— 原著論文 —

DONETで測定できる最大加速度に関する検討

大堀 道広^{1*}, 中村 武史¹, 有吉 慶介¹, 神谷 眞一郎¹, 松本 浩幸¹, 荒木 英一郎¹, 佐久間 淳¹, 川口 勝義¹, 坪井 誠司^{2,3}, 金田 義行¹

本報告では、東南海地震の震源近傍に設置されるDONETのシステム構築の一環として最大加速度の距離減衰式に基 づく検討手法を用いて、強震計の振幅レンジ±4g(3920cm/s²)についての評価を行っている.まず、2001年以降に海域 で発生したM7程度以上の主な被害地震14地震(前震・余震も含む)に、震源近傍で4g(3成分合成値)を記録した2008 年岩手・宮城内陸地震(M_w6.9)を加えた計15地震の最大加速度に関して、既往の距離減衰式を用いて分析し、距離減 衰の補正を行うことで震源近傍での最大加速度のレベルの分布特性を評価した.続いて、上記の検討で3gを超える結果 が得られた5地震を選び、それぞれの地震における観測値/計算値の分布特性を求めた上で、1944年東南海地震(M_w8.1) によるDONETの観測点で予測される最大加速度の分布特性を算出し、強震計の振幅レンジとして4gを含む閾値(1g, 2g, 3g, 4g)に対する数種類の超過確率を評価した.検討の結果、4gに対する超過確率は他の閾値に対する結果よりも 格段に小さいことを確認した.震源近傍において地震発生時に強震動を振り切れることなく記録することは非常に難し いものの、振幅レンジを4gとすることで、その可能性を高めることができたと結論付けられる.

キーワード:DONET, 強震観測, 振幅レンジ, 最大加速度

2010年1月21日受領;2010年6月3日受理

- 1 独立行政法人海洋研究開発機構・地震津波・防災研究プロジェクト
- 2 独立行政法人海洋研究開発機構・地球情報研究センター
- 3 独立行政法人海洋研究開発機構・地球内部ダイナミクス領域

*代表執筆者:

大堀 道広
独立行政法人海洋研究開発機構・地震津波・防災研究プロジェクト
〒236-0001 神奈川県横浜市金沢区昭和町3173-25
045-778-5447
ohorim@jamstec.go.jp

著作権:独立行政法人海洋研究開発機構

- Original Paper -

A trial estimation of maximum acceleration expected for DONET

Michihiro Ohori^{1*}, Takeshi Nakamura¹, Keisuke Ariyoshi¹, Shin'ichiro Kamiya¹, Hiroyuki Matsumoto¹, Eiichiro Araki¹, Atsushi Sakuma¹, Katsuyoshi Kawaguchi¹, Seiji Tsuboi^{2, 3}, and Yoshiyuki Kaneda¹

Using the empirical attenuation relationship between the maximum acceleration and source distance, we evaluated the amplitude level of the strong ground motion which might be possible at stations of the DONET (Dense Ocean-floor Network System for Earthquakes and Tsunamis), deployed in the source area of the Tonankai earthquake. We firstly studied on how often the maximum acceleration data exceeds the criteria, such as 1g, 2g, 3g, and 4g, using the maximum acceleration data from recent fourteen off-shore earthquakes of magnitude around 7 or more and 2008 Iwate-Miyagi Inland earthquake ($M_w 6.9$). We modified the maximum accelerations by compensating the attenuation effect, so as to derive the distributions of the corrected acceleration values which might be observed at an epicentral area. Next, we evaluated the exceeding probabilities of such criteria at the DONET stations against the 1944 Tonankai earthquake ($M_w 8.1$). After selecting five reference events who involved the maximum acceleration data larger than 3g after such correction, we obtained the distribution of the ratio between the data and the prediction and evaluated the exceeding probabilities for above criteria. Through the study, it is clarified that the upper limit of the maximum measurable acceleration of the DONET should be 4g, to avoid saturation by the extremely strong ground shaking from nearby source rupturing as much as possible.

Keywords: DONET, strong motion observation, amplitude range, maximum acceleration

Received 21 January 2010 ; Accepted 3 June 2010

1 Earthquake and Tsunami Research Project for Disaster Prevention, Japan Agency for Marine-Earth Science and Technology

2 Data Research Center for Marine-Earth Sciences, Japan Agency for Marine-Earth Science and Technology

3 Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology

*Corresponding author:

Michihiro Ohori

Earthquake and Tsunami Research Project for Disaster Prevention, Japan Agency for Marine-Earth Science and Technology 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan Tel. +81-45-778-5447

ohorim@jamstec.go.jp

Copyright by Japan Agency for Marine-Earth Science and Technology

1. はじめに

強震観測網が充実し,陸域の地震については震源から 数百kmまで切れ目なく強震記録が蓄積されつつある時代 を迎えているが,M8クラスの巨大地震となるとその発生 頻度は低いため,震源域直上での観測データはいまだに 不足しているのが現状である.また,地震動の最大加速 度は地震の規模ばかりでなく震源断層と観測点との位置 関係や観測点の地盤条件などに大きく依存するため,東 南海地震の震源域に20点にも及ぶ稠密な地震・津波観測 網を整備するDONET [Dense Ocean-floor Network System for Earthquakes and Tsunamis,詳細は金田ほか (2007),川口ほ か (2007)]で対象とするM8クラスの巨大地震による震源 近傍での最大加速度レベルを検討する上で,十分な裏付 けとなるデータが見当たらないのが実情である.

