沖ノ鳥島における気象・海象観測

中埜 岩男*1 藤森 英俊*1 木邑 純一*2

海洋科学技術センターでは、日本最南端に位置する沖ノ鳥島において、海上気象要素の観測を行っている。1993年4月から 2000年2月までの7年間のデータを基に、気象統計を行い、各観測項目毎に月平均値を求めた。この結果、沖ノ鳥島では、冬季 は冷たくて乾燥している北東季節風によって効果的に冷却されるが、冬季以外は東北東の貿易風が支配している。7月から9 月の夏季は、台風の影響を受けやすく、暖かくて湿った南風が吹き込むので、高温多湿の状態が保たれている。冬季明けの4 月から6月までは、日射が強く、沖ノ鳥島海域の海水が効果的に加熱される時期である。気温は、冬季には水温よりも2℃低く、 夏季には水温よりも1℃低いので、大気が海面から熱せられていることが分かる。冬季の温度差が大きいのは、北東季節風に よって奪われた熱を補うために余分な熱の供給を必要とするためと考えられる。沖ノ鳥島の気圧変動に見られる大気潮汐で は、S_分潮とP,が支配的で、太陽同期であることが確認される。

キーワード:沖ノ鳥島 海上気象 準平年値 大気潮汐 台風

Marine Weather Observation at Oki-no-Tori Sima

Iwao NAKANO*3 Hidetoshi FUJIMORI*3 and Jun-ichi KIMURA*4

Oki-no-Tori Sima is a coral reef located at the southmost end of Japan and isolated from other islands. Oki-no-Tori Sima is one of the important point out of the existing meteorological observation network. JAMSTEC has been conducting a marine weather observation at Oki-no-Tori Sima since 1993. Seven-year data from April 1993 to February 2000 obtained by JAMSTEC was processed to make up a mean annual cycle of the meteorological condition at Oki-no-Tori Sima.

The resulted mean annual cycle prevailed the characteristics of seasonal variation at Oki-no-Tori Sima. In general, the Northeast winter monsoon is dominant in winter and the East trade wind in the other seasons. The Northeast winter monsoon effectively cools down the air and water temperature to the lowest temperature in winter. The air and water temperatures rise up to the maximum from April to June because of the strong solar radiation during that period. In summer, many typhoons pass by Oki-no-Tori Sima.

The air temperature is 2° lower than the water temperature in winter and 1° lower in the other seasons. This means that the sea water always give an energy to the air. But the air cooled down by the winter monsoon, needs an extra energy to heat up itself.

The atmospheric tide is clearly seen in the atmospheric pressure record. A frequency analysis shows that the two major constituents, Principal solar diurnal and semidiurnal are dominant in the atmospheric tide at Oki-no-Tori Sima.

Keywords : Oki-no-Tori Sima, marine weather, annual cycle, atmospheric tide, typhoon

^{*1} 海洋科学技術センター海洋観測研究部

^{*2} 国土環境株式会社

^{*3} Japan Marine Science and Technology Center

^{*4} Metocean Environment Inc.

1. はじめに

沖ノ鳥島は,紀伊半島の潮岬のほぼ真南の東経136°04E, 北緯20°25'Nに位置する日本の最南端の島(環礁)であり, ハワイ諸島と同じ緯度帯に位置する常夏の島である。また, 沖ノ鳥島は,北東は四国海盆,南西はフィリピン海盆に面 し,九州?パラオ海嶺中,唯一,山頂が海面に顔を出してい る島であり,日本の南方に点在する島々の中でも特に孤立 した島であり,日本の排他的経済水域(EEZ)の南の玄関口 として,重要な位置を占めている。日本の気象観測網に とっては気象観測の空白域(図1)でもあり,沖ノ鳥島におけ る気象・海象観測は重要である。同時に,沖ノ鳥島の気 象・海象観測は重要である。同時に,沖ノ鳥島の気 象・海象観測は、中央気象台(現,気象庁)が,実施した昭 和14年~16年の観測例¹¹まで遡ることができる。現在,建設 省(現,国土交通省)が,沖ノ鳥島の総合的な気象・海象観 測を担当している²⁰。これとは別に,海上保安庁水路部は, 潮汐観測の継続観測³⁰を昭和62年から実施している。

