
Journal of the Earth Simulator, Volume 3, September 2005, 52 – 59

52

Software of the Earth Simulator

Atsuya Uno

The Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology,
3173–25 Showa-machi, Kanazawa-ku, Yokohama, 236-0001 JAPAN

Email: uno@es.jamstec.go.jp

(Received February 2, 2005; Revised manuscript accepted June 16, 2005)

Abstract The Earth Simulator (ES) is a distributed-memory parallel system with a peak performance of 40
TFLOPS. The system consists of 640 nodes connected via a fast 640 × 640 single-stage crossbar network. In
this paper, an overview of software of the Earth Simulator (the operating system, Operation Management
Software and a programming environment) is presented. The operating system of ES (ES OS) is based on
SUPER-UX, which is the operating system for NEC’s commercial Supercomputer SX series, and ES OS is
enhanced to meet a scalability of the ES system, and Operation Management Software is developed to man-
age this large system efficiently. They provide Single System Image (SSI) system operation, system manage-
ment and batch job control for the ES system. As a programming environment, ES provides a three-level hier-
archy of parallel processing. Useful languages and libraries are prepared for users to develop well-parallelized
programs and to achieve the highest performance. FORTRAN90/ES and C++/ES have advanced capabilities
of automatic vectorization and microtasking, and HPF/ES enables users to develop parallel programs easily.
MPI/ES provides high-speed communication optimized for the ES architecture.

Keywords: ES (Earth Simulator), OS (Operating System), Scheduler, HPC (High Performance Computing),
HPF (High Performance Fortran), MPI (Message Passing Interface)

1. Introduction
The Earth Simulator (ES) was developed to promote

research and development for a clear understanding and
more precise prediction of global changes of the earth
system.

ES is a MIMD-type, distributed-memory and parallel
system, and consists of 640 processor nodes connected
via a fast 640 × 640 single-stage crossbar network. The
theoretical peak performance is 40 TFLOPS. In order to
operate this large system efficiently, the operating system
of ES (ES OS) and Operation Management Software
were developed. ES OS is enhanced especially to meet
the scalability of the ES system, and Operation
Management Software manages the ES system efficient-
ly. They provide Single System Image (SSI) system oper-
ation, system management and batch job control for the
ES system. The major components of Operation
Management Software are Network Queuing System II,
the customized scheduler and System Manager.

As a programming environment, ES provides three-
level parallelism, and users can develop the well-paral-
lelized programs using useful languages and libraries.
FORTRAN90/ES and C++/ES have advanced capabilities
of automatic vectorization and microtasking, and HPF/ES
provides easy parallel program development environment.

MPI/ES is designed and optimized to achieve highest per-
formance of communication on the ES architecture.

In this paper, an overview of these software of the
Earth Simulator is introduced.

2. Overview of the Earth Simulator System
ES is a MIMD-type, distributed-memory, parallel sys-

tem, in which 640 processor nodes are connected via a
fast 640 × 640 single-stage full crossbar network
(IN:Inter-connection Network)[1] (Fig. 1). The inter-

Fig. 1 The configuration of the Earth Simulator.

CCS #00 CCS #01 CCS #02 CCS #39

Work
Disk

SW

Work
Disk

FC-AL
SW

FC-AL
SWFC-AL

SW
FC-AL

SW

FSP #0 FSP #1 FSP #2 FSP #3

S-system L-system

MDPS

PN
#000

PN
#001

PN
#015

PN
#016

PN
#017

PN
#031

PN
#016

PN
#017

PN
#031

PN
#032

PN
#033

PN
#047

PN
#032

PN
#033

PN
#047

PN
#624

PN
#625

PN
#639

PN
#624

PN
#625

PN
#639

IN : Inter-connection Network

Cluster #39

Work
Disk

Cluster #2

FC-AL

Cluster #1

S-Disk
(230TB)

Work
Disk

Cluster #0

SCCS Each FSP supports
10 clusters.

