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Abstract Eruption clouds in explosive volcanic eruptions are a kind of free boundary shear flow with very 
high Reynolds numbers (Re > 108), and their dynamics are governed by the entrainment of ambient air into 
eruption clouds by turbulent mixing and the density change of eruption clouds accompanied by turbulent mix-
ing. We developed a numerical pseudo-gas model which correctly simulates turbulent mixing in and around 
eruption clouds by employing three-dimensional coordinates, a high-order accuracy scheme, and a fine grid 
size. Our model has successfully reproduced the quantitative features of turbulent mixing at high Reynolds 
numbers observed in laboratory experiments as well as fundamental features of the dynamics of eruption 
clouds, such as the generation of eruption columns and/or pyroclastic flows. 
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1. Introduction 
During explosive volcanic eruptions, a mixture of hot 

ash (pyroclasts) and volcanic gas is released from the vol-
canic vent into the atmosphere. Such events are character-
ized by the formation of eruption columns and/or pyro-
clastic flows. Generally, the ejecta (i.e., pyroclasts and 
volcanic gas) have an initial density of several times as 
large as the atmospheric density since it contains more 
than 90 wt% pyroclasts at the vent [1]. As the ejecta are 
mixed with ambient air, the density of the mixture drasti-
cally decreases and becomes less than the atmospheric 
density, because the entrained air expands by heating 
from the hot pyroclasts. When the ejecta entrain sufficient 
air to become buoyant, a large Plinian eruption column 
rises up to a height of several tens of kilometers as a tur-
bulent plume. On the other hand, if the ejecta do not 
entrain sufficient air and their vertical velocity fall to zero 
before the eruption cloud becomes buoyant, a column 
collapse occurs and the heavy and hot cloud spreads radi-
ally as a pyroclastic flow. Thus dynamics of eruption 
clouds is governed by (1) the density change of the mix-
ture of the ejecta and air, and (2) the turbulent mixing in 
and around the eruption clouds. 

Previously, the dynamics of eruption cloud has been 
studied on the basis of steady one-dimensional (1-D) 
models [e.g., 2]. These models explain the fundamental 

features of eruption column (e.g., column height) and the 
condition for pyroclastic flow to generate; however, the 
phenomena which can be explained by these models are 
restricted to those of steady eruptions without any two-
dimensional (2-D) or three-dimensional (3-D) effects 
(e.g., lateral spread of cloud and drift by wind). In order to 
explain time-dependent fluid dynamical features of explo-
sive volcanism, several 2-D numerical models for erup-
tion clouds have been developed over the past 20 years [3, 
4]. These 2-D models reproduced the density change 
accompanied by turbulent mixing and explained the 
unsteady and multiphase features of eruption clouds. 
However, the features of turbulent mixing reproduced by 
these models were not quantitatively consistent with those 
observed in the laboratory experiments because of the low 
spatial resolution in their numerical simulations [5]. 

The aim of this paper is to develop a 3-D numerical 
model, which correctly reproduces both of the density 
change of the mixture of ejecta and air, and the quantita-
tive features of turbulent mixing in and around eruption 
clouds. On the basis of the new model, the flow patterns 
near the vent are numerically simulated and some geolog-
ical implications of the simulations are discussed. 

2. Model Description 
The numerical model of eruption cloud is based on the 
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model of Suzuki et al. [5]. The model is designed to 
describe the injection of a mixture of pyroclasts and vol-
canic gas from a circular vent above a flat surface of the 
earth in a stationary atmosphere. In this paper, because we 
are particularly concerned with turbulent mixing of erup-
tion clouds, we adopt a pseudo-gas model; we ignore the 
separation of pyroclasts from the eruption cloud, and the 
momentum and heat exchanges between the pyroclasts and 
gas are assumed to be so rapid that the velocity and tem-
perature are the same for all the phases. These assumptions 
are valid when the size of pyroclasts is sufficiently small 
(< 4 mm) [6]. Sparks and Wilson [1] suggested that over 
90% of the pyroclasts are less than 5 mm in diameter and 
over 60% are submillimeter in diameter for typical Plinian 
or phreatomagmatic eruptions. Pseudo-gas models are jus-
tified for such types of explosive eruptions. 