海洋科学技術センターでは、昭和62年(1988年)3月に沖 ノ鳥島環礁内に放置されている旧観測所基盤跡(図2)に, 気象観測タワーを設置し,気象・海象観測を開始した⁴⁾。こ の観測データに基づいて,沖ノ鳥島において使用可能な自 然エネルギーを利用したエネルギー自給型気象・海象観測 装置を開発した⁵⁾。また,アルゴスシステムを利用して,沖ノ 鳥島観測データを沖ノ鳥島から海洋科学技術センターに伝 送する準リアルタイムデータ伝送システムを開発・運用した。 途中,平成3年に,建設省の旧観測所基盤の整備工事を機 に,旧観測所基盤に展開していた気象タワーを撤去し,建 設省作業基地(図3)に観測装置を移設した。

平成5年(1993年)4月から継続的な観測に重点を移しな がら、エネルギー自給型気象・海象観測装置の運用研究を 開始した。当初は、気象計1台で観測を行っていたが、平 成5年(1993年)から平成9年(1997年)までの4年間の運用 実績では、気象計1台の観測では、センサー等の予期しな い故障による欠測を防止できないことが明らかとなった。 このため、平成10年(1998年)2月から、新たに気象計2号機 を建設省作業基地上の隣接する脚上足場に設置し、気象 計2台による気象観測を開始した。これ以後、センサー等 の部分的なトラブルは発生しているものの、完全な欠測に 至ることは無くなった。

ここでは、1993年4月から2000年2月までの全観測データ を取りまとめたCD-ROMを作成したのを機に、沖ノ鳥島の 海上気象要素の年平均値を明らかにし、その特徴を把握 した。また、沖ノ鳥島に特有の顕著な現象が見られたので、 これらの特徴を紹介する。

図1 東アジアにおける気象観測点の分布。(中央付近の大きい赤 丸が沖ノ鳥島(20°25'N, 136°04'E)を表す)。

Fig. 1 Distribution of meteorological observation stations in East Asia (Oki-no-Tori Sima is marked by a bigger red circle near the center)

図2 沖ノ鳥島の主要地形

Fig. 2 A geographical map of the west half part of Oki-no-Tori Sima

- 図3 環礁開口部から見た建設省作業基地の全景
- Fig. 3 Whole View of Oki-no-Tori Sima Work Base installed by Ministry of Economy, Trade and Industry

2. 観測装置

沖ノ鳥島観測システムは、次のように構成されている。

気象計(1993年4月~1998年2月までは1台,1998年2月 以降2台)

気象計としては、アンデラ社製ウエザーステーション AWS2700を使用している。

センサ	レンジ	精度	備考
風速計	0.5-76m/sec	±2%又は±0.2m/s	三杯式
風向計	0-360度	±5度	ベーン式
気温計	-44-49°C	±0.1°C	500Ω白金抵抗
湿度計	0-100%	±3%RH	人工毛髪
気圧計	920-1080mb	± 0.2mb	半導体センサー
日射計	0-2000w/m ²	$\pm 20 \text{ w/m}^2$	0.3-2.5 microns
放射計	$\pm 2000 \text{w/m}^2$	± 1%	0.3-60 microns

潮位計(1997年2月~1台,ただし,2000年2月~2001 年2月のみ2台)

潮位計は,アンデラ社製精密潮位計WLR7を使用している。

センサ	レンジ	精度	時定数	備考		
圧力計	0-100psia(60m)	±0.01%	積分時間40秒	水晶		
水温計	-3°∼35℃	±0.1°C	30秒	サーミスタ		

