
WHP PO3 REVISIT DATA BOOK

Field Activity of JAMSTEC towards International Repeat Hydrography and Carbon Program

WHP P03 REVISIT DATA BOOK

Edited by Takeshi Kawano (JAMSTEC), Hiroshi Uchida (JAMSTEC)

WHP P03 REVISIT DATA BOOK

December 27, 2007 Published

Edited by Takeshi Kawano (JAMSTEC) and Hiroshi Uchida (JAMSTEC)

Published by © JAMSTEC, Yokosuka, Kanagawa, 2007

Japan Agency for Marine-Earth Science and Technology

2-15 Natsushima, Yokosuka, Kanagawa. 237-0061, Japan

Phone +81-46-867-9471, Fax +81-46-867-9455

Printed by Aiwa Printing Co., Ltd.

3-22-4 Takanawa, Minato-ku, Tokyo 108-0074, Japan

Contents

Preface		iii	49MR0505_3 .sum file		131
M. Fukasawa (JAMSTEC)					
Documents and .sum files		F	igures		
1.Cruise Narrative		1	Figure captions		135
T. Kawano (JAMSTEC)			Station locations		137
2.Underway Measurements			Bathymetry		139
2.1 Navigation and Bathymetry		12	Surface wind		157
T. Matsumoto (Univ. Ryukyus) et al.			Sea surface temperature		159
2.2 Surface Meteorological Observation		18	Sea surface salinity		161
K. Yoneyama (JAMSTEC) et al.			ΔpCO_2		163
2.3 Thermosalinograph and related measurements		22	Surface current		165
Y. Kumamoto (JAMSTEC) et al.			Cross-sections		
$2.4~Underway~pCO_2$		32	Potential temperature		167
A. Murata (JAMSTEC) et al.			Salinity		169
2.5 Acoustic Doppler Current Profiler		34	Salinity (with SSW correction)		171
Y. Yoshikawa (JAMSTEC) et al.			Density (σ_{ϱ})		173
3. Hydrographic Measurement Techniques and	Calibrations		Density (σ 4)		175
3.1 CTD/O ₂ Measurements		36	Neutral density (γ^n)		177
H. Uchida (JAMSTEC) et al.			Oxygen		179
3.2 Salinity		67	Silicate		181
T. Kawano (JAMSTEC) et al.			Nitrate		183
3.30xygen		73	Nitrite		185
Y. Kumamoto (JAMSTEC) et al.			Phosphate		187
3.4 Nutrients		82	Dissolved inorganic carbon		189
M. Aoyama (MRI) et al.			Total alkalinity		191
3.5 Dissolved inorganic carbon		94	pH		193
A. Murata (JAMSTEC) et al.			CFC-11		195
3.6 Total Alkalinity		98	CFC-12		197
A. Murata (JAMSTEC) et al.			CFC-113		199
3.7 pH		101	Velocity		201
A. Murata (JAMSTEC) et al.			Difference between WOCE and the revisit		
3.8 CFCs		104	Potential temperature		203
K. Sasaki (JAMSTEC) et al.		101	Salinity (with SSW correction)		205
3.9 Lowered Acoustic Doppler Current Profiler		107	Oxygen		207
S. Kouketsu (JAMSTEC) et al.			um, .sea, .wct and other data files	CD-ROM on the back cover	_0.
Station Summary		•0	,,		
49MR0505 1 .sum file		108			
49MR0505 2 .sum file					

Station	locations		13'
Bathym	etry		139
Surface	wind		15'
Sea sur	face temperature		159
Sea sur	face salinity		16
ΔpCO_2			163
Surface	current		16
Cross-s	ections		
	Potential temperature		16'
	Salinity		169
	Salinity (with SSW correction)		17
	Density (σ_0)		173
	Density (σ_{4})		17
	Neutral density (γ^n)		17'
	Oxygen		179
	Silicate		18
	Nitrate		183
	Nitrite		18
	Phosphate		18'
	Dissolved inorganic carbon		189
	Total alkalinity		19
	pH		193
	CFC-11		19
	CFC-12		19'
	CFC-113		199
	Velocity		20
Differer	nce between WOCE and the revisit		
	Potential temperature		203
	Salinity (with SSW correction)		20
	Oxygen		20'
m, .sea, .w	ct and other data files	CD-ROM on the back cover	

Preface

Ocean General Circulation Observational Research Program of IORGC⁽¹⁾/ JAMSTEC⁽²⁾ selected former WHP⁽³⁾ line of P3 or P3-1985 as one of four repeat long lines in accordance with the mid-term objective of the program.

P3 line was occupied by US scientists with Dr. Dean Roemmich as the chief scientist in 1985 (They also occupied P1 line on the way back to the United States from Japan after P3 line cruise with Dr. Lynne Talley as the chief scientist) and was the first land-to-land line in the North Pacific along which sets of high quality hydrographic observations were carried out. The performances of P3 cruise were outstanding from various viewpoints compared to those of other historical hydrographic observations. It should be noted here that P3-1985 was the first complete zonal section in the North Pacific with a dense station distribution and high quality CTD measurements appropriate to estimate meridional ocean fluxes. Quite a few scientific results have been published. Most of these results have focused attention on the meridonal overturn structure of sea water mass and of dissolved materials fluxes induced by the overturn of sea water mass. Those scientific results have given a new viewpoint or concept toward ocean general circulation and strongly support the scientific needs of WOCE⁽⁴⁾. Also data managing system in SIO⁽⁵⁾, one of back offices of P3 observation, was recognized as an effective support to the global hydrography network in WOCE. In fact, the framework of data assembly center (DAC) during WOCE period and ongoing IRHCP⁽⁶⁾ inherit a concept of data management system from SIO. If it were NOT for P3-1985, we might have to make an extraordinary effort to share and utilize hydrographic data for global climate study even now.

P3 revisit was carried out during the period from October 31, 2005 to January 30, 2006 following IRHCP under CLIVAR⁽⁷⁾ and IOCCP⁽⁸⁾. Therefore, the objectives of this revisit are 1) to investigate interannual and long-term variations in the ocean circulation and associated net property transports and their divergences, and 2) to quantify net changes in water mass inventories and renewal rate on seasonal to decadal time series, and to explore their relationships to estimate ocean transport divergences and air-sea exchanges. Beside these comprehensive objectives which are defined by IRHCP, one more objective was added to present revisit, that is to detect and evaluate changes in heat and material inventories of LCDW⁽⁹⁾ together with other results from mooring observation across the Wake Island Deep Passage. This objective was the very reason why our program preferred P3 to P2.

Lastly, as noted before, we would heartily ask favors of all scientists to refer our data books of repeat hydrography including this issue as often as possible though those data sets can be accessed through web-sites of IORGC⁽¹⁰⁾, JAMSTEC⁽¹¹⁾, IRHCP⁽¹²⁾ and CDIAC^{(13),(14)}. No permission is required to reproduce those data books and CDs. Such references are the only proof that our repeat hydrography activity is closely connected to science and can keep our activity sustainable.

On Canadian Thanksgiving Day at Yokosuka

Masao Fukasawa

Director- General of IORGC/JAMSTEC,

Program Director of Ocean General Circulation Observational Program IORGC/JAMSTEC

- (1) Institute of Observational Research for Global Change
- (2) Japan Agency for Marine-Earth Science and Technology
- (3) WOCE⁽⁴⁾ Hydrographic Programme
- (4) World Ocean Circulation Experiment
- (5) Scripps Institution of Oceanography
- (6) International Repeat Hydrography and Carbon Project
- (7) Climate Variability and Predictability
- (8) International Ocean Carbon Coordination Project
- (9) Lower Circumpolar Deep Water
- (10) http://www.jamstec.go.jp/iorgc/ocorp/data/post-woce.html
- (11) http://www.jamstec.go.jp/mirai/index eng.html
- (12) http://cchdo.ucsd.edu/index.html
- (13) Carbon Dioxide Analytical Center
- (14) http://cdiac.ornl.gov/oceans/RepeatSections/repeat map.html

1 Cruise Narrative

1.1 Highlight

GHPO Section Designation: P3

Expedition Designation: MR05-05

Chief Scientists and Affiliation:

Leg.1: Takeshi Kawano

kawanot@jamstec.go.jp

Leg.2: Akihiko Murata

akihiko.murata@jamstec.go.jp

Ikuo Kaneko

ikuo-kaneko@jamstec.go.jp

Leg.3: Shuichi Watanabe

swata@jamstec.go.jp

Ocean General Circulation Observational Research Program

Institute of Observational Research for Global Change

Japan Agency for Marine-Earth Science and Technology

2-15, Natsushima, Yokosuka, Japan 237-0061

Fax: +81-46-867-9455

Ship: R/V MIRAI

Ports of Call: San Diego (U.S.A.) – Honolulu (U.S.A.) – Okinawa – Sekinehama

Cruise Dates: October 31, 2005 – January 30, 2006

Leg.1: October 31, 2005 – November 24, 2005

Leg.2: November 27, 2005 - January 17, 2006

Leg.3: January 20, 2006 – January 30, 2006

Number of Stations: 237 stations for CTD/Carousel Water Sampler

(Leg.1: 78, Leg.2: 129, Leg.3: 30)

Geographic boundaries: 124° 59.27′ E - 117° 19.84′ W

12° 43.32' N - 35°16.29' N

Floats and drifters deployed:

One Argo float was deployed.

Mooring deployed or recovered mooring:

Five mooring systems in the Wake Island Deep Channel were recovered during the

period from December 14 to 16, 2005.

1.2 Cruise Summary

(1) Geographic boundaries

MR05-05 occupied stations along about 24°N, from 117°20' W to 124°59' E.

(2) Station occupied

A total of 237 stations (Leg.1: 78, Leg.2: 129, Leg.3: 30) were occupied using a Sea Bird Electronics 36 bottle carousel equipped with 12-liter Niskin X water sample bottles, a SBE911plus equipped with SBE35 deep

1

ocean standards thermometer, SBE43 oxygen sensor, AANDERAA "optode" oxgen sensor and Benthos Inc. Altimeter and RDI Monitor ADCP. Cruise track and station location are shown in Figure 1.2.1.

(3) Sampling and measurements

Water samples were analyzed for salinity, oxygen, nutrients, CFC-11, -12, -113, total alkalinity, DIC, and pH. The sampling layers in dbar were 10, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,200, 1,400, 1,600, 1,800, 2,000, 2,200, 2,400, 2,600, 2,800, 3,000, 3,250, 3,500, 3,750, 4,000, 4,250, 4,500, 4,750, 5,000, 5,250, 5,500, 5,750 and bottom (minus 10 m). Samples for POM, ¹⁴C, ¹³C, ¹⁵N, ¹³⁷Cs, N₂O, CH₄ and Bacteria were also collected at the selected stations. The bottle depth diagram is shown in Figure 1.2.2. Underway measurements of pCO₂, temperature, salinity, oxygen, surface current, bathymetry and meteorological parameters were conducted along the cruise track.

(4) Floats and Drifters deployed

One ARGO float was launched along the cruise track. The launched positions of the ARGO floats are listed in Table 1.2.1.

Table 1.2.1. Launched positions of the ARGO float.

Float	ARGOS	Date and Time	Date and Time	Location of Launch	CTD St. No.
S/N	PTT ID	of Reset (UTC)	of Launch (UTC)		
2296	60094	07:32 Jan.,3	09:22 Jan, 3	24° 14.25' N, 144° 12.65' E	P03-291

(5) Moorings deployed or recovered

Five moorings for Wake Island passage Flux Experiment (WIFE) were recovered. Locations of the moorings are listed in Table 1.2.2.

Table 1.2.2. Location of the moorings determined by acoustic navigation system. Locations of WM2 and WM1 could not be determined by acoustic navigation system due to leaking of the transponder. Depth of each location is derived from multi narrow beam bathymetry data obtained in this cruise.

Station	Latitude	Longitude	Depth (m)
WM5	16° 26.18' N	171° 33.21' E	5,477
WM4	15° 31.19′ N	171° 14.69' E	5,616
WM3	14° 34.14' N	170° 55.21' E	5,680
WM2	(13° 38.45' N)	(170° 34.70' E)	5,522
WM1	(12° 45.90' N)	(170° 14.90' E)	5,378

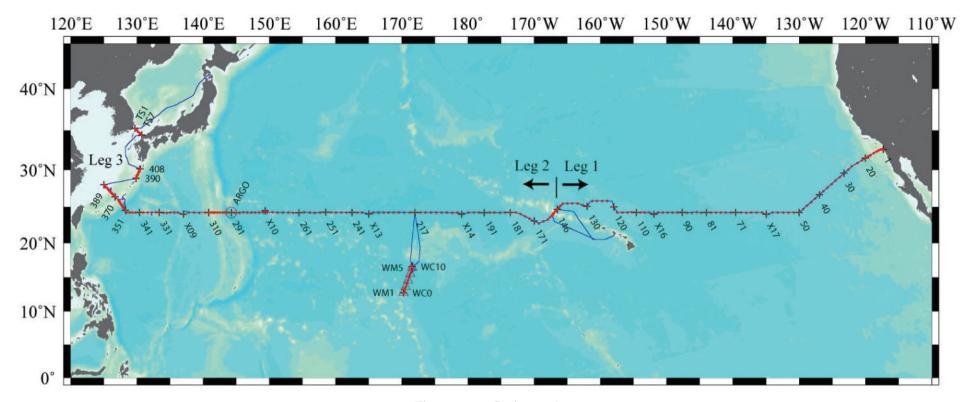


Figure 1.2.1. Cruise track.

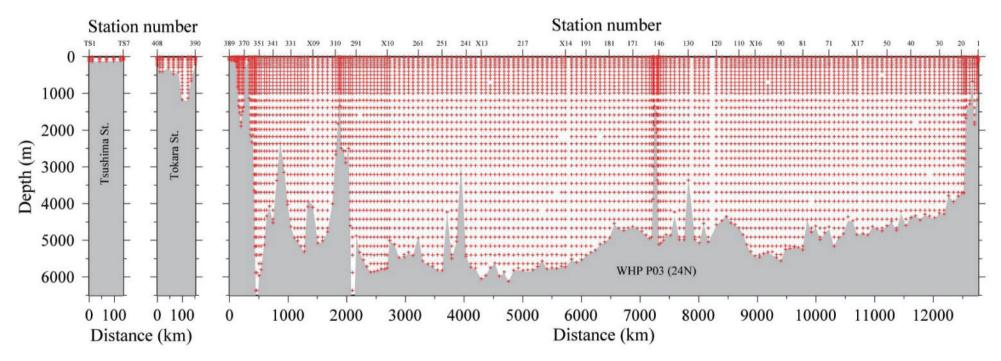


Figure 1.2.2. Bottle depth diagram.

1.3 List of Principal Investigator and Person in Charge on the Ship

The principal investigator (PI) and the person in charge responsible for major parameters measured on the cruise are listed in Table 1.3.1.

Table 1.3.1(a). List of Principal Investigator and Person in Charge on the ship for Leg.1.

Item	Principal Investigator	Person in Charge on the Ship
Underway		
ADCP	Yasushi Yoshikawa (JAMSTEC)	Soichiro Sueyoshi (GODI)
	yoshikaway@jamstec.go.jp	
Bathymetry	Takeshi Matsumoto (Univ. Ryukyus)	Soichiro Sueyoshi (GODI)
	tak@sci.u-ryukyu.ac.jp	
Meteorology	Kunio Yoneyama (JAMSTEC)	Soichiro Sueyoshi (GODI)
	yoneyamak@jamstec.go.jp	
T-S	Yuichiro Kumamoto (JAMSTEC)	Takuya Shiozaki (MWJ)
	kumamoto@jamstec.go.jp	
pCO_2	Akihiko Murata (JAMSTEC)	Minoru Kamata (MWJ)
	akihiko.murata@jamstec.go.jp	
Hydrography		
CTDO	Hiroshi Uchida (JAMSTEC)	Kentaro Oyama (MWJ)
	huchida@jamstec.go.jp	
Salinity	Takeshi Kawano (JAMSTEC)	Fujio Kobayashi (MWJ)
	kawanot@jamstec.go.jp	
Oxygen	Yuichiro Kumamoto (JAMSTEC)	Takayoshi Seike (MWJ)
	kumamoto@jamstec.go.jp	
Nutrients	Michio Aoyama (MRI)	Kenichiro Sato (MWJ)
	maoyama@mri-jma.go.jp	
DIC	Akihiko Murata (JAMSTEC)	Minoru Kamata (MWJ)
	akihiko.murata@jamstec.go.jp	
Alkalinity	Akihiko Murata (JAMSTEC)	Taeko Ohama (MWJ)
	akihiko.murata@jamstec.go.jp	

pН	Akihiko Murata (JAMSTEC)	Taeko Ohama (MWJ)
	akihiko.murata@jamstec.go.jp	
CFCs	Kenichi Sasaki (JAMSTEC)	Hideki Yamamoto (MWJ)
	ksasaki@jamstec.go.jp	
LADCP	Shinya Kouketsu (JAMSTEC)	Shinya Kouketsu (JAMSTEC)
	skouketsu@jamstec.go.jp	
$\Delta^{14}C$ & $\delta^{13}C$	Yuichiro Kumamoto (JAMSTEC)	Takeshi Kawano (JAMSTEC)
	kumamotoy@jamstec.go.jp	
¹³⁷ Cs & Pu	Michio Aoyama (MRI)	Takeshi Kawano (JAMSTEC)
	maoyama@mri-jma.go.jp)	
CH ₄ etc.	NaohiroYoshida (TITECH)	Osamu Yoshida (TITEC)
	naoyoshi@depe.titech.ac.jp	

GODI: Global Ocean Development Inc.

JAMSTEC: Japan Agency for Marine-Earth Science and Technology

MRI: Meteorological Research Institute, Japan Meteorological Agency

MWJ: Marine Works Japan. LTD

TITECH: Tokyo Institute of Technology

Univ. Ryukyus: University of the Ryukyus

Table 1.3.1(b). List of Principal Investigator and Person in Charge on the ship for Leg.2.

Item	Principal Investigator	Person in Charge on the Ship
Underway		
ADCP	Yasushi Yoshikawa (JAMSTEC)	Shinya Okumura (GODI)
	yoshikaway@jamstec.go.jp	
Bathymetry	Takeshi Matsumoto (Univ. Ryukyus)	Shinya Okumura (GODI)
	tak@sci.u-ryukyu.ac.jp	
Meteorology	Kunio Yoneyama (JAMSTEC)	Yasutaka Imai (GODI)
	yoneyamak@jamstec.go.jp	
T-S	Yuichiro Kumamoto (JAMSTEC)	Kimiko Nishijima (MWJ)
	kumamoto@jamstec.go.jp	
pCO_2	Akihiko Murata (JAMSTEC)	Mikio Kitada (MWJ)
	akihiko.murata@jamstec.go.jp	
Hydrography		
CTDO	Hiroshi Uchida (JAMSTEC)	Satoshi Ozawa (MWJ)
	huchida@jamstec.go.jp	
Salinity	Takeshi Kawano (JAMSTEC)	Fujio Kobayashi (MWJ)
	kawanot@jamstec.go.jp	
Oxygen	Yuichiro Kumamoto (JAMSTEC)	Takayoshi Seike (MWJ)
	kumamoto@jamstec.go.jp	
Nutrients	Michio Aoyama (MRI)	Junko Hamanaka (MWJ)
	maoyama@mri-jma.go.jp	
DIC	Akihiko Murata (JAMSTEC)	Mikio Kitada (MWJ)
	akihiko.murata@jamstec.go.jp	
Alkalinity	Akihiko Murata (JAMSTEC)	Fuyuki Shibata (MWJ)
	akihiko.murata@jamstec.go.jp	
pH	Akihiko Murata (JAMSTEC)	Fuyuki Shibata (MWJ)
	akihiko.murata@jamstec.go.jp	
CFCs	Kenichi Sasaki (JAMSTEC)	Katsunori Sagishima (MWJ)
	ksasaki@jamstec.go.jp	
LADCP	Shinya Kouketsu (JAMSTEC)	Hiroshi Uchida (JAMSTEC)
	skouketsu@jamstec.go.jp	

Δ^{14} C & δ^{13} C	Yuichiro Kumamoto (JAMSTEC) kumamotoy@jamstec.go.jp	Yuichiro Kumamoto (JAMSTEC)
¹³⁷ Cs & Pu	Michio Aoyama (MRI) maoyama@mri-jma.go.jp)	Akihiko Murata (JAMSTEC)
CH ₄ etc.	NaohiroYoshida (TITECH) naoyoshi@depe.titech.ac.jp	Narin Boontanon (TITECH)
Floats, Drifters		
Argo float	Nobuyuki Shikama (JAMSTEC) nshikama@jamstec.go.jp	Satoshi Ozawa (MWJ)
Mooring	Hiroshi Uchida (JAMSTEC) huchida@jamstec.go.jp	Satoshi Ozawa (MWJ)

GODI: Global Ocean Development Inc.

JAMSTEC: Japan Agency for Marine-Earth Science and Technology

MRI: Meteorological Research Institute, Japan Meteorological Agency

MWJ: Marine Works Japan. LTD

TITECH: Tokyo Institute of Technology

Univ. Ryukyus: University of the Ryukyus

Table 1.3.1(c). List of Principal Investigator and Person in Charge on the ship for Leg.3

Item	Principal Investigator	Person in Charge on the Ship
Underway		
ADCP	Yasushi Yoshikawa (JAMSTEC)	Katsuhisa Maeno (GODI)
	yoshikaway@jamstec.go.jp	
Bathymetry	Takeshi Matsumoto (Univ. Ryukyus)	Katsuhisa Maeno (GODI)
	tak@sci.u-ryukyu.ac.jp	
Meteorology	Kunio Yoneyama (JAMSTEC)	Katsuhisa Maeno (GODI)
	yoneyamak@jamstec.go.jp	
T-S	Yuichiro Kumamoto (JAMSTEC)	Takuhei Shiozaki (MWJ)
	kumamoto@jamstec.go.jp	
pCO_2	Akihiko Murata (JAMSTEC)	Masaki Moro (MWJ)
	akihiko.murata@jamstec.go.jp	
Bacteria	Masaaki Tamayama (JAMES)	Masaaki Tamayama (JAMES)
	tamayamam@kuramae.ne.jp	
Hydrography		
CTDO	Hiroshi Uchida (JAMSTEC)	Kentaro Oyama (MWJ)
	huchida@jamstec.go.jp	
Salinity	Takeshi Kawano (JAMSTEC)	Naoko Takahashi (MWJ)
	kawanot@jamstec.go.jp	
Oxygen	Yuichiro Kumamoto (JAMSTEC)	Kimiko Nishijima (MWJ)
	kumamoto@jamstec.go.jp	
Nutrients	Michio Aoyama (MRI)	Junko Hamanaka (MWJ)
	maoyama@mri-jma.go.jp	
DIC	Akihiko Murata (JAMSTEC)	Masaki Moro (MWJ)
	akihiko.murata@jamstec.go.jp	
Alkalinity	Akihiko Murata (JAMSTEC)	Taeko Ohama (MWJ)
	akihiko.murata@jamstec.go.jp	
pН	Akihiko Murata (JAMSTEC)	Taeko Ohama (MWJ)
	akihiko.murata@jamstec.go.jp	
CFCs	Kenichi Sasaki (JAMSTEC)	Hideki Yamamoto (MWJ)
	ksasaki@jamstec.go.jp	

LADCP	Shinya Kouketsu (JAMSTEC)	Shinya Kouketsu (JAMSTEC)
	skouketsu@jamstec.go.jp	
Δ^{14} C & δ^{13} C	Yuichiro Kumamoto (JAMSTEC)	Yuichiro Kumamoto (JAMSTEC)
	kumamotoy@jamstec.go.jp	
CH ₄ etc.	NaohiroYoshida (TITECH)	Narin Boontanon (TITECH)
	naoyoshi@depe.titech.ac.jp	

GODI: Global Ocean Development Inc.

JAMES: Japan Macro-Engineers' Society

JAMSTEC: Japan Agency for Marine-Earth Science and Technology

MRI: Meteorological Research Institute, Japan Meteorological Agency

MWJ: Marine Works Japan. LTD

TITECH: Tokyo Institute of Technology

Univ. Ryukyus: University of the Ryukyus

1.4 Scientific Program and Methods

(1) Objectives of MR05-05 cruise project

It is well known that the oceans play a central role in determining global climate. However, heat and material transports in the oceans and their temporal changes have not yet been sufficiently quantified. Therefore, the global climate change is not understood satisfactorily. The purposes of this research are to evaluate transports of heat and materials such as carbon and nutrients in the North Pacific and to detect their long term changes and basin-scale biogeochemical changes since the 1990s.

This cruise is a reoccupation of the hydrographic section called 'WHP-P3', which was once observed by an ocean science group of USA in 1985 and later the observation data were included in the data set of the World

Ocean Circulation Experiment (WOCE: 1990-2002) Hydrographic Programme (WHP). We will compare physical and chemical properties along section WHP-P3 with those obtained in 1985 to detect and evaluate long term changes in the marine environment of the North Pacific.

Reoccupations of the WOCE hydrographic sections are now in progress by international cooperation among ocean science communities, in the framework of CLIVAR (Climate Variability and Predictability) as part of World Climate Research Programme (WCRP) and IOCCP (International Ocean Carbon Coordination Project). Our research is planned as a contribution to these international projects supported by WMO, ICSU/SCOR, and UNESCO/IOC.

The other objectives of this cruise are as follows:

- to observe surface meteorological and hydrogical parameters as a basic data of meteorology and oceangraphy,
- 2) to observe sea bottom topography, gravity and magnetic fields along the cruise track for understanding the dynamics of ocean plate and accompanying geophysical activities,
- 3) to contribute to establishment of data base for model validation,
- 4) ARGO sensor calibration and its deployment in the western Pacific,
- 5) Calibration and recovery of mooring sensors in the Wake Island Passage.

(2) Cruise overview

MR05-05 cruise was carried out during the period from October 31, 2005 to January 30, 2006. The cruise started from the coast near San Diego and sailed towards west along approximately 24°N. This line was observed in 1985 as a part of WOCE Hydrographic Programme. A total of 237 stations were observed. At each station, full-depth CTD profile and up to 36 water samples were taken and analyzed. Water samples were obtained from fixed layers with 12-liter Niskin bottles attached to 36-position SBE carousel water sampler. The layers were 10, 50, 100, 150, 200, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,200, 1,400, 1,600, 1,800, 2,000, 2,200, 2,400, 2,600, 2,800, 3,000, 3,250, 3,500, 3,750, 4,000, 4,250, 4,500, 4,750, 5,000, 5,250, 5,500, 5,750 dbar

and approximately 10 dbar above the bottom. The scientists of JAMSTEC and Meteorological Research Institute and the technicians of Marine Works Japan. LTD (MWJ) were responsible for analyzing water sample for salinity, dissolved oxygen, nutrients, CFCs, total carbon contents, alkalinity, and pH. They also contributed to sampling for total organic carbon, radiocarbon and so on. A scientist of Japan Macro-Engineers' Society joined Leg.3 of the cruise for the research on Colon Bacillus and General Bacteria. The scientists of Tokyo Institute of Technology joined the cruise for their research on chemical oceanography. A scientist from University of the Ryukyus was a principal investigator for geological parameters (topography, geo-magnetic field and gravity). The technicians of Global Ocean Development Inc. (GODI) had responsibility for a part of underway measurements such as current velocity by Acoustic Doppler Current Profiler (ADCP) geological parameters (topography, geo-magnetic field and gravity), and meteorological parameters. One ARGO floats prepared by JAMSTEC was launched by MWJ technicians and the ship crew.

(3) Cruise narrative

R/V MIRAI departed San Diego (U.S.A) on October 31, 2005. She called for Honolulu (U.S.A.) on November 24, 2005 (Leg.1). She left Honolulu on November 27, 2005 for Okinawa (Japan) and arrived at Nakagusuku (Okinawa, Japan) on January 17, 2006 (Leg.2). For Leg.3, she departed from Nakagusuku on January 20, 2006 and arrived at Sekinehama on January 30, 2006. All watchstanders were drilled in the method of sample drawing before the first station. We observed 237 stations along approximately 24°N, namely WHP P3.

1.5 Major Problems and Goals not Achieved

(1) Position Changed

a) Leg.1

Positions of stations 120, 122, 124, 126 and 128 were changed from (158°16.2'W, 24°15.7'N), (159°0.5'W, 24°14.5'N), (159°46.8'W, 24°28.1'N), (160°31.9'W, 24°40.2'N) and (161°15.4'W, 24°53.6'N) to (158°00'W, 25°00'N), (159°0.5'W, 25°50'N), (159°46.8'W, 25°50'N), (160°31.9'W, 24°50'N) and (161°15.4'W, 25°50'N), respectively, to avoid entering the training area of U. S. Navy.

b) Leg.2

The position of Station 155 was changed from (24°10.00'N, 167°06.40'W) to (24°08.82'N, 167°07.96'W). This is because the value of the water depth (2,006 m) at the original position recorded in the SUM file of WHP-P3 in 1985 was largely different from our value (800 m) at Station 155, whose position was accurately determined by modern GPS system. In addition to that, the original position of Station 155 was so unnaturally distributed against adjacent stations on the WHP-P3 section in 1985 that we could guess its position incorrect or inaccurate. Dr. Roemmich's (Chief scientist of WHP-P3 in 1985) reply to our enquiry on this matter is "It would seem that the ship was positioned correctly in between Stations 154 and 157, but the recorded position was erroneously taken from the dead reckoning Satnav computer".

The postion of Station X09 (the crossover station with WHP-P09) was changed from (24°30.2'N, 136°59.1'E) to (23°59.22'N, 136°59.60'E) because a fishery boat was operating longline fishing at the planning position when R/V MIRAI reached there on January 6, 2006.

c) Leg.3

None of the station positions was changed. However, TS3 was shifted about 0.3 nm from its planning position because a lot of fishing boats were in operation.

(2) Misfiring and mistrip

The carousel water sampler misfired at the following stations:

Leg.1: 33, 51 and 116

Leg.2: X14, 201, 203, 217, 231, 322 and 351 2

Leg.3: None

Through the bottle data QC, mistrips were detected at the following stations:

Leg.1: 38

Leg.2: 185, WC2, WC5, 289, 357 and 351 2

Leg.3: 380

(3) CTD sensor replacement

During Leg.2, we encountered several problems (drift, shift, noise) in CTD sensors and replaced them after the following stations:

Station X14: primary and secondary conductivity sensors

Station WC8: primary oxygen sensor

Station 285: secondary oxygen sensor

(4) Interruption of sequential occupations due to gale and bad sea condition

At Station 353 above the Ryukyu Trench, the first CTD cast was hindered due to bad weather and sea conditions. Since the prolonged gale was predicted around the area, we abandoned the original plan for sequential occupations of the P3 stations from east to west, reached the west end station (Station 369), and re-started the observation from west to east toward Station 351, where sections were connected with the second CTD cast. Station 351 was occupied twice in Leg.2.

The CTD observation in the East China Sea was suspended at Station 384 due to bad sea condition lasting for about half day. The observation was restarted at Station 382.

1.6 List of Participants

The members of the scientific party are listed in Table 1.6.1 to 1.6.3 along with their main tasks on the cruise.

Table 1.6.1. List of cruise participants in Leg.1.

Name	Main tasks	Affiliation
Ayako Fujii	CH ₄ , N ₂ O, ¹⁵ N	TITECH
Go Haruta	Water Sampling	MWJ
Hiroyuki Hayashi	CTD	MWJ
Akihito Hirai	Laser Ladar, Infrared Radiometer	Chiba Univ.
Tetsuya Inaba	Water Sampling	MWJ
Yoshiko Ishikawa	Carbon Items	MWJ
Minoru Kamata	Carbon Items	MWJ
Takeshi Kawano	Chief Scientist, Salinity	IORGC/JAMSTEC
Mikio Kitada	Carbon Items	MWJ
Fujio Kobayashi	Salinity	MWJ
Shinya Kouketsu	LADCP, ADCP	IORGC/JAMSTEC
Katsuhisa Maeno	Meteorology, Geology	GODI
Junji Matsushita	Nutrients	MWJ
Takami Mori	Water Sampling	MWJ
Norio Nagahama	Meteorology, Geology	GODI
Yoshifumi Noiri	Water Sampling	MWJ
Taeko Ohama	Carbon Items	MWJ
Miwa Okino	Water Sampling	MWJ
Kosuke Okudaira	Water Sampling	MWJ
Kentaro Oyama	CTD	MWJ
Satoshi Ozawa	Chief Technologist, Water Sampling	MWJ
Kenichi Sasaki	CFCs	MIO/JAMSTEC
Kenichiro Sato	Nutrients	MWJ
Takayoshi Seike	LADCP, DO	MWJ
Takuhei Siozaki	DO, Thermosalinograph	MWJ

Yuichi Sonoyama	CFCs	MWJ
Soichiro Sueyoshi	Meteorology, Geology	GODI
Nobuhiko Tahara	Water Sampling	MWJ
Tomoyuki Takamori	CTD	MWJ
Asumi Takeuchi	Water Sampling	MWJ
Ayumi Takeuchi	Nutrients	MWJ
Tatsuya Tanaka	Salinity	MWJ
Hiroshi Uchida	Water Sampling, CTD	IORGC/JAMSTEC
Hiroki Ushiromura	CTD	MWJ
Masahide Wakita	CFCs	MIO/JAMSTEC
Keisuke Wataki	DO, Thermosalinograph	MWJ
Hideki Yamamoto	CFCs	MWJ
Osamu Yoshida	CH ₄ , N ₂ O, ¹⁵ N	TITECH
Atsushi Yoshimura	Water Sampling	MWJ

Chiba Univ: Chiba University

GODI: Global Ocean Development Inc.

MWJ: Marine Works Japan. LTD

IORGC:

JAMSTEC: Japan Agency for Marine-Earth Science and Technology

Institute of Observational Research for Global Change

MIO: Mutsu Institute for Oceanography

TITECH: Tokyo Institute of Technology

Table 1.6.2. List of cruise participants in Leg.2.

Name	Main tasks	Affiliation
Eiji Abe	Laser Radar, Infrared Radiometer	Chiba Univ.
Narin Boontanon	CH_4 , N_2O , ^{15}N	TITECH
Masanori Enoki	CFCs	MWJ
Ami Fujiwara	Water Sampling	MWJ
Junko Hamanaka	Nutrients	MWJ
Yasushi Hashimoto	Water Sampling	MWJ
Ei Hatakeyama	Carbon Items	MWJ
Miyo Ikeda	Water Sampling	MWJ
Yasutaka Imai	Meteorology, Geology, ADCP	GODI
Ikuo Kaneko	Chief Scientist, LADCP	IORGC/JAMSTEC
Mikio Kitada	Carbon Items	MWJ
Fujio Kobayashi	Salinity	MWJ
Misato Koide	Water Sampling	MWJ
Hiroshi Komura	Water Sampling	MWJ
Yuichiro Kumamoto	Water Sampling, DO	IORGC/JAMSTEC
Kohei Miura	Nutrients	MWJ
Takami Mori	Water Sampling	MWJ
Masaki Moro	Carbon Items	MWJ
Akihiko Murata	Chief Scientist, Carbon Items	IORGC/JAMSTEC
Akinori Murata	CTD, Water Sampling	MWJ
Kimiko Nishijima	DO, Thermosalinograph	MWJ
Ryo Ohyama	Meteorology, Geology, ADCP	GODI
Shinya Okumura	Meteorology, Geology, ADCP	GODI
Asako Onda	Water Sampling	MWJ
Satoshi Ozawa	CTD, Argo Float	MWJ
Katsunori Sagishima	CFCs	MWJ
Kenichi Sasaki	CFCs	MIO/JAMSTEC
Kenichiro Sato	Water Sampling	MWJ
Takayoshi Seike	DO	MWJ
Fuyuki Shibata	Chief Technologist, Carbon Items	MWJ

Naoko Takahashi	Salinity	MWJ
Tomoyuki Takamori	CTD, Water Sampling	MWJ
Ayumi Takeuchi	Nutrients	MWJ
Shinsuke Toyoda	CTD, Water Sampling	MWJ
Hiroshi Uchida	LADCP, Mooring, CTD	IORGC/JAMSTEC
Hirokatsu Uno	CTD	MWJ
Hiroki Ushiromura	CTD, Water Sampling	MWJ
Keisuke Wataki	CFCs	MWJ

Chiba Univ.: Chiba University

GODI: Global Ocean Development Inc.

MWJ: Marine Works Japan. LTD

JAMSTEC: Japan Agency for Marine-Earth Science and Technology

IORGC: Institute of Observational Research for Global Change

MIO: Mutsu Institute for Oceanography

TITECH: Tokyo Institute of Technology

Table 1.6.3. List of cruise participants in Leg.3.

Name	Main tasks	Affiliation
Yukiko Aoyagi	Water Sampling	MWJ
Narin Boontanon	CH_4 , N_2O , ^{15}N	TITECH
Masanori Enoki	CFCs	MWJ
Ami Fujiwara	Water Sampling	MWJ
Chusei Fujiwara	Laser Radar, Infrared Radiometer	GODI
Yoko Fukuda	Water Sampling	MWJ
Junko Hamanaka	Nutrients	MWJ
Miyo Ikeda	Water Sampling	MWJ
Yoshiko Ishikawa	Carbon Items	MWJ
Minoru Kamata	Chief Technologist, Carbon Items	MWJ
Misato Koide	Water Sampling	MWJ
Shinya Koketsu	LADCP, ADCP, Bathymetry	IORGC/JAMSTEC
Yuichiro Kumamoto	Water Sampling, DO	IORGC/JAMSTEC
Hiroshi Komura	Water Sampling	MWJ
Masaaki Maekawa	Water Sampling	MWJ
Katsuhisa Maeno	Meteorology, Geology, ADCP	GODI
Junji Matsushita	Nutrients	MWJ
Hiroshi Matsunaga	CTD	MWJ
Kohei Miura	Nutrients	MWJ
Masaki Moro	Carbon Items	MWJ
Kimiko Nishijima	DO	MWJ
Tomohide Noguchi	CTD, Water Sampling	MWJ
Taeko Ohama	Carbon Items	MWJ
Asako Onda	Water Sampling	MWJ
Kentaro Oyama	CTD	MWJ
Ryo Ohyama	Meteorology, Geology, ADCP	GODI
Takuhei Shiozaki	DO	MWJ
Yuichi Sonoyama	CFCs	MWJ
Naoko Takahashi	Salinity	MWJ
Masaaki Tamayama	Bacteria	JAMES

Tatsuya Tanaka	Tatsuya Tanaka Salinity		
Hiroshi Uchida	Water Sampling, CTD	IORGC/JAMSTEC	
Masahide Wakita	CFCs	MIO/JAMSTEC	
Shuichi Watanabe	Chief Scientist, LADCP, Water Sampling	MIO/JAMSTEC	
Makito Yokota	CTD, Water Sampling	MWJ	
Hideki Yamamoto	CFCs	MWJ	
GODI:	Global Ocean Development Inc.		
MWJ:	Marine Works Japan. LTD		
JAMES:	Japan Macro-Engineers' Society		
JAMSTEC:	Japan Agency for Marine-Earth Science and Technology		
IORGC:	Institute of Observational Research for Global Change		
MIO:	Mutsu Institute for Oceanography		
TITECH: Tokyo Institute of Technology			

2 Underway Measurement

2.1 Navigation and Bathymetry

June 28, 2007

2.1.1 Navigation

(1) Personnel

Souichiro Sueyoshi (GODI)

Katsuhisa Maeno (GODI)

Norio Nagahama (GODI)

Yasutaka Imai (GODI)

Shinya Okumura (GODI)

Ryo Ohyama (GODI)

(2) Overview of the equipment

The Ship's position was measured by navigation system, made by Sena Co. Ltd, Japan. The system has two 12-channel GPS receivers (Leica MX9400N) and two 9-channel GPS receivers (Trimble DS-4000). GPS antennas located at Navigation deck, offset to starboard and portside, respectively. We switched them to choose better state of receiving when the number of the available GPS satellites decreased or HDOP increased. The system also integrates gyro heading (Tokimec TG-6000), log speed (Furuno DS-30) and other navigation devices data on HP workstation. The workstation keeps accurate time using GPS Time server (Datum Tymserv2100) via NTP (Network Time Protocol). Navigation data was recorded as "SOJ" data every 60 seconds.

(3) Data period

Leg.1: 16:50, 31 October 2005 to 18:40, 24 November 2005 (UTC)

Leg.2: 19:00, 27 November 2005 to 01:10, 17 January 2006 (UTC)

Leg.3: 23:50, 19 January 2006 to 00:00, 30 January 2006 (UTC)

2.1.2 Bathymetry

(1) Personnel

Takeshi Matsumoto (Univ. of the Ryukyus) Principal Investigator / Not on-board:

Souichiro Sueyoshi (GODI)

Katsuhisa Maeno (GODI)

Norio Nagahama (GODI)

Yasutaka Imai (GODI)

Shinya Okumura (GODI)

Ryo Ohyama (GODI)

(2) Overview of the equipments

R/V MIRAI equipped a Multi Narrow Beam Echo Sounding system (MNBES), SEABEAM 2112.004 (SeaBeam Instruments Inc.) The main objective of MNBES survey is collecting continuous bathymetry data along ship's track to make a contribution to geological and geophysical investigations and global datasets. Data interval along ship's track was max 17 seconds at 6,000 m. To obtain accurate sound velocity profile of water column for ray-path correction of acoustic multibeam, we used Surface Sound Velocimeter (SSV) data for the surface (6.2 m) sound velocity, and the sound velocity profile of the deeper depths was calculated using temperature and salinity profiles from the nearest CTD data by the equation in Mackenzie (1981).

System configuration and performance of SEABEAM 2112.004,

12 kHz

Frequency:

Transmit beam width: 2 degree

Transmit power: 20 kW

Transmit pulse length: 3 to 20 msec.

Depth range: 100 to 11,000 m

Beam spacing: 1 degree athwartships

Swath width: 150 degree (max)

120 degree to 4,500 m

100 degree to 6,000 m

90 degree to 11,000 m

Depth accuracy: Within < 0.5% of depth or +/-1m, whichever is greater, over the entire swath.

(Nadir beam has greater accuracy; typically within < 0.2% of depth or +/-1m,

whichever is greater)

(3) Data Period

Bathymetric survey was carried out along the CTD observation line during the cruise

Leg.1: P03-001c on 31 Oct 2005 to P03-146 on 22 Oct. 2005

Leg.2: P03-146 on 30 Nov 2005 to P03-351 on 15 Jan 2006

Leg.3: P03-370 on 20 Jan 2006 to TS-1 on 26 Jan 2006.

(4) Data processing

(4.1) Editing for the navigation data

Erroneous navigation data are manually removed (by using "mbnavedit" module of the mbsystem) and linearly interpolated.

(4.2) Sound velocity correction

The continuous bathymetry data are split into small areas around each CTD station. For each small area, the bathymetry data are corrected using a sound velocity profile calculated from the CTD data in the area. The

equation of Mackenzie (1981) is used for calculating sound velocity. The data processing is carried out using "mbbath" module of the mbsystem

(4.3) Gridding

Gridding for the bathymetry data is carried out using the HIPS software version 5.4 (CARIS, Canada). Firstly, the bathymetry data during a turn, speed up or down are removed using swath editor and subset editor. A spike noise of each swath data is also removed. Then the bathymetry data are gridded by "Interpolate" function of the software with the following parameters.

Matrix size: 5 x 5

Number of nearneighbors: 16

Reference

Mackenzie, K.V. (1981): Nine-term equation for the sound speed in the oceans, J. Acoust. Soc. Am., 70 (3), pp 807-812.

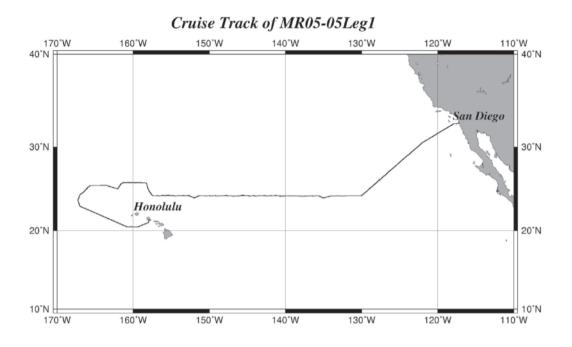


Figure 2.1.1-1. Cruise Track of MR05-05 Leg.1.

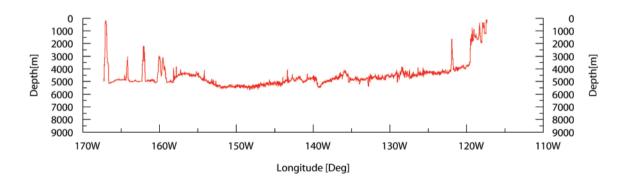


Figure 2.1.2-1. Depth profile of CTD line MR05-05 Leg.1.

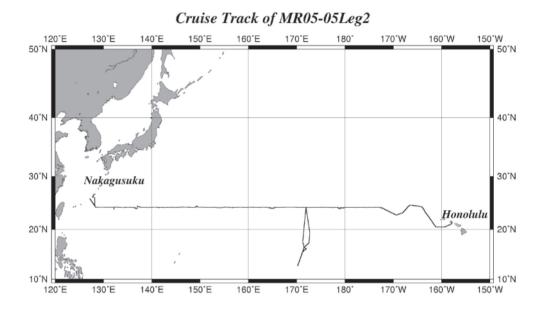


Figure 2.1.1-2. Cruise Track of MR05-05 Leg.2.

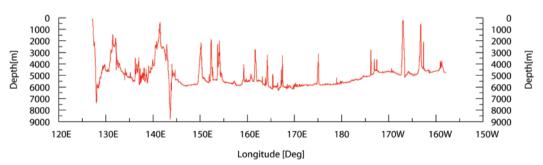


Figure 2.1.2-2. Depth profile of CTD line MR05-05 Leg.2.

Cruise Track of MR05-05Leg3 120°E 130°E 140°E 150°E 45°N ■ 45°N Sekinehama 40°N 40°N 35°N 35°N 30°N 30°N Nakagusuku 25°N 25°N 120°E 130°E 140°E 150°E

Figure 2.1.1-3. Cruise Track of MR05-05 Leg.3.

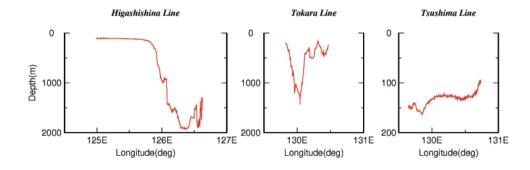


Figure 2.1.2-3. Depth profile of CTD line MR05-05 Leg.3.

2.1.3 Sea surface gravity

(1) Personnel

Takeshi Matsumoto (Univ. of the Ryukyus) Principal Investigator / Not on-board:
Souichiro Sueyoshi (GODI)

Katsuhisa Maeno (GODI)

Norio Nagahama (GODI)

Yasutaka Imai (GODI)

Shinya Okumura (GODI)

Ryo Ohyama (GODI)

(2) Introduction

Marine gravity is an important parameter in geophysics and geodesy. We collected gravity data at the sea surface during the MR05-05 Leg.1 cruise from 31 Oct. 2005 to 24 Nov. 2005, Leg.2 cruise from 27 Nov. 2005 to 17 Jan. 2006, Leg.3 cruise from 20 Jan. 2006 to 30 Jan. 2006.

(3) Parameters

Relative Gravity [mGal]

(4) Data Acquisition

We have measured relative gravity using LaCoste and Romberg air-sea gravity system II (Micro-G LaCoste, Inc.) during this cruise. To convert the relative gravity to absolute one, we measured gravity, using portable gravity meter (Scintrex gravity meter CG-3M), at Honolulu and Nakagusuku and Sekinehama as reference points.

(5) Preliminary Results

Absolute gravity is shown in Table 2.1.3.

Table 2.1.3. Absolute gravity table MR05-05 cruise.

				Absolute	Sea	Duest	Gravity at	L&R*2
No.	Date	UTC	Port	Gravity	Level	Draft	Sensor*1	
				(mGal)	(cm)	(cm)	(mGal)	(mGal)
1	2005/Oct/31	14:23	SanDiego	-	240	636	-	11853.79
2	2005/Nov/25	21:59	Honolulu	978927.57	154	655	978928.10	11266.15
3	2006/Jan/19	02:41	Nakagusuku*3	979114.12	219	610	979114.83	11456.52
4	2006/Jan/19	23:03	Nakagusuku*3	979114.12	237	605	979114.88	11456.67
5	2006/Feb/1	00:52	Sekinehama	980371.95	286	625	980372.87	12719.15

^{*1:} Gravity at Sensor= Absolute Gravity + Sea Level*0.3086/100 + (Draft-530)/100*0.0431

(6) Data Archives

Gravity data obtained during this cruise will be submitted to the JAMSTEC Data Management Division, and will be archived there.

(7) Remarks

- 1. We did not collect data from 18 Nov. 2005 18:55UTC to 19:10UTC, due to reboot of the meter.
- 2. Long Accelerometer did not work properly from 31 Oct. 2005 to 18 Nov. 19:10. Therefore, Gravity, VCC and AL were not correct value.

2.1.4 On-board geomagnetic measurement

(1) Personnel

Takeshi Matsumoto (Univ. of the Ryukyus) Principal Investigator / Not on-board:
Souichiro Sueyoshi (GODI)

Katsuhisa Maeno (GODI)

Norio Nagahama (GODI)

Yasutaka Imai (GODI)

Shinya Okumura (GODI)

Ryo Ohyama (GODI)

(2) Introduction

Measurement of geomagnetic field on the sea is required for the interpretation of marine magnetic anomaly caused by magnetization in the upper crust. We measured geomagnetic field using a three-component magnetometer during the MR05-05 Leg.1 cruise from 31 Oct. 2005 to 24 Nov. 2005, Leg.2 cruise from 27 Nov. 2005 to 17 Jan. 2006, and Leg.3 cruise from 20 Jan. 2006 to 30 Jan. 2006.

(3) Method

A shipboard three-component magnetometer system (Tierra Tecnica SFG1214) is equipped on-board R/V MIRAI. Three-axis flux-gate sensors with ring-cored coils are fixed on the fore mast. Outputs of the sensors are digitized by a 20-bit A/D converter (1 nT/LSB), and sampled at 8 times per second. Ship's heading, pitch and roll are measured utilizing a ring-laser gyro installed for controlling attitude of a Doppler radar. Ship's position (GPS) and speed data are taken from LAN every second.

(4) Data Archives

Magnetic field data obtained during this cruise will be submitted to the JAMSTEC Data Management Division, and will be archived there.

^{*2:} LaCoste and Romberg air-sea gravity system II

^{*3:} It was measured at June 20, 2003.

(5) Remarks

We collected the data for calibration during the following period by 'figure-eight' turn.

11 Oct. 2005 00:00 – 00:23 (Leg.1)

08 Dec. 2005 05:58 – 06:22 (Leg.2)

01 Jan. 2006 03:55 – 04:21 (Leg.2)

28 Jan. 2006 08:25 – 08:50 (Leg.3)

2.2 Surface Meteorological Observation

June 15, 2007

(1) Personnel

Kunio Yoneyama (JAMSTEC)
Souichiro Sueyoshi (GODI)
Katsuhisa Maeno (GODI)
Norio Nagahama (GODI)
Yasutaka Imai (GODI)
Shinya Okumura (GODI)
Ryo Ohyama (GODI)

(2) Objective

As a basic dataset that describes weather conditions during the cruise, surface meteorological observation was continuously conducted.

(3) Methods

There are two different surface meteorological observation systems on the R/V MIRAI. One is the MIRAI surface meteorological measurement station (SMET), and the other is the Shipboard Oceanographic and Atmospheric Radiation (SOAR) system.

Instruments of SMET and its data used here are listed in Table 2.2.1. All SMET data were collected and processed by KOAC-7800 weather data processor manufactured by Koshin Denki, Japan. Note that although SMET contains rain gauge, anemometer and radiometers in their system, we adopted those data from not SMET but SOAR due to the following reasons; 1) Since SMET rain gauge is located near the base of the mast, the location possibly affect on the accuracy of the capture rate of the gauge, 2) SOAR's anemometer has

better starting threshold wind speed (1 m/sec) comparing to SMET's anemometer (2 m/sec), and 3) SMET's radiometers record data with 10 W/m² unit, while SOAR records 1 W/m² unit.

SOAR system was designed and constructed by the Brookhaven National Laboratory (BNL), USA, for an accurate measurement of solar radiation on the ship. Details of SOAR can be found at http://www.gim.bnl.gov/soar/. SOAR consists of 1) Portable Radiation Package (PRP) that measures short and long wave downwelling radiation, 2) Zeno meteorological system that measures pressure, air temperature, relative humidity, wind speed/direction, and rainfall, and 3) Scientific Computer System (SCS) developed by the National Oceanic and Atmospheric Administration (NOAA), USA, for data collection, management, real-time monitoring, and so on. Information on sensors used here is listed in Table 2.2.2.

Table 2.2.1. Instruments and locations of SMET.

Sensor	Parameter	Manufacturer / type	Location / height from sea level	
Thermometer*1	air temperature	Vaisala, Finland / HMP45A	$compass \; deck^{^{*2}} / 21 \; m$	
	relative humidity			
Thermometer	sea temperature	Koshin Denki, Japan / RFN1-0	4th deck / -5 m	
Barometer	pressure	Setra Systems Inc., USA / 370	captain deck / 13 m	

^{*1} Gill aspirated radiation shield 43408 made by R. M. Young, USA is attached.

Table 2.2.2. Instruments and locations of SOAR.

Sensor	Parameter	Manufacturer / type	Location / height from sea level
Anemometer	wind speed/direction	R. M. Young, USA / 05106	foremast / 25 m
Rain gauge	rainfall accumulation	R. M. Young, USA / 50202	foremast / 24 m
Radiometer	short wave radiation	Eppley, USA / PSP	foremast / 25 m
	long wave radiation	Eppley, USA / PIR	foremast / 25 m

^{*2} There are two thermometers at starboard and port sides.

(4) Data processing and data format

All raw data were recorded every 6 seconds. Datasets produced here are 1-minute mean values (time stamp at the beginning of the average). They are simple mean of 8 samples (10 samples minus maximum/minimum values) to exclude singular values. Liner interpolation onto missing values was applied only when their interval was less than 5 minutes.

Since the thermometers are equipped on both starboard/port sides on the deck, we used air temperature/ relative humidity data taken at upwind side. Dew point temperature was produced from relative humidity and air temperature data.

No adjustment to sea level values is applied except pressure data.

Data are stored as ASCII format and contains following parameters.

Time in UTC expressed as YYYYMMDDHHMM, time in Julian day (1.0000 = January 1, 0000Z), longitude (°E), latitude (°N), pressure (hPa), air temperature (°C), dew point temperature (°C), relative humidity (%), sea surface temperature (°C), zonal wind component (m/sec), meridional wind component (m/sec), precipitation (mm/hr), downwelling shortwave radiation (W/m²), and downwelling longwave radiation (W/m²).

Missing values are expressed as "9999".

(5) Data Quality

To ensure the data quality, each sensor was calibrated as follows. Since there is a possibility for fine time resolution data sets to have some noises caused (generated) by turbulence, it is recommended to filter them out (ex. hourly mean) from this 1-minute mean data sets depending on the scientific purpose.

T/RH sensor:

Temperature and humidity probes were calibrated before/after the cruise by the manufacturer. Certificated accuracy of T/RH sensors are better than \pm 0.2°C and \pm 2%, respectively.

We also checked T/RH values using another calibrated portable T/RH sensor (Vaisala, HMP45A) before and

after the cruise. The results are,

Temperature (°C)

Mean difference between T (SMET) and T (portable) is

 0.0 ± 0.6 (°C) at port side, -0.3 ± 0.3 (°C) at starboard side.

Relative Humidity (%)

Mean difference between RH (SMET) and RH (portable) is

 2 ± 2 (%) at port side, 3 ± 1 (%) at starboard side.

Pressure sensor:

Using calibrated portable barometer (Vaisala, Finland / PTB220, certificated accuracy is better than \pm 0.1 hPa), pressure sensor was checked before/after the cruise. Mean difference of SMET pressure sensor and portable sensor is -0.1 \pm 0.3 hPa.

Anemometer:

Using digital tester (Hioki, Japan / 3805), pre-cruise calibration was conducted by the GODI.

Pre-cruise calibration date: Sep. 7, 2005

Starting threshold wind speed: 0.9 m/sec for clockwise

0.9 m/sec for counter-clockwise

Wind direction check: better than $\pm 2^{\circ}$

 Set value
 6
 36
 64
 96
 126
 156
 185
 215
 244
 275
 306
 336

 Measured value
 6
 30
 68
 97
 127
 156
 186
 216
 245
 275
 306
 337

 Difference
 0
 0
 -4
 -1
 -1
 0
 -1
 -1
 -1
 0
 0
 -1

Precipitation:

Before the cruise, we put water into the rain gauge to check their linearity between the indicated values and

the water amount input. Expected accuracy is better than ± 1 mm corresponding to the sensor's specification. The results are as follows, and data were corrected using this relationship.

	Leg.1	Leg.2	Leg.3	
minimum input water volume (cc)	0.0	0.0	0.0	
minimum measured value (mm)	0.9	2.1	0.7	
maximum input water volume (cc)	509.8	514.3	510.3	
maximum measured value (mm)	51.6	52.7	51.5	

Radiation sensors:

Short wave and long wave radiometers were calibrated by the manufacturer, Remote Measurement and Research Company, USA, prior to the cruise.

(6) Data periods

Leg.1 1200 UTC, October 31, 2005 - 1830 UTC, November 24, 2005

* SST data is available from 0000 UTC, November 2, 2005.

Leg.2 1900 UTC, November 27, 2005 - 0000 UTC, January 17, 2006

* SST data is available between 0400 UTC, November 29, 2005 - 0500 UTC, January 15, 2006

Leg.3 2350 UTC, January 19, 2006 - 2300 UTC, January 29, 2006

* SST is available until 0000 UTC, January 28, 2006.

(7) Point of contact

Kunio Yoneyama (yoneyamak@jamstec.go.jp)

IORGC / JAMSTEC, 2-15, Natsushima, Yokosuka 237-0061, Japan

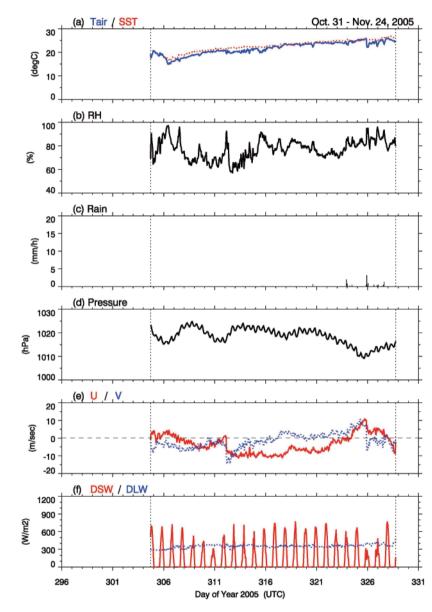


Figure 2.2.1. Time series of (a) air and sea surface temperature, (b) relative humidity, (c) precipitation, (d) pressure, (e) zonal and meridional wind components, and (e) short and long wave radiation. Day 304 corresponds to October 31, 2005.

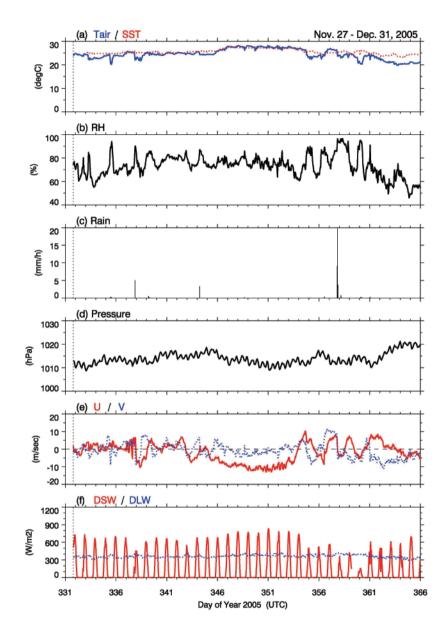


Figure 2.2.1. (continued)

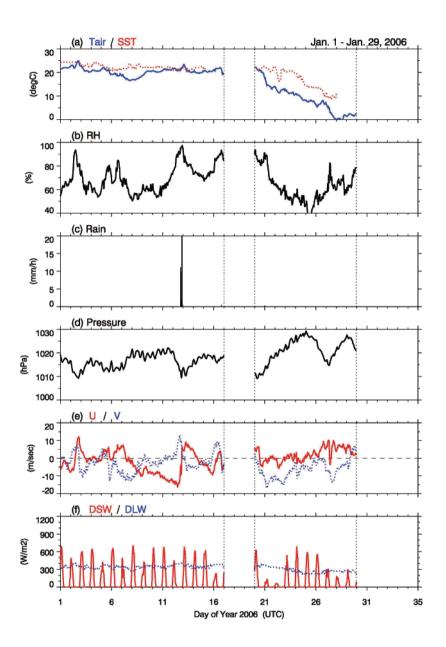


Figure 2.2.1. (continued)

2.3 Thermo-salinograph and related measurements

May 2, 2007

(1) Personnel

Yuichiro Kumamoto (JAMSTEC)

Takeshi Kawano (JAMSTEC)

Takuhei Shiozaki (MWJ)

Keisuke Wataki (MWJ)

Kimiko Nishijima (MWJ)

Takayoshi Seike (MWJ)

Osamu Yoshida (Tokyo Institute of Technology)

(2) Objective

Our purpose is to measure salinity, temperature, dissolved oxygen, fluorescence, and particle size and number in near-sea surface water during MR05-05 cruise.

(3) Methods

The Continuous Sea Surface Water Monitoring System (Nippon Kaiyo Co. Ltd.), including the thermosalinograph, has six kinds of sensors and can automatically measure salinity, temperature, dissolved oxygen, fluorescence and particle size and number in near-sea surface water every one minute. This system is located in the sea surface monitoring laboratory on R/V MIRAI and connected to shipboard LAN system. Measured data, time, and location of the ship were displayed on a monitor and then stored in a data management PC (IBM NetVista 6826-CBJ).

Near-surface water was continuously pumped from a depth of about 4 m to the laboratory and flowed into the system through a vinyl-chloride pipe. The flow rate of the surface seawater was controlled by several valves and adjusted to 12 L/min. except for a fluorometer (about 0.3 L/min.). The flow rate was measured by two flow meters.

During this cruise, the data management PC had a trouble in data acquisition of dissolved oxygen and particle counting and sizing. Thus, we connected another computer (IBM ThinkPad T41) to the system for those data storage.

Specifications of the each sensor in this system are listed below.

a) Temperature and salinity sensors*

SEACAT THERMOSALINOGRAPH

Model: SBE-21, SEA-BIRD ELECTRONICS, INC.

Serial number: 2118859-3126

Measurement range: Temperature -5 to +35°C, Salinity 0 to 6.5 S m⁻¹

Accuracy: Temperature 0.01°C 6month⁻¹, Salinity 0.001 S m⁻¹ month⁻¹

Resolution: Temperatures 0.001°C, Salinity0.0001 S m⁻¹

b) Bottom of ship thermometer

Model: SBE 3S, SEA-BIRD ELECTRONICS, INC.

Serial number: 032607

Measurement range: -5 to +35°C

Resolution: ± 0.001 °C

Stability: 0.002°C year⁻¹

c) Dissolved oxygen sensor

Model: 2127A, HACH ULTRA ANALYTICS JAPAN, INC.

Serial number: 47477

Measurement range: 0 to 14 ppm

Accuracy: $\pm 1\%$ at 5°C of correction range

Stability: 1% month⁻¹

d) Fluorometer

Model: 10-AU-005, TURNER DESIGNS

Serial number: 5562 FRXX

Detection limit: 5 ppt or less for chlorophyll a Stability: 0.5% month-1 of full scale

e) Particle Size sensor

Model: P-05, Nippon Kaiyo LTD.

Serial number: P5024

Measurement range: 0.2681 mm to 6.666 mm

Accuracy: $\pm 10\%$ of range

Reproducibility: $\pm 5\%$ Stability: 5% week⁻¹

f) Flow meter

Model: EMARG2W, Aichi Watch Electronics LTD.

Serial number: 8672

Measurement range: 0 to 301 min⁻¹

Accuracy: $\pm 1\%$ Stability: $\pm 1\%$ day⁻¹

*During the past cruises, an antifoulant (antibiotic) device including TBTO (tributyltin oxide) was attached to the salinity sensor to control growth of aquatic organisms in electronic conductivity sensors. TBTO is an endocrine disrupting chemical and restricted its use in the environments by Japanese law. Consequently, we did not use the antifoulant device during this cruise. After Leg.2, we found biogenic stains on both temperature and salinity sensors that had not been found at the end of Leg.1 cruise (Photo 2.3.1). Although effectiveness of the antibiotic device is uncertain, the biogenic stains found on the sensors suggest that the device should should have been attached to the sensors for longer than one month during the cruises.

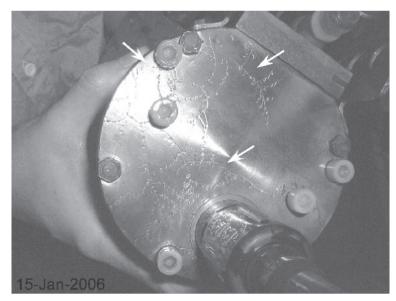


Photo 2.3.1.

(4) Measurements

Periods of measurement, maintenance, and problems during MR05-05 are listed in Table 2.3.1.

Table 2.3.1. Events list of the thermo-salinograph.

Date [UTC]	Time [UTC]	Event	Remarks
31-Oct-05	18:13	All measurements started.	Leg.1 start
11-Nov-05	02:45 ~ 03:46	The fluorescence measurement stopped for cell	
		cleaning.	
23-Nov-05	22:57	All measurements stopped.	Leg.1 end
29-Nov-05	06:53	All measurements started.	Leg.2 start
14-Dec-05	20:23 ~ 21:50	The fluorescence measurement stopped for cell	
		cleaning.	
15-Jan-06	05:12	All measurements stopped.	Leg.2 end
20-Jan-06	04:32	All measurements started.	Leg.3 start
25-Jan-06	05:48 ~ 07:14	Failure of data storage for T, S, Flu, location due to	
		the PC troubles.	
26-Jan-06	07:58 ~ 09:04	Failure of data storage for T, S, Flu, location due to	
	09:13 ~ 09:39	the PC troubles.	
26-Jan-06	09:13 ~ 09:28	Failure of data storage for oxygen and particle size	
		due to the PC troubles.	
27-Jan-06	23:27	All measurements stopped.	Leg.3 end

(5) Calibrations

i. Comparison with bottle data

We collected the surface seawater samples approximately twice a day from the outlet equipped in the

middle of water line of the system for salinity sensor calibration. 250 ml brown grass bottle with plastic inner stopper and screw cap was used to collect the samples. The sample bottles were stored in the sea surface monitoring laboratory. The samples were measured using the Guildline 8400B at the end of each leg after all measurements of hydrocast bottle samples. The measurement technique was almost same as that for bottle salinity measurement. The results are shown in Table 2.3.2 and JAMSTEC MIRAI DATA web;

http://www.jamstec.go.jp/mirai/2005/MR05-05_leg1/EPCS/MR0505_leg1_cor_info_eng.html, http://www.jamstec.go.jp/mirai/2005/MR05-05_leg2/EPCS/MR0505_leg2_cor_info_eng.html, http://www.jamstec.go.jp/mirai/2005/MR05-05_leg3/EPCS/MR0505_leg3_cor_info_eng.html.

