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Abstract Using ADVENTURE system, a 3-D structural analysis of a very large scale problem can be per-
formed on supercomputers such as the Earth Simulator (ES). However, the data size of the analysis results 
also becomes huge. We developed an off-line visualizer for visualization of a huge scale 3-D structural analy-
sis on ES. The off-line visualizer performs rendering of surface patch triangles to produce image files of 
deformation plot and stress contour plot. It is vectorized. The vectorization scheme of its polygon rendering 
using a look-up table is explained in detail, and its performance evaluation on ES is carried out. It is also 
demonstrated that a 3-D structural analysis over 200 millions DOFs can be visualized efficiently using our 
off-line visualizer. 
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1. Introduction 
A variety of distributed-parallel supercomputers, such as 

the Earth Simulator (ES), IBM BlueGene/L, Cray X1E, 
Hitachi SR11000 and SGI Altix, are available for a heavy-
load numerical simulation task. Using those computational 
servers, a simulation user can perform a huge scale 3-D 
solid structural analysis based on the finite element method, 
whose degrees of freedom exceed 100 millions [1]. 

For example, currently, we are planning an earthquake 
response simulation of a full-scale nuclear power plant. In 
this simulation, a solid Finite Element (FE) model over 
200 million Degrees Of Freedom (DOFs), which repre-
sents a whole nuclear pressure vessel, is employed. It 
contains lots of structural details, such as nozzles, pipes, 
control rods and other support structures. It takes just a 
few hours to execute a dynamic analysis job on ES. 

However, each analysis task produces gigantic analysis 
result data files, which may occupy a disk space size of 
terabytes order. Because of this size issue, it is difficult 
and time consuming for the simulation user to move 
those analysis result data files back to his or her worksta-
tion for visualization purposes. Although the visualiza-

tion capability of a workstation or a PC terminal on the 
client side still remains an issue, the low network speed 
between the computational server and the client terminal 
is also a serious issue against the huge scale visualization. 

Including ES, there are a couple of computational 
servers in the world, with an unprecedented level of com-
putational power. Ideally, such an extremely powerful 
supercomputer should not be dominated by any single 
organization, and it should be shared among many users 
nationwide, including researchers at universities, national 
research centers and research sections in the industries, 
or, if possible, worldwide also. In this case, those users 
should not be forced to only visit the supercomputer cen-
ter directly and stay inside the center building while using 
the supercomputer, but it is also desirable for them to use 
the supercomputer remotely from their own laboratories 
far away from the supercomputer center. This implies that 
there should be some effiective ways to access the super-
computer over the Internet. Remote visualization should 
also be considered seriously in this context. 

Actually, in the Earth Simulator Center (ESC), there 
are some graphics workstations. Each of them has a dedi-
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cated 3-D graphics hardware and OpenGL library, and 
they are connected to ES through the local area network 
called ES-LAN. There is also virtual reality equipment in 
the ESC called BRAVE and its software package called 
VFIVE [2]. However, to use these graphics workstations 
and the virtual reality environment, we have to visit the 
ESC. It is more convenient to perform our visualization 
tasks over the Internet, using a client PC in our laborato-
ries. Of course, because the Internet is far slower than 
ES-LAN, it usually takes days or weeks to move our 
analysis result data files back into our laboratories. 

Here in this paper, we assume that the average trans-
mission speed through the Internet is currently about 100 
M bps or less, based on the number measured actually 
between the ESC at Yokohama, located at the east region 
of Japan, and our laboratories in Kyushu University at 
Fukuoka, located at the south region of Japan. There are 
many routers on the communication path. The network is 
unstable, and some extra efforts are usually required to 
guarantee the completion of long-term data transfer for 
more than one day. 

In this paper, we explain about our implementation of a 
server-side visualizer running on ES, one of the most 
powerful computational servers in the world, for a 3-D 
solid structural analysis using the finite element method. 

After a huge scale FE analysis finishes, the visualiza-
tion of the analysis result data is performed at the post-
processing stage. Two of the most important visualization 
techniques for a structural analysis are a scalar contour 
plot and a deformation plot. In case of a 3-D solid prob-
lem, a contour plot of stress or strain distribution over the 
surface of the analysis model is drawn. It may also be 
combined with a deformation plot, which renders a dis-
placement vector distributed over the model surface. This 
type of visualization, which belongs to surface rendering 
in a classical categorization of scientific visualization, is 
the main target of our research. If the FE analysis is 
dynamic, animation is also required. 

