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Abstract Simulations of the Rayleigh-Bénard convection with infinite Prandtl number (Pr) and high 
Rayleigh numbers (Ra) in the spherical shell geometry are carried out to understand the thermal structure of 
the mantle and the evolution of the Earth. We focus on the features of the convection with the most basic set-
ting, so the viscosity is assumed to be constant and other complexities of the mantle are not introduced. We 
have succeeded in calculating the thermal convection in the spherical shell with Ra up to 108, and attained the 
numerical results for Ra ranging five orders above the critical value. For all Ra, the convection pattern is 
illustrated as follows; the sheet-shaped downwelling and upwelling flows originate from the boundary layers 
and concentrate gradually into cylindrical flows. We have examined the relationship between Ra and the 
Nusselt number (Nu), and obtained that Nu is proportional to Ra0.30. The exponent is larger than those of the 
existing studies. In addition, we quantify the convection pattern by the power spectrum of the temperature 
field for each depth in terms of spherical harmonic degrees. The analysis reveals that the structural scale of 
convection differs between the boundary region and the isothermal core region. The structure near the bound-
ary region is characterized by the cell type structure constructed by the sheet-shaped downwelling and 
upwelling flows, and that of the core region by the plume type structure which consists of the cylindrical 
flows. 

Keywords: mantle convection, high Rayleigh number, infinite Prandtl number, Nusselt number, spherical 
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1. Introduction 
The physical and chemical phenomena occurring on 

the surface and in the interior of the Earth are mainly con-
trolled by the convective motion in the mantle. Mantle 
convection has many complex aspects, such as internal 
heating, strong temperature dependence of the viscosity, 
the yield strength of the materials, existence of the phase 
transitions, and so on. The Earth’s mantle convection 
should be affected by these complexities, but its basic 
understanding has been constructed through the research-
es on simple Rayleigh-Bénard convection. In the study of 
mantle convection, we need take two ways; one is to 
reconstruct realistic Earth models by including these 
kinds of complexities, and the other is to clarify the 
nature of convection with rather simple settings. When 
we simplify the model of Earth’s mantle convection in 
the Rayleigh-Bénard setting, Rayleigh number (Ra) for 
the present Earth is supposed to be around 107, and it 
would have been much higher for the ancient Earth. In 

the geological time scale, the material of the Earth’s man-
tle behaves as a very viscous fluid, that is, extremely high 
Prandtl number (Pr) fluid. So the inertia plays no role for 
the dynamics of the mantle. Therefore, it is necessary for 
the study on Earth’s mantle dynamics and its evolution to 
clarify the nature of Rayleigh-Bénard convection at high 
Ra (around 107 and more) with very high Pr. 

Convective flow generates and maintains characteristic 
structures in the system. When we focus on the structure 
existing in the Earth’s mantle, spherical shell geometry is 
essential. Spherical shell has the effect of curvature but it 
has no sidewalls, and the area of the bottom is smaller 
than the top depending on the ratio of the inner shell 
radius. For the Earth’s mantle, the top surface has about 
four times larger area than the core-mantle boundary. 
These aspects play important roles for the patterns 
formed by convective motion. Hence, to describe the 
internal structure of the Earth, we need to understand 
what type of convective patterns is dominant for the 
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Rayleigh-Bénard setting in spherical shell geometry. 
On the other hand, thermal convection transports much 

more heat than conduction. The vigor of convection con-
trols the lifetime of planetary bodies, because the interior 
of planets is cooled by the convective process. We can 
define the nondimensional heat flow as Nusselt number 
(Nu), which is the ratio of total heat flow including the 
convective motion to the heat flow with conduction only. 
How much dependence Nu has on Ra is a very important 
problem in Rayleigh-Bénard convection. It is a powerful 
tool when we study the Earth’s thermal history, because 
this relation can allow simple treatment of the evolution 
of the internal temperature of the Earth. This treatment is 
known as ‘parameterized convection’ and it succeeded in 
proposing clear images for the Earth’s history (e.g., [1, 
2]). The relation between Nu and Ra can be written in the 
form of Nu ∝ Raβ, and the exponent β is expected to be 
1/3 for simple rectangular geometry by typical boundary 
theory (e.g., [3]). And numerical studies under infinite Pr 
approximation for 2-D box (e.g., [4]) and for 3-D box [5, 
6] also support this. 

For spherical shell geometry, Bercovici et al. [7] suc-
ceeded in the numerical simulation of thermal convection 
with infinite Pr, whose inner to outer radius ratio is equal 
to Earth’s mantle. Their setting is the most fundamental 
form, that is, the fluid has constant viscosity with 
Boussinesq approximation, the boundary condition is free 
slip and fixed temperature at the top and bottom, and 
without internal heating. They gave tetrahedral or cubic 
initial perturbations and calculated the growth of the pat-
tern. They confirmed that the convection pattern is con-
sistent with the perturbation theory, and the pattern per-
sists up to Ra of 100 times larger than the critical value. 
The calculated pattern is characterized by upwelling 
plumes and downwlling sheets. 

