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Abstract A geometrical dissection that divides a spherical surface into two identical pieces is considered.
When the piece is symmetric in two perpendicular directions, the two pieces are called yin and yang and the
dissection is yin-yang dissection of a sphere. The yin and yang are mapped each other by a rotation M on the
sphere where M2 = 1. Therefore, the yin’s landscape viewed from yang is exactly the same as the yang’s land-
scape viewed from yin, and vice versa. This complemental nature of the yin-yang dissection leads to the idea
of new spherical overset grid named Yin-Yang grid. The flexibility of the yin-yang dissection of a sphere
enables one to patch the piece with an orthogonal, quasi-uniform grid mesh. Since the two pieces are identi-
cal, one computational routine that involves individual calculation in each grid is used for two times, one for
yin grid and another for yang. Other routines that involve data transformation between yin and yang are also
recycled for two times because of the complemental nature of the grids. Due to the simplicity of the underly-
ing grid geometry, the Yin-Yang grid suits to massively parallel computers.
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1. Introduction
Recently, we proposed a new spherical grid system

named “Yin-Yang grid” [1], which is a kind of overset or
Chimera grids applied to a spherical surface or spherical
shell. The Yin-Yang grid is already used with good suc-
cess in simulations of geodynamo [2, 3], mantle convec-
tion [4], and coupled simulation of atmosphere and ocean
[5, 6]. In this paper, we review the Yin-Yang grid with a
special emphasise on the motivation and basic ideas
behind it.

In these ten years, we have been performing simulation
research of magnetohydrodynamic (MHD) dynamo in
spherical shells. For the spatial discretization of the MHD
equations, we used a finite difference method with a
prospect of its increasing importance in the era of mas-
sively parallel computers. The base grid system adopted
in our previous spherical shell MHD code was the lati-
tude-longitude (Lat-Lon) grid, which is defined on the
spherical polar coordinates (r, , ) with radius r, colati-
tude , and longitude . For the spherical surface S, the
grid mesh of the Lat-Lon grid is uniform when it is seen
in the computational space

(1)

but it is far from uniform when it is seen in the real space.
A numerical problem in the Lat-Lon grid is the exis-

S := , , − /2 /2 ,,≤ ≤

tence of the coordinate singularity on the north pole

(2)

and the south pole

(3)

In the spherical polar coordinates, all the differential
operators should be represented in three different forms
for three local regions of S. Take the gradient operator 
∇ = (∇ r, ∇ , ∇ ) as an example. Define a local region S'
by

(4)

which is the spherical surface without the poles. The gra-
dient operator is represented by

(5)

which is a familiar form. On the other hand, the gradient
operator should be represented in other, unfamiliar, forms
for the north and south poles as

(6)= r , r
1 , + r

1 2
for Pn ,∇ ∂ ∂

∂ ∂
∂

∂ ∂z

=
r

,
r
1 ,

r sin
1 for ,S'∇ ∂ ∂ ∂

∂ ∂ ∂

S' : = S − Pn − Ps ,

Ps := = , .

Pn : = = 0, ,
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and

(7)

The above eqs. (6) and (7) are derived from eq. (5) by
the L’Hospitals rule. For numerical simulations, there-
fore, we have to prepare basically three different subrou-
tines for numerical computation of discretized equations.
This enhances the complexity of the computer programs.

Another problem in the Lat-Lon grid is the grid con-
vergence near the poles that is obviously seen in Fig. 1.
By a simple count, we know that nearly 84% of all grid
points on the sphere are located in higher latitudes than
45°N and 45°S (the yellow lines in Fig. 1). In other
words, the low latitude region between 45°N and 45°S is
covered by only 16% of grid points.

The grid convergence imposes a severe restriction on
the time step ∆t in explicit time integration schemes. This
is recognized in, for example, the metric factor 1/(r sin )
of -component of ∇ in eq. (5). As approaches to 0 or

in S', this factor blows up with a constant grid spacing
∆ in the azimuthal direction.

