YOKOSUKA Cruise Report YK11-E06 Leg 1

July 11 2011 – July 28 2011

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

Acknowledgements

We would like to thank Captain Mr. Samejima and all ship crew of R/V YOKOSUKA for their safe cruise. We are grateful to Commander Mr. Ogura and the operation team of a Yokosuka Deep-Tow (YKDT) for their operations in serious condition. We are pleased to MARITEC staff for their supports during our cruise. We also thank Dr. Kodaira, Dr. Kinoshita, Dr Kitazato Dr Takai and Dr Fujikura for their advices of cruise planning.

YK11-E06 Leg 1 Cruise report contents

- 1. Objectives and Cruise summary of YK11-E06 Leg 1 cruise
- 2. List of Participant

Scientists YKDT Team Ship Crew

- 3. Ship Log (Kawamura)
- 4. Deep-Tow dives
 - 4.1 Yokosuka Deep-Tow (YKDT) system
 - 4.2 Seabat 7125 system
 - 4.3 Dive summary
- 5. Other observations
 - 5.1Deep Sea camera system
 - 5.2 OBEM operation
 - 5.3 OBS deployment
 - $5.4 \mathrm{~GPS}/\mathrm{acoustic}$ seafloor geodetic observation
 - 5.5 OBS recovery
- 6. Shipboard data (Bathymetry and Gravity data)
 - 6.1 Shipboard bathymetric survey in YK11-E06 leg1
 - $6.2~{\rm Gravity}$ data
 - 6.3 Geomagnetic field vector on the sea

7. Summary (Kasaya)

Appendices Explanatory notes A.1 R/V YOKOSUKA

1. Objectives and Cruise information of YK11-E06 Leg 1 cruise

On 11 March 2011, Tohoku, northeast Japan, experienced a great earthquake (Mw 9.0, Mt 9.1) called the 2011 off the Pacific coast of Tohoku earthquake. Seismic and tsunami inversion analyses have shown that tsunami waves with a maximum run-up height of 38 m were generated after the main shock by topographic changes on the seafloor in the toe region of the Japan Trench slope off Sendai. These inversion analyses (Maeda et al., 2011) and bathymetric surveys (Fujiwara et al., submitted) indicate that the toe region slipped about 50 m along the thrust. If the thrust fault rapidly deformed the seafloor, as suggested by Ide et al. (2011), the basic theory of tsunamigenesis would predict the generation of tsunamis all along the axis of the Japan Trench.

We plan various observations to make clear many phenomena related with the earthquake. The main task of this cruise is to collect the detailed bathymetric data in the toe region of the Japan Trench slope. Therefore, we prepare to use a high accuracy multi-beam echo sounder "Seabat 7125 system" on a Yokosuka deep-tow (YKDT). A deep sea camera system operation is planed to collect the images and samples in the depth of over 7000 meters. Bathymetric, back scatter image, sub-bottom profiler data, gravity and three-component geomagnetic data were also observed. Other observations based on the observation proposal related with this earthquake are also planed.

Cruise information

Cruise number
Ship name
Chief scientist
Date
Ports of call
Research Area

YK11-E06 Leg 1 R/V YOKOSUKA Takafumi Kasaya (IFREE, JAMSTEC) 11 July 2011 – 28 July 2011 Yokosuka – Yokosuka (JAMSTEC) Off Sanriku, Off Boso(Fig.1)

Fig.1 Research area map of this cruise.

2. Participants List

Onboard Scientists Chief Scientist (IFREE/JAMSTEC) Scientist (IFREE/JAMSTEC) Scientist (IFREE/JAMSTEC) Scientist (BioGeos/JAMSTEC) Scientist (BioGeos/JAMSTEC) Scientist (Fukada Geological Institute) Scientist (Tohoku University) Scientist (Tohoku University) Scientist (Tohoku University) Scientist (JMA)

Technical Advisor Technical Staff (Maritec/JAMSTEC)

Deep Tow Operation Team Chief Submersible Staff 2ndSubmersible Staff 2ndSubmersible Staff 2nd Submersible Staff 3rd Submersible Staff

R/V YOKOSUKA Crews

Captain Chief Officer 2nd Officer 3rd Officer Chief Engineer 1st Engineer 2nd Engineer 3rd Engineer Chief Radio Operator 2nd Radio Operator Crew Trainee Crew Trainee Crew Trainee Crew Trainee Takafumi KASAYA Miho ASADA Arito SAKAGUCHI Kazumasa OGURI Takashi TOYOFUKU Kiichiro KAWAMURA Motoyuki KIDO Yukihito OSADA Yoshihiro ITO Kenji HIRATA

Junya NIIKURA

Satoshi Ogura Akihisa ISHIKAWA Fumitaka SAITO Takuma OONISHI Yudai TAYAMA

Koji SAMESHIMA Takafumi AOKI Shozo FUJII Yumihiko KOBAYASHI Hiromi YOSHIKAWA Takashi OTA Takahiro MORI Kenta IKEGUCHI Tokinori NASU Yoshikazu KURAMOTO Ryosuke KOMATSU Sho SUZUKI Syogo YOSHIMURA Ippo MURASE Crew Trainee Boat Swain Able Seamen Able Seamen Able Seamen Able Seamen Sailer Sailer No.1 Oiler Oiler Oiler Oiler Oiler Chief Steward Steward Steward Steward Steward

Katsuhiro KAWASE Shoichi ABE Nobuyuki. ICHIKAWA Masanori OHATA Nozuyuki ISHIZUKA Shoji TAKUNO Shinsuke UZUKI Hiroki Shigeta Kazuaki NAKAI Ryo SATO Souta MISAGA Takeshi WATANABE Masayuki FUJIWARA Teruyuki YOSHIKAWA Takahiro ABE Shinsuke TANAKA Mizuki NAKANO Toru WADA

