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Abstract Most of the computer codes for the recent simulation studies of geodynamo are based on a spectral 
transform method in which variables are expanded in spherical harmonics. This method, however, is not suit-
able for high-resolution simulations because of a large amount of computation for spectral transform with 
respect to Legendre functions. In this study, we developed a modified code based on the Fourier transform 
method in which the Legendre transform is avoided and the remaining two-dimensional differential equations 
in the meridional plane are solved by finite differences. The details of the implementation technique of the 
Fourier transform method on the Earth Simulator are described. The performance tests of the developed code 
are also reported. 
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1. Introduction 
In order to elucidate the generation process of the geo-

magnetic field inside the liquid outer core, computer sim-
ulations of convection-driven spherical magnetohydrody-
namic dynamos have been commonly carried out since 
Kageyama et al. [1] and Glatzmaier and Roberts [2] in 
1995 (see Kono and Roberts [3] for review). In these sim-
ulations, however, the model parameters are considerably 
different from the realistic values of the Earth’s core 
because of computational difficulty. In particular, the 
Ekman number, E, which represents the ratio between 
viscous and Coriolis forces, was 10–5 or greater in most 
of the previous studies, although it is considered to be 
10–9 ~ 10–15 in the core. Growing computer performance 
has made it possible to access Earth-like parameters to 
some extent. Takahashi et al. [4] recently reported one of 
the highest-resolution simulations using the Earth 
Simulator to achieve E ~ 10–6, which is still several 
orders of magnitude greater than the realistic value. In 
order to investigate the dynamo in the extreme condition 
compatible to the Earth’s core, more efficient numerical 
methods are required. 

In the previous geodynamo simulations, the most wide-
ly used method is the spectral transform method, in which 

the variables are expanded by spherical harmonics [5]. 
This method (hereafter we call ”spherical harmonic trans-
form method” or ”SHTM”) is beneficial because it 
enables accurate computation of the spatial derivatives 
and simple and exact treatment of the magnetic boundary 
condition between insulating and conducting media. It 
does not have problems pertaining to the poles of the 
spherical coordinates. However, the spectral expansion 
by the Legendre functions causes huge number of calcu-
lations when the number of the terms increases, since 
there is no practical algorithm of a Legendre transform as 
fast as a Fourier transform. Recent requirements for high-
er-resolution calculations make it difficult to continue the 
SHTM. 

Some research groups have applied local methods such 
as finite difference (e.g., [1]) and finite element methods 
(e.g., [6]) to geodynamo simulations. In particular, 
Kageyama and Sato [7] recently developed a spherical 
grid system that prevents the problems pertaining to the 
poles, and achieved a high calculation speed on the Earth 
Simulator by using a finite difference method. In general, 
the local methods require fewer calculations than the 
spectral method and are also well suited for parallel com-
putation. However, the local methods have drawbacks in 
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respect of accuracy and treatment of the magnetic bound-
ary condition. The latter problem could be avoided by 
meshing the exterior of the core and solving the Laplace 
equation for a magnetic potential field, although superflu-
ous calculations are inevitable for that. 

Oishi et al. [8] introduced the Fourier transform 
method (FTM) as another possible replacement for the 
SHTM. The FTM is basically the same as the SHTM, but 
only the Fourier transform in longitude is performed. The 
remaining two-dimensional differential equations are 
solved by a finite difference method. This method can 
treat the magnetic boundary condition as easily as in the 
SHTM and the amount of computation is less than the 
SHTM. Comparison to the SHTM has been also made by 
Oishi et al. [8] in respect of computational accuracy. In 
this paper, we focus on some technical issues particularly 
regarding parallel execution on the Earth Simulator. We 
describe the simulation model in section 2, and then we 
present the details of the FTM with special attention to its 
parallelization and vectorization in section 3. Finally, in 
section 4, we analyze the parallel computation perform-
ance on the Earth Simulator. 

2. Model 
We consider a spherical shell filled with an electrically 

conductive Boussinesq fluid and spun around the z-axis 
with an angular velocity Ω. The ratio between the inner 
radius ri and the outer radius ro is set to 0.35. The regions 
inside and outside the fluid shell are electrically insulat-
ing. The inner and outer boundaries are isothermal with a 
temperature difference ∆T. Rigid boundary conditions are 
imposed and both boundaries are co-rotating. The gravity 
changes linearly with radius. Spherical polar coordinates 
(r, θ, φ ) rotating with an angular velocity Ωez are used, 
where ez is the unit vector parallel to the z-axis. 