クロロフィル計(1998年~1台)

クロロフィル計は、アレック電子製メモリーパック式クロロテックACL-8Mを使用している。

センサ	レンジ	精度	時定数	備考
クロロフィル計	0.1~200 µg/	-	0.25sec	励起波長420~510mm
				蛍光波長677mm
水温計	-5°∼40℃	±0.05°C	0.1sec	自全測温
				抵抗体

水温計(1998年~1台)

水温計は、アレック電子製MDS水温計を使用している。

センサー項目	タイプ	測定レン	測定精度	時定数
水温センサー	サーミスタ	0∼30℃	±0.15℃	2秒

3. 設置場所

エネルギー自給型気象・海象観測システムのうち,気象 観測システムは,1993年4月から2000年6月までは,建設省作 業基地(図4a)SEPⅡ'の脚3上足場に設置した(図4b)。 2000年7月以降は,建設省作業基地のうち老朽化したSEP (Ⅰ,Ⅱ,Ⅱ',Ⅲ)4基の撤去工事の開始に伴い,SEPⅣの 脚3上足場に移設した。一方,気象計2号機は,1998年2月 にSEPⅣの脚1上足場に設置した(図4c)。

海象観測システムとしては,1996年2月からSEPII'の脚4周 辺海面に潮位計(図4d)を設置し,潮位観測と水温観測を再開 した。1997年3月からクロロフィル計(図4e)をSEPII'の脚4周辺 海面に潮位計と共に設置し,クロロフィル観測を開始した。

エネルギー自給型気象・海象観測システムの観測所情報 (観測所の緯度,経度及び高度並びに測器の位置)は下記 の通りである。

/平/文, <u>20</u> 20 11

- 経度 136°04'E
- 高度 26m(気象計1号機)
- 23m(気象計2号機)
 - -4m (潮位計及びクロロフィル計)
- 位置 沖ノ鳥島環礁内にある建設省作業基地のSEP の脚上足場及び周辺海面

図4a 建設省作業基地上および周辺海域における観測機器の配置 Fig. 4a Location of observing instruments on and around the work base

図4b 気象計1号機 Fig. 4b Weather station No.1

図4d 潮位計 Fig. 4d Water Level Recorder

図4e クロロフィル計 Fig. 4e Submersible Fluorometer

観測データのうち,風速データはセンサーの特殊性のため,平均風速は30分間(ただし,1993年は,60分間)の風速の平均値であり,最大瞬間風速は4秒平均値の30分間(ただし,1993年は,60分間)の最大値を示している。気圧については,高度補正はせず,現地気圧(海面26m)そのままである。各センサーについては,自前のキャリブレーションは特には実施せず,メーカのセンサー校正値をそのまま使用している。気象検定及び比較観測は検討したが実現に至らず,今後の課題として残っている。

1993年4月から再開した気象観測による観測データの取 得状況は次の通りである。

- (1) 1993年観測データ(1993年4月11日~1994年2月9日)のうち,放射データが1993年8月台風9307号の通過後,基線変動を起こした。放射センサの異常のためデータの修正困難と判断し全面削除した。また,この時の気象観測のサンプリング周期は1時間とした。
- (2) 1994年観測データ(1994年2月11日~1994年11月16日)に
 ついては、秋に相続いて来襲した強い台風のため、11
 月17日以降、全データが不安定となったので、全面削除

図4c 気象計2号機 Fig. 4c Weather station No.2

した。風向計の出力が交換直後から出力異常を起こしたため、補正困難と判断し、2月11日以の降風向データは全面削除した。1994年以降の気象観測のサンプリング周期は30分とした。

