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Abstract We report the current status of our numerical simulation code named “ACuTEMan” for large-scale 
mantle convection problems on the Earth Simulator. The ACuTEMan code comes out from a newly-devel-
oped “ACuTE” algorithm, which solves the flow field of mantle convection in combination with the multi-
grid method. This algorithm iteratively solves the steady-state equations for conservation of mass and 
momentum for highly viscous and incompressible fluids, and is proved to be suitable for mantle convection 
problems with excellent vector and parallel capability. In addition, a careful adaptation of the multigrid proce-
dure enabled us to obtain a moderate parallel efficiency using up to 64 processor nodes of the Earth 
Simulator. In this paper we present the optimization and the performance of our method applied to mantle 
convection problems in a three-dimensional rectangular domain, with special emphasis on the enhancement 
of parallel efficiency of multigrid procedures by an “agglomeration” technique. 
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1. Introduction 
The convective motion in the Earth’s mantle is the ulti-

mate origin of the geological and geophysical phenomena 
observed at the Earth’s surface, such as seismicity, vol-
canism and plate tectonics [1, 2]. A major tool for under-
standing the mantle convection is numerical analysis. 
Many numerical codes have been developed since the 
pioneering works in 1960’s and 1970’s [3, 4], and they 
have been playing an important role in the study of man-
tle convection (see [5] for a review). Now that the Earth 
Simulator is open to the studies on solid earth sciences, 
further progress is expected in numerical models of man-
tle convection in order to deepen our understanding of the 
dynamics of the Earth’s interior. 

In reality, however, numerical researchers of mantle 
convection seem to be suffering from the difficulties in 
adapting their codes to the Earth Simulator. The difficul-
ties mainly lie in the solution procedures of flow fields of 
mantle convection. Because of the extremely high viscos-
ity of mantle materials (~ 1022 Pa s) [1, 5], the flow in the 
mantle is described by a steady-state Stokes flow balanc-
ing among the buoyancy force, pressure gradient and vis-
cous resistance. In addition, their viscosity varies by sev-
eral orders of magnitude depending on temperature, pres-
sure, and stress [6, 7]. Taken together with the assump-
tion of incompressibility, one needs to solve ill-condi-

tioned elliptic differential equations for velocity and pres-
sure at every timestep. In order to promote the mantle 
convection studies in the era of Earth Simulator, it is very 
important to develop efficient numerical techniques that 
can deal with the steady-state flow of highly viscous and 
incompressible fluids with a strongly variable viscosity. 

To overcome these difficulties, we developed a new 
simulation code named “ACuTEMan” for mantle convec-
tion problems on the Earth Simulator. A major innovation 
in our code is a solution algorithm for the flow fields of 
mantle convection. This algorithm makes good use of the 
multigrid method [8, 9, 10] together with a new smooth-
ing algorithm named “ACuTE” [11]. The ACuTE algo-
rithm is proved to be suitable for mantle convection prob-
lems with an excellent vector and parallel capability. 
Moreover, through a further optimization of multigrid 
procedure, we obtained a moderate overall parallel effi-
ciency with our code. In the following part of this paper, 
we will introduce the solution techniques employed in 
our code. In particular, we will describe the solution algo-
rithm of flow fields in detail, with special emphasis on 
the optimization of multigrid method. 

2. Overview of “ACuTEMan” 
Our “ACuTEMan” code is basically designed for ther-

mal convection of a highly viscous and incompressible 
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fluid with a strongly variable Newtonian viscosity in a 
three-dimensional Cartesian geometry. The nondimen-
sional forms of the fundamental equations are (for exam-
ple [12, 13]); 

(1) 

(2) 

(3) 

where superscript t means transpose, v is fluid velocity, p 
pressure, viscosity, T temperature, Ra the Rayleigh 
number, the unit vector in z-direction, and q is the inter-
nal heating rate. We assumed that z-axis is the vertical 
axis pointing upward. Boussinesq approximation is 
employed in the energy equation (1) and, hence, the 
effects of adiabatic and viscous heating are ignored. The 
temporal evolution of thermal convection is calculated 
separately in two parts. In the first part, we solve the 
energy equation (1), and update the temperature field. In 
the second part, we solve the equation of motion (2) 
together with the equation of continuity (3), and update 
the velocity v and pressure p fields. 