The nondimensional governing equations are 

where 

(1) 

(2) 

(3) 

(4) 

where u, B, ω = ∇ × u, and J = ∇ × B are velocity, mag-
netic field, vorticity, and electric current density, respec-
tively. T and p are deviations from the equilibrium state 
of temperature and pressure. Length is scaled by D, time 

by D2/ν, magnetic field by (ρµ0ηΩ)1/2, temperature devi-
ation by ∆T, and pressure deviation by ρνΩ, where D 
denotes the thickness of shell, µ0 the magnetic permeabil-
ity, η magnetic diffusivity, ν kinematic viscosity and ρ
density. The resulting four non-dimensional parameters 
are the modified Rayleigh number Ra, the Ekman number 
E, the magnetic Prandtl number Pm, and the Prandtl num-
ber Pr, which are defined by 

where α, go, and κ are the thermal expansion coefficient, 
acceleration due to gravity at the outer radius, and ther-
mal diffusivity, respectively. 

3. Method and implementation 
3.1 Toroidal-poloidal decomposition 

As is usually adopted in the SHTM, the magnetic 
and velocity fields are split into toroidal and poloidal 
components, 

(5) 

(6) 

where U and G are the defining scalars of the poloidal 
components and V and H are those of the toroidal ones. 
By applying r · and r · ∇ × to the curl of the equation of 
motion (1) and to the induction equation (2), we obtain 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

and W and F are non-linear terms defined as 

(13) 
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(14) 

3.2 Fourier transform 
In the SHTM, the scalar variables U, G, V, H, and T are 
expanded in spherical harmonics. For example, 

(16) 

where Pl
m is the associated Legendre function of degree l 

and order m, and L denotes the cutoff wavenumber in the 
spectral expansion. In the FTM, on the other hand, we 
apply only the Fourier expansions 

(17) 

The resulting spectral equations are 

(18) 

(19) 

(20) 

(21) 

(22) 

where 

(23) 

(24) 

and 

(25) 
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Fig. 1 Grid system in spectral space. Since Fourier coefficients 
are imaginary numbers, we solve a differntial equation 
on 2(L + 1) meridional planes. 

The time integration is performed in spectral space with 
the third-order Runge-Kutta scheme. All the operations in 
spectral space do not couple different components of the 
Fourier expansion. This independence is utilized for the 
vectorization in spectral space in our model. 

3.3 Non-linear terms 
Non-linear terms are calculated in real space by the fol-

˜lowing processes: (a) Um is obtained by solving the two-
dimensional Poisson equation (23) via the multigrid 
method; (b) Um, Vm, Gm, and Hm are obtained by solving 
the onedimensional Poisson equations (24) via the cyclic 
reduction algorithm; (c) u, B, and T are obtained in real 
space by calculating 

(27) 

(28) 

(29) 

(30) 

(26) (31) 

The differential equations in the remaining two-dimen-
sional space (rθ-plane) are solved by second-order central 
differences with equally spaced grid spanning (Fig. 1). 

(32) 
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Fig. 2 Flowchart of the Fourier transform method. 

by the finite differences and backward discrete Fourier 
transforms; (d) F and W are calculated by (14); and (e) the 
nonlinear terms (Fourier integrals) are obtained by using 
the forward discrete Fourier transforms and finite differ-
ences. Discrete Fourier transforms are performed by the 
Fast Fourier transform (FFT). Note that the number of grid 
points in longitude Nφ in the real space is set to 3(L + 1) in 
order to eliminate aliasing errors. All the processes in this 
method are summarized in Fig. 2. After calculating the 
non-linear terms, the linear terms are calculated by using 
the finite differences and the next time-step is computed. 

3.4 Pole problems 
As we use spherical coordinates, some numerical prob-

lems arise in treating the poles. Singularity at the pole can 
be easily avoided by the L’Hospidal’s rule (e.g., [1]). The 
Courant-Friedrichs-Levy (CFL) condition is more serious 
problem in time integration because many grid points gath-
er at the pole. To circumvent this difficulty, we employ the 
cutoff wavenumber L' at each colatitude θ as 

(33) 

(34) 

(35) 

where C > 1 is a constant to make the resolution near the 
pole comparable to that of lower latitudes and [x] represents 
the minimum integer not smaller than x. Fig. 3 illustrates 
the azimuthal grid width corresponding to the Fourier 
expansion truncated at L' as a function of the colatitude. We 
used C = 3 in numerical simulations described in Section 4. 

Fig. 3 The grid interval in the azimuthal direction corresponding 
to Fourier expansion truncated up to L' is plotted as a func-
tion of the colatitude (see Equations (33)–(35)). When L' 
does not depend on θ, the grid interval is expressed as 
2π sin θ /L, as shown by a dash-dotted line. When L' 
changes in proportion to sin θ, the interval does not depend 
on θ (a dashed line). Here, L = 64 and C = 3 are assumed. 