To visualize a surface contour and deformation plot 
efficiently, it is necessary to obtain the boundary surface 
information of the 3-D solid FE mesh. It is called the 
’surface patch’ of the mesh. In case of using tetrahedral 
solid elements, which are often used to model a compli-
cated 3-D solid structure, the surface patch is composed 
of triangles. Of all 4 triangular faces of all the tetrahedral 
elements, only the triangles just on the surface boundary 
of the mesh are collected and compose the surface patch. 

Usually, it is time-consuming to extract the surface 
patch from a given huge scale structural model. 
Fortunately, the surface patch has already been extracted 
from the analysis model before the post-process stage 
begins, because this information is also required to speci-

fy loads and constraints at the pre-process stage. 
At this stage, we have mainly two ways to visualize the 

huge analysis result data. One is to generate on the com-
putational server only intermediate data to represent 
mainly the geometry information, and then, transfer and 
visualize them on a remote client PC. The other is to gen-
erate a final image data directly on the server. 

In case of the former approach, first, triangles are gen-
erated from the surface patch and its associated analysis 
result data on the computational server. Then the generat-
ed geometry data are sent over the Internet from the ESC 
to our university. In our laboratory, the geometry data can 
be visualized interactively, using the powerful graphics 
hardware in an ordinary client PC. We can pan, zoom and 
rotate those triangles. 

However, there are still some problems in this former 
approach. Except for viewing parameters, anytime we 
need to change any of the visualization parameters, such 
as contour type and range, vector magnification ratio, as 
well as selection of physical quantity types and their eval-
uation schemes related to structural analyses, new geome-
try data may have to be re-generated at the computational 
server. Moreover, in case of a dynamic analysis with 
many time steps, the amount of geometry data transferred 
through the Internet becomes huge. It is also mentioned 
as a serious issue in the reference [3]. For example, let us 
consider about our earthquake simulation of a nuclear 
pressure vessel model, with 200 M DOFs and 1000 time 
steps. Before sending the data over the Internet, we first 
extract only the relevant portion of the result data on the 
surface boundary of the model as an enriched geometry 
model, which is dedicated for our visualization purpose. 
Then, the extracted data are converted into a binary for-
mat called ADVENTURE I/O [4], and the data are com-
pressed also. Usually, the size of the enriched geometry 
data, limited on the model surface only, can be reduced 
into about one tenth of the size of the whole original 
analysis result data. Even using those data on the surface 
patch only, it still takes a few days to transfer them over 
the slow Internet. 

In the latter approach, instead of geometry data, image 
or animation data are generated directly on the computa-
tional server. Only those image data are sent to our labo-
ratories. The size of the data is usually small, an order of 
M bytes or less. Obviously, the drawback of this 
approach is that, when the animation data are shown on a 
client PC, except time step parameters, all the visualiza-
tion and viewing parameters have already been fixed and 
we cannot change them interactively. 

We think both of two approaches are useful. While 
waiting for huge amount of extracted geometry data on 
the model surface coming from the ESC over the Internet, 
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we can browse through image data generated by our off-
line visualizer and monitor the status of the analysis job 
running at the same time. Once the geometry data have 
come, then using a PC on the client-side, we can dive into 
the model to search more detailed information thoroughly 
in an interactive environment, using walkthrough visuali-
zation techniques [5]. In this paper, we focus on a visuali-
zation technique on the server-side based on the latter 
image generation approach. 

Originally, the keyword, ’off-line rendering’, often 
used in the computer graphics field, means non-interac-
tive image generation. It is different from ’interactive ren-
dering’ in front of the monitor screen of a graphics work-
station through mouse and keyboard operations. In some 
computer graphics studio companies, off-line rendering 
may be performed using a PC cluster or a supercomputer. 
Here, we use this keyword as image generation for scien-
tific visualization on a supercomputer. 

The concept of off-line visualization is shown in Fig. 1. 
For example, a user may invoke the off-line visualizer 
from a remote terminal using the time-sharing system 
mode of a supercomputer, or the off-line visualizer may 
be executed as a batch job through the job manager. In 
either case, the visualizer reads the result data files and 
performs image rendering on the supercomputer. It pro-

duces image files or animation files rather than 3-D inter-
active graphics on a monitor screen. 

Further, to implement this image generation approach 
actually, we can use either surface rendering or volume 
rendering. 

In case of the volume rendering approach, usually, ray 
tracing or ray casting are used. There are some research 
such as Max [6] and GeoFEM/HPC Middleware [7] [8]. 
An image is generated directly from the surface patch and 
its associated result data, in a pixel-wise manner. 