The fluid dynamics model solves a set of partial differ-
ential equations describing the conservation of mass, 
momentum, and energy, and a set of constitutive equa-
tions describing the thermodynamic state of the mixture 
of pyroclasts, volcanic gas, and air. These equations are 
solved numerically by a general scheme for compressible 
flow with high spatial resolution. All the constants used 
in this study are listed in Table 1. 

2.1 Governing Equations 
The dynamics of eruption clouds is based on the 

Navier-Stokes equations of a compressible gas. Since the 
molecular viscosity is negligibly small compared to the 
eddy viscosity due to turbulence, we assume that the 
molecular viscosity is zero and that the equations are 
reduced to the Euler equation. The mass conservation for 
all the components (pyroclasts, volcanic gas, and air) is 

(1) 

where ρ is the density of the mixture, u is the velocity 
vector, and t is the time. The mass conservation equation 
for the ejecta from the vent is independently given as 

(2) 

where ξ is the mass fraction of the ejecta. 
The conservation equations for momentum and energy 

are 

(3) 

(4) 

where p is the pressure, I is the unit matrix, g is the gravi-
tational body force per unit mass, and E is the total ener-
gy per unit mass, that is, the internal energy (e) plus 
kinetic energy (K): E = e + K. 

2.2 Constitutive Equation 
On the assumption that the differences of velocity and 

temperature between pyroclasts and gas are zero, the 
equation of state for the mixture of the ejecta and air is 

(5) 

where σ is the density of the pyroclasts, Rg and Ra are the 
gas constants of volcanic gas and air, respectively, and 
T is the temperature. The mass fractions of pyroclasts 
(ns), volcanic gas (ng), and air (na) satisfy the condition of 
ns + ng + na = 1. The mass fraction of the ejecta in the 
eruption cloud is given by ξ = ns + ng. The initial mass 
fraction of volcanic gas (i.e., volatile content in the 
magma) is given by ng0 = ng/(ns + ng) using these nota-

Table 1 List of Material Properties and Values of Physical Parameters. 
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tions. The subscripts s, g and a refer to pyroclasts, vol-
canic gas and air, respectively. 

The change of internal energy is proportional to the 
change of temperature: 

(6) 

where Cvm is the average specific heat at constant vol-
ume, which is defined using the specific heats of pyro-
clasts (Cvs), volcanic gas (Cvg), and air (Cva) as 

(7) 

The subscript m in Cvm refers to the mixture of the 
ejecta (i.e., pyroclasts and volcanic gas) and entrained air. 
When the specific heats of each component (Cvs, Cvg, and 
Cva) are constant, we can define the internal energy of the 
mixture, e, in the equation of energy conservation (Eq.4) 
such that 

(8) 

without loss of generality. 

2.3 Boundary Conditions 
The physical domain involves a horizontal and vertical 

extent of more than several tens of kilometers. We carried 
out the simulations in 2-D and 3-D coordinates for com-
parison. In the 2-D model, the vent is located in the lower 
left-hand corner of the computational domain, in which 
the pressure, exit velocity, mass fraction of volcanic gas, 
temperature, and density are fixed and constant. The axis 
of the flow is modeled as a free-slip reflector in order to 
preserve the symmetry of the system in the 2-D model. In 
the 3-D model, in contrast, the vent is located in the cen-
ter of the ground surface, and no boundary condition 
along the central axis of the flow is required. At the 
ground boundary, the free-slip condition is assumed for 
the velocity of the ejected material and air. At the upper 
and other edges of computational domain, the fluxes of 
mass, momentum, and energy are assumed to be continu-
ous, and these boundary conditions correspond to free 
outflow and inflow of these quantities. 

We assume that the pressure at the vent (p0) is equal to 
the atmospheric pressure at z = 0 km (pa0), and that the 
exit velocity (u0) is larger than the sound velocity of the 
ejecta. When the initial mass fraction of volcanic gas 
(ng0), magmatic temperature (T0), and p0 are given, the 
density of the ejecta (ρ0) is calculated from the equation 
of state (Eq.5). When the vent radius (L0) and u0 are spec-
ified as parameters, the mass discharge rate is calculated 
from the relationship as 

(9) 

2.4 Numerical Procedure 
The partial differential equations (Eqs.1, 2, 3, and 4) 

are solved numerically for ρ, ρu, ρE, and ρξ by the Roe 
scheme [7] in space, which is a general total variation 
diminishing (TVD) scheme for compressible flow and 
can simulate a generation of shock waves inside and 
around the high-speed jet correctly. The MUSCL method 
[8] is applied to interpolate the fluxes between grid 
points, and therefore our numerical model achieves third-
order accuracy in space. These equations are solved using 
the time splitting method. We treat the gravitation term of 
the equations of momentum and energy conservation 
(Eqs.3 and 4), and the additional terms due to the curva-
ture of axisymmetric 2-D coordinates as source terms. 
The density, velocity, total energy, and the mass fraction 
of the ejecta are solved fully explicitly. The present 
numerical code is based on the astronomical work of 
Hachisu et al. [9], who reproduced most of the observa-
tional indications of mixing in SuperNova 1987A. 