PN : Processor Node
CCS : Cluster Control Station
SCCS : Super Cluster Control Station
FSP : File Service Processor

M-Disk

Tape Library
(1.6PB)Disk (240TB)

Fabric
SW

doi: 10.32131/jes.3.52

A. Uno

53J. Earth Sim., Vol. 3, September 2005, 52 – 59

connection bandwidth between every two PNs is 12.3
GB/s in each direction. Thus the total bandwidth of IN is
7.87 TB/s. Each processor node has 8 vector-type arith-
metic processors (APs) that are tightly connected by a 16
GB shared memory. The peak performance of each AP is
8 GFLOPS. Therefore, the total number of APs, the total
main memory and the theoretical peak performance of
ES are 5,120, 10 TB and 40 TFLOPS, respectively.

ES has two-type user disk areas. One is termed “S-
Disk” and the other is termed “M-Disk.” S-Disk is a mag-
netic disk system and its capacity is 230 TB. M-Disk is a
hierarchical storage management system and consists of a
240 TB magnetic disk system and a 1.6 PB cartridge tape
library (CTL). M-Disk is managed by 4 File Service
Processors (FSPs), and an FSP executes the file staging
between the work disk of a PN and the user disk.
Therefore each FSP services 160 nodes.

To operate this large system efficiently, 640 processor
nodes are divided into 40 groups termed “cluster.” ES is
basically a batch-job system and most of the clusters are
used for batch jobs. However there is a very special clus-
ter termed “S-system.” In S-system, two nodes are
assigned for interactive nodes, and the remaining nodes
are assigned for small-scale (single node) batch jobs. All
clusters except S-system are used for large-scale batch
jobs and are termed “L-system.” Each cluster has a work-
station termed “Cluster Control Station (CCS).” A CCS
links all nodes within a cluster, and controls startup and
shared resources among nodes. All CCSs are controlled
by a supervisor workstation called “Super Cluster Control
Station (SCCS).”

3. Operating System
The Earth Simulator Operating System (ES OS) pro-

vides high-speed parallel processing environment not
only for specific applications but also for general applica-
tions from small-scale programs to large-scale programs.
And ES OS can provide Single System Image (SSI) sys-
tem operation.

ES OS is an enhanced version of NEC’s Super-UX
Operating System[2]. The Super-UX is the operating sys-
tem for NEC’s commercial Supercomputer SX series.
The Super-UX is based on UNIX System V with BSD
features and has been enhanced to meet various kinds of
supercomputing requirements as follows;

• Vector processing
• Parallel processing for shared memory
• Parallel processing for distributed memory
• Batch system
• High-performance I/O
• Cluster management
The Super-UX has a good scalability from a single

node to many nodes, but ES has 640 nodes connected via
IN and has 5,120 APs. Therefore ES OS has been
enhanced to meet a scalability of the ES system, and
many useful functions for large multi-node system are
implemented in ES OS. For instance, the operation man-
agement function is implemented as easy management of
the whole system under the Super Cluster System.

In the Super Cluster System, the system is divided into
appropriate units and these units are controlled by a sin-
gle machine. In ES, 640 nodes are divided into 40 clus-
ters and all clusters are controlled by Super Cluster
Control Station (SCCS). This cluster system provides
easy management of the ES system and realizes high reli-
ability and availability.

4. Operation Management Software
As described above, ES is basically a batch-job system.

Network Queuing System II (NQSII) is introduced to
manage the batch jobs, and we have developed the cus-
tomized scheduler for ES. We have also developed the
additional operation-support system to monitor the state
of PNs, to manage the user’s information and other func-
tions (Fig. 2). This system consists of System Manager,
Automatic Operation System, User Information Manager,
Accounting System and Broadcasting System.

4.1 Network Queuing System II
The Network Queuing System II (NQSII) is a batch

processing system for a high-performance cluster system.
In ES, there are two-type batch queues. One is S batch
queue and the other is L batch queue (Fig. 3). S batch
queue is aimed at being used for a pre-run or a post-run
for large-scale batch jobs (making initial data, processing

Fig. 2 Operation Management Software. This system consists
of Network Queuing System II, System Manager,
Automatic Operation System, User Information
Manager, Accounting System and Broadcasting System.
SM communicates with NQSII tightly, and controls
other components.