The subsequent studies for higher Ra were performed 
with the same setting and started from the same initial 
perturbations [8, 9, 10]. They observed steady convection 
patterns up to Ra = 105. With the higher Ra, patterns 
show time dependent behavior. By the calculation up to 
Ra = 105 [9] or Ra = 106 [10], they proposed the Nu-Ra 
relationship of Nu ∝ Ra1/4 for spherical shell geometry, 
which is weaker dependence than the typical 1/3 power of 
Ra for box geometry. But their initial perturbations are 
restricted to be tetrahedral or cubic, and the grown-up 
pattern is basically under the influence of the initial per-
turbations. In addition, the Ra they calculated ranges only 
three orders above the critical value, which is insufficient 
to determine the relationship. Therefore, to establish the 
Nu-Ra relationship in the spherical shell, which is appli-
cable to the calculation of Earth’s thermal history, we 
have to perform simulations that is weekly controlled by 

the initial condition, and we need to make progress 
toward much higher Ra. 

Here we report the numerical results of the Rayleigh-
Bénard convection simulations for the simple setting with 
extremely high Pr and spherical shell geometry. The sim-
ulations are performed up to high Ra over the expected 
value of the present Earth. It is necessary to start with 
perturbations of shorter length scales or random perturba-
tions when we discuss the naturally generated patterns for 
each Ra, so we use the very short wavelength perturba-
tions as the initial condition. These simulations have 
become possible by using the Earth Simulator. We could 
divide the calculation volume into enough elements to 
realize much higher resolution than existing studies, and 
we attained Ra up to 108. In this study, we made suffi-
cient time integration for each condition, and we establish 
the Nu-Ra relationship by compiling them. To quantify 
the characteristic length scales of convection patterns in 
spherical shell geometry, we analyze the power spectrum 
of spherical harmonic degree of the temperature field, 
which is widely used in the comparison between the glob-
al mantle structure from seismic tomography and the pat-
terns obtained by numerical simulations. 

2. Numerical Method 
We use TERRA code for simulation of the mantle con-

vection in three-dimensional spherical shell. The details 
of this code are described in [11, 12]. The TERRA code 
has been developed over twenty years and it is widely 
used to calculate the thermal convection in the Earth’s 
mantle. We installed TERRA into the Earth Simulator in 
2002, and since then we have improved and optimized it 
for ES. In TERRA, the equations of continuity, momen-
tum conservation, and energy transfer are solved, and in 
the momentum conservation equation it is assumed that 
Prandtl number is infinite and then the inertia term is neg-
lected. A finite element method is employed in this code. 
The mesh is generated by projection of a regular icosahe-
dron onto a sphere to divide the spherical surface into 20 
spherical triangles, that is 10 spherical diamonds (see 
Fig. 1). Each diamond is discretized into the successive 
grid refinements of the desired resolution. Corresponding 
mesh points of spherical surfaces at different depths are 
connected by radial lines. The radial distribution of the 
different spherical surface is set so that the volumes of 
the cells are nearly equal. This code can take into account 
various complexities of the Earth such as internal heating, 
the temperature and pressure dependence of the viscosity, 
phase changes, non-Bousinessq compressibility, and so 
on. 

Here, we aim at describing the convective pattern and 
the efficiency of the heat transport of the simple 
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Fig. 1 The basic descretization of the sphere surface. The surface is divided into 20 
spherical triangles, that is 10 spherical diamonds. This is an expansion plane of 
a regular icosahedron. 

Rayleigh-Bénard convection model with Bousinessq 
approximation in three dimensional spherical shell at high 
Rayleigh number. Then the viscosity is assumed to be 
constant and the compressibility is neglected, and internal 
heating, phase transitions are not introduced. Therefore 
the parameter is only the basal heating Rayleigh number 
which characterizes convective vigor and is defined as 
Ra = αg (Tb − Tt) (Rt − Rb)3 / κν, where α is the coeffi-
cient of thermal expansion, g is the acceleration of gravi-
ty, κ is thermal diffusivity, ν is kinematic viscosity, Rt 

and Rb are the outer and the inner radii of the shell, 
respectively, and Tb and Tt are the temperature at the bot-
tom and the top of it. These physical properties and the 
temperature at the top and the bottom of the shell are set 
to be constant. For wide range of Ra, we carry out the 
simulations of the thermal convection in spherical shell, 
and aim at calculating the convection at the higher Ra 
than in the existing studies. 