- (3) 1995年観測データ(1995年3月25日~1995年11月28日)では、放射データは基線変動を起こしていたので、あきらかな基線の異常部分は削除した。また、気象計の電源部異常のため11月29日以降全データの欠測となった。
- (4) 1996年観測データ(1996年2月14日~1997年1月25日)では、1996年9月以降の20時から翌日の5時までの正時データのみ異常が見出された。放射データから始まり、日射、気圧、湿度、気温データへと順次波及して行った。原因がわからないので、補正困難と判断し、これらの当該正時データのみを削除した。また、7月以降、湿度データに異常が発生したので、補正困難と判断し全面削除した。

また,潮位と水温の観測は,1996年2月13日~1997年3 月11日までサンプリング間隔1時間で計測した。 (5)1997年~2000年観測データ(1997年3月11日~2000年2月) については、データの異常は特には認められなかった。 しかし、潮位・水温観測では、装置のトラブルが発生し、 継続的な観測データは得られず、1997年6月4日~1997 年8月30日と1997年11月25日~1998年2月16日のみが得られた。1998年2月から1999年2月までの一年間は、記 録装置の不良のため、まったくデータを回収できなかっ た。クロロフィル量・水温観測では、1997年3月11日~ 1997年12月8日と1998年2月18日~2000年2月8日につい てデータが得られた。

全観測データの概要を把握するために,各観測項目毎 に日平均値を求めた。その結果を図5に示す。明らかな異 常値を取り除いた後の全観測データについて,日平均値を 求めた。この結果を図3に示す。1993年から1996年にかけ ては,冬季の欠測が見られるものの1997年以降は,欠測が 少ないことが確認される。通年の変化から,明らかにな季 節変動が認められる。

図5 各気象要素の日平均値の時系列変動(上段から平均風速,最大瞬間風速,気温,湿度,気圧,日射量及び水温の順である。) Fig. 5 Time series of daily mean values for meteorological elemnts

5. 沖ノ鳥島の気象要素の月別平均値

1993年4月から2000年2月までのデータを統計処理し,沖 ノ鳥島の各気象要素の月別平均値(気候値)を求めた。こ れを図6及び表1に示す。図6から沖ノ鳥島における代表的 な季節変化が把握できる。

気温については、2月に最低気温23.2℃を示した後、3月 から徐々に昇温を開始し、4月から6月まで急速に気温が上 昇し、最高気温28.5℃に達する。続く7月から9月では28℃ 程度の高温状態が維持され、10月から1月にかけて、ゆっく りとした気温の低下みられ、再び2月の最低気温を迎える。 これらの最低気温と最高気温の差は、5.4℃である。

風については、12月から3月までは北北東の風が卓越し、 4月から10月までは東北東の風が卓越し、11月が北東の風 が卓越している。しかし、夏季には、台風の影響により東南 東もしくは南東の風が卓越することもある。これは、通常は 沖ノ鳥島が亜熱帯高気圧の影響下にあり、亜熱帯高気圧 の勢力が弱まる冬季には北東季節風の影響下に入るため と考えられる。

平均風速については、6月に最低風速値4.3m/sを記録した後、7月に6.3m/sと2 m/sも急に強まった後、10月までゆっくりと弱まる。しかし、11月には、2.6m/sも強まり、12月に最大平均風速7.9 m/sを取る。1月から3月にかけて徐々に弱まるが、4月に一旦強まった後、再び弱まり、6月の最低値に戻る。このように、冬季の季節風の影響が弱まると沖ノ鳥島の風も弱まるが、台風シーズの到来と共に風が強まる。年間を通した最大瞬間風速は、台風の影響を強く受ける時が最も大きく、50m/s以上に達することもある。

湿度は、1月が70.7%と最も低く、2月と3月はそれに近い 乾燥状態を示すが、4月に入ると3.9%上昇し、5月に極大値 78.1%を記録している。6月に一旦2%低下したあと、再び上 昇傾向を示し、8月に最高湿度78.9%を示す。これ以後、12 月の75.5%までゆっくりと低下している。しかし、1月には12 月に比べて4.8%も大きく低下している。これは、冬季の乾 燥した季節風が卓越する時期に一致している。このように、