Data Base

NQSII

SM (System Manager)

Automatic
Operation
System
(AOS)

Accounting
System
(ACCT)

User
Information

Manager
(UIM)

Broadcasting
System
(BCS)

Software of the Earth Simulator

54 J. Earth Sim., Vol. 3, September 2005, 52 – 59

results of a simulation and other processes), and L batch
queue is for a production run.

S batch queue is designed for single-node batch jobs.
In S batch queue, ERSII[4] is used as a scheduler and
does a job scheduling based on CPU time. Programs are
confined in one of PNs in S-system, and APs and memo-
ry are shared with other programs in the same PN. PNs in
S-system manage S-Disk, thus programs can access
user’s files in S-Disk directly.

On the other hand, L batch queue is designed for multi-
node batch jobs. In this queue, the customized scheduler
for ES is used as the scheduler. We have been developing
this scheduler with following strategies[3];

• The nodes allocated to a batch job are used exclu-
sively for that batch job.

•The batch job is scheduled based on elapsed time
instead of CPU time.

These strategies enable to estimate the job termination
time and make it easy to allocate nodes for the next batch
jobs in advance. This means that the scheduler can allo-
cate nodes to even a large-scale batch job when that batch
job is submitted. Therefore large-scale batch jobs could
be executed in a short waiting time although ES has basi-
cally adopted a single batch queue environment in L-sys-
tem.

PNs of L-system are prohibited from access to the user
disk to ensure enough disk I/O performance. Therefore,
user’s files used by the batch job are copied from the user
disk to the work disk before the job execution. This
process is called “stage-in.” In the job scheduling, it is
important to hide this staging time. To hide the staging
time, staging process of the next scheduled batch job is
executed by FSPs in the background of the job execution
in PNs (Fig. 4). This process is executed without using
APs of PNs, and produces a little effect on the disk I/O

performance. After the job execution, results of the simu-
lation are also copied from the work disk to the user disk.
This process is called “stage-out.”

Main steps of the job scheduling are summarized as
follows (Fig. 5);

(1) Node Allocation
(2) Stage-in (copies files from the user disk to the work

disk automatically)
(3) Job Escalation (reschedules for the earlier estimated

start time if possible)
(4) Job Execution
(5) Stage-out (copies files from the work disk to the

user disk automatically)

J1

j2

J2

j1
j3

J3

L-system

Time

Number of APs

Time

Login Server

Single-node Batch Jobs in S-system

S batch queue

L batch queue

Request entry
(qsub)

Multi-node Batch Jobs

S-system

Number of PNs

Fig. 3 Queue configuration of the Earth Simulator. ES has two-
type queues. S batch queue is designed for single-node
batch jobs and L batch queue is for multi-node batch
jobs.

WorkUser

Stage-in Access

B A

FSP

Processor Node

Batch Job B
(next)

Batch Job A
(running)

DiskDisk

Stage-out

Fig. 4 File Staging Process. File B used by the next scheduled
batch job B is copied from the user disk to the work disk
(stage-in), and File A created by the running batch job A
is copied from the work disk to the user disk after the job
execution (stage-out). These processes are executed by
FSPs in the background of the job execution in PNs
without using APs of PNs. They affect mainly disk I/O
performance, but produce a little effect.

Submitted

Terminated

Node Allocation

Stage-in

Stage-out

Waiting

Execution

Escalation

Fig. 5 Job Execution Flow.

A. Uno

55J. Earth Sim., Vol. 3, September 2005, 52 – 59

(1) Node Allocation
When a new batch job is submitted, the scheduler

searches available nodes which has sufficient vacant
work disk space and execution time. If the scheduler
finds enough available nodes, it allocates those nodes and
the estimated start time to the batch job, and starts stage-
in process.

(2) Stage-in
After the nodes are allocated to the batch job, stage-in

process starts. This process is executed by FSPs without
using APs of PNs. By analyzing the file path, NQSII
chooses an FSP that does file copy. And an FSP copies
user’s files from the user disk to the work disk while a
PN executing another batch job.