In order to calibrate the fluorescence sensor, Tokyo Institute of Technology group collected the surface seawater at the noon and about 4 hours after the sunset for measuring chlorophyll-a. 500 ml of the seawater sample was gently filtrated by low vacuum pressure (<15 cmHg) through Whatman GF/F filter (diameter 25 mm) in a dark room. The filter was immediately transferred into 7 ml of N,N-dimethylformamide (DMF) and then the bottle of DMF was stored at -20°C under dark condition to extract chlorophyll-a for more than 24 hours. Concentrations of chlorophyll-a were measured by a fluorometer (10-AU-005, TURNER DESIGNS) that was previously calibrated against a pure chlorophyll-a (Sigma chemical Co.). We carried out "Non-acidification method" (Welschmeyer, 1994) for chlorophyll-a measurements. The results of the measurements are shown in Table 2.3.3.

Sensors for dissolved oxygen and particle size were not calibrated against bottle data.

ii. Sensor calibrations

The sensors for temperature and salinity were calibrated before and after the cruise in order to evaluated the measurement drifts during the cruise. The results of the calibrations are available through JAMSTEC MIRAI DATA Web as above.

2.3.6 Date archive

Quality controlled data of temperature, salinity, and dissolved oxygen can be downloaded from JAMSTEC MIRAI DATA Web;

http://www.jamstec.go.jp/mirai/2005/MR05-05 leg1/EPCS/MR0505 1 qced data.html,

http://www.jamstec.go.jp/mirai/2005/MR05-05 leg2/EPCS/MR0505 2 qced data.html,

http://www.jamstec.go.jp/mirai/2005/MR05-05 leg3/EPCS/MR0505 3 qced data.html.

Data of fluorescence and particle size and number are also available through the web page.

Table 2.3.2. Comparison of the sensor salinity and the bottle salinity.

Date [UTC]	Time a [LITC]	Sensor salinity	Bottle salinity	Quality Flag for
Date [OTC]	Time [UTC]	[PSS-78]	[PSS-78]	bottle salinity
2-Nov-05	6:50	33.5700	33.5695	2
3-Nov-05	8:22	33.1737	33.1713	2
4-Nov-05	6:13	33.6508	33.6571	3
5-Nov-05	5:17	34.2141	34.2115	2
6-Nov-05	8:26	34.5818	34.5795	2
7-Nov-05	8:00	34.8829	34.8789	2
8-Nov-05	7:46	35.0396	35.0376	2
9-Nov-05	5:59	35.2435	35.2407	2
10-Nov-05	7:10	35.1329	35.1297	2
11-Nov-05	2:40	35.1480	35.1459	2
12-Nov-05	8:16	35.1758	35.1731	2
13-Nov-05	8:21	35.2669	35.2644	2
14-Nov-05	10:58	35.3217	35.3188	2
15-Nov-05	8:14	35.3293	35.3255	2

Table 2.3.2. (continued)

D (HITCH	W. HWO	Sensor salinity	Bottle salinity	Quality Flag for
Date [UTC]	Time [UTC]	[PSS-78]	[PSS-78]	bottle salinity
16-Nov-05	8:27	35.0564	35.0519	2
17-Nov-05	7:00	35.2159	35.2122	2
18-Nov-05	10:12	35.3360	35.3320	2
18-Nov-05	22:25	35.3442	35.3403	2
19-Nov-05	8:52	35.3532	35.3484	2
19-Nov-05	21:20	35.3188	35.3158	2
20-Nov-05	11:25	35.3493	35.3466	2
20-Nov-05	23:29	35.3597	35.3548	2
21-Nov-05	12:05	35.1876	35.1860	2
21-Nov-05	18:09	35.2402	35.2369	2
29-Nov-05	20:08	35.2438	35.2462	2
29-Nov-05	23:17	35.1937	35.1943	2
30-Nov-05	15:46	35.2185	35.2217	2
1-Dec-05	1:25	35.2297	35.2325	2
1-Dec-05	14:25	35.2561	35.2590	2
2-Dec-05	8:07	35.2581	35.2605	2
2-Dec-05	13:21	35.2560	35.2573	2
3-Dec-05	0:41	35.1905	35.1972	2
3-Dec-05	15:12	35.1715	35.1738	2
4-Dec-05	0:44	35.2197	35.2220	2
4-Dec-05	13:59	35.2867	35.2874	2
5-Dec-05	0:47	35.3573	35.3594	2

5-Dec-05	13:36	35.2448	35.2460	2
6-Dec-05	1:25	35.2640	35.2658	2
6-Dec-05	13:33	35.2607	35.2663	2
7-Dec-05	1:00	35.2957	35.2981	2
7-Dec-05	13:28	35.3609	35.3635	2
8-Dec-05	1:00	35.3706	35.3732	2
9-Dec-05	1:38	35.3573	35.3590	2
9-Dec-05	9:02	35.3492	35.3494	2
9-Dec-05	14:28	35.3398	35.3414	2
10-Dec-05	1:56	35.3514	35.3536	2
10-Dec-05	14:25	35.2974	35.2998	2
11-Dec-05	2:10	35.2485	35.2508	2
11-Dec-05	14:30	35.2312	35.2333	2
12-Dec-05	2:18	35.2767	35.2751	2
12-Dec-05	19:46	34.9113	34.9100	2
13-Dec-05	5:32	34.8525	34.8533	2
13-Dec-05	20:55	34.8668	34.8662	2
14-Dec-05	9:51	34.8070	34.8062	2
14-Dec-05	21:32	34.8108	34.8095	2
15-Dec-05	13:57	34.7460	34.7482	2
15-Dec-05	20:08	34.7251	34.7255	2
16-Dec-05	13:48	34.7450	34.7477	2
16-Dec-05	18:51	34.7879	34.7876	2
17-Dec-05	1:58	34.7641	34.7631	2

Table 2.3.2. (continued)

Date [UTC] Time [UTC]	Sensor salinity	Bottle salinity	Quality Flag for	
Date [UTC]	1 me [U1C]	[PSS-78]	[PSS-78]	bottle salinity
17-Dec-05	14:40	34.7886	34.7886	2
18-Dec-05	11:02	34.7928	34.7894	2
18-Dec-05	14:27	34.8002	34.8000	2
19-Dec-05	8:39	34.8347	34.8312	2
19-Dec-05	21:15	35.0004	35.0000	2
20-Dec-05	2:25	34.9669	34.9672	2
21-Dec-05	10:24	35.2600	35.2600	2
21-Dec-05	15:05	35.3098	35.3092	2
22-Dec-05	10:32	35.2453	35.2428	2
22-Dec-05	15:32	35.1821	35.1809	2
23-Dec-05	5:49	35.2539	35.2529	2
23-Dec-05	15:20	35.2687	35.2681	2
24-Dec-05	4:17	35.1506	35.1516	2
24-Dec-05	15:21	35.1108	35.1093	2
25-Dec-05	3:02	35.1697	35.1665	2
25-Dec-05	15:17	35.0202	35.0187	2
26-Dec-05	3:56	34.9861	34.9841	2
26-Dec-05	15:30	35.0344	35.0326	2
27-Dec-05	3:16	35.1956	35.1938	2
27-Dec-05	15:19	35.0220	35.0204	2
28-Dec-05	3:23	35.0168	35.0160	2
28-Dec-05	15:25	35.1121	35.1052	2

29-Dec-05	3:17	35.1368	35.1358	2
29-Dec-05	15:40	34.8900	34.8895	2
30-Dec-05	4:15	34.9790	34.9782	2
30-Dec-05	15:31	35.0010	35.0015	2
31-Dec-05	4:26	34.9686	34.9685	2
01-Jan-06	5:45	34.9579	34.9565	2
01-Jan-06	15:39	34.9594	34.9580	2
02-Jan-06	6:23	34.9835	34.9818	2
02-Jan-06	15:29	34.9401	34.9392	2
02-Jan-06	17:25	34.9542	34.9542	2
03-Jan-06	13:12	34.8194	34.8195	2
03-Jan-06	17:53	34.8762	34.8715	2
04-Jan-06	5:14	34.7966	34.7961	2
04-Jan-06	17:30	34.8093	34.8091	2
05-Jan-06	6:43	34.8998	34.8989	2
05-Jan-06	17:38	34.9090	34.9085	2
06-Jan-06	6:47	34.8450	34.8434	2
06-Jan-06	17:51	34.8190	34.8180	2
07-Jan-06	7:59	34.8109	34.8101	2
07-Jan-06	17:42	34.6597	34.6584	2
08-Jan-06	8:01	34.7983	34.7971	2
08-Jan-06	18:20	34.6684	34.6674	2
09-Jan-06	20:46	34.7581	34.7569	2
10-Jan-06	13:37	34.7615	34.7667	2
10-Jan-06	17:45	34.6906	34.6897	2

Table 2.3.2. (continued)

Table 2.3.2. (continued)					
Date [UTC]	Time [UTC]	Sensor salinity	Bottle salinity	Quality Flag for	
Date [UTC]		[PSS-78]	[PSS-78]	bottle salinity	
11-Jan-06	6:11	34.8660	34.8650	2	
11-Jan-06	17:47	34.7070	34.7076	2	
12-Jan-06	8:57	34.7660	34.7654	2	
12-Jan-06	17:34	34.7228	34.7217	2	
13-Jan-06	6:46	34.7033	34.7006	2	
13-Jan-06	17:37	34.7052	34.7038	2	
14-Jan-06	7:31	34.6351	34.6353	2	
14-Jan-06	17:44	34.6562	34.6549	2	
20-Jan-06	5:50	34.7968	34.7928	2	
20-Jan-06	18:35	34.6766	34.6693	2	
21-Jan-06	5:36	34.6326	34.6265	2	
21-Jan-06	17:57	34.5974	34.5979	2	
22-Jan-06	5:46	34.5873	34.5817	2	
22-Jan-06	17:20	34.6853	34.6788	2	
23-Jan-06	5:42	34.7726	34.7714	2	
23-Jan-06	18:06	34.6577	34.6525	2	
24-Jan-06	5:44	34.6295	34.6273	2	
24-Jan-06	18:07	34.6144	34.6033	2	
25-Jan-06	5:46	34.5806	34.5724	2	
25-Jan-06	17:52	34.5397	34.5399	2	
26-Jan-06	5:41	34.5224	34.5162	2	
26-Jan-06	18:14	34.2362	34.2482	2	

Table 2.3.3. Comparison of sensor fluorescence and bottle chlorophyll-a.

Date [UTC]	Time [UTC]	Sensor Fluorescence	Chlorophyll-a (μg/L)
1-Nov-05	6:20	15.791	0.37
1-Nov-05	20:00	15.266	0.44
2-Nov-05	6:03	16.915	0.30
2-Nov-05	20:29	14.017	0.17
3-Nov-05	6:02	14.768	0.13
3-Nov-05	20:13	13.192	0.12
4-Nov-05	6:13	13.394	0.08
4-Nov-05	20:05	12.899	0.08
5-Nov-05	6:00	12.971	0.08
5-Nov-05	20:08	12.469	0.10
6-Nov-05	6:11	13.063	0.09
6-Nov-05	20:08	12.755	0.12
7-Nov-05	6:03	13.085	0.10
7-Nov-05	20:59	12.587	0.08
8-Nov-05	7:05	12.750	0.10
8-Nov-05	21:15	12,280	0.12
9-Nov-05	7:10	12.815	0.12
9-Nov-05	23:34	12.659	0.15
10-Nov-05	7:19	12.784	0.13
10-Nov-05	21:08	12.427	0.12
11-Nov-05	7:19	13.846	0.12
11-Nov-05	22:10	12.609	0.12
12-Nov-05	8:10	13.467	0.13

Table 2.3.3. (continued)

Date [UTC]	Time [UTC]	Sensor Fluorescence	Chlorophyll-a (μg/L)
12-Nov-05	22:08	12.914	0.11
13-Nov-05	8:33	13.169	0.10
13-Nov-05	22:10	12.733	0.11
14-Nov-05	8:12	13.103	0.10
14-Nov-05	22:00	12.639	0.12
15-Nov-05	8:12	12.977	0.11
15-Nov-05	22:03	12.357	0.08
16-Nov-05	9:22	12.768	0.09
16-Nov-05	22:00	12.361	0.09
17-Nov-05	8:07	12.623	0.11
17-Nov-05	22:35	12.353	0.11
18-Nov-05	8:25	12.652	0.12
18-Nov-05	22:15	12.260	0.11
19-Nov-05	8:52	12.803	0.08
19-Nov-05	22:10	12.305	0.08
20-Nov-05	8:06	12.589	0.08
20-Nov-05	22:15	12.542	0.09
21-Nov-05	8:10	13.062	0.12
21-Nov-05	22:15	12.828	0.13
21-Nov-05	22:15	12.828	0.13
22-Nov-05	8:11	13.125	0.16
22-Nov-05	22:10	13.035	0.15
22-Nov-05	22:10	13.035	0.18

29-Nov-05	23:27	13.936	0.14
30-Nov-05	9:00	13.722	0.14
30-Nov-05	9:00	13.722	0.15
30-Nov-05	23:22	12.934	0.13
30-Nov-05	23:22	12.934	0.13
01-Dec-05	9:01	13.479	0.12
02-Dec-05	1:45	13.153	0.13
02-Dec-05	10:08	13,229	0.08
02-Dec-05	10:08	13.229	0.08
02-Dec-05	23:50	12.193	0.10
02-Dec-05	23:50	12.193	0.10
03-Dec-05	9:01	12.679	0.08
03-Dec-05	23:29	12.356	0.14
04-Dec-05	9:00	12.600	0.12
04-Dec-05	9:00	12.600	0.12
04-Dec-05	23:28	11.957	0.10
04-Dec-05	23:28	11.957	0.10
05-Dec-05	9:39	12.214	0.10
06-Dec-05	2:01	11.869	0.09
06-Dec-05	8:56	11.974	0.08
06-Dec-05	8:56	11.974	0.08
07-Dec-05	0:22	11.713	0.09
07-Dec-05	0:22	11.713	0.09
07-Dec-05	9:01	11.932	0.07
		<u></u>	

Table 2.3.3. (continued)

Date [UTC]	Time [UTC]	Sensor Fluorescence	Chlorophyll a (µg/L)
07-Dec-05	23:41	11.669	0.08
08-Dec-05	8:47	11.884	0.07
08-Dec-05	8:47	11.884	0.07
09-Dec-05	1:05	11.760	0.08
09-Dec-05	1:05	11.760	0.08
09-Dec-05	10:07	12.234	0.08
10-Dec-05	0:59	11.767	0.12
10-Dec-05	10:05	12.198	0.08
10-Dec-05	10:05	12.198	0.08
11-Dec-05	1:18	11.926	0.08
11-Dec-05	1:18	11.926	0.08
11-Dec-05	10:09	12.172	0.07
21-Dec-05	2:21	11.858	0.09
21-Dec-05	12:12	12.124	0.09
21-Dec-05	12:12	12.124	0.08
22-Dec-05	1:38	12.132	0.08
22-Dec-05	1:38	12.132	0.08
22-Dec-05	11:58	12.556	0.10
23-Dec-05	1:38	12.560	0.11
23-Dec-05	12:20	12.649	0.10
23-Dec-05	12:20	12.649	0.10
24-Dec-05	1:31	13.030	0.09
24-Dec-05	1:31	13.030	0.09

24-Dec-05	12:39	13.108	0.10
25-Dec-05	2:08	13.015	0.09
25-Dec-05	11:17	13.893	0.09
26-Dec-05	1:23	13.137	0.12
26-Dec-05	1:23	13.137	0.12
26-Dec-05	10:35	13.459	0.12
27-Dec-05	1:34	13.209	0.14
27-Dec-05	11:51	13.308	0.11
27-Dec-05	11:51	13.308	0.12
28-Dec-05	1:42	13.408	0.11
28-Dec-05	1:42	13.408	0.11
28-Dec-05	10:53	14.309	0.13
29-Dec-05	1:47	13.215	0.13
29-Dec-05	11:08	13.639	0.10
29-Dec-05	11:08	13.639	0.09
30-Dec-05	1:35	13.246	0.14
30-Dec-05	1:35	13.246	0.13
30-Dec-05	11:12	14.087	0.13
31-Dec-05	1:42	12.956	0.13
31-Dec-05	10:57	13.773	0.15
31-Dec-05	10:57	13.773	0.15
02-Jan-06	2:44	12.987	0.15
02-Jan-06	2:44	12.987	0.15
02-Jan-06	13:07	13.275	0.13

Table 2.3.3. (continued)

Date [UTC]	Time [UTC]	Sensor Fluorescence	Chlorophyll a (µg/L)
03-Jan-06	3:29	12.960	0.10
03-Jan-06	13:46	13.116	0.10
03-Jan-06	13:46	13.116	0.10
04-Jan-06	3:20	13.127	0.12
04-Jan-06	3:20	13.127	0.12
04-Jan-06	12:22	13.009	0.12
05-Jan-06	3:37	13.136	0.10
05-Jan-06	14:03	13.950	0.13
05-Jan-06	14:03	13.950	0.13
06-Jan-06	3:40	13.146	0.22
06-Jan-06	12:25	14.240	0.25
07-Jan-06	3:40	13.948	0.25
07-Jan-06	12:30	14.208	0.27
07-Jan-06	12:30	14.208	0.26
08-Jan-06	3:40	13.427	0.27
08-Jan-06	3:40	13.427	0.27
08-Jan-06	13:02	13.625	0.25
10-Jan-06	13:10	13.954	0.25
11-Jan-06	3:40	13.387	0.23
11-Jan-06	3:40	13.387	0.23
11-Jan-06	13:34	14.446	0.45
11-Jan-06	13:34	14.446	0.44
12-Jan-06	3:20	15.650	0.74

12-Jan-06	14:34	15.012	0.48
12-Jan-06	14:34	15.012	0.49
13-Jan-06	3:18	14.052	0.54
13-Jan-06	3:18	14.052	0.55
13-Jan-06	13:22	14.403	0.35
14-Jan-06	3:43	14.164	0.44
14-Jan-06	13:53	14.134	0.36
14-Jan-06	13:53	14.134	0.37
15-Jan-06	3:40	13.333	0.24
15-Jan-06	3:40	13.333	0.25
20-Jan-06	13:27	15.864	0.18
20-Jan-06	13:27	15.864	0.18
21-Jan-06	4:56	19.848	1.57
21-Jan-06	4:56	19.848	1.62
21-Jan-06	13:10	21.013	2.40
22-Jan-06	3:47	19.055	1.54
22-Jan-06	13:18	18.849	0.49
22-Jan-06	13:18	18.849	0.48
23-Jan-06	2:43	14.727	0.33
23-Jan-06	2:43	14.727	0.32
23-Jan-06	12:34	16.606	0.47
24-Jan-06	3:42	16.021	0.63
24-Jan-06	12:36	19.706	0.83
24-Jan-06	12:36	19.706	0.88

Table 2.3.3. (continued)

Date [UTC]	Time [UTC]	Sensor Fluorescence	Chlorophyll a (μg/L)
25-Jan-06	3:45	20.538	2.20
25-Jan-06	3:45	20.538	2.16
25-Jan-06	13:22	25.41	3.02
26-Jan-06	6:17	21.289	1.34
26-Jan-06	14:03	23.116	0.56
26-Jan-06	14:03	23.116	0.55

2.4 Underway pCO₂

July 4, 2007

(1) Personnel

Akihiko Murata (JAMSTEC)

Fuyuki Shibata (MWJ)

Mikio Kitada (MWJ)

Minoru Kamata (MWJ)

Taeko Ohama (MWJ)

Yoshiko Ishikawa (MWJ)

(2) Introduction

Concentrations of CO_2 in the atmosphere are currently increasing at a rate of 1.5 ppmv y^{-1} due to human activities such as burning of fossil fuels, deforestation, cement production, and so on. It is an urgent task to estimate as accurately as possible the absorption capacity of the ocean against the increasing atmospheric CO_2 , as well as to clarify the mechanism of the CO_2 absorption, because the magnitude of the predicted global warming depends on the levels of CO_2 in the atmosphere, and because the ocean currently absorbs 1/3 of the 6 Gt of carbon emitted into the atmosphere each year by human activities.

In the P3 revist cruise, we aimed to quantify how much anthropogenic CO_2 is absorbed in the surface ocean of the North Pacific. For the purpose, we measured pCO_2 (partial pressures of CO_2) in the atmosphere and in the surface seawater.

(3) Apparatus and shipboard measurement

Continuous underway measurements of atmospheric and surface seawater pCO₂ were made with the CO₂ measuring system (Nippon ANS, Ltd) installed in the R/V MIRAI of JAMSTEC. The system comprises of a non-

dispersive infrared gas analyzer (NDIR; BINOS® model 4.1, Fisher-Rosemount), an air-circulation module and a showerhead-type equilibrator. To measure concentrations (mole fraction) of CO_2 in dry air (xCO_2a), air sampled from the bow of the ship (approx. 30 m above the sea level) was introduced into the NDIR through a dehydrating route with an electric dehumidifier (kept at \sim 2°C), a Perma Pure dryer (GL Sciences Inc.), and a chemical desiccant (Mg(ClO₄)₂). The flow rate of the air was 500 ml min⁻¹. To measure surface seawater concentrations of CO_2 in dry air (xCO_2s), the air equilibrated with seawater within the equilibrator was introduced into the NDIR through the same flow route as the dehydrated air used in measuring xCO_2a . The flow rate of the equilibrated air was 600 - 800 ml min⁻¹. The seawater was taken by a pump from the intake placed at the approximately 4.5 m below the sea surface. The flow rate of seawater in the equilibrator was 500 - 800 ml min⁻¹.

The CO_2 measuring system was set to repeat the measurement cycle such as 4 kinds of CO_2 standard gases (Table 2.4.1), xCO_2 a (twice), xCO_2 s (7 times). This measuring system was run automatically throughout the cruise by a PC control.

(4) Quality control

Concentrations of CO₂ of the standard gases are listed in Table 2.4.1, which were calibrated by JAMSTEC primary standard gases. The CO₂ concentrations of the primary standard gases were calibrated by C.D. Keeling of the Scripps Institution of Oceanography, La Jolla, CA, USA.

Since differences in concentrations of the standard gases between before and after the cruise were acceptable (< 0.1 ppmy), the averaged concentrations (Table 2.4.1) were adopted for the subsequent calculations.

In actual shipboard observations, the signals of NDIR usually reveal trends. The trends were adjusted linearly using the signals of the standard gases analyzed before and after the sample measurements.

Effects of water temperature increased between the inlet of surface seawater and the equilibrator on xCO_2s were adjusted based on Gordon and Jones (1973), although the temperature increases were slight, being \sim 0.3°C.

We checked values of xCO₂a and xCO₂s by examining the signals of the NDIR on recorder charts, and by

plotting the xCO_2a and xCO_2s as a function of sequential day, longitude, sea surface temperature and sea surface salinity.

Reference

Gordon, L. I. and L. B. Jones (1973) The effect of temperature on carbon dioxide partial pressure in seawater.

Mar. Chem., 1, 317-322.

Table 2.4.1. Concentrations of CO₂ standard gases used in the P3 revisit cruise.

Cylinder no.	Concentrations (ppmv)
CQB17639	262.94
CQB17638	320.42
CQB17637	381.04
CQB17636	420.76

2.5 Acoustic Doppler Current Profiler

September 3, 2007

(1) Personnel

Shinya Kouketsu (JAMSTEC)

Yasushi Yoshikawa (JAMSTEC)

Souichiro Sueyoshi (GODI)

Shinya Okumura (GODI)

Katsuhisa Maeno (GODI)

Norio Nagahama (GODI)

(2) Instrument and method

The instrument used was an RDI 76.8 kHz unit, hull-mounted on the centerline and approximately 23 m aft of the bow at the water line. The firmware version was 5.59 and the data acquisition software was RDI VMDAS Version. 1.4. Operation was made from the first CTD station to the last CTD station. The instrument was used in water-tracking mode during the most of operations, recording each ping raw data in 8 m x 90 bin from about 23 m to 735 m in depth. Typical sampling interval was 3.5 seconds. Bottom track mode was added in the northernmost shallow water region. GPS gave navigation data. Two kinds of compass data were recorded. One compass was the ship's gyrocompass, which is connected the ADCP system directory, and its data were stored with the ADCP data. Current field based on the gyrocompass was used to check the operation and the performance on board. Another compass used was Inertial Navigation Unit (INU), DRU-H, Honeywell Inc. Its accuracy is 1.0 mile (about 0.056 degree) and had already set on zero bias before the beginning of the cruise. The INU compass data were stored independently and combined with the ADCP data after the cruise.

(3) Performance and quick view of the ADCP data on board

The performance of the ADCP instrument was almost good throughout the cruise: on streaming, profiles usually reached about 600 m (1609038 pings of all 2656345 pings). Profiles were sometimes rather bad on CTD station. The profiles did not reach so far, from 200 m to 500 m and the ADCP signal was typically weak at about 350 m in depth. It is probably due to babbles from the bow-thruster.

We processed the ADCP data in this cruise on board as described below. ADCP-coordinate velocities were converted to the earth-coordinate velocities using the ship's heading, roll and pitch data form the INU. The earth-coordinate currents were obtained by subtracting ship velocities from the earth-coordinate velocities. The ship velocities were obtained from the moving distances for 5 minites, which were measured by GPS data. The noise of the GPS position data was filtered out by 15-sec running mean. The errors of the estimated ship velocities are within 10 cm/s.

After this cruise the parameters of the misalignment and the scale factor would be evaluated by using the bottom track data obtained both in this cruise and in the engineering test cruise made just before this cruise.

(4) Data Processing

Corrections of the misalignment and the scale factor were made after the cruise using the bottom track data. The bottom track data used was obtained during the engineering test cruise carried out just before the P3_revisit cruise. The misalignment angle calculated was 0.15 degree and the scale factor was 0.975. Criteria for the correlation less than 64 and error velocity more than 20 mm/s are removed here. Therefore the error is estimated at 20 mm/s.

Raw data are filtered using the median filter on every 3 minutes. There are about 90 data in one ensemble. Time series of upper 200 m average flow for about 3 hours are calculated using the 3 minutes sub set. The continuity of the series on streaming between the CTD sites is examined. The standard deviation on the CTD sites is 56 mm/s, and that on streaming between the CTD sites is 47 mm/s. The qualitites of data on CTD sites and on streaming is not so different. The mismatch between the ship velocity obtained from the GPS and water

column velocity of ADCP was found when the ship was accelerated and/or decelerated. To avoid the effect of the acceleration, we process the data only when standard deviation of ship velocity for three minutes is less than 10 cm/s. In the next step, we averaged the subset at each CTD station. Each mean profile is calculated with depth correction using the CTD data. Vertical grids are put on every 10 m.

(5) Data Structure

The record structure of the data set A, where file name is 'ADCP_A', is described below. The file consists of 239 profiles in the CTD sites. Each profile consists of header and data. The header has three lines representing analyzed site, date and time, and position. The data has 67 layers in which depth, zonal velocity, meridional velocity, and vetical velocity of each grid are stored. Unit of depth is in meter. Unit of flow is in m/s. On the CTD station, the CTD station name (e.g. '143_1') is recorded as the analyzed site in the header. Mean time and position were calculated and recorded using the ADCP profiles during the CTD operation was made. The '99.999' in the data represents no available data stored.

[data structure of the data set A]

Line 1: header 1

Column 1: cruise code

Column 2: analyzed site

Line 2: header 2

date

Line 3: header 3

Column 1: longitude (degree E)

Column 2: latitude (degree N)

Line 4-70: flow data in each depth level

Column 1: depth (m)

Column 2: zonal velocity (m/s)

Column 3: meridional velocity (m/s)

Column 4: vertical velocity (m/s)

Flow data processed in every three minutes are stored in the data set B, where the file name is 'ADCP B'. The data structure is the same as that of the data set B, except for the analyzed site in the header 1.

[data structure of the data set B: every 3 minutes]

Line 1: header 1

Column 1: cruise code

Column 2: sequatial record number

Line 2: header 2

date

Line 3: header 3

Column 1: longitude (degree E)

Column 2: latitude (degree N)

Line 4-38: flow data in each depth level

Column 1: depth (m)

Column 2: zonal velocity (m/s)

Column 3: meridional velocity (m/s)

Column 4: vertical velocity (m/s)

3 Hydrographic Measurement Techniques and Calibrations

3.1 CTD/O₂ Measurements

May 2, 2007

(1) Personnel

Hiroshi Uchida (JAMSTEC) Masao Fukasawa (JAMSTEC) Satoshi Ozawa (MWI) Tomoyuki Takamori (MWJ) Kentaro Oyama (MWJ) Hiroki Ushiromura (MWI) Hiroyuki Hayashi (MWI) Hirokatsu Uno (MWJ)Akinori Murata (MWJ)Shinsuke Toyoda (MWI) Hiroshi Matsunaga (MWJ)Tomohide Noguchi (MWI) Makito Yokota (MWJ)

(2) Winch arrangements

The CTD package was deployed by using 4.5 Ton Traction Winch System (Dynacon, Inc., Bryan, Texas, USA), which was installed on the R/V MIRAI in April 2001. The CTD Traction Winch System with the Heave Compensation Systems (Dynacon, Inc.) is designed to reduce cable stress resulting from load variation caused by wave or vessel motion. The system was operated passively by providing a nodding boom crane that moves up or down in response to line tension variations. Primary system components include a complete CTD Traction Winch System with up to 10 km of 9.53 mm armored cable (Ocean Cable and Communications Co., Yokohama,

Kanagawa, Japan), a cable rocker and Electro-Hydraulic Power Unit, a nodding-boom crane assembly, two hydraulic cylinders and two hydraulic oil/nitrogen accumulators mounted within a single frame assembly. The system also contains related electronic hardware interface and a heave compensation computer control program.

(3) Overview of the equipment

The CTD system, SBE 911plus system (Sea-Bird Electronics, Inc., Bellevue, Washington, USA), is a real time data system with the CTD data transmitted from a SBE 9plus underwater unit via a conducting cable to the SBE 11plus deck unit. The SBE 11plus deck unit is a rack-mountable interface which supplies DC power to underwater unit, decodes serial data stream, formats data under microprocessor control, and passes the data to a companion computer. The serial data from the underwater unit is sent to the deck unit in RS-232 NRZ format using a 34,560 Hz carrier-modulated differential-phase-shift-keying (DPSK) telemetry link. The deck unit decodes the serial data and sends them to a personal computer to display, at the same time, to storage in a disk file using SBE SEASOFT software.

The SBE 911plus system acquires data from primary, secondary and auxiliary sensors in the form of binary numbers corresponding to the frequency or the voltage outputs from those sensors at 24 samples per second. The calculations required to convert raw data to engineering units of the parameters are performed by the SBE SEASOFT in real-time. The same calculations can be carried out after the observation using data stored in a disk file.

The SBE 911plus system controls 36-position SBE 32 Carousel Water Sampler. The Carousel accepts 12-litre water sample bottles. Bottles are fired through the RS-232C modem connector on the back of the SBE 11plus deck unit while acquiring real time data. The 12-litre Niskin-X water sample bottle (General Oceanics, Inc., Miami, Florida, USA) is equipped externally with two stainless steel springs. The external springs are ideal for applications such as trace metal analysis because the inside of the sampler is free from contaminants from springs.

SBE's temperature (SBE 3) and conductivity (SBE 4) sensor modules were used with the SBE 9plus

underwater unit fixed by a single clamp and "L" bracket to the lower end cap. The conductivity cell entrance is co-planar with the tip of the temperature sensor's protective steel sheath. The pressure sensor is mounted in the main housing of the underwater unit and is ported to outside through the oil-filled plastic capillary tube. A compact, modular unit consisting of a centrifugal pump head and a brushless DC ball bearing motor contained in an aluminum underwater housing pump (SBE 5T) flushes water through sensor tubing at a constant rate independent of the CTD's motion. Motor speed and pumping rate (3,000 rpm) remain nearly constant over the entire input voltage range of 12-18 volts DC. Flow speed of pumped water in standard TC duct is about 2.4 m/s. SBE's dissolved oxygen sensor (SBE 43) was placed between the conductivity sensor module and the pump. Auxiliary sensors, Deep Ocean Standards Thermometer (SBE 35), altimeter (PSA-916T; Teledyne Benthos, Inc., North Falmous, Massachusetts, USA) and oxygen optode (Oxygen Optode 3830; Aanderaa Data Instruments AS, Bergen, Norway) were also used with the SBE 9plus underwater unit. The SBE 35 position in regard to the SBE 3 is shown in Figure 3.1.1.

It is known that the CTD temperature data is influenced by motion (pitching and rolling) of the CTD package. In order to reduce the motion of the CTD package, a heavy stainless frame (total weight of the CTD package without sea water in the bottles is about 1,000 kg) was used and an aluminum plate (54×90 cm) was attached to the frame (Figure 3.1.1).

[Summary of the system used in this cruise]

Deck unit:

SBE 11plus, S/N 0344

Under water unit:

SBE 9plus, S/N 79511 (Pressure sensor: S/N 0677)

Temperature sensor:

SBE 3, S/N 1464 (Leg.1: primary)

```
SBE 3plus, S/N 4216 (Leg.1: secondary, Leg.2, 3: primary)
SBE 3, S/N 1525 (Leg.2, 3: secondary)
```

Conductivity sensor:

SBE 4, S/N 1203 (Leg.1: primary)

SBE 4, S/N 2854 (Leg.1: secondary)

SBE 4, S/N 3124 (Leg.2: primary from 146 2 to 197 1)

SBE 4, S/N 3036 (Leg.2: secondary from 146 2 to 197 1)

SBE 4, S/N 2854 (Leg.2, 3: primary from X14 1 to TS 1)

SBE 4, S/N 3116 (Leg.2, 3: secondary from X14 1 to TS 1)

Oxygen sensor:

SBE 43, S/N 0391 (Leg.1: primary, Leg.2: primary from 146_2 to WC7)

SBE 43, S/N 0488 (Leg.1: secondary)

SBE 43, S/N 0390 (Leg.2, 3: primary from WC8 to TS1)

SBE 43, S/N 0394 (Leg.2: secondary from 146 2 to 283 1, Leg.3: secondary)

SBE 43, S/N 0205 (Leg.2: secondary from 285 1 to 351 2)

Oxygen Optode 3830, S/N 612 (Leg.1, 2, 3: pilot)

Pump:

SBE 5T, S/N 3293 (Leg.1: primary)

SBE 5T, S/N 3118 (Leg.1: secondary)

SBE 5T, S/N 0984 (Leg.2, 3: primary)

SBE 5T, S/N 2627 (Leg.2, 3: secondary)

Altimeter:

PSA-916T, S/N 1100 (Leg.1)

PSA-916T, S/N 1157 (Leg.2, 3)

Deep Ocean Standards Thermometer:

SBE 35, S/N 0022 (Leg.1, 2)

SBE 35, S/N 0045 (Leg.3)

Carousel Water Sampler:

SBE 32, S/N 0391 (Leg.1, 2, 3)

Water sample bottle:

12-litre Niskin-X (no TEFLON coating)

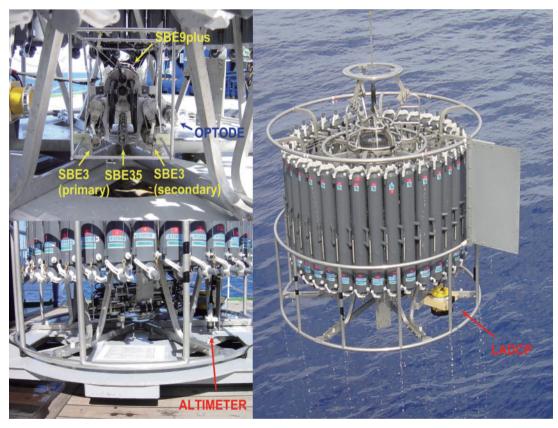


Figure 3.1.1. The CTD package (right) and the SBE 35 position in regard to the SBE 3 temperature sensors (left).

(4) Pre-cruise calibration

(4.1) Pressure

The Paroscientific series 4000 Digiquartz high pressure transducer (Paroscientific, Inc., Redmond, Washington, USA) uses a quartz crystal resonator whose frequency of oscillation varies with pressure induced stress with 0.01 per million of resolution over the absolute pressure range of 0 to 15,000 psia (0 to 10,332 dbar). Also, a quartz crystal temperature signal is used to compensate for a wide range of temperature changes at the time of an observation. The pressure sensor (MODEL 415K-187) has a nominal accuracy of 0.015% FS (1.5 dbar), typical stability of 0.0015% FS/month (0.15 dbar/month), and resolution of 0.001% FS (0.1 dbar).

Pre-cruise sensor calibrations were performed at SBE, Inc. The following coefficients were used in the SEASOFT:

S/N 0677, 2 July 2002

 $c_1 = -62072.94$

 $c_2 = -1.176956$

 $c_3 = 1.954420e-02$

 $d_1 = 0.027386$

 $d_2 = 0.0$

 $t_1 = 30.05031$

 $t_2 = -4.744833e-04$

 $t_3 = 3.757590e-06$

 $t_4 = 3.810700e-09$

 $t_5 = 0.0$

Pressure coefficients are first formulated into

$$c = c_1 + c_2 \times U + c_3 \times U^2$$

$$d = d_1 + d_2 \times U$$

$$t_0 = t_1 + t_2 \times U + t_3 \times U^2 + t_4 \times U^3 + t_5 \times U^4$$

where U is temperature in degrees Celsius. The pressure temperature, U, is determined according to

 $U(^{\circ}C) = M \times (12 \text{ bit pressure temperature compensation word}) - B$

The following coefficients were used in SEASOFT:

S/N 0677

M = 0.0128041

B = -9.324136

(in the underwater unit system configuration sheet dated on 22 February 2002)

Finally, pressure is computed as

$$P (psi) = c \times [1 - (t_0^2/t^2)] \times \{1 - d \times [1 - (t_0^2/t^2)]\}$$

where t is pressure period (μ sec). Since the pressure sensor measures the absolute value, it inherently includes atmospheric pressure (about 14.7 psi). SEASOFT subtracts 14.7 psi from computed pressure above automatically.

Pressure sensor calibrations against a dead-weight piston gauge (Model 480DA, S/N 23906; Bundenberg Gauge Co. Ltd., Irlam, Manchester, UK) are performed at JAMSTEC, Yokosuka, Kanagawa, Japan by Marine Works Japan. LTD (MWJ), Yokohama, Kanagawa, Japan, usually once in a year in order to monitor sensor time drift and linearity. The pressure sensor drift is known to be primarily an offset drift at all pressures rather than a change of span slope. The pressure sensor hysterisis is typically 0.2 dbar. The following coefficients for the sensor drift correction were also used in SEASOFT:

S/N 0677, 8 September 2005

slope = 0.9998495

offset = -0.49595

The drift-corrected pressure is computed as

Drift-corrected pressure (dbar) = slope \times (computed pressure in dbar) + offset

Result of the pressure sensor calibration against the dead-weight piston gauge is shown in Figure 3.1.2. Time drift of the pressure sensor based on the offset and the slope of the calibrations is also shown in Figure 3.1.3.

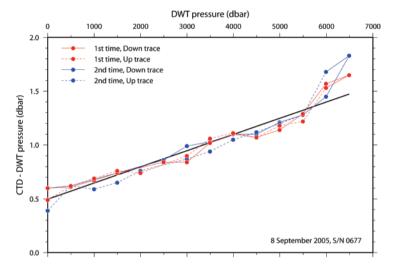


Figure 3.1.2. The residual pressures between the dead-weight piston gauge and the CTD pressure. The calibration line (black line) is also shown.

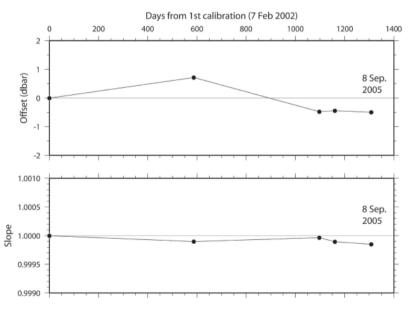


Figure 3.1.3. Pressure sensor time drift of offset (upper panel) and slope (lower panel) based on laboratory calibrations.

(4.2) Temperature (SBE 3)

The temperature sensing element is a glass-coated thermistor bead in a stainless steel tube, providing a pressure-free measurement at depths up to 10,500 (6,800) meters by titanium (aluminum) housing. The sensor output frequency ranges from approximately 5 to 13 kHz corresponding to temperature from -5 to 35° C. The output frequency is inversely proportional to the square root of the thermistor resistance, which controls the output of a patented Wien Bridge circuit. The thermistor resistance is exponentially related to temperature. The SBE 3 thermometer has a nominal accuracy of 1 mK, typical stability of 0.2 mK/month, and resolution of 0.2 mK at 24 samples per second. The premium temperature sensor, SBE 3plus, is a more rigorously tested and calibrated version of standard temperature sensor (SBE 3). A sensor is designated as an SBE 3plus only after demonstrating drift of less than 1 mK during a six-month screening period. In addition, the time response is carefully measured and verified to be 0.065 ± 0.010 seconds.

Pre-cruise sensor calibrations were performed at SBE, Inc. The following coefficients were used in SEASOFT:

S/N 1464 (Leg.1: primary), 14 September 2005

g = 4.84384166e-03

h = 6.80721378e-04

i = 2.69562893e-05

i = 2.12657768e-06

 $f_0 = 1000.000$

S/N 4216 (Leg.1: secondary, Leg.2 and 3: primary), 20 September 2005

g = 4.35983643e-03

h = 6.46128037e-04

i = 2.28907910e-05

j = 1.94862297e-06

 $f_0 = 1000.000$

S/N 1525 (Leg.2 and 3: secondary), 14 September 2005

g = 4.84604175e-03

h = 6.75287460e-04

i = 2.65140918e-05

i = 2.12921574e-06

 $f_0 = 1000.000$

Temperature (ITS-90) is computed according to

Temperature (ITS-90) =

$$1/\{g + h \times [\ln(f_0/f)] + i \times [\ln^2(f_0/f)] + j \times [\ln^3(f_0/f)]\} - 273.15$$

where f is the instrument frequency (kHz).

Time drift of the SBE 3 temperature sensors based on the laboratory calibrations is shown in Figure 3.1.4.

Figure 3.1.4. Time drift of SBE 3 temperature sensors based on laboratory calibrations.

(4.3) Conductivity (SBE 4)

The flow-through conductivity sensing element is a glass tube (cell) with three platinum electrodes to provide in-situ measurements at depths up to 10,500 meters. The impedance between the center and the end electrodes is determined by the cell geometry and the specific conductance of the fluid within the cell. The conductivity cell composes a Wien Bridge circuit with other electric elements of which frequency output is approximately 3 to 12 kHz corresponding to conductivity of the fluid of 0 to 7 S/m. The SBE 4 has a nominal accuracy of 0.0003 S/m, typical stability of 0.0003 S/m/month, and resolution of 0.00004 S/m at 24 samples per second.

Pre-cruise sensor calibrations were performed at SBE, Inc. The following coefficients were used in SEASOFT:

```
S/N 1203 (Leg.1: primary), 15 September 2005

g = -4.05182265e+00

h = 4.93483365e-01

i = 9.77451923e-05

j = 2.18599851e-05

CPcor = -9.57e-08 (nominal)

CTcor = 3.25e-06 (nominal)

S/N 2854 (Leg.1: secondary, Leg.2: primary from X14_1 to 351_2, Leg.3: primary),

15 September 2005

g = -1.02631821e+01

h = 1.41526600e+00

i = -9.49444425e-06

j = 5.73270605e-05

CPcor = -9.57e-08 (nominal)

CTcor = 3.25e-06 (nominal)
```

```
g = -1.02907974e + 01
                  h = 1.38692851e + 00
                  i = -8.89254353e-05
                  i = 8.59164344e - 05
                  CPcor = -9.57e-08  (nominal)
                  CTcor = 3.25e-06  (nominal)
        S/N 3036 (Leg.2: secondary from 146 2 to 197 1), 23 September 2005
                  g = -1.03246469e + 01
                  h = 1.42860596e + 00
                  i = 3.40735271e-04
                  j = 4.76172694e-05
                  CPcor = -9.57e-08  (nominal)
                  CTcor = 3.25e-06  (nominal)
        S/N 3116 (Leg.2: secondary from X14 1 to 351 2, Leg.3: secondary), 8 November 2005
                  g = -1.04289250e + 01
                  h = 1.43335621e + 00
                  i = 4.35984135e-04
                  i = 3.98255096e-05
                  CPcor = -9.57e-08 (nominal)
                  CTcor = 3.25e-06  (nominal)
Conductivity of a fluid in the cell is expressed as:
         C(S/m) = (g + h \times f^2 + i \times f^3 + j \times f^4) / [10(1 + CTcor \times t + CPcor \times p)]
```

where f is the instrument frequency (kHz), t is the water temperature (°C) and p is the water pressure (dbar).

The value of conductivity at salinity of 35, temperature of 15°C (IPTS-68) and pressure of 0 dbar is 4,2914 S/m.

S/N 3124 (Leg.2: primary from 146 2 to 197 1), 8 November 2005

(4.4) Oxygen (SBE 43)

The SBE 43 oxygen sensor uses a Clark polarographic element to provide in-situ measurements at depths up to 7,000 meters. Calibration stability is improved by an order of magnitude, and pressure hysterisis is largely eliminated in the upper ocean (1,000 m) compared with the previous oxygen sensor (SBE 13). Continuous polarization eliminates wait-time for stabilization after power-up. Signal resolution is increased by on-board temperature compensation. The oxygen sensor is also included in the path of pumped sea water. The oxygen sensor determines dissolved oxygen concentration by counting the number of oxygen molecules per second (flux) that diffuse through a membrane, where the permeability of the membrane to oxygen is a function of temperature and ambient pressure. Computation of dissolved oxygen in engineering units is done in SEASOFT software. The range for dissolved oxygen is 120% of surface saturation in all natural waters, nominal accuracy is 2% of saturation, and typical stability is 2% per 1,000 hours.

Pre-cruise sensor calibrations were performed at SBE, Inc. The following coefficients were used in SEASOFT:

S/N 0391 (Leg.1: primary, Leg.2: primary from 146 2 to WC7), 18 October 2005

Soc = 0.35440

Offset = -0.4919

TCor = 0.0013

PCor = 1.350e-04

S/N 0488 (Leg.1: secondary), 11 October 2005

Soc = 0.58120

Offset = -0.6959

TCor = -0.0004

PCor = 1.350e-04

S/N 0390 (Leg.2: primary from WC8 to 351 2, Leg.3: primary), 18 October 2005

Soc = 0.3877

Offset = -0.5151

TCor = 0.0012

PCor = 1.350e-04

S/N 0394 (Leg.2: secondary from 146 2 to 283 1, Leg.3: secondary), 1 July 2005

Soc = 0.3629

Offset = -0.5220

TCor = 0.0020

PCor = 1.350e-04

S/N 0205 (Leg.2: secondary from 285 1 to 351 2), 10 May 2005

Soc = 0.4131

Offset = -0.4688

TCor = -0.0009

PCor = 1.350e-04

Oxygen (ml/l) is computed as

Oxygen (ml/l) = $\{Soc \times (v + Offset)\} \times exp(TCor \times t + PCor \times p) \times Oxsat(t, s)$

Oxsat(t, s) = $\exp[A_1 + A_2 \times (100/t) + A_3 \times \ln(t/100) + A_4 \times (t/100)]$

 $+ s \times \{B_1 + B_2 \times (t/100) + B_3 \times (t/100) \times (t/100)\}\]$

 $A_1 = -173.4292$

 $A_2 = 249.6339$

 $A_3 = 143.3483$

 $A_4 = -21.8482$

 $B_1 = -0.033096$

 $B_2 = -0.00170$

where p is pressure in dbar, t is absolute temperature, and s is salinity in psu. Oxsat is oxygen saturation value minus the volume of oxygen gas (STP) absorbed from humidity-saturated air.

Serial number 0488 is used in SBE's research for oxygen sensor membranes. This sensor has a membrane that is thicker than production SBE 43s. This thicker membrane will cause the sensor to respond more slowly than standard SBE 43s but it may be more stable. The field performance of this sensor is examined in the leg.1.

(4.5) Deep Ocean Standards Thermometer

Deep Ocean Standards Thermometer (SBE 35) is an accurate, ocean-range temperature sensor that can be standardized against Triple Point of Water and Gallium Melt Point cells and is also capable of measuring temperature in the ocean to depths of 6,800 m.

Temperature is determined by applying an AC excitation to reference resistances and an ultrastable aged thermistor with a drift rate of less than 0.001 °C/year. Each of the resulting outputs is digitized by a 20-bit A/D converter. The reference resistor is a hermetically sealed, temperature-controlled VISHAY. The switches are mercury wetted reed relays with a stable contact resistance. AC excitation and ratiometric comparison using a common processing channel removes measurement errors due to parasitic thermocouples, offset voltages, leakage currents, and gain errors. Maximum power dissipated in the thermistor is $0.5~\mu$ watts, and contributes less than $200~\mu$ K of overheat error.

The SBE 35 communicates via a standard RS-232 interface at 300 baud, 8 bits, no parity. The SBE 35 can be used with the SBE 32 Carousel Water Sampler and SBE 911plus CTD system. The SBE 35 makes a temperature measurement each time a bottle fire confirmation is received, and stores the value in EEPROM. Calibration coefficients stored in EEPROM allow the SBE 35 to transmit data in engineering units. Commands can be sent to SBE 35 to provide status display, data acquisition setup, data retrieval, and diagnostic test by using terminal software.

Following the methodology used for standards-grade platinum resistance thermometers (SPRT), calibration of the SBE 35 is accomplished in two steps. The first step is to characterize and capture the non-linear resistance vs temperature response of the sensor. The SBE 35 calibrations are performed at SBE, Inc., in a low-gradient temperature bath and against ITS-90 certified SPRTs maintained at Sea-Bird's primary temperature metrology

laboratory. The second step is frequent certification of the sensor by measurements in thermodynamic fixed-point cells. Triple point of water (TPW) and gallium melt point (GaMP) cells are appropriate for the SBE 35. The SBE 35 resolves temperature in the fixed-point cells to approximately 25 μ K. Like SPRTs, the slow time drift of the SBE 35 is adjusted by a slope and offset correction to the basic non-linear calibration equation.

Pre-cruise sensor calibrations were performed at SBE, Inc. The following coefficients were stored in EEPROM:

S/N 0022 (Leg.1 and 2), 12 October 1999 (1st step: linearization)

 $a_0 = 4.320725498e-3$

 $a_1 = -1.189839279e-3$

 $a_2 = 1.836299593e-3$

 $a_3 = -1.032916769e-5$

 $a_4 = 2.225491125e-7$

S/N 0045 (Leg.3), 27 October 2002 (1st step: linearization)

 $a_0 = 5.84093815e-03$

 $a_1 = -1.65529280e - 03$

 $a_2 = 2.37944937e-04$

 $a_3 = -1.32611385e-05$

 $a_4 = 2.83355203e-07$

Linearized temperature (ITS-90) is computed according to

Linearized temperature (ITS-90) =

$$1/\{a_0 + a_1 \times [\ln(n)] + a_2 \times [\ln^2(n)] + a_3 \times [\ln^3(n)] + a_4 \times [\ln^4(n)]\} - 273.15$$

where n is the instrument output. Then the SBE 35 is certified by measurements in thermodynamic fixed-point cells of the TPW (0.0100°C) and GaMP (29.7646°C). The slow time drift of the SBE 35 is adjusted by periodic recertification corrections.

S/N 0022 (Leg.1 and 2), 30 September 2005 (2nd step: fixed point calibration)

Slope = 1.000036

Offset = 0.000151

S/N 0045 (Leg.3), 3 October 2005 (2nd step: fixed point calibration)

Slope = 1.000013

Offset = -0.001084

Temperature (ITS-90) is calibrated according to

Temperature (ITS-90) = Slope \times Linearized temperature + Offset

The SBE 35 has a time constant of 0.5 seconds. The time required per sample = $1.1 \times NCYCLES + 2.7$ seconds. The 1.1 seconds is total time per an acquisition cycle. NCYCLES is the number of acquisition cycles per sample. The 2.7 seconds is required for converting the measured values to temperature and storing average in EEPROM. Root mean square (rms) temperature noise for a SBE 35 in a Triple Point of Water cell is typically expressed as $82 / NCYCLES^{1/2}$ in μ K. In this cruise NCYCLES was set to 4 and the rms noise is estimated to be 0.04 mK.

When using the SBE 911 system with SBE 35, the deck unit receives incorrect signal from the under water unit for confirmation of firing bottle #16. In order to correct the signal, a module (Yoshi Ver. 1; EMS Co. Ltd., Kobe, Hyogo, Japan) was used between the under water unit and the deck unit.

Time drift of the SBE 35 based on the fixed point calibrations is shown in Figure 3.1.5.

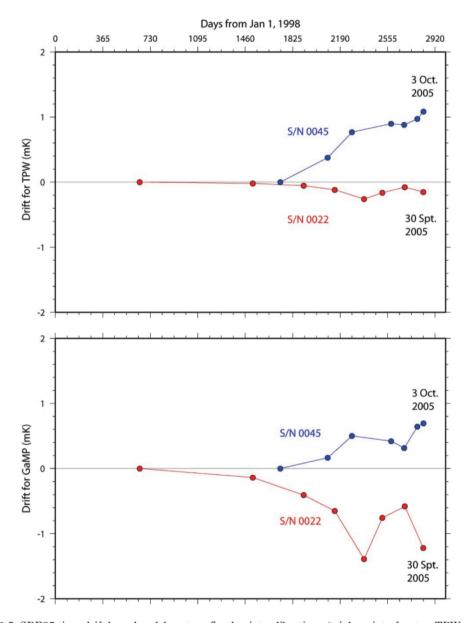


Figure 3.1.5. SBE35 time drift based on laboratory fixed point calibrations (triple point of water, TPW and gallium melt point, GaMP) performed by SBE, Inc.

(4.6) Altimeter

Benthos PSA-916T Sonar Altimeter (Teledyne Benthos, Inc.) determines the distance of the target from the unit by generating a narrow beam acoustic pulse and measuring the travel time for the pulse to bounce back from the target surface. The PSA-916T is the same as the standard PSA-916 Sonar Altimeter except it is housed in a corrosion-resistant titanium pressure case. It is O-ring-sealed and rated for operation in water depths up to 10,000 meters. In this unit, a 250 microseconds pulse at 200 kHz is transmitted 5 times in a second. The PSA-916T uses the nominal speed of sound of 1,500 m/s. Thus the unit itself, neglecting variations in the speed of sound, can be considered accurate to 5% or 0.1 meter, whichever is greater. In the PSA-916T the jitter of the detectors is approximately 5 microseconds or ± 0.4 cm total distance. Since the total travel time is divided by two, the jitter error is ± 0.2 cm.

The following scale factors were used in SEASOFT:

S/N 1100, S/N 1157

 $FSVolt \times 300 / FSRange = 15$

Offset = 0.0

(4.7) Oxygen Optode

Oxygen Optode 3830 (Aanderaa Instruments AS) is based on the ability of selected substances to act as dynamic fluorescence quenchers. The fluorescent indicator is a special platinum porphyrine complex embedded in a gas permeable foil that is exposed to the surrounding water. A black optical isolation coating protects the complex from sunlight and fluorescent particles in the water. This sensing foil is attached to a sapphire window providing optical access for the measuring system from inside watertight titanium housing. The foil is excited by modulated blue light, and the phase of a returned red light is measured. By linearizing and temperature compensating, with an incorporated temperature sensor, the absolute O₂ concentration can be determined.

In order to use with the SBE 911plus CTD system, an analog adaptor (3966) is connected to the oxygen optode (3830). The analog adaptor is packed into titanium housing made by Alec Electronics Co. Ltd., Kobe,

Hyogo, Japan (Figure 3.1.6). The sensor is designed to operate down to 6,000 meters and the titanium housing for the analog adaptor is designed to operate down to 7,000 meters. The range for dissolved oxygen is 120% of surface saturation in all natural waters, nominal accuracy is less than 5% of saturation, and setting time (68%) is shorter than 25 seconds.

The following scale factors were used in SEASOFT:

S/N 612

Phase shift (degrees) = $V_p \times 12 + 10$

Temperature (°C) = $V_t \times 9 - 5$

where V_p and V_t are voltage output (V) of phase shift and temperature, respectively.

Each batch of sensing foils is delivered with calibration data describing the behavior with respect to oxygen concentration and temperature.

Foil batch No. 4104 (S/N 612), 13 November 2004

 $C0Coef_0 = 3.199840e + 3$

 $C0Coef_1 = -1.119634e + 2$

 $C0Coef_2 = 2.408296$

 $C0Coef_3 = -2.248740e-2$

 $C1Coef_0 = -1.744936e + 2$

 $C1Coef_1 = 5.462500$

 $C1Coef_2 = -1.244084e-1$

 $C1Coef_3 = 1.239153e-3$

 $C2Coef_0 = 3.941711$

 $C2Coef_1 = -1.086677e - 1$

 $C2Coef_2 = 2.719394e-3$

 $C2Coef_3 = -2.906343e-5$

 $C3Coef_0 = -4.220910e-2$

 $C3Coef_1 = 1.018155e-3$

 $C3Coef_2 = -2.905609e-5$

 $C3Coef_3 = 3.306610e-7$

 $C4Coef_0 = 1.738870e-4$

 $C4Coef_1 = -3.637668e-6$

 $C4Coef_2 = 1.227403e-7$

 $C4Coef_3 = -1.468399e-9$

Temperature dependent coefficients are calculated as follows.

$$C0Coef = C0Coef_0 + C0Coef_1 \times t + C0Coef_2 \times t^2 + C0Coef_3 \times t^3$$

$$C1Coef = C1Coef_0 + C1Coef_1 \times t + C1Coef_2 \times t^2 + C1Coef_3 \times t^3$$

$$C2Coef = C2Coef_0 + C2Coef_1 \times t + C2Coef_2 \times t^2 + C2Coef_3 \times t^3$$

$$C3Coef = C3Coef_0 + C3Coef_1 \times t + C3Coef_2 \times t^2 + C3Coef_3 \times t^3$$

$$C4Coef = C4Coef_0 + C4Coef_1 \times t + C4Coef_2 \times t^2 + C4Coef_3 \times t^3$$

where t is temperature (°C). The oxygen concentration can be calculated by use of the following formula.

$$O_2 (\mu \text{mol/l}) = \text{C0Coef} + \text{C1Coef} \times \text{P} + \text{C2Coef} \times \text{P}^2 + \text{C3Coef} \times \text{P}^3 + \text{C4Coef} \times \text{P}^4$$

where P is phase shift (degrees) measured by the Optode. In addition to the above mentioned coefficient, phase measurement is calibrated for individual sensor and foil variations by a two point calibration (one in air saturated water and one in a zero-oxygen solution).

$$P = A + B \times P_b$$

where P is a calibrated phase shift (degrees) and P_b is a raw phase measurement. The coefficients A and B can be calculated by ordinary linear curve fitting and is delivered.

S/N 612, 20 September 2005

$$A = -3.00536$$

$$B = 1.11847$$

Outputs from the sensor are the raw phase shift (P_b) and temperature. The raw phase data was calibrated using above coefficients after data acquisition. The oxygen concentration was calculated using temperature data

from the first responding CTD temperature sensor instead of temperature data from slow responding optode temperature sensor.

Since the sensing foil is only permeable to gas and not water, the optode can not sense the effect of salt dissolved in the water, hence the optode always measures as if immersed in fresh water. Therefore the oxygen concentration, µmol/l, was multiplied by the following factor.

$$\exp\{S(B_0 + B_1 \times T_S + B_2 \times T_S^2 + B_3 \times T_S^3) + C_0 \times S^2\}$$

where S is salinity, T_s is scaled temperature (= $ln\{(298.15 - t)/(273.15 + t)\}$), t is temperature (°C),

 $B_0 = -6.24097e - 3$

 $B_1 = -6.93498e - 3$

 $B_0 = -6.90358e - 3$

 $B_3 = -4.29155e-3$

 $C_0 = -3.11680e - 7$

The response of the sensing foil decreases to some extent with the ambient water pressure. Therefore the oxygen concentration was multiplied by the following factor.

$$(1 + 0.03 \times P_r / 1000)$$

where P_r is pressure in dbar. This factor (0.03) is empirically determined and different from that in the user's manual. (The factor was changed as 0.032 after analyzing the data obtained in this cruise.)

Figure 3.1.6. Oxygen Optode (3830) with analog adaptor (3966). The analog adaptor is packed into titanium housing made by Alec Electronics Co., Ltd.

(5) Data collection and processing

(5.1) Data collection

CTD measurements were made by using a SBE 9plus equipped with two pumped temperature-conductivity (TC) sensors. The TC pairs were monitored to check drift and shifts by examining the differences between the two pairs. A dissolved oxygen sensor was placed between the primary conductivity sensor module and the pump. Auxiliary sensors included Deep Ocean Standards Thermometer, altimeter and oxygen optode. The SBE 9plus was mounted horizontally in a 36-position carousel frame.

CTD system was powered on at least 30 minutes in advance of the data acquisition and was powered off at least two minutes after the operation in order to acquire pressure data on the ship's deck.

The package was lowered into the water from the starboard side and held 10 m beneath the surface for about one minute in order to activate the pump. After the pump was activated, the package was lifted to the surface and lowered at a rate of 1.0 m/s to 200 m (or 300 m when significant wave height is high) then the package was stopped in order to operate the heave compensator of the crane. The package was lowered again at a rate of 1.2 m/s to the bottom. The position of the package relative to the bottom was monitored by the altimeter reading. Also the bottom depth was monitored by the SEABEAM multi-narrow beam sounder on board. For the up cast, the package was lifted at a rate of 1.1 m/s except for bottle firing stops. At each bottle firing stops, the bottle was fired after waiting from the stop for 30 seconds and the package was stayed at least 5 seconds for measurement of the Deep Ocean Standards Thermometer. At 200 m (or 300 m) from the surface, the package was stopped in order to stop the heave compensator of the crane.

Water samples were collected using a 36-bottle SBE 32 Carousel Water Sampler with 12-litre Nisken-X bottles. Before a cast taken water for CFCs, the 36-bottle frame and Niskin-X bottles were wiped with acetone.

The SBE 11plus deck unit received the data signal from the CTD. Digitized data were forwarded to a personal computer running the SEASAVE data acquisition software. Temperature, conductivity, salinity, oxygen and descent rate profiles were displayed in real-time with the package depth and altimeter reading. Differences in temperature, salinity and oxygen between primary and secondary sensor were also displayed in order to monitor

the status of the sensors.

Data acquisition software

SEASAVE-Win32, version 5.27b

(5.2) Data collection problems

Leg.1:

At following stations, trigger of the bottle was not released. Therefore the latch assembly was replaced after the cast.

At station 38_1, bottle #19 did not trip correctly. It was found by temperature reading at dissolved oxygen sampling. Therefore the latch assembly was replaced after the cast.

At station 51_1, bottle #26 was not fired by missed operation.

After station 51 1, bottle #15 was changed from S/N X12006 to S/N X12009 due to frequent leak.

At following stations, output from the sensor showed abnormal values.

94 1, secondary sensors, 32-96 dbar (down cast)

114 1, secondary conductivity, 1,192-2,546 dbar (down cast)

118 1, primary conductivity, 1,391-1,438 dbar (down cast)

Leg.2:

At following stations, trigger of the bottle was not released. Therefore the latch assembly was replaced after the cast.

At following stations, bottle did not trip correctly. It was found by temperature reading at dissolved oxygen sampling. Therefore the latch assembly was replaced after the cast.

At following stations, bottle did not trip correctly. It was found by sampled water analysis.

185 1 (#17): The latch assembly was replaced after station 195 1.

WC2 1 (#1): The latch assembly was replaced after station WC5 1.

357 1 (#17): The bottle tripped before firing the bottle.

At station 217 2, bottle #36 was not fired by missed operation.

After station 267 1, bottle #23 was changed from S/N X12043 to S/N X12005.

At following stations, output from the sensor showed abnormal values.

146_2, secondary sensors

148 1, secondary sensors

WC7 1, primary sensors

328_1, primary sensors, 0-1,106 dbar (up cast), Jellyfish in primary TC duct

At station 299 1, the deck unit fuzed at 2,790 dbar of up cast. The system was re-started at the depth.

At station 347 1, system error occurred at 2,743-2,744 dbar of up cast by unknown reason.

For primary oxygen sensor S/N 0391, noise became large near surface (0-400 dbar) compared to the data obtained from the same sensor in leg 1. The sensor was bleached after stations 171_1, 209_1 and WC6_1. Noise became large again although it was improved after bleaching.

After station 197_1, the primary conductivity sensor was changed from S/N 3124 to S/N 2854, and the secondary conductivity sensor was also changed from S/N 3036 to S/N 3116, due to large time drift.

After station WC7_1, the primary oxygen sensor was changed from S/N 0391 to S/N 0390 due to shift and noise.

After station 283_1, the secondary oxygen sensor was changed from S/N 0394 to S/N 0205 due to small noise. But the noise was found in the secondary oxygen data after the sensor change as well. So the connecting cable for the secondary oxygen sensor after station 285_1. But the noise was found as well. At station 333_1, the connecting port was changed from AUX3 to AUX2 and the noise disappeared after that.

Leg.3:

At station 380_1, bottle #23 was not trip correctly. It was found by temperature reading at dissolved oxygen sampling. Therefore the latch assembly was replaced after the cast.

(5.3) Data processing

SEASOFT consists of modular menu driven routines for acquisition, display, processing, and archiving of oceanographic data acquired with SBE equipment, and is designed to work with a compatible personal computer. Raw data are acquired from instruments and are stored as unmodified data. The conversion module DATCNV uses instrument configuration and calibration coefficients to create a converted engineering unit data file that is operated on by all SEASOFT post processing modules. Each SEASOFT module that modifies the converted data file adds proper information to the header of the converted file permitting tracking of how the various oceanographic parameters were obtained. The converted data is stored in rows and columns of ASCII numbers. The last data column is a flag field used to mark scans as good or bad.

The following are the SEASOFT data processing module sequence and specifications used in the reduction of CTD data in this cruise.

Data processing software

SEASOFT-Win32, version 5.27b

DATCNV converted the raw data to scan number, pressure, depth, temperatures, conductivities, oxygen voltage, descent rate, altitude, and optode phase shift. DATCNV also extracted bottle information where scans were marked with the bottle confirm bit during acquisition. The duration was set to 4.4 seconds, and the offset was set to 0.0 seconds.