In the following subsections, we will describe the solu-
tion methods employed in our code in turn. In particular, 
we will discuss in detail the algorithm and its implemen-
tation of solution method for flow field (v and p), where 
we made a distinct innovation for efficient computations 
on the Earth Simulator. 

2.1 Solver for Temperature Field 
This part updates the temperature field T through a tem-

poral integration of the energy equation (1). Equation (1) is 
discretized by a first-order Euler method in time. An 
upwind scheme, called power-law scheme [14], is used to 
evaluate the contributions of heat transport by advection 
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and conduction. The velocity field v at old time is used in 
evaluating the advection term. The discretized equation for 
T can be solved in a straightforward manner by, for exam-
ple, a fully explicit, a fully implicit scheme, or their combi-
nation (Crank-Nicholson scheme). In the previous paper 
[11], we had already shown the results calculated by both 
of a fully explicit scheme and a fully implicit scheme, and 
verified the reliability of our numerical results. 

2.2 Multigrid Solver for Flow Field 
This part solves the equations (2) and (3) simultane-

ously for the velocity v and pressure p fields at new time 
using the new temperature T updated by (1). Here we 
assume, for simplicity, the viscosity at new time is 
already known by some means and kept unchanged while 
the velocity and pressure are computed. These assump-
tions yield a set of linear elliptic equations for velocity 
and pressure, which is solved by a multigrid method. 

The multigrid is known as the optimal method for a 
numerical solution of large-scale elliptic equations. The 
basic idea of the multigrid is to solve the elliptic problem 
using a hierarchy of grids with different numbers of grid 
points (see Figure 1). Suppose an iterative procedure for 
solving the discretized problem on the finest grid. 
Assuming that the approximate solutions are already cal-
culated on coarser grids, the iterative procedure on the 
finest grid can be started from an initial guess provided by 
an interpolation of the approximates on the coarser grids. 
Since the initial guess defined thus is most likely to be a 
good approximation, the computational costs of the itera-
tive procedure is expected to be significantly saved. 
However, in most of practical multigrid methods, the 
computations on different grids are intended to reduce (or 
smooth) the components of errors in the approximate solu-
tions with different spatial wavelengths. The smoothing 
calculations on finer grids are responsible for reducing the 
components with shorter wavelengths, while those on 

↔ fine 

Fig. 1 A schematic diagram of the principle of the multigrid method. By providing an initial guess 
from the interpolation of approximates on coarser grids, the computational cost for the iterative 
procedure for solving the discretized problem on a particular grid can be significantly saved. 
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coarser grids are for the components with longer wave-
lengths. By appropriately combining the approximates on 
different grids, the desired solution is obtained on the 
finest grid. A more detailed description of the multigrid 
methods can be found in, for example, [8, 9, 10]. 

The multigrid procedures are, in general, composed of 
multigrid components (including smoothers, inter-grid 
transfers, and derivation of coarse-grid equations) and 
their hierarchical combination into multigrid cycles over 
the entire grid levels. In the rest of this subsection, we will 
introduce them in turn. In particular, we will discuss in 
detail the smoothing operator and the multigrid cycles, 
where we made special adaptations to the Earth Simulator. 

2.2.1 Smoothing algorithm “ACuTE” 
In this subsection, we briey introduce a newly-devel-

oped smoothing algorithm named “ACuTE”. The name 
comes from an acronym of “Artificial Compressibility 
using local Time Evolution”. The detail of the algorithm 
can be found in [11]. 

The ACuTE algorithm comes from an extension of the 
artificial compressibility method [15], which is often used 
to solve steady-state flow of incompressible fluid with 
high Reynolds number, to the problems of highly viscous 
fluid with variable viscosity. In this algorithm, instead of 
directly handling (2) and (3), we consider the following 
set of “pseudo-evolutionary” equations for v and p: 

(4) 

(5) 