3. Ship logs

Logbook Y	K11-E(06Leg1 11/July/11 - 28/Ju	1y/11, for	18 days
				Position/Weather/WindDirection/WindV
				elocity/WaveHeight/Visiblity/Swell
Date	Tim	Description	Remark	
	е			
11, Jul,	9:0	Embark on Yokosuka		Weather: bc = fine but cloudy
11	0			
	10:	Depart from the YOKOSUKA	A JAMSTEC	o = overcast,f = fog
	00	port		
	12:	Cruise to the Boso OBS	Head 190,	34-59.2, 139-41.8/bc/S/4/2/1/10
	00	site	15 knots	
	16:	Arrive at the Boso OBS s	site	
	00			
	16:	Deploy a transducer		
	10			
	17:	Recover OBS Y2		
	51			
	20:	Recover OBS W2		
	43			
	23.	Recover UBS W3		
19_Tu1_	15	Decement OPS V2		
12-Ju1- 11	1.2	Recover ODS VS		
11	9 1 · 1	Recover OBS VA		
	4·1 4	Recover ODS V4		
	4:1	Cruise to the DC-1 Site of	off Sanriku	
	5		JII Salli IKa	
	12:			37-04.0.143-11.5/bc/SW/4/2/1/1/2
	00			
	16:	Arrive at the DC-1 site		
	10			
	16:	XBT		
	17			
	17:	Deploy the deep-sea came	era system	(lander) at DC-1 site
	02			
	19:	Start calibration		
	23			

20: Finish calibration 10 13, Jul, 8:1 Recover the lander 8 11 8:2 Cruise to the GJT3 site for GPS measurement 0 10: Arrive at the GJT3 site 20 10: Tow the GPS system 50 11: XBT 50 12: 38-16.3, 143-28.9/bc/SW/5/4/2/1/0 00 14: XCTD 35 15: Finish the GPS system 07 15: Cruise the DC-2 site for the lander 10 17: Arrive the site 10 17: Deploy the lander at DC-2 32 19: Start calibration 45 20: Finish calibration 33 21: Start MBES pre-site-survey 08 14, Jul, 1:0 Finish MBES pre-site-survey 11 0 7:1 Recover the lander 7 7:2 Cruise to the YKDT#102 site 0 8:3 Arrive the site 0 But we found troubles in the SeaBat system, so that we cancelled the towing.

10: Cruise to S35 site for OBS deployment 45 12: 38-16.3, 143-31.5/bc/SW/5/4/2/1/0 00 12: Arrive at S35 site 10 12: Deploy OBS S35 16 13: Deploy OBS S37 1114: Deploy OBS S36 01 14: Start MEBS pre-site-survey 52 15: Finish MBES pre-site-survey 09 15: Deploy OBEM 33 16: Start calibration 43 17: Finish calibration 42 19: Start MBES pre-site-survey 11 19: Finish MBES pre-site-survey 57 22: Start MBES survey 26 15-Jul-4:0 Finish MBES survey 11 0 6:5 YKDT#102 on the sea surface 0 11: Finish the survey because of cable trouble 22 12: 38-10.9, 143-47.0/bc/W/4/3/1/8 00 13: YKDT on deck 57 16: Deploy OBS S3B 46 17: Deploy OBS S3C

38 18: Start MBES survey 19 16-Jul-2:2 Finish MBES survey 11 0 6:5 YKDT #103 on the sea surface 1 12: 38-10.5, 143-46.5/o/SW/3/2/3/6 00 16: Recover YKDT#103 00 18: Start MBES survey 49 17-Jul-3:1 Finish MBES survey 11 1 4:3 Start MBES pre-site-survey 9 5:2 Finish MBES pre-site-survey 5 6:4 YKDT#104 on the sea surface 6 But we found troubles in the camera system, so that we cancelled the towing. 12: 39-06.5, 143-53.1/f/SW/3/3/3/0.1 00 16: Recover YKDT#103 06 18: Start MBES survey 49 18-Jul-3:1 Finish MBES survey 11 1 4:3 Start MBES pre-site-survey 9 5:2 Finish MBES pre-site-survey 5 6:4 YKDT#104 on the sea surface 6 But we found troubles in the camera system, so that we cancelled the towing.

12: 41-04.2, 142-02.4/bc/N/2/1/4/10 00 12: Recover YKDT#104 27 17: Deploy OBS S39 19 18: Deploy OBS S3A 1119: Deploy OBS S38 05 20: Start MBES survey 01 0:0 Finish MBES survey Cruise to Aomori port 0 19-Jul-8:0 Anchor at No. 3 district Harborage for typhoon No. 6 (Margon) 5 in Aomori port 11 12: 40-51.3, 140-45.3/bc/NE/4/3/1/10 00 20-Jul-12: Aomori port 40-51.3, 140-45.7/bc/E/5/4/1/10 00 11 21-Jul-12: Aomori port 40-51.3, 140-45.7/bc/E/6/4/1/10 11 00 22-Jul-12: Aomori port 40-51.3, 140-45.7/bc/E/5/3/10 11 00 13: Disembarkment: Sakaguchi, Kido, Ito, Hirata 15 23-Jul-12: Aomori port 40-51.3, 140-45.7/bc/NE/4/2/0/10 11 00 14: Weigh the anchor 2524-Jul- 12: Cruise to survey area Head 142, o/NNE/3/4/4/1 11 00 9 knots 25-Jul-2:3 Arrive at survey area 0 11 4:4 Start MBES pre-site-survey 0 5:3 Finish MBES pre-site-survey 3

But we cancelled YKDT operation, because of large swells from typhoon. 9:1 Start MBES survey 7 12: 39-00.5, 144-04.5/o/S/5/4/4/7 00 26-Jul- 2:3 Finish MBES survey 11 0 5:5 YKDT#105 on the sea surface, Bathymetric survey using SeaBat7125 6 12: 39-08. 4, 143-53. 5/o/S/4/2/1/4 00 17: Recover YKDT#105 35 18: Start calibration for ship magnetometer (hachinoji) 19 18: Finish the calibration 38 18: Start MBES survey 42 23: Finish MBES survey 30 27-Jul-6:0 Tow the GPS system 11 3 (GFK) 7:0 XBT 0 11: XCTD 20 11: Finish the GPS system 49 11: Cruise to JAMSTEC Yokosuka port 50 12: 37-34.8, 142-45.9/bc/NW/2/2/1/4 00 28-Jul-9:0 Arrive at the JAMSTEC port 0 11

4. Deep-Tow dives

4.1 Yokosuka Deep-Tow (YKDT) system

Yokosuka Deep-tow is attached by armored cable between the mother vessel. There are color TV camera, black-white TV camera, digital still camera and CTD sensors.

color TV comoro	SONY DXC-990, NTSC				
color i v camera	luminous intensity : 1 lux				
	SONY XC-ST50, NTSC				
black-white I v camera	luminous intensity : 0.3 lux				
digital stack some or a	AquaPix SeaSnap				
digital steel camera	(3.34Mpixel)				
flood lamp	500W×2 250W×2				
CTD	Seabird SBE49				
alt meter	MESOTECH 1007				
trans ponder	Oki SB-1023 (7kHz)				
releaser	Inter Ocean MR5000				

Table 4.1.1 The specifications of Yokosuka Deep-tow

Fig.4.1.1 Yokosuka Deep-tow with a "SEABAT 7125" system.