(3) Job Escalation
The scheduler checks the estimated start time of each

batch job periodically. If the scheduler finds the earlier
start time than the estimated start time, it allocates the
new start time to the batch job. This process is called
“Job Escalation” (Fig. 6). At this time, if some nodes are
able to be allocated to the same batch job again, the
scheduler doesn’t execute stage-in process toward those
nodes, and starts stage-in process only toward newly allo-
cated nodes. This process is called “partial stage-in.”

(4) Job Execution
When the estimated start time has arrived, the sched-

uler executes the batch job. If stage-in process hasn’t
been finished until the estimated start time, the scheduler
cancels this estimated start time, and does rescheduling
after stage-in process is completed.

When the job execution is finished or the declared
elapsed time is over, the scheduler terminates the batch
job and starts stage-out process.

Time

N
od

e

User
Disk

Partial stage-in

Batch Job

Newly
allocated

Job Escalation

Batch Job

New start time Estimated start time

nodes

Fig. 6 Job Escalation. If the scheduler finds the earlier start
time than the estimated start time, the new start time is
allocated to the batch job. And the scheduler starts stage-
in process only toward newly allocated nodes. This
process is called “partial stage-in.”

(5) Stage-out
After the job execution, the scheduler starts stage-out

process. This process is also executed by FSPs without
using APs of PNs. The priority of stage-out process is
lower than one of stage-in process, because stage-in
process is need to be finished as fast as possible to ensure
the estimated start time of the batch job.

L-system is basically operated as a single batch queue
environment, but L-system can be operated as some batch
queues environment at the same time. This process can be
done without stopping the ES system. NQSII can manage
each batch queue as an independent queue, and can
increase or decrease nodes of any queue anytime.

Fig. 7 shows the number and size of batch jobs execut-
ed in ES in 1 week. The top figure shows the size and the
elapsed time of the batch jobs, and the bottom figure indi-
cates the job execution situation of each PN. The rectan-
gles painted different colors are ones for different batch
jobs. Since all nodes of ES have the same performance,
ES can execute a batch job on any nodes in the same per-
formance. So the nodes allocated to one batch job could
be scattered. In the bottom figure, the boxes of the same
color on the same vertical axis correspond to the same
batch job, and those boxes are arranged to shape one rec-
tangle that indicates one batch job in the top figure. The
width of a rectangle depicts the elapsed time from the
start time to the termination time. The height denotes a
number of nodes. The black area in the bottom figure
shows the nodes either waiting for execution or for main-
tenance. We maintain each 1 cluster (16 nodes) per week.
As can be seen in Fig. 7, ES can execute batch jobs of
many sizes simultaneously and has kept a high ratio of
the node utilization using this scheduling algorithm.

4.2 System Manager
System Manager (SM) manages the communication

between NQSII and other components (Automatic
Operation System, Accounting System and other compo-
nents). SM communicates with NQSII tightly, and moni-
tors the state of all batch jobs in batch queues. The main
function of SM is the distribution of the events from
NQSII to other components and the control of other com-
ponents.

4.3 Automatic Operation System
Automatic Operation System (AOS) controls power

management of each PN. AOS controls to start up and
stop a PN according to the operation schedule of ES. And
AOS monitors the load of the ES system and stops or
starts up a PN to avoid the waste of energy corresponding
to the system load.

Software of the Earth Simulator

56 J. Earth Sim., Vol. 3, September 2005, 52 – 59

4.4 User Information Manager
User Information Manager (UIM) manages the user’s

information and the resource assigned to the user. When
the batch job is submitted, NQSII connects to UIM and
checks the resource which the batch job requires. If its
required resource is over the remaining resource, NQSII
deletes that batch job.

4.5 Accounting System
Accounting System (ACCT) collects the information

of the batch job (process account, performance informa-
tion and other information) after the job execution. And
ACCT registers these information in the Data Base
System.

4.6 Broadcasting System
Broadcasting System (BCS) provides the information

of ES and user’s batch job via World Wide Web.
Therefore, users can see the state of ES, the batch jobs
and the used resource using a conventional web browser.

5. Programming Environment
ES provides a three-level hierarchy of parallel process-

ing; vector processing in an AP, parallel processing with
shared memory in a PN, and parallel processing among
PNs via IN. To achieve the highest performance of ES
fully, users must develop well-parallelized programs that
make the most use of such parallelism.