3.5 Magnetic boundary condition 
The boundary conditions of the poloidal magnetic field 

between the conducting fluid shell and the insulators out-
side can be expressed in terms of the spherical harmonics 
component of the defining scalar Gl

m as 

i 
(36) 

The relation between Gm and Gl
m is 

(37) 

where θj is the latitude at a grid point. From the orthogo-
nality of the Legendre functions we have 

(38) 

where Nθ is the number of grid points in the θ-direction. 
On differentiating (37) by r and substituting (36) and (38) 
into (37), we obtain 

(39) 

where [Ajk] is the coefficient matrix, whose boundary val-
ues at r = ro and ri are estimated by 

(40) 
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These coefficient matrices can be prepared before time 
integration. Then from (39) we obtain the magnetic field 
at the boundaries that satisfies the boundary conditions. 
Since evaluation of (39) is required only at the boundaries, 
the additional amount of computation is not so significant. 

3.6 Parallelization 
Parallelization is performed by the two-dimensional 

domain decomposition on the rθ-plane to avoid global 
communication between distributed memories, which is 
required when the parallelization in the azimuthal 
wavenumber is employed. All the data transfer is handled 
by MPI (flat-MPI). Vectorization is applied to the do-loop 
with respect to the azimuthal wavenumber in spectral 
space to ensure the vector length of 2L, where the factor of 
2 arises from the real and imaginary parts of the complex 
coefficients of the Fourier expansion. 

The data transfer is needed to manipulate the finite dif-
ferences and to solve the one- and two-dimensional 
Poisson equations. Since we employ the secondorder cen-
tral differences, it is enough to transfer the data adjacent to 
the domain boundary. To solve the one-dimensional 
Poisson equations, we employ a parallelized cyclic reduc-
tion algorithm [9]. In this algorithm, communications are 
required only when reduced tridiagonal systems, whose 
dimension is in proportion to Npθ , are solved, where Npθ

is the number of processors in the θ-direction. The number 
of synchronizations required in these communications is 
proportional to log Npθ . 

The two-dimensional Poisson equations are solved by 
the V-cycle multigrid method (Fig. 4) based on the red-
black Gauss-Seidel relaxation, full weighting restriction, 
and bilinear interpolation. The communications can be per-
formed in a similar way to those in the finite differences 
when the grid is not so coarse. Suppose that the meridional 
plane is approximated by the grid of Npr × Npθ , where Npr 

is the number of processors in the r-direction, and that 
each processor contains only one data. Since the grid at 
this stage is, in most cases, too fine to be treated by one 
processor, the data distributed to adjacent four processors 
are gathered in one of the four processors to form 2 × 2 
grid. Then the new linear system is solved in parallel 
between the Npr × Npθ /4 processors. This gathering proce-
dure is repeated until the grid becomes coarse enough to be 
treated by one processor. 

In the gathering procedure, we perform bidirectional 
data transfers in order that the adjacent four processors 
have the same 2 × 2 data, by which no data transfers are 
needed in the (coarse-to-fine) prolongation procedures 
until the system returns to the Npr × Npθ grid. If a three-
dimensional Poisson equation is solved in parallel or the 
number of the processors is not so large, it may be effec-

Fig. 4 Structure of the V-cycle to solve a two-dimensional 
Poisson equation. Here, we suppose that the size of the 
problem is (Nr , Nθ) = (64, 64) and 16 processors are used 
in parallel. The shaded spheres denote Gauss-Seidel 
smoothing. The downward- and upward-sloping single 
lines between the spheres denote restrictions and prolon-
gations, respectively. The double lines indicate restric-
tions with the data gathering procedures. The total grid 
size (Nr, Nθ) and the grid size of a subdomain assigned to 
one processor (Mr, Mθ) are given in the right-hand side. 

tive to gather all the data at one processor once the system 
becomes sufficiently coarse. In the Earth Simulator, this 
approach is adopted by Kameyama [10] in his mantle sim-
ulation code. 

4. Numerical tests 
Oishi et al. [8] performed verification tests of the FTM 

by comparing with the SHTM and ensured that the FTM 
can simulate self-exciting dynamos in accordance with 
the SHTM. Here, we show an example of solution 
obtained by the FTM in Fig. 5, which is the well-known 
dynamo benchmark problem [11]. Dipole dominant mag-
netic fields with four sets of magnetic flux concentrations 
at mid-latitude and four sets of columnar convective cells 
are observed. The characteristics of the solution are 
consistent with the solution provided by the SHTM in 
Christensen et al. [11]. 