4.2 SEABAT 7125 system

Junya Niikura SeaBat7125 mounted on YK-DT during YK11-E06 cruise is a 400 kHz high resolution bathymetric system that collects high resolution bathymetric data and backscattering intensity data simultaneously. 512 beams and equi-distant footprints provide us extremely high density and maximizing swath width. All measurements are corrected for actual YK-DT attitude by using PhinsDVL motion sensing unit. With No.3 fiber optic cable, SeaBat7125 and PhinsDVL mounted on YK-DT can map water as deep as 6,000 meters. The specification of the system is shown in Table 4.2.1.

Table 4.2.1

<u>SeaBat7125</u> Frequency : 400kHz Max Slant Range : 200m Swath Coverage : 128° Beam Width : 0.5× 1° (Along-track ×Across-track) Number of Beams : 256 / 512 Equi-angle or 512 Equi-distant Depth Resolution : 6 mm Operating Depth : 6000m

<u>PhinsDVL</u>

Heading Accuracy : 0.01°(working with GPS) Roll / Pitch Accuracy : 0.01°rms DVL Frequency : 600kHz Operating Depth : 6000m

SeaBat7125 system is composed of the receiver array, projector array, and SeaBat7125 Control PC (see, Fig.4.2.1). PhinsDVL is a subsea inertial navigation system providing position, true heading (Fiber Optic Gyroscope), attitude, speed and heave. To increase position accuracy, Doppler Velocity Log (DVL) and depth sensor are connected to PhinsDVL.

Optical transmit device has two tasks. One is supplying electric power to Seabat7125 and PhinsDVL. The other is transmitting PhinsDVL data to Seabat7125 control PC, and transmitting Seabat7125 and Phins DVL data to surface.All bathymetric data including backscattering data and PhinsDVL data are stored on a hard disk drive in SeaBat7125 Control PC pressure case.

Block diagram of the system used during YK11-E06 cruise Seabat 7125 is shown in Fig.4.2.2. Through the No.3 fiber optic cable, SeaBat7125 and PhinsDVL can be controlled and monitored at ship's operation room. For optical communication being not available, real

time monitoring of the SeaBat7125 and PhinsDVL data is not available. However, all data is stored in the Seabat7125 control PC of wet part.

Fig.4.2.1 SeaBat 7125 and PhinsDVL

Fig.4.2.2 Block diagram of the SeaBat7125

4.3 Dive summary

Takafumi Kasaya, Miho Asada, Kiichiro Kawamura, Arito Sakaguchi

We carried out the camera observation for the safety check of a "Shinkai 6500" dive and high accuracy acoustic measurement using the "seabat 7125 system". However many trouble of the optical cable communication were occurred. Therefore, we could not enough to obtain the data through this cruise.

4.3.1 Dive #102

The purpose of this dive is to confirm the safety for the "Shinkai 6500" dive around this "Fissure site". We could see the sea bottom covered with the sediment. However, visibility was poor due to muddy water. All communication using the optical cable was not available on the way. YKDT crews tried to recover the optical communication, but we gave up this dive at 11:20.

Time	Cable Length	Altitude	Х		Y	Remarks
651	0					Sea surface
900	5333					Information cutt off (Alt, Conduct, Azimuth)
911	5510					Transponder error. Stop roll down.
947	5982			-3680	760	Landing. Clasts scattering with thin cover sediment.
951	5968					Layered strata with thin cover sediment.
952	5968					During moving, camera view is whiteout due to muddy water.
954	5968					Calsts with thin cover sediment
1004	5965					During moving, camera view is whiteout due to muddy water.
1012	5970			-3570	780	During moving, camera view is whiteout due to muddy water.
1020	5976			-3450	750	During moving, camera view is whiteout due to muddy water.
1025	5980			-3390	740	During moving, camera view is whiteout due to muddy water.
1030	5986			-3350	780	During moving, camera view is whiteout due to muddy water.
1040	5993			-3200	770	During moving, camera view is whiteout due to muddy water.

1050	6011	-3080	760	During moving, camera view is whiteout
1000	0011	5000	100	due to muddy water.
1100	6018	-2950	780	During moving, camera view is whiteout
1100	0010	2300	100	due to muddy water.
1110	C017	-9910	700	During moving, camera view is whiteout
1110	6017	-2810	790	due to muddy water.
1117	6003			blackout due to cable maintanance
1120	6003	-2660	760	Give up survey
1126				Wire in

Table 4.3.1 Dive log (event log) of YKDT dive #102.

Figure 4.3.1 Dive track of the YKDT dive #102.

Fig. 4.3.2 Photos taken in the YKDT dive #102. Visibility was poor due to muddy water.

4.3.2 Dive # 103

In this dive, a multi beam echo sounder system (Seabat 7125) was loaded on the YKDT to obtain the detailed image around a "Fissure site". Before arriving at the planed observation depth, all optical communications were not available. However, we continued to survey without navigation data because the Seabat 7125 data was only stored in the internal memory device. Ship crews controlled the YKDT using the position and depth data of a SSBL system. Figure 4.3.4 shows the time series of YKDT depth data by a SSBL system.