In case of the surface rendering approach, not only tri-
angle geometry data are generated, but also an image is 
rendered from those temporary triangles. Rendering of 
the image from the triangles is performed using a triangle 
rasterization algorithm in a triangle-wise manner. Both 
triangle and image generation processes are performed on 
the computational server. 

We have chosen the latter surface rendering approach, 
because this approach is fully compatible with most of 
the visualization methods and existing applications used 
in the structural analysis field. It is relatively easy to port 
an existing visualization application on ES, by simply 
switching an implementation of the 3-D graphics porta-
bility layer, such as [9], inside the application code. 

In summary, the essential task of our off-line visualizer 

Fig. 1 Off-line visualization on a computational server. 
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is, to render a huge amount of triangles forming the sur-
face patch, which has already been extracted. This means, 
we need a polygon renderer running on the supercomput-
er. A deformation plot can be rendered as a set of 
deformed triangles of the surface patch reflecting the dis-
placement vector. A scalar contour plot can also be ren-
dered using one dimensional texture mapping. 

In this approach, however, we have to prepare a pure 
software-based polygon renderer running on ES. Most of 
the supercomputers, including ES, have no dedicated 3-D 
graphics hardware. It is also possible that no 3-D graphics 
library is available, or its implementation is not effcient 
even if available. Furthermore, because ES is a vector-
parallel type architecture supercomputer, the polygon ren-
derer should be both vectorized and parallelized. 

As for the parallelization of the polygon rendering, 
there are already several methods available. Molnar [10] 
classified parallel rendering algorithms into three cate-
gories, sort-first, sort-middle and sort-last. The sort-first 
approach is used mainly for an existing sequential appli-
cation to parallelize only its rendering part. This approach 
is usually implemented as the substitution of a 3-D graph-
ics library from the sequential version to the parallel one. 
Nowadays, the sort-middle approach is used only for the 
implementation of new graphics hardware, because it 
requires heavy communication. 

For most of the applications already parallelized based 
on domain-decomposition, including our case, the sort 
last approach is suitable. This approach generates an 
image domain-by-domain, then these domain-wise 
images are collected into the master process, and they are 
composed into a final single image. For the surface ren-
dering without transparency, depth buffer information is 
used for the image composition. In our system, we use a 
binary-tree communication approach [5]. 

Therefore, the only remaining issue is, how to vectorize 
the polygon rendering process for a vector-type processor. 
There are some approaches, such as RVSLIB [11] [12], 
PATRAS [13] and MovieMaker [2], to utilize simply an 
existing implementation of triangle rasterization available 
for scalar-type processor. However, in these approaches, 
the rendering process can become a performance bottle-
neck on a vector-type supercomputer. It is especially true 
if the rendering task is also executed within the analysis 
process, or in the same large-scale batch job. 

This paper focuses on this important missing part, vec-
torization of the triangle rasterization, which runs on ES 
and generates image data of surface scalar contour and 
deformation plots using the pre-extracted triangle surface 
patch. The most significant feature of our approach is the 
usage of a look-up table to accelerate the triangle rasteri-
zation. It is necessary not only to vectorize the majority 

of the rendering code but also to minimize the perform-
ance cost at the remaining scalar bottleneck. 

Here, our vectorized polygon rendering algorithm using 
the look-up table is explained briefly. At the first stage, it 
performs triangle-wise calculation. At the second stage, it 
performs triangle fragment-wise calculation. And at the 
third stage, it performs image pixel-wise calculation. There 
are two kind of object sorting in our algorithm. One is in 
the middle of the rendering process, at the transition 
between triangle-wise and fragment-wise calculations. The 
other sorting is at the last of the process, at the transition 
between fragment-wise and pixel-wise calculations. The 
look-up table reduces execution time of the former transi-
tion step, which is a scalar section and the main bottleneck 
of our algorithm. As far as we know, there seems to be no 
other research activities about vectorization of polygon 
rendering, although our algorithm has some similar points 
with those for SIMD machines [14] [15] [16]. 

One thing we assume is that almost all the triangles ren-
dered at visualization of a huge scale 3-D structural analy-
sis are very small, usually less than 10 by 10 pixels in the 
screen coordinate space. This assumption is the same as 
the one used in other research [14] [15]. Based on this 
assumption, our algorithm uses the look-up table for most 
of the triangles to perform in-out detection and generation 
of fragments at the scan conversion stage efficiently. 

In this paper, the size of our look-up table is relatively 
large. It may occupy about tens or hundreds of M bytes. It 
is understandable that there has been no practical applica-
tion using this sort of look-up table-based approaches 
ever before, because, until recently, such a table has been 
considered prohibitively large. However, now we think it 
is well acceptable, because the memory capacity per sin-
gle processor of ES is 2 G bytes. 

