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Abstract Direct numerical simulations (DNSs) are performed for the turbulent Ekman boundary layer over a 
smooth surface. The Reynolds numbers Ref are set to be Ref = 400, 510, 600, 775, 1140 and 1393 where Ref is 
based on the geostrophic wind G, the kinematic viscosity ν and Coriolis parameter f. The simulations of Ref = 1140 
and 1393 have been carried out on the Earth Simulator. In the cases of the higher Reynolds numbers, the mean 
velocity profiles show good agreement with the experimental data of Caldwell et al. (1972) and the DNS data of 
Coleman (1999). A low-speed large-scale structure is found in the upper region, whereas the well-known streaky 
structure appears in the vicinity of the wall. This large-scale structure is observed in a motion of a material line. The 
inclination of this structure does not coincide with the direction of the mean flow velocity. The reason is discussed 
based upon the motion of a material line whose initial position is horizontal in a vicinity of the wall. In addition, the 
eddy-viscosity model proposed by Blackadar (1962, 1965) is examined with respect to the obtained DNS data base. 
The improved model gives good agreement with the results by the present DNS. 
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1. Introduction 
Rotation is one of the factors which affect the planetary 

boundary layer (PBL). The boundary layer under the 
effect of the system rotation is called the Ekman bound-
ary layer. The Ekman boundary layer is three-dimension-
al flow in nature, in which three forces are balanced, i.e., 
the pressure gradient, viscous and the Coriolis forces. 

Many numerical simulations of the turbulent PBL have 
been performed with the advancement of the computer. 
One of the major tools in numerical researches on the tur-
bulent PBL is large-eddy simulation (LES) (e.g. Moeng 
[1], Mason [2], Andrén et al. [3] and Lin et al. [4]), in 
which the large-scale motions are directly computed while 
the effect of the unresolved-scale one is approximated by a 
sub-grid scale model. Another major approach is Reynolds 
averaged Navier-Stokes equation (RANS) (e.g. Duynkerke 
[5] and Andrén [6]), in which mean components are only 
calculated. One of the advantages of LES and RANS is 
that flow fields of realistic Reynolds numbers can be cal-
culated. Results from LES and RANS, however, include 
approximation due to the underlying modeling. We adopt 
here the technique of another approach, i.e., direct numeri-
cal simulation (DNS), all of the relevant scale motions are 

resolved. Therefore, DNS gives accurate reliable data. In 
addition, DNS of the turbulent Ekman boundary layer pro-
vide fundamental information on the three-dimensional 
turbulent boundary layer as well as the PBL in order to 
improve turbulence models in LES and RANS. 

Among studies of the Ekman boundary layer, the studies 
using DNS have barely been performed. Coleman et al. [7] 
performed DNSs of the turbulent Ekman boundary layer 
with low Reynolds numbers, and found that no horizontal 
roll vortices appeared under neutral stratification. Coleman 
et al. carried out DNSs on buoyantly stable [8] and unsta-
ble [9, 10] cases, and obtained horizontal roll vortices only 
for a moderate wall heating. Later, Coleman [11] conduct-
ed DNS of the turbulent Ekman boundary layer with a high 
Reynolds number of Ref = 1000 to estimate universal 
constants of the classical similarity theory [12, 13]. Here, 
Ref is defined by 

(1) 

where G is the geostrophic wind velocity, f the Coriolis 
parameter and D the viscous Ekman layer depth 

. Shingai et al. [14] employed a larger com-
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putational domain and found that a large turbulent struc-
ture in the region where the mean velocity reached its 
maximum. Shingai et al. [14] also observed the inertial 
oscillation in the upper region. 