Time	Cable	Altitude	Х	Y	Remarks
004	Length				a : :, :, :, :, :, :, :, :, :, :, :, :, :
934	550	00			Sonner image available
					Survey start. Camera and
955	560)3			onboard sonner image is not
					available.
1000	560	00	2230	950	
1010	558	30	2210	690	
1020	558	30	2270	680	
1030	558	36	2080	880	•
1040	570)4	1990	810	1
1050	559	90	1880	850	1
1100	583	30	1730	760	1
1110	564	40	1540	710	1
1120	561	10	1360	640	1
1130	558	30	1200	600	
1140	559	90	1010	500	
1150	556	30	770	450	•
1200	557	70	550	420	•
1210	557	70	380	370	
1220	561	10	140	350	1
1230	561	10	-90	350	
1240	561	10	-380	250	1
1250	562	20	-630	170	1
1300	564	40	-890	150	1
1310	569	90	-1100	70)
1320	576	30	-1350	30	•
1330	576	30	-1640	-30	Finish survey
					e e

2011.7/16. Yokosuka@Japan Trench point#95 and 96

Table 4.3.2 Dive log (event log) of YKDT dive #103.

YKDT103DIVE 143"46' 143°47' 143°48' 143°45' 38'14' 38°14' 38°13' 38°13' (and the second Landing Point 38°12' 38°12' ŝ -200 38'11' 38"11" 38*10' 38°10' 143°45' 143*46' 143°47' 143°48' GMD 2011 Jul 16 18:27:03 Grid = 150m Contor = 20m Annotation = 100m -7000 -6750 -6500 -6250 -6000 -5750 -5500 -5250 -5000 -4750 -4500 Depth[m]

Figure 4.3.3 Dive track of the YKDT dive #103.

Fig. 4.3.4 Time series of YKDT depth by a SSBL system.

YKDT dive #103

4.3.3 Dive # 104

The purpose of this dive is to confirm the safety for the "Shinkai 6500" dive around this "39° N site". We could see the sea bottom covered with the sediment, and observed some bacrerial mats. All communication using the optical cable was not available on the way. We tried to recover the optical communication, but we gave up this dive at 10:14

Time	Depth	Altitude	Х	Y	Remarks
900	5345		-410	1110	Landing. Muddy sea floor. Clear
300	0040		410	1110	view without muddy water.
905	5341				Many small shrimp?
908	5341		-300	1110	
910	5340		-270	1070	Many small shrimp? →Sea cucumbers?
916	5338				Decrease of shrimp \rightarrow Sea cucumbers?
918	5340				Dead shrimps \rightarrow Sea cucumbers?
920	5340		-170	1010	
925	5335				Muddy floor. Only one rock.
930	5335		-50	870	Muddy floor
932	5336				Living shrimp.
934	5334		-10	850	Bacrerial mat
935					Muddy floor.
940	5332		30	708	Bacrerial mat
944	5332				Some traces
945	5330		60	730	Some bacrerial mats
946	5330				Muddy floor.
950	5328		120	640	Great bacrerial colony
951	5328		140	620	Many small bacterial mats
953	5329				Many small bacterial mats
954	5329		150	600	Many small bacterial mats
955	5330				Scattered small bacterial mats
956	5329				Scattered small bacterial mats
959					Bacrerial mat
1000			190	500	Backout
1005					Blackout
1010			240	380	Blackout
1014			260	300	Giveup. Rollup

2011.7/17. Yokosuka@Japan Trench point SHIROURI

Table 4.3.3 Dive log (event log) of YKDT dive #104.

YKDT104DIVE

Figure 4.3.5 Dive track of the YKDT dive #104.

Fig. 4.3.6 Photos taken in the YKDT dive #104. Many bacrerial mats were observed through this dive. Small shrimp sometime passed in front of a camera's view.

4.3.4 Dive # 105

This dive is a second dive using a multi beam echo sounder system (Seabat 7125) to obtain the detailed image around a "39°N site". At a depth of 2500 meters, all optical communications were not available. However, we continued to survey without navigation data. In this dive, the internal memory device stores not only the Seabat 7125 data but also navigation data. Ship crews controlled the YKDT using the position and depth data of a SSBL system. Figure 4.3.8 shows the time series of YKDT depth data by a SSBL system.

Time	Cable Length	Depth of Trapon	Σ	X	Y	Remarks
						Camera and other data from
7:02	2500					the deep-tow system were
						disconnected.
8:11						Cable out 30 m
8:14						Out until 5100 m
8:20	5101		-	-2650	-440	Stop the winch
8:30	5151		-	-2460	-440	
8:40	5151		-	-2250	-410	
8.20	5151		_	-9010	-200	Cable out 50 m, enter the
0.90	0101			2010	390	survey line, Start the survey
8:53	5200					Stop the winch
8:55	5200					Cable out 30 m
8:56	5230					Stop the winch
						Command room said "Present
						location is 160 m north of #2."
8:59	5231					Operation room decided the
						starting time for this survey
						being 8:50.
9:00	5231		-	-1790	-370	
9:10	5231		-	-1570	-360	
9:12	5231					Cable out 50 m
9:14	5283					Stop the winch
9:15	5283					Cable out 50 m
9:17	5333					Stop the winch
9:20	5333		-	-1380	-370	
9:30	5333		-	-1120	-340	
9:37	5333					Cable out 50 m
9:39	5384					Stop the winch
9:40	5384	509	90	-950	-320	
9:50	5384	508	80	-700	-310	

2011.7/26 Yokosuka@Japan Trench, the site is same as YKDT#98

9:59	5384				Cable out 60 m
10:00	5441	5110	-460	-300	Stop the winch
10:10	5441	5100	-160	-310	
10:20	5441	5080	90	-310	
10:30	5441	5080	340	-300	
10:40	5441	5080	650	-310	
10:50	5441	5070	940	-300	
11:00	5441	5080	1210	-300	
11:10	5441	5050	1500	-280	Finish the first survey line, cable in until 5000m. Turn the ship, and cruise to the second survey line #3.
11:20	5046	4680	1810	-310	To the second survey line.
11:22	4998				Stop the winch
11:30	4998	4590	2050	-350	To the second survey line.
11:40	4998	4830	2280	-300	
11:50	4998		2510	-290	
12:00	4998	4919	2710	-270	
12:10	4988	4875	2820	-200	
12:20	4998		2780	-130	
12:30	4998		2690	-90	
12:34	4998				Cable out 200 m
12:39	4998				Out until 5300 m
12:40	5260		2520	-60	
12:41	5302				Stop the winch
12:44	5302				Out until 5400 m
12:47	5400				Stop the winch
12:50	5400	5140	2360	-50	
13:00	5400	5130	2120	-10	
13:01	5400				Cable out 80 m
13:03	5481				Stop the winch
13:10	5481	5164	1900	10	Cable out 70 m
13:12	5551	5190			Stop the winch
13:20	5551	5183	1730	10	
13:27	5551		1490	20	Start the suvey line
13:30	5551		1470	30	
13:36	5551				Cable out 60 m
13:38	5611				Stop the winch
13:40	5611		1220	20	
13:50	5611	5168	960	50	
13:56	5611				Cable out 60 m