国内では、1995年兵庫県南部地震の発生以降、全国的 な強震観測網 [防災科学技術研究所K-NET (http://www.knet.bosai.go.jp/k-net/), 同じくKiK-net (http://www.kik.bosai.go.jp/kik/),気象庁95型震度計など]が 整備されている.このため,最近の内陸の浅い地震によ る強震動が震源近傍で観測される機会も増え、2g [gは重 力加速度(約980 cm/s²)]を上回る非常に大きな最大加速 度もたびたび記録されている。例えば、2004年新潟県中 越地震についてはJMA川口町観測点において2515 cm/s² (3) 成分合成値), 2008年岩手・宮城内陸地震ではKiK-netの IWTH25観測点で4022 cm/s² [3成分合成値, 4.10 g, (主成 分はUD成分の3866 cm/s²)], AKTH04観測点で2449 cm/s² (NS成分, 2.50g) など記録されている. この中で最近注目 を集めたIWTH25観測点における大加速度上下成分の生成 要因については、トランポリン効果として説明されてい る (Aoi et al., 2008). 以上の2gを上回る事例はいずれも陸 域で観測されたものであるが、海底の震源域でも2003年 十勝沖地震の際に800 cm/s²を超える最大加速度が観測され ている [JAMSTEC釧路・十勝沖海底ケーブルのKTOBS3 における842 cm/s²(水平1成分, 0.86g)]. 強震観測記録の 蓄積は、震源過程の推定に向けた利用にとどまらず、耐 震設計をはじめとする地震防災に大いに役立てられるこ とから、 地震発生時における強震動をできるだけ振り切 れることなく記録できるように計画することが必要であ り、震源近傍の海底に地震計を多数設置するDONETにお いては特に重要な課題となる.しかし,設定できる強震 計の振幅レンジには限界があり、DONETではこれを4gに 設定している.

前述のように,現在では強震観測網の整備により主に 陸域における観測記録の蓄積が進み,さらに観測値の回 帰分析により得られた最大加速度の距離減衰式(例えば, 司・翠川, 1999)が提案されており,多くの地震につい て,計算値と観測値との良好な対応が確認されている (例えば, Honda et al., 2004).距離減衰式による最大加速度 の計算値は、マグニチュード、震源の深さを与えた時に, 指定する震源距離に位置する観測点における最大加速度 の平均的なレベルを与え、実際の観測値と計算値との差 異(偏差)は、各観測点の揺れやすさ・揺れにくさを表 わすサイト特性とされている [例えば、神野・三浦 (2005)、片岡・山本(2007)など].距離減衰式を用いた 最大加速度の検討手法によれば、観測値に距離減衰の効 果を補正し、各観測点を震源近傍(震央位置)まで引き 戻し、震源近傍での最大加速度の分布性状を評価するこ とができる.

本報告では、最大加速度の距離減衰式に基づく検討手 法を用いて,東南海地震の震源近傍に設置されるDONET の強震観測における最大加速度を算定し、設定した振幅 レンジ4gについて、これを含む4段階の閾値(1g, 2g, 3g, 4g)との比較検討という形で評価を行っている.まず, 最大加速度の距離減衰式を用いて,最近海域で発生した M7程度以上の14地震(前震,余震を含む)と,震源近傍 において4g(3成分合成値)を超える最大加速度を記録し た2008年岩手・宮城内陸地震を加えた計15地震を対象とし て, 観測された最大加速度に距離減衰の補正を行い, 得 られた結果を分析し、震源近傍での最大加速度の振幅レ ベルについて検討を行った. 続いて, 上記の検討で3gを 超える結果が得られた5地震を参照地震として選択し、距 離減衰式による計算値に対する観測値の比(サイト特性) の分布特性を対数正規分布でモデル化した. この分布特 性を用いて、1944年東南海沖地震(M_w8.1)によるDONET の観測点で予測される最大加速度の分布特性を算出し, 各閾値に対する超過確率の評価を行った.

2. 対象とする地震と観測点

2001年以降に海域で発生した主な被害地震として,2001 年3月芸予地震(M_w6.8),2003年9月十勝沖地震の本震 (M_w7.9)と余震(M_w7.3),2004年9月に紀伊半島沖で発生し たM7クラスの地震(本震,M_w7.5)とその前震(M_w7.2), 二つの余震(M_w6.5,M_w6.1),2005年3月福岡県西方沖の地 震(M_w6.6),2005年8月宮城県沖の地震(M_w7.1),2006月12 月に台湾の南方沖で発生した二つの地震(M_w7.0,M_w6.9), 2007年3月能登半島地震(M_w6.7),2007年7月新潟県中越沖 地震(M_w6.6),2009年8月駿河湾の地震(M_w6.2),以上14地 震を対象地震として選んだ.さらに,4gを超える最大加速 度が得られていることと,海域の地震との比較という観点 から,2008年岩手・宮城内陸地震(M_w6.9)を検討対象と した.以上,計15地震の諸元をTable 1に示す.なお,整理 の都合上,15地震には発生順にEvent 1~15と名付け,図・ 表の記載に用いている.15地震の中から,6地震(Event 2, 5,7,8,12,14)を例として,震央と観測点との位置関 係をFig.1に示す.

解析に用いる主要な最大加速度のデータとして,国内で 発生した13地震についてはK-NET (http://www.bosai.go.jp/) による公表値,台湾の2地震については台湾中央気象局 (http://www.cwb.gov.tw/)の公表値をそれぞれ用いる. ただ し、2008年岩手・宮城内陸地震については、震源近傍の KiK-net観測点において非常に大きな最大加速度が得られて いることから、K-NETに加え、KiK-netに関する公表値も用 いる. さらに、JAMSTEC海底ケーブルセンターのデータ ベース (http://www.jamstec.go.jp/scdc/top_j.html) より, 2003年 +勝沖地震の本震(M_w7.9)において釧路・十勝沖システ ムで観測された最大加速度と、2004年紀伊半島沖の3地震 (本震, M_w7.5; 前震, M_w7.2; 最大余震, M_w6.5) において 室戸岬沖システムで観測された最大加速度をそれぞれ利用 する. なお, いずれの地震についても, 後述する距離減衰 式 [司・翠川 (1999)] の利用条件を考え,最大加速度は 水平2成分のうちの最大値を採用する.水平2成分を合成し た最大値は、水平2成分の最大値よりも1.2倍程度(最大1.4 倍) 大きくなる場合もあるが, 両者の結論に大きな差はな いとみなす場合も見られる [例えば,藤原ほか (2005)]. 本研究では、後者の考え方を採用する.最大加速度を一律 1.2倍とした場合や水平2成分を合成した最大値を用いた場 合には計算結果は変わってくるであろうが, DONETの強 震計の振幅レンジ4gを他の閾値と比較して相対的に評価す る上では、水平2成分の最大値を用いても大きな問題はないと考えている.