Fig. 6 Monthly mean values for meteorological elemnts

沖ノ鳥島では通年70%以上の湿度があるが,湿度80%を 越えることはない。また,雨期と乾期の区別は無く,日本本 土に見られる梅雨も見当たらない。

気圧は、冬季の1月に最高気圧1013 hPa記録した後、2月3 月はほぼ同じ状態を保ち、4月以降、6月の気圧1009.3 hPaま でゆっくりと減少するが、7月には1006.2 hPaと6月に比べて 3 hPaも大きく減少している。この傾向は、9月まで続き、最低 気圧1005.9 hPaを9月に記録している。10月からは再び気圧 が上昇傾向を示し、11月12月と単調に上昇し、1月の最高気 圧に戻る。夏季の7月から9月までの低圧傾向は、台風シー ズンを迎え、台風が沖ノ鳥島を勢力圏に含む機会が多くな ることに対応している。冬季1月から3月までの高圧傾向は、 移動性高気圧などの影響を受けていることが考えられる。

水温についても気温とほぼ同様で,2月に最低水温 24.7℃を記録した後,4月から6月にかけて単調に昇温し,7 月に最高水温29.5℃に達する。6月から9月までこの29℃以 上の高温状態が続き,10月から2月にかけてゆっくりと水温 の低下が見られる。最低水温と最高水温の温度差は4.8℃ で,気温のそれよりも0.6℃小さい。

日射量は,冬至の12月に12.6MJ/日と最も小さくなり,夏至 の6月に25MJ/日と最も大きくなっている。この変化は,明ら かに太陽の動きに連動した季節変化であるが,冬至から 夏至に至る期間と夏至から冬至に至る期間では非対称性 を示し,特に,3月から6月までの日射量が7月から9月までの 日射量よりも多いのが特徴的である。文献2によれば,沖ノ 鳥島における雲量は,3月から6月までが最低値を取ること が分かっている。従って,この強い日射が沖ノ鳥島海域を 効果的に加熱するのに役立っているものと考えられる。

7. 沖ノ鳥島で観測された特異な現象

(1) 大気潮汐と海洋潮汐

沖ノ鳥島で観測された気圧の変動には、日本本土では 明瞭には認められない大気潮汐が明瞭に表われている。 図7aに気圧と潮位のデータを並べて示す。気圧と潮位の データ共に潮汐成分以外の長周期成分が乗っているので、 長周期成分を25時間平均で求め、これを元のデータから 差し引いて潮汐成分のみを抽出した。この結果を図7bに 示す。両者を比較すると,大気潮汐成分の変動が海洋潮汐 成分に比べてやや単純な変動を示し,位相も一致していな い。このことを確かめるために,周波数分解を行った。こ の結果を図7cに示す。この図から,大気潮汐では,主太陽 半日周期(S₂分潮,周期12.0時間)が卓越し,次に主太陽日 周期(P₁分潮,周期24.07時間)が大きく,三番目に1/3日周期 (周期8時間)にピークを持つことが分かる。海洋潮汐では, 主太陰半日周期(M₂分潮,周期12.4時間)が卓越し,日月合 成周期(K₁分潮,周期23.8時間),S₂分潮及び主太陰日周期 (O₁分潮,周期25.8時間)が続いている。海洋潮汐に比べて 大気潮汐の方が相対的に変化が単純であり,周波数解析 の結果は太陽同期の成分しか含んでいないことが分かる。 沖ノ鳥島における海洋潮汐の振幅は,約0.5mであり,大気 潮汐のそれは,約2hPaであった。