In order to relax the restriction, one has to apply a kind
of low-pass filter so that the grid spacing on the sphere

= r , r
1 , − r

1 2
for Ps.∇ ∂ ∂ ∂

∂ ∂ ∂ ∂

becomes effectively quasi-uniform. The spherical filter
itself has sizable computational costs. But even if you
could develop a very high-speed (with high-flops) spheri-
cal filter, it merely means that you can perform very futile
task very quickly. It is similar to build a hill on a flat
land, then remove it, and repeat the cycle every one sec-
ond. Under the spherical filter method, one integrates
physical quantities according the basic equations on all
the grid points — 84% of which are concentrated in high-
latitude — then quickly throw away a lot of information
just obtained, and this cycle is repeated every time step.
This is computationally inefficient in total, even if it out-
puts an apparent high flops value.

Note that the above two problems (the coordinate sin-
gularity and the grid convergence) of the Lat-Lon grid
come from the region of high latitudes. The remaining
part of the Lat-Lon grid — the low latitude region — has
rather desirable feature for numerical simulations; it is an
orthogonal grid, it has simple metric tensors, and the grid
spacings are quasi-uniform.

2. Dissection of a Sphere
There is no grid mesh that is (i) orthogonal, (ii) free of

coordinate singularity, (iii) free of grid convergence prob-
lem, and (iv) defined over a spherical surface. We have to
discard one of these incompatible conditions.

Since the orthogonality is evidently desirable for

Fig. 1 Latitude-longigude (Lat-Lon) grid. There are two numer-
ical problems in Lat-Lon grid; the coordinate singularity
on the poles and the grid convergence near the poles. If
we focus on the low latitude part, the mesh of Lat-Lon
grid has desirable features; it is orthogonal and it has
quasi-uniform grid spacings.
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Fig. 2 An example of yin-yang dissection of a sphere. In this
dissection, a sphere is divided into two identical pieces,
with same shape and size. Each piece has up-down and
right-left symmetries. It is constructed by a copy of one
piece, followed by two rotations.
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numerical calculations, we keep this feature in our grid
design. Instead, we discard the condition (iv) above; the
single nature of the spherical surface by taking a divide-
and rule approach: We decompose a spherical surface
into subregions. The decomposition, or dissection, will
enable us to cover each subregion by a grid system that is
individually orthogonal and singularity-free.

How many subregions should we take? There are infi-
nite variations of spherical dissections depending on the
number n (≥ 2) of divided pieces of the sphere. Among
them, here we consider the minimum case of n = 2, i.e.,
the spherical dissections by two pieces. There are still
infinite number of such dissections. For example, one can
divide a sphere into two parts by cutting along a small
circle at any latitude. Among the indefinite possibilities
of spherical dissection with n = 2 pieces, we concentrate
on a class of dissections which divides a sphere into two
parts that are geometrically identical, i.e., the two pieces
have exactly same size and shape. Another condition we
impose is the symmetry of the piece; the piece is symmet-
ric in two perpendicular directions; up-down and right-
left. Here we call such dissection as yin-yang dissection
of a sphere.

A trivial example of the yin-yang dissection is obtained
by cutting along the equator or any great circle, which
produces two hemispheres. Other yin-yang dissections
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Fig. 3 An example of yin-yang dissection of a sphere. This is
no doubt impractical for numerical calculations.
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Fig. 4 One of (probably the simplest) yin-yang dissection of a
sphere.

are obtained by modifying the cut curve from the great
circle. Let Syin be a piece of a sphere S of radius r with the
surface area 2 r 2. An example of Syin is shown in the
upper left panel in Fig. 2. Make a copy of Syin and call it
Syang which is rotated for 180° around z-axis. (See lower
left panel of Fig. 2.) Then, rotate it again, but this time for
90° degree around x-axis, as shown in the lower right
panel. Then the original piece Syin (the upper left) and the
rotated copy Syang (the lower right) are combined so that
they reproduce S as shown in the upper right in this fig-
ure.

The shape of Syin is not arbitrary. What is the condition
for the curves for the yin-yang dissection of a sphere?