3. Density Change of Ejecta and Air Mixture 
The density of the mixture of the ejecta and air at con-

stant pressure as a function of the mass fraction of the 
ejecta can be analytically derived. When the ejecta with a 
high temperature, T0, and air with a low temperature, Ta, 
are mixed and reach thermal equilibrium at a constant 
pressure, p, the equilibrium temperature for the mixture, 
Tm, has the form 

(10) 

where Cp0 and Cpa are the specific heat of the ejecta and 
air at constant pressure, respectively. At the same time, 
this new mixture satisfies the equation of state as 

(11) 

where A is the volume fraction of the solid in the eruption 
cloud: A=ρξns0 /σ (<< 1). Combining Eqs.10 and 11 and 
using the equation of state for air (p=ρaRaTa), the mixture 
density relative to air is obtained as 

(12) 

Fig. 1 illustrates the density change of the mixture on 
the basis of Eq.12. The ejecta have an initial density of 
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Fig. 1 Variation of the mixture density of the ejecta plus ambi-
ent air as a function of the mass fraction of the ejecta 
in the mixture. The density is normalized by the atmos-
pheric density. Curves are shown for an initial mass frac-
tion of volcanic gas of 0.06 with an initial temperature of 
400 K (red curve), 700 K (green curve), and 1000 K 
(black curve). The temperature of atmospheric air is set 
to be 303 K. 

several times as large as the atmospheric density. As 
the ejected material is mixed with ambient air and the 
mass fraction of the ejecta decreases, the density of the 
mixture drastically decreases and becomes less than 
the atmospheric density. The density of the mixture is 
also a function of magmatic temperature. As the mag-
matic temperature decreases, the critical mass fraction at 
which the density of the mixture is equal to that of air 
decreases. In the case that the magmatic temperature is 
less than 400 K, the mixture is always heavier than air. 
Such situations may be relevant to phreatomagmatic 
eruptions [e.g., 10]. It must be noted that the density of 
the mixture is also a function of the initial mass fraction 
of volcanic gas, ng0. 

We reproduce the nonlinear features of the density 
change of the mixture of the eruption cloud and air in 
Fig. 1 by changing the effective gas constant of the mix-
ture in the equation of state for ideal gases. The first term 
of the right-hand side of Eq.5 represents the volume of 
the solid phase in a unit mass of the mixture, and the sec-
ond term represents the volume of the gas phase. The first 
term is negligible relative to the second term when the 
pressure is close to atmospheric pressure (105 Pa), 
because the density of the pyroclasts is 103 times as large 
as that of the gas phase. Therefore Eq.5 can be approxi-
mated by the equation of state for an ideal gas as 

(13) 

where Rm is the average gas constant. Since the ratio of 
specific heat at constant volume and constant pressure of 

Fig. 2 The mixture density of the ejecta plus ambient air as a 
function of the mass fraction of the ejecta in the mixture. 
Red plots are the mixture density on all the grids in the 
3-D simulation. Black curve is the mixture density on the 
basis of Eq.12. The density is normalized by the atmos-
pheric density. The initial temperature and the initial 
mass fraction of volcanic gas in the ejecta at the vent are 
assumed to be T0 = 1053 K and ng0 = 0.06, respectively. 
The temperature of atmospheric air is set to be 303 K. 

the mixture can be defined as 

(14) 

we can calculate the pressure at the position with an arbi-
trary mixing ratio using Eqs.8, 13, and 14 as 

(15) 

On the above assumption of the equation of state (i.e., 
Eq.13), we derive analytically the eigenvalues and eigen-
vectors for the governing equations of two fluids (i.e., the 
ejecta and air) [11], and apply the Roe scheme to the 
present problem of the dynamics of eruption clouds. After 
the density, velocity, total energy, and the mass fraction 
of the ejecta are calculated using Eqs.1, 2, 3, and 4, the 
temperature and pressure are updated employing Eqs.8 
and 15, respectively. 