Here is analogous to time, and M and K are positive 
parameters analogous to density and compressibility, 
respectively. The pseudo-time integration is repeated 
until a steady solution is achieved. It is obvious that the 
steady solution of (4) and (5) satisfies (2) and (3), and 
that it does not depend on the choice of M or K. In addi-
tion, we employ the local time-stepping technique in 
order to accelerate the convergence to a steady state in 
the presence of spatial variations in . In the present 
algorithm, this technique is taken into account by varying 
M and K depending on . As had been demonstrated in 
the earlier paper [11], the convergence becomes suffi-
ciently fast even for the cases with variable viscosity, by 
assuming M ∝ and K ∝ −1. Indeed, as will be shown 
later (see (6)), the convergence behavior of the ACuTE 
algorithm is mainly controlled by the distribution of vis-
cosity . This also implies that the convergence behavior 
is not, in principle, affected by other parameters such as 
the Rayleigh number Ra or the internal heating rate q. 

We note that the ACuTE algorithm is suitable for large-

scale numerical simulations on massively vector-parallel 
supercomputers such as the Earth Simulator. The pseudo-
temporal evolution of (4) and (5) can be naturally vector-
ized and parallelized. In particular, its vectorization and 
parallelization are quite straightforward if these equations 
are discretized by a fully explicit scheme in the direction of 
pseudo-time . In addition, this algorithm can be regarded 
as a kind of iterative solvers of linear simultaneous equa-
tions. This implies that this algorithm can be directly used 
as a smoother of multigrid method in place of basic itera-
tive methods (such as Jacobi or Gauss-Seidel methods). 

We also note that we must carefully choose the costs of 
smoothing calculations by (4) and (5), in particular when 
the spatial variation in viscosity is involved. To see this 
more clearly, we consider the Courant-Friedrichs-Lewy 
(CFL) criterion for (4) and (5). From these equations we 
obtain the pseudo-evolutionary equation of · v as, 

(6) 

(In (6) we assumed M ∝ and K ∝ −1.) The first term 
in the right-hand side of (6) represents the effect of 
“pseudo-sound wave” which propagates at a uniform rate 

, and the second term represents the effect of 
viscous damping at a uniform diffusion coefficient 

. The effect of spatial variation in is included in 
the third and fourth terms, and it acts as an additional 
“advection velocity” of . Therefore, the CFL criteri-
on demands smaller increment of pseudo-time in pro-
portion to the viscosity variation. In other words, the 
smoothing effect of single pseudo-temporal integration 
becomes less significant as the spatial variation in is 
stronger. A simple remedy is to increase the number of 
pseudo-temporal integrations according to the magnitude 
of the spatial variation in . In the present version of 
ACuTEMan, the number of pseudo-time integrations Ns 

for each smoothing step on the grid level is taken to be, 

(7) 

where is the magnitude of viscosity variation in the 
entire domain. As had been demonstrated in the earlier 
paper [11], we obtained a significant improvement in the 
robustness of our method against the viscosity variation . 

2.2.2 Multigrid method and its optimization for vec-
tor-parallel environments 

One of the difficulties in optimizing the multigrid pro-
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grams comes from the fact that the computations on coars-
er grids become less efficient. As the grid becomes coars-
er, the size of the discretized problems becomes smaller. 
The reduction of problem sizes on coarse grids, which is 
the heart of multigrid methods, degenerates the computa-
tional efficiency from two aspects. First is that the 
amounts of arithmetic computations become smaller as 
the grid becomes coarser. This may severely spoil the 
capability of vector operations, since the reduction of 
problem sizes results in shorter vector lengths on coarser 
grids. Second is that the relation between computation and 
communication becomes worse than on fine grids. As the 
problem size becomes smaller, the relative communication 
overhead (as compared to the time for arithmetic compu-
tations) increases, and may finally dominate the arithmetic 
work on the very coarse grids. This can result in a signifi-
cant loss of efficiency for the overall parallel computation. 

Another difficulty may arise when performing parallel 
computations with a large number of processor elements 
(PEs). If we proceed coarser and coarser grids during a 
multigrid cycle, smaller and smaller numbers of meshes 
are assigned to each PE. Then at a certain coarse grid 
level, the number of meshes becomes smaller than that of 
PEs involved in parallel computations. In such a situa-
tion, the domain decomposition strategy becomes incom-
patible with the grid coarsening for very coarse grid lev-
els. Even if the calculations are parallelized by some 

means, the relative communication overhead on these 
grids cannot be affordable. 