In the present study, we calculated DNSs of the neutrally 
stratified turbulent Ekman boundary layer at the higher 
Reynolds numbers of Ref = 1140 and 1393, which have 
been enabled by use of the Earth Simulator. Our objective is 
to investigate Reynolds number dependence and the three-
dimensional characteristics (such as turbulence structures) 
in the turbulent Ekman boundary layer. The Reynolds num-
ber attainable through DNS is, however, still much smaller 
than those of the actual PBL. The RANS plays an important 
role in the simulation of the PBL. Accordingly, we evaluate 
the eddy-viscosity model proposed by Blackadar [15, 16] to 
improve it based on the present results. 

2. Simulated flow and numerical methods 
A calculated flow field is the turbulent Ekman bound-

ary layer of an incompressible viscous fluid over a 
smooth surface. The system is rotating about a vertical 
axis with an angular velocity Ω = (0, 0, f /2). 

The flow is driven by the combination of the horizontal 
pressure gradient and the Coriolis force. The configura-
tion of the computational domain is given in Figure 1. 
The periodic boundary conditions are imposed in the 
streamwise (x) and spanwise (y) directions. The non-slip 
condition is adopted on the bottom surface, and the 
Neumann condition on the upper boundary. 

The fundamental equations set are as follows: 

(2) 

(3) 

where ρ is the fluid density and p the pressure. 

G 

dp/dy = const. 
Lx 

Lz 

Ly 

z (x3) 

x (x1)y (x2) 

Fig. 1 Configuration of computational domain. 

The fractional step method is used for the coupling 
between the continuity and the Navier-Stokes equations. 
The second-order Crank-Nicolson and the Adams-
Bashforth methods are employed as the time advance 
algorithms; the former for the vertical viscous term and 
the latter for the other terms. The finite-different method 
is applied for the spatial discretization. The fourth-order 
central difference scheme [17] is adopted in the x- and y-
directions, and the second-order central difference 
scheme in the wall-normal (z) direction. 

The non-dimensional parameters are the Reynolds 
number (Re) and the Rossby number (Ro) defined by 

(4) 

where h is the height of the computational domain. Our 
calculations use these non-dimensional numbers as 
parameters, while those of Coleman et al. [7, 8, 9, 10, 11] 
used Reynolds number Ref. 

The summary of the computational conditions is given 
in Table 1. Here, Lx, Ly and Lz (= h) are the widths of the 
computational domain and Nx, Ny and Nz are the number 

Table 1 Computational conditions. 
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of grid points in the x-, y- and z-directions, respectively. 
PresentAll variables with the superscript of + are normalized by 

Ref = 40020ν and uτ , where uτ is the friction velocity. The computa- Ref = 510

+ Q Ref = 600tional domains of Ref = 400, 510, 600, 775, 1140 and 
Ref = 775

1393 are bigger than the DNSs ever performed. The Ref = 1140 

height of the computational domain is set such that it is 
large compared with the boundary layer thickness. The 

+grid spacings ∆x , ∆y 
+ and ∆z 

+ are decided based on the 
DNS of the turbulent Poiseuille flow performed by Abe et 
al. [18]. They reported that the results obtained by using 
the horizontal discretizations of ∆x 

+ = 8.00 and ∆y 
+ = 5.00 

showed good agreement with the experimental data [19] 
and the results from the DNS with the spectral method 
[20]. As for the vertical spacing ∆z 

+, they used the non-
uniform mesh in a range 0.15–8.02. In the present simula-
tion, the horizontal grid spacing is almost of the same size 
as the spanwise spacing of Abe et al. [18], and the mini-
mum value of the vertical spacing is nearly equal to the 
one used by them. Although the maximum value of the 
vertical spacing is about twice as large as the one of the 
Poiseuille flow, this is allowable because of the disap-
pearance of small vortices in the upper region. As for the 
computational time, the averaging time is not enough in 
the case of Ref = 1393. In this paper, therefore, we will 
present the data of only instantaneous flow fields with 
respect to the case of Ref = 1393. 