ROSSUM created a summary of the bottle data. The bottle position, date, and time were output as the first two columns. Scan number, pressure, depth, temperatures, conductivities, oxygen voltage, descent rate, altitude and optode phase shift were averaged over 4.4 seconds. And salinity, potential temperature, density (σ_{θ}) and oxygen were computed.

ALIGNCTD converted the time-sequence of conductivity and oxygen sensor outputs into the pressure sequence to ensure that all calculations were made using measurements from the same parcel of water. For a SBE 9plus CTD with the ducted temperature and conductivity sensors and a 3,000-rpm pump, the typical net advance of the conductivity relative to the temperature is 0.073 seconds. So, the SBE 11plus deck unit was set to advance the primary and the secondary conductivity for 1.73 scans (1.75/24 = 0.073 seconds). Oxygen data are also systematically delayed with respect to depth mainly because of the long time constant of the oxygen sensor and of an additional delay from the transit time of water in the pumped plumbing line. This delay was compensated by 6 seconds advancing oxygen sensor output (oxygen voltage) relative to the temperature. For the serial number 0488 that have thicker membrane than standard SBE 43s, the delay was compensated by 14 seconds. Oxygen optode data are also delayed by relatively slow response time of the sensor. The delay was compensated by 8 seconds advancing optode sensor output (phase shift and optode temperature) relative to the CTD temperature.

WILDEDIT marked extreme outliers in the data files. The first pass of WILDEDIT obtained an accurate estimate of the true standard deviation of the data. The data were read in blocks of 1,000 scans. Data greater than 10 standard deviations were flagged. The second pass computed a standard deviation over the same 1,000 scans excluding the flagged values. Values greater than 20 standard deviations were marked bad. This process was applied to all variables.

CELLTM used a recursive filter to remove conductivity cell thermal mass effects from the measured conductivity. Typical values used were thermal anomaly amplitude alpha = 0.03 and the time constant 1/beta = 7.0.

FILTER performed a low pass filter on pressure with a time constant of 0.15 seconds. In order to produce zero phase lag (no time shift) the filter runs forward first then backwards.

SECTION selected a time span of data based on scan number in order to reduce a file size. The minimum

number was set to be the start time when the CTD package was beneath the sea-surface after activation of the pump. The maximum number was set to be the end time when the package came up from the surface. Data for estimation of the CTD pressure drift were prepared before SECTION.

LOOPEDIT marked scans where the CTD was moving less than the minimum velocity of 0.0 m/s (traveling backwards due to ship roll).

DERIVE was used to compute oxygen.

BINAVG averaged the data into 1-dbar pressure bins. The center value of the first bin was set equal to the bin size. The bin minimum and maximum values are the center value plus and minus half the bin size. Scans with pressures greater than the minimum and less than or equal to the maximum were averaged. Scans were interpolated so that a data record exist every dbar.

DERIVE was re-used to compute salinity, potential temperature, and density (σ_{θ}) .

SPLIT was used to split data into the down cast and the up cast.

For stations from 146_2 to 331_1 in Leg.2, small noise was found in the secondary oxygen data because the sensor connected to the port of AUX3. Therefore the sensor output (voltage) was low-pass filtered with a time constant of 1 second at the same time of the low-pass filtering for the pressure data mentioned above. At following stations, the noise could not be removed completely from down cast profile data.

X14 1: 5,650-5,800 dbar

201 1: 5,600-5,760 dbar

203 1: 5,710-5,850 dbar

205 1: 5,760-5,820 dbar

207 1: 5,660-5,860 dbar

213 1: 5,840-5,880 dbar

215 1: 5,750-5,920 dbar

217 1: 5,730-5,880 dbar

Remaining spikes in salinity or oxygen data were manually eliminated from the raw data or the 1-dbar-averaged data. When number of data in the 1-dbar-pressure bin was less than 10, the data of the bin was not used. The data gap over 1-dbar was linearly interpolated with a quality flag of 6.

For the oxygen optode data, the delay due to the long time constant was compensated by 8 seconds using the software module ALIGNCTD mentioned above. However it was found that the delay was dependent on temperature. So the delay was compensated advancing optode sensor output relative to the CTD temperature as a following function of temperature.

align (sec) =
$$25 \times \exp(-0.13 \times t)$$
 (for $0 \le t \le 16.3$ °C)
align (sec) = 25 (for $t < 0$ °C)
align (sec) = 3 (for $t > 16.3$ °C)

where t is CTD temperature (°C).

(6) Post-cruise calibration

Post-cruise calibration is basically performed for each leg. However the cruise period of Leg.2 is longer than usual (53 days). So the data of Leg.2 is divided into two periods for the post-cruise calibration. In this section the two periods are called as Leg.2a (from station 146_2 to WC10_1) and Leg. 2b (from station 217_2 to 351_2).

(6.1) Pressure

The CTD pressure sensor offset in the period of the cruise is estimated from the pressure readings on the ship deck. For best results the Paroscientific sensor has to be powered for at least 10 minutes before the operation and carefully temperature equilibrated. Therefore CTD system was powered on for 30 minutes in advance of the data acquisition (from 55_1, Leg.1). In order to get the calibration data for the pre- and post-cast pressure sensor drift, the CTD deck pressure is averaged over first and last one minute, respectively. Then the atmospheric pressure deviation from a standard atmospheric pressure (14.7 psi) is subtracted from the CTD deck pressure. The atmospheric pressure was measured at the captain deck (20 m high from the base line) and sub-

sampled one-minute interval as a meteorological data. Time series of the CTD deck pressure is shown in from Figure 3.1.7 to Figure 3.1.10.

The CTD pressure sensor offset is estimated from the deck pressure obtained above. Mean of the pre- and the post-casts data over the whole period gave an estimation of the pressure sensor offset from the pre-cruise calibration. Mean residual pressure between the dead-weight piston gauge and the calibrated CTD data at 0 dbar of the pre-cruise calibration is subtracted from the mean deck pressure. Estimated offset of the pressure data is summarized in Table 3.1.1. The post-cruise correction of the pressure data is not deemed necessary for the pressure sensor.

Table 3.1.1. Offset of the pressure data. Mean and standard deviation are calculated from time series of the average of the pre- and the post-cast deck pressures.

Leg	S/N	Mean deck	Mean deck Standard		Estimated offset
		Pressure (dbar)	deviation (dbar)	(dbar)	(dbar)
Leg.1	0677	-0.53	0.03	0.03	-0.56
Leg.2a	0677	-0.54	0.03	0.03	-0.57
Leg.2b	0677	-0.53	0.02	0.03	-0.56
Leg.3	0677	-0.49	0.02	0.03	-0.52

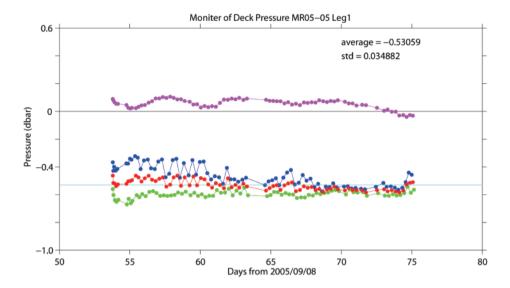


Figure 3.1.7. Time series of the CTD deck pressure for Leg.1. Pink dot indicates atmospheric pressure anomaly.

Blue and green dots indicate pre- and post-cast deck pressures, respectively. Red dot indicates an average of the pre- and the post-cast deck pressures.

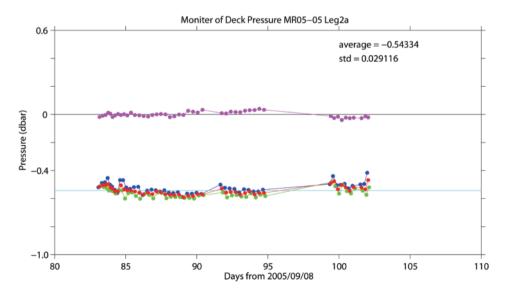


Figure 3.1.8. Same as Figure 3.1.7, but for Leg.2a.

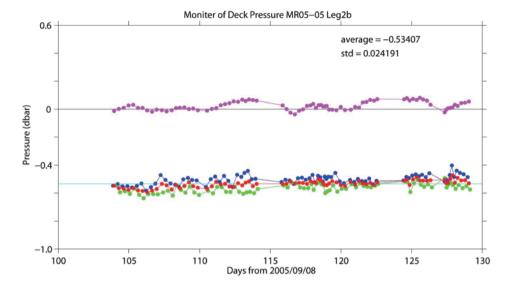


Figure 3.1.9. Same as Figure 3.1.7, but for Leg.2b.

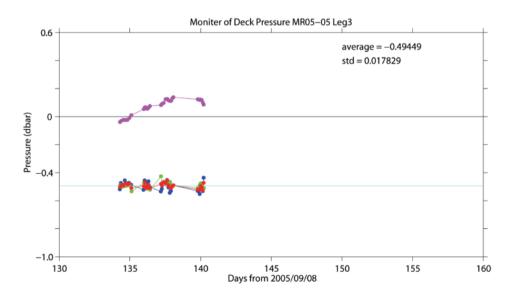


Figure 3.1.10. Same as Figure 3.1.7, but for Leg.3.

(6.2) Temperature

The CTD temperature sensors (SBE 3) were calibrated with the SBE 35 under the assumption that discrepancies between SBE 3 and SBE 35 data were due to pressure sensitivity, the viscous heating effect, and time drift of the SBE 3, according to a method by Uchida et al. (2007).

Post-cruise sensor calibrations for the SBE 35 were performed at SBE, Inc.

S/N 0022, 1 February 2006 (2nd step: fixed point calibration)

Slope = 1.000034

Offset = 0.000038

S/N 0045, 21 February 2006 (2nd step: fixed point calibration)

Slope = 1.000009

Offset = -0.001109

Offset of the SBE 35 (S/N 0022) data from the pre-cruise calibration is estimated to be 0.1 mK for temperature less than 4°C. So the post-cruise correction of the SBE 35 temperature data is not deemed necessary for the SBE 35.

The CTD temperature is calibrated as

Calibrated temperature = $T - (c_0 \times P + c_1 \times t + c_2)$

where T is CTD temperature in ${}^{\circ}$ C, P is pressure in dbar, t is time in days from pre-cruise calibration date of CTD temperature and c_0 , c_1 , and c_2 are calibration coefficients. The best fit sets of coefficients are determined by minimizing the sum of absolute deviation from the SBE 35 data. The MATLAB® function FMINSEARCH is used to determine the sets.

The calibration is performed for the CTD data created by the software module ROSSUM. The deviation of CTD temperature from the SBE 35 temperature at depth shallower than 2,000 dbar is large for determining the coefficients with sufficient accuracy since the vertical temperature gradient is too large in the regions. So the coefficients are determined using the data for the depth deeper than 1,950 dbar. For Leg.3 the calibration coefficients determined for Leg.2b are used for the calibration because the maximum pressure of the CTD casts

is shallower than 2,000 dbar in Leg.3.

Finally following temperature data are used for the data set in consideration for the data quality.

Leg.1: secondary (S/N 4216) except for 94 1 and 114 1

primary (S/N 1464) for 94 1 and 114 1

Leg.2: primary (S/N 4216) except for WC7 1 and 328 1

secondary (S/N 1525) for WC7_1 and 328_1

Leg.3: primary (S/N 4216)

The number of data used for the calibration and the mean absolute deviation from the SBE 35 are listed in Table 3.1.2 and the calibration coefficients are listed in Table 3.1.3. The results of the post-cruise calibration for the CTD temperature are summarized in Table 3.1.4 and shown in from Figure 3.1.11 to Figure 3.1.17.

Table 3.1.2. Number of data used for the calibration (pressure \geq 1,950 dbar) and mean absolute deviation (ADEV) between the CTD temperature and the SBE 35.

Leg	S/N	Number of data	ADEV (mK)	Note
Leg.1	1464	976	0.10	for 94_1, 114_1
	4216	976	0.10	
Leg.2a	4216	672	0.12	
	1525	661	0.10	for WC7_1
Leg.2b	4216	1070	0.14	
	1525	1070	0.11	for 328_1

Table 3.1.3. Calibration coefficients for the CTD temperature sensors.

Leg	S/N	c ₀ (°C/dbar)	c ₁ (°C/day)	c ₂ (°C)
Leg.1	1464	-1.090e-7	1.3833e-5	-0.34e-3
	4216	1.8917e-8	-4.1245e-6	0.55e-3
Leg.2a	4216	-3.9923e-9	-1.1221e-6	0.70e-3
	1525	1.0202e-9	-5.4892e-6	0.84e-3
Leg.2b	4216	-7.2153e-9	1.0834e-5	-0.65e-3
	1525	2.7008e-9	1.8342e-6	-0.07e-3
Leg.3	4216	Same as Leg.2b	Same as Leg.2b	Same as Leg.2b

Table 3.1.4. Difference between the CTD temperature and the SBE 35 after the post-cruise calibration. Mean and standard deviation (Sdev) are calculated for the data below and above 1,950 dbar. Number of data used (Num) is also shown.

Leg	S/N	Pressure ≥ 1,950 dbar			Pressure < 1,950 dbar		
		Num	Mean (mK)	Sdev (mK)	Num	Mean (mK)	Sdev (mK)
Leg.1	1464	976	-0.01	0.14	1392	-0.57	4.3
	4216	976	-0.01	0.14	1392	-0.13	4.0
Leg.2a	4216	672	0.02	0.17	888	-0.04	4.6
	1525	661	-0.00	0.17	872	0.16	5.5
Leg.2b	4216	1070	-0.00	0.18	1407	-0.11	4.3
	1525	1070	-0.01	0.15	1421	-0.21	4.4
Leg.3	4216	_	_	_	332	-0.59	5.5

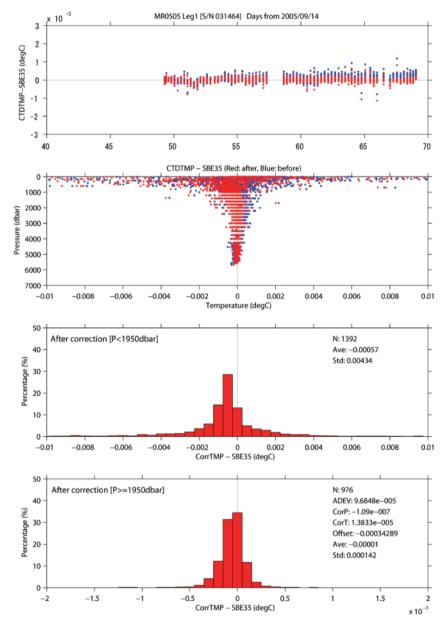


Figure 3.1.11. Difference between the CTD temperature (primary) and the SBE 35 for Leg.1. Blue and red dots indicate before and after the post-cruise calibration using the SBE 35 data, respectively. Top panel shows for $P \ge 1950$ dbar. Lower two panels show histogram of the difference after the calibration.

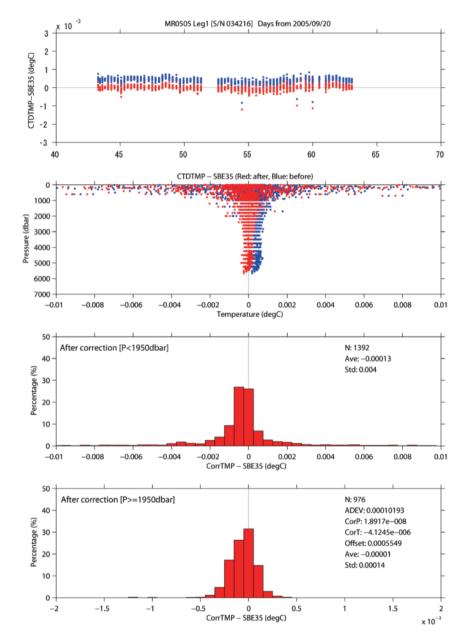


Figure 3.1.12. Same as Figure 3.1.11, but for the secondary CTD temperature for Leg.1.

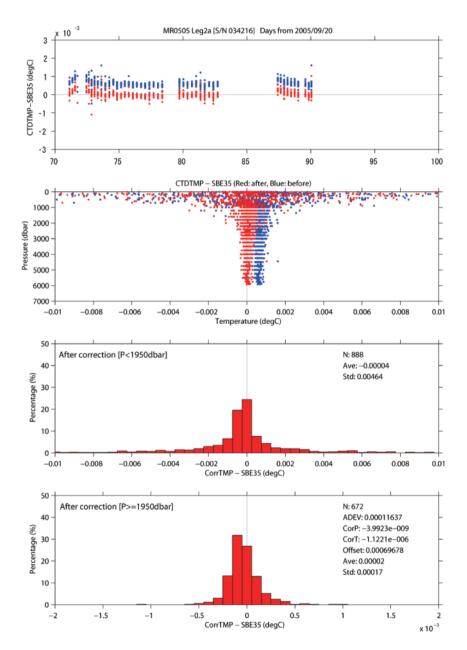


Figure 3.1.13. Same as Figure 3.1.11, but for the primary CTD temperature for Leg.2a.

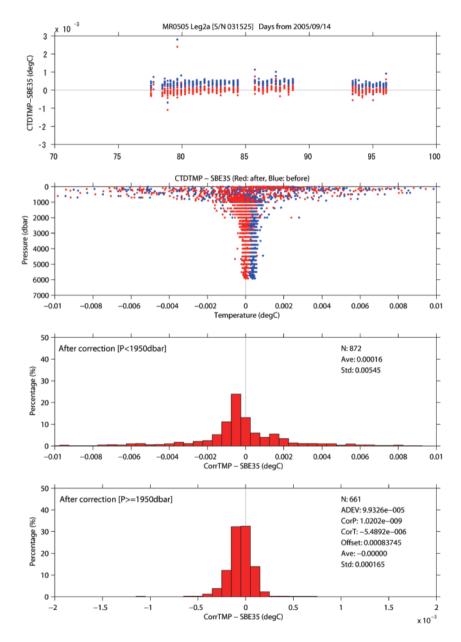


Figure 3.1.14. Same as Figure 3.1.11, but for the secondary CTD temperature for Leg.2a.

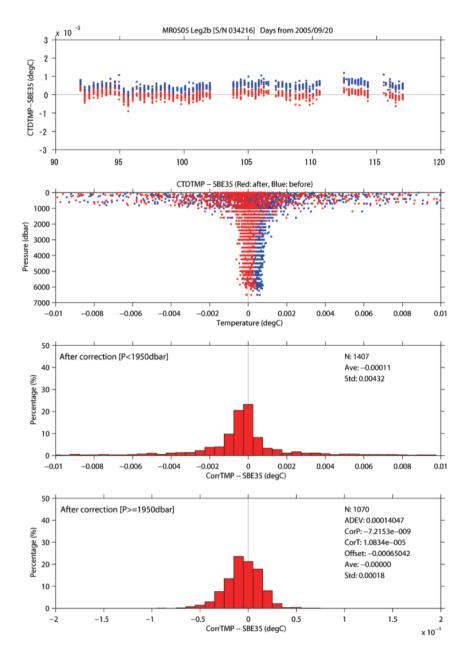


Figure 3.1.15. Same as Figure 3.1.11, but for the primary CTD temperature for Leg.2b.

55

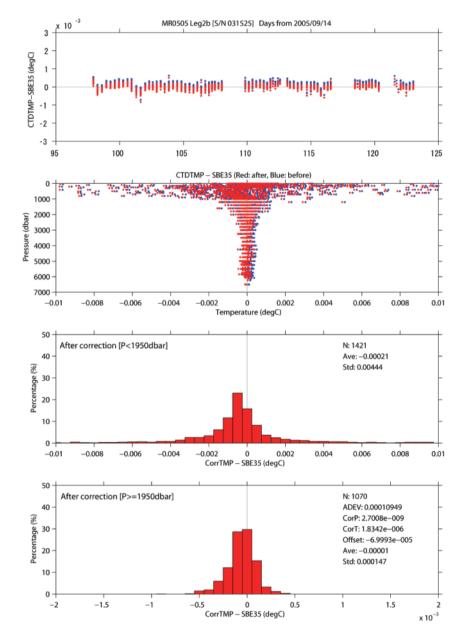


Figure 3.1.16. Same as Figure 3.1.11, but for the secondary CTD temperature for Leg.2b.

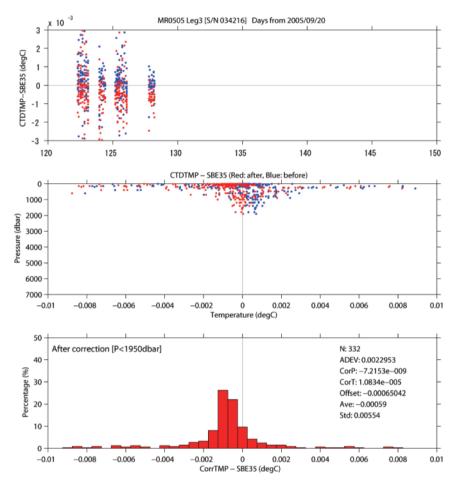


Figure 3.1.17. Same as Figure 3.1.11, but for the primary CTD temperature for Leg.3. Top and bottom panels show for full pressure range.

(6.3) Salinity

The discrepancy between the CTD salinity and the bottle salinity is considered to be a function of conductivity and pressure. The CTD salinity is calibrated as

Calibrated salinity = $S - (c_0 \times P + c_1 \times C + c_2 \times C \times P + c_3)$

where S is CTD salinity, P is pressure in dbar, C is conductivity in S/m and c_0 , c_1 , c_2 and c_3 are calibration coefficients. The best fit sets of coefficients are determined by minimizing the sum of absolute deviation with a weight from the bottle salinity data. The MATLAB® function FMINSEARCH is used to determine the sets. The weight is given as a function of vertical salinity gradient and pressure as

Weight = $min[4, exp\{log(4) \times Gr / Grad\}] \times min[4, exp\{log(4) \times P^2 / PR^2\}]$

where Grad is vertical salinity gradient in PSU dbar⁻¹, and P is pressure in dbar. Gr and PR are threshold of the salinity gradient (0.5 mPSU dbar⁻¹) and pressure (1,000 dbar), respectively. When salinity gradient is small (large) and pressure is large (small), the weight is large (small) at maximum (minimum) value of 16 (1). The salinity gradient is calculated using up-cast CTD salinity data. The up-cast CTD salinity data is low-pass filtered with a 3-point (weights are 1/4, 1/2, 1/4) triangle filter before the calculation.

Finally salinity data derived from following conductivity sensor are used for the data set in consideration for the data quality.

Leg.1: secondary (S/N 2854) except for 94_1 and 114_1
primary (S/N 1203) for 94_1 and 114_1
Leg.2: primary (S/N 3124 and S/N 2854) except for WC7_1 and 328_1
secondary (S/N 3116) for WC7_1 and 328_1

Leg.3: primary (S/N 2854)

The CTD data created by the software module ROSSUM are used after the post-cruise calibration for the CTD temperature.

The coefficients are determined for some groups of the CTD stations. The results of the post-cruise calibration for the CTD salinity are summarized in Table 3.1.5 and shown in from Figure 3.1.18 to Figure 3.1.21.

And the calibration coefficients and the number of the data used for the calibration are listed in Table 3.1.6.

Table 3.1.5. Difference between the CTD salinity and the bottle salinity after the post-cruise calibration. Mean and standard deviation (Sdev) are calculated for the data below and above 950 dbar. Number of data used (Num) is also shown.

Leg	Pressure ≥ 950 dbar			Pressure < 950 dbar		
	Num	Mean (mPSU)	Sdev (mPSU)	Num	Mean (mPSU)	Sdev (mPSU)
Leg.1	1320	0.01	0.32	1002	0.06	6.36
Leg.2a	920	-0.02	0.34	656	0.72	5.89
Leg.2b	1422	-0.02	0.36	1025	0.67	3.16
Leg.3	25	-0.04	0.41	296	-0.17	1.86

Table 3.1.6. Calibration coefficients for the CTD salinity. Number of data used (Num) is also shown.

Stations	(Num)	CO	C1	C2	C3
Leg 1:					
1_1-26_1	(275)	-6.9332569403e-6	-1.7406138415e-3	2.1616864848e-6	7.4450762843e-
28 1-44 1	(298)	-1.2804422689e-6	-9.1223600910e-4	3.6879791066e-7	5.1074521112e-
46 1-73 1	(512)	3.6529672450e-7	-2.3847830676e-4	-1.4495159805e-7	3.1629438129e-
94 1,114 1	(65)	2.7703624740e-6	6.1243709126e-5	-8.2572575661e-7	4.0659912660e-
74 1-104 1	(543)	1.8730171701e-6	-1.4227773847e-4	-6.2019187422e-7	3.2067999773e-
106_1-146_1	(629)	-6.1266343657e-7	-3.3024724989e-4	1.6374587979e-7	3.8794661715e-
Leg 2a:					
146_2	(32)	-1.3534051256e-6	2.6822634099e-4	4.8090447234e-7	-1.7023616632e-
148 1	(30)	2.8648089621e-6	7.9162918294e-4	-8.5229000985e-7	-4.1877005940e-
150 1	(27)	-6.3263920182e-6	5.6172052014e-4	2.1176194280e-6	-4.0658193232e-
152 1-157 1	(96)	-1.3932496449e-6	5.0002444812e-4	4.6572414581e-7	-4.3072082193e-
159 1,161 1	(62)	2.6431715417e-6	6.2244409716e-4	-8.1258089784e-7	-4.1441691258e-
163 1-171 1	(161)	8.2248815256e-7	5.4513664671e-4	-2.1423403281e-7	-5.1979263905e-
173 1-197 1	(437)	4.6490157041e-6	7.1901447939e-4	-1.4095235922e-6	-6.4071128225e-
X14 1-217 1	(355)	4.5636737732e-6	-2.0954365226e-4	-1.4886356365e-6	3.3521757553e-
WC7 1	(36)	2.3388948512e-6	-2.5405823909e-4	-6.8264841424e-7	2.6121348754e-
WC0_1-WC10_1	(345)	4.4734717282e-6	-1.0524927421e-4	-1.4726908749e-6	3.5284312593e-
Leg 2b:					
217_2-223_1	(141)		-4.1703838739e-4		3.8110914876e-
225_1-241_1	(318)		-2.7641170222e-4	-9.9523713450e-7	3.5148018313e-
243_1	(25)		-6.6347509786e-4	1.7271918177e-6	4.5585473787e-
245_1-279_1	(660)		-3.3899298844e-4		3.7937826601e-
281_1-295_1	(271)		-1.5733314930e-4	-9.6264878196e-7	3.1990129886e-
297_1-312_1	(184)		-4.9418235747e-4	2.9682608422e-6	3.7280395807e-
328_1	(33)	-1.5232103653e-6	-6.0491327964e-4	5.1646883670e-7	2.9111918302e-
314_1-333_1	(315)	1.2037381315e-6	-2.1752035380e-4	-3.8674041433e-7	3.2959858445e-
335_1-343_1	(130)		-1.8946836643e-4	6.4501351565e-8	2.7992069617e-
345_1-351_1	(134)		-2.3311048294e-5		2.5838371732e-
369_1-357_1	(136)		1.1423193230e-4		1.8615333187e-
355_1-351_2	(105)	3.6018768105e-6	-1.6276726098e-4	-1.1078997582e-6	2.8866166830e-
Leg 3:					
370 1-TS1 1	(321)	3.6800065006e-6	-6.9694450581e-5	-1.1545267726e-6	2.4027579868e-

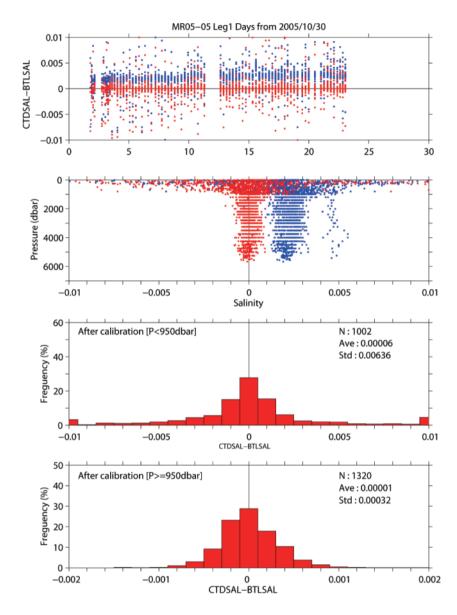


Figure 3.1.18. Difference between the CTD salinity and the bottle salinity for Leg.1. Blue and red dots indicate before and after the post-cruise calibration using the bottle salinity data, respectively. Top panel shows for $P \ge 950$ dbar. Lower two panels show histogram of the difference after the calibration.

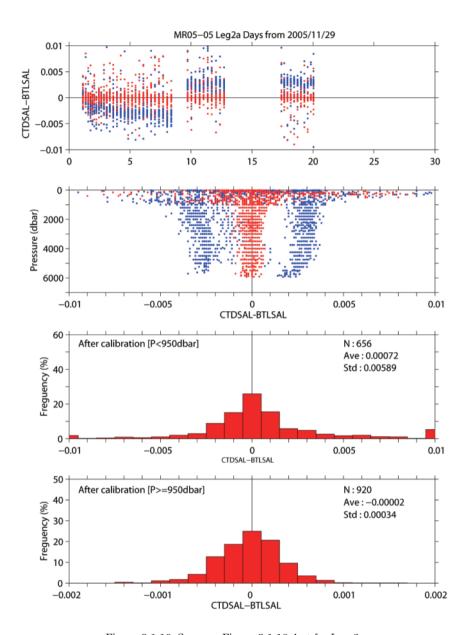


Figure 3.1.19. Same as Figure 3.1.18, but for Leg.2a.

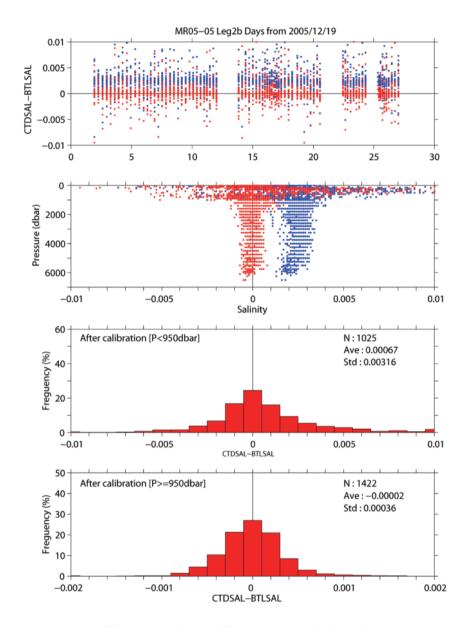


Figure 3.1.20. Same as Figure 3.1.18, but for Leg.2b.

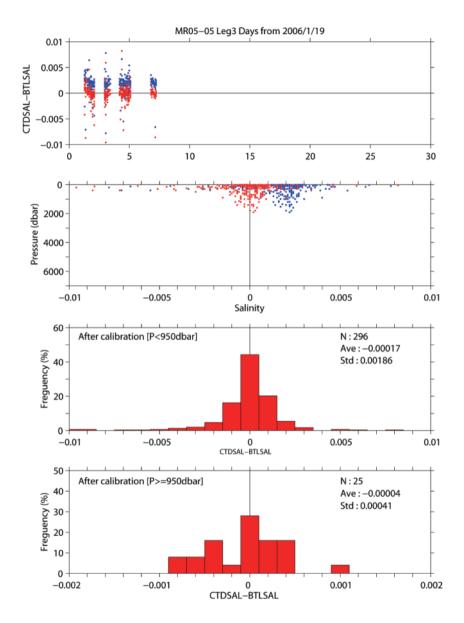


Figure 3.1.21. Same as Figure 3.1.18, but for Leg.3. Top panel shows for full pressure range.

(6.4) Oxygen (SBE 43)

The CTD oxygen is calibrated using the oxygen model as

Calibrated oxygen (ml/l)

```
= \{(Soc+dSoc) \times \{v+offset+doffset\} \times exp\{(TCor+dTCor) \times t + (PCor+dPCor) \times p\}\}
```

 \times Oxsat(t, s)

where p is pressure in dbar, t is absolute temperature and s is salinity in psu. Oxsat is oxygen saturation value minus the volume of oxygen gas (STP) absorbed from humidity-saturated air. Soc, offset, TCor and PCor are the pre-cruise calibration coefficients and dSoc, doffset, dTCor and dPCor are calibration coefficients. The best fit sets of coefficients are determined by minimizing the sum of absolute deviation with a weight from the bottle oxygen data. The MATLAB® function FMINSEARCH is used to determine the sets. The weight is given as a function of vertical oxygen gradient and pressure as

Weight = $\min[4, \exp\{\log(4) \times Gr / Grad\}] \times \min[4, \exp\{\log(4) \times P^2 / PR^2\}]$

where Grad is vertical oxygen gradient in μ mol kg⁻¹ dbar⁻¹, and P is pressure in dbar. Gr and PR are threshold of the oxygen gradient (0.3 μ mol kg⁻¹ dbar⁻¹) and pressure (1,000 dbar), respectively. When oxygen gradient is small (large) and pressure is large (small), the weight is large (small) at maximum (minimum) value of 16 (1). The oxygen gradient is calculated using down-cast CTD oxygen data. The down-cast CTD oxygen data is low-pass filtered with a 3-point (weights are 1/4, 1/2, 1/4) triangle filter before the calculation.

Finally oxygen data derived from following oxygen sensor are used for the data set in consideration for the data quality.

Leg.1: primary (S/N 0391)

Leg.2: primary (S/N 0391) for 146_2 and 148_1

secondary (S/N 0394) from 150_1 to WC8_1

primary (S/N 0390) from WC9_1 to 351_2

Leg.3: primary (S/N 0390)

The down-cast CTD data sampled at same density of the up-cast CTD data created by the software module

ROSSUM are used after the post-cruise calibration for the CTD temperature and salinity.

The coefficients are basically determined for each station. Some stations, especially for shallow stations, are grouped for determining the calibration coefficients. The results of the post-cruise calibration for the CTD oxygen are summarized in Table 3.1.7 and shown in from Figure 3.1.22 to Figure 3.1.5.19. And the calibration coefficients and number of the data used for the calibration are listed in Table 3.1.8.

Table 3.1.7. Difference between the CTD oxygen and the bottle oxygen after the post-cruise calibration. Mean and standard deviation (Sdev) are calculated for the data below and above 950 dbar. Number of data used (Num) is also shown.

Leg	Pressure ≥ 950 dbar			Pressure	Pressure < 950 dbar		
	Num	Mean	Sdev	Num	Mean	Sdev	
		(µmol/kg)	$(\mu \text{mol/kg})$		(µmol/kg)	$(\mu \text{mol/kg})$	
Leg.1	1325	-0.04	0.65	1006	0.05	3.58	
Leg.2a	925	0.04	0.66	643	0.08	2.94	
Leg.2b	1419	-0.03	0.91	1012	0.07	2.54	
Leg.3	25	-0.10	0.33	295	-0.03	2.23	

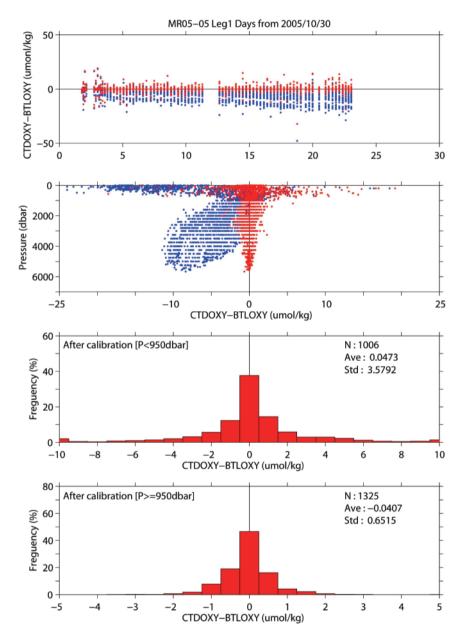


Figure 3.1.22. Difference between the CTD oxygen and the bottle oxygen for Leg.1. Blue and red dots indicate before and after the post-cruise calibration using the bottle oxygen data, respectively. Top panel shows for $P \ge 950$ dbar. Lower two panels show histogram of the difference after the calibration.

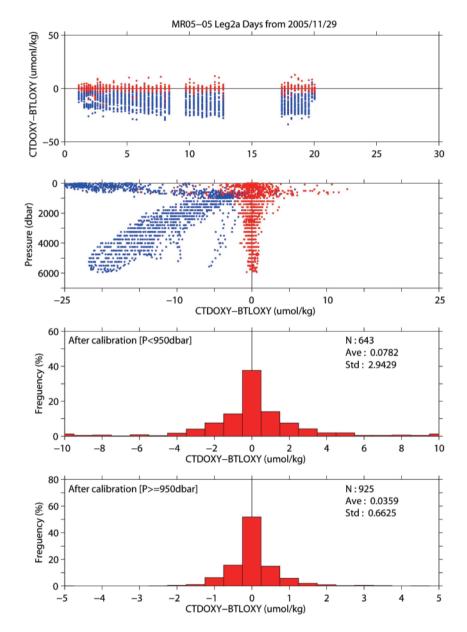


Figure 3.1.23. Same as Figure 3.1.22, but for Leg.2a.

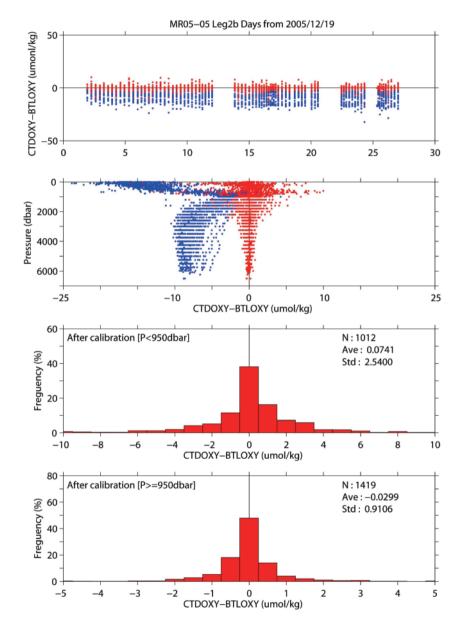


Figure 3.1.24. Same as Figure 3.1.22, but for Leg.2b.

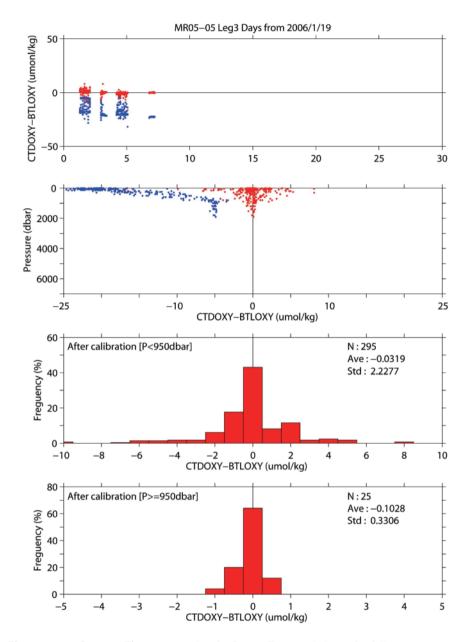


Figure 3.1.25. Same as Figure 3.1.22, but for Leg.3. Top panel shows for full pressure range.

Table 3.1.8. Calibration coefficients for the CTD oxygen. Number of data used (Num) is also shown.

Stations	(Num)		dTCor	dPCor	doffset
Leg1:					
1_1-16_1	(136)	2.8411653261e-4	1.1157544479e-3		-1.2818258956e-3
18_1	(28)	4.2389172171e-3	6.5527402402e-4	-2.9529810502e-6	2.0664010586e-3
20_1 22 1	(27) (28)	5.9072097463e-3 1.4921406865e-2	5.9612891352e-4 -6.5325808935e-4		-4.4323898789e-3 -7.6317176255e-3
24_1	(28)	1.9502900984e-2	-1.2552442883e-3		-6.3244004082e-3
26_1	(28)	6.6080225258e-3	1.3348273077e-3		-6.9442801869e-3
28_1	(31)	2.3907902710e-3	1.3980340097e-3		-9.6097019240e-4
30_1	(30)	3.8642832072e-3	1.1394308990e-3	1.2625937853e-6	4.5201954492e-4
31_1,33_1 34_1	(58)	1.6612524428e-2	-2.9661153407e-4		-1.1730133444e-2
34_1 36 1	(30)	1.1671470168e-2 1.4742805723e-2	6.0064381700e-4 3.5139798210e-4	-2.9265249203e-6 -3.8078312299e-6	2.3737334951e-4
38 1	(29)	1.7756937413e-2		-2.0696816014e-6	
40 1	(31)	1.3605434044e-2	2.6150325230e-4	-2.2558010990e-6	
42 1	(32)	1.3966404403e-2	3.5366741890e-4		-1.1009394537e-2
44_1	(30)	1.3481142712e-2	6.4280517854e-4		-1.2103442471e-2
46_1	(32)	4.4694794291e-3	1.4883454168e-3	2.3644833952e-6	1.5721113166e-3
48_1	(32)	1.1130737563e-2	4.8450882920e-4	-1.6510862104e-6	1.4630265016e-3
50_1 51_1	(31) (32)	8.4763091288e-3 1.4944199059e-2	1.0883086434e-3 2.4506097776e-4	9.1712758329e-7 -2.8283437473e-6	-5.5864118041e-4 1.4945106511e-4
53 1	(32)	1.3910303466e-2	3.4172740013e-4	-1.3691189313e-6	-2.1255254705e-3
55 1	(32)	6.8014008640e-3	1.1531861650e-3	-2.0020125795e-6	1.1410714798e-2
56 ¹	(33)	1.2517626809e-2	8.1108907052e-4	3.7872190066e-7	-4.5176222009e-3
58_1	(33)	1.6319792743e-2	3.8367617062e-4		-6.9070472175e-3
X17_1	(33)	1.7087246890e-2	2.5018727097e-4		-7.8186395031e-3
62_1	(31)	1.8545518133e-2	8.4758872479e-5		-1.0094825871e-2
64_1	(30) (32)	2.1132916026e-2 1.1354464188e-2	-8.4524534367e-5 8.7840649983e-4	-1.8460928672e-7 -5.3989278862e-8	-1.2676220107e-2 1.5023212549e-3
66_1 67_1	(33)	1.5723980896e-2	5.5818159188e-4		-7.7589769151e-3
69_1	(34)	1.4101372227e-2	6.0844509702e-4	-1.1537381873e-6	1.0971585001e-3
71 1	(31)	1.7080867016e-2		-2.7093763518e-6	4.3505332228e-4
73_1	(33)	1.9235850708e-2	1.8928766136e-4	-7.9818206862e-7	
74_1	(34)	2.4033941887e-2	-5.3761784646e-4	-3.0412762966e-6	
76_1	(32)	1.9596836070e-2 2.5097320053e-2	1.6094611647e-4	-1.2564144578e-6	
77_1 79_1	(33)	2.509/320053e-2 1.8944841633e-2	-4.4172670651e-4 2.2474686044e-4	-4.2140610212e-6 -9.4559433507e-7	-7.5211666372e-3 -6.4465271345e-3
79_1 81_1	(33)	1.0772193579e-2	1.0211573501e-3	3.5729065791e-6	-6.4587950227e-3
83 1	(34)	9.2558005344e-3	1.3835520827e-3	-5.3320326791e-7	1.2209320453e-2
84_1	(35)	1.3741033402e-2	1.0442928833e-3		-5.0156732118e-4
86_1	(35)	3.4387864975e-2	-1.1317622023e-3		-1.5226899965e-2
88_1	(34)	1.7501150773e-2	9.6128641172e-4		-5.5100209139e-3
90_1	(35) (36)	2.4016156189e-2 2.2801594002e-2	1.1568638088e-4 1.4456793205e-4	-1.9997467064e-6 -7.9206640035e-7	-4.6192746234e-3
92_1 94_1	(34)	2.1276396902e-2	4.0236259781e-4		-5.0113968514e-3
96_1	(34)	1.7586577193e-2	9.5413105512e-4	5.3115223152e-7	1.9169914386e-4
98 1	(34)	2.3281206887e-2	3.6280206888e-4		-4.6148055082e-3
100_1	(35)	1.9607360482e-2	8.1086209461e-4		-4.0591264022e-3
X16_1	(34)	2.4020184788e-2	2.4077815879e-4	-1.6624202265e-6	6.1994742333e-4
104_1 106 1	(34)	1.9301698049e-2 3.7074454439e-2	9.9716273877e-4 -7.0415113930e-4	1.1292321372e-6	4.4486781074e-4 -1.7511769248e-2
108_1	(32)	3.1381730648e-2	-2.6022098343e-4		-4.4506707340e-3
110 1	(31)	3.8740835013e-2			-2.0947323198e-2
112 1	(31)	2.9851343344e-2	1.3176980732e-4		-1.7478888940e-2
114_1	(31)	2.5236481375e-2	4.2515474628e-4	-2.8443737934e-7	-3.3852598730e-3
110_1	(29)	2.8182488833e-2	4.1209091055e-4	-1.1734305445e-6	-6.1207321567e-3
118_1 120 1	(29)	3.0966553786e-2 3.6079776583e-2	-1.8365152495e-4	-4.6695530525e-6 -1.3587444647e-6	8.7521737225e-4 -1.5705749328e-2
120_1	(31)	2.4804654687e-2	-4.4129565615e-4 5.5864425693e-4	-1.3587444647e-6 -1.5070773420e-7	-1.8434122298e-3
124 1	(31)	3.0218657690e-2	-6.6105450515e-5	-3.8921825260e-6	1.5124071439e-3
126 1	(33)	1.9627772037e-2	1.0747655389e-3	-1.1455309895e-7	6.8614333372e-3
128_1	(33)	3.1751674249e-2	2.6634525634e-4	1.5207706274e-6	-1.8176807649e-2
130_1,132_1	(59)	2.5135138070e-2	4.6264106890e-4	-1.3233400851e-6	3.2419344331e-4
134_1	(33)	3.6848282221e-2	-6.9629658189e-4		-4.3672708315e-3
136_1 138 1	(29) (32)	2.0365730703e-2 2.5925077770e-2	1.2968294124e-3 4.0679558181e-4	1.1796185243e-6 -2.2823266346e-6	6.2962100557e-3 4.8879748734e-3
140_1	(32)	3.1645148674e-2	1.7573498412e-4	-5.4619663287e-7	
142 1	(33)			-5.1241960385e-6	
144_1	(33)	3.6412320564e-2		-3.9279452812e-6	
146_1	(33)	2.2070939078e-2	9.4495827134e-4	-1.4157172415e-6	1.1513223600e-2
T.ea 22.					
Leg 2a: 146_2	(25)	3.4314628587e-2	-9.3087500529e-4	-5.1774381094e-6	-1.5863348468e-3
148 1	(22)	3.2787911160e-2		-3.3737557039e-6	-2.9190789136e-3
148_1 150_1-153_1	(64)	2.5939275226e-2	5.8341281881e-4	2.4271007242e-6	4.8524650166e-4
154_1-157_1	(58)	2.8993026397e-2	4.1358222390e-4	4.6262134422e-7	-3.8917174759e-3

```
2 3671436937e-2 6 0668908919e-4 -1 6050283868e-8 7 8797883704e-3
                               1.7959585689e-2 1.4581104937e-3 4.7421483103e-6 3.7108799009e-3 3.3039432219e-2 2.7056495638e-4 2.3740557128e-6 -9.3147770455e-3
                               4.2098350448e-2 -5.0218598391e-4 -2.8123331458e-6 -4.8009569225e-3
                               3.7764962871e-2 -6.0439598978e-5 -8.9579324600e-8 -5.3543364649e-3
                               2.3366472536e-2 1.5811519737e-3 3.7498971961e-6 6.9415934824e-3 3.2743285288e-2 7.8562913198e-4 2.5525877190e-6 -5.7288474494e-3
                               3.6955509296e-2 1.3047463430e-4 5.4386804400e-7 -4.3942727261e-3
                     (33)
                               4.0412229604e-2 -2.3744782362e-4 -6.7955266657e-7 -5.4708015570e-3 4.6038615178e-2 -6.5919437663e-4 -3.6095984231e-6 -4.6795688138e-3
                               4.7738138295e-2 -6.4931578091e-4 -3.4784044639e-6 -6.8768481257e-3
 181_1
183_1
                    (33)
                               3.0680150470e-2 1.0156732020e-3 1.5894924638e-6 6.0376304730e-3 3.0927480026e-2 8.7281771302e-4 1.1434245322e-6 5.8615454707e-3
                               3.6961229943e-2 4.7267257934e-4 1.7753732215e-6 -2.0386870435e-3
 187
                    (33)
                               4.4041803780e-2 -3.0653791419e-4 -4.9529632456e-7 -4.8585260781e-3 4.1230624896e-2 -2.3475304483e-4 -9.0027846510e-7 5.7346596474e-4
 191_1
193_1
                               4.2873626830e-2 9.7286236144e-5 -8.4617114359e-7 -2.4650686939e-3 3.9442648834e-2 3.5370315306e-4 1.3825964189e-7 2.4706505339e-3
                     (36)
 195
                               4.0231962682e-2 4.0194034466e-4 3.0879060666e-8 1.5214770553e-3
 197
                    (35)
                               4.9305465420e-2 -4.1553546611e-4 -1.2071765611e-6 -5.2369019988e-3 4.8649246131e-2 -2.3252731062e-4 1.1713381440e-6 -1.2685843191e-2
 X14 1
 201 1
                               4.5284704927e-2 -8.2615636615e-5 -6.2012793313e-7 -7.1027511901e-4
 203_1
                    (35)
                               4.7552939186e-2 -4.8590730975e-5 1.7025056715e-6 -1.0853698496e-2 4.3741241447e-2 2.5572741624e-4 -5.4911817903e-7 2.0157911802e-3
                                   7273010477e-2 -8.4596838497e-4 -2.8849689879e-6 -7.8158037303e-3
 209_
                    (35)
                               5.3815950683e-2 -4.7418286785e-4 -5.3271208808e-7 -1.0658556788e-2 4.9668992028e-2 -3.3559334921e-4 -2.2789914830e-6 1.6589818767e-3
                               4.4632934294e-2 1.6278162093e-4 4.2187340843e-8 9.6870681172e-4
 215_
217
                    (36)
                               5.5441477813e-2 -5.5603708022e-4 -1.2903845758e-6 -9.1761021056e-3 4.4606439334e-2 7.9483025294e-4 2.0501362639e-6 -4.8188980107e-3
 WC0_
WC1
                               5.5269865276e-2 -4.7098937472e-4 -2.9910876150e-6 -1.5292206654e-3 7.5738327199e-2 -1.7994997437e-3 -3.0389895056e-6 -3.2843242964e-2
                     (35)
 WC2
                                5.2966630242e-2 -4.1723074942e-4 -3.5368895693e-6 1.9405918433e-3
 WC3_
                               7.4004798635e-2 -1.8761873194e-3 -4.1685886695e-6 -2.4790244089e-2 5.0829528972e-2 -2.6199986394e-4 -1.4437585540e-6 -2.0612940486e-3
 WC5
                                6.0278043794e-2 -8.2511933755e-4 -1.4142267198e-6 -1.4181791492e-2
 WC6_
WC7
                               6.1475221525e-2 -9.8736797630e-4 -3.5722125874e-6 -8.5024898299e-3 5.8888850329e-2 -8.1411320495e-4 -2.2600006743e-6 -9.1651772015e-3
                                5.2525433623e-2 -3.2445960541e-4 -1.3361085098e-6 -2.3393469061e-3
 WC9_1
WC10 1
                              4.7383116804e-3 1.1773826217e-3 4.1229638265e-6 -4.5298972869e-3 1.8037240627e-2 1.1209367205e-4 -1.7493706458e-6 -6.8355346588e-3
Leg 2b:
217_2
219_1
221_1
                               1.3859683202e-2 8.7865744863e-4 2.1575656745e-6 -1.2261575788e-2
                               1.3074798332e-2 8.0970975722e-4 1.5084212045e-6 -5.4274390121e-3
                               2.3184695947e-2 -5.9719556684e-5 9.6208770650e-8 -1.4418283950e-2
                     (36)
                               2.31846959476-2 -5.37195500046-5 9.0200770506-6 -1.44102053906-2 2.41065827426-2 -4.48050558336-5 -2.27182140438-6 -5.78298581286-3 2.12667191216-2 2.76584121806-4 -2.36757469156-6 -1.22497688976-4 3.12271815896-2 -6.06910445876-4 -2.67562259646-6 -1.12478627306-2
 225_
                     (36)
                               2.4632852068e-2 2.0144398223e-4 -2.8192616115e-7 -9.3271646280e-3
233_1
X13_1
                               2.5698457819e-2 4.4026259921e-5 -2.1031541932e-6 -4.2830342568e-3 2.3670576933e-2 3.2769060768e-4 6.9031178357e-7 -1.0698361026e-2
                     (36)
                                  .8880629571e-2 2.3204631835e-4 -3.2461564835e-6 1.1038409710e-2
239_1
241_1
                    (36)
                               1.8186891316e-2 6.0112097624e-4 -1.4100636286e-6 5.1951553512e-3 1.9306988158e-2 7.1495272321e-4 -6.1293787337e-7 2.1737786791e-3
                               245_1
247_1
                    (33)
                               2.4379344567e-2 1.7624386839e-4 -6.0417727965e-7 -4.7733548727e-3 3.5037057890e-2 -4.4864770263e-4 1.0101907361e-6 -2.4883695670e-2
 249
 251
                     (36)
 253
                     (36)
                               2.4737209429e-2 6.5386249491e-5 -3.6891334773e-6 3.8676579842e-3
 255_1
257_1
                               2.5204948867e-2 2.1148221671e-4 -1.6627604637e-6 -2.8852759960e-3 2.8147353031e-2 2.4518110139e-4 7.2327710002e-7 -1.4255861726e-2
                     (36)
                     (35)
                               2.5991896341e-2
                                                        2.6037276039e-4 -1.0456864393e-6 -5.5426444388e-3
 261_1
263_1
                    (32)
                               2.2628837230e-2
                                                        7.5988075820e-4 -4.1655542103e-7 -2.7188889288e-3 5.3416060580e-4 -3.7524950179e-6 1.2251561256e-2
                               1.9820650775e-2
                                 .7649119002e-2
                                                        9.6611670814e-5 -3.3745623692e-6 1.8094666686e-4
 267_
                    (36)
                               2.5889555278e-2 2.3810926839e-4 -1.4902513772e-6 -3.1345608292e-3 2.1537855427e-2 5.7684341816e-4 -5.3150780999e-7 1.2250063549e-3
 271_1
273_1
                               3.4828346976e-2 -5.6474346490e-4 -5.3330785639e-6 -3.1602764225e-3 2.6291484155e-2 5.7527391628e-4 8.1295727807e-7 -9.2704985927e-3
                    (33)
                               2.021494153e-2 5.727391628e-4 6.1295727807e-7 -7.2704985927e-3 3.5553664861e-2 -3.0585410534e-5 -2.8516682561e-7 -1.8883963792e-2 2.9512580596e-2 2.7084784103e-4 2.7468918385e-7 -1.3176498089e-2
 275_1
277_1
                               3.2869124611e-2.-1.5631215638e-4.-3.0053837187e-6.-5.8748364848e-3
                     (36)
                               2.8614311784e-2 3.2363073786e-4 -1.2661986058e-6 -6.1863453418e-3
                               2.8390077921e-2 2.0887458832e-4 -3.4246497985e-6 1.0895303144e-4 3.3715138680e-2 -2.5486483162e-5 -1.3087010034e-6 -1.1668278730e-2
 281 1
 283
                               4.4223880210e-2 -9.6428011720e-4 -2.6560586416e-6 -2.1032712908e-2
```

```
287_1
289_1
291_1
                        2.6985592235e-2 3.9370057732e-4 -2.1485456457e-6 -1.2372384187e-4
                        3.1648346109e-2
                                             1.0209081769e-4 -2.9449735995e-6 -5.1844643144e-3
                        2.1071386983e-2
                                             9.6682327066e-4
                                                                8.6254878867e-7
293_
295
                (36)
                        2.8015344500e-2
                                             4.3547755860e-4 -2.0634560709e-7 -8.0107976193e-3
                                             8.3899007041e-4
                                                                -3.9382326997e-6 1.3688594235e-
                        2.1827713280e-2
                (31)
     1-305 1
                        2.7773001546e-2
                                             5.3712710561e-4
                                                                 1.5328461785e-6 -6.4399478014e-3
                        2.8855216555e-2
2.8381615612e-2
306_1
314_1
316_1
318_1
X09_1
322_1
324_1
326_1
329_1
331_1
333_1
341_1
345_1
345_1
347_1
349_1
                (82)
                                             4.0256345493e-4 -1
                                                                   .5020063602e-6 -2.9411348970e-
                                                                -1.0137338402e-6 -4.7646204413e-3
                                             5.1649089138e-4
                                             1.1394910474e-3
                        3.2008771738e-2
                                            7.7384707595e-5
-3.6171414553e-4
                                                                -4.6814092805e-6 2.0662254975e-4
                        3.7365751198e-2
                (29)
                                                                -2.5538770211e-6 -1.1621187407e-2
                                            3.4390392314e-4 -4.5403354019e-7 -1.0745791088e-2
                        3.3294243001e-2
                                            4.4030381498e-5 -3.3439134505e-6 -5.4361571929e-3
                        3 5898295823e-2
                                            -1.4000676176e-4 -3.2516563294e-6 -9.0008117504e-
                        3.5788937582e-2 -2.3402600597e-5
                                                                -2.6823510232e-6 -9.3382310020e-
                         4.2977005787e-2 -7.4179814417e-4
                                                                   .9768295833e-6 -1.6326476855e-2
                        4 6514831613e-2
                                            -1.0118166177e-3
                                                                -2 1244413320e-6 -2 4699312293e-3
                        3.1668688954e-2
                                            3.1526164252e-4 -2.1655040828e-6 -5.4802508657e-3
                        2.8426491060e-2
                                             7.0598619161e-4
                                                                   .0388347171e-8 -3.9515056753e-3
                                                                -7.3588786235e-7 -6.3253881314e-
                        2.9990461926e-2
                                            5.1622503234e-4 -7.3588786235e-7 -6.3253881314e-3 4.8361719865e-4 -3.4659105792e-7 -7.8545493062e-3
                        3.0898134526e-2
                         4.0806999958e-2 -5.2565812016e-4
                                                                   .8795417378e-6 -8.8450313289e-
                        3.6806813506e-2 -4.5030400280e-4 -2.9333374736e-6 -1.0612626829e-2 3.2713863609e-2 6.1559624613e-4 -3.2628342407e-6 -3.8115855611e-3
                         4.3360572024e-2 -6.0097470278e-4
                                                                   .6958898061e-6 -1.5120605017e-
369_1
357_1
355_1
       -359 1
                        3.0037218808e-2 4.5359665354e-4 -1.2846640466e-6 -4.3799960663e-3 3.4594812288e-2 -4.3505352461e-4 -3.3943737245e-6 -5.7232208372e-3
                        3.4943624686e-2
                                            5.0034863107e-5 -1.2519124546e-6 -1.0984065650e-2
353 1,351 2
                        3.7404467500e-2 1.0345046957e-5 -1.3470606487e-6 -1.2981773806e-2
Leg 3:
370 1-TS1 1 (320) 3.8115006786e-2 4.4123814357e-4 2.1389358081e-7 -1.1949938654e-2
```

(6.5) Oxygen optode

The optode oxygen is calibrated by the Stern-Volmer equation, according to a method by Uchida et al. (submitted manuscript):

$$O_2 (\mu mol/l) = (\tau_0 / \tau - 1) / K_{sy}$$

where τ is decay time, τ_0 is decay time in the absence of oxygen and K_{sv} is Stern-Volmer constant. The τ_0 and the K_{sv} are assumed to be functions of temperature as follows.

$$\begin{split} K_{sv} &= C_{11} + C_{12} \times t + C_{13} \times t^2 \\ \tau_0 &= C_{21} + C_{22} \times t \\ \tau &= C_{31} + C_{32} \times P_b \end{split}$$

where t is CTD temperature (°C) and P_b is raw phase measurement (deg). The calibration coefficients (C_{11} , C_{12} , C_{13} , C_{21} , C_{22} , C_{31} and C_{32}) are determined for post-cruise calibration. The best fit sets of coefficients are determined by minimizing the sum of absolute deviation from the bottle oxygen data. The FORTRAN subroutine

DMINF1 of the Scientific Subroutine Library II (Fujitsu Ltd., Kanagawa, Japan) is used to determine the sets.

For compensation of the pressure response of the sensing foil, the oxygen concentration is multiplied by the following factor $1 + 0.032 \times P_r / 1000$, where P_r is pressure in dbar.

The calibration is performed for the up-cast phase data created by the software module ROSSUM after the post-cruise calibration for the CTD temperature and salinity.

The calibration coefficients are determined for Leg.1 and Leg.2 to 3. The results of the post-cruise calibration for the optode oxygen are summarized in Table 3.1.9 and shown in from Figure 3.1.26 and Figure 3.1.5.21. And the calibration coefficients and number of the data used for the calibration are listed in Table 3.1.10.

Table 3.1.9. Difference between the optode oxygen and the bottle oxygen after the post-cruise calibration. Mean and standard deviation (Sdev) are calculated for the data below and above 950 dbar. Number of data (Num) used is also shown.

Leg	Pressure ≥ 950 dbar			Pressure <	Pressure < 950 dbar		
	Num	Mean (μmol/kg)	Sdev (µmol/kg)	Num	Mean (μmol/kg)	Sdev (μmol/kg)	
Leg.1	1319	-0.11	0.38	1013	0.04	0.86	
Leg.2/3	2365	-0.01	0.35	2004	-0.01	0.90	

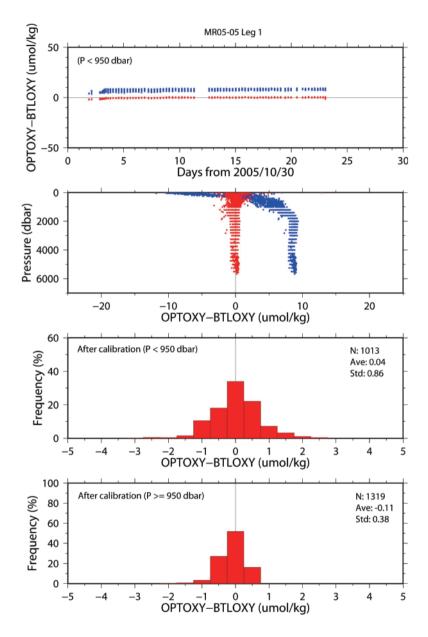


Figure 3.1.26. Difference between the optode oxygen and the bottle oxygen for Leg.1. Blue and red dots indicate before and after the post-cruise calibration using the bottle oxygen data, respectively. Top panel shows for $P \ge 950$ dbar. Lower two panels show histogram of the difference after the calibration.

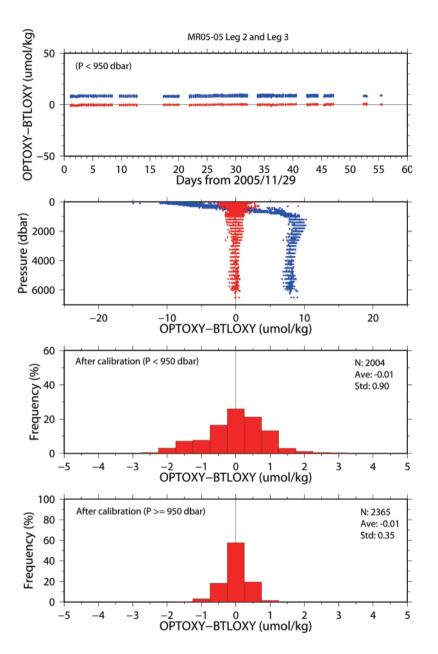


Figure 3.1.27. Same as Figure 3.1.26, but for Leg.2 and Leg.3.

Table 3.1.10. Calibration coefficients for the optode oxygen. Number of data used (Num) for the calibration and mean absolute deviation (ADEV) between the optode oxygen and the bottle oxygen are also shown.

Leg.1	Num	= 2332,	ADEV	= $0.41 \mu\text{mol/kg}$
	C_{11}	= 3.05627e-3		
	C_{12}	= 1.40559e-4		
	C_{13}	= 2.14264e-6		
	C_{21}	= 61.1209		
	C_{22}	= 9.86981e-2		
	C_{31}	=-8.48263		
	C_{32}	= 1.10631		
Leg.2/3	Num	= 4369,	ADEV	$=0.45\mu\mathrm{mol/kg}$
	C_{11}	= 2.85451e-3		
	C_{12}	= 1.30281e-4		
	C_{13}	= 2.00579e-6		
	C_{21}	= 61.6282		
	C_{22}	= 0.101157		
	C_{31}	=-7.42425		
	C_{32}	= 1.11110		

References

Uchida, H., K. Ohyama, S. Ozawa, and M. Fukasawa (2007): In-situ calibration of the Sea-Bird 9plus CTD thermometer, *J. Atmos. Oceanic Technol.* (in press)

Uchida, H., T. Kawano, I. Kaneko, and M. Fukasawa: In-situ calibration of optode-based oxygen sensors, submitted to *J. Atmos. Oceanic Technol. (accepted)*

3.2 Bottle Salinity

September 7, 2007

(1) Personnel

Takeshi Kawano (JAMSTEC)

Fujio Kobayashi (MWJ)

Naoko Takahashi (MWJ)

Tatsuya Tanaka (MWJ)

(2) Objectives

Bottle salinities were measured to compare with CTD salinities for identifying leaking bottles and for calibrating CTD salinities.

(3) Instrument and Method

(3.1) Salinity Sample Collection

The bottles in which the salinity samples are collected and stored are 250 ml Phoenix brown glass bottles with screw caps. Each bottle was rinsed three times with sample water and was filled to the shoulder of the bottle. The caps were also thoroughly rinsed. Salinity samples were stored more than 12 hours in the same laboratory as where the salinity measurement was made.

(3.2) Instruments and Method

The salinity analysis was carried out on Guildline Autosal salinometer model 8400B (S/N 62556), which was modified by attaching an Ocean Science International peristaltic-type sample intake pump and two Guildline platinum thermometers model 9450. One thermometer monitored an ambient temperature and the other monitored a bath temperature. The resolution of the thermometers was 0.001 degrees C. The measurement

system was almost same as Aoyama et al (2003). The salinometer was operated in an air-conditioned laboratory of the ship at a bath temperature of 24 degrees C.