A careful inspection of Fig. 2 leads us to a necessary
condition of the cut curve. Suppose that the spherical
radius is r = . The curve passes the following four
points on the sphere at (x, y, z) = (0, −1, +1), (0, +1, +1),
(0, −1, −1), (0, +1, −1). These four points form a square
in the plane x = 0.

Consider an arbitrarily chosen curve between upper
two vertices (0, −1, +1) and (0, +1, +1) (see the red curve
in Fig. 3), and copy (or project) the curve to the southern
counterpart between (0, −1, −1) and (0, +1, −1). Then we
rotate the pair of red curves by the following consecutive
rotations; first 180° around the z-axis, then 90° degree
around x-axis, which leads to the blue curves in Fig. 3.

2
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From this construction, it is obvious that the spherical
dissection defined by a closed red-blue curve in Fig. 3
generates identical two pieces. There are infinite number
of variations of yin-yang dissection of a sphere since the
original red curve was arbitrarily chosen.

Among infinite patterns of the yin-yang dissection, we
believe that the dissection shown in Fig. 4 is geometrical-
ly the simplest. In this case, the starting red curve is the
equi-latitude at = /4 that passes (x, y, z) = (0, −1, +1)
and (0, +1, +1).

Fig. 5 shows other cut curve for yin-yang dissection
that is obtained by a slight modification of the curve in
Fig. 4. This curve in Fig. 5 reminds us the seam of a base-
ball. Another simple yin-yang dissection is shown in
Fig. 6. The red-blue cut curve here is defined by a projec-
tion of a cube in the sphere from the origin (x, y, z) = (0,
0, 0). This shape reminds us the “cubed sphere” [7] .

3. Overset Grid Method
In general, a dissection of a computational domain gen-

erates internal borders or boundaries between the sub-
regions. In the overset grid methodology [8], the sub-
domains are permitted to partially overlap one another on
their borders. The overset grid is also called as overlaid
grid, or composite overlapping grid, or Chimera grid [9].

The validity and importance of the overset approach in
the aerodynamical calculations was pointed out by Steger
[10]. Since then this method is widely used in this field. It
is now one of the most important grid techniques in the
computational aerodynamics; see for example, whole air-
craft with wing and store [11], tiltrotor aircraft [12],
Boeing 747 [13, 14], Space Shuttle [15], helicopter [16],
for impressive applications of the overset grid method.

In the computational geosciences, the idea of the over-
set grid approach appeared rather early. Phillips proposed
a kind of composite grid in 1950’s to solve partial differ-
ential equations on a hemisphere, in which the high lati-
tude region of the latitude-longitude grid is “capped” by
another grid system that is constructed by a stereographic
projection to a plane on the north pole [17, 18, 19]. After
a long intermission, the overset grid method seems to
attract growing interest in geoscience these days. The
“cubed sphere” [7] is an overset grid that covers a spheri-
cal surface with six component grids that correspond to
six faces of a cube. The “cubed sphere” is recently
applied to the mantle convection simulation [20]. In the
atmospheric research, other kind of spherical overset grid
is used in a global circulation model [21], in which the
spherical surface is covered by two component grids —
improved stereographic projection grids — in northern
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Fig. 5 Another example of yin-yang dissection. This reminds us
a baseball, which is a practical application of the yin-
yang dissection.
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Fig. 6 Yin-yang dissection of a sphere that is constructed from
a projection of a cube in the sphere.
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and souther hemispheres that overlap in the equator.

4. Yin-Yang Grids
The combination of the yin-yang dissection discussed

in section 2 and the overset grid method in section 3 leads
us to the Yin-Yang grid.