3. Reynolds number dependence of turbulence 
statistics 

3.1 Mean velocity profile 
The absolute values of mean velocity Q+ as a function 

of the height z+ are given in Figure 2 and compared with 
the experiments of Caldwell et al. [21]. The DNS of tur-
bulent Ekman boundary layer performed by Coleman 
[11] and the one of the turbulent Poiseuille flow by Abe 
et al. [18] are also shown for comparison. The absolute 
velocity Q is defined as 

(5) 

where U and V are the streamwise and spanwise mean 
velocity components, respectively. The Reynolds number 
ReL is defined by ReL , where ΩL is the angu-
lar velocity of the plate rotation in the experiments of 
Caldwell et al. [21]. This Reynolds number is the same 
Reynolds number as Ref by definition. The effect of rota-
tion is only the Coriolis force in the present study, while 
the centrifugal force also takes place in their experiments. 
Even if Ref is the same value of ReL, some differences 
exist between the present study and his experiments. 
Thus, we use ReL in the case of experiment to avoid con-
fusion with our DNSs. 

Experiments
 (Caldwell et al., 1972) DNS10 (Coleman, 1999)ReL = 1264

 ReL = 1234  Ref = 1000 
ReL = 1159 

Poiseuille flow 
Reτ = 640 (Abe et al. 2001) 

0 +10
–1 100 101 102 z 103 

Fig. 2 Mean velocity profiles. 

It is well known that the mean velocity follows the log-
arithmic region in wall turbulence, expressed as 

(6) 

where κ is the von Kármán constant. Figure 2 shows that 
in the cases of Ref = 400, 510 and 600, the logarithmic 
region is not observed due to the low Reynolds numbers. 
In the cases of Ref = 775 and 1140, on the other hand, the 
logarithmic region starts to appear at z+ > 30. Present 
results with Ref = 775 and 1140 agree well with the 
experiments of Caldwell et al. [21] and with the DNS of 
Coleman [11]. 

The von Kármán constant κ can be obtained by 

(7) 

The common value known for non-rotating turbulent 
boundary layers is κ = 0.4 – 0.42. The obtained results 
are shown in Figure 3. In the cases of Ref = 400, 500 and 
600, the von Kármán constant does not exhibit any con-
stant region but increases monotonically. In the higher 
Reynolds number of Ref = 775, κ starts to exhibit con-
stant region. With the increasing Reynolds number, κ
exhibits a local maximum and stays nearly at a constant 
value in a wider region. This trend is very close to the one 
obtained for the turbulent Poiseuille flow shown by a 
gray dotted line. This indicates that, if the mean velocity 
is expressed in the term of Q, the logarithmic nature of 
the mean velocity is very robust in spite of the three-
dimensionality of the velocity field. 

The hodographs of the mean velocities for Ref = 400, 
510, 600, 775 and 1140 are given in Figure 4. The analyt-
ical solution in the laminar Ekman boundary layer is also 
shown. The spiral shrinks as the increase of the Reynolds 
number. This means that the direction of the mean flow 
becomes closer to that of the geostrophic wind. The 
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Fig. 5 Turbulent intensities as the function of z+ (a) and z/δQmax (b).0 +101 102 z 

Fig. 3 von Kármán constants. 
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Fig. 4 Hodographs of mean velocities. 
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Table 2 Mean shear directions at the wall. 

angles φu0 between the shear direction at the bottom wall 
and the geostrophic wind direction are shown in Table 2. 
The analytical solution of the laminar Ekman boundary 
layer gives 45 degrees. However, the angle φu0 in the tur-
bulent Ekman boundary layer decrease to a smaller value 
of 19 – 28 degrees. Caldwell et al. [21] also obtained the 
smaller angles of φu0 = 19 – 28 in his experiments. As for 
the Reynolds number dependence, the angle φu0 decreases 
with the increase of the Reynolds number. This is 
because the momentum transfer to the vertical direction is 
enhanced in the case of the higher Reynolds numbers. 
Therefore the momentum of the geostrophic wind pene-
trates more deeply into the near-wall region for the higher 
Reynolds numbers. 