(2) 台風観測

沖ノ鳥島は日本や日本近海に接近する台風の通り道に当 たっている。図8は1993年から1998年の6年間に発生した 台風の移動経路を気象庁のデータに基づいて作成したも のである。この間に 157個 の台風が記録されているが、そ の内 46個の台風は沖の鳥島から 500km 以内の距離を通 過している。図8の赤い線で示された経路がこれに相当す る。一般に北緯 10 度付近の太平洋で発生した台風は北西 方向に移動し、一部は途中で進路を北東方向に変えて日本 付近を通過することが多い。図8によれば、沖ノ鳥島は多く の場合で日本付近に接近する台風の通り道にあることがわ かる。日本に接近が予想される台風の性質を前もって知る ことは、台風被害の予測にとって大切であり、この意味で沖 ノ鳥島の存在と位置は重要である。

一方, 台風の通り道にある沖ノ鳥島では, 例は少ないが, 台風の眼が通過したと見られる気象要素データが観測されて いる。台風9713号(1997年8月)や台風9725号(1997年11月) の沖ノ鳥島接近時には, 台風の眼に伴なう風速低下がデー タとして捉えられている。台風9725号では 49.2m/秒の最大瞬 間風速が観測され, 1993年以降の記録となっている(図9)。 未公認データとしては, 台風9434号接近時にそれまで動作不 良を起こしていた風速センサーが作動し, 最大瞬間風速 65m/sが残っている。このときの最低気圧は920hPaであった。

	1	2	3	4	5	6	7	8	9	10	11	12
平均風速m/s	6.77	6.52	5.43	5.89	4.85	4.34	6.3	5.81	5.34	5.15	7.75	7.87
最多風向	NNE	NNE	NNE	ENE	ENE	ENE	ENE	ENE	ENE	ENE	NE	NNE
気温 ℃	23.49	23.17	24.31	25.65	27.23	28.54	28.52	28.29	28.26	27.94	26.95	25.44
湿度 %	70.7	71.14	72.92	76.82	78.08	76.08	76.8	78.93	77.65	76.94	76.85	75.53
気圧 hPa	1013	1012.64	1012.65	1011.04	1009.26	1009.26	1006.2	1006.53	1005.85	1008.77	1010.01	1011.86
日射量	14.67	17.48	21.02	23.65	24.05	25.18	22.18	21.54	20.7	19.1	15.09	12.62
MJ/m²/日												
水温 ℃	25.45	24.66	25.36	26.73	27.84	29.15	29.52	29.16	29.15	28.87	27.93	26.87

表1 沖ノ鳥島の気象要素の月別平均値

図7b 図7aの観測データから長周期成分を25時間平均で取除いた大気潮汐及び海洋潮汐 Fig. 7b Examples of Atmospheric Tide and Oceanic Tide at Oki-no-Tori Sima

図7c 1996年2月~6月分の短周期成分の周波数スペクトラム,大気潮汐では,主太陽半日周潮(S₂分潮)と主太陽半日周潮(P₁分潮)が卓越し,海 洋潮汐では,主大陰半日潮(M₂分潮),日月合成日周潮(K₁分潮),主太陽半日周潮(S₂分潮)及び主大陰日周潮(O₁分潮)が卓越している。 Fig. 7c Frequency Analysis of Atmospheric Tide and Oceanic Tide at Oki-no-Tori Sima

- 図8 1993年から1998年までの6年間の全台風の軌跡 (図中の星印が沖ノ鳥島を表わす。距離は,沖ノ鳥島を中心 とする同心円で100kmステップで示す。)
- Fig. 8 Track Record of All Typhoons from 1993 to 1998

- 図9 沖ノ鳥島で観測された台風9725号通信時の気圧及び平均風 速の変化(風速値のピークの中央部に明らかな風速の落ち 込みがみられる。)
- Fig. 9 Typhoon 9725 observed at Oki-no-Tori Sima

- 図10 沖ノ鳥島で観測された台風9713号 平均風速値が,最大値を示した直後,無風状態となり,再び 風速が強まっている。沖ノ鳥島で無風状態を観測した唯一 のものである。
- Fig.10 Typhoon 9713 observed at Oki-no-Tori Sima