距離減衰式を用いて最大加速度を計算する際には、気象 庁一元化震源に対する震源距離を用いる.ただし、震源モ デルを考慮できる地震の場合には断層最短距離を利用す る.ここでは、2001年芸予地震についてはOhori(2008)、 2003年十勝沖地震の本震についてはHonda et al.(2004)、 2005年宮城県沖の地震についてはYaginuma et al.(2005)、以 上を参考に矩形の断層面を設定している.また、2005年福 岡県西方沖の地震、2007年能登半島地震、2007年新潟県中 越沖地震、2008年岩手・宮城内陸地震、2009年駿河湾の地 震、以上5地震については、防災科学技術研究所が地震観 測ポータルサイトにおいて公表している各地震の震源過程 の結果(http://www.bosai.go.jp/)を参考にしている.[2003年 十勝沖地震の余震、2004年紀伊半島沖の4地震、2006年台 湾南方沖の2地震、以上の7地震については、断層モデルを 考慮していない.]

各地震で観測されたデータの選択に際して,次の点に注 意を払っている.震源距離が大きくなるにつれて,トリガ ーされる可能性が高い観測点は,震源から伝播経路沿いの 減衰が小さい方向に位置する観測点や表層地盤の増幅性が 高い観測点が多くなる.この時,ある程度の震源距離以上 になると,観測値がトリガーレベルに近づき,データ分布 の距離依存性が不明瞭となる.こうしたデータを混在させ ると,同じ震源距離でも揺れやすい観測点に重みをおく結 果を招く.これを回避するために,距離減衰曲線上に重ね 描きした全観測点のデータを表示して判断した結果,Figs. 1,2に例示するように全ての地震について震源距離300km 以上の観測点のデータは解析対象から外すことにした.

Table. 1.	Summary	of	targeted	earthquakes.
-----------	---------	----	----------	--------------

表1. 対象とする地震とその諸元.

Event	Abbrev. for Event Name	Origin Time	Longitude (deg.)	Latitude (deg.)	Depth (km)	М	Mw	Depth* (km)	Strike (deg.)	Dip (deg.)	Rake (deg.)
1	2001 Geiyo	2001/03/24 15:27	34.120	132.709	51.4	6.7	6.8	50.0	188.0	59.0	-56.0
2	2003 off Tokachi (Mainshock)	2003/09/26 04:50	41.780	144.079	42.0	8.0	7.9	23.0	249.0	15.0	127.0
3	2003 off Tokachi (Aftershock)	2003/09/26 06:08	41.707	143.695	21.4	7.1	7.3	53.0	194.0	22.0	76.0
4	2004 off Kii Peninshula (Foreshock)	2004/09/05 19:07	33.030	136.801	37.6	6.9	7.2	14.0	86.0	38.0	89.0
5	2004 off Kii Peninshula (Mainshock)	2004/09/05 23:57	33.144	137.142	43.5	7.4	7.5	11.0	115.0	39.0	132.0
6	2004 off Kii Peninshula (Aftershock)	2004/09/07 08:29	33.206	137.296	41.0	6.4	6.5	11.0	74.0	42.0	61.0
7	2004 off Kii Peninshula (Aftershock)	2004/09/08 23:58	33.114	137.291	36.1	6.5	6.1	5.0	239.0	37.0	54.0
8	2005 West off Fukuoka Pref.	2005/03/20 10:53	33.739	130.176	9.2	7.0	6.6	11.0	122.0	87.0	-11.0
9	2005 off Miyagi Pref.	2005/08/16 11:46	38.151	142.280	41.6	7.2	7.1	44.0	199.0	21.0	66.0
10	2006 off Taiwan (1st)	2006/12/26 20:26	21.810	120.520	19.6	7.0	7.0	20.0	165.0	30.0	-76.0
11	2006 off Taiwan (2nd)	2006/12/26 20:34	22.020	120.400	32.8	7.0	6.9	33.0	151.0	48.0	0.0
12	2007 Noto Peninsula	2007/03/25 09:41	37.221	136.686	10.7	6.9	6.7	8.0	58.0	66.0	132.0
13	2007 Chuetsu off	2007/07/16 10:13	37.557	138.610	16.8	6.8	6.6	8.0	49.0	42.0	101.0
14	2008 Iwate-Miyagi Inland	2008/06/14 08:43	39.030	140.881	7.8	7.2	6.9	5.0	209.0	51.0	104.0
15	2009 Suruga Bay	2009/08/11 05:07	34.786	138.499	23.3	6.5	6.2	20.0	307.0	47.0	119.0

* Derived from CMT solution or Moment Tensor Inversion

Fig. 1. Examples of locations of targeted epicenters and stations. In each diagram, an epicenter is indicated with a star. Used stations within 300 km in a source distance are denoted by green dots, and others are by blue dots. In (a) and (b), stations at ocean bottom are denoted by red solid triangles. In (a), (c), (e) and (f), the projections of the fault plane are shown by rectangles, which are used for evaluation of the closest source distance.

図1. 対象とする地震と観測点の例. 星印は震央を示す. 震源距離300km以内に位置する観測点(緑点印)を解析対象とし, それ以外(青 点印)を対象外としている. (a), (b)では, 解析対象観測点のうち, 海底ケーブルによる観測点を赤三角形印で示す. (a), (c), (e), (f)で は, 断層最短距離を算出するに用いる断層面の水平面方向の投影線を黒線で表示している.

Fig. 2. Examples of characteristics of the maximum acceleration attenuation. In each diagram, a bold solid line corresponds to the mean prediction, and other thin lines correspond to the prediction included single or double standard deviations. Used stations within 300 km in a source distance (shown by vertical dashed lines) are denoted by green dots, and others are by blue dots. In (a) and (b), stations at ocean bottom are denoted by red solid triangles.