An ambient temperature varied from approximately 19 degrees C to 24 degrees C, while a bath temperature was very stable and varied within +/- 0.002 degrees C on rare occasion. A measure of a double conductivity ratio of a sample is taken as a median of thirty-one reading. Data collection was started after 5 seconds and it took about 10 seconds to collect 31 readings by a personal computer. Data were sampled for the sixth and seventh filling of the cell for Leg.1 and the eighth and ninth filling for Leg.2 and Leg.3. In the case where the difference between the double conductivity ratio of this two fillings is smaller than 0.00002, the average value of the two double conductivity ratios is used to calculate the bottle salinity with the algorithm for practical salinity scale, 1978 (UNESCO, 1981). If the difference is greater than or equal to 0.00003, we measure another additional filling of the cell. In the case where the double conductivity ratio of the additional filling does not satisfy the criteria above, we measure two other fillings of the cell and the median of the double conductivity ratios of five fillings are used to calculate the bottle salinity.

The measurement was conducted for about 10 to 18 hours per day (typically from 3:00 to 17:00) and the cell was cleaned with ethanol or soap or both after the measurement of the day. We measured more than 8,000 samples in total.

(4) Preliminary Result

(4.1) Stand Seawater

Leg.1

Standardization control was set to 501 and all measurements were done by this setting. STNBY was 5517 ±0001 and ZERO was 0.00001 ±0.00001. We used IAPSO Standard Seawater batch P145 whose conductivity ratio was 0.99981 (double conductivity ratio is 1.99962) as the standard for salinity. We measured 117 bottles of P145 during routine measurement. There were 5 bad bottles which conductivities are extremely high. Data of these 5 bottles are not taken into consideration hereafter.

Figure 3.2.1 shows the history of double conductivity ratio of the Standard Seawater batch P145.

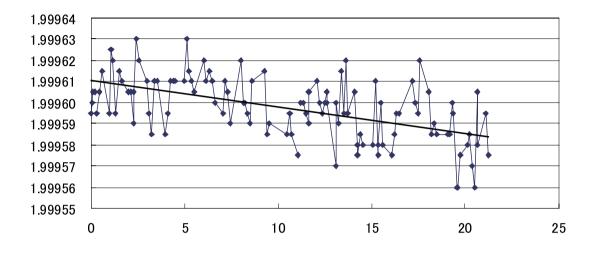


Figure 3.2.1. History of Double conductivity ratio of P145 during Leg.1. X and Y axes represent time (Julian day) and double conductivity ratio, respectively.

Drifts were calculated by fitting data from P145 to the equation obtained by the least square method (solid lines). Correction for the double conductivity ratio of the sample was made to compensate for the drift (Figure 3.2.2). After correction, the average of double conductivity ratio became 1.99961 and the standard deviation was 0.00012, which is equivalent to 0.0002 in salinity. We added 0.00001 to the corrected measured double conductivity ratio.

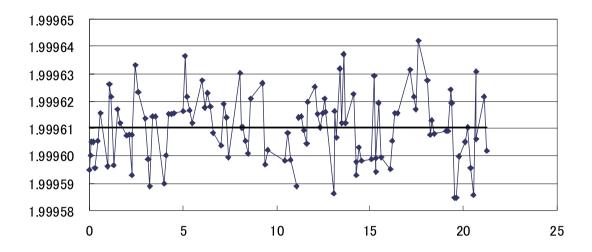


Figure 3.2.2. History of Double conductivity ratio of P145 during Leg.1. X and Y axes represent time (Julian day) and double conductivity ratio, respectively. (after correction)

Leg.2

Standardization control was set to 474 before WIPE (Wake Islands passage Flux Experiment). STNBY was 5498 ± 0001 and ZERO was 0.00001 ± 0.00001 . We removed the conductivity cell and washed it thoroughly with soap. Then, standardization control was changed to 479. STNBY became 5501 ± 0001 and ZERO was 0.00001 ± 0.00001 .

We used IAPSO Standard Seawater batch P145 whose conductivity ratio was 0.99981 (double conductivity ratio is 1.99962) as the standard for salinity. We measured 54 bottles of P145 during routine measurement before WIPE and 109 bottles after WIPE. There were 2 bad bottles whose conductivities were extremely high. Data of these 2 bottles are not taken into consideration hereafter.

Figure 3.2.3 shows the history of double conductivity ratio of the Standard Seawater batch P145. Drifts were calculated by fitting data from P145 to the equation obtained by the least square method (solid lines). Correction for the double conductivity ratio of the sample was made to compensate for the drift (Figure 3.2.4). After

correction, the average of double conductivity ratio became 1.99962 and the standard deviation was 0.00012 before WIPE and 0.00011 after WIPE, those are equivalent to 0.0002 in salinity. We added 0.000021 before WIPE and 0.000012 after WIPE to the corrected measured double conductivity ratio.

Leg.3

Standardization control was set to 484 and all the measurements were done by this setting. STNBY was 5505 ± 0001 and ZERO was 0.00001 ± 0.00001 . We used IAPSO Standard Seawater batch P145 whose conductivity ratio was 0.99981 (double conductivity ratio is 1.99962) as the standard for salinity. We measured 25 bottles of P145 during routine measurement.

Figure 3.2.5 shows the history of double conductivity ratio of the Standard Seawater batch P145. Drifts were calculated by fitting data from P145 to the equation obtained by the least square method (solid lines). Correction for the double conductivity ratio of the sample was made to compensate for the drift (Figure 3.2.6). After correction, the average of double conductivity ratio became 1.99962 and the standard deviation was 0.00014, which is equivalent to 0.0003 in salinity. We added 0.000004 to the corrected measured double conductivity ratio.

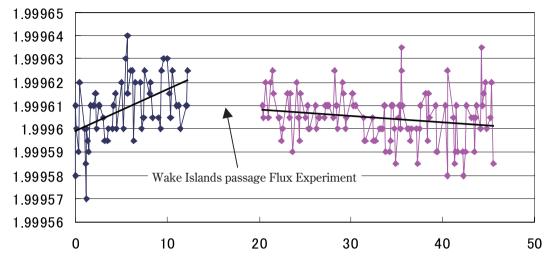


Figure 3.2.3. History of Double conductivity ratio of P145 during Leg.2. X and Y axes represent time (Julian day) and double conductivity ratio, respectively.

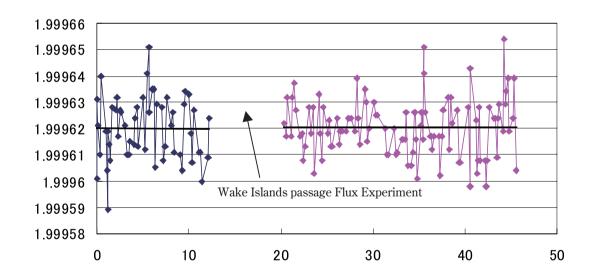


Figure 3.2.4. History of Double conductivity ratio of P145 during Leg.2. X and Y axes represent time (Julian day) and double conductivity ratio, respectively. (after correction)

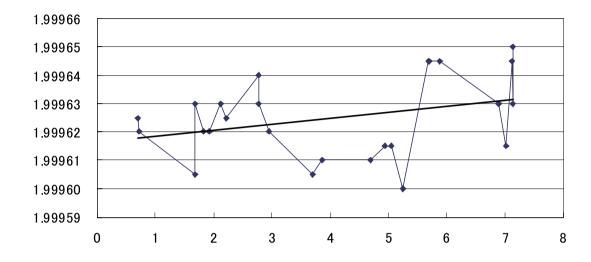


Figure 3.2.5. History of Double conductivity ratio of P145 during Leg.3. X and Y axes represent time (Julian day) and double conductivity ratio, respectively.

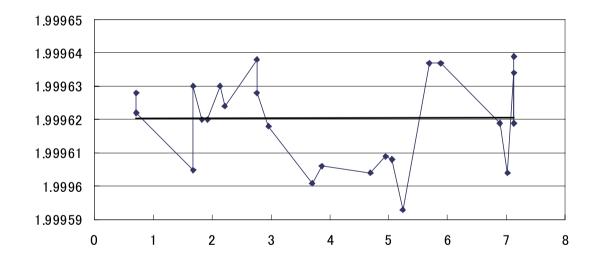


Figure 3.2.6. History of Double conductivity ratio of P145 during Leg.3. X and Y axes represent time (Julian day) and double conductivity ratio, respectively. (after correction)

(4.2) Sub-Standard Seawater

We also used sub-standard seawater which was a deep-sea water filtered by pore size of 0.45 micrometer and was stored in a 20 liter cubitainer made of polyethylene and stirred for at least 24 hours before measuring. It was measured every six samples in order to check possible sudden drift of the salinometer. During the whole measurements, there was no detectable sudden drift of the salinometer.

(4.3) Replicate and Duplicate Samples

Leg.1

We took 435 pairs of replicate and 27 pairs of duplicate samples. Figure 3.2.7 (a) and (b) shows the histogram of the absolute difference between each pair the replicate samples and that of the duplicate samples, respectively. There were 2 bad measurements in the replicate samples. Particularly, one of the pair was extremely high (more than 0.01in salinity). Excluding these bad measurements, the standard deviation of the absolute difference in 433 pairs of the replicate samples was 0.00017 in salinity and that in 27 pairs of the duplicate samples was 0.00032 in salinity.

Leg.2

We took 668 pairs of replicate and 20 pairs of duplicate samples. Figure 3.2.8 (a) and (b) shows the histogram of the absolute difference between each pair of the replicate samples and that of the duplicate samples, respectively. There were 3 questionable measurements in the replicate samples. Excluding these questionable measurements, the standard deviation of the absolute difference in 665 pairs of the replicate samples was 0.00017 in salinity and that in 20 pairs of the duplicate samples was 0.00025 in salinity.

Leg.3

We took 48 pairs of replicate and 3 pairs of duplicate samples. Figure 3.2.9 shows the histogram of the absolute difference between each pair of the replicate samples. There was one bad (miss-trip) sample for

duplicates. The standard deviation of the absolute difference of 48 pairs of the replicate samples was 0.00011 in salinity. The absolute differences in salinity between 2 duplicate samples were 0.0002 and 0.0007.

The results of replicate samples were averaged and flagged as 6 in the seafile.

Reference

Aoyama, M., T. Joyce, T. Kawano and Y. Takatsuki : Standard seawater comparison up to P129. *Deep-Sea Research, I*, Vol. 49, 1103~1114, 2002

UNESCO: Tenth report of the Joint Panel on Oceanographic Tables and Standards. *UNESCO Tech. Papers in Mar. Sci.*, **36**, 25 pp., 198

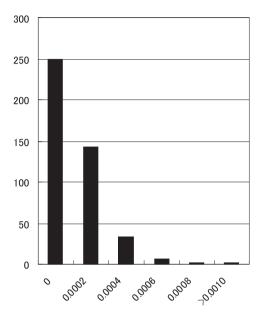


Figure 3.2.7 (a). The histogram of the absolute difference between replicate samples in Leg.1.

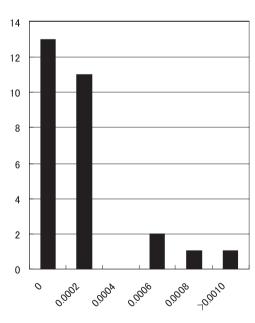


Figure 3.2.7 (b). The histogram of the absolute samples between duplicate samples in Leg.1.

71

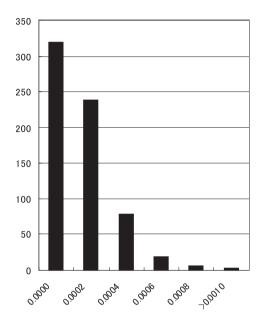


Figure 3.2.8 (a). The histogram of the absolute difference between replicate samples in Leg.2

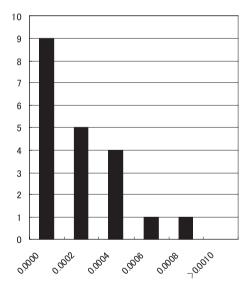


Figure 3.2.8 (b). The histogram of the absolute samples between duplicate samples in Leg.2.

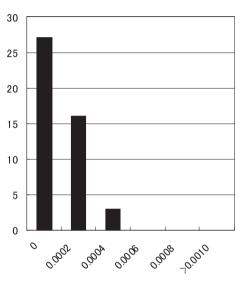


Figure 3.2.9. The histogram of the absolute difference between replicate samples in Leg.3.

3.3 Bottle Oxygen

May 1, 2007

(1) Personnel

Yuichiro Kumamoto (JAMSTEC)

Ikuo Kaneko (JAMSTEC)

Takayoshi Seike (MWJ)

Keisuke Wataki (MWJ)

Kimiko Nishijima (MWJ)

Takuhei Shiozaki (MWJ)

(2) Objectives

Dissolved oxygen is one of significant tracers for ocean circulation study. Recent studies on the subarctic North Pacific indicated that dissolved oxygen concentration in intermediate layers decreased in basin wide scale during the past decades. The causes of the decrease, however, are still unclear. During MR05-05 Leg.1 (from 31-Oct-05 to 24-Nov-05), Leg.2 (from 27-Nov-05 to 17-Jan-06), and Leg.3 (from 20-Jan-06 to 30-Jan-06), we measured dissolved oxygen concentration from surface to bottom layers at all the hydrocast stations along around 24°N. These stations were the reoccupation of the WHP-P03 stations in 1985. Our purpose is to evaluate change of dissolved oxygen in the subtropical North Pacific between 1985 and 2005/2006.

(3) Reagents

Pickling Reagent I: Manganous chloride solution (3 M)

Pickling Reagent II: Sodium hydroxide (8 M) / sodium iodide solution (4 M)

Sulfuric acid solution (5 M)

Sodium thiosulfate (0.025 M)

Potassium iodate (0.001667 M)

CSK standard of potassium iodate: Lot ASE8281, Wako Pure Chemical Industries Ltd., 0.0100 N

(4) Instruments

Burette for sodium thiosulfate;

APB-510 manufactured by Kyoto Electronic Co. Ltd. / 10 cm³ of titration vessel

Burette for potassium iodate;

APB-410 manufactured by Kyoto Electronic Co. Ltd. / 20 cm³ of titration vessel

Detector; Automatic photometric titrator manufactured, Kimoto Electronic Co. Ltd.

(5) Seawater sampling

Following procedure is based on a determination method in the WHP Operations Manual (Dickson, 1996). Seawater samples were collected from Niskin sampler bottles attached to the CTD-system. Seawater for bottle oxygen measurement was transferred from the Niskin sampler bottle to a volume calibrated glass flask (ca. 100 cm³). Three times volume of the flask of seawater was overflowed. Sample temperature was measured by a thermometer during the overflowing. Then two reagent solutions (Reagent I, II) of 0.5 cm³ each were added immediately into the sample flask and the stopper was inserted carefully into the flask. The sample flask was then shaken vigorously to mix the contents and to disperse the precipitate finely throughout. After the precipitate has settled at least halfway down the flask, the flask was shaken again vigorously to disperse the precipitate. The sample flasks containing pickled samples were stored in a laboratory until they were titrated.

(6) Sample measurement

At least two hours after the re-shaking, the pickled samples were measured on board. A magnetic stirrer bar and 1 cm³ sulfuric acid solution were added into the sample flask and stirring began. Samples were titrated by sodium thiosulfate solution whose molarity was determined by potassium iodate solution (section 3.3.7).

Temperature of sodium thiosulfate during titration was recorded by a thermometer. We measured dissolved oxygen concentration using two sets of the titration apparatus, named DOT-1 and DOT-3. Dissolved oxygen concentration (μ mol kg⁻¹) was calculated by the sample temperature during the sampling, CTD salinity, flask volume, and titrated volume of the sodium thiosulfate solution.

(7) Standardization

Concentration of sodium thiosulfate titrant (ca. 0.025 M) was determined by potassium iodate solution. Pure potassium iodate was dried in an oven at 130°C . 1.7835 g potassium iodate accurately weighed out was dissolved in deionized water and diluted to final volume of 5 dm^3 in a calibrated volumetric flask (0.001667 M). 10 cm^3 of the standard potassium iodate solution was added to a flask using a volume-calibrated dispenser. Then, 90 cm^3 of deionized water, 1 cm^3 of sulfuric acid solution, and 0.5 cm^3 of pickling reagent solution II and I were added into the flask in order. Amount of titrated volume of sodium thiosulfate (usually 5 times measurements average) gave the molarity of the sodium thiosulfate titrant. Table 3.3.1 shows the result of the standardization during this cruise. Error (C.V.) of the standardization was $0.02 \pm 0.01\%$, c.a. $0.05 \,\mu\text{mol}\,\text{kg}^{-1}$.

(8) Determination of the blank

The oxygen in the pickling reagents I (0.5 cm³) and II (0.5 cm³) was assumed to be 3.8 x 10⁻⁸ mol (Murray *et al.*, 1968). The blank from the presence of redox species apart from oxygen in the reagents (the pickling reagents I, II, and the sulfuric acid solution) was determined as follows. 1 cm³ and 2 cm³ of the standard potassium iodate solution were added to two flasks, respectively. Then 100 cm³ of deionized water, 1 cm³ of sulfuric acid solution, and 0.5 cm³ of pickling reagent solution II and I each were added into the two flasks in order. The blank was determined by difference between the two times of the first (1 cm³ of KIO₃) titrated volume of the sodium thiosulfate and the second (2 cm³ of KIO₃) one. The results of 3 times blank determinations were averaged (Table 3.3.1). The averaged blank of DOT-1 and DOT-3 during the whole legs were -0.009 and -0.005 cm³, respectively.

Table 3.3.1. Results of the standardization and the blank determinations during MR05-05.

Date		KIO_3	DOT-	1 (cm ³)		DOT-3 (cm ³)			Samples
(UTC)	#	bottle	$Na_2S_2O_3$	E.P.	blank	$Na_2S_2O_3$	E.P.	blank	(Stations)
2005/10/30		20050829-25	20051028-3	3.960	-0.010	20051028-4	3.961	-0.005	1-16
2005/11/02		20050829-26	20051028-3	3.961	-0.010	20051028-4	3.959	-0.004	18-26
2005/11/03		20050829-27	20051031-1	3.960	-0.011	20051031-2	3.961	-0.005	28-34
2005/11/04	1	20050829-28	20051031-1	3.960	-0.009	20051031-2	3.959	0.000	36-44
2005/11/06		20050829-29	20051031-3	3.960	-0.011	20051031-4	3.960	-0.008	46-53
2005/11/07		20050829-30	20051031-3	3.958	-0.008	20051031-4	3.958	-0.004	55-58,X17,62
2005/11/09		20050829-31	20051105-1	3.960	-0.012	20051105-2	3.960	-0.006	64-73
2005/11/11		20050829-37	20051105-3	3.960	-0.011	20051105-4	3.963	-0.004	74-81
2005/11/12		20050829-38	20051105-3	3.960	-0.010	20051105-4	3.960	-0.008	83-90
2005/11/14		20050829-39	20051112-1	3.962	-0.009	20051112-2	3.964	-0.005	92-100
2005/11/15	2	20050829-40	20051112-1	3.960	-0.010	20051112-2	3.963	-0.004	X16,104-110
2005/11/17	Δ	20050829-41	20051112-3	3.963	-0.010	20051112-4	3.963	-0.006	112-120
2005/11/18		20050829-42	20051112-3	3.963	-0.009	20051112-4	3.964	-0.004	122-130
2005/11/20		20050829-43	20051116-1	3.957	-0.010	20051116-2	3.958	-0.007	132-140
2005/11/21		20050829-44	20051116-1	3.957	-0.009	20051116-2	3.959	-0.005	142-146
2005/11/30		20050830-49	20051128-1	3.960	-0.011	20051128-2	3.961	-0.005	146(2)-153
2005/12/01		20050829-50	20051128-1	3.959	-0.010	20051128-2	3.958	-0.005	154-163
2005/12/02		20050829-51	20051128-3	3.961	-0.009	20051128-4	3.961	-0.006	165-173
2005/12/03	3	20050829-52	20051128-3	3.959	-0.010	20051128-4	3.959	-0.005	175-183
2005/12/05	3	20050829-53	20051203-1	3.960	-0.010	20051203-2	3.960	-0.008	185-193
2005/12/07		20050829-54	20051203-1	3.960	-0.009	20051203-2	3.960	-0.006	195,197,X14, 201,203
2005/12/09		20050829-55	20051203-3	3.959	-0.010	20051203-4	3.960	-0.005	205-213
2005/12/11		20050829-56	20051203-3	3.961	-0.010	20051203-4	3.960	-0.004	215,217

[#] Batch number of the KIO₃ standard solution.

Table 3.3.1. (continued)

Date		KIO_3	DOT-1 (cm ³)		DOT-3 (cm ³)			Samples	
(UTC)	#	bottle	$Na_2S_2O_3$	E.P.	blank	$Na_2S_2O_3$	E.P.	blank	(Stations)
2005/12/16		20050829-61	20051211-1	3.963	-0.009	20051211-2	3.966	-0.005	WC0-WC4
2005/12/17		20050829-62	20051211-1	3.962	-0.008	20051211-2	3.960	-0.007	WC5-WC10
2005/12/20		20050829-63	20051211-3	3.961	-0.010	20051211-4	3.962	-0.003	217(2)-225
2005/12/22	4	20050829-64	20051211-3	3.964	-0.010	20051211-4	3.964	-0.006	227-233,X13
2005/12/24	4	20050829-65	20051223-1	3.964	-0.008	20051223-2	3.963	-0.005	237-245
2005/12/25		20050829-66	20051223-1	3.964	-0.009	20051223-2	3.963	-0.004	247-253
2005/12/27		20050829-67	20051223-3	3.965	-0.011	20051223-4	3.965	-0.005	255-263
2005/12/28		20050829-68	20051223-3	3.963	-0.007	20051223-4	3.964	-0.003	265-273
2005/12/30		20050829-73	20051229-1	3.964	-0.010	20051229-2	3.964	-0.006	X10,275-279
2006/01/01		20050829-74	20051229-1	3.964	-0.007	20051229-2	3.965	-0.005	281-289
2006/01/03		20050829-75	20051229-3	3.965	-0.010	20051229-4	3.963	-0.007	291-299
2006/01/04	5	20050829-76	20051229-3	3.966	-0.010	20051229-4	3.966	-0.006	301-312
2006/01/05	J	20050829-77	20060105-1	3.961	-0.007	20060105-2	3.961	-0.004	314-318,X09,322
2006/01/07		20050829-78	20060105-1	3.961	-0.009	20060105-2	3.961	-0.002	324-333
2006/01/10		20050829-79	20060105-3	3.959	-0.008	20060105-4	3.960	-0.005	335-343
2006/01/11		20050829-80	20060105-3	3.962	-0.009	20060105-4	3.962	-0.005	345-351
2006/01/12	6	20050829-85	20060112-1	3.965	-0.011	20060112-2	3.966	-0.005	369-355
2006/01/14	U	20050829-86	20060112-1	3.963	-0.009	20060112-2	3.966	-0.004	353,351(2)
2006/01/20		20050829-88	20060112-3	3.968	-0.009	20060112-4	3.970	-0.004	370-389
2006/01/23	6	20050829-89	20060112-3	3.967	-0.006	20060112-4	3.967	-0.006	390-408
2006/01/25		20050829-90	20060120-1	3.964	-0.008	20060120-2	3.969	-0.001	TS7- TS1

[#] Batch number of the KIO₃ standard solution.

(9) Reagent blank

The blank determined in section 3.3.8, pure water blank $(V_{blk,dw})$ can be represented by equation 1,

$$V_{blk, dw} = V_{blk, ep} + V_{blk, reg}$$
 (1)

where

 $V_{\text{blk, ep}}$ = blank due to differences between the measured end-point and the equivalence point;

 $V_{\mbox{\scriptsize blk, reg}} = \mbox{\scriptsize blank}$ due to oxidants or reductants in the reagent.

Here, the reagent blank ($V_{blk, reg}$) was determined by following procedure. 1 cm³ of the standard potassium iodate solution and 100 cm³ of deionized water were added to two flasks each. 1 cm³ of sulfuric acid solution, and 0.5 cm³ of pickling reagent solution II and I each were added into the first flask in order. Then, two times volume of the reagents (2 cm³ of sulfuric acid solution, and 1.0 cm³ of pickling reagent solution II and I each) was added to the second flask. The reagent blank was determined by difference between the first (2 cm³ of the total reagent volume added) titrated volume of the sodium thiosulfate and the second (4 cm³ of the total reagent volume added) one. We also carried out experiments for three and four times volume of the reagents. The results are shown in Figure 3.3.1

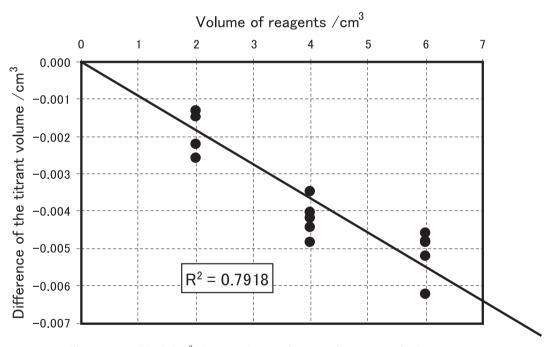


Figure 3.3.1. Blank (cm³) due to redox species apart from oxygen in the reagents.

The relation between difference of the titrant (Na₂S₂O₃) volume and the volume of the reagents added

 $(V_{reagent})$ is expressed by equation 2,

Difference of the titrant volume =
$$-0.0009 V_{reagent}$$
 (2)

There was no significant difference between the results of DOT-1 and DOT-3. $V_{blk, reg}$ was estimated to be about -0.002 cm³, suggesting that about 0.01 μ mol of reductants was contained in every 2 cm³ of the reagents added. In other words, the difference of the pure water blank ($V_{blk, dw}$) between DOT-1 and DOT-3, determined in the section 3.3.8, was due to the difference of the end-point blank ($V_{blk, ep}$) between the two titration apparatus (-0.007 and -0.003 cm³ for DOT-1 and DOT-3, respectively).

(10) Sample blank

Blank due to redox species other than oxygen in the sample $(V_{blk, spl})$ can be a potential source of measurement error. The total blank during the seawater measurement, the seawater blank $(V_{blk, sw})$ can be represented by equation 3,

$$V_{blk, sw} = V_{blk, spl} + V_{blk, dw}$$
 (3)

If the pure water blank $(V_{\text{blk, dw}})$ that is determined in section 3.3.8 is identical both in pure water and in seawater, the difference between the seawater blank and the pure water one gives the sample blank $(V_{\text{blk, spl}})$.

Here, $V_{blk, spl}$ was determined by following procedure. Seawater sample was collected in the volume calibrated glass flask (ca. 100 cm³) without the pickling. Then 1 cm³ of the standard potassium iodate solution, 1 cm³ of sulfuric acid solution, and 0.5 cm³ of pickling reagent solution II and I each were added into the flask in order. Additionally a flask contained 1 cm³ of the standard potassium iodate solution, 100 cm³ of deionized water, 1 cm³ of sulfuric acid solution, and 0.5 cm³ of pickling reagent solution II and I was prepared. The difference of the titrant volumes of the seawater flask and the deionized water one gave the sample blank ($V_{blk, spl}$).

We measured vertical profiles of the sample blank at four stations (Table 3.3.2) using DOT-1 system. The sample blank ranged from 0.4 to 0.8 µmol kg⁻¹ and its vertical and horizontal variations are small. Our results agree to reported values ranged from 0.4 to 0.8 µmol kg⁻¹ (Culberson *et al.*, 1991) and our previous results obtained in the western North Pacific, reoccupation of WHP-P10 in 2005. Ignorant of the sample blank will cause systematic errors in the oxygen calculations, but these errors are expected to be the same to all investigators and not to affect the comparison of results from different investigators (Culberson, 1994).

Table 3.3.2. Results of the sample blank determinations during MR05-05.

Station: P03-006 32.5°N / 118.0°W		Station: P03-031 29.1°N / 123.9°W			P03-136 164.3°W	Station: P03-215 24.2°N / 172.8°E	
CTD Pres.	Sample blank	CTD Pres.	Sample blank	CTD Pres.	Sample blank	CTD Pres.	Sample blank
dbar	μmol kg ⁻¹	dbar	μmol kg ⁻¹	dbar	μmol kg ⁻¹	dbar	μmol kg ⁻¹
9	0.48	10	0.45	9	0.38	10	0.39
149	0.71	51	0.50	48	0.38	50	0.40
249	0.68	101	0.56	100	0.51	100	0.48
400	0.63	152	0.56	150	0.57	150	0.53
600	0.74	501	0.63	200	0.64	200	0.63
800	0.70	1001	0.70	600	0.59	502	0.76
1003	0.76	2003	0.66	1201	0.52	1003	0.66
1403	0.69	3001	0.68	2201	0.60	2000	0.69
1801	0.70	4249	0.73	3251	0.60	3500	0.71
1867	0.78	4459	0.72	3751	0.62	5002	0.72

(11) Replicate sample measurement

Replicate samples were taken from every CTD cast. Total amount of the replicate sample pairs in good measurement (flag=2) was 837. The standard deviation of the replicate measurement was 0.08 µmol kg⁻¹ and there was no significant difference between DOT-1 and DOT-3 measurements. The standard deviation was calculated by a procedure (SOP23) in DOE (1994). The difference between the replicate sample pairs did not depend on sampling pressure (Figure 3.3.2) and measurement date (Figure 3.3.3). The standard deviations during

Leg.1, Leg.2, and Leg.3 were 0.083 (n=299) and 0.083 (n=493), and 0.085 μ mol kg⁻¹ (n=45), respectively. In the hydrographic data sheet, a mean of replicate sample pairs is shown with the flag 2.

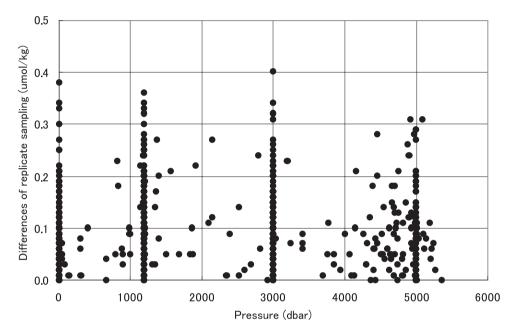


Figure 3.3.2. Differences in the replicate measurements against sampling pressure.

(12) Duplicate sample measurement

We also collected seawater samples from two Niskin samplers that were collected at same depth (duplicate sampling). Total 50 pairs of the duplicate samples were taken in deep layers below 800 dbar during all the legs. The standard deviation of the total duplicate measurement was 0.10 µmol kg⁻¹. We concluded that total measurement error of bottle oxygen was less than 0.10 µmol kg⁻¹ during MR05-05 cruise.

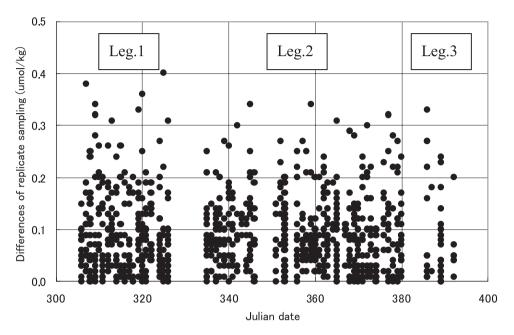


Figure 3.3.3. Differences in the replicate measurements against measurement date (Julian date).

(13) CSK standard measurements

The CSK standard solution is commercial potassium iodate solution (0.0100 N) for analysis of oxygen in seawater. During the cruises, we measured concentration of the CSK standard solution (Lot ASE8281) against our KIO₃ standard in order to confirm the accuracy of our oxygen measurement on board (Table 3.3.3). Error weighted means of DOT-1 and DOT-3 results were 0.009999±0.000005 and 0.010002±0.000006 normal (N) respectively, which indicates that there was no systematic difference between DOT-1 and DOT-3 measurements. The averaged value of the CSK standard solution was so close to the certified value (0.0100 N) that we did not correct sample measurements results using the CSK standard results. Additionally, we also measured the same lot (ASE8281) of the CSK standard solution during our previous cruise in 2005 (MR05-02). Results of the CSK measurements in the both cruises agreed well within the errors (less than 0.1%), suggesting that there was no systematic difference in the oxygen measurements between MR05-02 and MR05-05.

Table 3.3.3. Results of the CSK standard measurements.

Data (LITC)	VIO hotah#	DO	T-1	DOT-3		
Date (UTC)	KIO ₃ batch#	Conc. (N)	error (N)	Conc. (N)	error (N)	
2005/11/07	ASE8281-1	0.010005	0.000005	0.010006	0.000003	
2005/11/18	ASE8281-2	0.009998	0.000003	0.009993	0.000017	
2005/12/07	ASE8281-3	0.010004	0.000007	0.010001	0.000007	
2005/12/25	ASE8281-4	0.010001	0.000004	0.010005	0.000007	
2006/01/11	ASE8281-5	0.009997	0.000006	0.009998	0.000011	
2006/01/14	ASE8281-6	0.009998	0.000008	0.009997	0.000009	
2006/01/26	ASE8281-7	0.009989	0.000006	0.009990	0.000005	
Weighte	ed mean	0.009999	0.000005	0.010002	0.000006	
Date (UTC)	KIO batch#	DO	T-1	DOT-2		
Date (UTC)	KIO ₃ batch#	Conc. (N)	error (N)	Conc. (N)	error (N)	
2005/6/21	ASE8281-0	0.010005	0.000010	0.010002	0.000006	

(14) Quality control flag assignment

Quality flag values were assigned to oxygen measurements using the code defined in Table 0.2 of WHP Office Report WHPO 91-1 Rev.2 section 4.5.2 (Joyce *et al.*, 1994). Measurement flags of 2 (good), 3 (questionable), 4 (bad), and 5 (missing) have been assigned (Table 3.3.4). The replicate data (section 3.3-11) were averaged and flagged 2 if both of them were flagged 2. If either of them was flagged 3 or 4, a datum with "younger" flag was selected. Thus, we did not use flag of 6 (replicate measurements). For the choice between 2, 3, or 4, we basically followed a flagging procedure as listed below:

- a. Bottle oxygen concentration and difference between bottle oxygen and CTD oxygen at the sampling were plotted against CTD pressure. Any points not lying on a generally smooth trend were noted.
- b. Dissolved oxygen was then plotted against potential temperature or sigma-theta. If a datum deviated from a group of plots, it was flagged 3.
- c. Vertical sections against pressure and potential density were drawn. If a datum was anomalous on the section plots, datum flag was degraded from 2 to 3, or from 3 to 4.
- d. If the bottle flag was 4 (did not trip correctly), a datum was flagged 4 (bad). In the case of the bottle flag

3 (leaking) or 5 (unknown problem), a datum was flagged based on steps a, b, and c.

Table 3.3.4. Summary of assigned quality control flags.

Flag	Definition	
2	Good	6,698
3	Questionable	5
4	Bad (Faulty)	10
5	Not reported (missing)	4
	Total	6,717

(15) Results

(15.1) Comparison at cross-stations during MR05-05

At stations of P03-146, 217, and 351, hydrocast sampling for dissolved oxygen was conducted two times at interval of about a week. Dissolved oxygen profiles of the two hydrocasts at the three cross-stations agreed well (Figure 3.3.4). In the layers deeper than 4,000 dbar, difference of dissolved oxygen between the two hydrocasts was calculated to be $0.20 \, \mu \text{mol kg}^{-1}$ (standard deviation, n=24).

(15.2) Comparison at cross-stations of MR05-05 and MR05-02

During June of 2006, we also conducted another repeat cruise of WHP-P10, named MR05-02 cruise, along about 149°E in the western North Pacific. At the cross point of MR05-05 and MR05-02, we carried out two cross-stations at 24.5°N/149.4°E (MR05-02_P10-067 and MR05-05_P03-X10) and 24.2°N/149.0°E (MR05-02_P10-X03 and MR05-05_P03-275). Repeat measurements of dissolved oxygen at interval of about six months showed that dissolved oxygen decreased by 20 μmol kg⁻¹ in deep layers ranged from about 1,500 to 2,500 dbar (Figure 3.3.5). It should also be noted that oxygen concentration also decreased slightly (about 2 μmol kg⁻¹) in bottom water below 5,000 dbar at the both two cross-stations. As mentioned in section 3.3.15.1, the results at the cross-stations during MR05-05 cruise showed that the repeat measurements of dissolved oxygen in bottom water agreed within 0.2 μmol kg⁻¹. Additionally, using the CSK standard solution we ensured traceability of dissolved

oxygen analyses during MR05-02 and MR05-05 cruises within about 0.1% correspondent to about 0.2 μ mol kg⁻¹ (section 3.3.13). These results indicate that total reproducibility of our oxygen measurement is about 0.2 μ mol kg⁻¹, suggesting that observed oxygen decreases of about 2 μ mol kg⁻¹ in the bottom water at the cross-stations are significant. The variability of oxygen concentration within six months in the deep and bottom waters implies that apparent decadal change of dissolved oxygen derived from repeat hydrography should be discussed carefully.

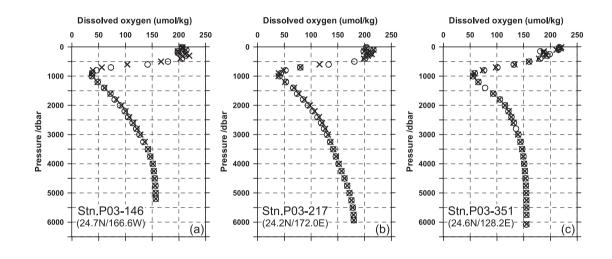


Figure 3.3.4. Comparison of dissolved oxygen profiles between the first hydrocast (circles) and the second one (crosses) at the cross-stations of Stn. P03-146 (a), -217 (b), and -351 (c) during MR05-05 cruise.

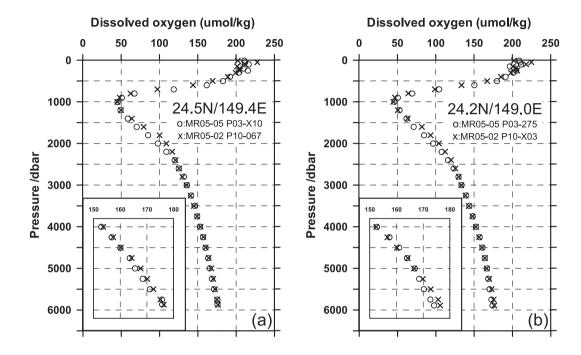


Figure 3.3.5. Comparison of dissolved oxygen profiles during MR05-02 and MR05-05 cruises at the cross-stations located at 24.5°N/149.4°E (a) and 24.2°N/149.0°E (b). Circles show data obtained at Stn. P03-X10 (a) and P03-275 (b) of MR05-05 cruise on December/12/2005. Crosses indicate data obtained at Stn. P10-067 (a) and P10-X03 (b) of MR05-02 cruise on June/10/2005.

(15.3) Comparison with WHP-P03 oxygen data in 1985

We compared our oxygen data and gridded data of WHP-P03 in 1985 and found that our oxygen data were slightly lower than those of WHP-P03. Below 2,000 m depth the difference in average is calculated in $-2.2\pm$ 1.7 μ mol kg⁻¹ (Figure 3.3.6). This "offset" value is closed to reported adjustments, about minus 3 μ mol kg⁻¹ for dissolved oxygen data of WHP-P03 (Johnson *et al.*, 2001; Gouretski and Jancke, 2001). We here corrected oxygen data of WHP-P03 by the averaged offset value, 2.2 μ mol kg⁻¹.

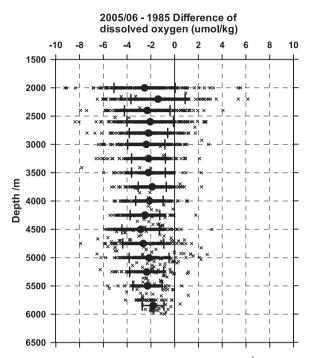


Figure 3.3.6. Oxygen difference (2005/2006 data minus 1985 data, μ mol kg⁻¹) against water depth. Closed circles denote mean of the differences with 1 sigma error at sampling layers.

Figure 3.3.7(a) shows distribution of oxygen difference (2005/2006 data minus 1985 data) against water depth. Below 1,000 m depth, there were not differences more than 5 μ mol kg⁻¹. The dispersion of the difference in the deep/bottom water ($\pm 1.7 \,\mu$ mol kg⁻¹ for 1 sigma) was also independent from the sampling depths, suggesting that the dispersion was derived from analytical errors and the data gridding. The dispersion of 2 sigma ($\pm 3.4 \,\mu$ mol) and the offset correction of 2.2 μ mol kg⁻¹ imply that oxygen differences less than 5 μ mol kg⁻¹ between 1985 and 2005/06 is not significant. In the layers shallower than 1,000 m depth, we found some increases and decreases of dissolved oxygen. In order to focus on the shallow variations, the differences were plotted against water density (sigma theta) from 24.5 to 27.5 (approximately correspondent to layers from 200 to1,200 m depth) in Figure 3.3.7(b).

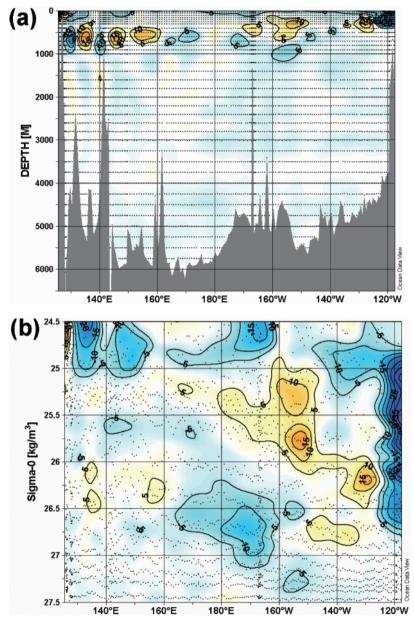


Figure 3.3.7. Differences of dissolved oxygen (μ mol kg⁻¹) between 2005/06 and 1985 (2005/2006 data minus 1985 data) against water depth (a) and water density, sigma-theta (b). Data of WHP-P03 in 1985 were corrected by the deep/bottom offset. Contour intervals are 5 μ mol kg⁻¹. Small dots indicate sampling layers of dissolved oxygen during MR05-05 in 2005/06.

We found a significant decrease of dissolved oxygen at the eastern end where oxygen concentration was relatively low. This decrease may be due to variability of local upwelling. Oxygen increase around 130°W to the International Date Line ranged from 25.0 to 26.2 sigma theta implies variation of mesoscale eddies. From 160°W to 160°E, around 26.8 sigma theta dissolved oxygen decreased, which is similar to the intermediate oxygen decrease in the subarctic regions in the North Pacific (Emerson *et al.*, 2001; Watanabe *et al.*, 2001). The decadal change along around 24°N, however, was smaller than that found in the subarctic North Pacific.

References

- Culberson, A.H. (1994) Dissolved oxygen, in WHPO Pub. 91-1 Rev. 1, November 1994, Woods Hole, Mass., USA.
- Culberson, A.H., G. Knapp, M.C. Stalcup, R.T. Williams, and F. Zemlyak (1991) A comparison of methods for the determination of dissolved oxygen in seawater, *WHPO Pub. 91-2*, August 1991, Woods Hole, Mass., USA.
- Dickson, A. (1996) Determination of dissolved oxygen in sea water by Winkler titration, in *WHPO Pub. 91-1 Rev.* 1, November 1994, Woods Hole, Mass., USA.
- DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. A.G. Dickson and C. Goyet (eds), ORNL/CDIAC-74.
- Emerson, S, S. Mecking and J.Abell (2001) The biological pump in the subtropical North Pacific Ocean: nutrient sources, redfield ratios, and recent changes. *Global Biogeochem. Cycles*, **15**, 535-554.
- Gouretski, V.V. and K. Jancke (2001) Systematic errors as the causes for an apparent deep water property variability: global analysis of the WOCE and historical hydrographic data, *Prog. Oceanogr.*, **48**, 337-402.
- Johnson, G.C., P.E. Robbins, and G.E. Hufford (2001) Systematic adjustments of hydrographic sections for internal consistency, *J. Atmos. Oceanic Technol.*, **18**, 1234-1244.
- Joyce, T., and C. Corry, eds., C. Corry, A. Dessier, A. Dickson, T. Joyce, M. Kenny, R. Key, D. Legler, R. Millard, R. Onken, P. Saunders, M. Stalcup, contrib. (1994) Requirements for WOCE Hydrographic Programme Data Reporting, WHPO Pub. 90-1 Rev. 2, May 1994 Woods Hole, Mass., USA.
- Murray, C.N., J.P. Riley, and T.R.S. Wilson (1968) The solubility of oxygen in Winkler reagents used for

determination of dissolved oxygen, Deep-Sea Res., 15, 237-238.

Watanabe, Y.W., T. Ono, A. Shimamoto, T. Sugimoto, M. Wakita and S. Watanabe (2001) Probability of a reduction in the formation rate of subsurface water in the North Pacific during the 1980s and 1990s. *Geophys. Res. Letts.*, **28**, 3298-3292.

3.4 Nutrients

July 19, 2007

(1) Personnel

Michio Aoyama (MRI / Japan Meteorological Agency, Principal Investigator)

Leg.1

Kenichiro Sato (MWJ)

Ayumi Takeuchi (MWJ)

Junji Matsushita (MWJ)

Leg.2

Junko Hamanaka (MWJ)

Ayumi Takeuchi (MWJ)

Kohei Miura (MWJ)

Leg.3

Junko Hamanaka (MWJ)

Junji Matsushita (MWJ)

Kohei Miura (MWJ)

(2) Objectives

The objectives of nutrients analyses during the R/V MIRAI MR0505 cruise along 24N line in the Western North Pacific are as follows;

Describe the present status of nutrients concentration with excellent comparability.

The determinants are nitrate, nitrite, phosphate and silicate (Although silicic acid is correct, we use silicate because a term of silicate is widely used in oceanographic community.)

Study the temporal and spatial variation of nutrients based on the previous high quality experiments data of

WOCE, GOESECS, IGY and so on.

Study temporal and spatial variation of nitrate: phosphate ratio, so-called Redfield ratio.

Obtain more accurate estimation of total amount of nitrate, phosphate and silicate in the interested area.

Provide more accurate nutrients data for physical oceanographers to use as tracers for water mass movement.

(3) Equipment and techniques

(3.1) Analytical detail using TRAACS 800 systems (BRAN+LUEBBE)

The phosphate analysis is a modification of the procedure of Murphy and Riley (1962).

Molybdic acid is added to the seawater sample to form phosphomolybdic acid which is in turn reduced to phosphomolybdous acid using L-ascorbic acid as the reductant.

Nitrate + nitrite and nitrite are analyzed by according to the modification method of Grasshoff (1970).

The sample nitrate is reduced to nitrite in a cadmium tube inside of which is coated with metallic copper. The sample stream with its equivalent nitrite is treated with an acidic, sulfanilamide reagent and the nitrite forms nitrous acid which reacts with sulfanilamide to produce a diazonium ion. N1-Naphthylethylene-diamine added to the sample stream then couples with the diazonium ion to produce a red, azo dye. With reduction of the nitrate to nitrite, both nitrate and nitrite react and are measured; without reduction, only nitrite reacts. Thus, for the nitrite analysis, no reduction is performed and the alkaline buffer is not necessary. Nitrate is computed by difference.

The silicate method is analogous to that described for phosphate. The method used is essentially that of Grasshoff et al. (1983), wherein silicomolybdic acid is first formed from the silicic acid in the sample and added molybdic acid; then the silicomolybdic acid is reduced to silicomolybdous acid, or "molybdenum blue," using ascorbic acid as the reductant.

The flow diagrams and regents for each parameter are shown in Figures 3.4.1-3.4.4.

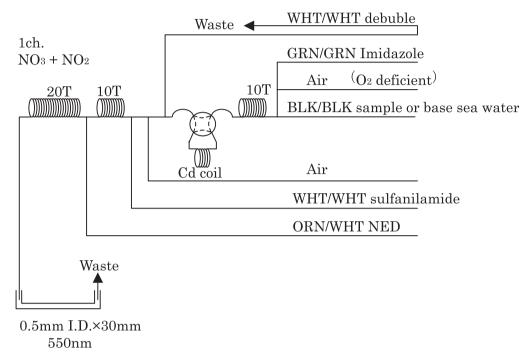


Figure 3.4.1. 1ch. (NO₃+NO₂) Flow diagram.

Nitrate Reagents

Imidazole (buffer), 0.06 M (0.4% w/v)

Dissolve 4 g imidazole, $C_3H_4N_2$, in ca. 900 ml DIW; add 2ml concentrated HCl; make up to 1,000 ml with DIW. After mixing, 1ml Triton(R)X-100 (50% solution in ethanol) is added.

Sulfanilamide, 0.06 M (1% w/v) in 1.2 M HCl

Dissolve 10 g sulfanilamide, $4-NH_2C_6H_4SO_3H$, in 1,000 ml of 1.2 M (10%) HCl. After mixing, 1 ml Triton(R)X-100 (50% solution in ethanol) is added.

N-1-Napthylethylene-diamine dihydrochloride, 0.004 M (0.1% w/v)

Dissolve 1 g NEDA, $C_{10}H_7NHCH_2CH_2NH_2 \cdot 2HCl$, in 1,000 ml of DIW; containing 10 ml concentrated HCl. Stored in a dark bottle.

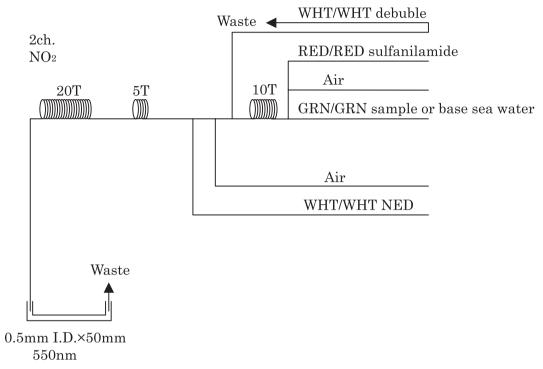


Figure 3.4.2. 2ch. (NO₂) Flow diagram.

Nitrite Reagents

Sulfanilamide, 0.06 M (1% w/v) in 1.2 M HCl

Dissolve 10 g sulfanilamide, $4\text{-NH}_2\text{C}_6\text{H}_4\text{SO}_3\text{H}$, in 1,000 ml of 1.2 M (10%) HCl. After mixing, 1ml Triton(R)X-100 (50% solution in ethanol) is added.

N-1-Napthylethylene-diamine dihydrochloride, 0.004 M (0.1% w/v)

Dissolve 1 g NEDA, $C_{10}H_7NHCH_2CH_2NH_2 \cdot 2HCl$, in 1,000 ml of DIW; containing 10 ml concentrated HCl. Stored in a dark bottle.

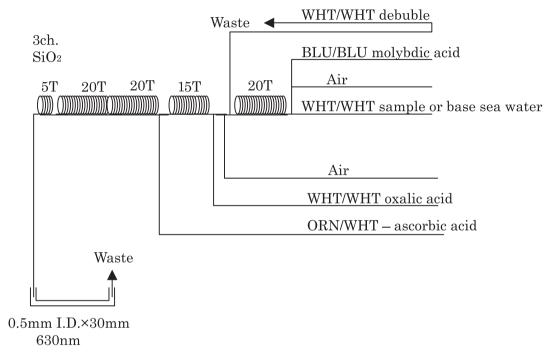


Figure 3.4.3. 3ch. (SiO2) Flow diagram.

Silicic Acid Reagents

Molybdic acid, 0.06 M (2% w/v)

Dissolve 15 g Disodium Molybdate(VI) Dihydrate, Na₂MoO₄ · 2H₂O, in 1,000 ml DIW containing 6 ml H₂SO₄. After mixing, 20 ml sodium dodecyl sulphate (15% solution in water) is added.

Oxalic acid, 0.6 M (5% w/v)

Dissolve 50 g Oxalic Acid Anhydrous, HOOC: COOH, in 1,000 ml of DIW.

Ascorbic acid, 0.01 M (3% w/v)

Dissolve 2.5 g L (+)-Ascorbic Acid, $C_6H_8O_6$, in 100 ml of DIW. Stored in a dark bottle and freshly prepared before every measurement.

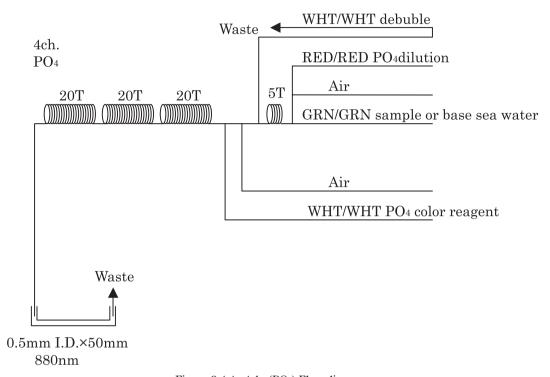


Figure 3.4.4. 4ch. (PO₄) Flow diagram.

Phosphate Reagents

Stock molybdate solution, 0.03 M (0.8% w/v)

Dissolve 8 g Disodium Molybdate(VI) Dihydrate, $Na_2MoO_4\cdot 2H_2Oand\ 0.17$ g Antimony Potas- sium Tartrate, $C_8H_4K_2O_{12}Sb_2\cdot 3H_2O$ in 1,000 ml of DIW containing 50 ml concentrated H_2SO_4 .

Mixed Reagent

Dissolve 0.8~g~L~(+)-Ascorbic Acid, $C_6H_8O_6$, in 100~ml of stock molybdate solution. After mixing, 2~ml sodium dodecyl sulphate (15% solution in water) is added. Stored in a dark bottle and freshly prepared before every measurement.

PO₄ dilution

Dissolve Sodium Hydrate, NaCl, 10 g in ca. 900 ml, add 50 ml Acetone and 4 ml concentrated H₂SO₄, make

up to 1,000 ml. After mixing, 5 ml sodium dodecyl sulphate (15% solution in water) is added.

(3.2) Sampling procedures

Sampling of nutrients followed that of oxygen, trace gases and salinity. Samples were drawn into two of virgin 10 ml polyacrylates vials without sample drawing tubes. These were rinsed three times before filling and vials were capped immediately after the drawing. The vials are put into water bath at 25 +-1deg. C for 10 minutes before used to stabilize the temperature of samples.

No transfer was made and the vials were set an auto sampler tray directly. Samples were analyzed after collection, basically within 17 hours.

(3.3) Data processing

Raw data from TRAACS800 were treated as follows:

Check baseline shift.

Check the shape of each peak and the positions of the peak values taken, and then change the positions of the peak values taken if necessary.

Carryover correction and baseline drift correction were applied to peak heights of each sample followed by sensitivity correction.

Baseline correction and sensitivity correction were done basically by using liner regression

Load pressure and salinity from CTD data to calculate density of seawater.

Calibration curves to get nutrients concentration were assumed second order equations.

(4) Nutrients standards

(4.1) In-house standards

(i) Volumetric Laboratory Ware

All volumetric glass- and plastic (PMP)-ware used were gravimetrically calibrated. Plastic volumetric flasks

were gravimetrically calibrated at the temperature of use within 2-3 K.

Volumetric flasks

Volumetric flasks of Class quality (Class A) are used because their nominal tolerances are 0.05% or less over the size ranges that are likely to be used in this work. Class A flasks are made of borosilicate glass, and the standard solutions were transferred to plastic bottles as quickly as possible after they were made up to volume and well mixed in order to prevent excessive dissolution of silicic acid from the glass. High quality plastic (polymethylpentene, PMP, or polypropylene) volumetric flasks were gravimetrically calibrated and used only within 3-4 K of the calibration temperature.

The computation of volume contained by glass flasks at various temperatures other than the calibration temperatures were done by using the coefficient of linear expansion of borosilicate crown glass.

Because of their larger temperature coefficients of cubical expansion and lack of tables constructed for these materials, the plastic volumetric flasks were gravimetrically calibrated over the temperature range of intended use and used at the temperature of calibration within 3-4 K. The weights obtained in the calibration weightings were corrected for the density of water and air buoyancy.

Pipettes and pipettors

All pipettes have nominal calibration tolerances of 0.1% or better. These were gravimetrically calibrated in order to verify and improve upon this nominal tolerance.

(ii) Reagents, general considerations

General Specifications

All reagents were of very high purity such as "Analytical Grade," "Analyzed Reagent Grade" and others. In addition, assay of nitrite was determined according as JISK8019 and assays of nitrite salts were 98.9%. We use that value to adjust the weights taken.

For the silicate standards solution, we use commercial available silicon standard solution for atomic absorption spectrometry of $1,000 \text{ mg L}^{-1}$. Since this solution is alkaline solution of 0.5 M KOH, an aliquot of 40 ml solution were diluted to 500 ml as B standard together with an aliquot of 20 ml of 1 M HCl. Then the pH of B standard for silicate prepared to be 6.9.

Ultra pure water

Ultra pure water (MilliQ water) freshly drawn was used for preparation of reagents, higher concentration standards and for measurement of reagent and system blanks.

Low-Nutrient Seawater (LNSW)

Surface water with low nutrient concentration was taken and filtered using $0.45~\mu m$ pore size membrane filter. This water is stored in 20 liter cubitainer with paper box. The concentrations of nutrient of this water were measured carefully in March 2005.

(iii) Concentrations of nutrients for A, B and C standards

Concentrations of nutrients for A, B and C standards are set as shown in Table 3.4.1. The C standard is prepared by according as recipes, as shown in Table 3.4.2. All volumetric laboratory tools were calibrated prior to the cruise as stated in chapter (i). Then the actual concentration of nutrients in each fresh standard was calculated based on the ambient, solution temperature and determined factors of volumetric laboratory wares.

Table 3.4.1. Nominal concentrations of nutrients for A, B and C standards.

	A	В	B'	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8
$NO_3(\mu M)$	45000	900	900	0	BA	AY	AX	AV	BC	55.0	55.0
$NO_2(\mu M)$	4000	20	20	0	BA	AY	AX	\mathbf{AV}	BC	1.2	1.2
$SiO_2(\mu M)$	36000	2880	3240	0	BA	AY	$\mathbf{A}\mathbf{X}$	\mathbf{AV}	BC	172.8	194.4
$PO_4(\mu M)$	3000	60	60	0	BA	AY	$\mathbf{A}\mathbf{X}$	\mathbf{AV}	BC	3.6	3.6

Table 3.4.2. Working calibration standard recipes.

C-STD	B-1 STD	B-1' STD	B-2 STD
C-7	30 ml	0 ml	30 ml
C-8	0 ml	30 ml	30 ml

B-1 STD: Mixture of nitrate, silicate and phosphate

B-1' STD: Mixture of nitrate, silicate and phosphate

B-2 STD: Nitrite

(iv) Renewal of in-house standard solutions

In-house standard solutions as stated in (iii) were renewed as shown in Table 3.4.3.

(4.2) Reference material of nutrients in seawater

To obtain more accurate and high quality nutrients data to achieve the objectives stated above, huge numbers of the bottles of the reference material of nutrients in seawater (hereafter RMNS) are prepared (Aoyama et al., submitted). In the previous world wide expeditions, such as WOCE cruises, higher reproducibility and precision of nutrients measurements were required (Joyce and Corry, 1994). Since no standards were available for the measurement of nutrients in seawater at that time, the requirements were described in term of reproducibility. The required reproducibility was 1%, 1-2%, 1-3% for nitrate, phosphate and silicate, respectively. Although nutrient data from the WOCE one-time survey was of unprecedented quality and coverage due to much care in sampling and measurements, the differences of nutrients concentration at crossover points are still found among the expeditions (Aoyama and Joyce, 1996, Mordy et al., 2000, Gouretski and Jancke, 2001).

Table 3.4.3. Timing of renewal of in-house standards.

NO ₃ , NO ₂ , SiO ₂ , PO ₄	Renewal		
A-1 Std. (NO ₃)	maximum 1 month		
A-2 Std. (NO_2)	maximum 1 month		
A-3 Std. (SiO ₂)	commercial prepared solution		
A-4 Std. (PO ₄)	maximum 1 month		
B-1 Std. and B-1' Std.			
(mixture of NO ₃ , SiO ₂ , PO ₄)	8 days		
B-2 Std. (NO ₂)	8 days		

C Std	Renewal	
C-7~C-8 Std (mixture of B1	24 hours	
(B1') and B2 Std.)		

Reduction estimation	Renewal
D-1 Std.	when A-1renewed
$43\mu\mathrm{M}~\mathrm{NO_3}$	when C-std renewed
$47\mu \mathrm{M~NO}_2$	when C-std renewed

For instance, the mean offset of nitrate concentration at deep waters was $0.5 \mu \text{mol kg}^{-1}$ for 345 crossovers at the world oceans, though the maximum was $1.7 \mu \text{mol kg}^{-1}$ (Gouretski and Jancke, 2001). At the 31 crossover

points in the Pacific WHP one-time lines, the WOCE standard of reproducibility for nitrate of 1% was fulfilled at about half of the crossover points and the maximum difference was 7% at deeper layers below 1.6 deg. C in potential temperature (Aoyama and Joyce, 1996).

(i) RMNS preparation

RMNS preparation and homogeneity for previous lots

The study on reference material for nutrients in seawater (RMNS) on the seawater base has been carried out to establish traceability on nutrient analyses in seawater since 1994 in Japan. Autoclaving to produce RMNS has been studied (Aminot and Kerouel, 1991, 1995) and autoclaving was used to stabilize the samples for the 5th intercompariosn exercise in 1992/1993 (Aminot and Kirkwood, 1995). Aminot and Kerouel (1995) concluded that nitrate and nitrite were extremely stable throughout their 27 months storage experiment with overall standard deviations lower than 0.3% (range 5-50 μ mol Γ) and 0.8% (range 0.5-5 μ mol Γ), respectively. For phosphate, slight increase by 0.02-0.07 μ mol Γ 1 per year was observed due to the leaching from the container glass. The main source of nutrient variation in seawater is believed to be microorganism activity, hence, production of RMNS depends on biological inactivation of samples. In this point of view, previous study showed that autoclaving to inactivate the biological activity is acceptable for RMNS preparation.

In the R/V MIRAI BEAGLE2003 cruise, which was an around the world cruise along ca. 30 deg. S and conducted in 2003 and 2004, RMNS was analyzed at about 500 stations. The results of BEAGLE2003 cruise will be available soon. (Databook of BEAGLE2003)

The seawater for RMNS production was sampled in the North Pacific Ocean at the depths of the surface where the nutrients are almost depleted and the depths of 1,500-2,000 meters where the nutrients concentrations reach its maximum. The seawater was gravity-filtered through a membrane filter with a pore size of $0.45 \mu m$ (Millipore HA). The latest procedure of autoclaving for RMNS preparation is that the seawater in a stainless steel container of 40 liters was autoclaved at 120 deg. C, for 2 hours, 2 times in two days. The filling procedure of autoclaved seawater basically remained the same throughout our study. After cooled at room

temperature in two days, polypropylene bottles of 100 ml capacity were filled with the autoclaved seawater of 90 ml through a membrane filter with a pore size of $0.2~\mu m$ (Millipore HA) at a clean bench in a clean room. The polypropylene caps were immediately and tightly screwed on and a label containing lot number and serial number of each bottle was attached on all of the bottles. Then the bottles were vacuum-sealed to avid potential contamination from the environment.

RMNSs for this cruise

RMNS lots BC, AV, AX, AY and BA, which covers full range of nutrients concentrations in the western North Pacific were prepared as packages. These packages were renewed daily and analyzed every 2 runs on the same day. 250 bottles of RMNS lot AZ were prepared to use every analysis at every hydrographic station. These RMNS assignment were completely done based on random number. The RMNS bottles were stored at a room, REGENT STORE, where the temperature was maintained around 24-26 deg. C.

Assigned concentration for RMNSs

We assigned nutrients concentrations for RMNS lots BC, AV, AX, AY and BA as shown in Table 3.4.4.

(ii) The homogeneity of RMNSs

The homogeneity of lot BC and analytical precisions are shown in Table 3.4.4. These are for the assessment of the magnitude of homogeneity of the RMNS bottles, which were used during the cruise. As shown in Table 3.4.5, the homogeneity of RMNS lot BC for nitrate and silicate are the same magnitude of analytical precision derived from fresh raw seawater. The homogeneity for phosphate, however, exceeds the analytical precision at some extent.

Table 3.4.4. Assigned concentration of RMNSs

	Nitrate	Phosphate	Silicate
RMNS-BA	0.1 ± 0.0	0.06 ± 0.01	1.6 ± 0.1
RMNS-AY	5.6 ± 0.0	0.52 ± 0.01	30.1 ± 0.1
RMNS-AX	21.4 ± 0.1	1.61 ± 0.01	59.5 ± 0.1
RMNS-AV	33.4 ± 0.1	2.52 ± 0.01	157.9 ± 0.2
RMNS-BC	40.7 ± 0.1	2.78 ± 0.01	160.0 ± 0.2
RMNS-AZ	42.3 ± 0.1	3.02 ± 0.01	137.2 ± 0.2

Table 3.4.5. Homogeneity of lot BC and previous lots derived from simultaneous 30 samples measurements and analytical precision onboard R/V Mirai in May 2005.

	Nitrate	Phosphate	Silicate
	CV%	CV%	CV%
BC	0.22	0.32	0.19
(AH)	(0.39)	(0.83)	(0.13)
(K)	(0.3)	(1.0)	(0.2)
Precision	0.22	0.22	0.12

Note: $N=30 \times 2$

(5) Quality control

(5.1) Precision of nutrients analyses during the cruise

Precision of nutrients analyses during the cruise was evaluated based on the 12 measurements, which are measured every 12 samples, during a run at the concentration evaluated n of C-7. We also the reproducibility based on the replicate analyses of five samples in each run. Summary of the precisions are shown in Table

3.4.6. As shown in Table 3.4.6 and Figures 3.4.5-3.4.7, the precisions for each parameter are generally good considering analytical precisions estimated from the simultaneous analyses of 60 samples in May 2005. The analytical precisions previously evaluated were 0.22% for phosphate, 0.22% for nitrate and 0.12% for silicate, respectively. During this cruise, analytical precisions were 0.08% for phosphate, 0.07% for nitrate and 0.08% for silicate in terms of median of precision, respectively. Therefore we can conclude that the analytical precisions for phosphate, nitrate and silicate throughout this cruise were maintained or better than those compared to the precruise evaluations. The time series of precision are shown in Figures 3.4.5-3.4.7.

Table 3.4.6. Summary of precision based on the replicate analyses of 12 samples in each run through out cruise.

	Nitrate	Phosphate	Silicate
	CV%	CV%	CV%
Median	0.070	0.070	0.090
Mean	0.076	0.072	0.087
Maximum	0.170	0.190	0.170
Minimum	0.030	0.030	0.020
N	277	277	277

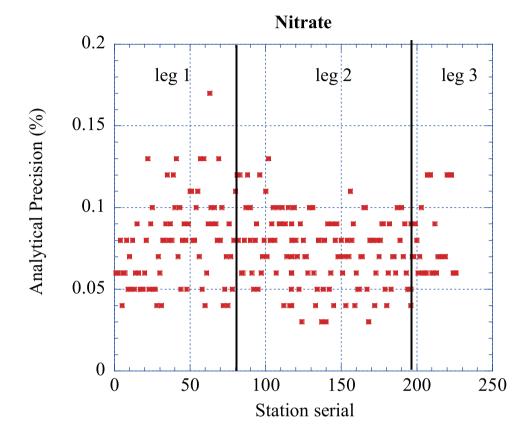


Figure 3.4.5. Time series of precision of nitrate.