The above consideration suggests that the key to opti-
mizing the parallelized multigrid is to enhance the com-
putational efficiency particularly on coarse grid levels. In 
the following, we will introduce our strategies to reduce 
the time spent in the execution on coarse grids. 

(1) Tips for construction of Multigrid cycles 
We construct the multigrid cycle as summarized in 

Figure 2. In our method, the V-cycle is used with slight 
modification. The benefit of V-cycle is that it visits coars-
er grids at fewer times than other multigrid cycles (such 
as W-, F-cycles) do. In addition, we employed an “adap-
tive” strategy in determining which of adjacent grid lev-
els is visited. We measure how much the residuals are 
reduced after every pre-smoothing step during the V-
cycle (green circles in Figure 2). If the residuals are suffi-
ciently reduced at a certain grid level, we go up to the 
finer grid level (thick green arrows in Figure 2), instead 
of going down to the coarser grid level. By this configu-
ration of multigrid cycle, the calculations on coarse grids 
can be saved as much as possible. 

(2) Tips for domain decomposition 
The basic strategy for parallelization is, as well as in 

many applications, based on the domain decomposition 
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id

 le
ve

l

restiction 
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prolongation 
of errors 

EXIT 

pre/post-smoothing with 
fixed number of ACuTE iterations 

convergence check 
after smoothing 

smoothing repeated 
until convergence 

multigrid steps 

Fig. 2 A schematic diagram of the multigrid cycle employed in this study. Shown in red are the course of calcula-
tions in a standard V-cycle of multigrid iterations. The red dots indicate the pre- and post-smoothing steps 
where a fixed number of ACuTE iterations are carried out. The red downward arrows indicate the restriction 
of residuals, followed by the visit to a coarser grid level. The red upward arrows indicate the prolongation of 
errors, followed by the visit to a finer grid level. The blue circle indicates that the smoothing steps are repeated 
at the coarsest grid level until a convergence is achieved. The green circles indicate that a convergence check 
is performed after the smoothing steps. The thick green arrows indicate the courses of calculations taken when 
the residual becomes sufficiently small. In these cases we skip the visits to coarser grids, and either move back 
to a finer grid level or stop the multigrid iterations. 
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method with partial overlaps. By applying this strategy to 
all of the grid levels involved, the multigrid components 
(such as smoothers) can be parallelized in a straightfor-
ward manner. In the present method, the widths of the 
overlap regions are taken to be 1 for all grid levels, which 
are sufficient for the spatial discretization with second-
order accuracy. Here we also note that the geometrical 
domains at all grid levels should be divided in the same 
manner. In other words, each PE is responsible for the 
computations on the same subdomain on a sequence of 
grid levels. By assigning the same geometric positions of 
decomposed subdomains for all grid levels, we can save 
communications during inter-grid transfers. 

In addition, we adjusted the manner of domain decom-
position on very coarse grids where the number of com-
putational meshes becomes small compared to that of PEs 
involved in parallel computations. Figure 3 summarizes 
our strategy. Suppose a model problem which is solved 
using Ngrid grid levels and NPE processor elements (PEs). 
Let us first divide the Ngrid grid levels into two groups, 
one with grid level and the other with 
(see blue dashed line in Figure 3), depending on whether 
or not the number of meshes on grid level is 
sufficiently larger than NPE (NPE 512, Ngrid 8 and 

4 in the present case). Next, we apply different 
patterns of domain decomposition to the different groups 
of grid levels. On fine grid levels (namely 

), the entire computational domain is 
decomposed into NPE subdomains. According to the stan-
dard parallelization strategy, the computations on these 
grid levels are carried out in parallel, by assigning each 
subdomain to different PEs. On coarse grid levels where 
the above condition is not met ( ), in contrast, we 
give up decomposing the entire meshes into subdomains. 
Instead of using all of the available PEs in parallel, the 
computations in the entire domain are carried out by one 
PE (in this case the PE with rank 0 is chosen), leaving 
other PEs idle. This strategy is sometimes called 
“agglomeration” technique [10]. The idea of this 
approach is to “agglomerate” the computational meshes 
to new “process units” and to redistribute these new units 
to a subset of the active PEs. 