13:59	5671				Stop the winch
14:00	5671	5212	750	30	
14:10	5671		410	0	
14:14	5671				Cable out 60 m
14:17	5731	5198			Stop the winch
14:20	5731		190	-20	
14:30	5731	5202	-90	-50	
14:40	5731	5182	-340	-40	
14:50	5731	5187	-620	-60	
15:00	5731	5218	-940	-100	
15:10	5731	5226	-1190	-130	
15.20	5731	5155	-1510	-120	
15.20	5791		-1910	-160	Finish the survey. Recover the
19.90	0701		1010	100	deep tow.

Table 4.3.4 Dive log (event log) of YKDT dive #105.

YKDT105DIVE

Figure 4.3.7 Dive track of the YKDT dive #105.

5. Other observations

5.1 Deep sea camera system

Kazumasa Oguri, Takashi Toyofuku

5.1.1 Overview

To record sediment surface and organisms and to collect sediments from the axis in the Japan Trench, deep-sea camera system was developed (Figure 5.1.1; Murashima et al., 2009). This instrument consists of nineteen deep-sea floats and main aluminum frame mounted transponder/releaser, HDTV camera, light, battery, CTD, two Niskin bottles with electrolytic fuses, three short core samplers and ballast weight (Figure 5.1.2). In this cruise, the camera system was used to collect sediments, sea floor observations, collection of organisms with baited trap, and depth, temperature and salinity measurements in water column. When the camera system was released from the ship, the CTD was started to record pressure, conductivity and temperature. The camera was started to record by the power supply from internal timer circuit. Sediments were collected in the core tubes mounted on the tripod legs during the landing. The transponder released the ballast weight when receiving the release command from the ship. The position of the camera system was always monitored on board to receiving the acoustic signal from the transponder. Table 5.1.1 shows the setting of the camera system in each deployment. Figure 5.1.3 shows the landing sites, and figures 5.1.4 and 5.1.5 show the image captured from the HDTV movies in the respective sites.

Reference

Murashima, T. Nakajoh, H. Takami, H. Yamauchi, N. Miura, A. Ishizuka, T. (2009) 11,000m class free fall mooring system. Proceedings of OCEANS 2009-EUROPE, 2009. OCEANS '09, p1-5.

	Date deployed	Latitude (N)	Longitude (E)	Max. CTD depth (m)	Sediment sampling	HDTV video recording	CTD
Camera1	2011/7/12	38°05.1595'	143°59.4547'	7553	0	0	0
Camera2	2011/7/13	38°05.1190'	144°02.6174'	7261	0	0	0

Table 5.1.1 Setting of the camera system in each deployment.

Figure 5.1.1 Schematic overview of deep-sea camera system.

Figure 5.1.2 Deep-sea camera system (Camera 1).

Figure 5.1.3 Landed points of the deep-sea camera system.

Figure 5.1.4 Typical image at bottom of the central axis of the trench (7553m). Highly turbidity was observed.

Figure 5.1.5 Image taken from bottom of the trench (7261m). Amphipods were seen during the recording the movie at the lower left.

5.1.2 Sediment samples

Five sediment cores were obtained during the two deployments of the camera system. The Schematic illustrations of the cores are shown in the Fig.5.1.6. The longest cores collected in each site were stored in the refrigerator to take X-ray CT images after the cruise. Other cores have been sliced every 0.5 cm intervals from core top to 3 cm and every 1 cm intervals for 3 to 15 cm to investigate taxa of benthic foraminifera and abundance of bacteria and virus populations.

Figure 5.1.6 Schematic illustrations of the sediment cores collected from Japan trench: DC-1 (from 7553m) and DC-2 (from 7261m).

5.1.3 CTD data

Depth, temperature and salinity of water column were measured by SBE 49 CTD system mounted on the camera system. The CTD recorded pressure, conductivity and temperature from release to the recovery of the camera system. The depth was obtained to convert the pressure. Deployment date and the depth are shown in table #-1. Profiles of temperature and salinity are shown in figures #-1 and #-2, respectively.

	Date	Maximum CTD depth (m)
Camera 1	2011/7/12	7553
Camera 2	2011/7/13	7261

Table 5.1.2	Deployment	date and	the depth	obtained b	ov the	CTD
				0.0000000000		

Figure 5.1.7 Profiles of temperature and salinity at Camera 1 deployment.

Figure 5.1.8 Profiles of temperature and salinity at Camera 2 deployment.

5.2. OBEM operation5.2.1 Outline of an OBEM system

The OBEM system with a high sampling rate was designed to investigate the crustal and mantle structure (Fig. 5.2.1). It has a folding-arm system to facilitate assembly and recovery operations (Kasaya et al., 2006; Kasaya and Goto, 2009). Concepts of our developed OBEM and OBE system are miniaturization, a high sampling rate, easy assembly and recovery operations, and low costs of construction and operation. Figure 5-2 shows the schematic diagram of the arm-folding system. For measuring the electric field, we used Ag-AgCl electrodes mounted at the toe of each electrode arm.

Electric circuit used for each system is contained in the pressure glass spheres. The fluxgate magnetometer of the OBEM system is mounted outside the glass sphere (Fig. 5-1). The salient characteristic of our system is its arm-folding mechanism, which facilitates and simplifies our onboard operations. We used an acoustic release system that had been already used by JAMSTEC for Ocean Bottom Seismography (OBS).

Fig. 5.2.1 Photo of a small OBEM system.

Fig. 5.2.2 Schematic diagram of the arm-folding system. After starting to pop up, the arm unit is picked up as the sphere ascends (Patent number of Japan: 4346605).

5.2.2 OBEM operation

OBEM was launched from deck using A-frame, and sunk by own weights. The operation was quick and smooth. We confirmed that the OBEM was successfully settled on the seafloor. Then, the settled positions were determined by measurements of the slant ranges at three positions surrounding the launched point for each OBEM (Fig.5.2.3). It will be recovered in a next leg of this cruise. A calculated OEBM position is 38.2422218° N, and 143.355881° E.