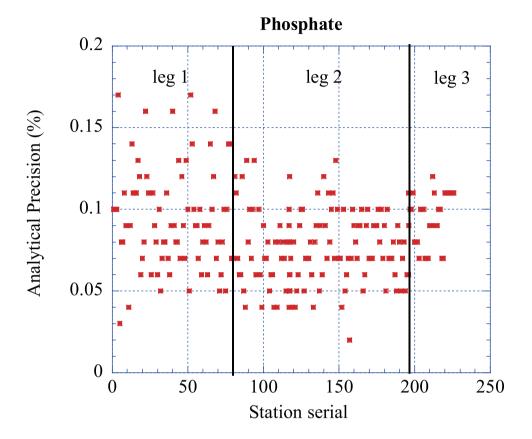


Figure 3.4.6. Time series of precision of phosphate.

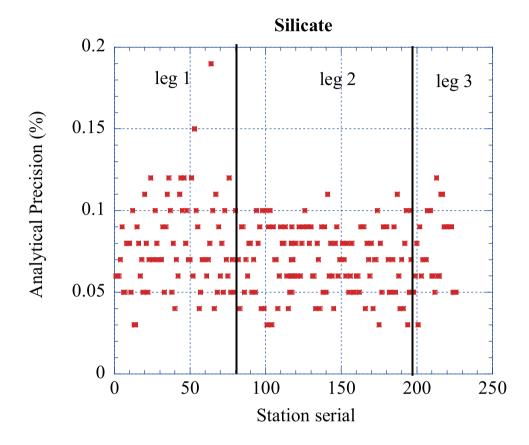


Figure 3.4.7. Time series of precision of silicate.

(5.2) Carry-over

We can also summarize the magnitudes of carry-over throughout the cruise. These are small enough within acceptable levels as shown in Table 3.4.7.

Table 3.4.7. Summary of carry-over through out cruise.

	Nitrate %	Phosphate %	Silicate %
Median	0.21	0.20	0.24
Mean	0.21	0.20	0.23
Maximum	0.40	0.40	0.43
Minimum	0.01	0.00	0.05
N	277	277	277

(6) Evaluation of Z-scores of RMNSs

Since we used RMNSs throughout the cruise, we can evaluate the trueness of our analysis in terms of Z-score of RMNSs.

Z-score for each analysis of RMNS is defined as follows:

$$Zpar = ABS((Cpar - Cnominal)/Ppar)$$
 (1)

Where

Zpar is Z-score for an analysis

Cpar is obtained concentration of a RMNS for interested parameter, nitrate, phosphate or silicate.

Cnominal is assigned concentration of RMNS for interested parameter, nitrate, phosphate or silicate.

Ppar is analytical precision at the concentration of RMNS for interested parameter, nitrate, phosphate or silicate.

Averages of these Z-scores were obtained for three parameters, nitrate, phosphate and silicate based on Z-scores for 7 RMNSs used at each run and shown in Figure 3.4.8. Means of Z-score based on the Z-score of three parameters were also obtained and shown in Figure 3.4.9.

These Z-scores were less than 0.5 in general and indicating that our analyses were in excellent tracerbility throughout the cruise.

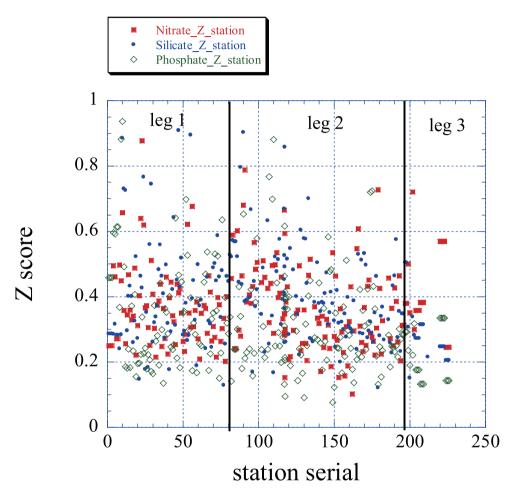


Figure 3.4.8. Z-score of nitrate, silicate and phosphate.

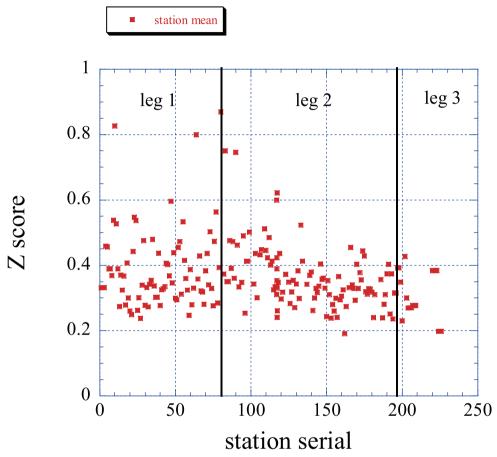


Figure 3.4.9. Means of Z-score at the stations.

(7) Problems/improvements occurred and solutions

Nothing occurred during the cruise.

Reference

- Aminot, A. and Kerouel, R. 1991. Autoclaved seawater as a reference material for the determination of nitrate and phosphate in seawater. *Anal. Chim. Acta*, **248**, 277-283.
- Aminot, A. and Kirkwood, D.S. 1995. Report on the results of the fifth ICES intercomparison exercise for nutrients in sea water, *ICES coop. Res. Rep. Ser.*, 213.
- Aminot, A. and Kerouel, R. 1995. Reference material for nutrients in seawater: stability of nitrate, nitrite, ammonia and phosphate in autoclaved samples. *Mar. Chem.*, **49**, 221-232.
- Aoyama M., and Joyce T.M. 1996, WHP property comparisons from crossing lines in North Pacific. *In Abstracts,* 1996 WOCE Pacific Workshop, Newport Beach, California.
- Aoyama, M., Ota, H., Iwano, S., Kamiya, H., Kimura, M., Masuda, S., Nagai, N., Saito, K., Tubota, H. 2004.

 Reference material for nutrients in seawater in a seawater matrix, *Mar. Chem.*, submitted.
- Grasshoff, K., Ehrhardt, M., Kremling K. et al. 1983. *Methods of seawater anylysis*. 2nd rev. Weinheim: Verlag Chemie, Germany, West.
- JAMSTEC, BEAGLE2003 DATA BOOK, 2005,
- Joyce, T. and Corry, C. 1994. Requirements for WOCE hydrographic programmed data reporting. WHPO Publication, 90-1, Revision 2, WOCE Report No. 67/91.
- Kirkwood, D.S. 1992. Stability of solutions of nutrient salts during storage. Mar. Chem., 38, 151-164.
- Kirkwood, D.S. Aminot, A. and Perttila, M. 1991. Report on the results of the ICES fourth intercomparison exercise for nutrients in sea water. *ICES coop. Res. Rep. Ser.*, **174**.
- Mordy, C.W., Aoyama, M., Gordon, L.I., Johnson, G.C., Key, R.M., Ross, A.A., Jennings, J.C. and Wilson. J. 2000. Deep water comparison studies of the Pacific WOCE nutrient data set. *Eos Trans-American Geophysical Union*. **80** (supplement), OS43.

Murphy, J., and Riley, J.P. 1962. Analytica chim. Acta 27, 31-36.

Gouretski, V.V. and Jancke, K. 2001. Systematic errors as the cause for an apparent deep water property variability: global analysis of the WOCE and historical hydrographic data · REVIEW ARTICLE, *Progress In Oceanography*, **48**: Issue 4, 337-402.

3.5 Dissolved inorganic carbon (C_T)

July 18, 2007

(1) Personnel

Akihiko Murata (JAMSTEC)

Minoru Kamata (MWJ)

Masaki Moro (MWJ)

Yoshiko Ishikawa (MWJ)

(2) Introduction

Concentrations of CO_2 in the atmosphere are currently increasing at a rate of 1.5 ppmv y⁻¹, due to human activities such as burning of fossil fuels, deforestation, cement production, and so on. It is an urgent task to estimate as accurately as possible the absorption capacity of the ocean against the increasing atmospheric CO_2 , as well as to clarify the mechanism of the CO_2 absorption, because the magnitude of the predicted global warming depends on the levels of CO_2 in the atmosphere, and because the ocean currently absorbs 1/3 of the 6 Gt of carbon emitted into the atmosphere each year by human activities.

In this cruise (MR05-05, revisit of WOCE P3 line) using the R/V MIRAI, we aimed to quantify how much anthropogenic CO_2 is absorbed in North Pacific Intermediate Water, which is one of the characteristic waters in the North Pacific. For the purpose, we measured CO_2 -system properties such as dissolved inorganic carbon (C_T), total alkalinity (A_T), pH and underway pCO₂.

In this section, we describe data on C_T obtained in the cruise in detail.

(3) Apparatus

Measurements of C_T were made with two total CO_2 measuring systems (systems-A and -B; Nippon ANS, Inc.), which are slightly different from each other. The systems comprise of a seawater dispensing system, a CO_2

extraction system and a coulometer (Model 5012, UIC Inc.).

The seawater dispensing system has an auto-sampler (6 ports), which takes seawater from a 300 ml borosilicate glass bottle and dispenses the seawater to a pipette of nominal 20 or 26 ml volume by a PC control. The pipette is kept at 20°C by a water jacket, where water from a water bath set at 20°C is circulated.

 CO_2 dissolved in a seawater sample is extracted in a stripping chamber of a CO_2 extraction system by adding phosphoric acid (10% v/v). The stripping chamber is approximately 25 cm in length and has a fine frit at the bottom. In order to degas CO_2 as quickly as possible, a heating wire kept at 40° C is rolled from the bottom to a 1/3 height of the stripping chamber. Acid is added to the stripping chamber from the bottom of the chamber by pressurizing an acid bottle for a given time to push out a an exact amount of acid. The pressurizing is made with nitrogen gas (99.9999%). After the acid is transferred to the stripping chamber, a seawater sample kept in a pipette is introduced to the stripping chamber by the same method as in adding acid. The seawater reacted with phosphoric acid is stripped of CO_2 by bubbling the nitrogen gas through a fine frit at the bottom of the stripping chamber. The CO_2 stripped in the stripping chamber is carried by the nitrogen gas (140 ml min⁻¹ for the systems-A and -B) to the coulometer through a dehydrating module. For the system-A, the module consists of two electric dehumidifiers (kept at 1 - 2°C) and a chemical desiccant (Mg(CIO_4)₂). For the system-B, it consists of three electric dehumidifiers with a chemical desiccant.

(4) Shipboard measurement

Sampling

All seawater samples were collected from depths with 12 liter Niskin bottles basically at every other station. The seawater samples for C_T were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into a 300 ml borosilicate glass bottle. The glass bottle was filled with seawater smoothly from the bottom following a rinse with a seawater of 2 full bottle volumes. The glass bottle was closed by a stopper, which was fitted to the bottle mouth gravimetrically without additional force.

At a chemical laboratory on the ship, a headspace of approximately 1% of the bottle volume was made by

removing seawater with a plastic pipette. A saturated mercuric chloride of $100~\mu l$ was added to poison seawater samples. The glass bottles were sealed with a greased (Apiezon M, M&I Materials Ltd) ground glass stopper and the clips were secured. The seawater samples were kept at 4°C in a refrigerator until analysis. A few hours just before analysis, the seawater samples were kept at 20°C in a water bath.

Analysis

There were 3 legs in the P3 revisit cruise. At the start of each leg, we calibrated the measuring systems by blank and 5 kinds of Na_2CO_3 solutions (nominally 500, 1,000 1,500, 2,000, 2,500 μ mol/L). As it was empirically known that coulometers do not show a stable signal (low repeatability) with fresh (low absorption of carbon) coulometer solutions. Therefore we repeatedly measured 2% CO_2 gas until the measurements became stable. Then we started the calibration.

The measurement sequence such as system blank (phosphoric acid blank), 2% CO₂ gas in a nitrogen base, seawater samples (6) was programmed to repeat. The measurement of 2% CO₂ gas was made to monitor response of coulometer solutions (from UIC, Inc.). For every renewal of coulometer solutions, certified reference materials (CRMs, batch 72 and a small number of batch 69) provided by Prof. A. G. Dickson of Scripps Institution of Oceanography were analyzed. In addition, reference materials (RM) provided by JAMSTEC (2 kinds) and KANSO were measured at the initial, intermediate and end times of a coulometer solution's lifetime.

The preliminary values were reported in a data sheet on the ship. Repeatability and vertical profiles of C_T based on raw data for each station helped us check performances of the measuring systems.

In the cruise, we finished all the analyses for C_T on board the ship. As we used two systems, we did not encountered such a situation as that we had to abandon the measurement due to time limitation. During Leg.2, we replaced the pipette of a volume of 26 ml for the system-B to that of 22 ml after Stn. 251. Furthermore, a ramp of light source of the coulometer for the system-B was replaced. During Leg.3, only the system-A was used.

(5) Quality control

We conducted quality control of the data after returning to a laboratory on land. With calibration factors, which had been determined on board based on blank and 5 kinds of Na_2CO_3 solutions (see *analysis*), we calculated C_T of CRM (batches 69 and 72), and plotted the values as a function of sequential day, separating legs and the systems used. There were no statistically-significant trends of CRM measurements, except for the measurements with the system-A during Leg.3. As shown in Table 3.5.1, averages of C_T of CRM shows a variation, probably implying instability of a coulometer.

Based on the averages of C_T of CRM, we re-calculated the calibration factors so that measurements of seawater samples could become comparable to the certified value of batches 72 or 69.

Temporal variations of RM measurements for one coulomer solution are shown in Figure 3.5.1. This figure clearly shows that RM measurements had a linear trend of \sim 3 to \sim 6 μ mol kg⁻¹ day⁻¹, implying that measurements of seawater samples also have the trend. The trend was also found in temporal changes of 2% CO_2 gas measurements. The trend seems to be due to "cell age" change (Johnson *et al.*, 1998) of a coulometer solution.

Considering these trends, we adjusted measurements of seawater samples to be comparable to the certified value of batches 72 or 69.

Finally, we surveyed vertical profiles of C_T In particular, we examined whether systematic differences between measurements of the systems-A and -B existed or not. Then taking other information of analyses into account, we determined a flag of each value of C_T

The average and standard deviation of absolute values of differences of C_T analyzed consecutively were 1.2 and 1.1 μ mol kg⁻¹ (n=129), 1.0 and 0.7 μ mol kg⁻¹ (n=197), and 0.5 and 0.5 μ mol kg⁻¹ (n=21), for Leg.1, 2 and 3, respectively.

To evaluate accuracy of measured C_T , we compared vertical profiles of C_T measured in MR05-05, C_T calculated from A_T and pH measured in MR05-05, and C_T measured at a station of other WOCE lines crossing the P3 line. Results for cross station with WOCE P17 line along 135°W are shown in Figure 3.5.2. From this

figure, it is found that C_T measured in this cruise were sufficiently accurate. Together with other comprisons, we estimated the accuracy to be $\sim \pm 2.0 \, \mu \text{mol kg}^{-1}$.

Reference

Johnson, K. M., A. G. Dickson, G. Eischeid, C. Goyet, P. Guenther, R. M. Key, F. J. Millero, D. Purkerson, C. L. Sabine, R. G. Schottle, D. W. R. Wallace, R. J. Wilke and C. D. Winn (1998), Coulometric total carbon dioxide analysis for marine studies: assessment of the quality of total inorganic carbon measurements made during the US Indian Ocean CO₂ survey 1994-1996, Mar. Chem., 63, 21-37.

Table 3.5.1. Measurements of C_T of CRM (batch 72 or 69) during the MR05-05 (WOCE P3 revisit) cruise.

Leg	System	Num	Ave	Std	Batch number
			$(\mu \text{mol kg}^{-1})$	$(\mu \text{mol kg}^{-1})$	
1	A	8	1906.2	0.7	69
	A	72	2091.7	1.3	72
	В	24	2088.6	1.5	72
2	A	40	2093.9	1.9	72
	В	9	2095.2	1.0	72
	В	18	2093.4	1.8	72
3	A	2	2090.9		72
	A	2	2088.8		72
	A	2	2088.8		72

The certified values of C_T for batches 69 and 72 are 1907.63 and 2091.61 μ mol kg⁻¹, respecticely. During the Leg. 2, the pipette of system-B was replaced.

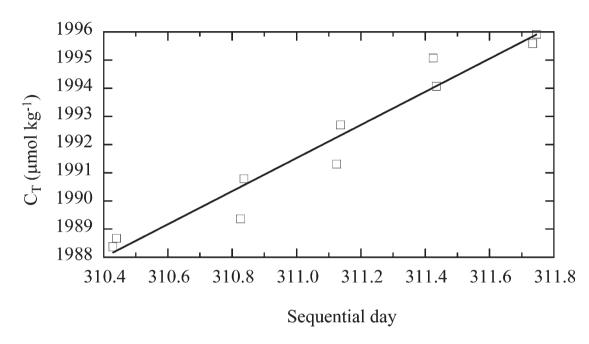


Figure 3.5.1. An example of RM measurements at Stns. 051 and 056, which show an increasing trend (5.9 μ mol kg⁻¹ day⁻¹).

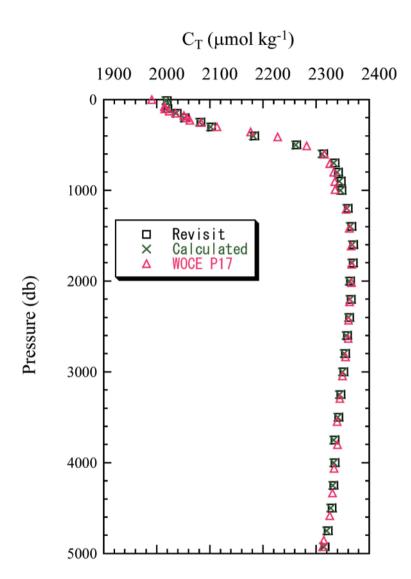


Figure 3.5.2. Comparison of vertical profiles of C_T measured in MR05-05 with C_T calculated from A_T and pH measured also in MR05-05 and C_T measured in WOCE P17C cruise conducted in 1997.

3.6 Total alkalinity (A_T)

July 18, 2007

(1) Personnel

Akihiko Murata (JAMSTEC)

Fuyuki Shibata (MWJ)

Mikio Kitada (MWJ)

Minoru Kamata (MWI)

Taeko Ohama (MWJ)

(2) Introduction

Concentrations of CO_2 in the atmosphere are currently increasing at a rate of 1.5 ppmv y^{-1} due to human activities such as burning of fossil fuels, deforestation, cement production, and so on. It is an urgent task to estimate as accurately as possible the absorption capacity of the ocean against the increasing atmospheric CO_2 , as well as to clarify the mechanism of the CO_2 absorption, because the magnitude of the predicted global warming depends on the levels of CO_2 in the atmosphere, and because the ocean currently absorbs 1/3 of the 6 Gt of carbon emitted into the atmosphere each year by human activities.

In this cruise (MR05-05, revisit of WOCE P3 line), we aimed to quantify how much anthropogenic CO_2 is absorbed in North Pacific Intermediate Water, which is one of the characteristic waters in the North Pacific. For the purpose, we measured CO_2 -system properties such as dissolved inorganic carbon (C_T), total alkalinity (A_T), pH and underway p CO_2 .

In this section, we describe data on A_T obtained in the cruise in detail.

(3) Apparatus

The measuring system for A_T (customized by Nippon ANS, Inc.) comprises of a water dispensing unit, an

auto-burette (Metrohm), a pH meter (Thermo Orion) and an auto-sampler (6 ports). They are automatically controlled by a PC. Separate electrodes (Reference electrode: REF201, (Radiometer), Glass pH electrode: pHG201-7 (Radiometer)), or combined electrodes (ROSS 8102BN, Thermo Orion) were used.

Seawater of approximately 40 ml is transferred from a sample bottle (borosilicate glass bottle; 130 ml) into a water-jacketed (25°C) pressurized by N_2 gas and is introduced into a water-jacketed (25°C) titration cell. Next, a given volume of the titrant is injected into the titration cell. By this, pH of a seawater sample becomes 4.5-4.0. The seawater sample mixed with the titrant is stirred for three minutes with a stirring chip. Then a small volume of titrant (\sim 0.1 ml) is injected until pH or e.m.f. reaches a given value. The concentration of the acid titrant is nominally 0.05 M HCl in 0.65 M NaCl.

Calculation of A_T is based on a modified Gran approach.

(4) Shipboard measurement

Sampling

All seawater samples were collected from depths using 12-liter Niskin bottles basically at every other stations. The seawater samples for A_T were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into borosilicate glass bottles of 130 ml. The glass bottle was filled with seawater smoothly from the bottom, after rinsed with seawater of a half or a full bottle volume. A few hours before analysis, the seawater samples were kept at 25° C in a water bath.

Analysis

For A_T measurement, we selected electrodes, which showed signals close to theoretical Nernstian behavior. At the start of each leg, we conducted calibration of the acid titrant, which was prepared on land. The calibration was made by measuring A_T of 5 solutions of Na_2CO_3 in 0.7 M NaCl solutions. The computed A_T s were approximately 0, 100, 1,000, 2,000 and 2,500 μ mol kg⁻¹. The measured values of A_T (calculated by assuming 0.05 M acid titrant) should be a linear function of the A_T contributed by the Na_2CO_3 . The linear function was fitted by

the method of least squares. Theoretically, the slope of the linear function should be unity. If the measured slope is not equal to unity, the acid normality should be adjusted by dividing initial normality by the slope, and the whole set of calculations is repeated until the slope = 1.

Before starting analyses of seawater samples, we measured A_T of dummy seawater samples to confirm a condition of the measuring system. If repeat measurements of A_T were constant within $\sim 3~\mu \text{mol kg}^{-1}$, we started measurement of seawater samples. We analyzed reference materials (RM), which were produced for C_T measurement by JAMSTEC and were also efficient for monitoring A_T measurement. In addition, certified reference materials (CRM, batches 69 and 72, certified value = 2114.42 and 2312.79 μ mol kg⁻¹, respectively) were analyzed periodically to monitor systematic differences of measured A_T . The reported values of A_T were set to be traceable to the certified value.

The preliminary values were reported in a data sheet on the ship. Repeatability calculated from replicate samples and vertical profiles of A_T based on raw data for each station helped us check the performance of the measuring system.

We finished all A_T analyses on board the ship. Although we did not encounter such a serious problem that we had to give up the analyses, we experienced some malfunctions of the system during the cruise, which are summarized as follows:

After analyses of a large number of samples, a drift of an electrode often occurred, appearing as differences of pH or e.m.f. against a constant volume of the titrant injected into a seawater sample. In this case, we changed pH or e.m.f. ranges for the subsequent A_T calculation.

(5) Quality control

Temporal changes of A_p which originate from analytical problems (drifts and sudden changes of responces of electrodes used, etc), were monitored by measuring A_T of CRM. For example, discontinuous changes of A_T are illustrated in Figure. 3.6.1. Based on averaged and certified values of A_T of CRM, we re-calculated normality of HCl. Using the re-calibrated normality, we re-calculated A_T of seawater samples. By this procedure, we could

obtain A_T values, which are comparable to CRM.

After making the measured values of A_T comparable to CRM, we examined vertical profiles of A_T Then, taking other information of analyses into account, we determined a flag of each A_T value.

The average and standard deviation of absolute values of differences in A_T analyzed consecutively were 2.1 and 1.9 μ mol kg⁻¹ (n = 123), 1.9 and 1.5 μ mol kg⁻¹ (n = 203) and 2.2 and 1.9 μ mol kg⁻¹ (n = 20) for Leg.1, 2 and 3, respectively.

To evaluate the accuracy of measured A_{P} we compared vertical profiles of A_{T} measured in MR05-05 with A_{T} calculated from C_{T} and pH measured in MR05-05, and with A_{T} measured at a station of other WOCE lines crossing the P3 line. Results for cross station with the WOCE P16 line along 153°W are shown in Figure. 3.6.2. From this figure, it is found that A_{T} measured in this cruise were sufficiently accurate. Together with other comparisons, we estimated the accuracy to be $3-2~\mu\text{mol}$ kg⁻¹.

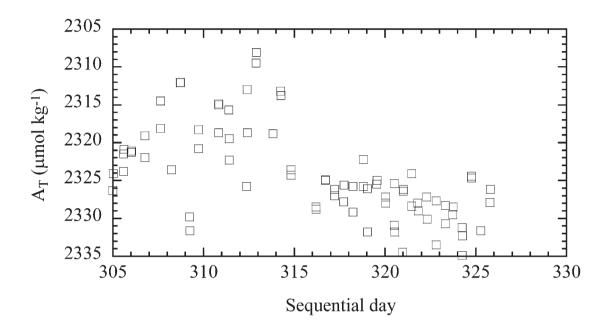


Figure 3.6.1. RM measurements during Leg.1, which illustrate discontinuous changes at about 315 sequential day.

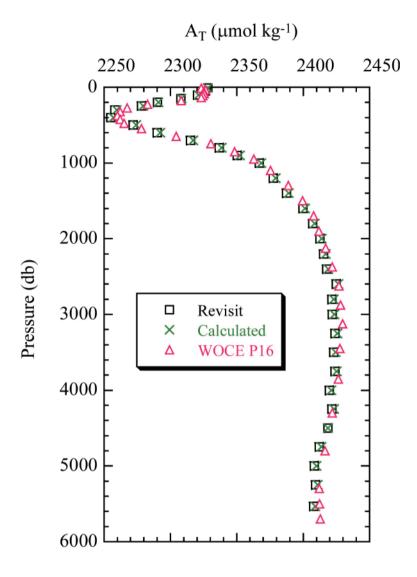


Figure 3.6.2. Comparison of vertical profiles of A_T measured in MR05-05 with A_T calculated from C_T and pH measured also in MR05-05 and with A_T measured in WOCE P16 revisit cruise conducted in 2006.

3.7 pH

July 19, 2007

(1) Personnel

Akihiko Murata (JAMSTEC)

Fuyuki Shibata (MWJ)

Taeko Ohama (MWJ)

(2) Introduction

Concentrations of CO_2 in the atmosphere are currently increasing at a rate of 1.5 ppmv y^{-1} due to human activities such as burning of fossil fuels, deforestation, cement production, and so on. It is an urgent task to estimate as accurately as possible the absorption capacity of the ocean against the increasing atmospheric CO_2 , as well as to clarify the mechanism of the CO_2 absorption, because the magnitude of the anticipated global warming depends on the levels of CO_2 in the atmosphere, and because the ocean currently absorbs 1/3 of the 6 Gt of carbon emitted into the atmosphere each year by human activities.

In this cruise (MR05-05, revisit of WOCE P3 line), we aimed to quantify how much anthropogenic CO_2 absorbed in North Pacific Intermediate Water, which is one of the characteristic waters in the North Pacific. For the purpose, we measured CO_2 -system properties such as dissolved inorganic carbon (C_T), total alkalinity (A_T), pH and underway p CO_2 .

In this section, we describe data on pH obtained in the cruise in detail.

(3) Apparatus

Measurement of pH was made by a pH measuring system (Nippon ANS, Inc.), which adopts spectrophotometry. The system comprises of a water dispensing unit and a spectrophotometer (Carry 50 Scan, Varian).

Seawater is transferred from borosilicate glass bottle (300 ml) to a sample cell in the spectrophotometer. The length and volume of the cell are 8 cm and 13 ml, respectively, and the sample cell was kept at $25.00 \pm 0.05^{\circ}$ C in a thermostated compartment. First, absorbance of seawater only is measured at three wavelengths (730, 578 and 434 nm). Then an indicator is injected and circulated for about 4 minutes to mix with seawater sufficiently. After the pump is stopped, the absorbance of seawater + indicator is measured at the same wavelengths.

The pH is calculated based on the following equation (Clayton and Byrne, 1993):

$$pH = pK_2 + \log\left(\frac{A_1/A_2 - 0.00691}{2.2220 - 0.1331(A_1/A_2)}\right)$$
(1)

where A_1 and A_2 indicate the absorbance at 578 and 434 nm, respectively, and pK_2 is calculated as a function of water temperature and salinity.

(4) Shipboard measurement

Sampling

All seawater samples were collected from depth with 12-liter Niskin bottles basically at every other stations. The seawater samples for pH were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into a 300 ml borosilicate glass bottle, which was the same as used for C_T sampling. The glass bottle was smoothly filled from its bottom with seawater after rinsed with an amount of seawater equal to the volume of two full bottles. The glass bottle was closed by a stopper, which was fitted to the bottle mouth gravimetrically without additional force.

A few hours just before analysis, the seawater samples were kept at 25°C in a water bath.

Analysis

For indicator solution, m-cresol purple (2 mM) was used. The indicator solution was produced on board the

ship, and retained in a 1,000 ml DURAN $^{\circ}$ laboratory bottle. We renewed indicator solution 3 times when the headspace of the bottle became large, and monitored pH or absorbance ratio of the indicator solution by another spectrophotometer (Carry 50 Scan, Varian) using a cell with a short path length of 0.5 mm. In most indicator solutions, the absorbance ratios of the indicator solution were initially in the range 1.4 - 1.6, and decreased to 1.1.

It is difficult to mix seawater with indicator solution sufficiently under no headspace condition. However, by circulating the mixed solution with a peristaltic pump, a well-mixed condition came to be obtained rather shortly, leading to a rapid stabilization of absorbance. We renewed a TYGON® tube of a peristaltic pump periodically, when a tube deteriorated.

Absorbance of seawater only and that of seawater + indicator solutions were measured 15 times for each, and the averages computed from the last five values of the absorbance were used for pH calculation (Eq. 1).

The preliminary values of pH were reported in a data sheet on the ship. Repeatability calculated from replicate samples and vertical profiles of pH based on raw data for each station helped us check performance of the measuring system.

We finished all the analyses for pH on board the ship. We did not encounter such a serious problem that we had to give up the analyses. However, we sometimes experienced malfunctions of the system during the cruise:

Differences between absorbance of seawater only and that of seawater + indicator solution were infrequently greater than \pm 0.001. This implies dirt of the cell. In this case, we cleaned or replaced the cell.

(5) Quality control

Correction for pH change resulting from addition of indicator solutions is recommended (DOE, 1994). To check the perturbation of pH due to the addition, we measured absorbance ratios by doubling the volume of indicator solutions added to a same seawater sample. We corrected absorbance ratios based on an empirical method (DOE, 1994). Figure 3.7.1 illustrates an example of perturbation of absorbance ratios by adding indicator solutions.

We surveyed vertical profiles of pH. In particular, we examined whether systematic differences between before and after the renewal of indicator solutions existed or not. Then taking other information of analyses into account, we determined a flag of each pH value.

The average and standard deviation of absolute values of differences of pH analyzed consecutively were 0.0007 and 0.0012 pH unit (n = 163), 0.0007 and 0.0006 pH unit (n = 255), and 0.0009 and 0.0009 (n = 36) for Leg.1, 2 and 3, respectively.

All values are reported in total pH scale.

References

Clayton T.D. & R.H. Byrne (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. *Deep-Sea Research* **40**, 2115-2129.

DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2, A. G. Dickson & C. Goyet, eds. (unpublished manuscript).

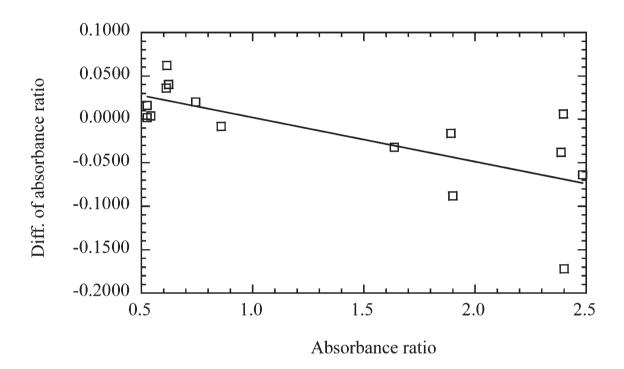


Figure 3.7.1. Perturbation of absorbance ratios by adding indicator solutions. The line $(y = -0.0509x + 0.0529, R^2 = 0.510)$ was determined by the method of least squares.

3.8 Chlorofluorocarbons (CFCs)

October 3, 2007

(1) Personnel

Ken'ichi Sasaki (JAMSTEC)

Masahide Wakita (JAMSTEC)

Shuichi Watanabe (JAMSTEC)

Katsunori Sagishima (MWJ)

Yuichi Sonoyama (MWJ)

Hideki Yamamoto (MWJ)

Keisuke Wataki (MWJ)

Masanori Enoki (MWJ)

(2) Introduction

Chlorofluorocarbons (CFCs) are completely man-made compounds that are chemically and biologically stable gasses in the environment. The CFCs have been accumulated in the atmosphere since 1930's (Walker et al., 2000). The atmospheric CFCs can slightly dissolve in sea surface water and then penetrated into the ocean interior by water circulation. The dissolved CFC concentrations in sea water have been used as transient tracers for the ocean circulation with times scale on the order of decades.

In this cruise, we determined the concentrations of three CFC species, CFC-11 (CCl $_3$ F), CFC-12 (CCl $_2$ F $_2$) and CFC-113 (C $_2$ Cl $_3$ F $_3$).

(3) Apparatus

Dissolved CFCs were measured by a method modified from the original design of Bullister and Weiss (1988). Two analytical systems were used in this cruise. A custom made purging and trapping system was attached to gas chromatograph (GC-14B: Shimadzu Ltd). Stainless steel packed column ("1/8 OD tubing, 100-120 mesh Porapak T® packed 5cm) was used as a cold trap. Silica Plot capillary column [i.d.: 0.53 mm, length: 4 m, tick: $0.25 \mu m$] and a tandem capillary column (Pola Bond-Q [i.d.: 0.53 mm, length: 7 m, tick: $6.0 \mu m$] followed by Silica Plot [i.d.: 0.53 mm, length: 22 m, tick: $0.25 \mu m$]) was used as a pre-column and main column, respectively. Each CFC was detected by an electron capture detector (ECD-14: Shimadzu Ltd).

(4) Shipboard measurement

Sampling

Seawater sub-samples for CFC measurements were collected from 12 liter Niskin bottles to 300 ml sub-sampling glass bottles which were developed for CFC analyses in JAMSTEC. The sub-sampling bottles have stainless steel union altered from original design of Swagelok® on the end of the bottle. A 6 mm OD glass tube goes through the union into the bottle interior and reaches to near the bottom of bottle. A small plastic stop valve was on the upper end of glass tube. The bottles were filled by nitrogen gas before sampling. The stop valve was connected to Niskin bottle. The sub-sample was introduced from the bottom. Two times of the bottle volumes of seawater sample were overflowed from vent valve put on side of the union and then the all valves closed from downstream. The bottles filled by seawater sample were kept in water bathes roughly controlled on sample temperature. The CFC concentrations were determined as soon as possible after sampling. These procedures were needed in order to minimize contamination from atmospheric CFCs.

Analysis

The CFCs analytical system is modified from the original design of Bullister and Weiss (1988). Analytical conditions are listed in Table 3.8.1. Constant volume of sample water (50 ml) is taken into the purging & trapping system. Dissolved CFCs are de-gassed by N_2 gas purge and concentrated in a cold trap column. The CFCs are desorbed by electrically heating the trap column, and lead into the pre-column. CFCs and other compounds are roughly separated in the pre-column. The pre-column is switched to cleaning line and flushed buck by counter

flow of pure nitrogen gas when CFCs completely go through pre-column. The back flush system is prevent to enter any compounds that have higher retention time than CFC-113 into main analytical column and permits short time analysis. CFCs which are sent into main column are separated further and detected by an electron capture detector (ECD).

Gas loops that the volumes were around 1, 3 and 10 ml were used for introducing standard gases into the analytical system. The standard gasses had been made by Japan Fine Products co. ltd. Cylinder numbers of CPB28620, CPB30532 and CPB30528 for working gases and CPB30524 for reference gas were used for calibration. Mixing ratios of the standard gasses were calculated by gravimetric data (Table 3.8.2). The standard gases used in this cruise have not been calibrated to SIO scale standard gases yet because SIO scale standard gasses is hard to obtain due to legal difficulties for CFCs import into Japan. The data will be corrected as soon as possible after calibrations of the standard gasses.

Table 3.8.1. Analytical conditions of dissolved CFCs in seawater.

Tem	norn	turo
16111	pera	ture

Column oven: 95 °C (Constant)

Detector (ECD): 240 °C

Trap column: -45 °C (at adsorbing) & 140 °C (at desorbing)

Mass flow rate of nitrogen gas

Carrier gas: 15 ml/min

Detector make-up gas: 22 ml/min

Back flush gas: >15 ml/min

Sample purge gas: 150 ml/min

Table 3.8.2. CFC mixing ratios of standard gasses.

0.41.1	CFC-11	CFC-12	CFC-113	
Cylinder ·		pptv	_	Application
CPB28620	301	169	50.3	Working gas for Leg.2 & 3
CPB30524	300	159	30.2	Reference gas for all Legs
CPB30528	300	158	29.9	Working gas for Leg.2
CPB30532	CPB30532 300		29.9	Working gas for Leg.1 & 2

(5) Quality control

Blank

Some blank water samples which were made by nitrogen purge of seawater in CFCs sample bottle were analyzed and any CFCs were not detected. Significant increase in CFCs concentration during keeping sampling bottle in a water bath was not found for around one week. CFC concentrations in deep water which was one of oldest water masses of the ocean were low but not zero for CFC-11 and -12. Average concentrations of CFC-11, 12 in denser water than 27.6 sigma-0 were 0.022 ± 0.008 (n = 1430), 0.009 ± 0.004 (n = 1379). These values were assumed as sampling blanks which was contaminations from Niskin bottle and/or during sub-sampling and were subtracted from all data.

Concentration of CFC-113 in deep water mass is less than detection limit at about half of stations but significant blank had been found in other stations(0.006 ± 0.003 pmol kg⁻¹ in average (n = 773)). Cause of the blank was unknown. In this case, mean value in deep water samples at each station was considered to be blank for analysis at the station and was subtracted from measurements.

Interfering compound for CFC-113 analysis

A large and broad peak was interfered determining CFC-113 peak area for samples collected from surface layer. Retention time of the interfering peak was around 3% shorter than that of CFC-113. The peak of a

compound interfering CFC-113 determination could not be completely separated from the peak of CFC-113 by our analytical condition. We tried to split these peaks on chromatogram analysis and give flag "4". In the case of the interfering peak completely covering the CFC-113 peak, we could not determine CFC-113 peak area and give flag "5".

Precisions

The analytical precisions were estimated from replicate sample analyses. The replicate samples were basically collected from two sampling depths which is around 250 m and 800 m depth. The precisions were estimated by two methods. One (A) is estimated by following equation, $s = (S (DC^2)/(2n-1))^{0.5}$, where DC is difference between replicate analyses. Another (B) is average difference of replicate analyses (with standard deviation, SD). Precisions estimated from former equation were 0.006 (n = 377), 0.004 (n = 376) and 0.004 (n = 376) and 0.004 (n = 376) pmol kg⁻¹ for CFC-11, -12 and -113 determinations. These from latter were 0.006 (SD=0.007), 0.004 (0.004) and 0.004 (0.005) pmol kg⁻¹ for CFC-11, -12 and -113 determinations.

References

Walker, S.J., Weiss, R.F. and Salameh, P.K., Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and Carbon Tetrachloride, *Journal of Geophysical Research*, **105**, 14,285-14,296, (2000).

Bullister, J.L and Weiss, R.F. Determination of CCl₃F and CCl₂F₂ in seawater and air. *Deep Sea Research*, **35**, 839-853 (1988).

3.9 LADCP(Lowered Acoustic Doppler Current Profiler)

September 3, 2007

(1) Personnel

Shinya Kouketsu (JAMSTEC)

Ikuo Kaneko (JAMSTEC)

Shuichi Watanabe (JAMSTEC)

Hiroshi Uchida (JAMSTEC)

Takayoshi Seike (MWJ)

(2) Instrument and method

Direct flow measurement from sea surface to sea bottom was carried out using a lowered acoustic Doppler current profiler (LADCP). The instrument was the RDI Workhorse Monitor 307.2 kHz unit (RD Instruments, USA). The instrument was attached downward on the CTD/RMS frame. The CPU firmware version was 16.27.

One ping raw data were recorded. From Sta. 1 to St. 48, a bin length was set to 16 m. The bin length of 8m was used from Sta. 50. A total of 79, 126 and 31 operations were made with CTD observations in Leg.1 from San Diego to Honolulu, in Leg.2 from Honolulu to Nakagusuku, and in Leg.3 from Nakagusuku to Sekinehama, respectively. Since the pressure resistance of the instrument is 6,500 dbar, the instrument was detached on the CTD/RMS frame at Stas. 223, 293, 353 and 357 where the depth was deeper than about 6,000 dbar. The performance of the LADCP instrument was not good from Sta. 1 to Sta. 110 in Leg.1. The data near the bottom were often missed. We replaced the Serial Number (SN) 2553 of the instruments with the SN 1512 of it from Sta. 112. The performance was improved. Profiles of the area over 100 m distance from LADCP in shallow depths and of the area to almost 60 m in deeper depths were obtained. Echo intensity was weak between stations 351 and 367. Backscatters might be especially too few in this section.

(3) Data process and result

Vertical profiles of velocity are obtained by the inversion method (Visbeck, 2002). Since the first bin from LADCP is influenced by turbulence generated by CTD frame, the weight for the inversion is set to small value of 0.1. GPS navigation data are used in the calculation of reference velocities and the bottom-track data are used for correcting the reference velocities. Shipboard ADCP (SADCP) data averaged for 3 minutes are also included in the calculation. The CTD data are used for sound speed and depth calculation. IGRF (International Geomagnetic Reference Field) 10th generation data are used for calculating magnetic deviation to correct the direction of velocity. In the process, we use Matlab routines provided from M. Visbeck and G. Krahmann (http://ladcp.ldeo. columbia.edu/ladcp).

Error velocities estimated by the inversion are small values of 0.05 - 0.2 m/s, but the typical value of the surface currents is about 0.2 m/s in this section. It may be difficult to describe the detailed structure of currents by using these values. In Leg.3 (Okinawa trough, Tokara strait, and Tsushima strait cross sections), small error velocities (less than 10 cm/s) were estimated.

Velocities using bottom tracks were 5 - 10 cm/s. The large bottom flow of about 15 cm/s was observed near the shore of the United States. The errors of 0.5 - 2 cm/s were quite small. It is sufficient to detect the bottom current. The velocities near the bottom are not shown in Leg.3, since the depths were shallow and the inversion errors were sufficient small all through the water columns.

Reference

Visbeck, M. (2002): Deep velocity profiling using Lowered Acoustic Doppler Current Profilers: Bottom track and inverse solutions. *J. Atmos. Oceanic Technol.*, **19**, 794-807.

49MR0505_1.sum file

P03 REV R/	/ MIRAI	CRUISE MR0	505 LEG 1											
SHIP/CRS	WOCE		CAST	UTC	EVENT	POSITION		UNC	COR	HT ABOVE	WIRE	MAX	NO. OF	
EXPOCODE	SECT	STNNBR CAS	TNO TYPE DATE	TIME	CODE LATITUDE	LONGITUDE	NAV	DEPTH	DEPTH	BOTTOM	OUT	PRESS	BOTTLES PARAMETERS	COMMENTS
49MR0505_1	P03	1	1 ROS 103105	1856	BE 32 39.14	N 117 19.93 W	GPS	110	110					
49MR0505_1	P03	1	1 BUC 103105	1859	UN 32 39.11	N 117 19.88 W	GPS	108	108				1,33	16.1C
49MR0505_1	P03	1	1 UNK 103105	1859	UN 32 39.11	N 117 19.88 W	GPS	108	108					AIR N2O SMPL
49MR0505_1	P03	1	1 ROS 103105	1902	BO 32 39.08	N 117 19.85 W	GPS	107	108	9	92	95	3 1-8,27	
49MR0505_1	P03	1	1 ROS 103105	1909	EN 32 39.02	N 117 19.84 W	GPS	108	108					
49MR0505_1	P03	2	1 ROS 103105	1947	BE 32 38.38	N 117 25.88 W	GPS	150	151					
49MR0505_1	P03	2	1 BUC 103105	1948	UN 32 38.38	N 117 25.89 W	GPS	150	151				1	17.5C
49MR0505_1	P03	2	1 ROS 103105	1954	BO 32 38.32	N 117 25.95 W	GPS	150	151	7	138	140	4 1-8,27	
49MR0505_1	P03	2	1 ROS 103105	2006	EN 32 38.19	N 117 25.97 W	GPS	151	151					
49MR0505_1	P03	3	1 ROS 103105	2114	BE 32 37.02	N 117 30.16 W	GPS	1192	1191					
49MR0505_1	P03	3	1 BUC 103105	2121	UN 32 36.94	N 117 30.19 W	GPS	1192	1191				1,31,33	18.2C
49MR0505_1	P03	3	1 UNK 103105	2121	UN 32 36.94	N 117 30.19 W	GPS	1192	1191					AIR N2O SMPL
49MR0505_1	P03	3	1 ROS 103105	2139	во 32 36.80	N 117 30.27 W	GPS	1193	1192	10	1189	1189	22 1-8,23,24,26,27,31,33,64,81	#2 AT OXYCLINE
49MR0505_1	P03	3	1 ROS 103105	2235	EN 32 36.31	N 117 30.55 W	GPS	1206	1204					
49MR0505_1		501	1 UNK 103105	2255	UN 32 36.41	N 117 32.06 W	GPS	1203	1204					AEROSOL SMPL
49MR0505_1	P03	4	1 ROS 110105	0002	BE 32 38.39	N 117 40.54 W	GPS	1048	1047					
49MR0505_1	P03	4	1 BUC 110105	0010	UN 32 38.31	N 117 40.60 W	GPS	1023	1031				1	18.4C
49MR0505_1	P03	4	1 ROS 110105	0027	BO 32 38.25	N 117 40.76 W	GPS	973	971	8	984	994	14 1-8,27	
49MR0505_1	P03	4	1 ROS 110105	0116	EN 32 37.86	N 117 41.01 W	GPS	968	970					
49MR0505_1	P03	6	1 ROS 110105	0246	BE 32 31.70	N 118 1.83 W	GPS	1895	1888					
49MR0505_1	P03	6	1 BUC 110105	0254	UN 32 31.61	N 118 1.75 W	GPS	1909	1906				1,33	17.9C
49MR0505_1	P03	6	1 UNK 110105	0254	UN 32 31.61	N 118 1.75 W	GPS	1909	1906					AIR N2O SMPL
49MR0505_1	P03	6	1 ROS 110105	0322	BO 32 31.33	N 118 1.61 W	GPS	1877	1883	9	1883	1866	19 1-8,23,24,26,27	
49MR0505_1	P03	6	1 ROS 110105	0436	EN 32 30.58	N 118 1.66 W	GPS	1880	1877					
49MR0505_1	P03	8	1 ROS 110105	1758	BE 32 21.83	N 118 20.31 W	GPS	637	639					
49MR0505_1	P03	8	1 BUC 110105	1800	UN 32 21.85	N 118 20.30 W	GPS	638	638				1,33	17.9C
49MR0505_1	P03	8	1 UNK 110105	1800	UN 32 21.85	N 118 20.30 W	GPS	638	638					AIR N2O SMPL
49MR0505_1	P03	8	1 ROS 110105	1814	BO 32 21.94	N 118 20.17 W	GPS	677	677	12	664	669	11 1-8,23,24,26,27	
49MR0505_1	P03	8	1 ROS 110105	1847	EN 32 22.08	N 118 19.87 W	GPS	718	715					
49MR0505_1	P03	10	1 ROS 110105	2044	BE 32 9.19	N 118 45.83 W	GPS	1314	1314					
49MR0505_1	P03	10	1 BUC 110105	2053	UN 32 9.14	N 118 45.71 W	GPS	1304	1303				1,33	18.4C
49MR0505_1	P03	10	1 UNK 110105	2053	UN 32 9.14	N 118 45.71 W	GPS	1304	1303					AIR N2O SMPL
49MR0505_1	P03	10	1 ROS 110105	2110	BO 32 8.97	N 118 45.65 W	GPS	1288	1300	10	1314	1303	16 1-8,27	
49MR0505_1	P03	10	1 ROS 110105	2203	EN 32 8.39	N 118 45.48 W	GPS	1276	1270					
49MR0505_1		502	1 UNK 110105	2217	UN 32 7.50	N 118 47.20 W	GPS	1251	1269					AEROSOL SMPL
49MR0505_1	P03	12	1 ROS 110205	0011	BE 31 54.62	N 119 15.44 W	GPS	1460	1459					
49MR0505_1	P03	12	1 BUC 110205	0018	UN 31 54.55	N 119 15.48 W	GPS	1414	1413				1,33	18.4C
49MR0505_1	P03	12	1 UNK 110205	0018	UN 31 54.55	N 119 15.48 W	GPS	1414	1413					AIR N2O SMPL
49MR0505_1	P03	12	1 ROS 110205	0041	BO 31 54.34	N 119 15.49 W	GPS	1293	1287	11	1364	1365	16 1-8,23,24,26,27	
49MR0505_1	P03	12	1 ROS 110205	0132	EN 31 53.92	N 119 15.53 W	GPS	1108	1106					
49MR0505_1	P03	14	1 ROS 110205	0250	BE 31 51.16	N 119 21.53 W	GPS	1575	1580					
49MR0505_1	P03	14	1 BUC 110205	0258	UN 31 51.09	N 119 21.56 W	GPS	1639	1633				1	17.9C
49MR0505_1	P03	14	1 ROS 110205	0323	во 31 50.89	N 119 21.60 W	GPS	1736	1741	14	1691	1694	18 1-8,23,24,26,27	#5-6 FILTRATED SEAWATER SAMPLE

49MR0505_1	P03	14	1 ROS 110205 042	1 EN 31 50.50 N 119 21.64 W GPS	1763	1762					
49MR0505_1	P03	16	1 ROS 110205 054	2 BE 31 46.14 N 119 31.85 W GPS	2754	2751					
49MR0505_1	P03	16	1 BUC 110205 054	9 UN 31 46.10 N 119 31.86 W GPS	2776	2772				1	18.0C
49MR0505_1	P03	16	1 ROS 110205 062	8 BO 31 45.87 N 119 31.96 W GPS	2882	2885	11	2813	2822	23 1-8,27	
49MR0505_1	P03	16	1 ROS 110205 075	3 EN 31 45.29 N 119 32.02 W GPS	3322	3316					
49MR0505_1	P03	18	1 ROS 110205 085	7 BE 31 40.42 N 119 43.02 W GPS	3750	3739					
49MR0505_1	P03	18	1 BUC 110205 090	4 UN 31 40.37 N 119 43.00 W GPS	3745	3736				1	17.8C
49MR0505_1	P03	18	1 ROS 110205 095	7 BO 31 40.25 N 119 43.16 W GPS	3756	3745	13	3736	3777	28 1-8,23,24,26,27	
49MR0505_1	P03	18	1 ROS 110205 114	0 EN 31 40.06 N 119 43.43 W GPS	3751	3742					
49MR0505_1	P03	20	1 ROS 110205 132	3 BE 31 30.46 N 120 2.52 W GPS	3735	3725					
49MR0505_1	P03	20	1 BUC 110205 133	1 UN 31 30.39 N 120 2.55 W GPS	3735	3725				1,33	16.8C
49MR0505_1	P03	20	1 UNK 110205 134	0 UN 31 30.30 N 120 2.54 W GPS	3729	3727					AIR N2O SMPL
49MR0505_1	P03	20	1 ROS 110205 142	3 BO 31 29.92 N 120 2.73 W GPS	3737	3729	10	3774	3764	27 1-8,27	
49MR0505_1	P03	20	1 ROS 110205 161	4 EN 31 29.01 N 120 3.66 W GPS	3760	3746					
49MR0505_1	P03	22	1 ROS 110205 182	0 BE 31 14.04 N 120 33.13 W GPS	3815	3813					
49MR0505_1	P03	22	1 BUC 110205 182	7 UN 31 14.00 N 120 33.09 W GPS	3812	3812				1,33	17.7C
49MR0505_1	P03	22	1 UNK 110205 183	3 UN 31 13.96 N 120 33.08 W GPS	3814	3813					AIR N2O SMPL
49MR0505_1	P03	22	1 ROS 110205 191	9 BO 31 13.67 N 120 33.16 W GPS	3811	3810	9	3834	3855	36 1-8,22,27	
49MR0505_1	P03	22	1 UNK 110205 192	9 BE 31 13.67 N 120 33.16 W GPS	3811	3811					80L THROUGH HULL PUMP FOR R.N.
49MR0505_1	P03	22	1 UNK 110205 194	7 EN 31 13.67 N 120 33.16 W GPS	3811	3813					
49MR0505_1	P03	22	1 ROS 110205 211	0 EN 31 13.14 N 120 33.06 W GPS	3815	3814					
49MR0505_1		503	1 UNK 110205 221	2 UN 31 6.00 N 120 47.30 W GPS	3927	3929					AEROSOL SMPL
49MR0505_1	P03	24	1 ROS 110305 000	1 BE 30 53.18 N 121 14.21 W GPS	3955	3954					
49MR0505_1	P03	24	1 BUC 110305 000	9 UN 30 53.11 N 121 14.15 W GPS	3953	3951				1,33	18.1C
49MR0505_1	P03	24	1 UNK 110305 001	5 UN 30 53.06 N 121 14.08 W GPS	3960	3958					AIR N2O SMPL
49MR0505_1	P03	24	1 ROS 110305 010	5 BO 30 52.71 N 121 14.08 W GPS	3960	3960	10	3974	4007	28 1-8,12,13,23,24,26,27	
49MR0505_1	P03	24	1 ROS 110305 025	7 EN 30 52.25 N 121 13.86 W GPS	3989	3989					
49MR0505_1	P03	26	1 ROS 110305 062	7 BE 30 29.02 N 122 1.72 W GPS	3794	3795					
49MR0505_1	P03	26	1 BUC 110305 063	4 UN 30 28.95 N 122 1.72 W GPS	3794	3794				1	18.2C
49MR0505_1	P03	26	1 ROS 110305 072	7 BO 30 28.69 N 122 1.98 W GPS	3854	3854	11	3825	3848	28 1-8,27	
49MR0505_1	P03	26	1 ROS 110305 091	1 EN 30 28.09 N 122 2.26 W GPS	3954	3942					
49MR0505_1	P03	28	1 ROS 110305 121	2 BE 30 1.33 N 122 35.09 W GPS	4324	4327					
49MR0505_1	P03	28	1 BUC 110305 121	9 UN 30 1.27 N 122 35.10 W GPS	4318	4319				1,31,33,82	19.0C
49MR0505_1	P03	28	1 UNK 110305 130	0 UN 30 0.96 N 122 35.23 W GPS	4301	4324					AIR N2O SMPL
49MR0505_1	P03	28	1 ROS 110305 131	9 BO 30 0.88 N 122 35.33 W GPS	4317	4319	10	4324	4357	35 1-8,23,24,26,27,31,33,64,82	#2 AT OXYCLINE
49MR0505_1	P03	28	1 ROS 110305 152	4 EN 30 0.01 N 122 36.40 W GPS	4312	4313					
49MR0505_1	P03	28	2 UNK 110305 152	4 UN 30 0.01 N 122 36.40 W GPS	4312	4313					AIR CH4 SMPL
49MR0505_1	P03	30	1 ROS 110305 182	6 BE 29 32.59 N 123 14.25 W GPS	4248	4252					
49MR0505_1	P03	30	1 BUC 110305 183	3 UN 29 32.51 N 123 14.31 W GPS	4251	4255				1,33	18.9C
49MR0505_1	P03	30	1 UNK 110305 183	4 UN 29 32.50 N 123 14.32 W GPS	4265	4257					AIR N2O SMPL
49MR0505_1	P03	30	1 ROS 110305 193	3 BO 29 32.25 N 123 14.81 W GPS	4257	4260	9	4303	4324	30 1-8,27	
49MR0505_1	P03	30	1 ROS 110305 212	9 EN 29 31.95 N 123 15.65 W GPS	4218	4203					
49MR0505_1		504	1 UNK 110305 215	0 UN 29 30.04 N 123 18.33 W GPS	4244	4264					AEROSOL SMPL
49MR0505_1	P03	31	1 ROS 110405 003	1 BE 29 3.05 N 123 52.38 W GPS	4468	4442					
49MR0505_1	P03	31	1 BUC 110405 003	8 UN 29 3.04 N 123 52.48 W GPS	4416	4412				1,33	19.3C
49MR0505_1	P03	31	1 UNK 110405 004	3 UN 29 3.05 N 123 52.55 W GPS	4418	4419					AIR N2O SMPL
49MR0505_1	P03	31	1 ROS 110405 014	BO 29 2.97 N 123 53.35 W GPS	4395	4392	11	4510	4459	30 1-8,23,24,26,27	
49MR0505_1	P03	31	1 ROS 110405 034	3 EN 29 2.98 N 123 54.93 W GPS	4418	4423					
49MR0505_1	P03	33	1 ROS 110405 064	3 BE 28 35.19 N 124 30.59 W GPS	4358	4359					

49MR0505 1	P03	33	1	BUC 110405 0649	UN 28 35.15 N 124 30.68 W GPS	4351	4354				1	19.8C
49MR0505 1	P03	33	1	ROS 110405 0751	BO 28 35.07 N 124 31.33 W GPS	4334	4333	9	4403	4413	29 1-8,27	#12 MISS FIRE
49MR0505 1	P03	33	1	ROS 110405 0941	EN 28 35.28 N 124 32.35 W GPS	4318	4321				,	
49MR0505 1	P03	34	1	ROS 110405 1246	BE 28 6.15 N 125 7.49 W GPS	4318	4319					
49MR0505 1	P03	34	1	BUC 110405 1254	UN 28 6.14 N 125 7.58 W GPS	4310	4316				1,33	20.7C
49MR0505 1	P03	34	1	UNK 110405 1300	UN 28 6.15 N 125 7.65 W GPS	4300	4303					AIR N2O SMPL
49MR0505 1	P03	34	1	ROS 110405 1356	BO 28 6.13 N 125 8.28 W GPS	4289	4295	9	4359	4363	30 1-8,23,24,26,27	
49MR0505 1	P03	34	1	ROS 110405 1555	EN 28 6.25 N 125 9.20 W GPS	4154	4154					
49MR0505_1	P03	36	1		BE 27 35.94 N 125 45.65 W GPS	4409	4414					
49MR0505 1	P03	36		BUC 110405 1911	UN 27 35.95 N 125 45.70 W GPS	4418	4423				1,33	20.1C
49MR0505 1	P03	36	1		UN 27 35.95 N 125 45.75 W GPS	4418	4437				,	AIR N2O SMPL
49MR0505 1	P03	36		UNK 110405 2011	BE 27 35.88 N 125 46.16 W GPS	4493	4489					80L THROUGH HULL PUMP FOR R.N.
49MR0505 1	P03	36	1		BO 27 35.88 N 125 46.16 W GPS	4493	4494	9	4481	4521	33 1-8,22,27	
49MR0505 1	P03	36		UNK 110405 2022	EN 27 35.87 N 125 46.20 W GPS	4493	4494				,	
49MR0505 1	P03	36	1		EN 27 35.59 N 125 46.95 W GPS	4488	4484					
49MR0505 1		505		UNK 110405 2229	UN 27 34.09 N 125 49.21 W GPS	4511	4521					AEROSOL SMPL
49MR0505_1	P03	38	1		BE 27 9.13 N 126 22.65 W GPS	4353	4356					THE ROOM OF THE
49MR0505 1	P03	38		BUC 110505 0114	UN 27 9.07 N 126 22.68 W GPS	4346	4348				1,33	20.9C
49MR0505 1	P03	38	1		UN 27 9.05 N 126 22.71 W GPS	4348	4348				_,	AIR N2O SMPL
49MR0505 1	P03	38		ROS 110505 0215	BO 27 8.88 N 126 22.93 W GPS	4383	4385	11	4355	4402	30 1-8,12,13,23,24,26,27	#19 MISS TRIP
49MR0505 1	P03	38	1		EN 27 8.60 N 126 23.90 W GPS	4437	4432		1000	1102	00 1 0/15/10/20/21/20/27	#15 11100 11(11
49MR0505 1	P03	40	1		BE 26 39.58 N 126 57.24 W GPS	4317	4324					
49MR0505 1	P03	40	1		UN 26 39.61 N 126 57.35 W GPS	4322	4329				1	20.6C
49MR0505 1	P03	40		ROS 110505 0819	BO 26 40.00 N 126 58.08 W GPS	4524	4522	9	4504	4459	31 1-8,27	#1=#2 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	40	1		EN 26 40.65 N 126 58.68 W GPS	4684	4684		1001	1100	31 1 0/27	"1 "2 (B 10) BOTHLONIE BITES
49MR0505 1	P03	42	1		BE 26 10.69 N 127 34.52 W GPS	4629	4628					
49MR0505 1	P03	42	1		UN 26 10.72 N 127 34.67 W GPS	4628	4627				1,31,33	20.4C
49MR0505_1	P03	42		UNK 110505 1351	UN 26 10.78 N 127 34.97 W GPS	4611	4597				1,01,00	AIR N2O SMPL
49MR0505 1	P03	42	1		BO 26 10.97 N 127 35.56 W GPS	4545	4554	8	4721	4668	36 1-8,23,24,26,27,31,33,64,81	#2 AT OXYCLINE
49MR0505 1	P03	42		ROS 110505 1646	EN 26 11.01 N 127 37.21 W GPS	4555	4549	Ü	-,	1000	00 1 0/20/21/20/21/00/01/01	
49MR0505_1	P03	42		UNK 110505 1646	UN 26 11.01 N 127 37.21 W GPS	4555	4549					AIR CH4 SMPL
49MR0505 1	P03	44	1		BE 25 40.98 N 128 11.85 W GPS	4280	4276					THE CHI SHIB
49MR0505 1	P03	44	1		UN 25 41.01 N 128 11.90 W GPS	4292	4278				1,33	21.0C
49MR0505 1	P03	44	1		UN 25 41.06 N 128 11.94 W GPS	4267	4266				1,00	AIR N2O SMPL
49MR0505 1	P03	44	1		BO 25 41.23 N 128 12.48 W GPS	4208	4206	9	4264	4277	30 1-8,27	#1=#3 (B-10) DUPLICATE SMPLS
49MR0505 1	100	506	1		UN 25 41.36 N 128 12.75 W GPS	4347	4335		1201	1277	00 1 0/2	AEROSOL SMPL
49MR0505 1	P03	44	1		EN 25 41.56 N 128 13.38 W GPS	4466	4464					TIBROOOD OTTE
49MR0505 1	P03	46	1		BE 25 12.87 N 128 48.79 W GPS	4744	4743					
49MR0505 1	P03	46	1		UN 25 12.86 N 128 48.88 W GPS	4741	4704				1,33	21.0C
49MR0505_1	P03	46		UNK 110605 0420	UN 25 12.82 N 128 49.02 W GPS	4741	4743				1,33	AIR N2O SMPL
49MR0505_1	P03	46	1		BO 25 12.86 N 128 49.47 W GPS	4669	4675	8	4775	4804	32 1-8,23,24,26,27	AIR NZO SHIB
49MR0505 1	P03	46	1		EN 25 13.49 N 128 50.32 W GPS	4547	4546	0	1775	1001	32 1 0/23/21/20/2/	
49MR0505_1	P03	48	1		BE 24 42.70 N 129 24.94 W GPS	4500	4500					
49MR0505_1 49MR0505_1	P03	48	1		UN 24 42.75 N 129 25.00 W GPS	4501	4500				1	21.4C
49MR0505_1	P03	48	1		BO 24 43.05 N 129 25.41 W GPS	4478	4484	9	4523	4556	32 1-8,27	#1=#4 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	48	1		EN 24 43.01 N 129 26.16 W GPS	4491	4486	,	1020	1000	02 1 0/2/	"I "I (D IO) DOIDICAID ONLID
49MR0505_1	P03	50	1		BE 24 15.44 N 130 1.79 W GPS	4613	4614					
49MR0505_1	P03	50	1		UN 24 15.47 N 130 1.85 W GPS	4616	4619				1,33	21.1C
49MR0505_1	P03	50		UNK 110605 1659	UN 24 15.47 N 130 1.88 W GPS	4626	4626				-,	AIR N2O SMPL
421110202_1	100	50	Τ.	OINIT 110000 1009	014 27 10.77 N 100 1.00 W GF5	7020	7020					AIN NZO JULI