図2. 最大加速度の距離減衰特性の例.距離減衰曲線は,平均値,平均値に標準偏差を考慮したもの,平均値に2倍の標準偏差を考慮した もの,計5本の曲線を描いている.縦の点線で示す震源距離300km以内に位置する観測点(緑点印)を解析対象とし,それ以外(青点印) を対象外としている.また,(a),(b)では,解析対象観測点のうち,海底ケーブルによる観測点を赤三角形印で示す.

3. 検討結果

3.1. 距離減衰特性

最大加速度の距離減衰特性の例として, Fig. 1に示した6 地震に対する結果をFig. 2に示す.いずれの地震において も, 観測された最大加速度値は,既往の強震記録に基づ き算定された距離減衰曲線により経験的に推定される計 算値に概ね一致していることがわかる.他の9地震に関し ても同様の特徴が見られ,対象とした15地震の最大加速 度の距離減衰性が,過去の地震と比較して特異なもので はないことが確認できる.

続いて, JAMSTECの海底観測点におけるデータに着目 する. Fig. 1 (a) およびFig. 2 (a)に釧路・十勝沖における海 底ケーブル観測点の位置とその最大加速度を赤三角形印 で示す. 釧路・十勝沖における3点の観測点位置は震源に 近く、その最大加速度は、2点が距離減衰式で算出される 平均値に近く、1点が平均値×σ [σは対数標準偏差,常 用対数値0.27 (真数値1.86)]のレベルに近いことがわかる. Fig. 1 (b) およびFig. 2 (b)に室戸岬沖における海底ケーブル 観測点の位置とその最大加速度を赤三角形印で示す. 2004年紀伊半島沖の地震(本震)発生時の室戸岬沖にお ける2点の最大加速度はともに約10 cm/s²で、同程度の震源 距離の陸域観測点の最大加速度に比較してやや小さく, 距離減衰式の結果と比較すると平均値/σのレベルに近 いことが読み取れる.この傾向は、同地震の前震および 最大余震においても同様であることを確認している.最 大加速度はある程度のばらつきを考慮して検討すべきも のであり、少ない例ではあるが、海域のデータは、陸域 のデータと大きくかけ離れたものではないことが例示さ れた.以降,本研究では,陸域で観測された最大加速度 の分布特性が、海底に設置されるDONETの地震計におい て観測される最大加速度の分布特性と等価であるという 前提に立ち、検討を進めることにする.

3.2. 補正最大加速度を用いた震源近傍での地震動レベル の検討

3.2.1. 補正最大加速度の算定方法

震源近傍における最大加速度を推定するために,ここ では司・翠川(1999)による最大加速度の距離減衰性を 利用して,各地震の最大加速度に距離減衰の考慮をして, 震央位置まで引き戻した補正値を算定する.(以降,この 補正値を補正最大加速度と呼ぶ.)補正最大加速度を算定 し,その分布特性を検討する手順は次の通りである.

 (1)震源距離をxとし、各観測点の最大加速度の観測値を A_{obs}(x),距離減衰式に基づく計算値をA_{cal}(x)とする.計 算値に対する観測値の比A_{obs}(x)/A_{cal}(x)を観測点の揺れ やすさ・揺れにくさを表わすサイト特性と定義する [例えば,神野・三浦 (2005),片岡・山本 (2007)な ど].

(2)各観測点で得られた最大加速度について距離減衰を補 正して,震央位置(震源距離は震源の深さdとなる) まで引き戻して得られる補正最大加速度をA'_{abs}(d)とす れば,これは震央位置での最大加速度の計算値A_{cal}(d)に 先ほど定義したサイト特性A_{abs}(x)/A_{cal}(x)を乗じて,

$$A'_{obs}(d) = A_{obs}(x) \nearrow A_{cal}(x) \times A_{cal}(d)$$
(1)

と表わせる. A'_{obs}(d)は各観測点のサイト特性をそのま まとして,距離減衰性のみを考慮して震央位置まで引 き戻した算定値である.

(3)最大加速度の振幅レベルとして、DONETの強震計の振幅レンジを4gに設定していることを踏まえ、1g、2g、3g、4g、以上4通りの閾値を設定した上で、補正最大加速度の分布特性を統計的に分析し、これが各閾値を超える割合を調べるとともに、補正最大加速度が大きい 観測点の抽出とその地盤条件の分析を行う。

3.2.2. 補正最大加速度の分布性状

補正最大加速度の分布特性について、その代表例をFig. 3に示す. また, 4段階の閾値 (1g, 2g, 3g, 4g) を上回る 観測点の数と対象観測点の総数に対する割合を整理して Table 2に示す. これらの図表について閾値ごとに概観する. まず、1gの閾値に対しては、いずれの地震に関してもこ れを上回る観測点が見られ、震源近傍で1gを超える最大 加速度が得られても不思議ではないと解釈することがで きる.次に、2gの閾値に対しては、15地震のうち10地震に おいて、これを上回る観測点が見られる.3gの閾値に対 しては、2004年紀伊半島沖の3地震(前震,本震,最大余 震),2007年能登半島地震,2008年岩手·宮城内陸地震, 以上の5地震において、これを上回る観測点が見られる. さらに、4gの閾値に対しては、2004年紀伊半島沖の本震 (MIE007観測点), 2008年岩手·宮城内陸地震 (AKTH04観 測点),以上の2地震において、これを上回る観測点が見 られる. ところで、補正最大加速度が4gを超えたMIE007 観測点では、最大加速度384cm/s²が補正最大加速度におい て6812cm/s² (6.95g) と算定されている. 同じく, AKTH04 観測点では,最大加速度2449cm/s²(2.5g)が補正最大加速 度において4418cm/s²(4.5g)と算定されている. なお, 2008年岩手・宮城内陸地震において3成分合成値が4gを超 える加速度を記録したIWTH25観測点については、本研究 で上下成分を考慮していないため,水平成分の最大加速 度1433 cm/s²が補正最大加速度において1450 cm/s²と微増す る結果となっている.