This OBEM system can synchronize to the laptop PC using USB communication. Clock synchronization before deployment was carried out using the NTP server unit.

Fig. 5.2.3. Red and green circle shows settled and launched position, respectively. Three gray circles show the slant range measurement positions.

References

Kasaya, T., T. Goto, and R. Takagi (2006), Marine electromagnetic observation technique and its development –For crustal structure survey-, *BUTSURI-TANSA, 59*, 585-594 (in Japanese with English abstract).

Kasaya, T. and T. Goto (2009), A small OBEM and OBE system with an arm folding mechanism, *Exploration Geophysics*, 40, 41-48.

5.3 OBS deployment (Tohoku University)

Yoshihiro Ito

In order to investigate the aftershock seismicity of the 2011 Tohoku-Oki earthquake near the epicenter, we deployed eight ocean-bottom seismometers (OBS) off Miyagi, northeastern Japan. A short-period seismometer with an eigenfrequency of 1 or 4.5 Hz is used. The sensor, data logger, and batteries are packed into a glass sphere (Fig. 5.3.1). It is possible to record continuous data related to the vertical and two horizontal components for three months with a sampling rate of 200 Hz.

We deployed three, two and three OBSs on July 14, 15, and 17, respectively. All of the OBSs were dropped from the deck to the seafloor. The OBSs were sunk with a speed of 50–60 m/min, which were measured by an acoustic ranging. The locations of the OBSs are listed in Table 5.3.1 and are shown in Fig. 5.3.2. They will be recovered by a pop-up system after three months.

Station	Latitude	Longitude	Depth (m)
S35	38° 00.8965'N	143°28.8822'E	4261
$\mathbf{S36}$	38° 03.8550'N	143°17.8723'E	2995
$\mathbf{S37}$	38° 54.8814'N	143°21.8369'E	3576
S38	38°04.9844'N	143°07.0055'E	2114
S39	$37^{\circ}50.9643$ 'N	143°13.9796'E	2858
S3A	37°56.9946'N	143°05.9989'E	2075
S3B	38°10.0012'N	142°56.9866'E	1616
S3C	38°00.9740'N	142°55.9971'E	1736

Table 5.3.1. Location of ocean-bottom seismometers

Fig. 5.3.1. Ocean-bottom seismometers on the deck.

Fig. 5.3.2. Location of OBSs. Red triangles indicate the locations of the installed OBSs. Yellow star indicates the epicenter of the 2011 Tohoku-Oki earthquake. Gray dots indicate the epicenters of the aftershocks reported by Japan Meteorological Agency. Contour

5.4 GPS/acoustic seafloor geodetic observation (Tohoku University)

Motoyuki Kido, Yukihitoto Osada

GPS/acoustic observation can measure position of seafloor transponders, hence seafloor displacement, with an accuracy of few centimeters. The technique is the combination of kinematic GPS tracking of a surface buoy or a transducer and acoustic ranging to transponders installed on the seafloor. Figure of our buoy and its deck operation are shown in Photo 5.4.1.

After the 2011 Tohoku-oki earthquake, we have detected as large as 31 m of displacement at one of our survey site GJT3. Furthermore we have constructed new survey site GFK after the earthquake. In this cruise, we carried out surveys at GJT3 for 4 hours and GFK for 6 hours as the following time table (Table 5.4.1). XBT or XCTD measurements were concurrently done to calibrate sound speed in ocean.

Site	Day(JST)	Time	
GJT3	2011/07/13	11:00	deployed the buoy
		11:50	XBT
		14:35	XCTD
		15:00	retrieved the buoy
GFK	2011/07/27	06:00	deployed the buoy
		06:41	XBT
		11:25	XCTD
		11:50	retrieved the buoy

Table 5.4.1 Time table on GPSA observation

Figure 5.4.1 photograph of our buoy and the deck operation.

On July 11 to July 12, we recovered 5 ocean-bottom seismometers (OBSs) off Boso Peninsula (Fig.5.5.1). The OBSs are the last 5 seismometers that Meteorological Research Institute (MRI) should recover; from late April to early May 2011, MRI had deployed total of 39 OBSs in the southern continental slope of the Japan Trench by using the Japan Meteorological Agency (JMA)'s R/V Ryofu-Maru. 31 of those were already recovered by JMA's R/V Keifu-Maru in June 2011 and by JAMSTEC R/V Yokosuka (YK11-E05) in June to July 2011. Three of those were failed to recover because of troubles in OBS transponder and/or OBS releaser.

Specification of the OBSs that were recovered during the YK11-E06 cruise are shown in Table 5.5.1.

Weather and sea conditions were good and calm so that the OBSs could be recovered efficiently. We communicated with the OBS transponders by using a portable acoustic transducer that was sunk from the port side on the upper deck floor of R/V Yokosuka. For al of 5 OBSs, we confirmed takeoff of the OBSs from the ocean floor averagely 16 minutes after transmitted corresponding release commands to the OBS transponders with the portable transducer (Table 5.5.2). During floating-up of the OBS in water, we intermittently measured slant-ranges between the transducer and OBS transponder. Then the measured slant ranges allowed for R/V Yokosuka's radio officers to estimate location of floating-up OBS in water on the basis of a geographical method. At the same time, we also monitored location of the floating-up OBS by using a portable SSBL system. The locations of the floating-up OBS measured with the portable SSBL system roughly coincided those estimated based on the geographical method by R/V Yokosuka'S radio officers. The floating-up speed of the OBSs was approximately 58 m/min on average.

Surfaced OBSs could be identifed by R/V Yokosuka crews immediately after OBS radio beacon were received. An electric direction finder, installed within the submersible control room behind the navigation bridge room, perhaps helps them to identify surfaced OBSs as quickly as possible.

Every OBS was recovered on starboard side on the upper deck floor of R/V Yokosuka approximately 10 minutes after OBS was surfaced (Table 5.5.2). We confirmed that file size of WIN-formatted, seismic waveform records on the recovered OBSs' internal hard-disk drive reached from 850 MB to 1150 MB (Table 5.5.2). The observed seismic waveform records will be merged with other records that were already recovered by R/Vs Keifu-Maru and Yokosuka (TK11-E05) and then will be processed for seismic phase picking.