49MR0505_1	P03	50	1 ROS 110605 1800	BO 24 15.51 N 130 2.31 W GPS	4614	4614	9	4635	4684	35 1-8,22,27	#1=#5 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	50	1 UNK 110605 1806	BE 24 15.51 N 130 2.31 W GPS	4614	4624					80L THROUGH HULL PUMP FOR R.N.
49MR0505_1	P03	50	1 UNK 110605 1824	EN 24 15.51 N 130 2.31 W GPS	4614	4611					
49MR0505_1	P03	50	1 ROS 110605 2008	EN 24 15.58 N 130 3.17 W GPS	4644	4640					
49MR0505_1		507	1 UNK 110605 2212	UN 24 15.32 N 130 35.75 W GPS	4872	4873					AEROSOL SMPL
49MR0505_1	P03	51	1 ROS 110605 2310	BE 24 15.62 N 130 49.99 W GPS	4725	4726					
49MR0505_1	P03	51	1 BUC 110605 2317	UN 24 15.59 N 130 50.06 W GPS	4742	4742				1,33	21.9C
49MR0505_1	P03	51	1 UNK 110605 2322	UN 24 15.59 N 130 50.11 W GPS	4754	4744					AIR N2O SMPL
49MR0505_1	P03	51	1 ROS 110705 0024	BO 24 15.55 N 130 50.83 W GPS	4747	4758	10	4826	4821	32 1-8,12,13,23,24,26,27	#1=#6 (B-10) DUPLICATE SMPLS, #28 MISS FIRE
49MR0505_1	P03	51	1 ROS 110705 0228	EN 24 15.71 N 130 51.90 W GPS	4758	4756					
49MR0505_1	P03	53	1 ROS 110705 0532	BE 24 16.29 N 131 39.16 W GPS	4692	4694					
49MR0505_1	P03	53	1 BUC 110705 0539	UN 24 16.31 N 131 39.17 W GPS	4696	4694				1,33	21.6C
49MR0505_1	P03	53	1 UNK 110705 0547	UN 24 16.30 N 131 39.20 W GPS	4696	4693					AIR N2O SMPL
49MR0505_1	P03	53	1 ROS 110705 0643	BO 24 16.31 N 131 39.38 W GPS	4695	4694	9	4693	4761	32 1-8,27	#1=#7 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	53	1 ROS 110705 0845	EN 24 16.14 N 131 39.95 W GPS	4681	4677					
49MR0505_1	P03	55	1 ROS 110705 1149	BE 24 14.79 N 132 25.84 W GPS	4625	4625					
49MR0505_1	P03	55	1 BUC 110705 1157	UN 24 14.81 N 132 25.86 W GPS	4642	4626				1	21.5C
49MR0505_1	P03	55	1 ROS 110705 1304	BO 24 14.71 N 132 26.11 W GPS	4626	4625	10	4646	4701	32 1-8,27	#1=#8 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	55	1 ROS 110705 1515	EN 24 14.46 N 132 26.73 W GPS	4642	4670					
49MR0505_1	P03	56	1 ROS 110705 1820	BE 24 15.42 N 133 14.25 W GPS	4874	4866					
49MR0505_1	P03	56	1 BUC 110705 1827	UN 24 15.37 N 133 14.28 W GPS	4863	4865				1,31,33,82	21.4C
49MR0505_1	P03	56	1 UNK 110705 1832	UN 24 15.36 N 133 14.31 W GPS	4873	4864					AIR N2O SMPL
49MR0505_1	P03	56	1 ROS 110705 1935	BO 24 15.22 N 133 14.66 W GPS	4860	4857	9	4881	4938	33 1-8,23,24,26,27,31,33,82	#1=#9 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	56	1 ROS 110705 2139	EN 24 14.91 N 133 15.38 W GPS	4841	4840					
49MR0505_1		508	1 UNK 110705 2225	UN 24 14.75 N 133 25.90 W GPS	4882	4872					AEROSOL SMPL
49MR0505_1	P03	58	1 ROS 110805 0045	BE 24 15.06 N 134 2.78 W GPS	4796	4804					
49MR0505_1	P03	58	1 BUC 110805 0052	UN 24 15.00 N 134 2.80 W GPS	4808	4798				1,33	21.8C
49MR0505_1	P03	58	1 UNK 110805 0058	UN 24 14.95 N 134 2.83 W GPS	4815	4809					AIR N2O SMPL
49MR0505_1	P03	58	1 ROS 110805 0159	BO 24 14.60 N 134 3.16 W GPS	4842	4831	10	4866	4907	33 1-8,27	#1=#10 (B-10) DUPLICATE SMPLS
49MR0505_1		509	1 UNK 110805 0300	UN 24 14.18 N 134 3.43 W GPS	4842	4845					RAIN SMPL (0.3MM/HR)
49MR0505_1	P03	58	1 ROS 110805 0407	EN 24 13.60 N 134 4.21 W GPS	4843	4843					
49MR0505_1	P03	X17	1 ROS 110805 0748	BE 23 59.89 N 135 0.10 W GPS	4858	4867					
49MR0505_1	P03	X17	1 BUC 110805 0756	UN 23 59.80 N 135 0.20 W GPS	4875	4868				1	22.0C
49MR0505_1	P03	X17	1 ROS 110805 0904	BO 23 59.80 N 135 0.63 W GPS	4841	4842	9	4865	4926	33 1-8,12,13,23,24,26,27	#1=#11 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	X17	1 ROS 110805 1107	EN 23 59.85 N 135 1.68 W GPS	4824	4824					
49MR0505_1	P03	62	1 ROS 110805 1433	BE 24 15.15 N 135 37.46 W GPS	4491	4500					
49MR0505_1	P03	62	1 BUC 110805 1444	UN 24 15.24 N 135 37.57 W GPS	4497	4492				1,33	21.7C
49MR0505_1	P03	62	1 UNK 110805 1449	UN 24 15.26 N 135 37.64 W GPS	4478	4474					AIR N2O SMPL
49MR0505_1	P03	62	1 ROS 110805 1550	BO 24 15.47 N 135 37.98 W GPS	4462	4472	10	4487	4537	31 1-8,27	#1=#12 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	62	1 ROS 110805 1758	EN 24 15.96 N 135 39.74 W GPS	4442	4438					
49MR0505_1	P03	64	1 ROS 110805 2110	BE 24 14.13 N 136 26.57 W GPS	4450	4461					
49MR0505_1	P03	64	1 BUC 110805 2120	UN 24 14.25 N 136 26.64 W GPS	4459	4462				1,33	22.1C
49MR0505_1	P03	64	1 UNK 110805 2133	UN 24 14.38 N 136 26.74 W GPS	4417	4425					AIR N2O SMPL
49MR0505_1	P03	64	1 ROS 110805 2229	BO 24 14.74 N 136 27.37 W GPS	4272	4293	10	4492	4459	31 1-8,23,24,26,27	#1=#13 (B-10) DUPLICATE SMPLS
49MR0505_1		510	1 UNK 110805 2237	UN 24 14.81 N 136 27.46 W GPS	4287	4287					AEROSOL SMPL
49MR0505_1	P03	64	1 ROS 110905 0037	EN 24 15.28 N 136 28.65 W GPS	4593	4589					
49MR0505_1	P03	66	1 ROS 110905 0336	BE 24 14.14 N 137 13.14 W GPS	4841	4840					
49MR0505_1	P03	66	1 BUC 110905 0346	UN 24 14.10 N 137 13.19 W GPS	4840	4835				1,33	22.0C
49MR0505_1	P03	66	1 UNK 110905 0353	UN 24 14.07 N 137 13.22 W GPS	4840	4830					AIR N2O SMPL

49MR0505_1	P03	66	1	ROS 110905 0454	BO 24 14.08 N 137 13.84 W GPS	4838	4828	9	4909	4900	33 1-8,27	#1=#14 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	66	1	ROS 110905 0702	EN 24 14.44 N 137 15.01 W GPS	4827	4832					
49MR0505_1	P03	67	1	ROS 110905 0958	BE 24 13.86 N 137 59.86 W GPS	4894	4894					
49MR0505_1	P03	67	1	BUC 110905 1006	UN 24 13.86 N 137 59.97 W GPS	4914	4904				1	22.5C
49MR0505_1	P03	67	1	ROS 110905 1117	BO 24 14.17 N 138 0.53 W GPS	4942	4944	10	4990	5012	33 1-8,27	#1=#15 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	67	1	ROS 110905 1333	EN 24 14.68 N 138 1.32 W GPS	4958	4957					
49MR0505_1	P03	69	1	ROS 110905 1634	BE 24 14.60 N 138 47.98 W GPS	5169	5171					
49MR0505_1	P03	69	1	BUC 110905 1644	UN 24 14.66 N 138 48.13 W GPS	5172	5173				1,31,33	22.4C
49MR0505_1	P03	69	1	UNK 110905 1650	UN 24 14.71 N 138 48.19 W GPS	5168	5174					AIR N2O SMPL
49MR0505_1	P03	69	1	ROS 110905 1756	BO 24 14.94 N 138 48.19 W GPS	5174	5180	10	5178	5255	34 1-8,23,24,26,27,31,33	#1=#16 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	69	1	ROS 110905 2014	EN 24 15.49 N 138 48.77 W GPS	5187	5190					
49MR0505_1	P03	69	2	UNK 110905 2014	UN 24 15.49 N 138 48.77 W GPS	5187	5190					AIR CH4 SMPL
49MR0505_1	P03	71	1	ROS 110905 2332	BE 24 14.67 N 139 37.38 W GPS	4691	4696					
49MR0505_1		511	1	UNK 110905 2338	UN 24 14.72 N 139 37.41 W GPS	4687	4687					AEROSOL SMPL
49MR0505_1	P03	71	1	BUC 110905 2340	UN 24 14.73 N 139 37.42 W GPS	4706	4701				1,33	22.6C
49MR0505_1	P03	71	1	UNK 110905 2344	UN 24 14.77 N 139 37.45 W GPS	4678	4709					AIR N2O SMPL
49MR0505_1	P03	71	1	ROS 111005 0045	BO 24 15.37 N 139 37.70 W GPS	4719	4723	10	4718	4719	35 1-8,27,64,81	
49MR0505_1	P03	71	1	ROS 111005 0253	EN 24 15.99 N 139 38.91 W GPS	4817	4821					
49MR0505_1	P03	73	1	ROS 111005 0542	BE 24 14.16 N 140 21.37 W GPS	4810	4807					
49MR0505_1	P03	73	1	BUC 111005 0551	UN 24 14.15 N 140 21.53 W GPS	4816	4813				1	22.5C
49MR0505_1	P03	73	1	ROS 111005 0657	BO 24 14.58 N 140 21.99 W GPS	4809	4812	10	4887	4882	36 1-8,22,27	#1=#17 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	73	1	UNK 111005 0700	BE 24 14.62 N 140 22.01 W GPS	4810	4811					80L THROUGH HULL PUMP FOR R.N.
49MR0505_1	P03	73	1	UNK 111005 0713	EN 24 14.70 N 140 22.06 W GPS	4810	4811					
49MR0505_1	P03	73	1	ROS 111005 0902	EN 24 15.34 N 140 22.70 W GPS	4810	4810					
49MR0505_1		512	1	UNK 111005 2306	UN 24 12.88 N 140 44.16 W GPS	4777	4775					AEROSOL SMPL
49MR0505_1		513	1	UNK 111105 0000	BE 24 13.58 N 140 45.13 W GPS	4439	4446					FIGURE-OF-EIGHT SAILING FOR MAGNETOMETER
49MR0505_1		513	1	UNK 111105 0023	EN 24 13.91 N 140 45.26 W GPS	4418	4453					
49MR0505_1	P03	74	1	ROS 111105 1403	BE 24 16.37 N 141 8.47 W GPS	4989	4990					
49MR0505_1	P03	74	1	BUC 111105 1410	UN 24 16.41 N 141 8.51 W GPS	4990	4990				1,33	22.2C
49MR0505_1	P03	74	1	UNK 111105 1420	UN 24 16.46 N 141 8.59 W GPS	4989	4992					AIR N2O SMPL
49MR0505_1	P03	74	1	ROS 111105 1523	BO 24 16.94 N 141 8.96 W GPS	4992	4991	9	5043	5066	34 1-8,12,13,23,24,26,27	#1=#18 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	74	1	ROS 111105 1735	EN 24 18.01 N 141 9.59 W GPS	5014	5015					
49MR0505_1	P03	76	1	ROS 111105 2016	BE 24 15.06 N 141 50.83 W GPS	4645	4642					
49MR0505_1	P03	76	1	BUC 111105 2024	UN 24 15.13 N 141 50.89 W GPS	4629	4632				1,33	22.5C
49MR0505_1	P03	76	1	UNK 111105 2030	UN 24 15.17 N 141 50.95 W GPS	4632	4629					AIR N2O SMPL
49MR0505_1		514	1	UNK 111105 2106	UN 24 15.50 N 141 51.17 W GPS	4594	4600					RAIN SMPL (0.6MM/HR)
49MR0505_1	P03	76	1	ROS 111105 2133	BO 24 15.64 N 141 51.34 W GPS	4612	4613	9	4697	4698	32 1-8,27	#1=#19 (B-10) DUPLICATE SMPLS
49MR0505_1		515	1	UNK 111105 2309	UN 24 16.41 N 141 52.04 W GPS	4628	4619					AEROSOL SMPL
49MR0505_1	P03	76	1	ROS 111105 2337	EN 24 16.67 N 141 52.41 W GPS	4600	4600					
49MR0505_1	P03	77	1	ROS 111205 0222	BE 24 14.70 N 142 34.96 W GPS	4800	4798					
49MR0505_1	P03	77	1	BUC 111205 0228	UN 24 14.77 N 142 35.01 W GPS	4801	4800				1,31,33,82	23.1C
49MR0505_1	P03	77	1	UNK 111205 0240	UN 24 14.90 N 142 35.12 W GPS	4796	4784					AIR N2O SMPL
49MR0505_1	P03	77	1	ROS 111205 0335	BO 24 15.46 N 142 35.32 W GPS	4794	4794	9	4861	4854	33 1-8,23,24,26,27,31,33,82	#1=#20 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	77	1	ROS 111205 0538	EN 24 16.60 N 142 35.93 W GPS	4762	4762					
49MR0505_1	P03	77	2	UNK 111205 0540	UN 24 16.61 N 142 35.97 W GPS	4744	4744					AIR N2O SMPL
49MR0505_1	P03	79	1	ROS 111205 0831	BE 24 15.43 N 143 19.04 W GPS	4464	4458					
49MR0505_1	P03	79	1	BUC 111205 0840	UN 24 15.55 N 143 19.02 W GPS	4452	4452				1	23.2C
49MR0505_1	P03	79	1	ROS 111205 0942	BO 24 15.92 N 143 18.92 W GPS	4417	4418	9	4468	4506	31 1-8,27	#1=#21 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	79	1	ROS 111205 1137	EN 24 16.29 N 143 18.75 W GPS	4460	4463					

49MR0505_1	P03	81	1		BE 24 14.23 N 144 2.15 W GPS	5197	5207					
49MR0505_1	P03	81	1	BUC 111205 1438	UN 24 14.36 N 144 2.20 W GPS	5269	5272				1,33	22.5C
49MR0505_1	P03	81	1		UN 24 14.44 N 144 2.22 W GPS	5270	5272					AIR N2O SMPL
49MR0505_1	P03	81	1	ROS 111205 1556	BO 24 15.27 N 144 2.42 W GPS	5293	5292	10	5376	5362	35 1-8,23,24,26,27	#1=#22 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	81	1	ROS 111205 1824	EN 24 17.16 N 144 3.11 W GPS	5253	5255					
49MR0505_1	P03	83	1	ROS 111205 2119	BE 24 13.87 N 144 47.82 W GPS	5210	5204					
49MR0505_1	P03	83	1	BUC 111205 2126	UN 24 13.93 N 144 47.90 W GPS	5205	5202				1,33	23.7C
49MR0505_1	P03	83	1	UNK 111205 2135	UN 24 14.01 N 144 47.97 W GPS	5206	5204					AIR N2O SMPL
49MR0505_1		516	1	UNK 111205 2235	UN 24 14.63 N 144 48.25 W GPS	5209	5205					AEROSOL SMPL
49MR0505_1	P03	83	1	ROS 111205 2244	BO 24 14.71 N 144 48.31 W GPS	5205	5203	10	5335	5282	34 1-8,27	#1=#23 (B-10) DUPLICATE SMPLS
49MR0505_1	P03	83	1	ROS 111305 0105	EN 24 16.14 N 144 49.34 W GPS	5221	5220					
49MR0505_1	P03	84	1	ROS 111305 0337	BE 24 17.26 N 145 28.07 W GPS	5181	5190					
49MR0505_1	P03	84	1	BUC 111305 0343	UN 24 17.33 N 145 28.10 W GPS	5189	5188				1,33	23.1C
49MR0505_1	P03	84	1	UNK 111305 0350	UN 24 17.40 N 145 28.14 W GPS	5205	5218					AIR N2O SMPL
49MR0505_1	P03	84	1	ROS 111305 0458	BO 24 18.15 N 145 28.53 W GPS	5162	5172	10	5306	5277	35 1-8,23,24,26,27	#1=#24 (B-10) DUPLICATE SMPLS
49MR0505 1	P03	84	1	ROS 111305 0714	EN 24 19.54 N 145 28.88 W GPS	5172	5186					
49MR0505 1	P03	86	1	ROS 111305 1015	BE 24 13.71 N 146 13.70 W GPS	5270	5243					
49MR0505 1	P03	86	1	BUC 111305 1022	UN 24 13.79 N 146 13.69 W GPS	5250	5240				1	23.8C
49MR0505 1	P03	86	1	ROS 111305 1135	BO 24 14.38 N 146 13.56 W GPS	5258	5259	9	5285	5316	35 1-8,27	#1=#25 (B-10) DUPLICATE SMPLS
49MR0505 1	P03	86	1	ROS 111305 1353	EN 24 15.74 N 146 13.60 W GPS	5308	5308					
49MR0505 1	P03	88	1	ROS 111305 1645	BE 24 13.76 N 146 55.99 W GPS	5221	5228					
49MR0505 1	P03	88	1	BUC 111305 1653	UN 24 13.88 N 146 56.01 W GPS	5222	5219				1,33	23.8C
49MR0505 1	P03	88	1	UNK 111305 1657	UN 24 13.90 N 146 56.00 W GPS	5225	5226					AIR N2O SMPL
49MR0505 1	P03	88	1	ROS 111305 1808	BO 24 14.44 N 146 56.11 W GPS	5257	5263	10	5282	5342	36 1-8,22,27	
49MR0505 1	P03	88		UNK 111305 1815	BE 24 14.48 N 146 56.10 W GPS	5268	5260					80L THROUGH HULL PUMP FOR R.N.
49MR0505 1	P03	88	1	UNK 111305 1828	EN 24 14.54 N 146 56.06 W GPS	5240	5257					
49MR0505 1	P03	88	1	ROS 111305 2028	EN 24 15.27 N 146 55.98 W GPS	5291	5284					
49MR0505 1	P03	90		ROS 111305 2331	BE 24 15.40 N 147 41.79 W GPS	5566	5555					
49MR0505 1	P03	90		BUC 111305 2338	UN 24 15.49 N 147 41.78 W GPS	5569	5567				1,33	24.1C
49MR0505 1		517		UNK 111305 2338	UN 24 15.49 N 147 41.79 W GPS	5534	5567				_, _,	AEROSOL SMPL
49MR0505 1	P03	90		UNK 111305 2344	UN 24 15.58 N 147 41.78 W GPS	5542	5557					AIR N2O SMPL
49MR0505 1	P03	90		ROS 111405 0102	BO 24 16.58 N 147 41.88 W GPS	5526	5530	10	5748	5666	35 1-8,12,13,23,24,26,27	
49MR0505 1	P03	90		ROS 111405 0326	EN 24 17.94 N 147 42.14 W GPS	5519	5504		0,10	0000	00 1 0/12/10/20/21/20/2/	
49MR0505_1	P03	92		ROS 111105 0520	BE 24 14.97 N 148 26.07 W GPS	5487	5472					
49MR0505_1	P03	92		BUC 111405 0626	UN 24 15.02 N 148 26.09 W GPS	5481	5483				1,33	23.7C
49MR0505_1	P03	92		UNK 111405 0632	UN 24 15.05 N 148 26.13 W GPS	5483	5482				-,	AIR N2O SMPL
49MR0505_1 49MR0505_1	P03	92		ROS 111405 0742	BO 24 15.35 N 148 26.27 W GPS	5472	5474	۵	5480	5566	36 1-8,27	#1=#26 (B-10) DUPLICATE SMPLS
49MR0505_1 49MR0505 1	P03	92		ROS 111405 0742 ROS 111405 1002	EN 24 15.78 N 148 26.50 W GPS	5472	5474)	7400	2200	JU 1-0,21	#I-#50 (D-IO) DOLFICWIE SHLFS
49MR0505_1 49MR0505_1	P03	94		ROS 111405 1002	BE 24 14.39 N 149 9.11 W GPS	5407	5411					
49MR0505_1 49MR0505 1	P03	94	1		UN 24 14.44 N 149 9.11 W GPS	5417	5411				1,31,33	23.7C
49MR0505_1 49MR0505 1	P03	94				5340	5337	10	5399	E 417	•	23.70
_	P03	94		ROS 111405 1414	BO 24 15.09 N 149 9.50 W GPS	5340	5337	13	2233	5417	34 1-8,23,24,26,27,31,33	
49MR0505_1			1		EN 24 16.65 N 149 9.74 W GPS							ATD OHA OND
49MR0505_1	P03	94		UNK 111405 1636	UN 24 16.65 N 149 9.74 W GPS	5396	5387					AIR CH4 SMPL
49MR0505_1	P03	96	1		BE 24 14.63 N 149 53.26 W GPS	5331	5330				1.00	24.22
49MR0505_1	P03	96		BUC 111405 1936	UN 24 14.65 N 149 53.31 W GPS	5342	5340				1,33	24.0C
49MR0505_1	P03	96		UNK 111405 1945	UN 24 14.70 N 149 53.37 W GPS	5356	5340		E0.00	E 400	05 1 0 05 64 01	AIR N2O SMPL
49MR0505_1	P03	96		ROS 111405 2053	BO 24 15.18 N 149 53.63 W GPS	5340	5346	10	5369	5422	35 1-8,27,64,81	#3=150 AT OXYCLINE SMPL, #26 NOT FIRE
49MR0505_1		518	1	01111 1111100 11110	UN 24 15.95 N 149 54.20 W GPS	5335	5322					AEROSOL SMPL
49MR0505_1	P03	96	1	ROS 111405 2321	EN 24 16.24 N 149 54.39 W GPS	5327	5324					

49MR0505 1	P03	98	1 ROS 111505 0211	BE 24 14.42 N 150 38.05 W GPS	5382	5384					
49MR0505 1	P03	98	1 BUC 111505 0218	UN 24 14.52 N 150 38.14 W GPS	5382	5377				1,33	24.1C
49MR0505 1	P03	98	1 UNK 111505 0224	UN 24 14.59 N 150 38.16 W GPS	5368	5375					AIR N2O SMPL
49MR0505 1	P03	98	1 ROS 111505 0333	BO 24 15.15 N 150 38.37 W GPS	5374	5374	9	5424	5464	34 1-8,23,24,26,27	#23 NUTRIENT DAMMY SMPL
49MR0505 1	P03	98	1 ROS 111505 0549	EN 24 16.03 N 150 38.89 W GPS	5422	5422					
49MR0505 1	P03	100	1 ROS 111505 0829	BE 24 15.51 N 151 18.89 W GPS	5473	5470					
49MR0505 1	P03	100	1 BUC 111505 0836	UN 24 15.58 N 151 18.93 W GPS	5481	5474				1	24.2C
49MR0505_1	P03	100	1 ROS 111505 0953	BO 24 16.08 N 151 19.18 W GPS	5463	5458	9	5518	5564	35 1-8,27	
49MR0505_1	P03	100	1 ROS 111505 1218	EN 24 16.91 N 151 19.68 W GPS	5472	5473					
49MR0505_1	P03	X16	1 ROS 111505 1506	BE 23 59.69 N 151 58.67 W GPS	5461	5462					
49MR0505_1	P03	X16	1 BUC 111505 1512	UN 23 59.71 N 151 58.73 W GPS	5452	5454				1,33	24.0C
49MR0505_1	P03	X16	1 UNK 111505 1518	UN 23 59.76 N 151 58.77 W GPS	5442	5445					AIR N2O SMPL
49MR0505_1	P03	X16	1 ROS 111505 1632	BO 24 0.42 N 151 59.12 W GPS	5466	5468	10	5495	5531	34 1-8,12,13,23,24,26,27	
49MR0505_1	P03	X16	1 ROS 111505 1856	EN 24 1.64 N 151 59.54 W GPS	5514	5515					
49MR0505_1	P03	104	1 ROS 111505 2140	BE 24 15.35 N 152 37.96 W GPS	5333	5327					
49MR0505_1	P03	104	1 BUC 111505 2146	UN 24 15.41 N 152 38.02 W GPS	5335	5337				1,33	24.7C
49MR0505_1	P03	104	1 UNK 111505 2152	UN 24 15.46 N 152 38.06 W GPS	5366	5371					AIR N2O SMPL
49MR0505_1	P03	104	1 ROS 111505 2307	BO 24 16.18 N 152 38.31 W GPS	5255	5260	10	5419	5408	34 1-8,27	
49MR0505_1		519	1 UNK 111505 2322	UN 24 16.31 N 152 38.34 W GPS	5267	5267					AEROSOL SMPL
49MR0505_1	P03	104	1 ROS 111605 0126	EN 24 17.36 N 152 39.06 W GPS	5249	5249					
49MR0505_1	P03	106	1 ROS 111605 0401	BE 24 15.40 N 153 18.16 W GPS	5142	5143					
49MR0505_1	P03	106	1 BUC 111605 0408	UN 24 15.48 N 153 18.21 W GPS	5142	5144				1,31,33,82	24.6C
49MR0505_1	P03	106	1 UNK 111605 0420	UN 24 15.64 N 153 18.32 W GPS	5140	5139					AIR N2O SMPL
49MR0505_1	P03	106	1 ROS 111605 0521	BO 24 16.34 N 153 18.49 W GPS	5154	5146	10	5267	5213	33 1-8,23,24,26,27,31,33,82	
49MR0505_1	P03	106	1 ROS 111605 0741	EN 24 17.49 N 153 18.68 W GPS	5124	5124					
49MR0505_1	P03	108	1 ROS 111605 1016	BE 24 15.39 N 153 57.28 W GPS	4861	4851					
49MR0505_1	P03	108	1 BUC 111605 1023	UN 24 15.49 N 153 57.28 W GPS	4863	4863				1	24.4C
49MR0505_1	P03	108	1 ROS 111605 1133	BO 24 16.14 N 153 57.22 W GPS	4877	4877	9	4943	4932	32 1-8,27	
49MR0505_1	P03	108	1 ROS 111605 1345	EN 24 17.25 N 153 57.24 W GPS	4913	4913					
49MR0505_1		520	1 UNK 111605 1620	UN 24 14.17 N 154 37.59 W GPS	4665	4664					RAIN SMPL (1.6MM/HR)
49MR0505_1	P03	110	1 ROS 111605 1624	BE 24 14.14 N 154 37.59 W GPS	4663	4664					
49MR0505_1	P03	110	1 BUC 111605 1631	UN 24 14.22 N 154 37.65 W GPS	4662	4666				1,33	24.3C
49MR0505_1	P03	110	1 UNK 111605 1636	UN 24 14.28 N 154 37.67 W GPS	4666	4666					AIR N2O SMPL
49MR0505_1	P03	110	1 ROS 111605 1740	BO 24 15.01 N 154 37.95 W GPS	4681	4681	10	4755	4743	31 1-8,23,24,26,27	
49MR0505_1	P03	110	1 ROS 111605 1955	EN 24 16.53 N 154 38.27 W GPS	4697	4689					
49MR0505_1	P03	112	1 ROS 111605 2227	BE 24 17.12 N 155 16.62 W GPS	4578	4583					
49MR0505_1	P03	112	1 BUC 111605 2234	UN 24 17.23 N 155 16.67 W GPS	4581	4582				1,33	25.1C
49MR0505_1		521	1 UNK 111605 2234	UN 24 17.23 N 155 16.67 W GPS	4582	4582					AEROSOL SMPL
49MR0505_1	P03	112	1 UNK 111605 2239	UN 24 17.30 N 155 16.70 W GPS	4581	4581					AIR N2O SMPL
49MR0505_1	P03	112	1 UNK 111605 2342	BE 24 18.08 N 155 17.09 W GPS	4582	4583					80L THROUGH HULL PUMP FOR R.N.
49MR0505_1	P03	112	1 ROS 111605 2344	BO 24 18.10 N 155 17.10 W GPS	4585	4583	10	4715	4645	34 1-8,22,27	
49MR0505_1	P03	112	1 UNK 111605 2354	EN 24 18.21 N 155 17.13 W GPS	4582	4582					
49MR0505_1	P03	112	1 ROS 111705 0144	EN 24 19.75 N 155 17.69 W GPS	4581	4583					
49MR0505_1	P03	114	1 ROS 111705 0427	BE 24 15.97 N 155 57.39 W GPS	4547	4525				1 22	25.00
49MR0505_1	P03	114	1 BUC 111705 0433	UN 24 16.07 N 155 57.39 W GPS	4534	4532				1,33	25.0C
49MR0505_1	P03 P03	114 114	1 UNK 111705 0440 1 ROS 111705 0539	UN 24 16.16 N 155 57.39 W GPS BO 24 16.93 N 155 57.46 W GPS	4541 4515	4533 4515	9	4643	4600	31 1-8,12,13,23,24,26,27	AIR N2O SMPL JERRY FISH AT TC DUCT
49MR0505_1	P03	114	1 ROS 111705 0539 1 ROS 111705 0745	EN 24 18.38 N 155 57.11 W GPS	4515 4520	4515	9	4043	4000	JI 1-0,12,13,23,24,20,21	ODERI LIGH AT TO DUCT
49MR0505_1	P03	114	1 ROS 111705 0745 1 ROS 111705 1056	EN 24 18.38 N 155 57.11 W GPS BE 24 14.96 N 156 43.73 W GPS	4309	4325					
49MR0505_1	rus	110	T VOS TITI CON T	DE 24 14,30 N 130 43./3 W GPS	4309	4331					

49MR0505 1	P03	116	1 BUC 111705 110	3 UN 24 15.07 N 156 43.68 W GPS	4354	4350				1	24.9C
49MR0505 1	P03	116	1 ROS 111705 120		4409	4405	10	4414	4421	29 1-8,27	#36 MISS FIRE
49MR0505_1	P03	116	1 ROS 111705 120		4453	4453	10	1111	7721	23 1 0,21	#30 PH35 FIRE
49MR0505_1	P03	118	1 ROS 111705 171		4423	4466					
49MR0505_1	P03	118	1 BUC 111705 172		4459	4471				1,31,33	24.8C
_						4471				1,31,33	
49MR0505_1	P03	118	1 UNK 111705 174 1 ROS 111705 183		4510 4488	4484	10	4543	4539	20 1 0 02 04 06 07 21 22	AIR N2O SMPL
49MR0505_1	P03	118					10	4543	4539	30 1-8,23,24,26,27,31,33	
49MR0505_1	P03	118	1 ROS 111705 203		4511	4489					2.70 004 007
49MR0505_1	P03	118	2 UNK 111705 203		4511	4489					AIR CH4 SMPL
49MR0505_1		522	1 UNK 111705 221		4633	4635					AEROSOL SMPL
49MR0505_1	P03	120	1 ROS 111805 001		4597	4599					STATION POSITION WAS SHIFTED NORTH
49MR0505_1	P03	120	1 BUC 111805 002		4582	4589				1,33	25.2C
49MR0505_1	P03	120	1 UNK 111805 003		4607	4604					AIR N2O SMPL
49MR0505_1	P03	120	1 ROS 111805 012		4648	4630	10	4596	4653	35 1-8,27,64,81	
49MR0505_1	P03	120	1 ROS 111805 032		4731	4743					
49MR0505_1	P03	122	1 ROS 111805 094		5054	5060					STATION POSITION WAS SHIFTED NORTH
49MR0505_1	P03	122	1 BUC 111805 094	7 UN 25 49.96 N 159 0.47 W GPS	5058	5060				1	25.1C
49MR0505_1	P03	122	1 ROS 111805 110	0 BO 25 50.19 N 159 0.84 W GPS	5058	5061	10	5095	5137	33 1-8,23,24,26,27	
49MR0505_1	P03	122	1 ROS 111805 131	2 EN 25 50.86 N 159 1.82 W GPS	5057	5062					
49MR0505_1	P03	124	1 ROS 111805 161	2 BE 25 50.14 N 159 46.69 W GPS	4563	4564					STATION POSITION WAS SHIFTED NORTH
49MR0505_1	P03	124	1 BUC 111805 161	9 UN 25 50.20 N 159 46.72 W GPS	4556	4558				1,33	25.2C
49MR0505_1	P03	124	1 UNK 111805 162	4 UN 25 50.21 N 159 46.76 W GPS	4549	4554					AIR N2O SMPL
49MR0505_1	P03	124	1 ROS 111805 172	4 BO 25 50.38 N 159 47.24 W GPS	4534	4535	8	4582	4620	34 1-8,22,27	
49MR0505_1	P03	124	1 UNK 111805 172	4 BE 25 50.39 N 159 47.27 W GPS	4535	4535					80L THROUGH HULL PUMP FOR R.N.
49MR0505_1	P03	124	1 UNK 111805 172	4 EN 25 50.51 N 159 47.41 W GPS	4507	4535					
49MR0505 1	P03	124	1 ROS 111805 193	3 EN 25 50.96 N 159 48.30 W GPS	4376	4376					
49MR0505 1		523	1 UNK 111805 215	2 UN 25 50.11 N 160 25.67 W GPS	5076	5073					AEROSOL SMPL
49MR0505 1	P03	126	1 ROS 111805 222	1 BE 25 50.12 N 160 31.78 W GPS	5089	5083					
49MR0505 1	P03	126	1 BUC 111805 222	8 UN 25 50.17 N 160 31.85 W GPS	5077	5080				1,33	25.5C
49MR0505 1	P03	126	1 UNK 111805 223	3 UN 25 50.22 N 160 31.90 W GPS	5078	5088					AIR N2O SMPL
49MR0505 1	P03	126	1 ROS 111805 234		5079	5077	10	5213	5160	33 1-8,12,13,23,24,26,27	
49MR0505_1	P03	126	1 ROS 111905 015		5074	5075					
49MR0505 1	P03	128	1 ROS 111905 105		4994	4992					
49MR0505 1	P03	128	1 BUC 111905 110		4992	4991				1	25.2C
49MR0505 1	P03	128	1 ROS 111905 121		4994	4996	10	5021	5068	33 1-8,23,24,26,27	20.20
49MR0505 1	P03	128	1 ROS 111905 142		4997	5002		0021	0000	30 1 0/20/21/20/2	
49MR0505_1	103	524	1 UNK 111905 223		3029	3016					RAIN SMPL (1.5MM/HR)
49MR0505_1		525	1 UNK 111905 224		2227	2227					AEROSOL SMPL
49MR0505_1	P03	130	1 ROS 111905 232		3314	3309					ADROSOL SMEL
49MR0505_1 49MR0505_1	P03	130	1 BUC 111905 232		3348	3356				1,33	25.7c
49MR0505_1 49MR0505_1	P03	130	1 UNK 111905 233		3350	3356				1,33	AIR N2O SMPL
_						3335	1.0	2277	2410	06 1 0 00 04 06 07	AIR NZO SMPL
49MR0505_1	P03	130	1 ROS 112005 002		3350		10	3377	3410	26 1-8,23,24,26,27	7. 7. 0. 7. (1. 0.0./17.)
49MR0505_1	D02	526	1 UNK 112005 011		3145	3138					RAIN SMPL (1.3MM/HR)
49MR0505_1	P03	130	1 ROS 112005 020		3010	3012					
49MR0505_1	P03	132	1 ROS 112005 050		5006	5006				1.00	
49MR0505_1	P03	132	1 BUC 112005 051		5005	5006				1,33	25.5C
49MR0505_1	P03	132	1 UNK 112005 051		5007	5006					AIR N2O SMPL
49MR0505_1	P03	132	1 ROS 112005 062		5005	5006	10	5104	5078	33 1-8,27	
49MR0505_1	P03	132	1 ROS 112005 084	5 EN 25 16.17 N 162 42.32 W GPS	5008	5006					

49MR0505_1	P03	134	1 ROS 112005 1208	BE 25 30.64 N 163 29.56 W GPS	5006	5005					
49MR0505_1	P03	134	1 BUC 112005 1215	UN 25 30.66 N 163 29.51 W GPS	5000	5001				1,31,33,82	24.8C
49MR0505_1	P03	134	1 ROS 112005 1327	BO 25 30.92 N 163 28.72 W GPS	5005	4999	10	5077	5070	36 1-8,23,24,26,27,31,33,64,82	
49MR0505_1	P03	134	1 ROS 112005 1539	EN 25 31.31 N 163 27.62 W GPS	4994	5000					
49MR0505_1	P03	136	1 ROS 112005 1859	BE 25 30.47 N 164 18.36 W GPS	4347	4344					
49MR0505_1	P03	136	1 BUC 112005 1905	UN 25 30.52 N 164 18.26 W GPS	4332	4331				1,33	24.9C
49MR0505_1	P03	136	1 UNK 112005 1910	UN 25 30.51 N 164 18.20 W GPS	4330	4321					AIR N2O SMPL
49MR0505_1	P03	136	1 ROS 112005 2005	BO 25 30.35 N 164 17.48 W GPS	4225	4225	10	4334	4295	32 1-8,22,27	
49MR0505_1	P03	136	1 UNK 112005 2013	BE 25 30.31 N 164 17.42 W GPS	4238	4223					80L THROUGH HULL PUMP FOR R.N.
49MR0505_1	P03	136	1 UNK 112005 2027	EN 25 30.24 N 164 17.29 W GPS	4202	4194					
49MR0505_1		527	1 UNK 112005 2146	UN 25 29.94 N 164 16.34 W GPS	4022	4022					AEROSOL SMPL
49MR0505_1	P03	136	1 ROS 112005 2204	EN 25 29.93 N 164 16.06 W GPS	3957	3933					
49MR0505_1	P03	138	1 ROS 112105 0107	BE 25 30.08 N 165 0.33 W GPS	4892	4887					
49MR0505_1	P03	138	1 BUC 112105 0114	UN 25 30.07 N 165 0.25 W GPS	4885	4892				1,33	25.3C
49MR0505_1	P03	138	1 UNK 112105 0119	UN 25 30.08 N 165 0.19 W GPS	4885	4889					AIR N2O SMPL
49MR0505_1	P03	138	1 ROS 112105 0222	BO 25 29.98 N 164 59.62 W GPS	4887	4883	10	4917	4954	32 1-8,12,13,23,24,26,27	
49MR0505_1	P03	138	1 ROS 112105 0429	EN 25 29.82 N 164 58.71 W GPS	4876	4876					
49MR0505_1	P03	140	1 ROS 112105 0743	BE 25 28.95 N 165 43.64 W GPS	4869	4871					
49MR0505_1	P03	140	1 BUC 112105 0751	UN 25 28.86 N 165 43.45 W GPS	4870	4872				1,33	25.7C
49MR0505_1	P03	140	1 UNK 112105 0757	UN 25 28.80 N 165 43.39 W GPS	4870	4871					AIR N2O SMPL
49MR0505_1	P03	140	1 ROS 112105 0900	BO 25 28.23 N 165 42.82 W GPS	4870	4870	8	4970	4938	32 1-8,27	
49MR0505_1	P03	140	1 ROS 112105 1109	EN 25 27.12 N 165 41.74 W GPS	4886	4882					
49MR0505_1	P03	142	1 ROS 112105 1318	BE 25 10.37 N 166 4.12 W GPS	5015	5018					
49MR0505_1	P03	142	1 BUC 112105 1325	UN 25 10.30 N 166 4.00 W GPS	5008	5015				1	25.7C
49MR0505_1	P03	142	1 ROS 112105 1435	BO 25 9.85 N 166 3.35 W GPS	5014	5019	8	5079	5088	33 1-8,23,24,26,27	
49MR0505_1	P03	142	1 ROS 112105 1649	EN 25 8.91 N 166 2.24 W GPS	5013	5016					
49MR0505_1	P03	144	1 ROS 112105 1843	BE 24 53.73 N 166 21.19 W GPS	5076	5082					
49MR0505_1	P03	144	1 BUC 112105 1850	UN 24 53.64 N 166 21.06 W GPS	5086	5090				1,33	25.6C
49MR0505_1	P03	144	1 UNK 112105 1857	UN 24 53.60 N 166 21.01 W GPS	5076	5083					AIR N2O SMPL
49MR0505_1	P03	144	1 ROS 112105 2003	BO 24 53.20 N 166 20.61 W GPS	5079	5086	10	5130	5160	33 1-8,27	
49MR0505_1	P03	144	1 ROS 112105 2225	EN 24 52.28 N 166 19.98 W GPS	5082	5090					
49MR0505_1	P03	146	1 ROS 112105 2348	BE 24 40.67 N 166 33.59 W GPS	5129	5127					
49MR0505_1		528	1 UNK 112105 2349	UN 24 40.68 N 166 33.60 W GPS	5128	5128					AEROSOL SMPL
49MR0505_1	P03	146	1 BUC 112105 2354	UN 24 40.64 N 166 33.58 W GPS	5143	5128				1,33	25.5C
49MR0505_1	P03	146	1 UNK 112105 2359	UN 24 40.61 N 166 33.58 W GPS	5126	5127					AIR N2O SMPL
49MR0505_1	P03	146	1 ROS 112205 0107	BO 24 40.03 N 166 33.44 W GPS	5124	5127	10	5169	5202	33 1-8,23,24,26,27	
49MR0505_1	P03	146	1 ROS 112205 0329	EN 24 39.16 N 166 33.38 W GPS	5116	5114					
49MR0505_1		529	1 UNK 112205 0551	UN 24 28.74 N 166 52.84 W GPS	1579	1581					RAIN SMPL (1.4MM/HR)
49MR0505_1		530	1 UNK 112205 1632	UN 22 47.77 N 166 29.47 W GPS	4667	4667					RAIN SMPL (1.2MM/HR)
49MR0505_1		531	1 UNK 112205 2313	UN 22 18.45 N 165 17.57 W GPS	4653	4653					AEROSOL SMPL
49MR0505_1		532	1 UNK 112205 2326	UN 22 17.33 N 165 14.83 W GPS	4659	4656					RAIN SMPL (1.2MM/HR)
49MR0505_1		533	1 UNK 112305 0235	UN 22 2.35 N 164 36.79 W GPS	4586	4586					RAIN SMPL (0.3MM/HR)
49MR0505_1		534	1 UNK 112305 1615	UN 21 0.80 N 162 7.74 W GPS	4601	4605					RAIN SMPL (3.8MM/HR)
49MR0505_1		535	1 UNK 112305 2136	UN 20 37.13 N 161 10.42 W GPS	4736	4736					AEROSOL SMPL

Paramete:

1=Salinity, 2=Oxygen, 3=Silicate, 4=Nitrate, 5=Nitrite, 6=PHOSPHATE, 7=CFC-11, 8=CFC-12, $12=\Delta^{14}$ C, $13=\delta^{13}$ C, $22=^{137}$ CS, 23= Total carbon, 24=Alkalinity, 26=PH, 27=CFC-113, 31= CH₄, 33=N₂O, 42=Abundance of bacteria, 64= Incubation, 81= Particulate organic matter, $82=^{15}$ NO₃

49MR0505_2.sum file

P03 REV R/V	MIRAI	CRUISE	MR0505	LEG 2												
SHIP/CRS	WOCE			CAST	UTC	EVENT	PC	SITION		UNC	COR	HT ABOVE	WIRE	MAX	NO. OF	
EXPOCODE	SECT	STNNBR	CASTNO	TYPE DATE	TIME	CODE LATIT	TUDE	LONGITUDE	NAV	DEPTH	DEPTH	BOTTOM	OUT	PRES	S BOTTLES PARAMETERS	COMMENTS
49MR0505_2		536	1	UNK 113005	0019	UN 24 39	9.48 N	166 19.81 1	W GPS	4927	4925					AEROSOL SMPL
49MR0505_2	P03	146	2	ROS 113005	0154	BE 24 40	0.60 N	166 33.54 V	W GPS	5125	5125					
49MR0505_2	P03	146		BUC 113005				166 33.50 V		5125	5125				1,33	25.2C
49MR0505_2	P03	146	2	UNK 113005	0217	UN 24 40	0.40 N	166 33.41 V	W GPS	5126	5127					AIR N2O SMPL
49MR0505_2	P03	146	2	ROS 113005	0318	во 24 39	9.98 N	166 33.05 V	W GPS	5110	5110	9	5143	5198	33 1-8,23,24,26,27	#4 FOR CHLORA FILTERATION (3000DB)
49MR0505_2	P03	146		ROS 113005				166 32.35 V		5109	5109					
49MR0505_2	P03	148		ROS 113005				166 39.77 V		4176	4177					
49MR0505_2	P03	148		BUC 113005				166 39.78 V		4177	4180				1,33	25.1C
49MR0505_2	P03	148		UNK 113005				166 39.74 V		4194	4195					AIR N2O SMPL
49MR0505_2	P03	148		ROS 113005				166 39.64 V		4209	4213	9	4202	4260	30 1-8,27	#2=#1 DUPL SMPLS (B-10DB)
49MR0505_2	P03	148		ROS 113005				166 39.28 V		4414	4416					
49MR0505_2	P03	150		ROS 113005				166 43.81 V		3368	3377					
49MR0505_2	P03	150		BUC 113005				166 43.81 V		3395	3394				1	25.2C
49MR0505_2	P03	150		ROS 113005				166 43.89 V		3371	3370	5	3369	3409	27 1-8,23,24,26,27	#3=#13 DUPL SMPLS (3000DB)
49MR0505_2	P03	150		ROS 113005				166 44.19 V		3189	3187					
49MR0505_2	P03	152		ROS 113005				166 48.75 V		2036	2037				1	05.10
49MR0505_2	P03	152		BUC 113005				166 48.76 V		2055	2054	1.1	0070	0001	1	25.1C
49MR0505_2	P03	152		ROS 113005				166 48.74 V		2079	2076	11	2073	2091	20 1-8,23,24,26,27	
49MR0505_2	P03	152		ROS 113005				166 48.64 V		2174	2174 1550					
49MR0505_2	P03	153		ROS 113005				166 49.20 V		1549 1545					1 22	05.40
49MR0505_2	P03	153		BUC 113005				166 49.16 V			1549				1,33	25.4C
49MR0505_2 49MR0505_2	P03 P03	153 153		UNK 113005 ROS 113005				166 49.18 W		1532 1492	1532 1491	5	1551	1560	17 1-8,23,24,26,27	AIR N2O SMPL
_	P03									1513	1491	5	1331	1300	1/ 1-8,23,24,26,2/	
49MR0505_2	P03	153 537		ROS 113005 UNK 120105				166 49.31 V 167 1.80 V		228	228					ABDOCOL CMDI
49MR0505_2 49MR0505_2	P03	154		ROS 120105				167 5.70		1221	1222					AEROSOL SMPL
49MR0505_2	P03	154		BUC 120105				167 5.79		1309	1308				1	25.5C
49MR0505_2	P03	154		ROS 120105				167 5.94 1		1416	1417	26	1351	1352	<u>=</u>	23.30
49MR0505_2	P03	154		ROS 120105				167 6.42		1658	1659	20	1331	1332	10 1-0,23,24,20,27	
49MR0505_2	P03	155		ROS 120105				167 7.96		2006	1993					CHANGE LOCATION
49MR0505_2	P03	155		BUC 120105			3.94 N			1946	1946				1,33	25.2C
49MR0505_2	P03	155		UNK 120105				167 7.80		1914	1913				1,33	AIR N2O SMPL
49MR0505_2	P03	155		ROS 120105				167 7.62		1882	1870	20	1889	1885	5 19 1-8,27	THE NEO OTHER
49MR0505 2	P03	155		ROS 120105				167 6.73		1495	1493	20	1005	1000	13 1 3,2	
49MR0505 2	P03	157		ROS 120105				167 10.06 V		2856	2856					
49MR0505 2	P03	157		BUC 120105				167 9.96		2895	2896				1,33	25.2C
49MR0505 2	P03	157		UNK 120105				167 9.92		2970	2970				_,	AIR N2O SMPL
49MR0505 2	P03	157		ROS 120105				167 9.92		3011	3039	12	3033	3036	5 24 1-8,23,24,26,27	
49MR0505 2	P03	157		ROS 120105				167 10.22 1		3082	3094	-			-, -, , -, - :	
49MR0505 2	P03	159		ROS 120105				167 14.27 V		3914	3907					
49MR0505 2	P03	159		BUC 120105				167 14.30 V		3904	3904				1	25.2C
49MR0505 2		538		UNK 120105				167 14.52		3923	3921					RAIN SMPL (0.9MM/HR)
49MR0505 2	P03	159		ROS 120105				167 14.62 V		3922	3925	11	3912	3941	29 1-8,27	#4=#10 DUPL SMPLS (3750DB)
49MR0505 2	P03	159		ROS 120105				167 15.44 V		4190	4191				•	
49MR0505_2	P03	161	1	ROS 120105	1925	BE 23 51	.03 N	167 22.55 W	W GPS	4926	4926					
_																

49MR0505_2	P03	161		BUC 120105 1932	UN 23 51.02 N 167 22.61 W GPS	4925	4925				1,33	25.3C
49MR0505_2	P03	161	1	UNK 120105 1945	UN 23 50.99 N 167 22.70 W GPS	4922	4922					AIR N2O SMPL
49MR0505_2	P03	161	1	ROS 120105 2040	BO 23 50.84 N 167 22.79 W GPS	4927	4927	9	4924	4997	33 1-8,27	#5=#6 DUPL SMPLS (4750DB)
49MR0505_2	P03	161	1	ROS 120105 2247	EN 23 50.33 N 167 22.72 W GPS	4930	4930					
49MR0505_2		539	1	UNK 120205 0019	UN 23 39.50 N 167 34.58 W GPS	4963	4963					AEROSOL SMPL
49MR0505_2	P03	163	1	ROS 120205 0049	BE 23 37.42 N 167 37.27 W GPS	4964	4964					
49MR0505_2	P03	163	1	BUC 120205 0056	UN 23 37.38 N 167 37.33 W GPS	4962	4962				1,31,33	25.3C
49MR0505 2	P03	163	1	UNK 120205 0116	UN 23 37.20 N 167 37.36 W GPS	4959	4959					AIR CH4 & N2O SMPL
49MR0505 2	P03	163	1	ROS 120205 0207	BO 23 36.80 N 167 37.58 W GPS	4961	4960	9	4993	5033	36 1-8,23,24,26,27,31,33,81	#2,3,4,5 FOR POM
49MR0505 2	P03	163	1	ROS 120205 0419	EN 23 35.84 N 167 38.03 W GPS	4962	4963					
49MR0505 2	P03	165	1	ROS 120205 0710	BE 23 14.42 N 168 0.22 W GPS	4875	4877					
49MR0505 2	P03	165	1	BUC 120205 0717	UN 23 14.34 N 168 0.23 W GPS	4874	4877				1,33	25.3C
49MR0505_2	P03	165		UNK 120205 0726	UN 23 14.27 N 168 0.27 W GPS	4880	4880				1,55	AIR N2O SMPL
49MR0505_2	P03	165	1	ROS 120205 0720	BO 23 13.96 N 168 0.43 W GPS	4880	4882	9	4909	4944	33 1-8,27	#6=#5 DUPL SMPLS (4750DB)
_								9	4909	4344	33 1-0,27	#0-#3 DOPL SMPLS (4730DB)
49MR0505_2	P03	165		ROS 120205 1033	EN 23 13.21 N 168 0.70 W GPS	4867	4867					
49MR0505_2	P03	167	1	ROS 120205 1349	BE 23 0.76 N 168 39.24 W GPS	4774	4774					0.5
49MR0505_2	P03	167	1	BUC 120205 1357	UN 23 0.74 N 168 39.25 W GPS	4775	4775				1,33	25.2C
49MR0505_2	P03	167	1	UNK 120205 1409	UN 23 0.74 N 168 39.25 W GPS	4774	4774					AIR N2O SMPL
49MR0505_2	P03	167	1	ROS 120205 1503	BO 23 0.67 N 168 39.29 W GPS	4763	4761	9	4756	4827	33 1-8,27	#7=#5 DUPL SMPLS (4500DB)
49MR0505_2	P03	167	1	ROS 120205 1712	EN 23 0.61 N 168 39.78 W GPS	4768	4777					
49MR0505_2	P03	169	1	ROS 120205 2110	BE 22 44.80 N 169 20.29 W GPS	4691	4693					
49MR0505_2	P03	169	1	BUC 120205 2119	UN 22 44.84 N 169 20.27 W GPS	4683	4689				1,33	25.8C
49MR0505_2	P03	169	1	UNK 120205 2127	UN 22 44.90 N 169 20.26 W GPS	4698	4687					AIR N2O SMPL
49MR0505 2	P03	169	1	ROS 120205 2221	BO 22 45.13 N 169 19.96 W GPS	4691	4691	8	4702	4754	32 1-8,23,24,26,27	#8=#7 DUPL SMPLS (4500DB)
49MR0505 2		540	1	UNK 120205 2331	UN 22 45.40 N 169 19.39 W GPS	4683	4684					AEROSOL SMPL
49MR0505 2	P03	169	1	ROS 120305 0019	EN 22 45.74 N 169 18.93 W GPS	4687	4688					
49MR0505 2	P03	171	1	ROS 120305 0432	BE 23 4.44 N 170 1.69 W GPS	4646	4645					
49MR0505 2	P03	171	1	BUC 120305 0439	UN 23 4.50 N 170 1.59 W GPS	4645	4645				1,33	25.8C
49MR0505_2	P03	171	1	UNK 120305 0449	UN 23 4.47 N 170 1.52 W GPS	4650	4652				1,00	AIR N2O SMPL
49MR0505_2	P03	171	1	ROS 120305 0545	BO 23 4.06 N 170 1.20 W GPS	4658	4656	9	4686	4705	34 1-8,22,27	#2,3,4 FOR R.N.
49MR0505_2 49MR0505_2	P03	171		UNK 120305 0558	BE 23 4.00 N 170 1.20 W GPS	4639	4640	9	4000	4703	34 1-0,22,27	#2,3,4 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
_		171		UNK 120305 0538 UNK 120305 0617		4645	4644					OUL INKOUGH HULL FUMP FOR K.N.
49MR0505_2	P03		2		EN 23 3.87 N 170 1.16 W GPS							
49MR0505_2	P03	171	1	ROS 120305 0751	EN 23 3.34 N 170 0.72 W GPS	4644	4644					
49MR0505_2	P03	173	1	ROS 120305 1210	BE 23 23.87 N 170 44.55 W GPS	4686	4685					
49MR0505_2	P03	173	1	BUC 120305 1217	UN 23 23.81 N 170 44.52 W GPS	4684	4684				1	26.1C
49MR0505_2	P03	173	1	ROS 120305 1324	BO 23 23.32 N 170 44.48 W GPS	4685	4684	10	4704	4740	32 1-8,12,13,23,24,26,27	#9=#7 DUPL SMPLS (4500DB)
49MR0505_2	P03	173	1	ROS 120305 1525	EN 23 23.10 N 170 44.03 W GPS	4681	4681					
49MR0505_2	P03	175	1	ROS 120305 1920	BE 23 42.86 N 171 22.79 W GPS	4753	4753					
49MR0505_2	P03	175	1	BUC 120305 1927	UN 23 42.87 N 171 22.78 W GPS	4751	4751				1,33	26.1C
49MR0505_2	P03	175	1	UNK 120305 1936	UN 23 42.88 N 171 22.77 W GPS	4750	4750					AIR N2O SMPL
49MR0505_2	P03	175	1	ROS 120305 2032	BO 23 42.69 N 171 22.91 W GPS	4756	4755	8	4759	4815	33 1-8,27	#10=#7 DUPL SMPLS (4500DB)
49MR0505 2		541	1	UNK 120305 2225	UN 23 41.85 N 171 23.87 W GPS	4750	4750					RAIN SMPL (1.5MM/HR)
49MR0505 2	P03	175	1	ROS 120305 2236	EN 23 41.73 N 171 24.04 W GPS	4750	4749					
49MR0505 2		542	1	UNK 120405 0018	UN 23 50.28 N 171 41.88 W GPS	4736	4736					AEROSOL SMPL
49MR0505 2	P03	177	1	ROS 120405 0240	BE 24 3.97 N 172 5.89 W GPS	4683	4683					
49MR0505 2	P03	177	1	BUC 120405 0247	UN 24 3.92 N 172 6.01 W GPS	4682	4682				1,33	25.4C
49MR0505_2 49MR0505_2	P03	177	1	UNK 120405 0258	UN 24 3.96 N 172 6.07 W GPS	4686	4684				±,55	AIR N2O SMPL
49MR0505_2 49MR0505_2	P03	177	1	ROS 120405 0258		4681	4681	10	4704	4745	32 1-8,23,24,26,27	
_								±Ο	4/04	C+1+	JZ 1-0,Z3,Z4,Z0,Z1	#11=#7 DUPL SMPLS (4500DB)
49MR0505_2	P03	177	1	ROS 120405 0559	EN 24 4.23 N 172 7.16 W GPS	4682	4682					
49MR0505_2	P03	179	1	ROS 120405 0947	BE 24 14.48 N 172 49.31 W GPS	4576	4575				4.00	
49MR0505_2	P03	179	1	BUC 120405 0954	UN 24 14.47 N 172 49.35 W GPS	4554	4554				1,33	25.6C

49MR0505_2	P03	179	1 UNK 120405 1004	UN 24 14.51 N 172 49.37 W GPS	4568	4564					AIR N2O SMPL
49MR0505_2	P03	179	1 ROS 120405 1059	BO 24 14.77 N 172 49.73 W GPS	4555	4556	10	4602	4618	32 1-8,27	#12=#8 DUPL SMPLS (4250DB)
49MR0505_2	P03	179	1 ROS 120405 1258	EN 24 15.89 N 172 50.02 W GPS	4586	4584					
49MR0505_2	P03	181	1 ROS 120405 1711	BE 24 14.27 N 173 37.93 W GPS	4946	4946					
49MR0505_2	P03	181	1 BUC 120405 1720	UN 24 14.31 N 173 38.00 W GPS	4946	4946				1,33	25.4C
49MR0505 2	P03	181	1 UNK 120405 1730	UN 24 14.37 N 173 38.03 W GPS	4944	4944					AIR N2O SMPL
49MR0505 2	P03	181	1 ROS 120405 1829	BO 24 14.80 N 173 38.03 W GPS	4947	4948	10	4977	5019	33 1-8,27	#13=#6 DUPL SMPLS (4750DB)
49MR0505_2	P03	181	1 ROS 120405 2039	EN 24 15.71 N 173 37.97 W GPS	4941	4942					
49MR0505_2		543	1 UNK 120505 0016	UN 24 14.49 N 174 20.96 W GPS	5065	5064					AEROSOL SMPL
49MR0505_2	P03	183	1 ROS 120505 0047	BE 24 14.65 N 174 25.92 W GPS	5069	5070					
49MR0505_2	P03	183	1 BUC 120505 0055	UN 24 14.69 N 174 25.99 W GPS	5067	5069				1,31,33,82	25.5C
49MR0505 2	P03	183	1 UNK 120505 0107	UN 24 14.67 N 174 26.12 W GPS	5070	5071					AIR CH4 & N2O SMPL
49MR0505 2	P03	183	1 ROS 120505 0206	BO 24 14.63 N 174 26.60 W GPS	5068	5068	10	5091	5139	36 1-8,23,24,26,27,31,33,64,82	#2,3,4 FOR INCUBATION
49MR0505 2	P03	183	1 ROS 120505 0419	EN 24 14.28 N 174 27.49 W GPS	5063	5065					
49MR0505 2		544	1 UNK 120505 0613	UN 24 14.64 N 174 49.05 W GPS	5077	5079					RAIN SMPL (1.4MM/HR)
49MR0505 2	P03	185	1 ROS 120505 0814	BE 24 14.02 N 175 12.20 W GPS	5121	5120					
49MR0505 2	P03	185	1 BUC 120505 0821	UN 24 13.98 N 175 12.15 W GPS	5124	5124				1,33	25.8C
49MR0505 2	P03	185	1 UNK 120505 0830	UN 24 13.91 N 175 12.10 W GPS	5123	5125					AIR N2O SMPL
49MR0505 2	P03	185	1 ROS 120505 0932	BO 24 13.48 N 175 11.87 W GPS	5110	5111	8	5166	5194	34 1-8,27	#14=#6 DUPL SMPLS (4750DB), #17 MISS TRIP
49MR0505 2	P03	185	1 ROS 120505 1145	EN 24 12.28 N 175 11.09 W GPS	5111	5110					
49MR0505 2	P03	187	1 ROS 120505 1610	BE 24 14.11 N 176 1.50 W GPS	5280	5280					
49MR0505 2	P03	187	1 BUC 120505 1618	UN 24 14.12 N 176 1.48 W GPS	5286	5287				1,33	26.0C
49MR0505 2	P03	187	1 UNK 120505 1629	UN 24 14.14 N 176 1.47 W GPS	5278	5277					AIR N2O SMPL
49MR0505 2	P03	187	1 ROS 120505 1731	BO 24 14.09 N 176 1.29 W GPS	5283	5282	10	5283	5366	36 1-8,22,27	#2,3,4 FOR R.N.
49MR0505 2	P03	187	2 UNK 120505 1742	BE 24 14.10 N 176 1.25 W GPS	5286	5285					80L THROUGH HULL PUMP FOR R.N.
49MR0505 2	P03	187	2 UNK 120505 1806	EN 24 14.08 N 176 1.20 W GPS	5301	5294					
49MR0505 2	P03	187	1 ROS 120505 1949	EN 24 13.99 N 176 0.77 W GPS	5298	5297					
49MR0505 2	P03	189	1 ROS 120505 2337	BE 24 14.44 N 176 45.63 W GPS	5342	5342					
49MR0505 2	P03	189	1 BUC 120505 2344	UN 24 14.47 N 176 45.68 W GPS	5345	5345				1,33	26.1C
49MR0505 2	P03	189	1 UNK 120505 2353	UN 24 14.45 N 176 45.63 W GPS	5345	5344					AIR N2O SMPL
49MR0505 2		545	1 UNK 120605 0032	UN 24 14.38 N 176 45.57 W GPS	5348	5347					AEROSOL SMPL
49MR0505 2	P03	189	1 ROS 120605 0059	BO 24 14.25 N 176 45.61 W GPS	5353	5348	10	5355	5430	35 1-8,12,13,23,24,26,27	#15=#5 DUPL SMPLS (5000DB)
49MR0505 2	P03	189	1 ROS 120605 0315	EN 24 14.21 N 176 45.61 W GPS	5349	5350					
49MR0505 2	P03	191	1 ROS 120605 0737	BE 24 13.34 N 177 35.25 W GPS	5413	5413					
49MR0505 2	P03	191	1 BUC 120605 0744	UN 24 13.33 N 177 35.15 W GPS	5413	5415				1,33	25.4C
49MR0505 2	P03	191	1 UNK 120605 0754	UN 24 13.32 N 177 35.04 W GPS	5423	5420					AIR N2O SMPL
49MR0505 2	P03	191	1 ROS 120605 0859	BO 24 13.07 N 177 34.55 W GPS	5416	5414	8	5464	5502	35 1-8,27	#16=#5 DUPL SMPLS (5000DB)
49MR0505 2	P03	191	1 ROS 120605 1119	EN 24 12.83 N 177 33.52 W GPS	5406	5406				,	, , , , , , , , , , , , , , , , , , , ,
49MR0505 2	P03	193	1 ROS 120605 1534	BE 24 15.19 N 178 22.14 W GPS	5553	5552					
49MR0505 2	P03	193	1 BUC 120605 1541	UN 24 15.20 N 178 22.02 W GPS	5541	5541				1,33	25.1C
49MR0505 2	P03	193	1 UNK 120605 1555	UN 24 15.15 N 178 21.83 W GPS	5541	5543				,	AIR N2O SMPL
49MR0505 2	P03	193	1 ROS 120605 1659	BO 24 14.78 N 178 21.70 W GPS	5538	5540	9	5570	5635	36 1-8,27	#17=#4 DUPL SMPLS (5250DB)
49MR0505 2	P03	193	1 ROS 120605 1924	EN 24 14.34 N 178 21.23 W GPS	5547	5546				,	, , , , , , , , , , , , , , , , , , , ,
49MR0505 2	P03	195	1 ROS 120605 2338	BE 24 14.39 N 179 9.68 W GPS	5609	5611					
49MR0505_2	P03	195	1 BUC 120605 2345	UN 24 14.38 N 179 9.67 W GPS	5619	5619				1,31,33	25.4C
49MR0505 2	P03	195	1 UNK 120705 0000	UN 24 14.33 N 179 9.60 W GPS	5620	5620				_//	AIR CH4 & N2O SMPL
49MR0505_2		546	1 UNK 120705 0024	UN 24 14.38 N 179 9.53 W GPS	5620	5620					AEROSOL SMPL
49MR0505 2	P03	195	1 ROS 120705 0103	BO 24 14.51 N 179 9.36 W GPS	5615	5614	10	5620	5707	36 1-8,23,24,26,27,31,33,81	#2 FOR POM
49MR0505 2	P03	195	1 ROS 120705 0323	EN 24 14.53 N 179 8.29 W GPS	5612	5611				-, -, , -, , -, -,,	
49MR0505 2	P03	197	1 ROS 120705 0745	BE 24 14.12 N 179 59.32 W GPS	5536	5538					
49MR0505 2	P03	197	1 BUC 120705 0752	UN 24 14.04 N 179 59.33 W GPS	5540	5543				1,33	25.8C
										1	=***