There are two different usages of the three-level paral-
lelism (Table 1, Fig. 8). The first is on the hybrid model,
where users must distinguish the intra-node and inter-
node parallelism and specify each of the two explicitly in
a program. The inter-node parallelism can be specified
with HPF or MPI, and the intra-node is specified with
microtasking or OpenMP in this model of parallelization.

The second is on the flat model, where ES as a whole
is viewed as a flat system composed of 5,120 (= 640 × 8)
APs and users do not have to distinguish the intra-node
and inter-node parallelism. Parallelization can be done
with HPF or MPI in this model of parallelization.

Fig. 7 The number and size of batch jobs executed in ES from 23 to 30 October 2004 (1 week.) The top figure
shows the size and the elapsed time of the batch jobs, and the bottom figure indicates the job execution
situation of each PN. The rectangles colored differently correspond to different batch jobs and the same
colored rectangles on the same vertical axis mean one batch job. The horizontal axis is time. The verti-
cal axis of the bottom figure indicates a PN number, and the top is node #016 and the bottom is node
#639 (nodes from #000 to #015 are not shown because they belong to S-system.) In the top figure, the
rectangles in the bottom figure are arranged to shape one rectangle that indicates one batch job. The
height of the rectangle denotes the number of nodes and the width means the used elapsed time.

A. Uno

57J. Earth Sim., Vol. 3, September 2005, 52 – 59

5.1 Vectorization and Microtasking
Compilers for FORTRAN90 and C++ (called FOR-

TRAN90/ES and C++/ES, respectively) are available for
vectorization and microtasking. All of them have
advanced capabilities of automatic vectorization and
microtasking.

Microtasking is a sort of multitasking provided for the
Cray’s supercomputer at the first time and the same func-
tion is realized for the intra-node parallelization in ES.
The compiler automatically parallelizes a source pro-
gram, but users who wish to achieve maximum perform-
ance can control microtasking by inserting directives into
users’ source programs.

OpenMP, a standard API for shared-memory parallel
programming, is also available for intra-node paralleliza-
tion in FORTRAN90/ES and C++/ES.

5.2 Message Passing Interface
The Message Passing Interface (MPI) is a standard

specification interface that permits coding of a distributed
parallel-processing program by means of message com-
munications that are used to exchange data among
processes of user’s program. MPI/ES, that is a message
passing library for ES based on the MPI-1 and MPI-2
standards, provides a high-speed communication capabil-
ity that fully exploits the features of IN and shared mem-
ory[5]. It can be used for both intra-node and inter-node
parallelization. An MPI process is assigned to an AP in
“flat” parallelization, or to a PN containing microtasks or
OpenMP threads in “hybrid” parallelization.

MPI/ES libraries are designed and optimized carefully

to achieve highest performance of communication in ES
architecture in both of the parallelization manner. Our
evaluation of MPI performance is showed as follows[6];
Fig. 9 shows the processing time of MPI_Barrier call.
The measurement is performed on the condition that the
number of MPI processes per a PN is 1. The processing
time is about 3.3µsec. MPI_Barrier has excellent scalabil-
ity. ES has a special hardware, a hardware barrier count-
er, to realize this high-speed parallel processing synchro-
nization among nodes[1]. Fig. 10 shows the throughputs
of MPI functions. For the intra-node communication, the
maximum throughput of 14.8 GB/s is obtained (92.5% of
peak performance), and for the inter-node communica-
tion, the maximum throughput of 11.6 GB/s is obtained
(94.3% of peak performance). Table 2 shows the start-up
costs of MPI-functions. The results show the start-up

Table 1 Programming models of ES

inter-node
intra-node

AP

hybrid
HPF/MPI

microtasking / OpenMP

flat

HPF/MPI

automatic vectorization

Task

Process Process

Process

Process

Hybrid Model
(1 node / 1 MPI process)

Flat Model
(1 node / 8 MPI processes)

Task

Task

Microtask
/Thread

Fig. 8 Hybrid model and Flat model

Table 2 Start-up costs of MPI functions.

 functions
MPI_Send
MPI_Isend
MPI_Put
MPI_Get

inter-node
5.2 sec
5.7 sec
7.8 sec
8.3 sec

intra-node
1.37 sec
1.75 sec
1.54 sec
1.81 sec

message size
0Byte
0Byte
8Bytes
8Bytes

 0

1

2

3

4

5

6

32 64 128 256 512

The Number of Processor Nodes

T
im

es
 (

m
ic

ro
 s

ec
on

ds
)

Fig. 9 Processing time of MPI_Barrier with a hardware barrier
counter.