This study is partly supported by the Special Coordination Funds for the Promotion of

Science and Technology (MEXT, Japan) titled as the integrated research for the 2011 off the Pacific coast of Tohoku Earthquake.

Fig 5.5.1 Location of the OBSs that were recovered by MRI during the YK11-E06 cruise. Each symbol is filled by the same color as those that OBS hardhat has. Alphanumeric code below the symbol indicates release command of each OBS transponder.

Seismometer	•three-component velocity sensors (1 x vertical, 2 x horizontal) on a gimbal u						
	•natural period of pendulum 1/4.5 Hz						
	•pre-amp gain	x 100					
	 low-passed filt 	er at 200 Hz					
	• 16 bit A/D san	npling at 100 Hz					
Hydrophone	•pre-amp gain • low-passed filt •16 bit A/D sam	x 10000 er at 200 Hz pling at 100 Hz					
Raido Beacon	•PSI inc.,	radio wave frequency	43.528 MHz				
Flasher	•PSI inc., optical sensor						
Recorder	•Clovertech DAT-4 (Ver.C_1.2)						
Battery	•Lithium-ion rechargeable						

Table 5.5.1 Specific	ation of MRI's OBS
----------------------	--------------------

						release	Talva	media		takeo	float-	wir	nd	curi	rent	£1.	
OBS	Lat	(N) ^{*1}	Lon	g(E) ^{*1}	depth	comm- and	off	beacon	very	ff time	ing-up time	direc tion	spee -d	direc tion	spee -d	size	remarks
	deg	min	deg	min	m		hour	min ^{*2}		min	min	deg	m/s	deg	m/s	MB	
V3	35	15.2	141	28.0	2879	24:07	24:31	25:21	25:30	24	50	190	4.6	38	2.5	1,086	flasher was broken
V4	35	12.0	141	44.5	4632	26:32	26:47	28:06	28:15	15	80	203	4.5	36	2.2	1,141	
W2	35	5.5	141	7.4	2495	19:34	19:48	20:32	20:43	14	43	184	3.0	36	2.3	873	
W3	35	2.2	141	24.0	3630	21:51	22:07	23:03	23:13	16	63	197	5.2	30	2.1	866	
Y2	34	39.4	140	59.2	3984	16:15	16:31	17:40	17:50	16	69	192	5.1	21	1.2	1,006	

*1 Lat (N) and Long(E) were determined by using triangle acoustic loacation.

*2 Time of release command transmission, takeoff, identifying of radio beacon, and recovery (on deck) is measured from 00:00 (JST) of July 11, 2011

Table 5.5.2 List of recovered OBSs

6. Shipboard data (Bathymetry and Geophysical data)

Takafumi Kasaya, Miho Asada

6.1 Shipboard bathymetric survey in YK11-E06 leg1

Miho Asada

Bathymetric data are obtained by SEABEAM2112 system with an array of transducers and hydrophones installed along and across keel of the R/V Yokosuka. The system transmits a 12 kHz sonar pulse at $2^{\circ} \times 2^{\circ}$ resolution for fore/aft direction, and records the travel time and amplitude of the returning echoes. The number of beams for this cruise is fixed in 121, thus there are overlap of beams in 1° . The swath range is changeable between $90 - 150^{\circ}$, and we fixed the range 120° during this cruise. Sound velocity profiles were obtained from ship-launched XBT measurements, and were updated into the SEABEAM system. Ship speed is 8 knots for all survey lines. The system has sub-bottom profiler with 4 kHz frequency, but we obtain the SBP data during on only on track in this cruise because of night-time survey.

Specification of SEABEAM2112.004 on R/V Yokosuka

Depth range; 50-11000 m Frequency; 12 kHz Number of beams; 151 max Beam resolution; $2^{\circ} \times 2^{\circ}$ Beam spacing; 1° Maximum speed; 12 knot (8 knot fix during this cruise) Accuracy of measurement; 0.5% of depth Swath range; 90-150 (150° for ~300m, 140° for ~1500m, 120° for ~4500m, 100° for 8000m, and 90° for 11000m in depth. 120° fix in this cruise)

Specification of sub-bottom profiler system

Frequency; 4 kHz Beam width; $45^{\circ} \times 5^{\circ}$ Profiling limit; 75mbsf Number of pixels; 1000 pix. each for port and stbd

Survey lines

13 July Night – 14 Morning 144:07.0 38:08.0 143:29.0 38:13.5

14 July Night – 15 Morning 144:20 37:50 143:25 37:58.5 15 July Night – 16 Morning $143:00.0\ 37:55.6$ 144:20.0 37:42.1 16 July Night - 17 Morning 143:55.0 38:00.0 143:57.2 38:10.0 144:09.5 39:00.0 17 July Night - 18 Morning 143:56.0 40:00.0 143:43.0 38:40.0 143:25.0 38:00.0 143:25.0 37:50.0 25day-26morning July 144:30.0 38:56.25 143:03.5 39:10.0 143:10.0 39:27.5 144:25.0 39:15.0 26night July 143:55.0 39:02.5 143:51.8 38:38.8 143:41.0 38:15.0 end

Fig. 6.1.1 Index map of the seabeam and gravity survey in this cruise.

6.2 Gravity data

Gravity was measured continuously through the entire length of the cruise. The gravity meter on board R/V Yokosuka is the Air-Sea Gravity System II (Fig. 6.2.2) made by LaCoste & Romberg Corporation, USA. The control system basically consists of remote and host computers. The former performs all real-time activity associated with controlling the platform and gravity meter as well as maintaining the system clock. The latter receives the data, computes the cross-coupling correction, and performs the final filtering before archiving the data. Time is kept very accurately by a temperature-compensated crystal oscillator. During this cruise, the gravity meter produced filtered data at 10-second intervals. These data were reduced to 1-minute-interval by the host computer. The detailed information are shown in Table 6.2.1.