We compare the density change reproduced by the 3-D 
numerical model with that analytically derived from 
Eq.12 (Fig. 2). In this simulation it is assumed that the 
mixture of hot pyroclasts and volcanic gas is ejected into 
a uniform air. Our simulation has successfully reproduced 
the nonlinear feature of equation of state. 

4. Turbulent Mixing 
The efficiency of turbulent mixing, in general, is a 

function of the Reynolds number [12]. At Re < 104 , even 
though the flow may be unsteady, the efficiency of mix-
ing increases with Re, and the resulting turbulent flow 
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cannot be described as fully developed. On the other 
hand, at Re > 104 the efficiency of entrainment no longer 
depend on Re, and the turbulence is fully developed. We 
call this transition to the fully turbulent flow (Re ~ 104) 
"mixing transition". Because the flow of eruption clouds 
is considered to be fully turbulent, the simulations of 
eruption clouds should be carried out above the mixing 
transition (Re > 104). 

A number of theoretical and experimental studies on a 
fully-developed turbulent jet or plume which is ejected 
from a nozzle into a uniform environment (refereed to as 
"JPUE") have revealed that such a JPUE is characterized 
by the self-similarity that the radial length scale is propor-
tional to the distance from the nozzle (or a virtual point of 
origin). This means that the evolution of the JPUE is 
determined solely by the local scales of length and veloci-
ty [13]. Experimental studies have also shown that the 
time-averaged horizontal profile of jet can be approximat-
ed by the Gaussian profile and its width represents the 
efficiency of entrainment. 

The above features of JPUE result from the two process-
es of turbulent mixing: (1) engulfment process [14] and (2) 
diastrophy and infusion processes [15]. The engulfment of 
ambient fluid is caused by the large-scale structures of tur-
bulence. Subsequently, turbulent straining of the entrained 
fluid reduces its spatial scale to a small enough value at 
which viscous diffusion dominates (diastrophy). Finally, 
because of viscous diffusion, the inducted fluid is mixed at 
the molecular level with the turbulent flow (infusion). The 
global features of turbulent mixing above the mixing tran-
sition such as a self-similarity are mainly controlled by the 
engulfment process. The diastrophy and infusion processes 
are associated with smaller-scale vortices than those of the 
engulfment process. In order to reproduce these processes 
of turbulent mixing numerically, we consider two factors 
of numerical procedure: (1) three dimensionality and (2) 
spatial resolution. Since the large-scale structures of turbu-
lence are 3-D in general, the engulfment process should be 
reproduced on 3-D coordinates. In addition, the grid size 
should be small enough to resolve the large-scale struc-
tures of the engulfment process [16]. 

In the following, we systematically evaluate the effects 
of the above two factors on the entrainment process. For 
this purpose, we carried out simulations for the case of 
the JPUE, whose qualitative and quantitative features 
were experimentally investigated by a number of previ-
ous workers [e.g., 17]. In these simulations, it is assumed 
that both the ejected and surrounding fluids are air with 
the same temperature (T = 273 K) and the same ratio of 
specific heat (γ = 1.40). The numerical conditions for the 
simulations of JPUE (e.g., grid size and number of grid 
points) are summarized in Table 2. 

Table 2 Numerical Conditions of the Simulations of Turbulent 
Jets. 

4.1 Effects of Three Dimensionality 
We simulate the turbulent jet with axisymmetric 2-D 

and 3-D coordinates and compare our results with the 
experimental studies from the viewpoint of self-similari-
ty. In the 3-D simulations, the ejected fluid exhibits a 
meandering instability where the axis of the flow varies 
with height, which causes efficient turbulent mixing of 
the ejected and surrounding fluids (Fig. 3a). As a result, 
the radius of jet increases linearly with height. These fea-
tures are consistent with the laboratory experiments [17]. 
On the other hand, in the axisymmetric 2-D simulations, 
the ejected fluid rises along the central axis and the 
spreading rate of the jet is substantially smaller than the 
results of the 3-D simulations (Figs. 3b and 4). This dif-
ference implies that the efficiency of turbulent mixing is 
significantly reduced because of the boundary condition 
at the centerline of the axisymmetric coordinates and 
underpins the significance of the 3-D coordinates for the 
simulation of turbulent mixing. 

