Cloning and sequencing of the \textit{endA} gene encoding deoxyribonuclease from a deep-sea piezophilic bacterium, \textit{Shewanella violacea} strain DSS12

Kaoru NAKASONE*1 Chiaki KATO*2 Koki HORIKOSHI*1

We have cloned and sequenced the \textit{endA} gene, encoding deoxyribonuclease, from a \lambda\, phage library of the chromosome of the deep-sea bacterium \textit{Shewanella violacea} strain DSS12. This gene, 720 bp in length, was found to encode a protein consisting of 240 amino acid residues with a molecular mass of 27,200 Da. Significant homology was evident comparing the \textit{endA} gene of \textit{S. violacea} with that of \textit{V. vulnificus} (62\% identity), \textit{S. typhimurium} (59\% identity), \textit{E. chrysanthemi} (59\% identity) and \textit{E. coli} (58\% identity). Phylogenetic analyses of EndA proteins of several bacteria showed that \textit{S. violacea} is closely related to \textit{V. vulnificus}. Expression plasmid to overproduce the EndA protein was also constructed.

\textbf{Keywords} : \textit{Shewanella violacea}, \textit{Vibrio vulnificus}, \textit{endA} gene, expression plasmid

*1 Department of Chemistry & Environmental Technology, School of Engineering, Kinki University
*2 The DEEP STAR Group, Japan Marine Science and Technology Center
1. Introduction
The moderately piezophilic and psychrophilic bacterium *Shewanella violacea* strain DSS12 from the Ryukyu Trench (depth 5,110 m) grows optimally at 30 MPa and 8°C, but also grows at atmospheric pressure (0.1 MPa) and 8°C. These growth properties are useful for comparative study of cell physiology under high and low pressure conditions. *S. violacea* shows good growth under high pressure conditions, whereas *E. coli*, which is closely related to *S. violacea*, shows poor growth under the same conditions. We have investigated the molecular basis of gene regulation in this strain under high pressure conditions. It is also the candidate (source) for several useful enzymes and bioactive substances, because it was originally isolated as a protease-producing bacterium and produces EPA (eicosapentanoic acid). From these backgrounds, we are trying to clone several useful genes from the strain.

In this study, we isolated and cloned the *endA* gene from a deep-sea piezophilic bacterium. The results of phylogenetic analyses based on comparison of the EndA protein and construction of expression plasmid will be described.

2. Materials and Methods
2.1. Cloning of the *endA* gene from *S. violacea*
Two degenerate oligonucleotides were designed and synthesized, based on highly conserved sequences, I(N/P/E)WQKK and GEVNGDR, in EndA proteins. The nucleotide sequences of the oligonucleotides were 5’TATTITGGCAIGGCAAIAAA’-3’ (primer 1) and 5’ICGATGCCATTIACITCICC-3’ (primer 2). The PCR product obtained using *S. violacea* chromosomal DNA as the template and the above primers, was cloned into the pCR2.1 vector (Invitrogen Co., Carlsbad, CA) and the nucleotide sequence was determined by the dye terminator method using a DNA sequencer model 377 (Perkin-Elmer/Applied Biosystems Co.). The alignment and calculation were performed using CLASTALX and the PHYLP package (version 3.573; obtained from J. Gelsenstein, University of Washington, Seattle).

To determine the phylogenetic position of the *S. violacea* *endA* gene, evolutionary distance was calculated and a phylogenetic tree was constructed. The EndA amino acid sequences were aligned and the tree was constructed by the neighbor-joining method. The alignment and calculation were performed using CLASTALX and the PHYLP package (ver. 3.573; obtained from J. Gelsenstein, University of Washington, Seattle).

2.2. Construction of a λ phage library of the chromosome of *S. violacea* and screening of the library for the *endA* gene region.
Chromosomal DNA isolated from *S. violacea* was partially digested with Sau3AI. These fragments were inserted into the *Bam*HI site of lambda DASH II (Stratagene Co., La Jolla, CA). Then, in vitro packaging of the ligated DNA was performed using GIGAPACK III XL packaging extracts (Stratagene Co.) according to the manufacturer’s instructions. The λ phage library was screened for plaque hybridization with the *endA* probe and several positive clones were obtained. The positive clones containing the *endA* gene were each purified by several single plaque isolation steps. Each of the inserts in λ phage were amplified by long and accurate PCR and were subcloned into the pCR-Blunt vector (Invitrogen Co.). For sequencing of these cloned fragments, the random shotgun sequencing method was used with a DNA sequencer model 377 (Perkin-Elmer/Applied Biosystems Co.). Assembling and editing of the determined DNA sequences were performed with AutoAssembler Version 2.0 (Perkin-Elmer/Applied Biosystems Co.). GENETYX-MAC version 10.1 from Software Development (Tokyo, Japan) was used for sequence analysis.