The Specifications of Gravity Meter					
Measurement Range (mGal)	12,000				
Drift	3 mGal Per month or less				
Stabilized	l Platform				
Platform Pitch (dig.)	±22				
Platform Roll (deg.)	± 25				
Platform Period (min.)	4 ~ 4.5				
Beam Interval (deg.)	1				
Control	system				
Recording Rate (Hz)	1				
Serial Output	RS-232				
System Pe	rformance				
Resolution (mGal)	0.01				
Static Repeatability (mGal)	0.05				
50,000 mGal Horizontal Acceleration (mGal)	0.25				
100,000mGal Horizontal Acceleration (mGal)	0.50				
100,000mGal Vertical Acceleration (mGal)	0.25				
Dimension (cm)	$71 \times 56 \times 84$				
Weight (kg)	Meter:86, UPS:30				

Table 6.2.1 Information of the Air-Sea Gravity System

Fig. 6.2.1 Photo of the Air-Sea Gravity System

6.3 Geomagnetic field vector on the sea

A shipboard three-component magnetometer (STCM: Isezaki, 1986) were used for the measurements of the geomagnetic field during the cruise. The STCM (SFG-1212, TIERRA TECNICA) is a 3-axis flux-gate magnetometer installed on the Nav. deck above the bridge (Fig. 6.3.1). The specifications of the STCM are shown in Table 6.3.1.

The logging PC is connected to the vessel's GPS. The clock was manually synchronized to GPS time (ship- time), at the start of the survey. To obtain information of ship's attitude and direction (roll, pitch and heading), a gyro system was installed on board. These data were collected with a sampling rate of 8Hz during the cruise.

The STCM data contains the effects of the ship's magnetic field, which must be corrected in order to derive the geomagnetic field. In general, "8-shaped navigation" was made for calibration of the ship's magnetic effect, related to magnetic susceptibility of the ship, and a permanent magnetic moment of the ship's body (Isezaki, 1986). The "8-shaped navigation" was made by steering ship in a tight circle, both clockwise and counter clockwise. The "8-shaped navigation" was conducted from 18:19 to 18:38 at 26th, July as shown in Table 6.3.1.

The Specifications of 3 axes Fluxgate Magnetometer					
System	Ring core Fluxgate				
Number of Component	Directly 3 axes				
Cable Length (m)	50				
Sensor Dimension (mm)	ϕ 280 × 130H				
Measurement Range (nT)	$\pm 100,000$				
Resolution (nT)	1				

 Table 6.3.1
 Information of the three-component magnetometer.

Information of "8-shape navigation"						
	MM/DD TIME (JST)	Locations				
7/26	$18:19 \sim 18:38$	$39^{\circ} \ 2.9562' \ 143^{\circ} \ 54.1189'$				

Table 6.3.2 Information of "8-shape navigation", calibration of the STCM.

Fig. 6.3.1 The fluxgate magnetometer sensor is mounted on the Nav. Deck (Upper panel). The SFG-1212 system is installed in No.1 study room (Lower panel).

7. Summary

Main purposes of this cruise are high accuracy topographic survey and the safety check for the "Shinkai 6500" dive using a 6000m class deep-tow called "YKDT".

We carried out the high accuracy acoustic measurement using the "seabat 7125 system" and the camera observation for the safety check of a "Shinkai 6500" dive. However many trouble of the optical cable communication were occurred. Moreover, a powerful and slow-moving typhoon has formed passed close by our research area. Therefore, we could not enough to obtain the data through this cruise.

To obtain the detailed images of the sea bottom, YKDT dives with multi beam echo sounder system (Seabat 7125) also were carried out at same sites. YKDT dive #103 was carried out around "Fissure site" at 14th July. Before arriving at the observation depth, all optical communications were not available. However, we continued to survey without navigation data because the Seabat data was only stored in the internal memory device. Finally, we could obtain the bathymetric and back scatter data.

Two safety check dives were carried out at "Fissure site" and "39° N site". Both dives gave up on the way because of the problem of optical cable communication. At "Fissure site", we could see the sea bottom covered with the sediment. However, camera view is not clear due to muddy water. All communication using the optical cable was not available on the way. We tried to recover the optical communication, but we gave up this dive at 11:20. Then, YKDT dive #104 conducted at "39° N site". We could see the sea bottom covered with the sediment, and sometimes detected some bacrerial mats. All communication using the optical cable was not available on the way. We tried to recover the optical communication, but we gave up this dive at 10:14

A deep sea camera system is very powerful tool to take images and samples in the depth of over 7000 meters. In this cruise, the camera system was used to collect sediments, sea floor observations, collection of organisms with baited trap, and depth, temperature and salinity measurements in water column at two sites. When the camera system was released from the ship, the CTD was started to record pressure, conductivity and temperature. The camera was started to record by the power supply from internal timer circuit. Sediments were collected in the core tubes mounted on the tripod legs during the landing.

In this cruise, bathymetry, back scatter image, subbttom profiler data, gravity and three-component geomagnetic data were also observed. These geophysical data acquisition were carried out at rates of 8-10 knots.

Other observations based on the observation proposal related with this earthquake were also carried out. At first of this cruise, five OBSs of MRI were recovered off Boso peninsula area. We deployed three, two and three OBSs on July 14, 15, and 17, respectively. All of the OBSs were dropped from the deck to the seafloor. Moreover, GPS/acoustic seafloor geodetic observations succeed at two sites.

Appendices Explanatory notes Research Vessel Yokosuka

R/V Yokosuka is designed serve as the mother vessel for Shinkai 6500 and Autonomous Underwater Vehicle Urashima. It has silent engine an advanced acoustic navigation systems and an underwater telephone for its state of the art operations.

There are 4 laboratories on Yokosuka, No.1 \sim No.3 laboratories and No.1 Study room. No.1 Lab. has dry space. Permanent installations are video editing system, PC and printer. No.2 Lab. has semi - dry and wet space. There are two freezers (-40 & -80 deg.C), incubator, Milli-Q, fumigation chamber at dry one, and wet one has rock saw. No.3 Lab. has dry space with storage.No.1 Study room has dry space, there are gravity meter, data acquisition system of gravity meter, 3 axis fluxgate magnet meter and also proton magnet meter, work station for data processing, and A0 size plotter.

Length overall	105.2 m
Beam overall	16.0 m
Depth	7.3 m
Draft	4.5 m
Gross tonnage	4,439 tons
Service speed	16knot
Complement	
Crew	27 persons
Submersible operation staff	18 persons
Researchers	15 persons
Total	60persons
Main propulsion system	Diesel engines: 2,206kW x 2
Main propulsion method	Controllable pitch propeller x 2

Table A-1 Principal specifications of R/V Yokosuka