A major benefit of the agglomeration is that this strate-
gy improves the overall patterns of communications. As 
had been already pointed out, the main cause of commu-
nication overhead was the frequent communications dur-
ing the smoothing calculations on coarse grid levels. In 
the “agglomerated” case, in contrast, significant portion 
of communication overhead can be removed, since no 
communication is required on grid levels where only one 
PE is involved in computations. Of course, the agglomer-
ation itself requires a large amount of communication 
associated with the inter-grid transfers between 　
and (thick green arrows in Figure 3). The data

example for 1024x1024x256 mesh problem with 512 PEs 
(with 2x32x8 domain decomposition) mesh divisions

 in each active PE 

level 8

restriction 
of residuals 

prolongation

256x16x16

128x8x8

64x4x4

32x2x2

32x32x8

to rank 0 from rank 0 

activate 

16x16x4

8x8x2

gather scatter 

of errors 

512PEs

activate 
1PE only 

512x32x32 
(1024x1024x256) 

level 7
 (512x512x128) 

level 6
 (256x256x64) 

level 5
 (128x128x32) 

level 4
 (64x64x16) 

level 3
 (32x32x8) 

level 2
 (16x16x4) 

level 1
 (8x8x2) 

V-cycle step 

Fig. 3 A schematic diagram of the course of multigrid iterations together with the pattern of domain 
decompositions employed in this study. The red dots and red arrows indicate the course of cal-
culations in a standard V-cycle of multigrid method. The dotted blue line indicates a threshold 
grid level which divides the entire grid levels into two groups. The grid levels finer than the 
threshold contain a sufficient number of meshes compared to that of available processor ele-
ments (PEs) for parallel computations, while the coarser levels do not. The calculations on the 
finer grid levels are performed in parallel using all available PEs, while the calculations on the 
coarser levels are done using only one PE with rank 0. The thick green arrows indicate the 
communications between all PEs and the PE with rank 0, which take place during the transi-
tions of grids across the threshold level. 
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must be gathered from all PEs to one PE when going 
down from grid level 　 and, similarly, must be 
scattered from one PE to all PEs when going up to 
　 . However, the increase in communication costs 

by agglomeration is most likely to be compensated by the 
decrease coming from the removal of frequent communi-
cations during the smoothing calculations for . 

Another benefit of the agglomeration is that it can 
improve the computational efficiency during the calcula-
tions on . This is somewhat counterintuitive, 
since the reduction in the number of active PEs nominally 
increases the execution time for the same amount arith-
metic works. However, this strategy can work particularly 
on vector architectures. In the agglomerated case a larger 
number of meshes are mapped to active PEs than in non-
agglomerated case, which results in better vectorization 
because of larger vector lengths. The increase in compu-
tational time by agglomeration is most likely to be com-
pensated as a whole by the decrease coming from the 
enhanced vector capability for . 

2.2.3 Notes for Other Multigrid Components 
Other multigrid components are constructed according 

to a “standard” strategy of multigrid. A linear interpola-
tion is used in both fine-to-coarse (restriction) and coarse-
to-fine (prolongation) operations. The discretized equa-
tions on coarser grids are derived by directly discretizing 
the differential equations (2) and (3) on the particular 
coarser grids. The values of viscosity on coarser grids, 
which are necessary to derive the coarse-grid equations,

are calculated by an appropriate interpolation from those 
on the finer grids by one grid level. 

Here we note that the “standard” treatment described 
above may be inappropriate when viscosity varies strong-
ly in space. More precise treatments, such as operator-
dependent transfer and Galerkin approximation [9, 10], 
are expected to improve the robustness against the viscos-
ity variation [16]. 

2.3 Performance of ACuTEMan: Impact of 
Adjustment in Multigrid 

We measured a performance of our simulation code on 
the Earth Simulator. A model problem is a thermal con-
vection of an isoviscous fluid with Rayleigh number 
Ra 107 in a three-dimensional rectangular domain of 
aspect ratio 4 × 4 × 1. The computational domain is 
divided into equally-spaced 1024 × 1024 × 256 mesh 
divisions, and decomposed into 2 × 32 × 8 subdomains in 
x-, y- and z-directions, respectively. The calculation is 
parallelized by a so-called “flat MPI” approach, and is 
carried out using 64 processor nodes (i.e. 512 PEs) of the 
Earth Simulator. In order to calculate the temporal evolu-
tion of thermal convection, we solve the energy equation 
(1) together with (2) and (3). We performed one thousand 
temporal integrations, starting from a purely conductive 
state plus small sinusoidal temperature perturbation. At 
each timestep, the equations for v and p are solved by the 
multigrid method summarized in Figure 3, using 

grid levels and . The mesh spacing is 
successively doubled as the grid level decreases, and