4.2 Effects of Spatial Resolution 
High spatial resolution can be attained by (1) high-

order accuracy schemes and (2) fine grid sizes. We evalu-
ate these two effects here. Fig. 3a indicates that the third-
order accuracy scheme with a fine grid size reproduces the 
turbulence containing the various scale of vortices, which 
causes efficient turbulent mixing of the ejected and sur-
rounding fluids. On the other hand, in the simulations of 
the first-order accuracy scheme with the same grid size 
(Fig. 3c) or those of the third-order accuracy scheme with 
a coarse grid size (Fig. 3d), the vortical structures of the 
JPUE are not correctly reproduced. In these simulations, 
the spreading rate of the jet is smaller than that of the 3-D 
simulation using the third-order accuracy scheme with a 
fine grid size, suggesting that the efficiency of entrain-
ment is substantially reduced in these simulations (Fig. 4). 

We also compare our results with the experimental 
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Fig. 3 Numerical results of turbulent jets ejected into the same fluid. The color illustrates the cross-sectional 
distribution of the mass fraction of the ejected fluid. The horizontal distance from the centerline and 
the vertical distance from the nozzle are represented by x and z, respectively. (a) Simulation of the third-
order accuracy scheme with ∆x = L0/5 in 3-D coordinates where ∆x is the grid size, L0 is the nozzle 
radius. (b) Simulation of the third-order accuracy scheme with ∆x = L0/5 in 2-D coordinates. 
(c) Simulation of the first-order accuracy scheme with ∆x = L0/5 in 3-D coordinates. (d) Simulation of 
the third-order accuracy scheme with ∆x = L0/1 in 3-D coordinates. 

Fig. 4 Velocity profiles across a turbulent jet. Vertical axis rep-
resents the vertical velocity normalized by the centerline 
value (uc). Horizontal axis represents dimensionless dis-
placement (x/z). Curves a, b, c, and d are the time- aver-
aged velocity profiles at fixed cross sections for the sim-
ulations of Fig. 3a, 3b, 3c, and 3d, respectively. The 
heights of the cross sections are shown by arrows in 
Fig. 3 (z = 30 m). Curve e illustrates the simulation of 
the third-order accuracy scheme in 3-D coordinates with 
∆x = L0/8. 

studies from the viewpoint of the dependency of the effi-
ciency of mixing on "the numerical Reynolds number" 
(Re*). In a numerical simulation of fluid dynamics, Re* 
increases with increasing spatial resolution. On the other 

Fig. 5 Half-width of flow as a function of the number of grid 
points in nozzle radius when the vertical profile is 
approximated by the Gaussian profile. The heights of the 
cross sections are shown by arrows in Fig. 3 (z = 30 m). 

hand, the width of jet represents the efficiency of mixing. 
Therefore, we investigate the dependency of the width of 
jet on the grid size (or the number of grid in nozzle 
radius) (Fig. 5). The normalized width of flow increases 
as the number of grid (N) increases when N is less than 4, 
and asymptotically approaches a constant value when N 
is more than 4. These results are consistent with the gen-
eral feature of turbulent mixing reported by the experi-
mental studies. It is suggested that the condition above 
the mixing transition is achieved when N > 4. 

J. Earth Sim., Vol. 8, Nov. 2007, 35–44 40 



Y. J. Suzuki 

4.3 Summary of Treatment for the Turbulent 
Mixing 

According to the previous experimental studies of 
JPUE, the key step in the entrainment process during tur-
bulent mixing is the one that controls the rate at which 
ambient fluid enters into the turbulent region, i.e., the 
engulfment process [18]. Judging from the numerical 
simulations for the JPUE, it is essential to apply 3-D 
coordinates with a sufficiently high spatial resolution in 
order to correctly reproduce the engulfment process; sim-
ulations should be carried out above the mixing transition 
where the efficiency of entrainment is independent of Re* 
(i.e., independent of grid sizes). 