49MR0505_2	P03	197	1 UNK 120705 0801	UN 24 13.95 N 179 59.39 W GPS	5533	5535					AIR N2O SMPL
49MR0505_2	P03	197	1 ROS 120705 0908	BO 24 13.63 N 179 59.28 W GPS	5538	5540	10	5545	5629	36 1-8,22,27	#2 FOR R.N.
49MR0505_2	P03	197	2 UNK 120705 0917	BE 24 13.58 N 179 59.29 W GPS	5539	5541					80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	197	2 UNK 120705 1005	EN 24 13.34 N 179 59.12 W GPS	5537	5541					
49MR0505_2	P03	197	1 ROS 120705 1127	EN 24 12.77 N 179 58.88 W GPS	5546	5546					
49MR0505_2		547	1 UNK 120805 0019	UN 24 7.77 N 179 27.00 E GPS	5711	5712					AEROSOL SMPL
49MR0505_2		548	1 UNK 120805 0558	BE 24 10.90 N 179 10.50 E GPS	5737	5736					MAGNETOMETER CALIBRATION
49MR0505_2		548	1 UNK 120805 0623	EN 24 10.63 N 179 9.52 E GPS	5738	5740					
49MR0505_2	P03	X14	1 ROS 120805 1600	BE 23 59.90 N 178 59.87 E GPS	5739	5740					PRI AND SEC CND SENSORS REPLACED
49MR0505_2	P03	X14	1 BUC 120805 1609	UN 23 59.90 N 178 59.86 E GPS	5743	5744				1,33	25.6C
49MR0505_2	P03	X14	1 UNK 120805 1620	UN 23 59.87 N 178 59.82 E GPS	5741	5740					AIR N2O SMPL
49MR0505_2	P03	X14	1 ROS 120805 1729	BO 23 59.67 N 178 59.77 E GPS	5748	5748	10	5739	5835	35 1-8,12,13,23,24,26,27	#17 MISS FIRE
49MR0505 2	P03	X14	1 ROS 120805 1957	EN 23 59.23 N 178 59.85 E GPS	5742	5743					
49MR0505 2		549	1 UNK 120805 2250	UN 24 13.63 N 178 27.18 E GPS	5733	5725					RAIN SMPL (0.7MM/HR)
49MR0505 2	P03	201	1 ROS 120805 2324	BE 24 15.23 N 178 23.31 E GPS	5723	5723					
49MR0505 2	P03	201	1 BUC 120805 2332	UN 24 15.18 N 178 23.33 E GPS	5726	5727				1,33	26.1C
49MR0505 2	P03	201	1 UNK 120805 2340	UN 24 15.14 N 178 23.30 E GPS	5724	5724					AIR N2O SMPL
49MR0505 2	P03	201	1 ROS 120905 0050	BO 24 14.73 N 178 23.24 E GPS	5725	5724	10	5744	5819	35 1-8,27	#17 MISS FIRE
49MR0505 2		550	1 UNK 120905 0057	UN 24 14.71 N 178 23.22 E GPS	5727	5725				,	AEROSOL SMPL
49MR0505 2	P03	201	1 ROS 120905 0312	EN 24 13.81 N 178 22.93 E GPS	5731	5730					
49MR0505 2	P03	203	1 ROS 120905 0717	BE 24 13.65 N 177 36.26 E GPS	5781	5780					
49MR0505_2	P03	203	1 BUC 120905 0724	UN 24 13.58 N 177 36.24 E GPS	5776	5775				1,33	25.8C
49MR0505_2	P03	203	1 UNK 120905 0732	UN 24 13.50 N 177 36.24 E GIS	5774	5773				1,33	AIR N2O SMPL
49MR0505_2	P03	203	1 ROS 120905 0845	BO 24 12.89 N 177 36.15 E GPS	5772	5772	8	5812	5872	35 1-8,27	#10 MISS FIRE
49MR0505_2	P03	203	1 ROS 120905 0045	EN 24 11.81 N 177 36.08 E GPS	5787	5762	0	3012	3072	33 1-0,27	#10 PHSS FIRE
49MR0505_2 49MR0505_2	P03	205	1 ROS 120905 1111 1 ROS 120905 1524	BE 24 14.94 N 176 47.27 E GPS	5762	5762					
49MK0303_2	PU3		1 ROS 120903 1324	DE 24 14.94 N 1/0 4/.2/ E GFS	3/02	3/62					
AOMBOEGE 2	DO3	205	1 DITC 12000E 1E20	IIN 24 14 01 N 176 47 22 E CDC	5755	5756				1 21 22 02	26.10
49MR0505_2	P03	205	1 BUC 120905 1530	UN 24 14.91 N 176 47.23 E GPS	5755	5756				1,31,33,82	26.1C
49MR0505_2	P03	205	1 UNK 120905 1542	UN 24 14.84 N 176 47.19 E GPS	5760	5760	0	E00E	E0E7		26.1C AIR CH4 & N2O SMPL
49MR0505_2 49MR0505_2	P03 P03	205 205	1 UNK 120905 1542 1 ROS 120905 1651	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS	5760 5756	5760 5756	9	5825	5857	1,31,33,82 36 1-8,23,24,26,27,31,33,64,82	
49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03	205 205 205	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS	5760 5756 5761	5760 5756 5760	9	5825	5857		
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03	205 205 205 207	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS	5760 5756 5761 5798	5760 5756 5760 5800	9	5825	5857	36 1-8,23,24,26,27,31,33,64,82	AIR CH4 & N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03	205 205 205 207 207	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS	5760 5756 5761 5798 5792	5760 5756 5760 5800 5792	9	5825	5857		AIR CH4 & N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03	205 205 205 207 207 207	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS	5760 5756 5761 5798 5792 5795	5760 5756 5760 5800 5792 5796				36 1-8,23,24,26,27,31,33,64,82 1,33	AIR CH4 & N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03	205 205 205 207 207 207 207	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS	5760 5756 5761 5798 5792 5795 5792	5760 5756 5760 5800 5792 5796 5790	9	5825	5857	36 1-8,23,24,26,27,31,33,64,82	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS	5760 5756 5761 5798 5792 5795 5792 5801	5760 5756 5760 5800 5792 5796 5790 5802				36 1-8,23,24,26,27,31,33,64,82 1,33	AIR CH4 & N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 207 551 207	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821	5760 5756 5760 5800 5792 5796 5790 5802 5796				36 1-8,23,24,26,27,31,33,64,82 1,33	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS BE 24 15.09 N 175 9.99 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551				36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS BE 24 15.09 N 175 9.99 E GPS UN 24 15.12 N 175 10.00 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580				36 1-8,23,24,26,27,31,33,64,82 1,33	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS BE 24 15.09 N 175 9.99 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581				36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS BE 24 15.09 N 175 9.99 E GPS UN 24 15.12 N 175 10.00 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581				36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 552	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS BE 24 15.09 N 175 9.99 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.05 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581				36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR)
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 552 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0751 1 UNK 121005 0753	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS BE 24 15.09 N 175 9.99 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.04 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584 5587	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581	9	5808	5889	36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 552 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS BE 24 15.09 N 175 99.99 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.04 E GPS UN 24 15.17 N 175 10.04 E GPS BO 24 15.44 N 175 10.16 E GPS	5760 5756 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584 5587 5589	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5588	9	5808	5889	36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N.
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 552 209 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901 2 UNK 121005 0923	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS BE 24 15.09 N 175 99.99 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.04 E GPS UN 24 15.17 N 175 10.04 E GPS BO 24 15.44 N 175 10.16 E GPS BE 24 15.44 N 175 10.22 E GPS	5760 5756 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584 5587 5589 5605	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5588 5588	9	5808	5889	36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N.
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 552 209 209 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901 2 UNK 121005 0923 2 UNK 121005 0934	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.04 E GPS UN 24 15.17 N 175 10.01 E GPS UN 24 15.14 N 175 10.16 E GPS EN 24 15.44 N 175 10.22 E GPS EN 24 15.44 N 175 10.22 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584 5587 5589 5605	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5588 5588 5593	9	5808	5889	36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N.
49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 209 209 209 209	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901 2 UNK 121005 0923 2 UNK 121005 0934 1 ROS 121005 0934	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS UN 24 15.12 N 175 59.98 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.05 E GPS UN 24 15.17 N 175 10.04 E GPS BO 24 15.44 N 175 10.16 E GPS BE 24 15.44 N 175 10.22 E GPS EN 24 15.47 N 175 10.24 E GPS EN 24 15.47 N 175 10.24 E GPS EN 24 15.47 N 175 10.43 E GPS	5760 5756 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584 5587 5589 5605 5593 5603	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5588 5604 5593 5603	9	5808	5889	36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N.
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 209 209 209 209 211	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901 2 UNK 121005 0923 2 UNK 121005 0934 1 ROS 121005 1120 1 ROS 121005 1525	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.05 E GPS UN 24 15.17 N 175 10.06 E GPS UN 24 15.17 N 175 10.06 E GPS UN 24 15.44 N 175 10.16 E GPS BE 24 15.44 N 175 10.22 E GPS EN 24 15.47 N 175 10.24 E GPS EN 24 15.79 N 175 10.43 E GPS EN 24 15.79 N 175 10.43 E GPS BE 24 15.05 N 174 23.04 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584 5587 5589 5605 5593 5603 5728	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5588 5604 5593 5603 5728	9	5808	5889	36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27 1,33 36 1-8,22,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 209 209 209 209 211 211	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901 2 UNK 121005 0923 2 UNK 121005 0934 1 ROS 121005 1120 1 ROS 121005 1525 1 BUC 121005 1535	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 16.28 N 175 59.64 E GPS EN 24 15.09 N 175 59.98 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.05 E GPS UN 24 15.17 N 175 10.06 E GPS UN 24 15.17 N 175 10.06 E GPS UN 24 15.17 N 175 10.06 E GPS EN 24 15.44 N 175 10.16 E GPS BE 24 15.44 N 175 10.22 E GPS EN 24 15.47 N 175 10.24 E GPS EN 24 15.79 N 175 10.43 E GPS EN 24 15.79 N 174 23.04 E GPS UN 24 15.00 N 174 23.05 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584 5587 5589 5605 5593 5603 5728 5735	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5604 5593 5603 5728 5735	9	5808	5889	36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27 1,33 36 1-8,22,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	205 205 205 207 207 207 207 551 207 209 209 209 209 209 211 211	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901 2 UNK 121005 0901 2 UNK 121005 0934 1 ROS 121005 1120 1 ROS 121005 1525 1 BUC 121005 1535 1 UNK 121005 1535	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS UN 24 15.12 N 175 59.98 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.05 E GPS UN 24 15.17 N 175 10.06 E GPS UN 24 15.44 N 175 10.16 E GPS BE 24 15.44 N 175 10.22 E GPS EN 24 15.47 N 175 10.24 E GPS EN 24 15.79 N 175 10.43 E GPS EN 24 15.79 N 174 23.04 E GPS UN 24 15.00 N 174 23.05 E GPS UN 24 15.00 N 174 23.05 E GPS UN 24 15.00 N 174 23.05 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5584 5587 5589 5605 5593 5603 5728 5728	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5604 5593 5603 5728 5728 5729	9	5808 5587	5889 5676	1,33 36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27 1,33 36 1-8,22,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	205 205 205 207 207 207 207 551 207 209 209 209 209 209 209 211 211 211	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901 2 UNK 121005 0901 2 UNK 121005 0934 1 ROS 121005 1120 1 ROS 121005 1525 1 BUC 121005 1535 1 UNK 121005 1543 1 ROS 121005 1543 1 ROS 121005 1652	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS UN 24 15.22 N 175 59.61 E GPS UN 24 15.28 N 175 59.64 E GPS EN 24 16.28 N 175 59.98 E GPS UN 24 15.12 N 175 59.98 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.05 E GPS UN 24 15.17 N 175 10.06 E GPS UN 24 15.44 N 175 10.16 E GPS BO 24 15.44 N 175 10.22 E GPS EN 24 15.47 N 175 10.24 E GPS EN 24 15.79 N 175 10.43 E GPS EN 24 15.79 N 174 23.04 E GPS UN 24 15.00 N 174 23.05 E GPS UN 24 15.00 N 174 23.07 E GPS UN 24 14.96 N 174 23.09 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5571 5584 5587 5589 5605 5593 5603 5728 5728 5727	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5604 5593 5603 5728 5728 5729 5728	9	5808 5587	5889 5676	1,33 36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27 1,33 36 1-8,22,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	205 205 205 207 207 207 207 551 207 209 209 209 209 209 211 211 211 211	1 UNK 120905 1542 1 ROS 120905 1651 1 ROS 120905 1924 1 ROS 120905 2323 1 BUC 120905 2331 1 UNK 120905 2341 1 ROS 121005 0051 1 UNK 121005 0102 1 ROS 121005 0312 1 ROS 121005 0736 1 BUC 121005 0743 1 UNK 121005 0751 1 UNK 121005 0751 1 UNK 121005 0753 1 ROS 121005 0901 2 UNK 121005 0901 2 UNK 121005 0934 1 ROS 121005 1120 1 ROS 121005 1525 1 BUC 121005 1535 1 UNK 121005 1543 1 ROS 121005 1652 1 ROS 121005 1922	UN 24 14.84 N 176 47.19 E GPS BO 24 14.42 N 176 46.83 E GPS EN 24 13.65 N 176 45.93 E GPS BE 24 14.76 N 175 59.57 E GPS UN 24 14.80 N 175 59.53 E GPS UN 24 14.85 N 175 59.53 E GPS BO 24 15.22 N 175 59.61 E GPS UN 24 16.28 N 175 59.64 E GPS EN 24 15.09 N 175 59.98 E GPS UN 24 15.12 N 175 10.00 E GPS UN 24 15.17 N 175 10.05 E GPS UN 24 15.17 N 175 10.06 E GPS UN 24 15.17 N 175 10.06 E GPS EN 24 15.44 N 175 10.16 E GPS EN 24 15.44 N 175 10.22 E GPS EN 24 15.47 N 175 10.24 E GPS EN 24 15.79 N 175 10.43 E GPS EN 24 15.79 N 174 23.05 E GPS UN 24 15.00 N 174 23.07 E GPS EN 24 14.60 N 174 23.09 E GPS EN 24 14.60 N 174 23.09 E GPS EN 24 14.60 N 174 23.09 E GPS	5760 5756 5761 5798 5792 5795 5792 5801 5821 5557 5584 5587 5589 5605 5593 5603 5728 5728 5728 5727	5760 5756 5760 5800 5792 5796 5790 5802 5796 5551 5580 5581 5588 5604 5593 5603 5728 5729 5728 5729	9	5808 5587	5889 5676	1,33 36 1-8,23,24,26,27,31,33,64,82 1,33 36 1-8,27 1,33 36 1-8,22,27	AIR CH4 & N2O SMPL 26.2C AIR N2O SMPL AEROSOL SMPL 26.4C RAIN SMPL (1.8MM/HR) AIR N2O SMPL #2 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.

49MR0505_2 P03	213	1 UNK 121005 2355	UN 24 15.15 N 173 34.05 E GPS	5825	5820					AIR N2O SMPL
49MR0505_2 P03	213	1 ROS 121105 0107	BO 24 14.89 N 173 33.74 E GPS	5821	5823	9	5828	5915	36 1-8,27	
49MR0505_2	553	1 UNK 121105 0117	UN 24 14.89 N 173 33.70 E GPS	5819	5819					AEROSOL SMPL
49MR0505_2 P03	213	1 ROS 121105 0329	EN 24 14.43 N 173 32.76 E GPS	5819	5821					
49MR0505_2 P03	215	1 ROS 121105 0731	BE 24 14.57 N 172 45.99 E GPS	5868	5869					
49MR0505_2 P03	215	1 BUC 121105 0738	UN 24 14.51 N 172 46.02 E GPS	5859	5859				1,33	26.4C
49MR0505_2 P03	215	1 UNK 121105 0747	UN 24 14.41 N 172 46.05 E GPS	5868	5866					AIR N2O SMPL
49MR0505_2 P03	215	1 ROS 121105 0900	BO 24 13.74 N 172 45.97 E GPS	5835	5835	44	5878	5923	36 1-8,27	LADCP SOUNDING
49MR0505_2 P03	215	1 ROS 121105 1126	EN 24 12.53 N 172 45.49 E GPS	5834	5832					
49MR0505_2 P03	217	1 ROS 121105 1534	BE 24 14.87 N 171 56.99 E GPS	5834	5835					
49MR0505_2 P03	217	1 BUC 121105 1542	UN 24 14.86 N 171 56.99 E GPS	5835	5834				1,31,33	26.2C
49MR0505_2 P03	217	1 UNK 121105 1559	UN 24 14.91 N 171 56.95 E GPS	5832	5835					AIR CH4 & N2O SMPL
49MR0505_2 P03	217	1 ROS 121105 1705	BO 24 15.43 N 171 57.00 E GPS	5835	5836	9	5900	5933	36 1-8,23,24,26,27,31,33,81	
49MR0505_2 P03	217	1 ROS 121105 1932	EN 24 16.38 N 171 57.59 E GPS	5835	5836					
49MR0505_2	554	1 UNK 121305 0039	UN 18 46.87 N 172 42.04 E GPS	2038	2025					AEROSOL SMPL
49MR0505_2 WIFE	WM5	1 MOR 121305 2042	BE 16 26.41 N 171 32.88 E GPS	5476	5475					2 RCM11, 1 RCM8, 7 SBE37, 1 OPTODE
49MR0505_2 WIFE	WM5	1 MOR 121305 2200	RE 16 26.78 N 171 31.04 E GPS	5469	5471					6 GRASS BUOY BROKEN, 1 SBE37 BROKEN
49MR0505_2	555	1 UNK 121405 0108	UN 16 11.08 N 171 59.10 E GPS	5308	5324					AEROSOL SMPL
49MR0505_2 WIFE	WM4	1 MOR 121405 1943	BE 15 31.28 N 171 14.50 E GPS	5614	5611					2 RCM11, 1 RCM8, 8 SBE37, 1 OPTODE
49MR0505_2 WIFE	WM4	1 MOR 121405 2103	RE 15 31.75 N 171 14.60 E GPS	5606	5606					1 SBE37 BROKEN
49MR0505_2	556	1 UNK 121505 0037	UN 14 43.91 N 170 58.72 E GPS	5664	5662					AEROSOL SMPL
49MR0505_2 WIFE	WM3	1 MOR 121505 0258	BE 14 34.04 N 170 55.08 E GPS	5673	5672					2 RCM11, 1 RCM8, 8 SBE37, 1 OPTODE
49MR0505_2 WIFE	WM3	1 MOR 121505 0409	RE 14 34.00 N 170 55.02 E GPS	5678	5673					2 SBE37 BROKEN
49MR0505_2 WIFE	WM2	1 MOR 121505 2133	BE 13 38.40 N 170 34.19 E GPS	-9	5525					2 RCM11, 1 RCM8, 8 SBE37, 1 OPTODE
49MR0505_2 WIFE	WM2	1 MOR 121505 2259	RE 13 38.28 N 170 33.84 E GPS	5516	5519					TRANSPONDER BROKEN, 1 SBE37 BROKEN
49MR0505_2	557	1 UNK 121605 0103	UN 13 10.24 N 170 23.96 E GPS	5410	5393					AEROSOL SMPL
49MR0505_2 WIFE	WM1	1 MOR 121605 0503	BE 12 45.89 N 170 14.60 E GPS	5362	5364					2 RCM11, 1 RCM8, 7 SBE37, 1 OPTODE
49MR0505 2 WIFE	WM1	1 MOR 121605 0603	RE 12 45.64 N 170 13.58 E GPS	5348	5352					TRANSPONDER BROKEN, ROTOR OF RCM8 LOST
49MR0505_2 WIFE	WCO	1 ROS 121605 0833	BE 12 43.32 N 170 13.59 E GPS	4560	4563					
49MR0505_2 WIFE	WCO	1 BUC 121605 0841	UN 12 43.37 N 170 13.51 E GPS	4545	4556				1,33	27.8C
49MR0505 2 WIFE	WCO	1 UNK 121605 0850	UN 12 43.43 N 170 13.45 E GPS	4577	4576					AIR N2O SMPL
49MR0505_2 WIFE	WCO	1 ROS 121605 0947	BO 12 43.80 N 170 13.34 E GPS	4658	4667	9	4625	4669	32 1-8,27	
49MR0505_2 WIFE	WCO	1 ROS 121605 1145	EN 12 44.73 N 170 12.96 E GPS	5267	5267					
49MR0505_2 WIFE	WC1	1 ROS 121605 1359	BE 12 45.89 N 170 14.88 E GPS	5369	5369					WITH 7 SBE37 (WM1)
49MR0505_2 WIFE	WC1	1 BUC 121605 1406	UN 12 45.98 N 170 14.85 E GPS	5356	5365				1	27.8C
49MR0505_2 WIFE	WC1	1 ROS 121605 1524	BO 12 46.60 N 170 14.58 E GPS	5369	5373	7	5426	5450	35 1-8,27	
49MR0505 2 WIFE	WC1	1 ROS 121605 1745	EN 12 47.35 N 170 14.24 E GPS	5347	5351					
49MR0505_2 WIFE	WC2	1 ROS 121605 2032	BE 13 12.56 N 170 24.85 E GPS	5406	5408					
49MR0505 2 WIFE	WC2	1 BUC 121605 2039	UN 13 12.63 N 170 24.72 E GPS	5402	5402				1,33	27.8C
49MR0505 2 WIFE	WC2	1 UNK 121605 2048	UN 13 12.71 N 170 24.64 E GPS	5406	5403					AIR N2O SMPL
49MR0505_2 WIFE	WC2	1 ROS 121605 2152	BO 13 13.10 N 170 24.54 E GPS	5401	5403	9	5412	5483	35 1-8,27	#1 MISS TRIP
49MR0505 2 WIFE	WC2	1 ROS 121705 0007	EN 13 13.80 N 170 23.85 E GPS	5406	5405					
49MR0505 2 WIFE	WC3	1 ROS 121705 0249	BE 13 38.37 N 170 34.54 E GPS	5518	5516					WITH 6 SBE37 (WM5)
49MR0505_2 WIFE	WC3	1 BUC 121705 0256	UN 13 38.44 N 170 34.40 E GPS	5525	5522				1,33	27.8C
49MR0505_2 WIFE	WC3	1 UNK 121705 0305	UN 13 38.55 N 170 34.31 E GPS	5520	5519					AIR N2O SMPL
49MR0505_2 WIFE	WC3	1 ROS 121705 0415	BO 13 39.01 N 170 34.23 E GPS	5518	5519	9	5540	5602	36 1-6	
49MR0505_2 WIFE	WC3	1 ROS 121705 0639	EN 13 39.95 N 170 33.68 E GPS	5510	5510					
49MR0505_2 WIFE	WC4	1 ROS 121705 0934	BE 14 7.46 N 170 45.04 E GPS	5627	5628					WITH 7 SBE37 (WM4)
49MR0505_2 WIFE	WC4	1 BUC 121705 0941	UN 14 7.53 N 170 44.98 E GPS	5624	5625				1,33	27.7C
49MR0505_2 WIFE	WC4	1 UNK 121705 0950	UN 14 7.63 N 170 44.92 E GPS	5627	5625					AIR N2O SMPL
49MR0505_2 WIFE	WC4	1 ROS 121705 1103	BO 14 8.19 N 170 44.86 E GPS	5627	5629	9	5664	5721	36 1-6	
_										

49MR0505_2		WC4	1 ROS 121705 1326	EN 14 9.37 N 170 44.83 E GPS	5658	5651					
49MR0505_2	WIFE	WC5	1 ROS 121705 1612	BE 14 34.23 N 170 55.24 E GPS	5672	5673					WITH 6 SBE37 (WM3)
49MR0505_2	WIFE	WC5	1 BUC 121705 1619	UN 14 34.31 N 170 55.18 E GPS	5674	5674				1,33	27.7C
49MR0505_2	WIFE	WC5	1 UNK 121705 1628	UN 14 34.38 N 170 55.14 E GPS	5672	5674					AIR N2O SMPL
49MR0505_2	WIFE	WC5	1 ROS 121705 1739	BO 14 34.87 N 170 55.04 E GPS	5674	5674	10	5716	5769	36 1-6	#8 MISS TRIP
49MR0505_2	WIFE	WC5	1 ROS 121705 2003	EN 14 35.77 N 170 54.57 E GPS	5681	5683					
49MR0505_2	WIFE	WC6	1 ROS 121705 2258	BE 15 2.38 N 171 4.81 E GPS	5673	5672					
49MR0505 2	WIFE	WC6	1 BUC 121705 2307	UN 15 2.45 N 171 4.72 E GPS	5672	5672				1,33	27.9C
49MR0505 2	WIFE	WC6	1 UNK 121705 2316	UN 15 2.52 N 171 4.65 E GPS	5702	5690					AIR N2O SMPL
49MR0505 2	WIFE	WC6	1 ROS 121805 0025	BO 15 3.13 N 171 4.30 E GPS	5663	5670	8	5767	5768	36 1-6	
49MR0505 2		WC6	1 ROS 121805 0246	EN 15 4.47 N 171 3.60 E GPS	5383	5385					
49MR0505 2		WC7	1 ROS 121805 0530	BE 15 31.30 N 171 14.83 E GPS	5618	5618					WITH 7 SBE37 (WM2)
49MR0505 2		WC7	1 BUC 121805 0537	UN 15 31.37 N 171 14.82 E GPS	5606	5607				1,33	27.8C
49MR0505 2		WC7	1 UNK 121805 0547	UN 15 31.43 N 171 14.74 E GPS	5619	5618				,	AIR N2O SMPL
49MR0505 2		WC7	1 ROS 121805 0656	BO 15 31.74 N 171 14.64 E GPS	5608	5607	11	5623	5701	36 1-6	PRI SENSORS SHIFTED
49MR0505_2		WC7	1 ROS 121805 0918	EN 15 32.73 N 171 14.42 E GPS	5610	5609		3023	3701	30 1 0	1 SBE37 BROKEN
49MR0505_2		WC8	1 ROS 121805 0916	BE 15 57.46 N 171 25.04 E GPS	5538	5537					PRI OXYGEN SENSOR REPLACED, WITH 5 COMPACT-
49MK0303_2	WIFE	WCO	1 KOS 121005 1215	DE 13 37.40 N 171 23.04 E GF3	3330	3337					OPTODE
40MD0E0E 0	MITTER	MOO	1 DIG 10100E 1000	IN 15 57 50 N 171 05 00 E CDC	EE20	5539				1 22	27.8C
49MR0505_2		WC8	1 BUC 121805 1222 1 UNK 121805 1230	UN 15 57.50 N 171 25.00 E GPS UN 15 57.56 N 171 24.93 E GPS	5539 5538	5538				1,33	AIR N2O SMPL
49MR0505_2							0	F F 7 0	F.CO.2	26.1.6	AIR NZO SMPL
49MR0505_2		WC8	1 ROS 121805 1340	BO 15 58.06 N 171 24.76 E GPS	5537	5537	9	5578	5623	36 1-6	
49MR0505_2		WC8	1 ROS 121805 1557	EN 15 59.32 N 171 24.25 E GPS	5574	5574					
49MR0505_2		WC9	1 ROS 121805 1839	BE 16 26.28 N 171 33.22 E GPS	5473	5474				1.00	
49MR0505_2		WC9	1 BUC 121805 1847	UN 16 26.34 N 171 33.19 E GPS	5471	5472				1,33	27.7C
49MR0505_2		WC9	1 UNK 121805 1856	UN 16 26.42 N 171 33.15 E GPS	5472	5474					AIR N2O SMPL
49MR0505_2		WC9	1 ROS 121805 2003	BO 16 26.90 N 171 32.95 E GPS	5471	5471	8	5510	5561	36 1-6	
49MR0505_2		WC9	1 ROS 121805 2218	EN 16 27.96 N 171 32.64 E GPS	5327	5340					
49MR0505_2		WC10	1 ROS 121805 2346	BE 16 32.92 N 171 32.30 E GPS	4341	4351					
49MR0505_2		WC10	1 BUC 121805 2353	UN 16 32.98 N 171 32.28 E GPS	4296	4296				1,33	27.9C
49MR0505_2	WIFE	WC10	1 UNK 121905 0001	UN 16 33.04 N 171 32.24 E GPS	4288	4287					AIR N2O SMPL
_	WIFE	WC10	1 ROS 121905 0055	BO 16 33.46 N 171 32.15 E GPS	4528	4528	14	4434	4456	32 1-6	#8=#23 DUPL SMPLS (4000DB)
49MR0505_2	WIFE	WC10	1 ROS 121905 0246	EN 16 33.96 N 171 31.98 E GPS	4468	4468					
49MR0505_2		558	1 UNK 122005 0301	BE 21 6.55 N 171 37.43 E GPS	5570	5571					SURFACE WATER SMPL FOR NUTRIENTS (2000L)
49MR0505_2		559	1 UNK 122005 0325	BE 21 6.59 N 171 37.54 E GPS	5574	5573					CWS TEST AT 100M
49MR0505_2		558	1 UNK 122005 0345	EN 21 6.55 N 171 37.64 E GPS	5573	5571					
49MR0505_2		559	1 UNK 122005 0416	EN 21 6.57 N 171 37.84 E GPS	5570	5567					
49MR0505_2	P03	217	2 ROS 122005 2057	BE 24 14.81 N 171 56.81 E GPS	5842	5842					
49MR0505_2	P03	217	2 BUC 122005 2104	UN 24 14.75 N 171 56.83 E GPS	5834	5834				1,33	26.3C
49MR0505_2	P03	217	2 UNK 122005 2113	UN 24 14.65 N 171 56.86 E GPS	5835	5834					AIR N2O SMPL
49MR0505 2	P03	217	2 ROS 122005 2223	BO 24 14.34 N 171 56.73 E GPS	5833	5834	8	5836	5933	34 1-8,23,24,26,27,81	#28,#36 MISS FIRE
49MR0505 2	P03	217	2 ROS 122105 0047	EN 24 13.98 N 171 56.72 E GPS	5819	5821					
49MR0505 2	P03	219	1 ROS 122105 0451	BE 24 15.89 N 171 10.48 E GPS	5812	5810					
49MR0505 2	P03	219	1 BUC 122105 0459	UN 24 15.86 N 171 10.52 E GPS	5786	5788				1,33	26.2C
49MR0505 2	P03	219	1 UNK 122105 0509	UN 24 15.84 N 171 10.53 E GPS	5787	5794					AIR N2O SMPL
49MR0505 2	P03	219	1 ROS 122105 0619	BO 24 15.55 N 171 10.58 E GPS	5775	5775	9	5777	5870	36 1-8,27	
49MR0505 2	P03	219	1 ROS 122105 0844	EN 24 14.64 N 171 10.43 E GPS	5858	5857				•	
49MR0505 2	P03	221	1 ROS 122105 1311	BE 24 15.20 N 170 21.19 E GPS	5834	5833					
49MR0505 2	P03	221	1 BUC 122105 1320	UN 24 15.18 N 170 21.21 E GPS	5830	5817				1,33	25.9C
49MR0505 2	P03	221	1 UNK 122105 1329	UN 24 15.16 N 170 21.22 E GPS	5839	5832				•	AIR N2O SMPL
49MR0505 2	P03	221	1 ROS 122105 1443	BO 24 14.72 N 170 21.24 E GPS	5873	5873	10	5856	5933	36 1-8,22,27	
49MR0505 2	P03	221	2 UNK 122105 1502	BE 24 14.57 N 170 21.19 E GPS	5875	5880	•			, ,	80L THROUGH HULL PUMP FOR R.N.
	- 30										

49MR0505_2	P03	221		UNK 122105 1514	EN 24 14.45 N 170 21.18 E GPS	5886	5879					
49MR0505_2	P03	221		ROS 122105 1708	EN 24 13.49 N 170 20.99 E GPS	5944	5943					
49MR0505_2	P03	223		ROS 122105 2122	BE 24 16.29 N 169 31.62 E GPS	6136	6135					WITHOUT LADCP
49MR0505_2	P03	223		BUC 122105 2131	UN 24 16.19 N 169 31.56 E GPS	6141	6136				1,33	25.8C
49MR0505_2	P03	223	1	UNK 122105 2140	UN 24 16.12 N 169 31.48 E GPS	6140	6138					AIR N2O SMPL
49MR0505_2	P03	223	1	ROS 122105 2255	BO 24 15.98 N 169 30.83 E GPS	6136	6138	9	6190	6241	36 1-8,12,13,23,24,26,27	
49MR0505_2	P03	223	1	ROS 122205 0130	EN 24 15.57 N 169 29.88 E GPS	6148	6151					
49MR0505_2	P03	225	1	ROS 122205 0516	BE 24 16.36 N 168 46.11 E GPS	5887	5888					
49MR0505_2	P03	225	1	BUC 122205 0525	UN 24 16.38 N 168 46.20 E GPS	5886	5886				1,33	25.2C
49MR0505_2	P03	225	1	UNK 122205 0534	UN 24 16.39 N 168 46.26 E GPS	5886	5886					AIR N2O SMPL
49MR0505_2	P03	225	1	ROS 122205 0647	BO 24 16.32 N 168 46.41 E GPS	5889	5888	8	5883	5986	36 1-8,27	
49MR0505_2	P03	225	1	ROS 122205 0914	EN 24 15.99 N 168 46.57 E GPS	5887	5886					
49MR0505_2	P03	227	1	ROS 122205 1319	BE 24 16.49 N 167 58.15 E GPS	5998	5999					
49MR0505_2	P03	227	1	BUC 122205 1327	UN 24 16.48 N 167 58.20 E GPS	5986	5986				1,31,33,82	25.0C
49MR0505 2	P03	227	1	UNK 122205 1339	UN 24 16.51 N 167 58.26 E GPS	5983	5983					AIR CH4 & N2O SMPL
49MR0505 2	P03	227	1	ROS 122205 1452	BO 24 16.58 N 167 58.68 E GPS	5984	5984	8	6014	6096	36 1-8,23,24,26,27,31,33,64,82	
49MR0505 2	P03	227	1	ROS 122205 1720	EN 24 16.92 N 167 59.46 E GPS	5986	5986					
49MR0505 2	P03	229	1	ROS 122205 2111	BE 24 14.91 N 167 15.00 E GPS	5626	5622					
49MR0505 2	P03	229		BUC 122205 2120	UN 24 14.88 N 167 15.02 E GPS	5634	5632				1,33	25.8C
49MR0505 2	P03	229		UNK 122205 2130	UN 24 14.87 N 167 15.03 E GPS	5637	5638				,	AIR N2O SMPL
49MR0505 2	P03	229		ROS 122205 2236	BO 24 14.84 N 167 15.52 E GPS	5675	5675	9	5670	5732	36 1-8,23,24,26,27	#18=#6 DUPL SMPLS (4750DB)
49MR0505 2	P03	229		ROS 122305 0058	EN 24 14.69 N 167 16.50 E GPS	5703	5703					" " (,
49MR0505 2	P03	231		ROS 122305 0504	BE 24 14.89 N 166 28.65 E GPS	5750	5751					
49MR0505 2	P03	231		BUC 122305 0511	UN 24 14.91 N 166 28.68 E GPS	5747	5751				1,33	26.0C
49MR0505_2	P03	231		UNK 122305 0520	UN 24 14.89 N 166 28.68 E GPS	5760	5757				1,55	AIR N2O SMPL
49MR0505_2	P03	231		ROS 122305 0630	BO 24 14.82 N 166 28.99 E GPS	5800	5801	10	5771	5858	35 1-8,22,27	#2 FOR R.N., #26 MISS FIRE
49MR0505_2	P03	231		UNK 122305 0654	BE 24 14.77 N 166 29.12 E GPS	5823	5825	10	3771	3030	33 1 0,22,27	80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	231		UNK 122305 0704	EN 24 14.74 N 166 29.16 E GPS	5843	5841					THROUGH HOLL FOR K.W.
49MR0505_2 49MR0505_2	P03	231		ROS 122305 0704	EN 24 14.74 N 166 29.16 E GPS EN 24 14.52 N 166 29.75 E GPS	5965	5964					
49MR0505_2	P03	233		ROS 122305 0853	BE 24 15.56 N 165 39.78 E GPS	5970	5977					
_				BUC 122305 1314			5977				1 22	25.9C
49MR0505_2	P03 P03	233			UN 24 15.63 N 165 39.86 E GPS	5970	5969				1,33	
49MR0505_2	P03	233		UNK 122305 1329	UN 24 15.64 N 165 39.95 E GPS	5969	5909	9	5992	6067	26 1 0 10 12 02 04 06 07	AIR N2O SMPL
49MR0505_2		233		ROS 122305 1445	BO 24 15.51 N 165 40.24 E GPS	5970		9	5992	6067	36 1-8,12,13,23,24,26,27	
49MR0505_2	P03	233		ROS 122305 1711	EN 24 15.55 N 165 41.04 E GPS	5935	5935					
49MR0505_2	P03	X13		ROS 122305 2059	BE 24 2.65 N 164 59.09 E GPS	6077	6072					HEAVY RAIN WHEN BEGINNING THE CAST
49MR0505_2		560		UNK 122305 2100	UN 24 2.70 N 164 59.09 E GPS	6069	6064				4.00	RAIN SMPL (38.0MM/HR)
49MR0505_2	P03	X13		BUC 122305 2106	UN 24 2.71 N 164 59.08 E GPS	6079	6078				1,33	25.9C
49MR0505_2	P03	X13		UNK 122305 2115	UN 24 2.73 N 164 59.09 E GPS	6062	6061					AIR N2O SMPL
49MR0505_2	P03	X13		ROS 122305 2229	BO 24 2.77 N 164 59.25 E GPS	6062	6060	7	6077	6170	36 1-8,23,24,26,27	
49MR0505_2	P03	X13		ROS 122405 0102	EN 24 3.28 N 164 59.26 E GPS	6054	6055					
49MR0505_2		561		UNK 122405 0507	UN 24 12.65 N 164 10.92 E GPS	4340	4340					RAIN SMPL (2.4MM/HR)
49MR0505_2	P03	237		ROS 122405 0554	BE 24 14.25 N 164 2.81 E GPS	5786	5786					
49MR0505_2	P03	237		BUC 122405 0602	UN 24 14.19 N 164 2.83 E GPS	5778	5780				1,33	26.4C
49MR0505_2	P03	237	1	UNK 122405 0611	UN 24 14.16 N 164 2.79 E GPS	5773	5775					AIR N2O SMPL
49MR0505_2	P03	237	1	ROS 122405 0724	BO 24 13.64 N 164 2.84 E GPS	5739	5734	11	5798	5864	36 1-8,27	
49MR0505_2	P03	237	1	ROS 122405 0950	EN 24 12.67 N 164 2.72 E GPS	5556	5571					
49MR0505_2	P03	239	1	ROS 122405 1353	BE 24 16.41 N 163 16.09 E GPS	5749	5746					
49MR0505_2	P03	239	1	BUC 122405 1404	UN 24 16.44 N 163 16.15 E GPS	5751	5752				1,31,33	26.4C
49MR0505_2	P03	239	1	UNK 122405 1420	UN 24 16.45 N 163 16.29 E GPS	5756	5753					AIR CH4 & N2O SMPL
49MR0505_2	P03	239	1	ROS 122405 1531	BO 24 16.47 N 163 17.31 E GPS	5757	5755	10	5941	5850	36 1-8,23,24,26,27,31,33,81	
49MR0505_2	P03	239	1	ROS 122405 1800	EN 24 16.45 N 163 19.50 E GPS	5726	5726					

49MR0505 2	P03	241	1 ROS 122405 2244	BE 24 14.89 N 162 26.81 E GPS	5456	5457					
49MR0505 2	P03	241	1 BUC 122405 2253	UN 24 14.77 N 162 26.79 E GPS	5462	5458				1,33	25.7C
49MR0505 2	P03	241	1 UNK 122405 2302	UN 24 14.69 N 162 26.78 E GPS	5454	5455					AIR N2O SMPL
49MR0505 2	P03	241	1 ROS 122505 0007	BO 24 14.24 N 162 26.45 E GPS	5440	5441	10	5517	5542	35 1-8,27,81	#2 LEAKING
49MR0505 2	P03	241	1 ROS 122505 0223	EN 24 13.26 N 162 25.79 E GPS	5424	5423					
49MR0505 2	P03	243	1 ROS 122505 0638	BE 24 15.11 N 161 35.90 E GPS	2949	2943					
49MR0505 2	P03	243	1 BUC 122505 0643	UN 24 15.04 N 161 35.84 E GPS	3032	3031				1,33	25.2C
49MR0505 2	P03	243	1 UNK 122505 0652	UN 24 14.99 N 161 35.73 E GPS	3157	3158					AIR N2O SMPL
49MR0505 2	P03	243	1 ROS 122505 0730	BO 24 14.90 N 161 35.52 E GPS	3328	3328	10	3215	3240	25 1-8,23,24,26,27	
49MR0505 2	P03	243	1 ROS 122505 0902	EN 24 14.44 N 161 34.91 E GPS	3676	3677					
49MR0505 2	P03	245	1 ROS 122505 1247	BE 24 16.00 N 160 50.39 E GPS	5079	5079					
49MR0505 2	P03	245	1 BUC 122505 1255	UN 24 15.92 N 160 50.38 E GPS	5086	5087				1	26.3C
49MR0505 2	P03	245	1 ROS 122505 1409	BO 24 15.49 N 160 49.98 E GPS	5007	5008	9	5076	5120	36 1-8,22,27	#2-4 FOR R.N.
49MR0505 2	P03	245	1 UNK 122505 1528	BE 24 15.09 N 160 49.57 E GPS	4973	4977					80L THROUGH HULL PUMP FOR R.N.
49MR0505 2	P03	245	1 UNK 122505 1538	EN 24 15.06 N 160 49.48 E GPS	4966	4963					
49MR0505 2	P03	245	1 ROS 122505 1615	EN 24 14.87 N 160 49.23 E GPS	4903	4904					
49MR0505 2	P03	247	1 ROS 122505 2015	BE 24 16.20 N 160 3.40 E GPS	5510	5511					
49MR0505 2	P03	247	1 BUC 122505 2024	UN 24 16.23 N 160 3.40 E GPS	5508	5515				1,33	26.6C
49MR0505 2	P03	247	1 UNK 122505 2033	UN 24 16.25 N 160 3.45 E GPS	5509	5509				_,	AIR N2O SMPL
49MR0505 2	P03	247	1 ROS 122505 2139	BO 24 16.20 N 160 3.85 E GPS	5522	5522	11	5535	5603	35 1-8,12,13,23,24,26,27	
49MR0505 2		562	1 UNK 122505 2250	UN 24 16.28 N 160 4.35 E GPS	5508	5508					RAIN SMPL (0.5MM/HR)
49MR0505 2	P03	247	1 ROS 122505 2354	EN 24 16.28 N 160 4.77 E GPS	5533	5520					
49MR0505 2	P03	249	1 ROS 122605 0411	BE 24 14.13 N 159 15.33 E GPS	4267	4257					
49MR0505 2	P03	249	1 BUC 122605 0419	UN 24 14.16 N 159 15.28 E GPS	4194	4200				1,33	26.6C
49MR0505 2	P03	249	1 UNK 122605 0427	UN 24 14.16 N 159 15.26 E GPS	4194	4193				_, =,	AIR N2O SMPL
49MR0505 2		563	1 UNK 122605 0444	UN 24 14.16 N 159 15.22 E GPS	4164	4155					RAIN SMPL (0.2MM/HR)
49MR0505 2	P03	249	1 ROS 122605 0521	BO 24 14.19 N 159 15.05 E GPS	4222	4221	11	4243	4293	30 1-8,23,24,26,27	#19=#11 DUPL SMPLS (3500DB)
49MR0505 2	P03	249	1 ROS 122605 0713	EN 24 13.94 N 159 14.85 E GPS	4185	4183					" " (,
49MR0505 2	P03	251	1 ROS 122605 1117	BE 24 16.72 N 158 26.93 E GPS	5833	5836					
49MR0505 2	P03	251	1 BUC 122605 1124	UN 24 16.74 N 158 26.90 E GPS	5840	5840				1,31,33,82	26.4C
49MR0505 2	P03	251	1 UNK 122605 1136	UN 24 16.79 N 158 26.91 E GPS	5836	5837				-,,,	AIR CH4 & N2O SMPL
49MR0505 2	P03	251	1 ROS 122605 1245	BO 24 16.75 N 158 26.91 E GPS	5842	5845	9	5833	5933	36 1-8,23,24,26,27,31,33,64,82	
49MR0505 2	P03	251	1 ROS 122605 1508	EN 24 17.03 N 158 27.25 E GPS	5834	5838					
49MR0505 2	P03	253	1 ROS 122605 1901	BE 24 14.79 N 157 40.11 E GPS	5835	5835					
49MR0505 2	P03	253	1 BUC 122605 1908	UN 24 14.78 N 157 40.09 E GPS	5825	5828				1,33	25.7C
49MR0505 2	P03	253	1 UNK 122605 1917	UN 24 14.76 N 157 40.05 E GPS	5828	5825				,	AIR N2O SMPL
49MR0505 2	P03	253	1 ROS 122605 2030	BO 24 14.57 N 157 40.08 E GPS	5822	5822	9	5821	5921	36 1-8,27	
49MR0505 2	P03	253	1 ROS 122605 2254	EN 24 14.25 N 157 40.59 E GPS	5834	5830					
49MR0505 2	P03	255	1 ROS 122705 0255	BE 24 13.82 N 156 50.57 E GPS	5718	5718					
49MR0505 2	P03	255	1 BUC 122705 0302	UN 24 13.70 N 156 50.57 E GPS	5731	5731				1,33	25.4C
49MR0505 2	P03	255	1 UNK 122705 0311	UN 24 13.64 N 156 50.56 E GPS	5722	5722				1,00	AIR N2O SMPL
49MR0505 2		564	1 UNK 122705 0340	UN 24 13.36 N 156 50.47 E GPS	5726	5727					RAIN SMPL (0.6MM/HR)
49MR0505 2	P03	255	1 ROS 122705 0424	BO 24 13.03 N 156 50.31 E GPS	5724	5723	9	5797	5819	36 1-8,23,24,26,27	
49MR0505_2	P03	255	1 ROS 122705 0647	EN 24 11.88 N 156 49.56 E GPS	5718	5719		0.5.	0013	00 1 0,20,21,20,2	
	P03	257	1 ROS 122705 1040	BE 24 14.29 N 156 4.23 E GPS	5655	5655					
49MR0505_2	P03	257	1 BUC 122705 1047	UN 24 14.27 N 156 4.25 E GPS	5657	5657				1,33	25.6C
49MR0505_2	P03	257	1 UNK 122705 1057	UN 24 14.18 N 156 4.27 E GPS	5655	5657				-,	AIR N2O SMPL
49MR0505_2	P03	257	1 ROS 122705 1206	BO 24 13.59 N 156 4.18 E GPS	5669	5669	10	5727	5757	36 1-8,22,27	#2 FOR R.N.
49MR0505_2	P03	257	2 UNK 122705 1213	BE 24 13.56 N 156 4.16 E GPS	5671	5670					80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	257	2 UNK 122705 1232	EN 24 13.37 N 156 4.14 E GPS	5664	5662					111 1111 1111 1111 1111 1111
49MR0505 2		257	1 ROS 122705 1427	EN 24 12.43 N 156 3.72 E GPS	5655	5656					
131110000_2		20,	1 1.00 122/00 112/		0000	0000					

49MR0505 2											
_	P03	259	1 ROS 122705 1852	BE 24 18.41 N 155 13.57 E GPS	5586	5586					
49MR0505_2	P03	259	1 BUC 122705 1859	UN 24 18.28 N 155 13.52 E GPS	5578	5585				1,33	25.1C
49MR0505_2	P03	259	1 UNK 122705 1909	UN 24 18.20 N 155 13.42 E GPS	5586	5587					AIR N2O SMPL
49MR0505_2	P03	259	1 ROS 122705 2018	BO 24 17.79 N 155 12.79 E GPS	5584	5582	11	5640	5675	35 1-8,12,13,23,24,26,27	
49MR0505 2	P03	259	1 ROS 122705 2237	EN 24 16.85 N 155 11.72 E GPS	5583	5582					
49MR0505 2	P03	261	1 ROS 122805 0223	BE 24 11.66 N 154 27.02 E GPS	4910	4899					
49MR0505 2	P03	261	1 BUC 122805 0232	UN 24 11.52 N 154 26.94 E GPS	4892	4893				1,33	24.5C
49MR0505 2	P03	261	1 UNK 122805 0242	UN 24 11.46 N 154 26.81 E GPS	4922	4923				-/	AIR N2O SMPL
49MR0505_2	P03	261	1 ROS 122805 0341	BO 24 11.07 N 154 26.35 E GPS	4985	4987	8	4988	5014	33 1-8,27	#20=#7 DUPL SMPLS (4500DB)
49MR0505_2	P03	261	1 ROS 122805 0545	EN 24 10.37 N 154 25.21 E GPS	5043	5043	0	4300	3014	33 1-0,27	#20-#/ DOEL SMELS (4300DB)
_											
49MR0505_2	P03	263	1 ROS 122805 1004	BE 24 12.81 N 153 34.06 E GPS	5410	5421					0.4.45
49MR0505_2	P03	263	1 BUC 122805 1013	UN 24 12.78 N 153 34.02 E GPS	5425	5424				1,31,33	24.4C
49MR0505_2	P03	263	1 UNK 122805 1027	UN 24 12.73 N 153 33.94 E GPS	5418	5419					AIR CH4 & N2O SMPL
49MR0505_2	P03	263	1 ROS 122805 1127	BO 24 12.34 N 153 33.49 E GPS	5412	5413	8	5481	5507	36 1-8,23,24,26,27,31,33,81	#2,#3 FOR POM
49MR0505_2	P03	263	1 ROS 122805 1344	EN 24 11.83 N 153 32.39 E GPS	5399	5400					
49MR0505_2	P03	265	1 ROS 122805 1728	BE 24 16.19 N 152 49.55 E GPS	5343	5345					
49MR0505_2	P03	265	1 BUC 122805 1737	UN 24 16.13 N 152 49.48 E GPS	5342	5342				1,33	24.5C
49MR0505 2	P03	265	1 UNK 122805 1746	UN 24 16.07 N 152 49.44 E GPS	5342	5343					AIR N2O SMPL
49MR0505 2	P03	265	1 ROS 122805 1851	BO 24 15.79 N 152 48.89 E GPS	5343	5343	9	5381	5429	35 1-8,27	#21=#5 DUPL SMPLS (5000DB)
49MR0505 2	P03	265	1 ROS 122805 2104	EN 24 15.03 N 152 47.86 E GPS	5358	5359					,
49MR0505 2	P03	267	1 ROS 122905 0043	BE 24 14.45 N 152 3.88 E GPS	5488	5489					
49MR0505_2	P03	267	1 BUC 122905 0052	UN 24 14.40 N 152 3.75 E GPS	5482	5485				1,33	24.8C
49MR0505_2 49MR0505_2	P03	267	1 UNK 122905 0102	UN 24 14.40 N 152 3.75 E GPS UN 24 14.37 N 152 3.67 E GPS	5489	5488				1,33	AIR N2O SMPL
_								5.004		26.1.0.02.04.06.07	
49MR0505_2	P03	267	1 ROS 122905 0208	BO 24 14.08 N 152 2.71 E GPS	5470	5473	9	5604	5563	36 1-8,23,24,26,27	#23=#5 DUPL SMPLS (5000DB)
49MR0505_2	P03	267	1 ROS 122905 0422	EN 24 13.97 N 152 1.39 E GPS	5476	5476					
		269	1 DOC 122005 0002		5493						
49MR0505_2	P03		1 ROS 122905 0803	BE 24 14.80 N 151 15.26 E GPS		5490					
49MR0505_2 49MR0505_2	P03	269	1 BUC 122905 0811	UN 24 14.78 N 151 15.22 E GPS	5479	5478				1,33	25.2C
_										1,33	25.2C AIR N2O SMPL
49MR0505_2	P03	269	1 BUC 122905 0811	UN 24 14.78 N 151 15.22 E GPS	5479	5478	9	5489	5573	1,33 35 1-8,27	
49MR0505_2 49MR0505_2	P03 P03	269 269	1 BUC 122905 0811 1 UNK 122905 0821	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS	5479 5479	5478 5479	9	5489	5573		AIR N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03	269 269 269	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS	5479 5479 5496	5478 5479 5488	9	5489	5573		AIR N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03	269 269 269 269	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS	5479 5479 5496 5461	5478 5479 5488 5460	9	5489	5573		AIR N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03	269 269 269 269 271	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS	5479 5479 5496 5461 5125	5478 5479 5488 5460 5116 5137	9	5489	5573	35 1-8,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB)
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS	5479 5479 5496 5461 5125 5132 5150	5478 5479 5488 5460 5116 5137 5126				35 1-8,27 1,33	AIR N2O SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N2O SMPL
49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2 49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS	5479 5479 5496 5461 5125 5132 5150 5140	5478 5479 5488 5460 5116 5137 5126 5138	9	5489 5139	5573	35 1-8,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB)
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 271	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106	5478 5479 5488 5460 5116 5137 5126 5138 5106				35 1-8,27 1,33	AIR N2O SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N2O SMPL
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 271 271 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS BE 24 15.91 N 149 39.83 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012				1,33 34 1-8,23,24,26,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB)
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 271 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS BE 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022				35 1-8,27 1,33	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB)
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2307	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS BE 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.59 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022	9	5139	5208	1,33 34 1-8,23,24,26,27 1,33	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS BE 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022				1,33 34 1-8,23,24,26,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N.
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 271 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS EN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS BO 24 15.72 N 149 39.19 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5035 5043	9	5139	5208	1,33 34 1-8,23,24,26,27 1,33	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS BE 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022	9	5139	5208	1,33 34 1-8,23,24,26,27 1,33	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N.
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 271 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1547 1 UNK 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS EN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS BO 24 15.72 N 149 39.19 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5035 5043	9	5139	5208	1,33 34 1-8,23,24,26,27 1,33	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N.
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 269 271 271 271 271 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0038	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS BO 24 15.72 N 149 39.29 E GPS BO 24 15.72 N 149 39.19 E GPS BE 24 15.79 N 149 39.19 E GPS EN 24 15.74 N 149 39.01 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040 5044	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5035 5043 5044	9	5139	5208	1,33 34 1-8,23,24,26,27 1,33	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N.
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 271 271 271 271 271 273 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0038 1 ROS 123005 0203	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS BO 24 15.72 N 149 39.29 E GPS BO 24 15.72 N 149 39.19 E GPS BC 24 15.74 N 149 39.19 E GPS EN 24 15.74 N 149 39.01 E GPS EN 24 15.74 N 149 39.01 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040 5044 5063	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5043 5044 5062	9	5139	5208	1,33 34 1-8,23,24,26,27 1,33	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N.
49MR0505_2	P03 P03 P03 P03 P03 P03 P03 P03 P03 P03	269 269 269 271 271 271 271 271 273 273 273 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0038 1 ROS 123005 0203 1 ROS 123005 0406	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS UN 24 15.82 N 149 39.59 E GPS BO 24 15.72 N 149 39.19 E GPS BE 24 15.79 N 149 39.19 E GPS EN 24 15.74 N 149 39.01 E GPS EN 24 15.75 N 149 37.90 E GPS EN 24 15.55 N 149 37.90 E GPS EN 24 15.55 N 149 37.90 E GPS EN 24 15.55 N 149 37.90 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040 5044 5063 5763	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5035 5043 5044 5062 5768	9	5139	5208	1,33 34 1-8,23,24,26,27 1,33 36 1-8,22,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	269 269 269 269 271 271 271 271 271 273 273 273 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1902 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0038 1 ROS 123005 0203 1 ROS 123005 0406 1 BUC 123005 0414	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS UN 24 15.82 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS BO 24 15.74 N 149 39.19 E GPS EN 24 15.75 N 149 39.19 E GPS EN 24 15.75 N 149 39.01 E GPS EN 24 15.75 N 149 37.90 E GPS EN 24 15.55 N 149 37.90 E GPS BE 24 30.29 N 149 19.94 E GPS UN 24 30.26 N 149 19.83 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040 5044 5063 5763	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5043 5044 5062 5768 5767	9	5139	5208	1,33 34 1-8,23,24,26,27 1,33 36 1-8,22,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	269 269 269 269 271 271 271 271 271 273 273 273 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1658 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0038 1 ROS 123005 0203 1 ROS 123005 0406 1 BUC 123005 0414 1 UNK 123005 0422	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS UN 24 15.82 N 149 39.59 E GPS BO 24 15.72 N 149 39.19 E GPS BO 24 15.74 N 149 39.19 E GPS EN 24 15.75 N 149 39.19 E GPS EN 24 15.75 N 149 39.19 E GPS EN 24 15.75 N 149 39.01 E GPS EN 24 15.55 N 149 37.90 E GPS EN 24 15.55 N 149 37.90 E GPS BE 24 30.29 N 149 19.94 E GPS UN 24 30.26 N 149 19.83 E GPS UN 24 30.26 N 149 19.83 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040 5044 5063 5763 5766 5768	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5043 5044 5062 5768 5767 5768	9	5139 5047	5208 5093	1,33 34 1-8,23,24,26,27 1,33 36 1-8,22,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	269 269 269 269 271 271 271 271 271 273 273 273 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1658 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0038 1 ROS 123005 0203 1 ROS 123005 0406 1 BUC 123005 0414 1 UNK 123005 0422 1 ROS 123005 0537 1 ROS 123005 0537 1 ROS 123005 0800	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS UN 24 15.82 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS BO 24 15.74 N 149 39.19 E GPS EN 24 15.75 N 149 39.19 E GPS EN 24 15.75 N 149 39.19 E GPS EN 24 15.76 N 149 39.01 E GPS EN 24 15.55 N 149 37.90 E GPS EN 24 30.29 N 149 19.94 E GPS UN 24 30.26 N 149 19.83 E GPS UN 24 30.26 N 149 19.87 E GPS BO 24 30.20 N 149 19.71 E GPS BO 24 30.20 N 149 18.79 E GPS EN 24 30.20 N 149 18.79 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040 5044 5063 5763 5766 5768 5770 5767	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5043 5044 5062 5768 5767 5768 5770 5767	9	5139 5047	5208 5093	1,33 34 1-8,23,24,26,27 1,33 36 1-8,22,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	269 269 269 269 271 271 271 271 271 273 273 273 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1658 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0016 2 UNK 123005 0038 1 ROS 123005 0406 1 BUC 123005 0414 1 UNK 123005 0422 1 ROS 123005 0537 1 ROS 123005 0800 1 ROS 123005 0800 1 ROS 123005 0954	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS UN 24 15.82 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS EN 24 15.74 N 149 39.19 E GPS EN 24 15.75 N 149 39.19 E GPS EN 24 15.75 N 149 39.01 E GPS EN 24 15.76 N 149 39.01 E GPS EN 24 15.76 N 149 39.01 E GPS UN 24 30.29 N 149 19.94 E GPS UN 24 30.26 N 149 19.83 E GPS UN 24 30.26 N 149 19.87 E GPS EN 24 30.20 N 149 19.71 E GPS EN 24 30.08 N 149 17.71 E GPS EN 24 30.08 N 149 17.71 E GPS EN 24 14.57 N 149 17.71 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5012 5023 5017 5036 5040 5044 5063 5763 5766 5768 5770 5767	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5043 5044 5062 5768 5767 5768 5770 5767 5789	9	5139 5047	5208 5093	1,33 34 1-8,23,24,26,27 1,33 36 1-8,22,27 1,33 36 1-8,12,13,23,24,26,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N. 80L THROUGH HULL PUMP FOR R.N. 24.1C AIR N20 SMPL
49MR0505_2	P03	269 269 269 269 271 271 271 271 271 273 273 273 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1658 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0016 2 UNK 123005 0038 1 ROS 123005 0203 1 ROS 123005 0406 1 BUC 123005 0414 1 UNK 123005 0422 1 ROS 123005 0537 1 ROS 123005 0800 1 ROS 123005 0954 1 BUC 123005 0954 1 BUC 123005 0954	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS UN 24 15.82 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS EN 24 15.74 N 149 39.19 E GPS EN 24 15.75 N 149 39.19 E GPS EN 24 15.75 N 149 39.01 E GPS EN 24 15.76 N 149 39.01 E GPS EN 24 15.55 N 149 39.01 E GPS EN 24 30.29 N 149 19.94 E GPS UN 24 30.26 N 149 19.83 E GPS UN 24 30.26 N 149 19.87 E GPS EN 24 30.20 N 149 19.71 E GPS EN 24 30.08 N 149 17.71 E GPS EN 24 14.57 N 149 17.71 E GPS BE 24 14.57 N 149 1.60 E GPS UN 24 14.57 N 149 1.60 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5106 5012 5023 5017 5036 5040 5044 5063 5763 5766 5768 5770 5767 5789 5790	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5035 5043 5044 5062 5768 5767 5768 5770 5767 5789 5787	9 10	5139 5047 5889	5208 5093 5867	1,33 34 1-8,23,24,26,27 1,33 36 1-8,22,27 1,33 36 1-8,12,13,23,24,26,27	AIR N20 SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N20 SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N20 SMPL #2-4 FOR R.N. 80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	269 269 269 269 271 271 271 271 271 273 273 273 273 273 273 273 273 273 273	1 BUC 122905 0811 1 UNK 122905 0821 1 ROS 122905 0928 1 ROS 122905 1142 1 ROS 122905 1537 1 BUC 122905 1557 1 ROS 122905 1557 1 ROS 122905 1658 1 ROS 122905 1658 1 ROS 122905 2246 1 BUC 122905 2255 1 UNK 122905 2255 1 UNK 122905 2307 1 ROS 123005 0002 2 UNK 123005 0016 2 UNK 123005 0016 2 UNK 123005 0038 1 ROS 123005 0406 1 BUC 123005 0414 1 UNK 123005 0422 1 ROS 123005 0537 1 ROS 123005 0800 1 ROS 123005 0800 1 ROS 123005 0954	UN 24 14.78 N 151 15.22 E GPS UN 24 14.76 N 151 15.14 E GPS BO 24 14.73 N 151 14.75 E GPS EN 24 14.46 N 151 13.93 E GPS BE 24 17.19 N 150 28.23 E GPS UN 24 17.20 N 150 28.18 E GPS UN 24 17.25 N 150 28.10 E GPS BO 24 17.41 N 150 27.79 E GPS EN 24 17.42 N 150 26.82 E GPS UN 24 15.91 N 149 39.83 E GPS UN 24 15.86 N 149 39.72 E GPS UN 24 15.82 N 149 39.59 E GPS BO 24 15.72 N 149 39.29 E GPS EN 24 15.74 N 149 39.19 E GPS EN 24 15.75 N 149 39.19 E GPS EN 24 15.75 N 149 39.01 E GPS EN 24 15.76 N 149 39.01 E GPS EN 24 15.76 N 149 39.01 E GPS UN 24 30.29 N 149 19.94 E GPS UN 24 30.26 N 149 19.83 E GPS UN 24 30.26 N 149 19.87 E GPS EN 24 30.20 N 149 19.71 E GPS EN 24 30.08 N 149 17.71 E GPS EN 24 30.08 N 149 17.71 E GPS EN 24 14.57 N 149 17.71 E GPS	5479 5479 5496 5461 5125 5132 5150 5140 5012 5023 5017 5036 5040 5044 5063 5763 5766 5768 5770 5767	5478 5479 5488 5460 5116 5137 5126 5138 5106 5012 5022 5022 5022 5043 5044 5062 5768 5767 5768 5770 5767 5789	9	5139 5047	5208 5093	1,33 34 1-8,23,24,26,27 1,33 36 1-8,22,27 1,33 36 1-8,12,13,23,24,26,27	AIR N2O SMPL #22=#5 DUPL SMPLS (5000DB) 24.2C AIR N2O SMPL #23=#7 DUPL SMPLS (4500DB) 24.0C AIR N2O SMPL #2-4 FOR R.N. 80L THROUGH HULL PUMP FOR R.N. 24.1C AIR N2O SMPL

49MR0505_2	P03	277	1 ROS 123005 1628	BE 24 14.77 N 148 26.85 E GPS	5789	5787					
49MR0505_2	P03	277	1 BUC 123005 1635	UN 24 14.75 N 148 26.73 E GPS	5787	5788				1,33	23.9C
49MR0505 2	P03	277	1 UNK 123005 1644	UN 24 14.75 N 148 26.61 E GPS	5784	5786					AIR N2O SMPL
49MR0505_2	P03	277	1 ROS 123005 1758	BO 24 14.73 N 148 26.02 E GPS	5788	5789	11	5852	5891	36 1-8,27	
49MR0505 2	P03	277	1 ROS 123005 2014	EN 24 14.44 N 148 24.70 E GPS	5790	5791					
49MR0505 2	P03	279	1 ROS 123005 2255	BE 24 15.61 N 147 50.97 E GPS	5841	5843					
49MR0505 2	P03	279	1 BUC 123005 2302	UN 24 15.51 N 147 50.90 E GPS	5842	5841				1,31,33,82	25.1C
49MR0505 2	P03	279	1 UNK 123005 2313	UN 24 15.47 N 147 50.80 E GPS	5845	5839					AIR CH4 & N2O SMPL
49MR0505 2	P03	279	1 ROS 123105 0023	BO 24 15.54 N 147 50.25 E GPS	5838	5841	9	5924	5939	36 1-8,23,24,26,27,31,33,64,82	
49MR0505 2	P03	279	1 ROS 123105 0241	EN 24 15.23 N 147 49.00 E GPS	5820	5818					
49MR0505 2		565	1 UNK 010106 0355	BE 24 17.29 N 147 28.08 E GPS	5835	5835					MAGNETOMETER CALIBRATION
49MR0505 2		565	1 UNK 010106 0420	EN 24 17.68 N 147 28.09 E GPS	5834	5834					
49MR0505 2	P03	281	1 ROS 010106 1855	BE 24 15.71 N 147 15.39 E GPS	5855	5855					
49MR0505 2	P03	281	1 BUC 010106 1901	UN 24 15.67 N 147 15.34 E GPS	5858	5858				1,33	25.0C
49MR0505 2	P03	281	1 UNK 010106 1910	UN 24 15.68 N 147 15.28 E GPS	5856	5858					AIR N2O SMPL
49MR0505 2	P03	281	1 ROS 010106 2023	BO 24 15.66 N 147 14.76 E GPS	5871	5871	9	5923	5966	36 1-8,27	
49MR0505 2	P03	281	1 ROS 010106 2249	EN 24 15.63 N 147 13.23 E GPS	5890	5890					
49MR0505 2	P03	283	1 ROS 010206 0133	BE 24 16.08 N 146 39.73 E GPS	5873	5873					
49MR0505 2	P03	283	1 BUC 010206 0141	UN 24 16.16 N 146 39.73 E GPS	5875	5875				1,33	25.1C
49MR0505 2	P03	283	1 UNK 010206 0150	UN 24 16.27 N 146 39.75 E GPS	5876	5876				-,	AIR N2O SMPL
49MR0505 2	P03	283	1 ROS 010206 0305	BO 24 16.82 N 146 39.61 E GPS	5875	5875	10	5995	5979	36 1-8,23,24,26,27	
49MR0505 2	P03	283	1 ROS 010206 0529	EN 24 18.35 N 146 39.74 E GPS	5875	5875					
49MR0505 2	P03	285	1 ROS 010206 0833	BE 24 16.75 N 146 2.92 E GPS	5732	5730					SEC OXYGEN SENSOR REPLACED
49MR0505 2	P03	285	1 BUC 010206 0839	UN 24 16.83 N 146 2.86 E GPS	5724	5725				1,33	25.0C
49MR0505 2	P03	285	1 UNK 010206 0848	UN 24 16.90 N 146 2.83 E GPS	5726	5726				1,00	AIR N2O SMPL
49MR0505 2	P03	285	1 ROS 010206 1000	BO 24 17.28 N 146 3.09 E GPS	5726	5725	9	5734	5826	35 1-8,27	1111 1120 01112
49MR0505 2	P03	285	1 ROS 010206 1225	EN 24 18.53 N 146 4.18 E GPS	5724	5724		0,01	0020	55 1 5/2.	
49MR0505 2	P03	287	1 ROS 010206 1543	BE 24 14.03 N 145 27.19 E GPS	5559	5558					
49MR0505 2	P03	287	1 BUC 010206 1551	UN 24 14.13 N 145 27.27 E GPS	5557	5557				1	25.0C
49MR0505 2	P03	287	1 ROS 010206 1710	BO 24 13.90 N 145 27.76 E GPS	5561	5561	10	5571	5645	35 1-8,23,24,26,27	
49MR0505 2	P03	287	1 ROS 010206 1927	EN 24 13.57 N 145 29.09 E GPS	5556	5556		0071	0010	30 1 3/23/21/20/21	
49MR0505 2	P03	289	1 ROS 010206 2303	BE 24 13.65 N 144 50.02 E GPS	5348	5349					
49MR0505 2	P03	289	1 BUC 010206 2310	UN 24 13.55 N 144 50.18 E GPS	5353	5347				1,33	23.9C
49MR0505 2	P03	289	1 UNK 010206 2320	UN 24 13.52 N 144 50.21 E GPS	5348	5347				1,00	AIR N2O SMPL
49MR0505 2	P03	289	1 ROS 010306 0023	BO 24 13.20 N 144 50.05 E GPS	5359	5359	10	5391	5434	34 1-8,27	#20 MISS TRIP
49MR0505 2	P03	289	1 ROS 010306 0237	EN 24 12.52 N 144 49.95 E GPS	5362	5362	10	3331	3 13 1	31 1 0/27	"20 IIIOO INII
49MR0505 2	P03	291	1 ROS 010306 0546	BE 24 15.56 N 144 14.81 E GPS	4898	4898					
49MR0505 2	P03	291	1 BUC 010306 0555	UN 24 15.45 N 144 14.77 E GPS	4895	4896				1,31,33	23.3C
49MR0505_2	P03	291	1 UNK 010306 0611	UN 24 15.49 N 144 14.77 E GIS	4896	4896				1,01,00	AIR CH4 & N2O SMPL
49MR0505_2	P03	291	1 ROS 010306 0706	BO 24 14.84 N 144 14.03 E GPS	4911	4911	9	5022	4969	36 1-8,23,24,26,27,31,33,81	#2-5 FOR POM
49MR0505_2	P03	291	1 ROS 010306 0700	EN 24 14.29 N 144 12.79 E GPS	4967	4967	9	3022	4505	30 1-0,23,24,20,27,31,33,01	#2-5 FOR FOM
49MR0505_2	P03	291	1 FLT 010306 0921	DE 24 14.24 N 144 12.64 E GPS	4981	4982					ARGO SN2296 (ARGOS ID 60094)
49MR0505_2	P03	293	1 ROS 010306 1205	BE 24 16.43 N 143 38.26 E GPS	8758	8759					WITHOUT LADCP
49MR0505_2	P03	293	1 BUC 010306 1213	UN 24 16.34 N 143 38.04 E GPS	8790	8792				1,33	24.2C
49MR0505_2				UN 24 16.21 N 143 37.96 E GPS						1,00	AIR N2O SMPL
49MR0505_2 49MR0505_2	P03 P03	293	1 UNK 010306 1223 1 ROS 010306 1342		8795 8740	8793 8740	_Q	6482	6502	36 1-8 12 13 23 24 26 27	AIR NZO SMFL
49MR0505_2 49MR0505_2	P03	293	1 ROS 010306 1342 1 ROS 010306 1627	BO 24 15.48 N 143 37.68 E GPS		8292	-9	0402	0302	36 1-8,12,13,23,24,26,27	
49MR0505_2 49MR0505_2	P03	293		EN 24 14.33 N 143 37.81 E GPS	8291 4674	4674					
49MR0505_2 49MR0505_2	P03	295	1 ROS 010306 1832	BE 24 15.04 N 143 13.67 E GPS						1 33	23 10
49MR0505_2 49MR0505_2	P03	295 295	1 BUC 010306 1839 1 UNK 010306 1849	UN 24 15.09 N 143 13.66 E GPS UN 24 15.10 N 143 13.66 E GPS	4645 4648	4646 4648				1,33	23.1C AIR N2O SMPL
49MR0505_2 49MR0505_2	P03	295	1 ROS 010306 1945	BO 24 15.22 N 143 13.51 E GPS	4624	4625	5	4634	1689	34 1-8,22,27	#2-4 FOR R.N.
4.51510,000,000,000,000,000,000,000,000,00	E U 3	233	1 700 010300 1343	DO 24 13.22 N 143 13.31 E GFS	4024	4020	J	4034	4002	57 ± '0,22,21	#Z-4 LOV V.M.