2.3. Phylogenetic analysis of the *endA* gene
To determine the phylogenetic position of the *S. violacea* *endA* gene, evolutionary distance was calculated and a phylogenetic tree was constructed. The EndA amino acid sequences were aligned and the tree was constructed by the neighbor-joining method. The alignment and calculation were performed using CLASTALX and the PHYLP package (ver. 3.573; obtained from J. Gelsenstein, University of Washington, Seattle).

2.3. Construction of expression plasmid harboring *endA* gene
To construct plasmids for expression of hexahistidine-tagged derivative of the EndA protein from strain DSS12, PCR was performed to amplify the *endA* gene. The resulting fragment after digestion with both restriction enzymes *Bam*HI and *Hind*III, was cloned into expression plasmid pQE80L (QIAGEN) and then it was designated as pQendA.
3. Results and Discussion
3.1. Isolation of the endA gene

To clone a part of the endA gene from S. violacea, the amino acid sequences of the EndA proteins from several bacteria were aligned and a highly conserved domain was found (data not shown). These conserved sequences were used to design and synthesize degenerate oligonucleotides (primer 1 and primer 2) in order to amplify a part of the endA gene from S. violacea. A fragment containing part of the endA gene, approximately 249 bp, amplified by PCR with the primers, was cloned into the pCR2.1 vector and its nucleotide sequence was determined. The deduced amino acid sequence of the cloned gene was significantly similar to the EndA of other bacteria. To clone the complete endA gene, the partial endA gene fragment was labeled with digoxigenin by PCR for use as a hybridization probe.

3.2. Structural analysis of the complete endA gene of S. violacea

A λ phage library of S. violacea chromosomal DNA was constructed and screened using the endA probe. Several positive clones were isolated from among 10⁶ plaques and purified by repeated single plaque isolation. These clones were confirmed to contain the endA gene by PCR at each isolation step. As a result of the screening, we obtained several positive clones and the nucleotide sequence of one of these clones containing a DNA insert approximately 18 kb in size was determined by the random shotgun sequencing method. The open reading frame of the endA gene, 720 bp in length, was found to encode a polypeptide consisting of 239 amino acid residues with a molecular mass of 27,200 Da. Analysis of the deduced amino acid sequence confirmed that the cloned gene contained the complete sequence of the EndA protein (Fig. 1).

3.3. Phylogenetic analyses of the evolutionary distance of S. violacea EndA.

The endA gene is conserved in a wide range of eubacteria. To confirm the phylogenetic position of the S. violacea endA, the evolutionary distance was calculated based on comparison of 15 bacteria and a phylogenetic tree was constructed (Fig. 2). The EndA amino acid sequences were aligned and the tree was constructed by the neighbor-joining method. The results obtained in calculation of the evolutionary distance comparing the EndA amino acid sequences of 15 bacteria showed that the EndA protein of S. violacea is closely related that of V. vulnificus.

A recombinant expression plasmid harboring the S. violacea endA gene was constructed (pQendA) (Fig. 3). To obtain highly purified recombinant EndA protein, overexpression of the expression plasmid is required. Detection of the nuclease activity at low temperature after the overproduction and purification will be useful in biotechnological application.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas: Single-Cell Molecular Technology (area number 736).

References

(Manuscript received 26 February 2002)
Fig. 1 Location of the endA gene on the chromosome of S. violacea.
(A) The coding region and its direction of transcription are indicated by arrows.
(B) Nucleotide sequence and deduced amino acid sequence of the endA gene. The nucleotide and deduced amino acid sequences of the endA gene. The deduced amino acid sequence is given in single-letter code below the nucleotide sequence.
Fig. 2 Phylogenetic tree inferred by neighbor joining analysis of EndA protein sequences.
Fig. 3 Construction of expression plasmid harboring endA gene.