2. Polygon Rendering Algorithm 
Here, we describe our polygon rendering algorithm in 

detail. Its vectorization on a vector type supercomputer 
such as ES is also explained. 

The main functionalities of our polygon renderer cur-
rently supported are as follows. 

• pan, zoom and rotate 
• orthogonal projection 
• lighting and shading (flat shading) 
• hidden surface removal using a depth buffer 
• triangle polygon fill 
• smooth and band contours using 1-D texture mapping 
• clipping by arbitrary section planes 

2.1 General Rendering Procedure 
Here, for convenience, we introduce a general proce-

dure to render triangle polygons briefly. The procedure 
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shown below is a classical one. As we did in this paper 
for a vector-type parallel computer, depending on the 
specific hardware configuration of each system, some 
modifications may occur. 

1. With each triangle, coordinate transformation from 
the world coordinate system to the screen coordinate 
system is performed. 

2. With each triangle, clipping is performed. Triangles 
outside the clipping volume are removed. 

3. With each triangle, lighting calculation is performed 
and vertex colors are calculated. 

4. With each triangle, scan conversion is performed and 
the triangle is decomposed into multiple fragments. 

5. With each fragment, shading is performed and its 
color is interpolated among the color of three vertices. 

6. With each fragment, depth test is performed for hid-
den surface removal. If the fragment passes the test, 
it is written into the corresponding pixel in the 
screen image. 

We further explain about the triangle scan conversion 
process in more detail. It is shown in Fig. 2. 

With a given triangle, which is already transformed 
into the screen coordinate space, the scan conversion 
process decomposes the triangle into multiple scan lines 

horizontally. Then, each scan line is further decomposed 
into multiple fragments vertically. 

Here, these fragments are the pixels composing the tri-
angle. Usually, only a portion of the fragments, which 
pass depth test using a depth buffer, is reflected into the 
corresponding pixels in the screen image. 

2.2 Assumption 
A few assumptions are made for the basic design of 

our polygon renderer. These assumptions are derived 
from the typical characteristics of surface patches of our 
3-D solid structural analyses on ES, and the usage pat-
terns of our off-line visualizer to render surface contour 
and deformation plots. 

First, there are millions of triangles in the surface patch 
of a huge scale 3-D structural analysis with hundreds of 
millions DOFs. If the off-line visualizer is parallelized, 
each processor manages at least tens of thousands of tri-
angles or more. 

Second, most of the triangles rendered on the screen 
image is very small compared with the image size. When 
using a 1,000 by 1,000 resolution image, an average pixel 
size of triangles on the screen coordinate system is less 
than 10 by 10 pixels. The larger the analysis scale 

Fig. 2 A scan conversion of a triangle. A triangle is decomposed into multiple 
scan lines, then each scan line is decomposed into multiple fragments. 
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becomes, the more the number of triangles in the surface 
patch is, while the resolution size of the monitor screen 
on a client side terminal has kept almost constant in 
recent years, because of technical difficulties of LCD 
monitor production. Therefore, the average triangle pixel 
size will become smaller and smaller. 

2.3 General Strategy 
Based on the assumptions described above, our poly-

gon rendering algorithm deal with only small triangles 
whose pixel size fits with the look-up table. Here, we call 
these triangles as ’table-fit’ triangles. 

Therefore, input triangles are divided into two groups, 
’table-fit’ or not. The criterion for this classification is the 
pixel size of each triangle. Usually, the size less than 10 
or 20 pixels are classified as ’table-fit’. In case of our 
usage patterns, most of the input triangles in a surface 
patch are classified into the ’table-fit’ group. The rest of 
the input triangles are processed using a conventional tri-
angle scan conversion algorithm. 

In vectorization, the vector loop length, which is the 
loop length of the inner most loop, is either the number of 
triangles or the number of fragments generated from those 
triangles. Usually, they are tens of thousands or more. 

2.4 Triangle Coordinate System 
Here, we introduce a keyword, a ’triangle coordinate 

system’, for convenience of the discussions below. 
At the coordinate transformation stage, a triangle 

defined in the world coordinate system is transformed 
finally into the screen coordinate system. The screen 
space is a 2-D XY integer value coordinate system. 

Further, we transform the triangle from the screen 
coordinate system into the ’triangle coordinate system’ of 
its own. The triangle coordinate system of a given trian-
gle has the same scale and orientation as the screen coor-
dinate system and its origin point is at one of the three 
vertices of the triangle. It is shown in Fig. 3. 