To attain the highest Ra, we must carry out the calcu-
lations by using extremely high resolution. In this study, 
calculations use grid created by the discretization of each 
diamond into up to 512 × 512 small diamonds. The man-
tle (Rt = 6370 km, Rb = 3480 km, and Rt − Rb = 2890 km) 
is divided into up to 256 spherical shells. The largest 
number of grid points is about 1.3 × 109 and then the hor-
izontal resolution is about 15 km on the surface. This res-
olution is the highest one that has ever been realized for 
the calculations of the mantle convection in spherical 

shell. The Earth Simulator is the only super computer that 
can carry out the calculations with such a high resolution. 
We perform these simulations by using 64 nodes and 
about 814 GB memory of the Earth Simulator. 

The initial condition is very important for the simula-
tions of thermal convection in the spherical shell, because 
in the previous studies cubic or tetrahedral initial pertur-
bations are given and the grown-up convective pattern is 
restricted by such initial conditions. To remove the influ-
ence of the initial perturbation on the convective pattern, 
we gave the very short-wavelength perturbations for the 
initial condition and integrated the calculations for suffi-
ciently long time. 

3. Results 
By using the Earth Simulator, we succeeded in calcu-

lating thermal convection in spherical shell with Ra up to 
108. This Rayleigh number is the highest in the existing 
calculations. 

The temperature distributions of the convection with 
Ra = 104, 106, 108 in the thermally balanced state are 
shown in Fig. 2 for three depth. This state means that the 
total heat flow from the top is nearly equal to that through 
the bottom. Fig. 2 shows that the convective cells become 
smaller with increasing Ra. In addition, for the lower Ra, 
the convective cells have almost uniform size, but for the 
higher Ra, the cells become irregular. All of the convec-
tive patterns shown here have the characteristics as fol-
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top 
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bottom 

Ra = 2 × 104 Ra = 2 × 106 Ra = 1 × 108 

Fig. 2 The temperature distributions of the convective shell for Ra = 104, 106, 108. Ra 
increases from left to right. The first row is inside of the top thermal boundary layer, 
the second row is the middle depth, and the third row is inside of the bottom thermal 
boundary layer. 

lows; the sheet-shaped downwelling and upwelling flows 100 

Nu = 0.25 x Ra
0.30are generated around the top and the bottom boundaries 

respectively and they concentrate gradually into cylindri-
cal flows in the convective core region. The convection 
pattern for Ra = 106, 108 shown in Fig. 2 are fluctuating, 
and the time scale of the fluctuation becomes shorter as 
Ra increases. 

We also calculate the efficiency of the convective heat 
transport, namely Nusselt Number, Nu, which is defined 
by the ratio of the heat flux of the convective to the con-
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shell. By compiling the numerical results, we obtain the 
relationship between Ra and Nu. Fig. 3 shows that Nu is 
proportional to Ra0.30. This relationship holds until the 
highest Ra we attained (Ra = 1  × 108) in this study. 

In the following analysis of the patterns, we use the 
temperature fields shown in Fig. 2 at each depth. Fig. 4 
shows the power of the spherical harmonic degree of the 
temperature filed of the convection models adjacent to 
the top and bottom thermal boundary layers, and at the 
middle of the depth. For all cases of Ra = 104, 106, 108, 

Rayleigh number 

Fig. 3 Relationship between Ra and Nu in the spherical shell 
geometry. 

the top and the bottom boundary layers’ temperature 
fields have a same peak degree, which has the maximum 
power, and the temperature field at the middle depth has a 
different peak degree. In addition, the top and the bottom 
field have the peak at lower degree and the middle depth 
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Fig. 4 The power spectrum of the spherical harmonic degree calculated from the tem-
perature filed, at inside of the top thermal boundary layer, middle depth, and 
inside of the bottom thermal boundary layer for Ra = 104, 106, 108. 
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field has at higher degree. The peak degree indicates the boundaries, the convective structure turns into the smaller 
representative spatial scale of the convective patterns, scaled one. As Ra increases, the separation between the 
then near the top and the bottom of the shell, the convec- boundary layers and the middle depth layer increases, and 
tion has a larger structure, and with distance from the the peaks for the middle depth layer become unsharp-
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ened. This indicates that at higher Ra, the convective 
structure changes significantly as it goes away from the 
boundary layers. 

As shown in Fig. 5, with the increase of Ra, the peak 
degree does not only become unsharpened but also shifts 
into the higher degree. The unsharpened peak implies that 
dispersion of the power becomes larger, then the convec-
tive structure becomes nonhomogeneous. And the shift to 
the higher degree indicates the shorter wavelength com-
ponents, that is, smaller horizontal scale structure of con-
vection becomes dominant. These features are clearly 
seen in Fig. 2, where the convective structure becomes 
smaller and more nonhomogeneous as Ra increases. 