256K

1M

4M

16M

64M

256M

1G

4G

16G

8 32 128 1K 4K 16K 128K 1M 4M 16M

MPI_Get/MPI_Put (Intra-Node)
MPI_Get/MPI_Put (Inter-Node)

MPI_Send (Intra-Node)
MPI_Send (Inter-Node)

T
hr

ou
gh

pu
t (

B
yt

e/
S

ec
)

Message Size (Byte)

Fig. 10 Throughputs of MPI functions

Software of the Earth Simulator

58 J. Earth Sim., Vol. 3, September 2005, 52 – 59

costs are shorter than 10 µseconds. As can be seen from
these results, MPI/ES has a good performance of commu-
nication.

5.3 High Performance Fortran
High Performance Fortran (HPF) is designed to sup-

port efficient and portable parallel programming for scal-
able systems[7]. Compared to MPI, an advantage of HPF
is that users can easily develop parallel programs by
inserting a few directives into conventional Fortran pro-
grams and can achieve a high performance. HPF/ES, HPF
compiler for ES, supports the specifications of HPF 2.0,
its approved extensions, HPF/JA language specifications,
and some unique extensions for ES. The ES-specific
extensions are those as follows;

• HALO
This is a feature for irregular problems such as finite
element method, which are said to be difficult to par-
allelize with HPF. HALO enables users to handle
irregular accesses and communications efficiently to
parallelize irregular problems.

• parallel I/O
ES has a capability of parallel I/O and HPF/ES pro-
vides an interface to it. Users can exploit parallel I/O
readily from HPF programs.

• interface to MPI subroutines
A subroutine embedded with MPI calls can be
invoked from HPF programs, which means that users
can replace the part of performance bottleneck in
users’ program with faster MPI subroutines to
improve its performance.

• vectorization/microtasking directives
HPF/ES accepts some vectorization/microtasking
directives. These are specified for more efficient vec-

torization and microtasking.
The development process of distributed-memory paral-

lel programs with HPF/ES is that users direct the compil-
er how to layout data by inserting HPF directives to con-
ventional Fortran programs. The compiler allocates data
on parallel processors according the users’ instructions,
decomposes and schedules computation among parallel
processors to minimize the occurrence of the remote data
accesses, then produces Fortran codes with MPI calls for
minimum inter-processor communication. HPF/ES can
provide three-level parallel processing, and users can
control vectorization and parallelization in detail by
inserting vectorization and parallelization directives of
FORTRAN90/ES complier into HPF programs.

IMPACT-3D[8] is a plasma simulation code and is
parallelized with HPF/ES. To parallelize this code, only
30 HPF directives are added to the original Fortran code
using about 2 hours, and this program achieves 14.9
TFLOPS (46.5% of the peak performance) in 4096 APs
(8 APs × 512 PNs). This result shows that HPF/ES has a
high scalability and can be used readily in developing an
actual simulation program.

5.4 Performance Analysis
Compilers (FORTRAN90/ES, C++/ES and HPF/ES)

have some tools for the performance analysis.
Ftrace and Proginf are available for FORTRAN90/ES

and C++/ES. Ftrace is the simple performance analysis
function. This function can collect the detailed perform-
ance analysis information of each procedure (function)
(Fig. 11), but this function should be used only during
program tuning because this causes overhead in execution
time. Proginf provides the many information concerned
with only the overall program execution without any

Fig. 11 Example of Ftrace result

A. Uno

59J. Earth Sim., Vol. 3, September 2005, 52 – 59

overhead (Fig. 12). These tools provide performance
information as follows;

• Elapsed time
• MFLOPS (Million floating-point operations per sec-

ond)
• Vector operation ratio
• Bank conflict time
• and other performance information

Users can perform tuning efficiently by analyzing these
information.