 
 

Fig. 4 A summary of the overall performance of the ACuTEMan code. The values are reported by 
MPIPROGINF available on the Earth Simulator. 
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the mesh spacing is 1/2 on the coarsest grid level . 
Figure 4 summarizes the overall performance of our code. 
In this case we achieved 765 Gflops using 512 PEs, and 
18% of peak performance. We also found that our code 
has a moderate vectorization capability, with average 
vector length 194.6 and vector operation ratio 98.6%. 

To demonstrate the impact of our multigrid implemen-
tation in detail, we show in Figure 5 the plots of the exe-
cution time per one smoothing step against grid 
level . The values are separately plotted for and 

(the value for is not shown, because the grid 
level was not visited at all in this calculation). Also 
shown by a thick black line in the figure is a theoretical 
relation of with , estimated solely from the 
changes in problem sizes . By comparing 
the actual relations between and with the theoret-
ical one, we can estimate the influence of communication 
overhead. Indeed, the slope of the plot of against 
is close to that of theoretical relation for where no 
communication takes place during the smoothing steps. 
For , in contrast, the slope significantly deviates 
from the theoretical one as decreases. This implies that 
the influence of communication overhead becomes sever-
er as the amount of arithmetic work decreases. In particu-
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Fig. 5 Plots of execution times of one smoothing calculation 
against the grid level obtained for a calcula-

tion of 1024 × 1024 × 256 mesh system using 512 
processor elements (PEs) together with 8 grid levels and 

　 . Shown in red are the values of the finer grid 
levels where the smoothing calculations are 
carried out in parallel using all available PEs, while 
shown in blue are the values of where the cal-
culations are done using one PE. We also show by a 
thick black line, for comparison, a theoretical relations 
between the execution time and grid level estimated sim-
ply from the changes in problem sizes .

lar, the influence is quite severe for . 
From the comparison of between 

and , we can see the impact of the agglom-
eration technique on the efficiency of smoothing calcula-
tions on coarse grid levels. Let us first estimate a theoreti-
cal difference in between 4 and 3. The 
amount of arithmetic works for 3 is 8 times smaller 
than that for 4 owing to the reduction of problem 
sizes. On the other hand, the number of active PEs for 

3 is 512 times smaller than that for 4. Taken 
together, for 3 is expected to be 64 times 
larger than that for 4. Surprisingly, however, Figure 
5 shows that increases only slightly by changing 
from 4 to 3. This discrepancy mainly comes from the 
difference in the influences of communication overheads 
between 4 and 3. The smoothing steps for 3 are 
free from communications, while those for 4 are sig-
nificantly influenced by the communication overheads 
due to the frequent communications among the active NPE 

(=512) PEs. The decrease in execution time by the 
removal of communication dominates the potential 
increase by idling the majority of PEs. 

In order to see the overall parallelization efficiency in 
our multigrid method, we show in Figure 6 the ratio of 
total execution time of smoothing steps for all grid levels 
to that of the entire smoothing calculations over one thou-
sand temporal integrations. The portion of execution 
times spent in the smoothing steps for is indicat-
ed by shading. Figure 6 clearly shows that the overall par-
allelization efficiency is not severely spoiled by idling the 

grid level 2 grid level 1 

execution time for 
smoothing steps 

over 1000 timesteps 
1923.8 sec 

grid level 3 
381.2 sec 

68.18 sec 0.000 sec 

grid level 8 
835.2 sec 

grid level 7 
251.6 sec 

grid level 4 
172.8 sec 

grid
 le

ve
l 5
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 se

c
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Fig. 6 A graph showing the execution times spent in the 
smoothing steps for different grid levels and their ratios 
to the total execution times. The shaded portion indicates 
the execution times where the smoothing calculations are 
carried out using one processor element (PE) leaving 
other PEs idle. 
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majority of available PEs for . The smoothing 
steps for these grid levels take only about one-fourth of 
the total execution time, even though only one PE is 
responsible for these calculations. This is a direct conse-
quence that these calculations are executed very efficient-
ly owing to the removal of communication (see also 
Figure 5). We thus conclude that the agglomeration tech-
nique is a very effective strategy in enhancing paralleliza-
tion efficiency of the multigrid method. 