Suppose there are three vertices in the triangle, v0, v1 
and v2, respectively. In the triangle coordinate system of 
this triangle, the origin point is the position of vertex v0. 
Thus, the coordinate value at vertex v0 is (0, 0) in the tri-
angle coordinate system. 

The coordinate values of other two vertices, v1 and v2, 
are (tx1, ty1) and (tx2, ty2) in the triangle coordinate sys-
tem, respectively. Each of these four coordinate compo-
nent values, tx1, ty1, tx2, ty2, is an integer value and it 
may be positive, zero or negative. If the pixel size of the 
triangle is small, the component value fits within the cer-

Fig. 3 Triangle coordinate system, which is a special system for assigning a 
triangle defined in the screen space. 
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tain range, for example, between –10 to 10, or between -15 
to 15, or, at most, between –20 to 20 for most of the cases. 

Any allowable combination of four coordinate compo-
nent values, tx1, ty1, tx2, ty2, specifies the fill pattern of 
the corresponding triangle uniquely. The set of four inte-
ger values completely decides its scan conversion. 
Therefore, if we prepare all the fill patterns defined by all 
the combinations of these four values as a look-up table 
on memory, it can accelerate the scan conversion of a tri-
angle of an arbitrary shape. 

The number of all the possible combinations of four 
integer values is the maximum triangle pixel size pow-
ered by 4. It occupies a very large memory space. This 
threshold pixel size is limited by the allowable memory 
size of a user process of the off-line visualizer running on 
ES. Typically, we choose from 10 to 20 as the threshold 
pixel size. It is sufficient for most of our 3-D structural 
analysis cases. 

As a more concrete representation of the look-up table, 
we store the beginning and ending TX indices of all the 
scan lines for each pattern. 

Here is an example of a triangle, tx1 = 10, ty1 = 4, 
tx2 = 4, ty2 = 10, shown in Fig. 4. 

The look-up table is organized as TX coordinates at the 
left and right end point of each scan line for each pattern. 

In Fig. 4, TX values of the first scan line are from 4 to 
4, those of the 2nd scan line are from 4 to 5, those of the 
3rd scan line are from 3 to 6, and so on. If the threshold 

pixel size value is 10, the look-up table becomes the one 
listed as Table 1. 

The memory size required to store a look-up table is 
proportional to the threshold pixel size powered by 5. A 
TX coordinate value can be stored as a signed integer of 
one byte. For example, if the threshold value is 10, 15, 
and 20, it occupies 6.4 M bytes, 49 M bytes and 205 M 
bytes, respectively. 

Table 1 A Look-up table to define a triangle in a triangle coor-
dinate system. 

Fig. 4 Scan conversion of a triangle using a look-up table. 
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Here is a sample implementation code in C language of 
the definition of the look-up table, shown below. 

#define MAX_TRI_SIZE 10 

signed char ScanLineMinTx 

[MAX_TRI_SIZE * 2][MAX_TRI_SIZE * 2] 

[MAX_TRI_SIZE * 2][MAX_TRI_SIZE * 2] 

[MAX_TRI_SIZE * 2]; 

/* -1 : no scan line */ 

/* or 0 ... (MAX_TRI_SIZE - 1) (include) */ 

signed char ScanLineMaxTx 

[MAX_TRI_SIZE * 2][MAX_TRI_SIZE * 2] 

[MAX_TRI_SIZE * 2][MAX_TRI_SIZE * 2] 

[MAX_TRI_SIZE * 2]; 

/* -1 : no scan line */ 

/* or 0 ... (MAX_TRI_SIZE-1) (include) */ 

A constant parameter, MAX TRI SIZE, which is the 
threshold size, is specified as 10. There are two arrays of 
signed byte type, ScanLineMinTx and ScanLineMaxTx. 
The former 4 array indices represent tx1, ty1, tx2, ty2, 
respectively. The last 5th array index represent the TY 
value of each scan line. Each array occupies 3.2 M bytes. 
Note that all the TX values stored in these arrays and the 
TY value of each scan line are incremented by MAX TRI 

SIZE, so that a valid value becomes non-negative. If the 
value is –1, this scan line does not have to be filled. 

2.5 Triangle-wise Calculation 
The former part of our polygon rendering is triangle-

wise calculation including coordinate transformation and 
lighting. It is performed for all the input triangles. 

coordinate transformation and lighting For each ver-
tex of each triangle, coordinate transformation and light-
ing are performed. Flat shading is used for the lighting 
calculation. 
gradient for depth value and scalar interpolation For 
each triangle, the gradient vector of depth component in 
the viewing coordinate system, namely, Z value, is evalu-
ated. If a contour plot is required, the gradient vectorof 
scalar value distribution over the triangle is also calculated. 
pixel size and range in the screen coordinate system 
For each triangle, the pixel size and the range in the 
screen coordinate system are calculated. Triangle coordi-
nates of vertices v1 and v2, and a set of four values, tx1, 
ty1, tx2, ty2, are also calculated. 

classification of table-fit triangle If the pixel size of the 
triangle is less than the threshold value, it is classified as 
’table-fit’. 