5. Turbulent Mixing in Eruption Clouds 
Turbulent jets and plumes of eruption clouds differ in 

several ways from the ideal situations of the JPUE. In 
eruption clouds the magnitude of buoyancy drastically 
changes with the amount of entrained air due to the non-
linear feature of the equation of state (Fig. 1), whereas the 
relationship between ρ and ξ can be approximated by a 
linear function in the case of the JPUE. Secondly, the sur-
rounding atmosphere is not uniform but stratified. 
Thirdly, the length scale of source (i.e., crater size) can-
not be ignored near the vent in comparison with the 
downstream distance from the vent in the natural volcanic 
system. Because of these differences, the assumption of 
self-similarity is not necessarily valid for the flow of 
eruption clouds. In the preceding section we have devel-
oped a numerical model which can reproduce the general 
features of turbulent mixing in the JPUE. We perform the 
numerical simulations for the actual conditions of explo-
sive eruptions into a stratified environment, and systemat-
ically investigate how the features of turbulent mixing 
and the flow patterns are modified. 

Our simulations have reproduced the behavior of erup-
tion clouds including eruption columns and/or the forma-
tion of pyroclastic flows and the unsteady and multi-
dimensional features of eruption clouds. Table 3 lists 
the initial conditions and numerical conditions for the 
simulations. In Runs 1, 2, and 3, an initial temperature of 
T0 = 1000 K and initial mass fraction of volcanic gas of 

ng0 = 0.05 are assumed. We increase vent radius from 69 
to 613 m and see how the flow patterns change in these 
runs. In Run 4, we use a lower temperature condition 
(T0 = 400 K, ng0 = 0.10) with a small vent radius (20 m) 
for comparison. Following the results of simulations of 
turbulent jets (section 4), ∆x is set to be L0/5 (see Table 3 
for the grid sizes and the number of grid points). We use 
512 processors (i.e., 64 nodes) of the Earth Simulator 
with 640 gigabyte of memory. 

In the case that the vent radius is small (69 m in Run 
1), a stable eruption column forms; the eruption cloud 
becomes buoyant before the initial momentum at the vent 
is exhausted (Fig. 6a). The flow is characterized by a con-
centric structure consisting of an outer shear region and 
inner dense core. In the outer shear region, the ejecta and 
ambient air are efficiently mixed by the eddy due to shear 
so that the density of the mixture becomes less than that 
of air. In the inner dense core, the ejecta are not mixed 
with ambient air. As the eruption cloud ascends, the inner 
dense core disperses because of erosion by the outer shear 
region; the eruption column rises as a fully turbulent 
plume. 

In the case that the vent radius is large (218 m in Run 
2), the outer shear region cannot reach the central axis 
before the initial momentum is exhausted (Fig. 6b). The 
inner dense core is maintained up to a height of 2 km and 
the top of the inner dense core subsequently spreads radi-
ally. This structure is called as "the radially suspended 
flow". Then inner dense core and outer shear region are 
mixed by the large-scale eddy of the suspended flow. 
Consequently, the resultant mixture becomes buoyant and 
produces another type of stable column. 

When the vent radius is extremely large (613 m in Run 
3), the eruption column collapses to spread radially as a 
pyroclastic flow (Fig. 6c). Only a small amount of air is 
entrained into the eruption cloud in the case of large vent 
radius, so that, the most parts of the mixture due to the 
suspended flow remain heavier than air and collapses to 
the ground. The upper region of the pyroclastic flow 
entrains air and forms buoyant co-ignimbrite ash clouds. 

When the initial temperature is low and the vent radius 
is small (Run 4 with T0 = 400 K and L0 = 20 m; Fig. 6d), 

Table 3 Input Parameters and Numerical Conditions of the Simulations of Eruption Clouds. 
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Fig. 6 Representative numerical results of (a) stable column regime (Run 1), (b) stable 
column regime which is characterized by the suspended flow of the inner dense core 
(Run 2), (c) column collapse regime which is characterized by the suspended flow 
(Run 3), and (d) column collapse regime (Run 4). Parameters used and conditions at 
the vent are listed in Tables 1 and 2. Cross-sectional distributions of the mass fraction 
of the ejecta ξ are shown in x-z space. The contour levels in plots are ξ = 0.97. We call 
the region where the mass fraction of the ejecta is 1.0 the inner dense core. It is sur-
rounded by the outer shear region, where the ejecta entrain ambient air. 

the column collapse occurs without inner dense core 
developing a suspended flow; collapse occurs after the 
inner dense core disperses because of erosion by the outer 
shear region. Although a jet with a small vent radius effi-
ciently entrains ambient air before the initial momentum 
is exhausted, the mixture of the ejecta and air is always 
heavier than air when T0 is as low as 400 K (Fig. 1). As a 
result, all the eruption cloud collapses to the ground and 
cannot generate a co-ignimbrite ash cloud from a pyro-
clastic flow [cf. 10]. 