Take the simplest yin-yang dissection shown in Fig. 4.
It is a natural idea to use (a part of) usual Lat-Lon grid in
the area denoted by “Yin” in Fig. 4 as suggested by the

background Lat-Lon grid mesh in the figure. How about
Yang part? (Obviously, we should not use the original
Lat-Lon mesh for this area since it has both of the “trou-
ble maker” ; the north and south poles.) Remember that
the Yin part and Yang part are geometrically identical.
So, we can patch a grid mesh to the Yang part with the
same mesh in the same way used in the Yin part. This is
one of the basic ideas of the Yin-Yang grid. Fig. 7 shows
the Yin-Yang grid based on the yin-yang dissection of
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Fig. 7 A Yin-Yang grid based on the yin-yang dissection of Fig. 4.
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Fig. 8 A Yin-Yang grid based on the yin-yang dissection of Fig. 6.
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Fig. 4. Note that there is an overlap between the Yin grid
and Yang grid which is required by the overset grid
method.

Other type of the Yin-Yang grid is shown in Fig. 8.
This Yin-Yang grid is constructed from the yin-yang dis-
section shown in Fig. 6. We notice in Fig. 8(a) that the
perimeter of the component grid (Yin or Yang) has rather
irregular shape. Suppose that physical quantities are
defined on mesh points on ( j, k) of Yin grid and Yang
grid of Fig. 8 with integer indexes j and k. The irregular
shape of perimeter of the component grid in Fig. 8 means
that the integer indexes cannot span simply as jmin ≤ j ≤
jmax, and kmin ≤ k ≤ kmax. One needs to invoke some kind
of mask procedure to skip unnecessary j and k in the sim-
ulation code. The mask would degrade the program
code’s simplicity, and possibly the calculation speed, too.
The mask procedure is also required in the Yin-Yang grid
shown in Fig. 7. From numerical point of view, the ideal
shape of the component grid is a rectangle in the compu-
tational ( , ) space.

The overset grid methodology gives us a freedom to

design the shape of the component grid as long as the
grids has minimum overlap one another. Therefore, we
can take the component grid as a rectangle in ( , )
space. Fig. 9 shows a spherical dissection by two identi-
cal pieces, in which the two pieces are partially over-
lapped one another. Note that the northern and southern
borders of the Yin piece denoted by the blue curve in
Fig. 9 are located in constant latitudes and the western
and eastern borders are located in constant longitudes. In
other words, the Yin piece in Fig. 9 is a rectangle in the
( , ) space of the Yin’s spherical coordinates, and
therefore, the Yang piece is also (the same) rectangle in
Yang’s coordinates that is perpendicular to the Yin’s. The
Yin-Yang grid based on this partially overlapped spheri-
cal dissection is shown in Fig. 10. Here, each component
grid spans the following subregion of the sphere S:

(8)

with a small buffer which is necessary to keep the
overlap between Yin and Yang.

For any type of the Yin-Yang grids described above as
well as possible other variations, the relation between Yin
coordinates (xn, yn, zn) — denoted in the Cartesian coor-
dinates — and Yang coordinates (xe, ye, ze) is given by

(9)

where

(10)

Note that

(11)

which indicates a complemental relation between Yin
coordinates and Yang coordinates: The coordinate trans-
formation from Yin to Yang is mathematically the same
as that from Yang to Yin. From a programming point of
view, this enables us to make only one, instead of two,
subroutines that involve any data transformation between
Yin and Yang.

Another advantage of the Yin-Yang grid resides in the
fact that the component grid is nothing but (a part of) the
Lat-Lon grid. We can directly deal with the equations to
be solved with the usual spherical polar coordinates. The
analytical form of metric tensors are familiar in the spher-

M −1= M,

M
−1 0 0

= 0 0 1
0 1 0

.

x e
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z e
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,

Sy := , , − /2 ≤ /4 + , ≤ 3 /4 + ,
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Fig. 9 A dissection of a sphere into two identical pieces — Yin
and Yang — with a partial overlap. The blue (red) curve
is closed and it is the border of Yin (Yang) piece. In con-
trast to Figs. 3 – 6, the blue curve is always located in
either constant latitudes or constant longitudes. In other
words, the Yin (Yang) piece is a rectangle in the compu-
tational ( , ) space of the Yin (Yang) grid.