各地震に関して、補正最大加速度が閾値2gを超える観 測点を抽出したところ,総計29点 [台湾で発生した地震 に対する観測点1点(地盤情報は不明)を含む]となった. これらのうち、地盤情報が判明している28点について、 司・翠川(1999)の方法に基づき, PS検層結果を用いて 表層30mまでの平均S波速度AVS30を推定した. AVS30とは, 表層地盤の増幅特性を評価する上で広く用いられる簡易 指標であり、この値が小さくなるほど軟弱な地盤となり 増幅が大きいと考えられている [例えば,藤原ほか (2005)]. AVS30を算定した結果,軟弱な地盤と考えられ るAVS30<200m/sの観測点は3点のみで、比較的良好な地盤 と考えられるAVS30≥400m/sの観測点が9点, 200≤ AVS30<400m/sとなる観測点が16点という内訳となった. これより、補正最大加速度が大きくなるのは必ずしも軟 弱な表層地盤上に設置された観測点とは限らないことが わかる.例えば、補正最大加速度が4gを超えた先述の MIE007観測点とAKTH04観測点のAVS30はそれぞれ 450m/s, 466 m/sと算定されており, 通常は良好な地盤と判 断される観測点であることがわかる.

 Table. 2. Stations and probability exceeding each criterion at an epicentral area.

 表2. 補正最大加速度の閾値に対する分布性状.

Event	Whole	Targeted	Stat	ions exceedi	ng each Crit	erion	Exceeding Ratio (%)			
Event	Stations	Stations	>1g	>2g	>3g	>4g	>1g	>2g	>3g	>4g
1	316	260	1	0	0	0	0.38	0.00	0.00	0.00
2	360	217	19	2	0	0	8.76	0.92	0.00	0.00
3	287	168	23	3	0	0	13.69	1.79	0.00	0.00
4	416	171	49	5	1	0	28.65	2.92	0.58	0.00
5	432	171	76	12	3	1	44.44	7.02	1.75	0.58
6	301	174	29	3	1	0	16.67	1.72	0.57	0.00
7	153	124	6	1	0	0	4.84	0.81	0.00	0.00
8	299	197	5	0	0	0	2.54	0.00	0.00	0.00
9	456	187	14	1	0	0	7.49	0.53	0.00	0.00
10	95	69	3	1	0	0	4.35	1.45	0.00	0.00
11	95	70	1	0	0	0	1.43	0.00	0.00.	0.00
12	386	270	28	3	1	0	10.37	1.11	0.37	0.00
13	390	345	13	0	0	0	3.77	0.00	0.00	0.00
14	655	334	58	7	1	1	17.37	2.10	0.30	0.30
15	368	341	1	0	0	0	0.29	0.00	0.00	0.00

Fig. 3. Examples of histograms of the maximum acceleration after source distance correction. After compensation of the attenuation effect, corrected acceleration values correspond to the data which might be observed at an epicentral area.

図3. 補正最大加速度の頻度分布. 観測された最大加速度に距離減衰性を考慮した補正を行い,各地震について震央位置まで引き戻している.

4. 1944年東南海地震に対するDONETの観測点での 予測最大加速度

4.1. 最大加速度の距離減衰式による評価

1944年東南海地震に対してDONETの観測点でどのくら いの最大加速度が記録されるかを距離減衰式に基づき予測 する.Fig.4に,1944年東南海地震(M_w8.1,震源の深さ20 km)の断層面[山中(2006)を参照]とDONETの観測点 の分布を示す.DONETの観測点は沖合に位置する4観測点 を除き,多くの観測点が断層面上に位置する.Fig.5に, 司・翠川(1999)の最大加速度の距離減衰曲線上に DONETの観測点で予測される最大加速度をひし形印で重 ね描きしている.距離減衰式の適用上,DONETの観測点 までの断層最短距離は震源の深さが下限となり,20点のう ち16点において震源距離が20 km,このほか4点において 20.2~31 kmである.これらの震源距離における最大加速度 は16点において608 cm/s²となり,このほか4点では493~605 cm/s²と算定されている.

4.2. 参照地震のサイト特性の分布モデル

検討対象とした15地震のうち、補正最大加速度が3gを超

Fig 4. Map showing the locations of the fault model of the 1944 Tonankai Earthquake of $M_w 8.1$ (Yamanaka, 2006) and 20 stations of the DONET. The source (an open star) is located at 20 km in depth. The DONET stations are indicated with open diamonds. Epicenters of the foreshock (F), mainshock (M), and the largest aftershock (A) of the 2004 Kii-Peninsula earthquake are also plotted for reference.

図4. 1944年東南海沖地震 (M_w8.1)の断層モデル [山中 (2006)] とDONET観測点の位置関係. 震源位置 (深さ20km)を星印で示 す. DONETの20観測点をひし形印で示す. 参考として, 2004年 紀伊半島沖の3地震の震央のうち, Fは前震, Mは本震, Aは最大 余震を意味する.

える結果が見られたのは、2004年紀伊半島沖の3地震(前 震,本震,最大余震),2007年能登半島地震,2008年岩 手・宮城県内陸地震,以上の5地震 (Event 4, 5, 6, 12, 14) である.これらの5地震を参照地震とし、サイト特性の分 布性状をモデル化する. サイト特性は対数正規分布で良く 説明されると広く考えられており [例えば, 理論地震動研 究会 (1994), 片岡・山本 (2007) など], ここでも同様の モデル化をする.各地震のモデルパラメータ(対数平均値, 対数標準偏差)の推定結果をTable 3に示すとともに、2地 震(Event 5, 14)を例に、サイト特性の頻度分布および累 積分布関数をFig. 6に示す. Fig. 6には、参照地震より得れ らたサイト特性の離散的なデータとそれをモデル化した結 果を合わせて記載している. 頻度分布を比較するために, 離散的なデータと同数になるように、Table 3に示す対数正 規分布に従う乱数を生成して表示している. さらに、モデ ル化した分布特性を用いた場合に、参照地震の補正最大加 速度が各閾値を超過する確率を算定し、Table 4に示す.同 表には、Table 2に示した補正最大加速度が閾値を超える比 率も括弧内に併記している. Fig. 6およびTable 4より、参照 地震のサイト特性の分布特性を対数正規分布により概ね近 似できたと考えている.