3.2 Turbulent intensity 
Turbulent intensities are shown in Figure 5. The height 

z is normalized by the wall-unit and δQmax, where δQmax is 
the height at which Q becomes maximal. In the vicinity 

0 +100 101 102 z 103 

Fig. 6 Streamwise turbulent intensity. 

of the wall, the velocity fluctuations of each component 
become larger with increasing the Reynolds number. In 
the upper region, on the other hand, the fluctuations are 
isotropic. Note that in the case of Ref = 1140, the velocity 
fluctuations of each component at z/δQmax > 1.5 is smaller 
than those in the others Reynolds numbers. This is 
because the box size for Ref = 1140 is smaller than the 
other cases. Figure 6 shows the streamwise velocity fluc-
tuation (u’rms) plotted against z+. It becomes larger in the 
logarithmic region (z+~200) with increasing the Reynolds 
number. This trend is same as in turbulent channel and 
pipe flows. Morrison et al. [22] reported that the second 
maximum appeared for high Reynolds numbers. 

3.3 Budget of Reynolds stress 
For the turbulent Ekman boundary layer flows, the 

transport equations are given by 

(8) 

where the terms on the right-hand side are identified as 
follows 

production term: 
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turbulent diffusion term: 0.04 
D33 Π33 

0.02 

L
os

s 
G
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n 

velocity pressure-gradient correlation term: 
0 

-0.02 

molecular diffusion term: T33 ε33 

0 
-0.04 

20 40 60 80 z + 100 
Residual Black: Ref = 400 

Red: Ref = 1140

Coriolis force production term: Fig. 7 Budget of normalized by uτ4/ν. 

0.01 
Poiseuille flow 

Reτ = 640 ( Abe et al., 2001 ) 

L
os

s 
G

ai
n

dissipation term: 

0 

where, ε in the Coriolis force production term is 
Ref = 400

Eddington’s epsilon. The indices (1, 2, 3) are used to 
denote the streamwise (x), spanwise (y) and wall-normal 

Ref = 510
 Ref = 600
 Ref = 775
 Ref = 1140(z) directions, respectively. 

-0.01 +Figure 7 shows the terms in the budget of . The 0 20 40 60 80 100z 
black and the red lines show the terms for Ref = 400 and Fig. 8 Profile of T33 normalized by uτ

4/ν. 
1140, respectively. The Coriolis force production term C33 

in the budget of is equal to zero. The values of Π33, 
D33 and ε33 increase near the wall with the increasing 
Reynolds number. However, the profile of T33 at the low 0.5 

Poiseuille flow 
Reτ = 640 (Abe et al., 2001 ) 

Reynolds number differs from that at the high Reynolds 
number. In the case of the low Reynolds number, T33 loses 
energy near the wall. On the other hand, in the case of the 
high Reynolds number T33 gains energy. Moreover, as the 
Reynolds number increases, the profile of T33 tends to be 
close to that of the turbulent Poiseuille flow (Figure 8). This 
means that the flow field in the vicinity of the wall becomes 
gradually two-dimensional turbulent flow with the increas-
ing Reynolds number. Since the term T33 is expressed as 

, there is also difference in the skewness 
factor of w’, i.e., S(w’). It should be noted that the profile of 
S(w’) at z+ < 5 in the Ekman boundary layer becomes more 
negative with the increasing Reynolds number (see Figure 
9). This tendency does not correspond to that of the turbu-
lent Poiseuille flow. In the fully developed Poiseuille flow, 
S(w’) at the wall is positive (see the dotted light gray line in 
Figure 9). This means the so-called Q2 (ejection) event is 
less frequent but dominant in the u’–w’ coordinate of the 
Poiseuille flow. On the other hand, in the case of the Ekman 
boundary layer, Q4 (sweep) event becomes more and more 
dominant with increasing Ref. This is a new finding and the 
underlying reason is left of further study. 