また非常に大型の9713号の場合,最接近時でも沖ノ鳥 島一台風中心までの距離が200km以上あるにも拘らず, 沖ノ鳥島の気象計は,風の静穏を観測した(図10)。この観 測事例は,通常の台風の構造からは容易には理解できな かった。しかし,この台風が直径約400kmの巨大な二重眼 を有する特異な台風であることが判明した結果,沖ノ鳥島 がこの巨大な二重眼に一時的に巻き込まれたものと考え れば,観測事実と矛盾がない⁶。

8. まとめ

これまでに観測されたデータを基に、沖ノ鳥島の平年値 を求め、沖ノ鳥島の季節変動の特徴を明らかにした。沖ノ 鳥島では、冬季は冷たくて乾燥している北東季節風によっ て効果的に冷却されるが、冬季以外は東北東の貿易風が 支配している。7月から9月の夏季は、台風の影響を受けや すく、暖かくて湿った南風が吹き込むので、高温多湿の状 態が保たれている。冬季明けの4月から6月までは、日射が 強く、沖ノ鳥島海域の海水が効果的に加熱される時期であ る。気温は、冬季には水温よりも2℃低く、夏季には水温よ りも1℃低いので、大気が海面から熱せられていることが分 かる。冬季の温度差が大きいのは、北東季節風によって奪 われた熱を補うために余分な熱の供給を必要とするため と考えられる。沖ノ鳥島で観測された大気潮汐は、半日潮 と1日潮が卓越しており、太陽同期であることが分かる。

近年は、沖ノ鳥島の観測データを外部機関に提供するこ とが求められるようになってきたので、NTTドコモが提供す る衛星携帯移動通信システムを利用して、リアルタイム気象 データ伝送装置を開発し、2000年10月から本格的な試験運 用を開始した。2001年3月から気象計と潮位計の双方の本 格的なリアルタイムデータ伝送を行い、ウェブページによる リアルタイムのデータ公開を実施すると同時に、沖ノ鳥島の リアルタイム観測の特徴を活かして、総合的に台風モデル の検討評価を実施していく予定である。更に、沖ノ鳥島と その他の島嶼や日本本土との観測データを比較検討し,気 候変動に関連した相関性の検討を行う予定である。

謝辞

沖ノ鳥島における観測システムの保守点検作業は,1993 年4月はかいようで実施し,1994年2月,1995年3月,1996年2 月はなつしまで実施し,1997年3月はよこすかで実施し, 1998年2月はなつしまで実施し,1999年2月と2000年2月はよ こすかで実施した。これらの作業を円滑に行うために,な つしま,よこすかおよびかいようの各船長および乗組員の皆 さんから過分なるご支援を頂いたことを記し,深甚より感 謝の意を表します。実作業については,海洋計画,建設環 境研究所,自然環境リサーチおよび日本鋼管工事の関係者 の方々から惜しみないご協力を頂いた。改めて,ここに感 謝の意を表します。

参考文献

- 宮崎武晃, 掘田平, 鷲尾幸久, 中川賢一郎: 沖ノ鳥島に おけるエネルギー海洋自動観測機器の設置について, JAMSTECTR21,317-337 (1989)
- 2) 鷲尾幸久,宮崎武晃,掘田平,中川賢一郎:沖ノ鳥島に おけるエネルギー自給型自動観測装置の開発,JAMS-TECTR27,101-124 (1992)
- 3)北河 :沖ノ鳥島に関する調書,中央気象台秘密気 象報告1(4), 303-375(1943)
- 建設省関東地方建設局京浜工事事務所:沖ノ鳥島災害 復旧工事誌,425頁(1994)
- 5) 佐藤敏:沖ノ鳥島における潮汐観測,水路部研究報告 第30号,49-60 (1994)
- 6) 中埜岩男, 藤森英俊, 木邑純一: 沖ノ鳥島で観測した台風9713号の眼, JAMSTECR,41 89-94 (2000)

(原稿受理:2001年2月19日)