3. Discussion and concluding remarks 
In this paper we introduced our numerical simulation 

code named “ACuTEMan” for solving mantle convection 
problems with strongly variable viscosity in a three-
dimensional rectangular box. The essence of our code lies 
in the improvement of the solution method for the flow 
field of mantle convection, which is typically the most 
time-consuming part. In this part we employed a multi-
grid method, which is theoretically optimal for a solution 
method for large-scale elliptic equations, in combination 
with a special optimization for the Earth Simulator. We 
developed a smoothing algorithm named “ACuTE” for 
this problem [11], and demonstrated that this algorithm is 
suitable for vector and parallel computations. By optimiz-
ing the multigrid procedures using the agglomeration 
technique, we successfully obtained sufficient vector and 
parallel efficiency of our code using up to 64 processor 
nodes (i.e. 512 PEs) of the Earth Simulator. We are still 
continuing to develop our code toward a more “realistic 
simulation” of mantle dynamics, by incorporating the 
effects of solid-state phase transitions and the spatial vari-
ations in physical properties of mantle materials [17] (see 

Figure 7), and by applying our algorithm to a convection 
in a three-dimensional spherical geometry [18, 19]. 

The performance measurement described in Section 2.3 
suggest that the agglomeration technique is quite efficient 
in optimizing the multigrid program. In this study the 
agglomeration technique is taken into account by activat-
ing only one processor element (PE) during the calcula-
tions on the grid level while leaving other PEs 
idle. One must note here that an appropriate choice of 

is crucial for the overall performance of parallelized 
multigrid. Suppose a case, for example, where the calcula-
tion presented in Figure 6 were performed with 　 . 
Since the problem size for 4 is eight times larger than 
that for 3, it would take about (381.2 × 8 )  3000 
seconds in the calculations for 4, which would have 
resulted in a significant increase in execution time. 
Unfortunately, however, it is impossible to derive a “gold-
en rule” for the choice of . Since the optimal is 
chosen to minimize the sum of the execution times for 
arithmetic work and those for communication, it depends, 
in principle, on the specific computers as well as on the 
smoothing algorithms. It is therefore necessary to find 

by a trial-and-error manner for specific problems. 
We believe that the solution technique for flow fields 

described here has a great impact on many research fields 
other than mantle convection studies. In the fields of 
earth sciences, efficient solvers of large-scale elliptic 
equations are required in many kinds of applications, 
such as incompressible fluid dynamics, potential prob-
lems, and (quasi-)static viscoelastic analysis. We dedicate 
this paper to Earth Simulator users who are seriously 
annoyed by the solution procedure of large-scale elliptic

Fig. 7 Example of numerical simulations performed by ACuTEMan. A thermal convection in a three-dimension-
al rectangular box of 3000 km height and aspect ratio of 6 × 6 × 1 are calculated with 512 × 512 × 128 
mesh divisions. Temperature- and depth-dependence of viscosity and temperature-dependence of thermal 
diffusivity are included. An endothermic (having negative Clapeyron slope) and exothermic (positive 
slope) phase transitions are imposed at the depth of around 660 km and 2800 km, respectively. Shown in 
the figure are the isosurfaces of the deviation of nondimensional temperature from its horizontal average 

T = −0.05 in a subdomain of 3 × 3 × 1. One temporal integration step takes about 3.4 seconds for the 
calculation with 16 processor nodes (i.e. 128 PEs) of the Earth Simulator. See [17] for more details. 
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equations. Up to now, an excellent computational per-
formance on the Earth Simulator has been reported only 
on the fields where a solution of elliptic equations is not 
involved [20, 21, 22, 23, 24]. We hope that our experi-
ence presented in this paper can help to broaden the hori-
zon of a highly efficient numerical simulation of elliptic 
problems on the Earth Simulator. 
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