S(
w

') 

0 
Ref = 400
 Ref = 510
 Ref = 600
 Ref = 775
 Ref = 1140-0.5 

0 20 40 60 80 z+ 100 

Fig. 9 Skewness factor S(w’). 

For the budget of , it is clear that the terms of T22, 
P22, D22 and ε22 are well scaled by the wall-unit (Figure 
10). The profile of P22 at the high 
Reynolds number, however, differ from that at the low 
Reynolds number as shown in Figure 11. The profile of 
P22 has two peaks at each Reynolds number. The first 
peak increases at z+ ~ 10 with the increasing Reynolds 
number. This is because decreases at z+ ~ 10 with 
the increasing Reynolds number and ∂V+/∂z+ varies little. 
On the other hand, the second peak decreases with the 
increasing Reynolds number. The point of the second 
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Fig. 10 Budget of normalized by uτ4/ν. 
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Fig. 11 Profile of P22 normalized by uτ
4/ν as a function of z+. 
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Fig. 12 Profile of P22 normalized by uτ
4/ν as a function of z/δτ. 

peak roughly corresponds to the maximum of and 
it's value decreases at the high Reynolds number (Figure 
13). On the contrary, ∂V+/∂z+ at the high Reynolds num-
ber decreases at that point (Figure 14). The second peak 
at the high Reynolds number consequently decreases. In 
addition, for the second peak of P22 is well scaled by δτ
(Figure 12), where δτ (= uτ /f) is the turbulent depth. This 
indicates that P22 is affected by the outer region. 

Figure 15 shows the budget of . The term of P23 

denotes the same tendency of P22. The 
first peak increases at z+ ~ 15 with the increasing 

Fig. 15 Budget of normalized by uτ4/ν. 

Reynolds number, while the second peak decreases as 
shown in Figure 16. This is because increases at z+ 

~ 10 with the increasing Reynolds numbers while ∂V+/∂z+ 

varies little at that height (Figure 18). In addition, the sec-
ond peak of P23 roughly corresponds to the maximum 
point of the spanwise mean velocity gradient. In the case 
of the low Reynolds number, its gradient is larger. Thus 
the first peak of P23 is larger and the second peak decreas-
es with the increasing Reynolds number. Moreover, the 
second peak of P23 is well scaled by the outer variables 
(Figure 17). This tendency is also seen in P22. 
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Fig. 19 Spanwise wavelength of the maxima of the pre-multi-
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0.02 MES stay at a constant value of λ y/D ~ 15–20. This sug-
gests the existence of the large-scale structures which can 
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0.01 be scaled spanwisely by the viscous Ekman layer depth 

0 
D. In the former study, Shingai et al. [14] suggested the 
spanwise wavelength of MES can be scaled by δQmax. The 

–0.02 

–0.01 
Ref = 400

 Ref = 775
 Ref = 1140 

present study, however, indicates that the scaling by the 
viscous Ekman layer depth gives a better collapse. 

A y–z plane view of an instantaneous flow field at each 
Reynolds number is visualized in Figure 20. The contours 

0 0.2 0.4 0.6 0.8 z/δτ 1 show the strength of the instantaneous streamwise veloci-

Fig. 17 Profile of P23 normalized by uτ
4/ν as a function of z/δτ. ty fluctuations u’+. The red and the blue regions represent 

the high- and low-speed regions, respectively. In the 
near-wall region, the small-scale structures are observed, 
while the scale of structures increases linearly with theRef = 400

1

+
+

 
w

' 
w

' Ref = 775 increasing height. This result is in accordance with that of
Ref = 1140 

Figure 19. These figures also indicate that the structures 
of about 15D–20D scale exist at z/D ~ 6 for each 
Reynolds number. It should be noted that these large-

0.5 

0 
0 100 200 300 z+ 400 

Fig. 18 Profile of . 