Fig 5. Characteristics of the maximum acceleration attenuation due to the 1944 Tonankai Earthquake (M_w 8.1). A bold solid line corresponds to the mean prediction. The estimated values at 20 stations of the DONET are denoted by open diamonds.

図5. 1944年東南海地震(M_w8.1)によるDONET観測点の最大加 速度の評価.距離減衰曲線を太線で描いている.DONETの20観 測点での予測値をひし形印で示す. Table 3. Parameters of the logarithmic normal distirubtion model estimated from the site effects for selected five events. Note that μ and σ are the mean and standard deviation of the natural logarithm.

表3. 参照地震(5地震)のサイト特性より推定した対数正規分布 モデルのパラメータ.μは対数平均値,σは対数標準偏差を表す.

Event	μ	σ
4	-0.0590	0.5547
5	-0.0575	0.5973
6	-0.0286	0.5868
12	-0.2138	0.7516
14	-0.1661	0.7387

Table 4. Probabilities exceeding each criterion for selected five events based on the logarithmic normal distirubtion model.

表4. 参照地震(5地震)においてサイト特性の分布モデルを用いて算定した補正最大加速度が閾値を超過する確率.

Enant	Exceeding Probability (%)							
Event	>1g	>2g	>3g	>4g				
4	30.38	3.89	0.63	0.13				
4	(28.65)	(2.92)	(0.58)	(0.00)				
5	43.20	9.15	2.22	0.63				
3	(44.44)	(7.02)	(1.75)	0.58				
6	18.65	1.91	0.29	0.06				
0	(16.67)	(1.72)	(0.57)	(0.00)				
12	9.83	1.34	0.30	0.09				
12	(10.37)	(1.11)	(0.37)	(0.00)				
14	16.80	2.87	0.72	0.23				
14	(17.37)	(2.10)	(0.30)	(0.30)				

[memo] numerals in brakets: exceeding ratios in Table 2.

Fig. 6. Example distribution models of site effects of reference events. In panels of (a) and (b), frequency distributions of logarithmic of site effects (upper) and cumulative distribution functions (lower) are plotted. Data is plotted in light blue, and model is in red.

図6. 参照地震のサイト特性に関する分布モデルの推定結果の例.(a),(b)の各図のそれぞれ上段にサイト特性の対数値に関する頻度分布 を,下段にサイト特性の対数値に関する累積分布関数を示す.水色はデータを,赤色はモデルを表す.

4.3. DONETの各観測点における超過確率の評価

Table 3に示す参照地震のサイト特性の分布モデルを用い て, Fig. 5に示すDONETの20観測点の最大加速度に対して ばらつきを与え,各観測点の閾値に対する超過確率を評 価した結果を,Table 5に示す.各観測点における超過確率 は,参照地震ごとにもばらつくものの,最大値に着目す ると,1gに対して19.41%,2gに対しては3.51%,3gに対し ては0.92%,4gに対して0.30%,以上の結果が得られた. これより,DONETの強震計の振幅レンジを4gとすること により,他の閾値(1g,2g,3g)に比較して,超過確率が 大いに低減されていることが確認できる.

4.4. DONET全体での超過確率の評価

1944年東南海地震に対して,DONETの20観測点中n点以 上(ただし,n=1,2,3とする)において最大加速度があ る閾値kを超過する確率 $_{20}P_n(k)$ を算定する.Table 5に要約さ れているが,観測点iの超過確率を $H_i(k)$ とし,これに対す る非超過確率を $R_i(k)$ とすれば, $R_i(k)=1-H_i(k)$ となる.従っ て,20観測点全点が閾値kに対して非超過となる確率(20 観測のうち0点が閾値kに対して超過する確率) $_{20}Q_0(k)$ は,

$_{20}Q_0(k) = \prod_{i=1}^{20} R_i(k)$

となる. 従って, 20観測点中1点以上で閾値kを超過する 確率₃P₁(k)は,

$${}_{20}P_1(k) = 1 - {}_{20}Q_0(k) = 1 - \prod_{i=1}^{20} R_i(k)$$
 (2)

と表わすことができる. 同様に, 20観測のうち1点のみが 閾値kに対して超過する確率₂₀Q₁(k)は,

 $_{20}Q_{1}(k) = \sum_{i=1}^{20} \left\{ H_{i}(k) \right. _{i \neq j} \prod_{j=1}^{20} R_{j}(k) \right\}$

となる.従って,20観測点2点以上が閾値kに対して超過 する確率₂₀P₂(k)は,

 ${}_{20}P_{2}(k) = {}_{20}P_{1}(k) - {}_{20}Q_{1}(k) = {}_{20}P_{1}(k) - \sum_{i=1}^{20} \{H_{i}(k) |_{i\neq j} \prod_{j=1}^{20} R_{j}(k)\}$ (3)

と表わすことができる.同様に,20観測のうち2点のみが 閾値kに対して超過する確率₂₀Q₂(k)を算出すれば,

 $_{20}Q_{2}(k) = \sum_{i=1}^{19} \left[H_{i}(k) \sum_{j=i+1}^{20} \left\{ H_{j}(k) \underset{i \neq k}{\underset{i \neq k}{ \prod}} \prod_{k=1}^{20} R_{k}(k) \right\} \right]$

となる.従って,20観測点3点以上が閾値kに対して超過 する確率₂₀P₃(k)は,
$$\begin{split} _{20} P_3(k) = & _{20} P_2(k) - _{20} Q_2(k) \\ = & _{20} P_2(k) - \sum_{i=1}^{19} \left[H_i(k) \sum_{j=i+1}^{20} \left\{ H_j(k) \right. \right. _{i \neq k} \prod_{k=1}^{20} R_k(k) \left. \right\} \right] \end{split}$$

(4)

と表わすことができる.