Dissection of a Sphere and Yin-Yang Grids

26 J. Earth Sim., Vol. 3, September 2005, 20 – 28

ical coordinates. We can directly code the basic equations
in the program as they are formulated in the spherical
coordinates. For example, the gradient operator ∇ is
implemented in the finite difference method based on the
usual formula on the defining space of Yin grid or Yang
grid:

(12)

Note also that the factor 1/(r sin ) does not blow up in
Sy . We can make use of various resources of mathemati-
cal formulas, program libraries, and tools that have been
developed in the spherical polar coordinates.

In order to illustrate an example of the programing
strategy in the Yin-Yang method, here we take a two-
dimensional fluid problem on a sphere S. Suppose that
two components of the flow velocity v = (v , v ) and the
pressure p are written in vel_t, vel_p, and press in a
Fortran 90/95 program. They can be combined into one
structure or “type” in Fortran 90/95 as

type fluid_

real, dimension(NT,NP) : : vel_t,  vel_p,  press

end type fluid_

where NT, NP are the grid size integers in and direc-
tions in the subregion Sy of eq. (8). Using this structured
type, we declare two variables for the fluid; one is for the
fluid in the Yin region and another is for the fluid in the
Yang region:

=
r

,
r
1 , .

r sin
1 for Sy∇ ∂ ∂ ∂

∂ ∂ ∂

type(fluid_) : : fluid_yin,  fluid_yang

Then, we call a fluid solver subroutine, here named
navier_stokes_solver, that numerically solves the
Navier-Stokes equation in the spherical coordinates in the
subregion Sy:

call navier_stokes_solver(fluid_yin)

call navier_stokes_solver(fluid_yang)

The first call of navier_stokes_solver solves the
fluid motion in the Sy region defined in the Yin’s spheri-
cal coordinates and the second call is for the same region
Sy defined in the Yang’s coordinates. But in the program
code, we do not have to distinguish the two Sy regions
since the basic equations, numerical grid distribution, and
therefore, all numerical tasks are identical in the compu-
tational space. For a rotating fluid problem with a con-
stant angular velocity Ω, we have the Coriolis force term
in the Navier-Stokes equation that seems to break the
symmetry between the Yin grid and Yang grid, but it is
still possible to write the equation in exactly the same
form for the Yin and Yang grids by explicitly writing
three components of angular velocity in the Coriolis force
term 2v × Ω in the subroutine. Then, we call the routine
with the angular velocity vector in each grid (Yin or
Yang) as the second argument:

call navier_stokes_solver(fluid_yin, omega_yin)

call navier_stokes_solver(fluid_yang, omega_yang)
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Fig. 10 A Yin-Yang grid based on the yin-yang dissection with partial overlap shown in Fig. 9. Each component grid
is rectangle in the computational ( , )  space.
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where omega_yin and omega_yang are again struc-
tured variables that hold three components of the Ω vec-
tor: For example, omega_yin holds three components
of cartesian vector components in the Yin grid
( ) = (0, 0, Ω), and omega_yang holds
( ) = (0, Ω, 0). Note that ( ) and
( ) are related each other by the transformation
matrix M in eq. (10).

Our experience tells that it is easy to convert an exist-
ing Lat-Lon based program into a Yin-Yang based pro-
gram since there are many shared routines between them.
In addition to that the size of the code as well as its com-
plexity is drastically reduced by the conversion. One rea-
son is that we can remove routines that are designed to
solve pole grids: We do not have to take special cares to
the differential operators in Pn and Ps such as eqs. (6) and
(7). Besides, we do not need spherical filter routines in
the Yin-Yang grid. Another remark on the code’s sim-
plicity in the Yin-Yang grid method is that we can recy-
cle one routine that involves individual grid (Yin grid or
Yang grid) for two times as illustrated in the above exam-
ple.

5. Parallel Computing on the Yin-Yang Grid
Suppose that we have only two processors available.

For the computer simulation using the Yin-Yang grid, it
is natural to perform a parallel computing by dividing the
computational task into Yin part and Yang part. Because
the two component grids are identical, we can achieve a
perfect balance of the computational loads between the
processors.