4. Turbulence structure 
4.1 Large-scale structure 

Figure 19 shows the spanwise wavelength λ y of the 
maxima of the pre-multiplied energy spectra for each 
Reynolds number. It is well known that the wavelength at 
the peak of the pre-multiplied energy spectrum indicates 
that of the mainly energy-containing scale (MES). In the 
vicinity of the wall, the spanwise wavelength of MES is 
λ y 

+ ~ 100. This corresponds to the streaky structures near 
the wall. In the mid-height region (z/D < 6), the length 
scales increase linearly with the increasing height. In the 
upper region (6 < z/D < 15), however, the wavelengths of 

scale structures incline toward the y-direction. Since 
these structures are not observed in the channel flow, it is 
a particular structure of the Ekman boundary layer. 

To grasp the three-dimensional characteristics of the 
turbulence structures, a bird’s eye view of an instanta-
neous flow field for Ref = 1393 is displayed in Figure 21. 
Figure 22 is an enlarged view of a part of Figure 21 from 
a different view point. The isosurfaces, colored red and 
blue, show the high (u’+ > 3.0)- and low (u’+ < –3.0)-
speed regions, respectively. The green isosurfaces show 
the low-speed regions (u’+ < –1.2) at z/D > 5. The streaky 
structures are observed near the wall and elongated along 
the mean velocity direction. On the other hand, large low-
speed regions exist in the upper region. The large-scale 
structures rise up from the bottom because the low-speed 
fluid is conveyed from the bottom wall. The structures 
are not aligned in the direction of the mean velocity. They 
are elongated approximately in the direction of the 
geostrophic wind (in the x-direction) and are also inclined 
slightly toward the higher pressure side (in the minus y-
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Fig. 20 Contours of instantaneous flow field in the y-z plane for 
Ref = 400, 775 and 1140. 

Fig. 21 Bird’s eye view of instantaneous flow field for Ref = 1393. 
Red: high-speed regions u’+ > 3.0; blue: low-speed regions 
u’+ < –3.0; green: low-speed regions in the upper region 
u’+ < –1.2 at z/D > 5. 

Fig. 22 Enlarged view of a part of Figure 21 from a different 
view point. 

direction). We examine the inclination of these large-
scale structures in more detail in the next section. 

4.2 Material line 
To examine the large-scale structure circumstantially, 

the motions of passive material lines in the turbulent 
Ekman boundary layer are visualized. Batchelor [23], 
Kida et al. [24] and Goto et al. [25] studied material lines 
in turbulent flows. They focused mainly upon the stretch-
ing rates of material lines. 

The material line is represented by a chain which con-
sists of fluid particles. An arbitrary point on the material 
line is advected by the local velocity as 

(9) 

where the suffix p is an index of the particles. The term 
on the right-hand side of equation (9) is calculated by lin-
ear interpolation in terms of the velocity field at the grid 
points. The perfect elastic collision condition is adopted 
on the bottom wall. Although the same condition is 
assumed to the top boundary condition, no particle has 
reached the top boundary. The segments of the material 
line are generally elongated as time elapses. Whenever 
the distance between the adjacent two particles reaches a 
half of the spanwise grid spacing ∆z, a new particle is 
inserted at the center between the two particles. The max-
imal total number of particles is limited due to the com-
putational resource. 

In order to evaluate an effect of the initial distance from 
the wall, the material lines are released at z+ = 17 (z/D = 
0.65) and z+ = 152 (z/D = 5.85) (see Figure 23(a)). The 
length of each material line is the half of the spanwise box 
size. Snapshots of the material lines at four time instants 
for Ref = 400 are drawn in Figure 23. In the vicinity of the 
wall, the material line becomes wavy and is elongated 
toward the lower pressure with time. This corresponds to 