As a result of these procedures above, only table-fit tri-
angles are collected. Almost all of these procedures can be 
vectorized. The vector loop length is the number of the 
input triangles. It is long enough. Of all the computational 
load of polygon rendering, typically the half is on this side. 

2.6 Scan Conversion 
The latter part of our polygon rendering is the scan con-

version stage. Here, we only explain how to deal with 
small triangles marked as ’table-fit’, because other big tri-
angles are handled using a conventional algorithm. At this 
stage, fragments are generated from each of the ’table-fit’ 
triangles, and they are written down into image data. 

fragment generation For each triangle, fragments are 
generated. 
With the set of four coordinate component values, tx1, 
ty1, tx2, ty2, of the triangle, the corresponding section of 
the look-up table is referred. This section contains all the 
scan lines of the triangle fill pattern. Each scan line is rep-
resented as the TX coordinate component of the starting 
and the terminating end points. Using them, only frag-
ments passing in-out detection are generated efficiently. 
Fragments generated from multiple triangles are stored 
into the fragment pool of this vectorization session. 
Usually, tens of thousands fragments are stored at one 
session to keep the vector loop length long enough and 
save the workspace memory as minimum. Each fragment 
data store the source triangle ID where it originated, and 
its TX and TY coordinates in the triangle coordinate sys-
tem of the source triangle. 
This step is a scalar procedure. It is difficult to vectorize 
this step because a new fragment has to be checked one 
by one and added into data arrays. Owing to the look-up 
table, the number of arithmetic operations is minimized. 
fragment calculation For each fragment, RGB color 
components and a depth value are calculated using the 
precalculated gradient values of the source triangle of the 
fragment. 
On the color calculation, one dimensional texture map-
ping is used for producing a smooth contour or a band 
contour fill pattern. 
Fragment-wise clipping check is also performed. Each 
fragment is tested against the range of image resolution as 
well as user-specified additional clip planes of arbitrary 
orientations. 
This step can be fully vectorized. The vector loop length 
is the number of generated fragments in the fragment 
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pool of this vectorization session. It is long enough. 
fragment write For each fragment, the corresponding 
pixel in the image data is identified. Then, the depth value 
of the fragment and the one of the pixel, which is stored 
in the depth buffer, are compared. If it passes the depth 
test, the fragment color is written down into the image 
data at the pixel location. 
This step is a scalar procedure. It is difficult to vectorize 
this step because of write dependency on the depth buffer. 

The majority of the computational cost is spent on the 
fragment calculation step. Other two step, fragment gen-
eration and fragment write, cannot be vectorized because 
of data dependency. The look-up table is used to acceler-
ate the former step. 

Here is a sample implementation code in C language of 
the fragment generation, shown below. In this code sec-
tion, arrays ScanLineMinTx and ScanLineMaxTx of the 
look-up table are used. 

/* TC : triangle coordinate */ 

/* coordinate of vertex1 and vertex2 in TC */ 

int VecTri_v1Tc[2][MAX_TRIS]; 

int VecTri_v2Tc[2][MAX_TRIS]; 

/* box range in TC */ 

int VecTri_minTc[2][MAX_TRIS]; 

int VecTri_maxTc[2][MAX_TRIS]; 

/* the number of fragments */ 

/* in the fragment pool */ 

int NFragments; 

/* triId : mapping from the fragment */ 

/* to source triangle */ 

int Fragment_triId[MAX_FRAGMENTS]; 

/* tx, ty : coordinate of the fragment in TC */ 

int Fragment_tx[MAX_FRAGMENTS]; 

intFragment_ty[MAX_FRAGMENTS]; 

void MakeFragment (void) 

{ 

int iTri; 

/* NON-VECTORIZABLE LOOP */ 

NFragments = 0; 

for (iTri = 0; iTri < NVecTris; iTri++) { 

int tx1 = VecTri_v1Tc[0][iTri]; 

int ty1 = VecTri_v1Tc[1][iTri]; 

int tx2 = VecTri_v2Tc[0][iTri]; 

int ty2 = VecTri_v2Tc[1][iTri]; 

int minTy = VecTri_minTc[1][iTri]; 

int maxTy = VecTri_maxTc[1][iTri]; 

int itx, ity; 

for (ity = minTy; ity <= maxTy; ity++) { 

int scanLineMinTx; 

int scanLineMaxTx; 

scanLineMinTx = ScanLineMinTx 

[tx1][ty1][tx2][ty2][ity]; 

if (scanLineMinTx == -1) { 

continue; 