When we have 2N processors, we decompose each
component grid into N subdomains for N processors each.
The domain decomposition is simple and straightforward
in the Yin-Yang grid since the component grids (Yin grid
and Yang grid) is geometrically simple; it is a rectangular
box in the computational space of (r, , ).

We described in [2] an example of two-dimensional
domain decomposition in ( , ) space for MPI-based
parallel computation of geodynamo simulation. In the
maximum case, we achieved 15.2 Tflops by 4096 proces-
sors of the Earth Simulator.

6. Summary
If you knife along a baseball’s seam, you will get a

couple of two identical patches by which the ball’s spher-
ical surface is covered in combination. The seam of the
baseball is an example of a family of geometrical dissec-
tions that divides a sphere into two identical pieces.
When the piece (or patch) of the dissection has up-down
and right-left symmetries, the two pieces are transfered
each other by a rotation denoted by the matrix M defined

Ωe
x, Ωe

y, Ωe
z

Ωn
x, Ωn

y, Ωn
zΩe

x, Ωe
y, Ωe

z

Ωn
x, Ωn

y, Ωn
z

by eq. (10). In this paper, we call this kind of dissection
as yin-yang dissection of a sphere. Since M −1 = M, the
yang’s landscape viewed from a point on the yin is exact-
ly the same as the yin’s landscaped viewed from the cor-
responding point on the yang, and vice versa. This com-
plemental nature is the most remarkable feature of the
yin-yang dissection.

Inspired by the yin-yang dissection of a sphere, we
have developed a new overset grid for spherical geome-
try. The two component grids, called Yin grid and Yang
grid, are geometrically identical. They are combined in
the complemental way to cover the spherical surface with
partial overlap one another.

To conclude this article, we summarize merits of the
Yin-Yang grid: It is an orthogonal system (since it is a
part of the Lat-Lon grid); The grid spacing is quasi-uni-
form (since we picked up only the low latitude region of
the Lat-Lon grid); The metric tensors are simple and ana-
lytically known (since it is defined based on the spherical
polar coordinates); Routines that involve only individual
component grid can be recycled for two times (since Yin
and Yang are identical); Routines that involve its counter-
part component can also be recycled for two times (since
Yin and Yang are complemental); And, finally; It suits to
massively parallel computers (since the domain decom-
position is straightforward).

Acknowledgements
I would like to thank Drs. Masaki Yoshida and

Mamoru Hyodo for reading the manuscript.

(This article is reviewed by Dr. Takesi Yukutake.)

References
[1] A. Kageyama and T. Sato, The “Yin-Yang Grid”: An

overset grid in spherical geometry, Geochem. Geophys.

Geosyst., vol.5, no.9, doi:10.1029/2004GC000734, 2004.

[2] A. Kageyama, M. Kameyama, S. Fujihara, M. Yoshida,

M. Hyodo, and Y. Tsuda, A 15.2 Tflops simulation of

geodynamo on the Earth Simulator, Proc. Supercomputing

Conference 2004, SC2004, ACM/IEEE, Pitssburgh, USA,

Nov., 2004.

[3] A. Kageyama, Yin-Yang grid and geodynamo simulation,

Proc. Third M.I.T. Conference on Computational Fluid

and Solid Mechanics, MIT, Cambridge, USA, Jun., 2005

(in press).

[4] M. Yoshida and A. Kageyama, Application of the Yin-

Yang grid to a thermal convection of a Boussinesq fluid

with infinite Prandtl number in a three-dimensional

spherical shell, Geophys. Res. Lett., vol.31, no.12,

doi:10.1029/2004GL019970, 2004.

[5] K. Takahashi, X. Peng, K. Komine, M. Ohdaira, Y. Abe,



Dissection of a Sphere and Yin-Yang Grids

28 J. Earth Sim., Vol. 3, September 2005, 20 – 28

T. Sugimura, K. Hirai, K. Goto, H. Fuchigami, M.

Yamada, and K. Watanabe, Development of nonhydrostat-

ic coupled ocean-atmosphere simulation code on the earth

simulator. Proc. 7th International Conference on High

Performance Computing and Grid in Asia Pacific Region,

IEEE Computer Society, pp.487– 494, Omiya, Japan, Jul.,

2004.