The spherical harmonic degree with the maximum 
power at the middle depth is plotted for each Ra in Fig. 6. 
It is approximately proportional to Ra0.30. This exponent 

0.2 

0.15 

is the same as that between Nu and Ra. Because the 
degree with the maximum power indicates the wave-
length of the characteristic structure of convection, it can 
be said that the representative length scale at the middle 
depth of the convective cell is proportional to Ra–0.30. For 
the higher Ra than 107, however, it appears that the factor 
of proportionality, the multiplier of Rayleigh number, 
becomes slightly small. 

4. Discussion and Conclusion 
Rayleigh-Bénard convection in a spherical shell with 

the infinite Prandtl number and the Boussinesq approxi-
mation has two different scale lengths of structures. As 
shown in Fig. 2, there are the sheet-shaped downwelling 
and upwelling flow near the boundaries and they turn into 
cylindrical flows gradually. In the region where the sheet-
shaped flows grow, the cell structure can be seen. On the 
other hand, the cylindrical flows make a plume structure. 
Then the convective pattern has the two structures which 
consist of the cell and the plume one. The cell structure 
has a comparatively large scale, while the plume has a 
smaller scale characterized by a diameter of the plumes. 
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Fig. 5 The power spectrum of the spherical harmonic degree of 
the temperature field at the middle depth of the spherical 
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shell for various Ra. Ra varies from 104 to 108. (see Fig. 4 and Fig. 5). This indicates that the both of cell 
structure and the plume become smaller and more irregu-
lar with increase of Ra. In addition, for the smaller Ra, 

The spherical harmonic analysis of the temperature field 
confirms the existence of these two different scales in the 
convective pattern (see Fig. 4). The top and the bottom 
boundary layers’ temperature fields of the shell have the 
maximum power at lower spherical harmonic degree, 
which corresponds to the longer wavelength of the cell 
structure. On the other hand, the degree with maximum 
power at the middle depth is higher, which implies the 
size of the plumes is smaller than the cell structure. 

As Ra increases, the degrees with maximum power 
become higher and the shape of the peak becomes wider 
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the peak degrees near the boundary layers differ little 
from that of the isothermal core region, whereas the dif-
ference between them becomes larger as Ra increases. 
This is because the cell and the plume existing in low Ra 
convection are large and have the comparable size, while 
Ra increases, the plume becomes much smaller and the 
difference between the spatial scale of the cell structure 
and the plume structure becomes larger. 

Fig. 6 shows that the spherical harmonic degree with 
maximum power analyzed from the temperature field at 
middle depth varies in proportion to Ra0.30. This relation-
ship is the same as that of Nu and Ra shown in Fig. 3 as 
mentioned above. Since the thickness of the boundary 
layers is known to change inversely with Nu, it is presum-Fig. 6 Relationship between Ra and the harmonic degree with 

maximum power of the temperature field at the middle able that the thickness is proportional to the inverse of 

depth of the convection shell. Ra0.30. On the other hand, the plume is generated in the 
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boundary layers and its size is controlled by the thickness 
of the boundaries. Therefore, plume size can be said to 
vary in proportion to Ra–0.30, which is consistent with the 
image that the peak degree represents the plume structure 
at the middle depth, as the degree is inversely proportion-
al to the typical length scale. 

How the efficiency of the heat transport by the convec-
tion in spherical shell depends on Ra is given in Fig. 3. 
As in the 2-D or 3-D models so far investigated, here we 
confirmed Nu in proportion to Raβ, and obtained the 
exponent β to be 0.30. This exponent is 0.05 larger than 
the value in the previous calculations for spherical shell 
[9, 10]. This is because these previous studies are based 
on tetrahedral or cubic initial perturbations and calculated 
the efficiency of the heat transport for the grown-up pat-
tern of the initial condition. In this case the efficiency suf-
fers greatly from the initially given long wavelength pat-
tern. The grown-up patterns we calculated from random 
perturbations have shorter scale than tetrahedral one even 
for Ra = 7  × 105, and it transports much heat than the pre-
vious studies. In addition, their calculation is only up to 
Ra = 106, it is insufficient to determine the relationship 
between Nu and Ra. So we present here that for Rayleigh-
Bénard convection in the spherical shell with the infinite 
Prandtl number and the Boussinesq approximation, the 
Nu is proportional to Ra0.30 up to Ra = 108, for naturally 
grown-up patterns. The exponent 0.3 is similar to the 
results for 2-D and 3-D box geometry. This indicates that 
the efficiency of heat transport does not strongly depend 
on the geometry of the model whether it may be a spheri-
cal shell or a box. Since the efficiency is directly related 
to the thickness of the thermal boundary layer, this 
implies that the thermal boundary layer is maintained by 
the local marginal stability for the layer. It is very impor-
tant when we consider the amount of heat transport and 
the scale of the structures existing in the Earth’s mantle. 
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