} 

scanLineMaxTx = ScanLineMaxTx 

[tx1][ty1][tx2][ty2][ity]; 

assert(0 <= scanLineMinTx); 

assert(scanLineMinTx <= scanLineMaxTx); 

assert(scanLineMaxTx < MAX_TRI_SIZE * 2); 

#pragma vdir novector 

for (itx = scanLineMinTx; 

itx<=scanLineMaxTx; 

itx++) { 

assert(NFragments< MAX_FRAGMENTS); 

Fragment_triId[NFragments]= iTri; 

Fragment_tx[NFragments] = itx; 

Fragment_ty[NFragments] = ity; 

NFragments++; 

} 

} 

} 

} 

Array VecTri_v1Tc stores the triangle coordinate (tx1, 
ty1) at vertex v0, and array VecTri_v1Tc stores (tx2, 
ty2)at vertex v1. Arrays VecTri_minTc and VecTri_maxTc 

are the box range of each triangle in its triangle coordi-
nate system. The values in these arrays have already been 
filled in the previous steps. 

Because the fragment generation step is a scalar 
process, the length of the inner loop in function 
MakeFragment is too short to be vectorized. All the frag-
ments generated are stored into new arrays, 

Fragment_triId, Fragment_tx and Fragment_ty. They 
represent the source triangle ID, TX and TY coordinates 
ofthe fragment, respectively. 

Here is a sample code section to evaluate the Z depth 
value at each fragment. 
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void CalculateFragmentDepth (void) 

{ 

int iFragment; 

/* VECTORIZABLE LOOP */ 

/* containing indirect array reference */ 

/* and read access */ 

for (iFragment = 0; 

iFragment < NFragments; 

iFragment++) { 

int triId = Fragment_triId[iFragment]; 

int tx = Fragment_tx[iFragment]; 

int ty = Fragment_ty[iFragment]; 

int dx = tx - MAX_TRI_SIZE; 

int dy = ty - MAX_TRI_SIZE; 

/* z value interpolation */ 

float vz0 = VecTri_v0Dc[2][triId]; 

float za = VecTri_za[triId]; 

float zb = VecTri_zb[triId]; 

float z = vz0 + za * dx + zb * dy; 

Fragment_zDc[iFragment] = z; 

} 

} 

Array VecTri_v0Dc stores the x, y and z component 
values at vertex v0 in the screen coordinate system. 
Arrays VecTri_za and VecTri_za are the gradient coeffi-
cients to specify the depth value distribution over the 
source triangle. The Z depth value of each fragment is 
stored in array Fragment_zDc. 

All the fragment-wise loops, such as the code section 
in function CalculateFragmentDepth, are vectorized. If 
any data about the source triangle are required, the infor-
mation is accessed using indirect index reference. 

3. Performance Evaluation 
For the implementation of our off-line visualization 

system, we used an open-source CAE system, ADVEN-
TURE [4]. AutoGL library in ADVENTURE Auto mod-
ule in ADVENTURE system is used for the implementa-
tion base of the polygon renderer [9]. 

Using this off-line visualizer, a performance evaluation 
is carried out on ES. Here, the vectorization performance 
of the polygon renderer running on a single processor of 
ES is shown. 

As a benchmark problem, we prepared an artificial 
problem to render a scalar contour plot on semi-cylindri-
calsurface sheets. The model consists of 8 semi-cylindri-
cal sheets placed in depth order and each of the sheets is 
composed of a 250 by 250 grid. In total, the surface patch 
is composed of 1 million triangles. The distribution of a 
scalar quantity over the semi-cylindrical sheets is 
artificially made so that the magnitude of the scalar value 
is proportional to the distance from the center of each 
sheet. Fig. 5 shows the benchmark model. In this case, 
the resolution of the imageis 1,000 by 1,000. An average 
pixel size of the triangles is about 5 by 5 pixels. 

To render this image data on ES using a single 
Arithmetic Processor (AP), it takes 0.82 seconds to ren-
der 1 million triangles. Rendering performance of 1.22 
million triangles per seconds is obtained. Acceleration 
ratio by vectorizationis about 4.2 times. 