[6] K. Komine, K. Takahashi, and K. Watanabe, Development

of a global non-hydrostatic simulation code using yin-

yang grid system, Proc. 2004 workshop on the solution of

partial differential equations on the sphere, JAMSTEC,

pp.67– 69, Yokohama, Japan, Jul., 2004.

[7] C. Ronchi, R. Iacono, and P. S. Paolucci, The “cubed

sphere”: A new method for the solution of partial differen-

tial equations in spherical geometry, J. Comput. Phys.,

vol.124, pp.93 – 114, 1996.

[8] G. Chesshire and W. D. Henshaw, Composite overlapping

meshes for the solution of partial differential equations, J.

Comput. Phys., vol.90, pp.1– 64, 1990.

[9] J. L. Steger, F. C. Dougherty, and J. A. Benek, A Chimera

grid scheme, in Advances in Grid Generation, edited by

K.N. Ghia and U. Ghia, pp.59 – 69, 1983.

[10] J. L. Steger, On application of body conforming curvilin-

ear grids for finite difference solution of external flow, in

Numerical Grid Generation, J.F. Thomposon, ed., North-

Holland, New York, pp.295 – 316, 1982.

[11] R. L. Meakin, Computations of the unsteady flow about a

generic wing/pylon/finned-store configurations, AIAA, 92-

4568-CP, pp.564 – 580, 1992.

[12] R. L. Meakin, Moving body overset grid methods for com-

plete aircraft tiltrotor simulations, AIAA, 93-3350-CP,

pp.576 – 588, 1993.

[13] H. V. Cao, T. Y. Su, and S. E. Rogers, Navier-stokes

analysis of a 747 high lift configuration, AIAA, 98-2623,

pp.402 – 409, 1998.

[14] S. E. Rogers, H. V. Cao, and T. Y. Su, Grid generation for

complex high-lift configurations, AIAA, 98-3011,

pp.1–11, 1998.

[15] P. G. Buning, I. T. Chiu, S. Obayashi, Y. M. Rizk, and J.

L. Steger, Numerical simulation of the integrated space

shuttle vehicle in ascent, AIAA Paper, 88-4359-Cp,

pp.265 – 283, 1988.

[16] E. P. N. Duque, R. C. Strawn, J. Ahmad, and R. Biswas,

An overset grid Navier-Stokes Kirchhoff-surface method

for rotorcraft aeroacoustic predictions, AIAA, 96-0152,

pp.1– 13, 1996.

[17] N. A. Phillips, A map projection system suitable for large-

scale numerical weather prediction, J. Meteor. Soc. Japan,

75th Anniversary Volume, pp.262 – 267, 1957.

[18] N. A. Phillips, Numerical integration of the primitive

equations on the hemisphere, Month. Weather Rev.,

vol.87, pp.333 – 345, 1959.

[19] G. L. Browning, J. J. Hack, and P. N. Swarztrauber, A

comparison of three numerical methods for solving differ-

ential equations on the sphere, Month. Weath. Rev.,

vol.117, pp.1058 – 1075, 1989.

[20] J. W. Hernlund and P. J. Tackley, Three-dimensional

spherical shell convection at infinite prandtl number using

the ‘cubed sphere’ method, Proc. the Second MIT

Conference on Computational Fluid and Solid Mechanics,

MIT, Cambridge, USA, Jun., 2003.

[21] J. Dudhia and J. F. Bresch, A global version of the PSU-

NCAR mesoscale model, Month. Weather Rev., vol.130,

pp.2989 – 3007, 2002.


	Dissection of a Sphere and Yin-Yang Grids
	1. Introduction
	2. Dissection of a Sphere
	3. Overset Grid Method
	4. Yin-Yang Grids
	5. Parallel Computing on the Yin-Yang Grid
	6. Summary
	Acknowledgements
	References