HPFPROF profiler is a tool that analyzes data generat-
ed during execution of specially compiled HPF programs.
This profiler provides various performance information
for tuning works, such as execution count, execution time
and information about communications, vector and hard-
ware performance. And users can analyze these informa-
tion using Graphical User Interface.

Vampir/ES is a performance analysis tool for MPI
applications, and this tool displays the application run-
time behavior in variety of graphical views.

6. Conclusion
An outline of software of the Earth Simulator (the

operating system, Operation Management Software and a
programming environment) is presented in this paper.

The operating system and Operation Management
Software provide Single System Image (SSI) system
operation, system management and job control for the ES
system. NQSII, one of the major components of
Operation Management Software, plays very important
role in executing the batch jobs, and the scheduling algo-
rithm used in ES is based on the elapsed time and has
achieved high ratio of the node utilization.

As a programming environment, useful languages,
libraries and tools are prepared for users to develop well-
parallelized programs and to achieve the highest perform-
ance. FORTRAN90/ES and C++/ES has advanced capa-
bilities of automatic vectorization and microtasking.
HPF/ES provides an easy parallel program development
environment, and MPI/ES has the highest performance of
communication on the ES architecture.

I think that these software provide the efficient opera-
tion of the ES system and the comfortable user environ-
ment.

Acknowledgments
The author would like to thank the members of the

Earth Simulator Center and all of the engineers concerned
with the Earth Simulator project.

(This article is reviewed by Dr. Horst D. Simon.)

References
[1] S. Habata, M. Yokokawa and S. Kitawaki, The Earth

Simulator System, NEC Research & Development, vol.44,

No.1, pp.21– 26, 2003.

[2] T. Yanagawa, Operating System for the Earth Simulator,

NEC Research & Development, vol.44, No.1, pp.43 – 46,

2003.

[3] A. Uno, T. Aoyagi and K. Tani, Job Scheduling on the

Earth Simulator, NEC Research & Development, vol.44,

No.1, pp.47 – 52, 2003.

[4] E. Miyazaki and K. Yabuki, Integrated Operating Multi-

Node System for SX-Series and Enhanced Resource

Scheduler, NEC Research & Development, vol.44, No.1,

pp. 37– 42, 2003.

[5] M. , H. Ritzdorf, J. L. Träff and F. Zimmermann,

The MPI/SX Implementation of MPI for NEC’s SX-6 and

Other NEC Platforms, NEC Research & Development,

vol.44, No.1, pp.69 – 74, 2003.

[6] H. Uehara, M. Tamura and M. Yokokawa, MPI

Performance Measurement on the Earth Simulator, NEC

Research & Development, vol.44, No.1, pp.75 – 79, 2003.

[7] K. Suehiro, Y. Hayashi, H. Hirokawa and Y. Seo, HPF

and Performance on SX-6/SX-7, NEC Research &

Development, vol.44, No. 1, pp.64 – 68, 2003.

[8] H. Sakagami, H. Murai, Y. Seo and M. Yokokawa, 14.9

TFLOPS Three-dimensional Fluid Simulation for Fusion

Science with HPF on the Earth Simulator, Proceedings of

the ACM/IEEE SC2002 conference, 2002. http://www.sc-

2002.org/paperpdfs/pap.pap147.pdf.

Fig. 12 Example of Proginf result

	Software of the Earth Simulator
	1. Introduction
	2. Overview of the Earth Simulator System
	3. Operating System
	4. Operation Management Software
	4.1 Network Queuing System II
	4.2 System Manager
	4.3 Automatic Operation System
	4.4 User Information Manager
	4.5 Accounting System
	4.6 Broadcasting System

	5. Programming Environment
	5.1 Vectorization and Microtasking
	5.2 Message Passing Interface
	5.3 High Performance Fortran
	5.4 Performance Analysis

	6. Conclusion
	Acknowledgments
	References