Here, as an example of the problem with a large num-
ber of triangles, a Pantheon model was performed shown 
in Fig. 6. Though detail of the model is described in the 
section 4, since the Pantheon model consists of about 4.1 
million solid tetrahedron elements, total number of trian-
gles amounts to 16.6 million when rendering in four faces 
of all elements. In rendering such large number of poly-
gons model, our system achieved rendering performance 
of 2.33 million triangles per seconds, and acceleration 
ratio by vectorization of 4.9 times. 

Next, we further investigated the performance bottle-
neck of our vectorized code using ftrace utility offered by 
the ESC. Table 2 and 3 show performance analysis of 
each rendering step using ES ftrace utility. 

Fig. 5 Scalar contour plots on semi-cylindrical sheets as a 
benchmark problem, which has 1 million triangles. 
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Fig. 6 Deformation and stress contour plots of a Pantheon 
model with 18 million DOFs. 

Table 2 Performance analysis of rendering steps. In this table, 
Vec. means whether a step can be vectorized, and vec-
off/on show runtime performances with vectorization 
off/on. 

Table 3 Performance analysis of rendering a Pantheon model 
with 16.6 million triangles. 

There are mainly ten rendering steps in our algorithm. 
All the steps before generate fragment step are triangle-
wise vectorized calculations, and two steps, interpolate z 
and interpolate color, are fragment-wise vectorized calcu-
lations. However, fragment generation and fragment 
write steps, which are in the scan conversion stage, are 
not vectorized. 

When run with vectorization off, no vectorized steps 
occupy 17 and 12 percents of total execution time in 1 
million triangles and 16.6 million triangles model, respec-
tively. With vectorization on, vectorized steps are accel-
erated about 10 times or more, while they remain the 
same. As a result, they are shown up as the bottleneck. 
The fragment generation step, which is accelerated by our 
look-up table approach, occupies about 71 or 59 percents 
of the bottleneck steps. 

We also prepared a scalar-tuned version of the off-line 
visualizer, which is mainly intended for PC, WS and PC 
clusters. And, in rendering a benchmark model, the vec-
torized version is 4.3 times faster than the scalar-tuned 
version, when they are executed on ES. One reason is that 
the ES processor runs at 500MHz and its scalar perform-
ance is relatively slow compared with its vector perform-
ance. This means, it is still better to prepare a vectorized 
version optimized for ES or other vector machines than to 
bring a scalar version running on other scalar-processor 
platform and keep using it on ES. 

4. Visualization Examples 
Here, some visualization examples of huge scale 3-D 

structural analyses are demonstrated. 
First, Pantheon in Roma, Italy is analyzed. The total 

DOFs in FE model is 18 million. The surface patch of the 
Pantheon model consists of 0.65 million triangles. A 
gravity force is applied as a body force. The result of 
elasto-static analysis is visualized using 8 APs of ES. 
Runtime performance of visualization with generating 
100 image data from various angles is about 218 seconds. 
Fig. 6 and Fig. 7 are deformation and equivalent stress 
contour plots of a Pantheon model. 

The next example is an earthquake response simulation 
of a full-scale nuclear power plant. It is a Boiled Water 
Reactor (BWR). The FE model contains 200 million 
DOFs. The surface patch consists of 16.7 million trian-
gles. A horizontal acceleration force is applied as an 
earthquake load. The visualization with 100 images of 
elasto-dynamic analysis results is successfully performed 
in 7.5 minutes using 32 APs of ES. Fig. 8 and Fig. 9 are 
deformation and equivalent stress contour plots of a 
BWR model. In Fig. 9, the amount of deformation is 
magnified by 5,000 times. 
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Fig. 7 Bottom view of a Pantheon model with deformed 
configuration and stress distribution. 

Fig. 9 Cross section around a skirt portion of a BWR model. 
The amount of deformation in this figure is magnified by 
5,000 times. 

Fig. 8 Deformation and stress contour plots of a BWR model 
with 200 million DOFs. 

5. Conclusions 
An off-line visualizer is developed for visualization of 

a huge scale 3-D structural analysis on ES. The off-line 
visualize performs rendering of surface patch triangles to 
produce image files of deformation plot and stress con-
tour plot. It is vectorized and parallelized. The vectoriza-
tion scheme of its polygon rendering using a look-up 
table is explained in detail, and its performance evalua-
tion on ES is carried out. Rendering performance of 1.22 
million triangles per seconds is obtained per a single 
processor of ES. Acceleration ratio by vectorization is 
about 4.2 times. And it is 4.3 times faster than the corre-
sponding implementation specially tuned for a scalar-type 
processor. It is also demonstrated that a 3-D structural 
analysis over 200 millions DOFs can be visualized effi-
ciently using our off-line visualizer. 
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