As described above, the flow pattern of eruption cloud 
varies depending on the vent radius. A column with a 

small vent radius behaves as a typical turbulent plume 
and approximately attains the self-similarity. On the other 
hand, when the vent radius is large, eruption clouds 
shows multi-dimensional features and the self-similarity 
is not attained. 

In the case of JPUE, it is essential to apply 3-D coordi-
nates in order to correctly reproduce the self-similarity 
observed in laboratory experiments (see Section 4). We 
also simulate the eruption cloud for the same condition as 
Run 1 with axisymmetric 2-D coordinates and investigate 
the effects of three-dimensionality on the dynamics of 
eruption clouds. In the 3-D simulation, the radius of flow 
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Fig. 7 Numerical results of eruption clouds at 200 s from the beginning of eruption in Run 1. 
(a) Simulation of 3-D coordinates. (b) Simulation of axisymmetric 2-D coordinates. 
The color illustrates the cross-sectional distribution of the mass fraction of the ejecta 
(pyroclasts plus volcanic gas). Parameters used and conditions at the vent are listed in 
Tables 1 and 2. 

increases linearly with height as a result of the efficient 
mixing by the meandering instability (Fig. 7a). On the 
other hand, in the axisymmetric 2-D simulations, the 
ejecta rise along the central axis and the column is sub-
stantially higher than the results of the 3-D simulations 
(Fig. 7b). This difference implies that the efficiency of 
turbulent mixing is significantly reduced because of the 
boundary condition at the centerline of the axisymmetric 
coordinates and that the three-dimensionality plays an 
important role in simulating the dynamics of eruption 
clouds such as column heights. 

6. Geological Implications 
The dynamics of eruption clouds are governed by tur-

bulent mixing between eruption clouds and ambient air 
and the density change of eruption clouds accompanied 
by turbulent mixing. Previously, the fluid dynamics and 
the thermodynamics of eruption clouds have been studied 
on the basis of steady one-dimensional (1-D) models 
[e.g., 2]. In the steady 1-D models, turbulent mixing 
between eruption clouds and ambient air are modeled by 
the entrainment hypothesis that the mean inflow velocity 
across the edge of turbulent flow (jet and/or plume) is 

proportional to the mean vertical velocity; the proportion-
ality constant (i.e., entrainment coefficient) represents the 
efficiency of turbulent mixing. The entrainment hypothe-
sis is supported by the laboratory experiments where the 
diameter of turbulent jet injected into a uniform environ-
ment linearly increases with the distance from the source. 
The steady 1-D models using the entrainment coefficient 
based on those laboratory experiments have accounted for 
fundamental features of a steady state of eruption clouds 
and the critical conditions for column collapse. However, 
these results of the steady 1-D models largely depend on 
the assumed value of entrainment coefficient. Besides, 
the steady 1-D models could not describe unsteady and 
multi-dimensional features of actual eruption clouds. 

In the present study, we have developed a 3-D fluid 
dynamics model which simulates turbulent mixing in and 
around eruption clouds without any a priori assumptions. 
Our model reproduces the quantitative features of turbu-
lent jets and plumes observed in the laboratory experi-
ments, and it has also successfully reproduced the basic 
features of eruption clouds such as generation of eruption 
columns and column collapse. In addition, it has repro-
duced unsteady and multi-dimensional features of erup-
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tion clouds such as a suspended flow and pyroclastic flow. 
Our model is expected to be useful for volcanological 

problems in several ways. First, we can systematically 
investigate unsteady and multi-dimensional fluid dynami-
cal phenomena observed in actual volcanic eruptions. For 
example we can simulate the dynamics of large-scale 
umbrella clouds which are directly observed in satellite 
images during explosive eruptions by using 1600 proces-
sors (i.e., 200 nodes) of the Earth Simulator with 1 terabyte 
of memory for 12.3 billion grid points (2040 × 2040 × 506 
grid points). Our model would also be useful to improve 
the quality of existing 1-D steady models which can run 
standard personal computers. Through the comparisons 
between the results of our 3-D simulations and those of the 
steady 1-D models, we can propose preferable values of 
the entrainment coefficient to predict eruption column 
dynamics correctly during steady explosive eruptions. 
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