10 J. Earth Sim., Vol. 6, Oct. 2006, 3–15 
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Fig. 23 Motions of material line for Ref = 400. a’–d’ are the top views, while a–d are the side views seen from the left of 
a’–d’. The color indicates the height from the bottom wall blue to red, z+ = 0 to z+ = 182 (z/D = 7). (a, a’) t+ = 0, 
(b, b’) t+ = 54, (c, c’) t+ = 108, (d, d’) t+ = 162. 
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the streaky structure in Figure 21. A strong ejection event 
is observed in the oval A in Figure 23. If we compare 
between the advected spanwise distance for the material 
line raised up to the outer region and the one staying in 
the vicinity of the wall, the distance of the former one is 
smaller than that of the latter. This is because the span-
wise mean velocity V is larger in the vicinity of the wall 
than in the outer region. In fact, the spanwise movement 
of the material line near the wall in the oval A is roughly 
equal to the product of the spanwise mean velocity V and 
the elapsed time t+. Therefore, the inclination of the large-
scale structure as described in the previous sub-section is 
cased by the combination of the strong ejection and the 
three-dimensional mean velocity profile. 

5. Eddy-viscosity model 
Many theoretical approaches to the turbulent Ekman 

problem have employed some empirical specification for 
the eddy-viscosity. Among them, we will examine a mix-
ing length model proposed by Blackadar [15, 16] in com-
parison with the present DNS data. The eddy-viscosity 
coefficient is generally defined by 

(10) 

In the mixing length representation, the eddy-viscosity 
is expressed as 

(11) 

where l is the mixing length defined later and S the mag-
nitude of the wind shear 

(12) 

2 
K

m
 f 

/u
τ
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DNS data
 Blackadar model
 Present model 

The mixing length l in equation (11) is assumed to 
have a form 

(13) 

Here, λ is an empirical parameter which specifies a 
maximum value of l as z approaches infinity. Blackadar 
[15] first used the following empirical relation for λ: 

(14) 

while in his later paper [16] he used the relation 

(15) 

where H is the boundary layer thickness and uτ the fric-
tion velocity. We used equation (15) for λ to compare 
with our DNS data and calculated uτ and H from DNS 
data. Here, H is assumed the height at which the wind 
direction becomes first parallel to the geostrophic wind 
direction. 

For the case of a steady state and horizon-
tally homogeneous state , the 
Navier-Stokes equation (3) with the assumed eddy-viscosity 
model of equation (11) can be expressed as 

(16) 

(17) 

These equations were solved numerically. The bottom 
and top boundary conditions are U = 0, V = 0 and U = G, 
V = 0, respectively. Figure 24 shows the eddy-viscosity 
profiles. The dashed lines show the results by the 

Ref = 600 Ref = 775 Ref = 1140

 Experiment data 
(Caldwell et al. ReL =645)

 Experiment data 
(Caldwell et al. ReL =704) 

Experiment data 
(Caldwell et al. ReL =1159) 

0.2 0.3 0 0.1 0.2 0.3 0.4
z/δτ

Fig. 24 Eddy-viscosity profiles. 
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Blackadar’s model. The solid lines show the viscosity the viscous Ekman depth D. Accordingly, a newly 
profiles derived from mean velocity profiles of our DNS. defined l and λ becomes 
The eddy viscosity derived from our DNS data is calcu-
lated by the formula: (20) 

(18) 

The calculation of Km requires the mean velocity gradi-
ents. The Blackadar’s model does not agree with DNS 
data at all the Reynolds numbers tested. In the vicinity of 
the wall, the results of the Blackadar’s model are larger 
than our results. This is because the effect of viscosity is 
not considered in equation (13). In the rest of the part, the 
eddy-viscosity profiles using Blackadar’s model are 
smaller. The mixing length profiles are shown in Figure 
25 and compared with the experiments of Caldwell et al. 
[21]. The mixing length can be computed by applying the 
following definition: 

(19) 

