		
	Captain	Shinya Ryono
	Chief Officer	Satoshi Susami
	Second Officer	Naoto Kimura
	Third Officer	Takeshi Egashira
	Third Officer	Yuki Furukawa
	Chief Engineer	Kiyonori Kajinishi
	First Engineer	Masahiro Kajihara
	Second Engineer	Saburo Sakaemura
	Third Engineer	Wataru Kurose
	Chief Radio Officer	Satoshi Watase
	Second Radio Officer	Yoichi Inoue
	Third Radio Officer	Ken Yamaguchi
	Boat Swein	Yasuyoshi Kyuki
	Able Seaman	Seiji Hosokawa
	Able Seaman	Yoshiaki Kawamura
	Able Seaman	Hatsuo Oda
	Able Seaman	Yasuo Konno
	Able Seaman	Masanori Ohata
	Able Seaman	Yuki Yoshino
	No.1 Oiler	Masayuki Masunaga
	Oiler	Masaki Shiino
	Oiler	Takaatsu Inomoto
	Oiler	Yuji Higashikawa
	Oiler	Shota Watanabe
	Chief Steward	Teruyuki Yoshikawa
	Steward	Koji Kirita
	Steward	Yukio Tachiki
	Steward	Akira Kanaya
	Steward	Kazuma Sonoda

References

- K. Suyehiro, N. Takahashi, Y. Ariie, Y. Yokoi, R. Hino, M. Shinohara, T. Kanazawa, N. Hirata, H. Tokuyama, A. Taira, "Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc", Science, 272, 390-392 (1996).
- N. Takahashi, S. Kodaira, S.L. Klemperer, Y. Tatsumi, Y. Kaneda, K. Suyehiro, "Crustal structure and evolution of the Mariana intraoceanic island arc" Geology, 35, 203–206 (2007).
- R. J. Stern, J. F. Matthew, S. L. Klemperer, "An Overview of the Izu-Bonin-Mariana Subduction Factory", In: Eiler (eds) "Inside the subduction factory", AGU Geophys. Monogr., AGU, Washington, 183, 175-222 (2003).
- 4) S. H. Bloomer, B. Taylor, C. J. MacLeod, R. J. Stern, P. Fryer, J. W. Hawkins, L. Johnson," Early arc volcanism and the ophiolite problem: a perspective from drilling in the Western Pacific", In: B. Taylor and J. Natland (eds) "Active Margins and Marginal Basins of the Western Pacific", AGU Geophys. Monogr., AGU, Washington, 88, 1-30 (1995).
- K. Okino, Y. Ohara, S. Kasuga, Y. Kato, "The Philippine Sea: New survey results reveal the structure and the history of the marginal basins", Geophys. Res. Lett., 26, 2287-2290 (1999).
- 6) K. Kobayashi, S. Kasuga, K. Okino, "Shikoku Basin and its margins", In: B. Taylor, (eds) "Backarc Basins; Tectonics and Magmatism", Plenum Press, New York, 381-405 (1995).
- L. D. Bibee, G.G.Shor Jr. and R. S. Lu, "Inter-arc spreading in the Mariana Trough", Marne Geol., 35, 183-197 (1980)
- T. Yamazaki, R. J. Stern, "Topography and magnetic vector anomalies in the Mariana Trough", JAMSTEC Journal of Deep Sea Research, 13, 31-45 (1997)
- 9) S. Murauchi, N. Den, S. Asano, H. Hotta, T. Yoshii, T. Asanuma, K. Hagiwara, K. Ichikawa, T. Sato, W. J. Ludwig, J. I. Ewing, N. T. Edgar, R. E. Houtz, "Crustal structureof the Philippine Sea", J. Geophys. Res., 73, 3143-3171 (1968).
- 10) S. Kodaira, T. Sato, N. Takahashi, S. Miura, Y. Tamura, Y. Tatsumi, Y. Kaneda, "New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc", Geology, 35, 1031-1034 (2007).
- M. Yuasa, "Sofugan tectonic line, a new tectonic boundary separating northern and southern parts of the Ogasawara (Bonin) arc, northwest Pacific", In N. Nasu et al (eds) "Formation of Active ocean margins", 483-496 (1985).
- 12) O. Ishizuka, O., R. N. Taylor, M. Yuasa, J. A. Milton, R. W. Nesbitt, K. Uto, I. Sakamoto, "Processes controlling alongarc isotopic variation of the southern Izu-Bonin arc", Geochem. Geophys. Geosyst., 8, Q06008, doi:10.1029/2006GC001475 (2007).

- 13) N. Takahashi, S. Kodaira, M. Yamashita, T. Sato, Y. Kaiho, S. Miura, T. No, K. Takizawa, Y. Kaneda, "Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-backarc system", J. Geophys. Res., submitted.
- 14) N. Takahashi, K. Suyehiro and M. Shinohara, Implications from the seismic crustal structure of the northern Izu-Ogasawara arc, Island arc, 7, 383-394 (1998).
- 15) M. Yamashita, T. Tsuru, N. Takahashi, K. Takizawa, Y. Kaneda, K. Fujioka, K. Koda, "Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data", The Island Arc, 16, 338-347 (2007).
- 16) S. Miura, A. Ito, N. Takahashi, S. Kodaira, Y. Kaneda, "Wide-angle seismic experiment crossing the southern Izu-Ogasawara Arc and multi-channel seismic profiling of the Ogasawara Plateau –KR07-03 cruise-", JAMSTEC Rep. Res. Develop., in press.

- 17) S. Kodaira, G. Fujie, M. Yamashita, S. Miura, N. Takahashi, Y. Kaneda, "Active source seismic studies across/along across-arc seamount chains in Izu-Bonin arc – Cruise report of KR0601 and KR0605 -", JAMSTEC Rep. Res. Develop., 4, 13-26 (2006).
- T. Kanazawa, H. Shiobara, "Newly developed ocean bottom seismometer", Abst. Japan Earth Planet. Sci. Meet., 2, 240 (1994).
- 19) M. Shinohara, K. Suyehiro, S. Matsuda, K. Ozawa," Digital recording ocean bottom seismometer using portable digital audio tape recorder", J. Jpn. Soc. Mar. Surv. Tech., 5, 21-31 (1993).

(Received December 4, 2007)