The parallel computation performance of the FTM is 
investigated on the Earth simulator. The resolution exam-
ined is (Nr, Nθ, L) = (256, 512, 256). The number of 
multigrid cycles is restricted to 2 here, though it depends 
on convergence character of the problem to be solved. 
The results are listed in Table 1. When 256 processors are 
used, the calculation speed reaches 634 GFLOPS, which 
is 31% of the peak performance. The vector operation 
ratio is 99.24%. The most time-consuming part is the 
FFT in this case. However, when a large number of 
multigrid cycles are required, the multigrid method could 
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Fig. 5 Numerical solution of dynamo benchmark problem (Case 1). Left is Br at the outer boundary 
with a contour interval 0.25, and right is ur at mid-depth with a contour interval 2. Positive 
and zero contours are denoted by solid lines and negative contours by dashed lines. 

Fig. 6 Speedup of each subroutine. FFT: the operations for FFT; 

become the dominant part. 
The speedups (measured on the basis of calculation time 

on 16 processors, T16, and defined by 16T16 /Tp, where Tp 

denotes the computation time on the examined number of 
processors) of total and each computation process are 
shown in Fig. 6. The FFT is effectively parallelized, 
because it does not include any communication and the 
MFLOPS value is not so much affected by the number of 
processors as shown in Table 1. The multigrid method, on 
the other hand, shows relatively poor efficiency because 
communications between processors are iteratively 
required. To make matters worse, the averaged problem 

64 128 192 256 
size solved on one processor is smaller than other opera-

# of processors tions, because coarser grid systems must be solved in the 
multigrid algorithm. These shortcomings concerned with 
the communications in the multigrid method can be avoid-FD: the operations for finite differences and non-linear 

terms; Multigrid: the operations for the multigrid method; ed by employing parallelization about the azimuthal 
CR: the operations for the cyclic reduction. wavenumber m. However, in that case, global all-to-all 

Table. 1 Parallel performances in solving 100 time-steps. Np: number of processors; COMM.TIME: communication time; 
MFLOPS: Million Floating-point Operations Per Second; V.OP RATIO: vector operation ratio. Total: total of all the 
operations; FFT: the operations for the FFT; FD & nonlinear: the operations for finite differences and the non-linear 
terms; Multigrid: the operations for the multigrid method; CR: the operation for the cyclic reduction. 

64 

128 

192 

256 

Sp
ee

du
p 

Ideal speedup 

FFT 

Total 

CR 

FD 

Multigrid 

Np 

EXCLUSIVE TIME [sec] COMM. TIME [sec] 

Total FFT FD & nonlinear Multigrid CR Total FFT FD & nonlinear Multigrid CR 

16 

32 

64 

128 

256 

452.4 

239.5 

130.2 

79.1 

48.4 

244.8 

124.6 

64.5 

34.7 

18.2 

100.0 77.9 

53.7 44.3 

32.2 24.8 

20.6 17.8 

13.6 13.4 

29.7 

16.9 

8.7 

6.0 

3.2 

18.6 

17.3 

13.1 

14.9 

12.8 

0.0 

0.0 

0.0 

0.0 

0.0 

8.7 

8.3 

6.6 

6.6 

4.8 

9.1 

7.7 

5.7 

7.0 

7.3 

0.9 

1.3 

0.8 

1.3 

0.7 

MFLOPS V.OP RATIO 

Np Total FFT FD & nonlinear Multigrid CR Total FFT FD & nonlinear Multigrid CR 

16 

32 

64 

128 

256 

3753.3 

3586.0 

3383.3 

2878.3 

2476.3 

4474.8 

4462.3 

4375.7 

4195.9 

4114.3 

3908.3 1925.5 

3587.2 1729.1 

3188.6 1553.2 

2527.6 1133.7 

2160.9 772.7 

2079.6 

1988.3 

1957.5 

1661.9 

1623.2 

99.54 

99.52 

99.48 

99.38 

99.24 

99.63 

99.63 

99.62 

99.59 

99.54 

99.56 

99.51 

99.46 

99.35 

99.22 

99.10 

99.01 

98.90 

98.63 

98.21 

99.49 

99.46 

99.43 

99.32 

99.24 
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communications is required to calculate non-linear terms, 
and the amount of communications will increase. 

5. Summary 
We reported an implementation technique of the Fourier 

transform method on the Earth simulator. This method 
avoids the time-consuming Legendre transform and per-
forms only the Fourier transform. The developed code suc-
cessfully simulated the self-exciting dynamo. A certain 
level of numerical performance was achieved. Further 
improvement of the performance seems to depend on how 
the Poisson equation is effectively solved. Parallelization 
in the azimuthal wavenumber might be a remedy for ineffi-
ciency of the parallelized multigrid algorithm, although all-
to-all global data transfer also costs much time in most of 
highly parallel computers. 
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