The mixing lengths by the experiment and the DNS 
agree almost well with each other. A discrepancy increas-
es with the increasing height. This is because the mean 
velocity gradients become smaller at the larger height, 
thus the derivation of l becomes less accurate in the 
experiment. The Blackadar’s model does not agree with 
our DNS data for all the calculated Reynolds numbers in 
spite that the accurate magnitude S of the wind shear is 
used for the model, too. To reduce the discrepancy, we 
will introduce the viscous effect in the near wall region 
and will accommodate an empirical parameter λ relevant 
to the upper region. The van Driest damping function is 
employed to express the viscous effect while in the upper 
region the mixing length is assumed to be proportional to 

(21) 

where A+ and Cλ are model constants. In this paper, these 
model constants are set to be 
and Cλ = 2.0. The results of the present model are shown 
in Figures 24 and 25 by the dotted-and-dashed lines. The 
present model is in better agreement with our DNS data 
than the Blackadar’s one. The mean velocity profiles cal-
culated from the Blackadar’s model and the present one 
are compared in Figures 26 and 27 with the DNS data. 
The present model predicts the mean velocity profiles 
give a much better agreement with the DNS data. Table 3 
shows the angle φu0 and uτ calculated from DNS, 
the Blackadar’s and the present models. The Blackadar 
theory doesn’t predict both φu0 and uτ. On the other 
hand, the present model gives very close values to those 
of the DNS data. 

6. Conclusion 
We have performed direct numerical simulations of the 

turbulent Ekman boundary layer over a smooth surface. 
The Reynolds numbers Ref were 400, 510, 600, 775, 1140 
and 1393 in order to investigate Reynolds number 
dependence. The three-dimensional characteristics in the 
turbulent Ekman boundary layer flow were studied. In 
addition, we evaluated the existing eddy-viscosity model 
[15, 16], and proposed an improved modeling. The 
derived conclusions are as follows: 
1. The logarithmic region appears more clearly in the 

Fig. 25 Mixing length profiles. 
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Fig. 26 Streamwise mean velocity profiles. Fig. 27 Spanwise mean velocity profiles. 

Table 3 Comparisons with eddy-viscosity models. 

higher Reynolds number cases of Ref = 775 and 1140. 
The results of Ref = 775 and 1140 agree well with the 
results of experiment by Caldwell et al.. In the higher 
Reynolds numbers of Ref = 775 and 1140, the von 
Kármán constant κ starts to exhibit a constant region. 
Moreover, with increasing the Reynolds number, κ
exhibits a local maximum and nearly stays nearly at a 
constant value in a wider region. 

2. The Reynolds number dependence of the terms of T33, 
P22 and P23 is significant. The turbulent diffusion T33 at 
the high Reynolds number tends to be close to the pro-
file of the Poiseuille flow in the vicinity of the wall. 
This means that the flow field near the wall becomes 
gradually two-dimensional with the increasing 
Reynolds number. However, the profiles of the skew-
ness factor S(w’) at high Reynolds number differ from 
that of the Poiseuille flow. The profile of S(w’) at z+ < 
5 in the Ekman boundary layer becomes more negative 
with the increasing Reynolds number. This means the 
sweep event becomes more dominant in the Ekman 
boundary layer. 

3. The analysis using the pre-multiplied energy spectra 
and instantaneous flow fields in y–z plane indicates 
that the large-scale structures with a spanwise scale of 
15D–20D exist in the upper region (z/D ~ 6). In addi-
tion, it is found that the low-speed large-scale struc-
tures are not aligned in the direction of the mean veloc-
ity. They are elongated approximately in the direction 

of the geostrophic wind and also slightly toward the 
higher pressure side. The motion of material lines 
reveals the mechanism of the inclination of the large-
scale structures. That is, the inclination of the large-
scale structure is cased by the combination of the 
strong ejection event and the three-dimensional mean 
velocity profile. 

4. The existing model does not show good agreement 
with our DNS data. An improvement is proposed to the 
expression of the mixing length. The mean velocity 
profiles calculated from our improved model well 
agree with our DNS data. 
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