各閾値に対する超過確率を算出し、Tables 6~8に示す. まず、1gを超える確率は、参照地震によらず大きいこと がわかる. その中で最も大きい超過確率に着目すると, $_{20}P_1(1g)$ が98.33%, $_{20}P_2(1g)$ が90.74%以上, $_{20}P_3(1g)$ が74.35% と算定されている.従って20点中3点以上で1gを越える可 能性が非常に高いことがわかる.2g以上の閾値に対する 超過確率は、2008年岩手・宮城内陸地震(Event 14)の分 布特性を用いた場合に最も高い結果となっており、以降, これに着目する.2g以上の閾値に対する超過確率は, 20P1(2g)が49.11%, 20P2(2g)が14.13%, 20P3(2g)が2.73%と算定 されている.これより、20点中1点以上で2gを超える可能 性がほぼ50%であることがわかる.3gを超える確率は, $_{20}P_1(3g)$ が15.83%, $_{20}P_2(3g)$ が1.26%, $_{20}P_3(3g)$ が0.064%と算定 されている.4gを超える確率は、 ₂₀P₁(4g)が5.43%, ₂₀P₂(4g) が0.14%, ₂₀P₃(4g)が0.0024%と算定されている.参照地震 より3地震 (Event 5, 12, 14) を選び, Fig.7に超過確率20P1, ₂₀P_{2, 20}P₃を重ねて描く.これより, 閾値が大きくなるにつ れて各超過確率が急速に小さくなっていること、2008年 岩手・宮城内陸地震の分布モデルを用いた結果が2007年 能登半島地震のそれに良く一致すること、等がわかる.

Table 5. Summary of probabilities exceeding each criterion at each station of 20 stations of the DONET due to the 1944 Tonankai Earthquake (M_w 8.1).

表5. 1944年東南海地震(M_w8.1)によりDONETの20観測点が閾 値を超過する確率の概要.

Enant	Statistica	I	Exceeding P	robability (%)
Event	Staustics	>1g	>2g	>3g	>4g
	max.	16.66	1.33	0.16	0.03
4	mean	15.78	1.23	0.15	0.02
	min.	8.96	0.48	0.04	0.01
	max.	18.51	1.99	0.31	0.06
5	mean	17.62	1.85	0.29	0.06
	min.	10.66	0.81	0.10	0.02
	max.	19.41	2.05	0.31	0.06
6	mean	18.48	1.90	0.29	0.06
	min.	11.16	0.82	0.10	0.02
	max.	17.87	3.27	0.86	0.28
12	mean	17.17	3.09	0.81	0.27
	min.	11.56	1.70	0.39	0.12
	max.	19.17	3.51	0.92	0.30
14	mean	18.42	3.32	0.86	0.28
	min.	12.43	1.82	0.41	0.12

[memo] max. : the maximum exceeding probability among 20 stations mean : the average exceeding probability among 20 stations min. : the minimum exceeding probability among 20 stations

JAMSTEC Rep. Res. Dev., Volume 11, September 2010, 17-31

Table 6. Probabilities exceeding each criterion at 1 station or more among 20 stations of the DONET due to the 1944 Tonankai Earthquake $(M_w 8.1)$, $_{20}P_1$.

表6.	1944年東南海地震	$(M_{w}8.1)$	によりDONETの20観測点中の1点以上が閾値を超過する確率。P)
-----	------------	--------------	----------------------------------	----------

Event	Exceeding Probability (%)						
Event	>1g	>2g	>3g	>4g			
4	96.80	21.90	2.87	0.47			
5	97.94	31.13	5.57	1.17			
6	98.33	31.90	5.57	1.14			
12	97.70	46.65	14.96	5.17			
14	98.30	49.11	15.83	5.43			

Table 7. Probabilities exceeding each criterion at 2 stations or more among 20 stations of the DONET due to the 1944 Tonankai Earthquake $(M_w 8.1)$, $_{20}P_2$.

表7.	1944年東南海地震	(M8.1)によりDONETの20観測点中の2	2点以	上が閾値を超過する確率。
J	1/1////////////////////////////////////	\1,1,1,1,1,1,0,1,1			

Ermet	Exceeding Probability (%)						
Event	>1g	>2g	>3g	>4g			
4	84.76	2.47	0.04	1.1.E-03			
5	89.11	5.20	0.15	0.01			
6	90.74	5.48	0.15	0.01			
12	88.14	12.58	1.12	0.13			
14	90.62	14.13	1.26	0.14			

Table 8. Probabilities exceeding each criterion at 3 stations or more among 20 stations of the DONET due to the 1944 Tonankai Earthquake $(M_w 8.1)$, $_{20}P_3$.

表8.	1944年東南海地震	$(M_{w}8.1)$	によりDONETの20観測点中の3点」	以上が閾値を超過する確率₂₀₽
-----	------------	--------------	---------------------	-----------------

Event	Exceeding Probability (%)						
Event	>1g	>2g	>3g	>4g			
4	63.26	1.8.E-01	3.4.E-04	1.5.E-06			
5	71.11	5.7.E-01	2.6.E-03	2.3.E-05			
6	74.35	6.1.E-01	2.6.E-03	2.1.E-05			
12	69.27	2.27	5.4.E-02	2.0.E-03			
14	74.11	2.73	6.4.E-02	2.4.E-03			

Fig. 7. Probabilities exceeding each criterion at k stations or more among 20 stations of the DONET due to the 1944 Tonankai Earthquake $(M_w 8.1)$, $_{20}P_n$ (n=1,2,3). Results from three events are selected for graphical convenience.

図7. 1944年東南海地震(M_w8.1)によりDONETの20観測点中のn点以上が閾値を超過する確率₂₀P_n (n=1,2,3). 作図の都合により,参照地震のうち超過確率の大きい3地震のみを表示している.

5. まとめ

本報告では,東南海地震の震源近傍に設置される DONETのシステム構築の一環として最大加速度の距離減 衰式に基づく検討手法を用いて,強震計の振幅レンジ±4g (3920cm/s²) についての評価を行っている.

まず,最近海域で発生したM7クラス以上の地震とその 前震,余震,計15地震(陸域の1地震を含む)により得ら れた最大加速度を分析し,震源近傍での最大加速度のレベ ルについての検討を行った.対象とした地震がこれまでの 強震記録から予想される平均的な距離減衰特性を有するこ とを確認した上で,観測値に距離減衰の補正を行い,震央 位置に引き戻した最大加速度を推定した.さらに,補正最 大加速度が閾値(1g, 2g, 3g, 4g)を超える割合を分析し, 2004年紀伊半島沖の3地震(前震,本震,最大余震),2007 年能登半島地震,2008年岩手・宮城内陸地震,以上の5地 震では,3gを超える結果が認められた.また,2004年紀伊 半島沖の地震(本震),2008年岩手・宮城内陸地震,以上 の2地震では,4gを超える結果が認められた.

次に、補正最大加速度に3gを超える結果が見られた5地 震を参照地震として,各地震の計算値に対する観測値の比 (サイト特性) が対数正規分布に従うと仮定し、その分布 特性を評価した.そして、1944年東南海沖地震の断層モデ ル(震源の深さは20 km)を用いて、DONETの各観測点で の最大加速度の分布性状を算出し、各観測点において閾値 (1g, 2g, 3g, 4g) を超える割合(超過確率)を算定した. その結果、各観測点における超過確率は、参照地震によっ てばらつくものの,最大値としては,1gに対して19.41%, 2gに対しては3.51%, 3gに対しては0.92%, 4gに対して 0.28%,以上の結果を得た. さらに, 1944年東南海沖地震 に対するDONETの観測点全体に対する超過確率の算定を 行った. DONETの強震計の振幅レンジ4gを超える確率は, 2008年岩手・宮城内陸地震のサイト特性の分布モデルを用 いた場合に最大となり、 $_{20}P_1(4g)$ が5.43%、 $_{20}P_2(4g)$ が0.14%、 ₂P₃(4g)が0.0024%という算定結果を得た.

以上より, DONETの強震観測において,最大加速度の 振幅レンジ4gを超過する可能性は0%ではない.しかし, 他の閾値(1g, 2g, 3g)に比較して,超過確率が非常に小 さいことがわかる.震源近傍において地震発生時に強震動 を振り切れることなく記録することは非常に難しい課題で あるが,振幅レンジを4gに設定することで,その可能性が 大きく高められたことを確認した.

謝 辞

本検討に際して,防災科学技術研究所K-NET・KiK-net, 台湾中央気象局,および海洋研究開発機構・海底ケーブル データセンターの公開データを利用させて頂きました.記 して関係者各位に深謝の意を表します.なお,本報告は文 部科学省からの受託研究「地震・津波観測監視システムの 構築」において,海洋研究開発機構が紀伊半島沖熊野灘に 構築する海底ネットワークシステムのうち,強震観測の振 幅レンジについての検討内容をとりまとめたものです.関 連の打合せにおいて,貴重な意見を頂きました関係者各位 に感謝の意を表します.最後になりますが,石原靖氏, 匿名査読者ならびに編集委員の高橋成実氏から頂きました 多数の建設的な意見により,当初の原稿を大きく改善する ことができました.記してお礼申し上げます.

参考文献

Aoi, S., T. Kunugi, and H. Fujiwara (2008), Trampoline Effect in Extreme Ground Motion, *Science*, 322, 727-730, doi:10.1126/science.1163113.

防災科学技術研究所·K-NET,

<http://www.k-net.bosai.go.jp/k-net/>(参照2008-5-9). 防災科学技術研究所・KiK-net,

(参照2008-5-9).

防災科学技術研究所・地震観測ポータルサイト,

<http://www.hinet.bosai.go.jp/topics/>(参照2008-5-9).

- 藤原広行,河合伸一,青井真,功刀卓,奥村俊彦,石井 透,早川譲,森川信之,小林京子,大井昌弘,先 名重樹,奥村直子(2005),全国を対象とした確率 論的地震動予測地図作成手法の検討,防災科学技 術研究所研究資料,275,393pp.
- Honda R., S. Aoi, N. Morikawa, H. Sekiguchi, T. Kunugi, and H. Fujiwara (2004), Ground motion and rupture process of the 2003 Tokachi-oki earthquake obtained from strong motion data of K-NET and KiK-net, *Earth Planets Space*, 56, 317-322.
- 神野達夫, 三浦賢治 (2005), 2001年芸予地震時における 広島県の地盤震動特性評価, 日本建築学会構造系 論文集, 597, 151-157.
- 金田義行,川口勝義,荒木英一郎,松本浩幸,中村武史, 神谷眞一郎,有吉慶介,堀高峰,馬場俊孝(2007), 南海トラフ紀伊半島沖の海底観測ネットワークの 構築,日本地震学会秋季大会講演予稿集,B11-07.
- 片岡俊一,山本博昭(2007),地震動記録に基づく青森県 内の強震観測点のサイト増幅度,日本地震工学会

論文集,7(l),110-129.

川口勝義,金田義行,荒木英一郎(2007),海底高密度リ アルタイム観測ネットワークのデザインコンセプ ト,海洋理工学会誌,13(1),79-86.

JAMSTEC海底ケーブルデータセンター,

<http://www.jamstec.go.jp/scdc/top_j.html> (参照 2008-5-9).

- Ohori, M. (2008), Strong motion simulation and modeling of the 2001 Geiyo (M_J6.7), Japan, Earthquake, using the empirical Green's Function method, *Proc. of the 14th World Conference on Earthquake Enginieering*, 02-0078 (CD-ROM).
- 理論地震動研究会(1994),地震動-その合成と波形処 理-, 鹿島出版会, 256pp.
- 司宏俊,翠川三郎(1999),断層タイプ及び地盤条件を考 慮した最大加速度・最大速度の距離減衰式,日本 建築学会構造系論文集,523,63-70.
- 台湾中央気象局, <http://www.cwb.gov.tw/> (参照2008-5-9).
- Yaginuma T., T. Okada, Y. Yagi, T. Matsuzawa, N. Umino, and A. Hasegawa (2006), Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms, *Earth Planets Space*, 58, 1549-1554.
- 山中佳子(2006), 再考-1944年東南海地震-, 日本地震 学会秋季大会講演予稿集, A019.