49MR0505_2	P03	295	2 UNK 010306 1953	BE 24 15.25 N 143 13.55 E GPS	4619	4618					80L THROUGH HULL PUMP FOR R.N.
49MR0505 2	P03	295	2 UNK 010306 2007	EN 24 15.28 N 143 13.62 E GPS	4629	4624					
49MR0505 2	P03	295	1 ROS 010306 2147	EN 24 15.63 N 143 13.39 E GPS	4648	4648					
49MR0505 2	P03	297	1 ROS 010306 2345	BE 24 14.88 N 142 56.72 E GPS	2472	2480					
49MR0505 2	P03	297	1 BUC 010306 2352	UN 24 14.83 N 142 56.66 E GPS	2476	2477				1	23.4C
49MR0505 2	P03	297	1 ROS 010406 0026	BO 24 14.71 N 142 56.46 E GPS	2583	2591	19	2514	2526	22 1-8,27	
49MR0505 2	P03	297	1 ROS 010406 0138	EN 24 14.57 N 142 56.16 E GPS	2675	2693				•,	
49MR0505 2	P03	299	1 ROS 010406 0411	BE 24 14.19 N 142 27.31 E GPS	2914	2913					
49MR0505 2	P03	299	1 BUC 010406 0419	UN 24 14.14 N 142 27.22 E GPS	2915	2914				1,33	24.8C
49MR0505 2	P03	299	1 UNK 010406 0428	UN 24 14.12 N 142 27.10 E GPS	2905	2902				,	AIR N2O SMPL
49MR0505 2	P03	299	1 ROS 010406 0500	BO 24 14.02 N 142 26.73 E GPS	2888	2885	10	2970	2926	24 1-8,23,24,26,27	DECK UNIT FUZED (AT 2800DB, UPCAST)
49MR0505_2	P03	299	1 ROS 010406 0635	EN 24 13.69 N 142 25.66 E GPS	2854	2851				, , , ,	
49MR0505 2	P03	301	1 ROS 010406 0900	BE 24 14.10 N 142 6.68 E GPS	2580	2579					
49MR0505 2	P03	301	1 BUC 010406 0907	UN 24 14.04 N 142 6.60 E GPS	2580	2578				1	24.5C
49MR0505 2	P03	301	1 ROS 010406 0943	BO 24 13.98 N 142 6.11 E GPS	2579	2579	8	2610	2593	22 1-8,27	
49MR0505 2	P03	301	1 ROS 010406 1103	EN 24 13.77 N 142 4.94 E GPS	2578	2578					
49MR0505 2	P03	303	1 ROS 010406 1256	BE 24 14.35 N 141 45.54 E GPS	2520	2518					
49MR0505 2	P03	303	1 BUC 010406 1304	UN 24 14.29 N 141 45.43 E GPS	2513	2516				1,33	24.9C
49MR0505 2	P03	303	1 UNK 010406 1313	UN 24 14.33 N 141 45.34 E GPS	2517	2515				_,	AIR N2O SMPL
49MR0505 2	P03	303	1 ROS 010406 1339	BO 24 14.40 N 141 45.20 E GPS	2507	2509	9	2525	2529	22 1-8,23,24,26,27	THE THE STILL
49MR0505 2	P03	303	1 ROS 010406 1458	EN 24 14.31 N 141 44.70 E GPS	2501	2501	-				
49MR0505 2	P03	305	1 ROS 010406 1659	BE 24 14.72 N 141 33.59 E GPS	1320	1321					NEAR ACTIVE SUBMARINE VOLCANO
49MR0505_2	P03	305	1 BUC 010406 1707	UN 24 14.70 N 141 33.57 E GPS	1322	1322				1	24.3C
49MR0505 2	P03	305	1 ROS 010406 1728	BO 24 14.62 N 141 33.54 E GPS	1324	1329	14	1353	1359	16 1-8,23,24,26,27	21.00
49MR0505 2	P03	305	1 ROS 010406 1821	EN 24 14.45 N 141 33.37 E GPS	1349	1342		1000	1003	10 1 0/20/21/20/2/	
49MR0505 2	P03	306	1 ROS 010406 2019	BE 24 14.57 N 141 24.39 E GPS	892	888					
49MR0505 2	P03	306	1 BUC 010406 2025	UN 24 14.56 N 141 24.37 E GPS	892	892				1	24.1C
49MR0505 2	P03	306	1 ROS 010406 2038	BO 24 14.52 N 141 24.35 E GPS	872	885	10	876	880	13 1-8,23,24,26,27	
49MR0505 2	P03	306	1 ROS 010406 2112	EN 24 14.45 N 141 24.29 E GPS	884	886		0,0	000	10 1 0,20,21,20,2	
49MR0505 2	P03	308	1 ROS 010406 2313	BE 24 15.01 N 141 11.99 E GPS	1864	1865					
49MR0505 2	P03	308	1 BUC 010406 2320	UN 24 15.09 N 141 11.97 E GPS	1846	1844				1,33	23.4C
49MR0505 2	P03	308	1 UNK 010406 2328	UN 24 15.13 N 141 11.99 E GPS	1839	1836				_,	AIR N2O SMPL
49MR0505 2	P03	308	1 ROS 010406 2345	BO 24 15.15 N 141 12.04 E GPS	1835	1834	9	1833	1841	18 1-8,27	
49MR0505 2	P03	308	1 ROS 010506 0041	EN 24 15.46 N 141 12.24 E GPS	1833	1832	-				
49MR0505 2	P03	310	1 ROS 010506 0241	BE 24 15.83 N 140 47.81 E GPS	2695	2693					
49MR0505 2	P03	310	1 BUC 010506 0249	UN 24 15.91 N 140 47.74 E GPS	2679	2678				1	23.9C
49MR0505 2	P03	310	1 ROS 010506 0325	BO 24 15.99 N 140 47.56 E GPS	2681	2680	10	2680	2697	23 1-8,23,24,26,27	20.30
49MR0505 2	P03	310	1 ROS 010506 0445	EN 24 16.11 N 140 47.38 E GPS	2678	2676		2000	2007	20 1 0/20/21/20/2/	
49MR0505 2	P03	312	1 ROS 010506 0727	BE 24 15.67 N 140 15.98 E GPS	4024	4015					
49MR0505 2	P03	312	1 BUC 010506 0733	UN 24 15.65 N 140 16.00 E GPS	4016	4016				1,33	23.0C
49MR0505_2	P03	312	1 UNK 010506 0742	UN 24 15.61 N 140 16.00 E GPS	4019	4022				1,55	AIR N2O SMPL
49MR0505 2	P03	312	1 ROS 010506 0829	BO 24 15.44 N 140 16.17 E GPS	4015	4014	10	4034	4070	28 1-8,27	
49MR0505_2	P03	312	1 ROS 010506 1026	EN 24 15.29 N 140 16.76 E GPS	4027	4026		1001	10,0	20 1 0/2	
49MR0505 2	P03	314	1 ROS 010506 1429	BE 24 13.88 N 139 24.75 E GPS	4793	4792					
49MR0505 2	P03	314	1 BUC 010506 1436	UN 24 13.84 N 139 24.74 E GPS	4786	4789				1,31,33,82	22.5C
49MR0505 2	P03	314	1 UNK 010506 1447	UN 24 13.80 N 139 24.75 E GPS	4787	4787				,,,	AIR CH4 & N2O SMPL
49MR0505_2	P03	314	1 ROS 010506 1543	BO 24 13.61 N 139 24.79 E GPS	4792	4784	10	4802	4854	32 1-8,23,24,26,27,31,33,64,82	THE CALL A LIEU OFFEE
49MR0505 2	P03	314	1 ROS 010506 1742	EN 24 12.56 N 139 24.87 E GPS	4633	4636				-, -, , -, ,,,	
49MR0505 2	P03	316	1 ROS 010506 2150	BE 24 15.54 N 138 34.41 E GPS	5027	5026					
49MR0505 2	P03	316	1 BUC 010506 2156	UN 24 15.55 N 138 34.35 E GPS	5026	5027				1,33	21.3C
49MR0505 2	P03	316	1 UNK 010506 2206	UN 24 15.52 N 138 34.27 E GPS	5026	5027				,	AIR N2O SMPL
1311103003_2	200	010	1 31.11 310300 2200	1 21 10:02 1. 100 01:27 1 010	0020	002,					1111, 1120 01112

49MR0505_2	P03	316	1 ROS 010506 2307	BO 24 15.27 N 138 33.80 E GPS	5027	5028	9	5061	5103	33 1-8,27	
49MR0505_2	P03	316	1 ROS 010606 0116	EN 24 15.17 N 138 33.37 E GPS	5028	5028					
49MR0505_2	P03	318	1 ROS 010606 0501	BE 24 14.69 N 137 48.26 E GPS	5124	5125					
49MR0505_2	P03	318	1 BUC 010606 0508	UN 24 14.60 N 137 48.23 E GPS	5122	5122				1,33	21.9C
49MR0505_2	P03	318	1 UNK 010606 0517	UN 24 14.47 N 137 48.18 E GPS	5100	5106					AIR N2O SMPL
49MR0505_2	P03	318	1 ROS 010606 0621	BO 24 14.07 N 137 47.83 E GPS	5027	5031	9	5153	5173	36 1-8,22,27	#2-4 FOR R.N.
49MR0505_2	P03	318	2 UNK 010606 0628	BE 24 14.04 N 137 47.79 E GPS	5029	5021					80L THROUGH HULL PUMP FOR R.N.
49MR0505_2	P03	318	2 UNK 010606 0644	EN 24 13.99 N 137 47.69 E GPS	5007	5007					
49MR0505 2	P03	318	1 ROS 010606 0836	EN 24 13.47 N 137 47.40 E GPS	5060	5065					
49MR0505 2	P03	X09	1 ROS 010606 1514	BE 23 59.82 N 136 59.77 E GPS	4045	4046					
49MR0505 2	P03	X09	1 BUC 010606 1522	UN 23 59.77 N 136 59.78 E GPS	4045	4040				1,33	22.1C
49MR0505 2	P03	X09	1 UNK 010606 1531	UN 23 59.64 N 136 59.79 E GPS	4071	4072					AIR N2O SMPL
49MR0505 2	P03	X09	1 ROS 010606 1622	BO 23 59.22 N 136 59.60 E GPS	4091	4100	10	4163	4166	30 1-8,12,13,23,24,26,27	#2 DUPL FOR SALNTY
49MR0505 2	P03	X09	1 ROS 010606 1808	EN 23 58.37 N 136 59.05 E GPS	4128	4128					
49MR0505 2	P03	322	1 ROS 010606 2241	BE 24 14.84 N 136 12.03 E GPS	3925	3925					
49MR0505_2	P03	322	1 BUC 010606 2249	UN 24 14.65 N 136 11.97 E GPS	3948	3969				1,33	21.9C
49MR0505 2	P03	322	1 UNK 010606 2258	UN 24 14.51 N 136 11.89 E GPS	3987	3988				-,	AIR N2O SMPL
49MR0505 2	P03	322	1 ROS 010606 2347	BO 24 14.15 N 136 11.41 E GPS	4368	4363	10	4181	4154	29 1-8,23,24,26,27	#2 DUPL FOR SALNTY, #18 MISS FIRE
49MR0505_2	100	566	1 UNK 010706 0030	UN 24 13.93 N 136 11.10 E GPS	4539	4539	10	1101	1101	23 1 0/20/21/20/21	RAIN SMPL (1.5MM/HR)
49MR0505_2	P03	322	1 ROS 010706 0136	EN 24 13.55 N 136 10.77 E GPS	4748	4765					THIN SHIB (I.SHI) HIV
49MR0505_2	P03	324	1 ROS 010706 0444	BE 24 15.56 N 135 36.84 E GPS	5309	5309					
49MR0505 2	P03	324	1 BUC 010706 0453	UN 24 15.42 N 135 36.73 E GPS	5314	5316				1,33	22.3C
49MR0505_2	P03	324	1 UNK 010706 0503	UN 24 15.27 N 135 36.58 E GPS	5322	5320				1,00	AIR N2O SMPL
49MR0505_2	P03	324	1 ROS 010706 0607	BO 24 14.98 N 135 36.17 E GPS	5326	5326	۵	5367	5403	34 1-8,23,24,26,27	AIR NZO SHI B
49MR0505_2	P03	324	1 ROS 010706 0820	EN 24 14.33 N 135 34.96 E GPS	5329	5330	9	3307	3403	34 1-0,23,24,20,27	
49MR0505_2 49MR0505_2	P03	324	1 ROS 010706 0820 1 ROS 010706 1116	BE 24 14.17 N 135 2.04 E GPS	5174	5175					
49MR0505_2	P03	326	1 BUC 010706 1124	UN 24 14.17 N 135 2.04 E GFS	5167	5175				1,33	22.2C
49MR0505_2	P03		1 UNK 010706 1134	UN 24 14.19 N 135 1.00 E GPS UN 24 14.25 N 135 1.79 E GPS	5172	5176				1,33	AIR N2O SMPL
49MR0505_2 49MR0505_2	P03	326			5172		9	E200	E2E0	22 1 0 27	AIR NZO SMPL
_		326	1 ROS 010706 1234	BO 24 14.30 N 135 1.37 E GPS		5172	9	5200	5250	33 1-8,27	
49MR0505_2	P03	326	1 ROS 010706 1443	EN 24 14.35 N 135 0.61 E GPS	5169	5174					
49MR0505_2	P03	328	1 ROS 010706 1728	BE 24 13.89 N 134 30.70 E GPS	5034	5038				1	22.72
49MR0505_2	P03	328	1 BUC 010706 1738	UN 24 13.91 N 134 30.68 E GPS	5040	5041	0	5056	F1.00	=	23.7C
49MR0505_2	P03	328	1 ROS 010706 1848	BO 24 13.42 N 134 30.90 E GPS	5021	5022	8	5076	5108	33 1-8,23,24,26,27	JELLYFISH IN PRI TC DUCT(UP CAST ABOVE 1200M)
49MR0505_2	P03	328	1 ROS 010706 2055	EN 24 12.34 N 134 30.22 E GPS	5032	5030					
49MR0505_2	P03	329	1 ROS 010706 2347	BE 24 12.60 N 133 59.39 E GPS	4952	4951					
49MR0505_2	P03	329	1 BUC 010706 2357	UN 24 12.53 N 133 59.37 E GPS	4949	4949				1,33	22.3C
49MR0505_2	P03	329	1 UNK 010806 0007	UN 24 12.54 N 133 59.35 E GPS	4951	4949					AIR N2O SMPL
49MR0505_2	P03	329	1 ROS 010806 0102	BO 24 12.42 N 133 59.12 E GPS	4948	4948	8	4957	5017	32 1-8,27	
49MR0505_2	P03	329	1 ROS 010806 0306	EN 24 12.13 N 133 58.38 E GPS	4947	4947					
49MR0505_2	P03	331	1 ROS 010806 0628	BE 24 15.81 N 133 21.58 E GPS	4645	4646					
49MR0505_2	P03	331	1 BUC 010806 0636	UN 24 15.66 N 133 21.53 E GPS	4641	4642				1,33	21.9C
49MR0505_2	P03	331	1 UNK 010806 0646	UN 24 15.58 N 133 21.45 E GPS	4640	4637					AIR N2O SMPL
49MR0505_2	P03	331	1 ROS 010806 0742	BO 24 15.33 N 133 21.01 E GPS	4642	4642	9	4700	4707	31 1-8,27	
49MR0505_2	P03	331	1 ROS 010806 0941	EN 24 14.60 N 133 20.52 E GPS	4640	4641					
49MR0505_2	P03	333	1 ROS 010806 1219	BE 24 16.93 N 132 49.97 E GPS	4037	4038					
49MR0505_2	P03	333	1 BUC 010806 1226	UN 24 16.99 N 132 49.80 E GPS	4042	4043				1,31,33	23.7C
49MR0505_2	P03	333	1 UNK 010806 1242	UN 24 17.17 N 132 49.61 E GPS	4042	4040					AIR N2O SMPL
49MR0505_2	P03	333	1 ROS 010806 1322	BO 24 17.38 N 132 49.35 E GPS	4047	4048	10	4097	4091	33 1-8,23,24,26,27,31,33,81	#2-5 FOR POM
49MR0505_2	P03	333	1 ROS 010806 1510	EN 24 18.18 N 132 48.54 E GPS	4001	4001					
49MR0505_2	P03	335	1 ROS 011006 0958	BE 24 15.32 N 132 12.50 E GPS	3015	3013					
49MR0505_2	P03	335	1 BUC 011006 1005	UN 24 15.56 N 132 12.36 E GPS	3073	3074				1,33	23.4C

49MR0505_2	P03	335	1	UNK 011006 1014	UN 24 15.71 N 132 12.38 E GPS	3133	3130					AIR N2O SMPL
49MR0505 2	P03	335		ROS 011006 1051	BO 24 16.22 N 132 12.42 E GPS	3220	3220	10	3256	3194	25 1-8,27	
49MR0505 2	P03	335		ROS 011006 1229	EN 24 17.31 N 132 12.66 E GPS	3340	3338		0200	0101	20 1 0,27	
49MR0505 2	P03	337		ROS 011006 1457	BE 24 15.05 N 131 35.86 E GPS	2380	2378					
49MR0505_2	P03	337	1		UN 24 15.09 N 131 35.89 E GPS	2379	2379				1	23.1C
49MR0505 2	P03	337		ROS 011006 1537	BO 24 15.22 N 131 35.77 E GPS	2381	2381	9	2385	2396	21 1-8,23,24,26,27	
49MR0505 2	P03	337		ROS 011006 1648	EN 24 15.36 N 131 35.27 E GPS	2375	2373		2000	2030	21 1 0,20,21,20,21	
49MR0505 2	P03	339		ROS 011006 1918	BE 24 15.90 N 130 58.98 E GPS	3349	3351					
49MR0505 2	P03	339		BUC 011006 1925	UN 24 16.01 N 130 58.88 E GPS	3370	3373				1,33	23.3C
49MR0505_2	P03	339		UNK 011006 1934	UN 24 16.09 N 130 58.75 E GPS	3358	3358				1,00	AIR N2O SMPL
49MR0505 2	P03	339		ROS 011006 2013	BO 24 16.25 N 130 58.14 E GPS	3489	3489	14	3486	3418	28 1-8,22,27	#2,3 FOR R.N.
49MR0505_2	P03	339	2		BE 24 16.23 N 130 58.08 E GPS	3496	3495		0100	0110	20 1 0/22/27	80L THROUGH HULL PUMP FOR R.N.
49MR0505 2	P03	339		UNK 011006 2017	EN 24 16.25 N 130 57.80 E GPS	3563	3565					oob intoodi hobb foir foit it.iv.
49MR0505 2	P03	339	1		EN 24 16.61 N 130 57.62 E GPS	3485	3486					
49MR0505 2	P03	341		ROS 011000 2111 ROS 011106 0048	BE 24 14.88 N 130 22.47 E GPS	4586	4569					
49MR0505_2	P03	341	1		UN 24 14.95 N 130 22.47 E GPS	4605	4608				1	22.2C
49MR0505_2	P03	341		ROS 011106 0050	BO 24 15.37 N 130 22.21 E GPS	4479	4474	9	4577	1596	31 1-8,12,13,23,24,26,27	22.20
49MR0505_2	P03	341		ROS 011106 0155	EN 24 16.31 N 130 21.89 E GPS	4617	4618	,	1377	4000	31 1 0,12,13,23,24,20,27	
49MR0505_2	P03	343		ROS 011106 0555	BE 24 15.84 N 129 47.35 E GPS	4101	4101					
49MR0505_2	P03	343		BUC 011106 0701	UN 24 15.89 N 129 47.25 E GPS	4089	4089				1,33	22.3C
49MR0505_2	P03	343		UNK 011106 0701	UN 24 15.09 N 129 47.23 E GFS	4078	4079				1,33	AIR N2O SMPL
49MR0505_2	P03	343		ROS 011106 0710	BO 24 16.23 N 129 47.11 E GPS	4156	4159	10	4118	4139	29 1-8,27	AIR NZO SMEL
49MR0505_2 49MR0505_2	P03	343		ROS 011106 0759	EN 24 16.90 N 129 46.62 E GPS	4190	4192	10	4110	4139	29 1-0,27	
49MR0505_2	P03	345		ROS 011106 0930	BE 24 15.66 N 129 17.33 E GPS	4385	4387					
49MR0505_2 49MR0505_2	P03	345	1		UN 24 15.78 N 129 17.36 E GPS	4356	4357				1,33	23.1C
49MR0505_2 49MR0505_2	P03	345		UNK 011106 1229	UN 24 15.76 N 129 17.36 E GPS	4358	4358				1,33	AIR N2O SMPL
49MR0505_2	P03	345	1		BO 24 16.31 N 129 17.42 E GPS	4335	4338	9	4412	4412	30 1-8,23,24,26,27	AIR NZO SMEL
49MR0505_2 49MR0505_2	P03	345		ROS 011106 1526	EN 24 17.33 N 129 17.42 E GPS	4269	4274	9	4412	4412	30 1-0,23,24,20,27	
49MR0505_2 49MR0505_2	P03	343		ROS 011106 1324 ROS 011106 1731	BE 24 15.20 N 128 53.67 E GPS	5125	5125					
49MR0505_2 49MR0505_2	P03	347		BUC 011106 1741	UN 24 15.29 N 128 53.69 E GPS	5129	5129				1	22.8C
49MR0505_2 49MR0505_2	P03	347		ROS 011106 1741	BO 24 15.98 N 128 53.75 E GPS	5129	5172	10	5225	5216	33 1-8,27	22.80
49MR0505_2 49MR0505_2	P03	347	1		EN 24 17.17 N 128 53.75 E GPS	5146	5172	10	3223	3210	33 1-8,27	
_	P03	347		ROS 011106 2113		5817	5818					
49MR0505_2					BE 24 15.05 N 128 24.28 E GPS						1 21 22 02	21.8C
49MR0505_2	P03 P03	349 349	1	UNK 011206 0007	UN 24 15.16 N 128 24.33 E GPS UN 24 15.27 N 128 24.37 E GPS	5819 5817	5820 5817				1,31,33,82	AIR N2O SMPL
49MR0505_2	P03	349				5838	5834	8	5835	5915	26 1 0 02 04 06 07 21 22 00	AIR NZU SMPL
49MR0505_2	P03	349	1	ROS 011206 0126 ROS 011206 0352	BO 24 15.52 N 128 24.46 E GPS EN 24 16.38 N 128 24.83 E GPS	5817	5819	Ö	3833	3913	36 1-8,23,24,26,27,31,33,82	
49MR0505_2	P03	349		ROS 011206 0352 ROS 011206 0601	BE 24 33.10 N 128 13.64 E GPS	5960	5954					
49MR0505_2	P03			BUC 011206 0612		5975	5977				1 22	21.9C
49MR0505_2		351			UN 24 33.16 N 128 13.69 E GPS						1,33	
49MR0505_2	P03 P03	351		UNK 011206 0620 ROS 011206 0734	UN 24 33.19 N 128 13.69 E GPS	5993 5988	5993 5988	9	C010	C000	26 1 0 27	AIR N2O SMPL
49MR0505_2	P03	351 351			BO 24 33.53 N 128 13.69 E GPS			9	6010	6082	36 1-8,27	
49MR0505_2	P03			ROS 011206 1012	EN 24 34.92 N 128 13.35 E GPS	6036	6036					DATH CARD (FEAR(AID)
49MR0505_2	D03	567	1	UNK 011306 0057 ROS 011306 0755	UN 24 48.77 N 128 1.59 E GPS	6920 94	6920 95					RAIN SMPL (55MM/HR)
49MR0505_2	P03	369			BE 25 54.97 N 127 11.66 E GPS						1 22	01.00
49MR0505_2	P03	369	1		UN 25 55.04 N 127 11.65 E GPS	95	94	1.1	7.0	0.0	1,33	21.9C
49MR0505_2	P03	369		ROS 011306 0800	BO 25 55.13 N 127 11.64 E GPS	93	94	11	79	82	3 1-8,23,24,26,27	ATD NOO CMDI
49MR0505_2	P03	369	1		UN 25 55.22 N 127 11.66 E GPS	93	94					AIR N2O SMPL
49MR0505_2	P03	369		ROS 011306 0808	EN 25 55.26 N 127 11.68 E GPS	89	91					
49MR0505_2	P03	367		ROS 011306 0956	BE 25 45.90 N 127 17.63 E GPS	1123	1123				1 22	22.22
49MR0505_2	P03	367		BUC 011306 1005	UN 25 45.79 N 127 17.57 E GPS	1124	1131				1,33	22.3C
49MR0505_2	P03	367	1	UNK 011306 1014	UN 25 45.73 N 127 17.45 E GPS	1174	1168					AIR N2O SMPL

49MR0505_2	P03	367	1 ROS 011306 1021	BO 25 45.65 N 127 17.45 E GPS	1191	1187	10	1158	1145	15 1-8,27	
49MR0505_2	P03	367	1 ROS 011306 1110	EN 25 45.25 N 127 16.88 E GPS	1281	1290					
49MR0505_2	P03	365	1 ROS 011306 1245	BE 25 37.37 N 127 24.79 E GPS	2155	2153					
49MR0505_2	P03	365	1 BUC 011306 1256	UN 25 37.32 N 127 24.66 E GPS	2149	2150				1,31,33	22.1C
49MR0505_2	P03	365	1 UNK 011306 1307	UN 25 37.30 N 127 24.57 E GPS	2139	2138					AIR N2O SMPL
49MR0505_2	P03	365	1 ROS 011306 1325	BO 25 37.20 N 127 24.46 E GPS	2138	2140	9	2151	2150	20 1-8,23,24,26,27,31,33	
49MR0505_2	P03	365	1 ROS 011306 1438	EN 25 37.10 N 127 24.25 E GPS	2132	2134					
49MR0505_2	P03	363	1 ROS 011306 1638	BE 25 27.96 N 127 30.96 E GPS	2344	2343					
49MR0505_2	P03	363	1 BUC 011306 1648	UN 25 27.99 N 127 30.78 E GPS	2343	2343				1	22.1C
49MR0505_2	P03	363	1 ROS 011306 1720	BO 25 27.93 N 127 30.72 E GPS	2343	2344	10	2340	2356	21 1-8,27	
49MR0505 2	P03	363	1 ROS 011306 1834	EN 25 27.95 N 127 30.22 E GPS	2470	2472					
49MR0505 2	P03	361	1 ROS 011306 2009	BE 25 19.87 N 127 37.84 E GPS	2187	2184					
49MR0505_2	P03	361	1 BUC 011306 2016	UN 25 19.96 N 127 37.71 E GPS	2171	2169				1,33	22.2C
49MR0505_2	P03	361	1 UNK 011306 2025	UN 25 20.02 N 127 37.57 E GPS	2139	2142					AIR N2O SMPL
49MR0505 2	P03	361	1 ROS 011306 2044	BO 25 20.09 N 127 37.44 E GPS	2176	2175	10	2143	2154	20 1-8,23,24,26,27	
49MR0505 2	P03	361	1 ROS 011306 2156	EN 25 20.32 N 127 36.83 E GPS	2186	2177					
49MR0505 2	P03	359	1 ROS 011306 2357	BE 25 10.03 N 127 45.47 E GPS	3655	3647					
49MR0505 2	P03	359	1 BUC 011406 0006	UN 25 10.16 N 127 45.36 E GPS	3632	3632				1	22.0C
49MR0505_2	P03	359	1 ROS 011406 0057	BO 25 10.50 N 127 45.34 E GPS	3643	3652	9	3674	3698	27 1-8,27	
49MR0505 2	P03	359	1 ROS 011406 0241	EN 25 10.98 N 127 45.51 E GPS	3645	3651					
49MR0505 2	P03	357	1 ROS 011406 0417	BE 25 3.90 N 127 49.19 E GPS	5184	5182					
49MR0505 2	P03	357	1 BUC 011406 0424	UN 25 3.85 N 127 49.20 E GPS	5189	5189				1,33	22.4C
49MR0505 2	P03	357	1 UNK 011406 0434	UN 25 3.82 N 127 49.15 E GPS	5193	5191					AIR N2O SMPL
49MR0505_2	P03	357	1 ROS 011406 0538	BO 25 3.50 N 127 48.98 E GPS	5228	5225	11	5214	5269	33 1-8,23,24,26,27	#17 MISS TRIP
49MR0505 2	P03	357	1 ROS 011406 0751	EN 25 2.37 N 127 48.35 E GPS	5245	5243					
49MR0505_2	P03	355	1 ROS 011406 0958	BE 24 58.38 N 127 55.03 E GPS	6708	6713					
49MR0505 2	P03	355	1 BUC 011406 1005	UN 24 58.35 N 127 54.99 E GPS	6703	6703				1,33	22.8C
49MR0505_2	P03	355	1 UNK 011406 1015	UN 24 58.33 N 127 54.94 E GPS	6677	6674					AIR N2O SMPL
49MR0505_2	P03	355	1 ROS 011406 1136	BO 24 58.10 N 127 54.14 E GPS	6571	6558	-9	6489	6502	36 1-8,27	
49MR0505 2	P03	355	1 ROS 011406 1433	EN 24 58.29 N 127 52.45 E GPS	6283	6293					
49MR0505_2	P03	353	1 ROS 011406 1609	BE 24 49.00 N 128 1.25 E GPS	6996	7006					
49MR0505 2	P03	353	1 BUC 011406 1617	UN 24 49.11 N 128 1.13 E GPS	7053	7052				1,33	23.2C
49MR0505_2	P03	353	1 UNK 011406 1626	UN 24 49.20 N 128 1.07 E GPS	7111	7094					AIR N2O SMPL
49MR0505 2	P03	353	1 ROS 011406 1751	BO 24 49.87 N 128 0.92 E GPS	7412	7411	-9	6438	6501	36 1-8,23,24,26,27	
49MR0505 2	P03	353	1 ROS 011406 2054	EN 24 51.54 N 128 0.68 E GPS	7303	7303					
49MR0505 2	P03	351	2 ROS 011406 2309	BE 24 33.00 N 128 13.49 E GPS	5968	5969					
49MR0505 2	P03	351	2 BUC 011406 2316	UN 24 33.05 N 128 13.52 E GPS	5948	5949				1,33	22.7C
49MR0505 2	P03	351	2 UNK 011406 2325	UN 24 33.08 N 128 13.51 E GPS	5972	5961					AIR N2O SMPL
49MR0505 2	P03	351	2 ROS 011506 0038	BO 24 33.35 N 128 13.63 E GPS	5972	5972	11	5975	6062	35 1,2	#14 MISS FIRE, #21 MISS TRIP
49MR0505 2	P03	351	2 ROS 011506 0311	EN 24 33.88 N 128 13.88 E GPS	6031	6020					

Parameter

1=Salinity, 2=Oxygen, 3=Silicate, 4=Nitrate, 5=Nitrite, 6=PHOSPHATE, 7=CFC-11, 8=CFC-12, $12=\Delta^{14}$ C, $13=\delta^{13}$ C, $22=^{137}$ CS, 23= Total carbon, 24=Alkalinity, 26=PH, 27=CFC-113, 31= CH₄, 33=N₂O, 42=Abundance of bacteria, 64= Incubation, 81= Particulate organic matter, $82=^{15}$ NO₃

49MR0505_3.sum file

P03 REV R/	/ MIRAI	CRUISE MR0	505 LEG 3										
SHIP/CRS	WOCE		CAST	UTC	EVENT F	POSITION	UNC	COR	HT ABOVE	WIRE	MAX N	O. OF	
EXPOCODE	SECT	STNNBR CAS	TNO TYPE DATE	E TIME	CODE LATITUDE	LONGITUDE NAV	DEPTH	DEPTH	BOTTOM	OUT	PRESS BO	DTTLES PARAMETERS	COMMENTS
49MR0505_3	P03	370	1 ROS 0120	0650	BE 26 23.41 N	1 126 42.26 E GPS	406	406					
49MR0505_3	P03	370	1 BUC 0120	06 0651	UN 26 23.40 N	1 126 42.26 E GPS	397	398				1,33,42	22.3C
49MR0505_3	P03	370	1 ROS 0120	0659	BO 26 23.31 N	1 126 42.22 E GPS	328	328	16	304	308	9 1-8,27,42	
49MR0505_3	P03	370	1 UNK 0120	006 0703	UN 26 23.27 N	1 126 42.20 E GPS	311	311					AIR N2O SMPL
49MR0505_3	P03	370	1 ROS 0120	006 0725	EN 26 23.03 N	1 126 42.10 E GPS	194	194					
49MR0505_3	P03	372	1 ROS 0120	006 0831	BE 26 27.07 N	1 126 37.50 E GPS	1400	1402					
49MR0505_3	P03	372	1 BUC 0120	006 0839	UN 26 27.04 N	1 126 37.53 E GPS	1387	1387				1,31,33,42	22.3C
49MR0505_3	P03	372	1 UNK 0120	006 0852	UN 26 27.03 N	N 126 37.55 E GPS	1371	1370					AIR N2O SMPL
49MR0505_3	P03	372	1 ROS 0120	006 0858	BO 26 27.02 N	1 126 37.54 E GPS	1366	1365	13	1369	1376	18 1-8,23,24,26,27,31,33,42,81	
49MR0505_3	P03	372	1 ROS 0120	006 1006	EN 26 26.81 N	1 126 37.58 E GPS	1324	1325					
49MR0505_3	P03	374	1 ROS 0120	006 1205	BE 26 36.26 N	1 126 31.57 E GPS	1488	1489					
49MR0505_3	P03	374	1 BUC 0120	006 1213	UN 26 36.21 N	1 126 31.53 E GPS	1488	1489				1,33,42	22.2C
49MR0505_3	P03	374	1 UNK 0120	006 1223	UN 26 36.17 N	1 126 31.47 E GPS	1491	1491					AIR N2O SMPL
49MR0505_3	P03	374	1 ROS 0120	006 1234	BO 26 36.29 N	1 126 31.34 E GPS	1516	1516	14	1509	1489	19 1-8,27,42	
49MR0505_3	P03	374	1 ROS 0120	006 1342	EN 26 36.73 N	1 126 30.46 E GPS	1513	1516					
49MR0505_3	P03	376	1 ROS 0120	006 1519	BE 26 44.02 N	1 126 20.27 E GPS	1900	1903					
49MR0505_3	P03	376	1 BUC 0120	006 1528	UN 26 44.07 N	1 126 20.13 E GPS	1912	1913				1,42	22.5C
49MR0505_3	P03	376	1 ROS 0120	06 1557	BO 26 44.38 N	1 126 19.77 E GPS	1910	1913	14	1946	1891	22 1-8,12,13,23,24,26,27,42	#17=#19 DUPL SMPLS (1800DB)
49MR0505_3	P03	376	1 ROS 0120	006 1718	EN 26 45.27 N	1 126 18.91 E GPS	1897	1897					
49MR0505_3	P03	378	1 ROS 0120	006 1906	BE 26 53.17 N	1 126 11.44 E GPS	1536	1536					
49MR0505_3	P03	378	1 BUC 0120	006 1914	UN 26 53.25 N	1 126 11.36 E GPS	1532	1533				1,33,42	22.7C
49MR0505_3	P03	378	1 UNK 0120	006 1927	UN 26 53.42 N	126 11.24 E GPS	1532	1532					AIR N2O SMPL
49MR0505_3	P03	378	1 ROS 0120	006 1935	BO 26 53.48 N	1 126 11.18 E GPS	1535	1535	10	1540	1530	19 1-8,27,42	
49MR0505_3	P03	378	1 ROS 0120	006 2044	EN 26 54.11 N	1 126 10.73 E GPS	1554	1553					
49MR0505_3	P03	380	1 ROS 0120	006 2220	BE 26 57.86 N	1 126 5.07 E GPS	1417	1417					
49MR0505_3	P03	380	1 BUC 0120	006 2229	UN 26 57.99 N	1 126 5.03 E GPS	1417	1417				1,42	23.2C
49MR0505_3	P03	380	1 ROS 0120	006 2248	BO 26 58.19 N	1 126 4.94 E GPS	1357	1356	10	1349	1353	19 1-8,23,24,26,27,42	#23 MISS TRIP, SEAWATER SAMPLE (#23) COLLECTED FROM #5
49MR0505 3	P03	380	1 ROS 0120	006 2356	EN 26 58.84 N	1 126 4.54 E GPS	977	977					
49MR0505_3	P03	382	1 ROS 0121	106 0147	BE 27 4.27 N	1 125 58.71 E GPS	863	863					
49MR0505 3	P03	382	1 BUC 0121	106 0156	UN 27 4.38 N	125 58.66 E GPS	853	853				1,31,33,42	22.6C
49MR0505_3	P03	382	1 ROS 0121	106 0206	BO 27 4.44 N	125 58.56 E GPS	837	836	11	835	838	18 1-8,23,24,26,27,31,33,42,81	#23=#25 DUPL SMPLS (800DB)
49MR0505 3	P03	382	1 UNK 0121	L06 0211	UN 27 4.45 N	1 125 58.53 E GPS	829	830					AIR CH4 & N2O SMPL
49MR0505 3	P03	382	1 ROS 0121	106 0251	EN 27 4.91 N	125 58.36 E GPS	780	780					
49MR0505 3	P03	382	2 ROS 0121	106 2254	BE 27 4.34 N	125 58.63 E GPS	851	851					
49MR0505_3	P03	382	2 BUC 0121	106 2303	UN 27 4.45 N	N 125 58.56 E GPS	838	838				1,33	23.2C
49MR0505 3	P03	382	2 UNK 0121	106 2312	UN 27 4.46 N	125 58.54 E GPS	829	829					AIR N2O SMPL
49MR0505 3	P03	382	2 ROS 0121		BO 27 4.46 N	125 58.53 E GPS	829	829	12	819	826	15 1,2	
49MR0505 3	P03	382	2 ROS 0122	206 0002	EN 27 4.68 N	125 58.27 E GPS	790	790					
49MR0505 3	P03	384	1 ROS 0122	206 0052	BE 27 9.92 N	125 52.99 E GPS	307	307					
49MR0505_3	P03	384	1 BUC 0122	206 0054	UN 27 9.91 N	1 125 52.98 E GPS	301	301				1,42	22.5C
_													
49MR0505 3	P03	384	1 ROS 0122	206 0100	BO 27 9.90 N	125 52.96 E GPS	303	304	12	282	288	9 1-8,23,24,26,27,42	

49MR0505 3	P03	385	1 ROS 012206 0239	BE 27 18.81 N 125 44.22 E GPS	145	145					
49MR0505 3	P03	385	1 BUC 012206 0241	UN 27 18.81 N 125 44.22 E GPS	146	146				1,33,42	22.2C
49MR0505 3	P03	385	1 ROS 012206 0244	BO 27 18.85 N 125 44.24 E GPS	145	145	9	128	135	6 1-8,27,42	
49MR0505 3	P03	385	1 UNK 012206 0251	UN 27 18.93 N 125 44.25 E GPS	146	146				, ,	AIR N2O SMPL
49MR0505 3	P03	385	1 ROS 012206 0255	EN 27 18.99 N 125 44.26 E GPS	145	145					
49MR0505 3	P03	386	1 ROS 012206 0403	BE 27 27.13 N 125 35.26 E GPS	124	124					
49MR0505 3	P03	386	1 BUC 012206 0406	UN 27 27.17 N 125 35.27 E GPS	121	121				1,42	20.3C
49MR0505 3	P03	386	1 ROS 012206 0409	BO 27 27.21 N 125 35.28 E GPS	122	122	9	111	111	6 1-8,27,42	
49MR0505 3	P03	386	1 ROS 012206 0421	EN 27 27.41 N 125 35.28 E GPS	122	122				, ,	
49MR0505 3	P03	387	1 ROS 012206 0537	BE 27 36.34 N 125 26.30 E GPS	117	117					
49MR0505 3	P03	387	1 BUC 012206 0539	UN 27 36.35 N 125 26.29 E GPS	117	117				1,33,42	19.4C
49MR0505 3	P03	387	1 ROS 012206 0542	BO 27 36.36 N 125 26.27 E GPS	118	118	11	100	102	5 1-8,27,42	
49MR0505 3	P03	387	1 UNK 012206 0548	UN 27 36.39 N 125 26.26 E GPS	114	115				,	AIR N2O SMPL
49MR0505 3	P03	387	1 ROS 012206 0554	EN 27 36.40 N 125 26.25 E GPS	115	115					
49MR0505 3	P03	388	1 ROS 012206 0727	BE 27 44.96 N 125 12.93 E GPS	111	111					
49MR0505 3	P03	388	1 BUC 012206 0729	UN 27 44.96 N 125 12.93 E GPS	112	112				1,42	17.1C
49MR0505 3	P03	388	1 ROS 012206 0732	BO 27 44.96 N 125 12.92 E GPS	112	112	11	95	98	5 1-8,27,42	
49MR0505 3	P03	388	1 ROS 012206 0743	EN 27 44.94 N 125 12.89 E GPS	111	111				, .	
49MR0505 3	P03	389	1 ROS 012206 0949	BE 28 0.18 N 124 59.36 E GPS	102	103					
49MR0505 3	P03	389	1 BUC 012206 0949	UN 28 0.18 N 124 59.36 E GPS	102	103				1,31,33,42	16.9C
49MR0505 3	P03	389	1 ROS 012206 0955	BO 28 0.11 N 124 59.32 E GPS	104	104	11	87	92	6 1-8,27,31,33,42,81	
49MR0505 3	P03	389	1 UNK 012206 1004	UN 28 0.06 N 124 59.27 E GPS	103	103				, , , , , , , , , , , , , , , , , , , ,	AIR N2O SMPL
49MR0505 3	P03	389	1 ROS 012206 1006	EN 28 0.06 N 124 59.27 E GPS	104	104					
49MR0505 3	P03	390	1 ROS 012306 0429	BE 28 51.44 N 129 49.87 E GPS	215	215					
49MR0505 3	P03	390	1 BUC 012306 0431	UN 28 51.44 N 129 49.85 E GPS	215	215				1,31,33,42	20.6C
49MR0505 3	P03	390	1 UNK 012306 0432	UN 28 51.44 N 129 49.84 E GPS	213	213				, , , , , , , , , , , , , , , , , , , ,	AIR N2O SMPL
49MR0505 3	P03	390	1 ROS 012306 0435	BO 28 51.41 N 129 49.83 E GPS	215	215	10	200	201	7 1-8,23,24,26,27,31,33,42,81	
49MR0505 3	P03	390	1 ROS 012306 0450	EN 28 51.30 N 129 49.79 E GPS	207	207					
49MR0505 3	P03	392	1 ROS 012306 0606	BE 29 0.43 N 129 54.47 E GPS	654	654					
49MR0505 3	P03	392	1 BUC 012306 0613	UN 29 0.32 N 129 54.49 E GPS	660	660				1,42	20.7C
49MR0505 3	P03	392	1 ROS 012306 0623	BO 29 0.26 N 129 54.49 E GPS	664	664	9	676	659	13 1-8,23,24,26,27,42	
49MR0505 3	P03	392	1 ROS 012306 0656	EN 29 0.01 N 129 54.64 E GPS	671	671					
49MR0505 3	P03	394	1 ROS 012306 0830	BE 29 6.77 N 129 57.62 E GPS	1198	1198					
49MR0505 3	P03	394	1 BUC 012306 0838	UN 29 6.65 N 129 57.70 E GPS	1167	1168				1,33,42	21.0C
49MR0505 3	P03	394	1 UNK 012306 0849	UN 29 6.49 N 129 57.86 E GPS	1148	1148					AIR N2O SMPL
49MR0505 3	P03	394	1 ROS 012306 0857	BO 29 6.45 N 129 57.93 E GPS	1134	1135	10	1143	1143	17 1-8,23,24,26,27,42	
49MR0505 3	P03	394	1 ROS 012306 0946	EN 29 5.76 N 129 58.50 E GPS	1026	1027					
49MR0505 3	P03	396	1 ROS 012306 1148	BE 29 17.98 N 130 2.78 E GPS	1186	1186					
49MR0505 3	P03	396	1 BUC 012306 1156	UN 29 17.88 N 130 2.77 E GPS	1188	1187				1,31,33,42	20.8C
49MR0505 3	P03	396	1 UNK 012306 1207	UN 29 17.71 N 130 2.77 E GPS	1199	1198					AIR N2O SMPL
49MR0505 3	P03	396	1 ROS 012306 1211	BO 29 17.67 N 130 2.77 E GPS	1204	1199	9	1182	1182	20 1-8,23,24,26,27,31,33,42,81	
49MR0505 3	P03	396	1 ROS 012306 1305	EN 29 17.04 N 130 2.69 E GPS	1214	1214					
49MR0505 3	P03	398	1 ROS 012306 1506	BE 29 24.97 N 130 7.35 E GPS	424	424					
49MR0505_3	P03	398	1 BUC 012306 1511	UN 29 25.00 N 130 7.38 E GPS	425	425				1,42	20.8C
49MR0505_3	P03	398	1 ROS 012306 1519	BO 29 24.97 N 130 7.43 E GPS	425	425	10	413	415	10 1-8,23,24,26,27,42	
49MR0505 3	P03	398	1 ROS 012306 1541	EN 29 24.93 N 130 7.60 E GPS	419	418					
49MR0505_3	P03	400	1 ROS 012306 1718	BE 29 35.23 N 130 11.22 E GPS	484	484					
49MR0505_3	P03	400	1 BUC 012306 1721	UN 29 35.21 N 130 11.30 E GPS	482	482				1,33,42	20.9C
49MR0505_3	P03	400	1 ROS 012306 1730	BO 29 35.19 N 130 11.47 E GPS	484	484	13	468	472	11 1-8,23,24,26,27,42	
_											

49MR0505	_3 P03	400	1	UNK 012306 1732	UN 29 35.17 N 130 11.49 E GPS	485	484					AIR N2O SMPL
49MR0505	_3 P03	400	1	ROS 012306 1758	EN 29 34.98 N 130 11.89 E GPS	486	487					
49MR0505	_3 P03	402	1	ROS 012306 1930	BE 29 44.63 N 130 16.52 E GPS	307	307					
49MR0505	_3 P03	402	1	BUC 012306 1934	UN 29 44.59 N 130 16.52 E GPS	304	304				1,31,33,42	20.4C
49MR0505	_3 P03	402	1	ROS 012306 1938	BO 29 44.55 N 130 16.52 E GPS	304	304	10	291	296	9 1-8,23,24,26,27,31,33,42,81	
49MR0505	_3 P03	402	1	UNK 012306 1946	UN 29 44.48 N 130 16.53 E GPS	307	307					AIR CH4 & N2O SMPL
49MR0505	_3 P03	402	1	ROS 012306 2000	EN 29 44.35 N 130 16.57 E GPS	310	310					
49MR0505	_3 P03	404	1	ROS 012306 2129	BE 29 56.77 N 130 22.55 E GPS	417	417					
49MR0505	_3 P03	404	1	BUC 012306 2130	UN 29 56.76 N 130 22.55 E GPS	418	418				1,42	20.3C
49MR0505	_3 P03	404	1	ROS 012306 2140	BO 29 56.63 N 130 22.59 E GPS	417	416	9	406	405	10 1-8,23,24,26,27,42	
49MR0505	_3 P03	404	1	ROS 012306 2205	EN 29 56.23 N 130 22.71 E GPS	401	401					
49MR0505	_3 P03	406	1	ROS 012306 2335	BE 30 1.86 N 130 24.71 E GPS	408	410					
49MR0505	_3 P03	406	1	BUC 012306 2337	UN 30 1.84 N 130 24.72 E GPS	416	417				1,33,42	20.2C
49MR0505	_3 P03	406	1	ROS 012306 2345	BO 30 1.72 N 130 24.78 E GPS	415	415	11	406	407	10 1-8,23,24,26,27,42	
49MR0505	_3 P03	406	1	UNK 012306 2349	UN 30 1.67 N 130 24.80 E GPS	423	423					AIR N2O SMPL
49MR0505	_3 P03	406	1	ROS 012406 0009	EN 30 1.33 N 130 24.91 E GPS	421	421					
49MR0505	_3 P03	408	1	ROS 012406 0140	BE 30 6.89 N 130 28.16 E GPS	239	239					
49MR0505	_3 P03	408	1	BUC 012406 0142	UN 30 6.85 N 130 28.18 E GPS	238	238				1,31,33,42	20.0C
49MR0505	_3 P03	408	1	ROS 012406 0147	BO 30 6.79 N 130 28.23 E GPS	241	241	10	226	229	10 1-8,23,24,26,27,31,33,42,81	
49MR0505	_3 P03	408	1	UNK 012406 0154	UN 30 6.72 N 130 28.25 E GPS	242	242					AIR N2O SMPL
49MR0505	_3 P03	408	1	ROS 012406 0203	EN 30 6.63 N 130 28.27 E GPS	246	246					
49MR0505	_3 P03	TS7	1	ROS 012506 1859	BE 34 25.46 N 130 43.74 E GPS	100	100					
49MR0505	_3 P03	TS7	1	UNK 012506 1900	UN 34 25.45 N 130 43.74 E GPS	101	101					AIR N2O SMPL
49MR0505	_3 P03	TS7	1	BUC 012506 1902	UN 34 25.43 N 130 43.71 E GPS	100	100				1,31,33,42	14.3C
49MR0505	_3 P03	TS7	1	ROS 012506 1905	BO 34 25.39 N 130 43.68 E GPS	102	101	10	84	86	6 1-8,27,31,33,42,81	
49MR0505	_3 P03	TS7	1	ROS 012506 1915	EN 34 25.22 N 130 43.61 E GPS	96	95					
49MR0505	_3 P03	TS6	1	ROS 012506 2029	BE 34 30.23 N 130 38.85 E GPS	121	121					
49MR0505	_3 P03	TS6	1	BUC 012506 2030	UN 34 30.23 N 130 38.84 E GPS	121	121				1,42	14.2C
49MR0505	_3 P03	TS6	1	ROS 012506 2035	BO 34 30.17 N 130 38.83 E GPS	119	119	10	105	108	5 1-8,27,42	
49MR0505	_3 P03	TS6	1	ROS 012506 2045	EN 34 30.07 N 130 38.72 E GPS	121	120					
49MR0505	_3 P03	TS5	1	BUC 012506 2216	UN 34 39.84 N 130 26.12 E GPS	134	134				1,33,42	14.6C
49MR0505	_3 P03	TS5	1	ROS 012506 2216	BE 34 39.84 N 130 26.11 E GPS	133	134					
49MR0505	_3 P03	TS5	1	UNK 012506 2218	UN 34 39.83 N 130 26.08 E GPS	133	133					AIR N2O SMPL
49MR0505	_3 P03	TS5	1	ROS 012506 2222	BO 34 39.81 N 130 26.02 E GPS	133	133	11	117	119	5 1-8,27,42	
49MR0505	_3 P03	TS5	1	ROS 012506 2234	EN 34 39.77 N 130 25.96 E GPS	133	133					
49MR0505	_3 P03	TS4	1	ROS 012606 0000	BE 34 50.05 N 130 11.83 E GPS	126	126					
49MR0505	_3 P03	TS4	1	BUC 012606 0003	UN 34 50.04 N 130 11.82 E GPS	126	126				1,31,33,42	14.2C
49MR0505	_3 P03	TS4	1	UNK 012606 0004	UN 34 50.04 N 130 11.82 E GPS	126	126					AIR CH4 & N2O SMPL
49MR0505	_3 P03	TS4	1	ROS 012606 0006	BO 34 50.04 N 130 11.82 E GPS	126	126	10	111	113	6 1-8,27,31,33,42,81	
49MR0505	_3 P03	TS4	1	ROS 012606 0017	EN 34 50.01 N 130 11.80 E GPS	126	126					
49MR0505	_3 P03	TS3	1	ROS 012606 0144	BE 35 0.55 N 129 58.65 E GPS	134	134					
49MR0505	_3 P03	TS3	1	BUC 012606 0146	UN 35 0.55 N 129 58.67 E GPS	135	135				1,33	14.0C
49MR0505	_3 P03	TS3	1	UNK 012606 0148	UN 35 0.55 N 129 58.67 E GPS	133	133					AIR N2O SMPL
49MR0505_	_	TS3		ROS 012606 0149	BO 35 0.55 N 129 58.68 E GPS	135	135	10	121	124	5 1-8,27	
49MR0505_	_3 P03	TS3	1	ROS 012606 0201	EN 35 0.54 N 129 58.74 E GPS	134	134					
49MR0505_	_	TS2		ROS 012606 0335	BE 35 11.74 N 129 44.03 E GPS	141	141					
49MR0505_	_	TS2		BUC 012606 0337	UN 35 11.72 N 129 44.01 E GPS	142	142				1	13.8C
49MR0505_	_	TS2		ROS 012606 0341	BO 35 11.68 N 129 43.97 E GPS	142	142	10	129	130	6 1-8,27	
49MR0505_	_3 P03	TS2	1	ROS 012606 0351	EN 35 11.61 N 129 43.89 E GPS	143	143					

49MR0505_3	P03	TS1	1 ROS 012606 0457	BE 35 16.21 N 129 39.00 E GPS	146	146					
49MR0505_3	P03	TS1	1 BUC 012606 0500	UN 35 16.21 N 129 39.00 E GPS	148	148				1,31,33	14.2C
49MR0505_3	P03	TS1	1 UNK 012606 0501	UN 35 16.22 N 129 39.00 E GPS	146	146					AIR N2O SMPL
49MR0505_3	P03	TS1	1 ROS 012606 0504	BO 35 16.22 N 129 39.03 E GPS	144	144	10	132	135	7 1-8,27,31,33,81	
49MR0505_3	P03	TS1	1 ROS 012606 0516	EN 35 16.29 N 129 39.06 E GPS	147	147					
49MR0505_3		568	1 XCT 012706 0955	DE 37 18.81 N 133 47.52 E GPS	1670	1672					
49MR0505_3		569	1 UNK 012806 0825	BE 39 13.68 N 138 29.13 E GPS	988	988					FIGURE-OF-EIGHT SAILING FOR MAGNETOMETER
49MR0505_3		569	1 UNK 012806 0850	EN 39 14.42 N 138 29.28 E GPS	990	990					

Parameter

1=Salinity, 2=Oxygen, 3=Silicate, 4=Nitrate, 5=Nitrite, 6=PHOSPHATE, 7=CFC-11, 8=CFC-12, 12= Δ^{14} C, 13= δ^{13} C, 22= 137 CS, 23= Total carbon, 24=Alkalinity, 26=PH, 27=CFC-113, 31= CH₄, 33=N₂O, 42= Abundance of bacteria, 64= Incubation, 81= Particulate organic matter, 82= 15 NO₃

Figure 1 Station locations for WHP P03 cruise

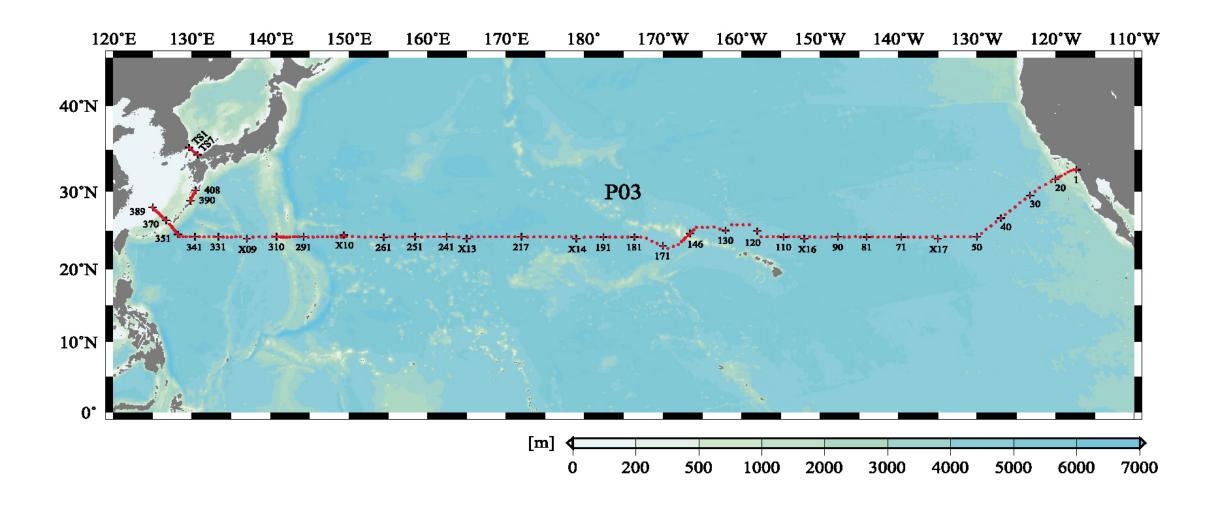


Figure 2
Bathymetry measured by Multi Narrow Beam Echo Sounding System

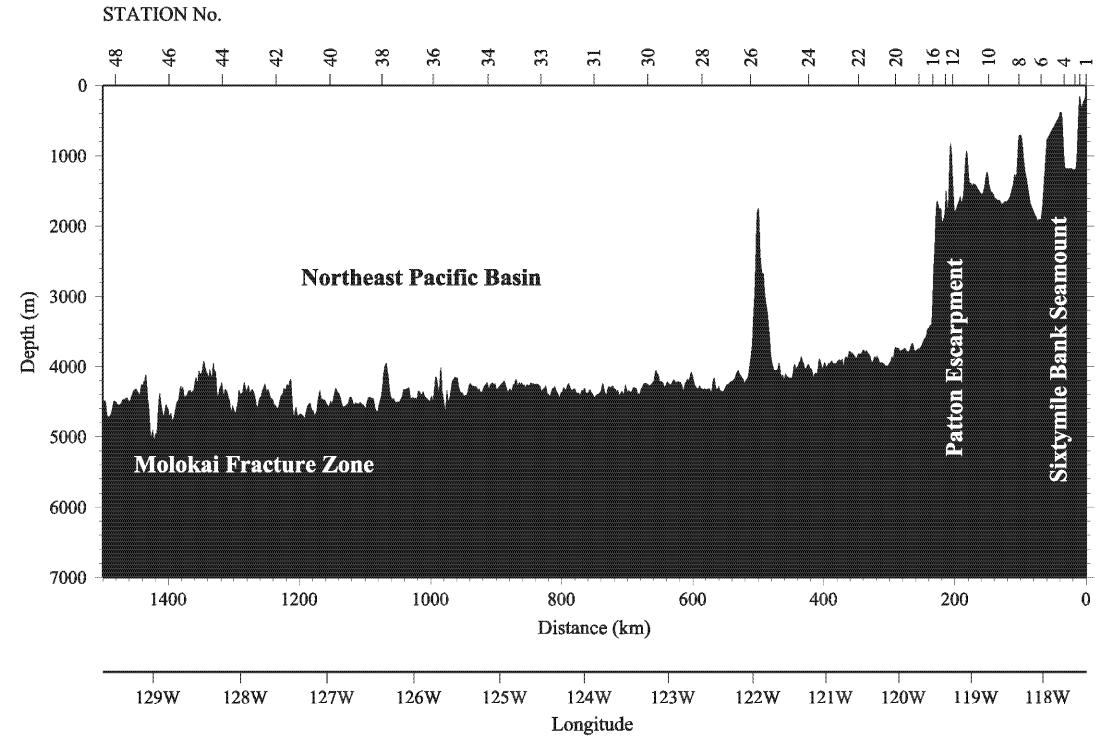


Figure 2 Continued

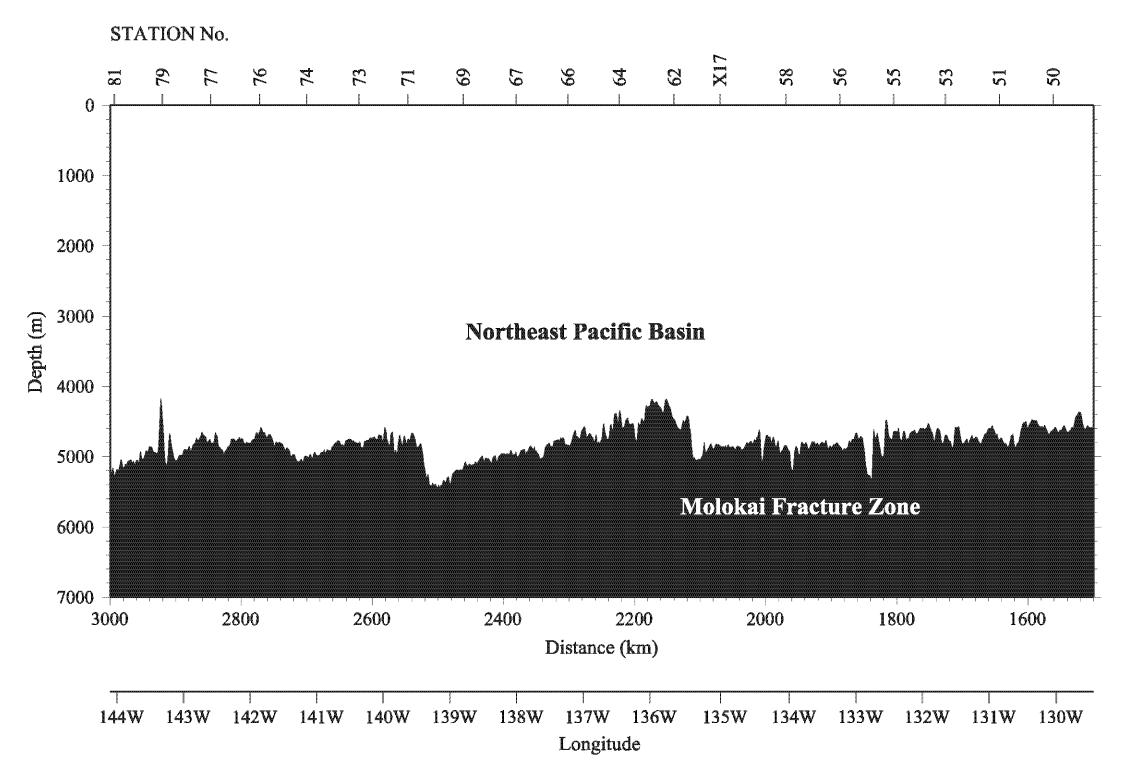


Figure 2 Continued

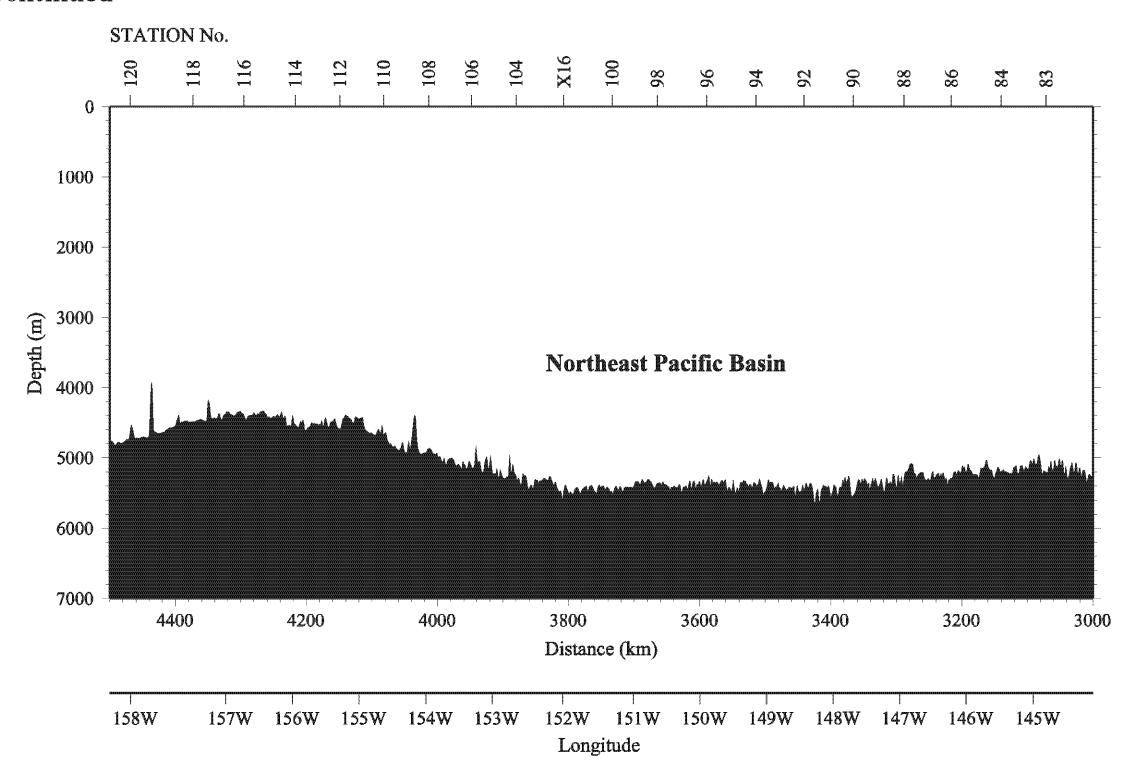


Figure 2 Continued



Figure 2 Continued

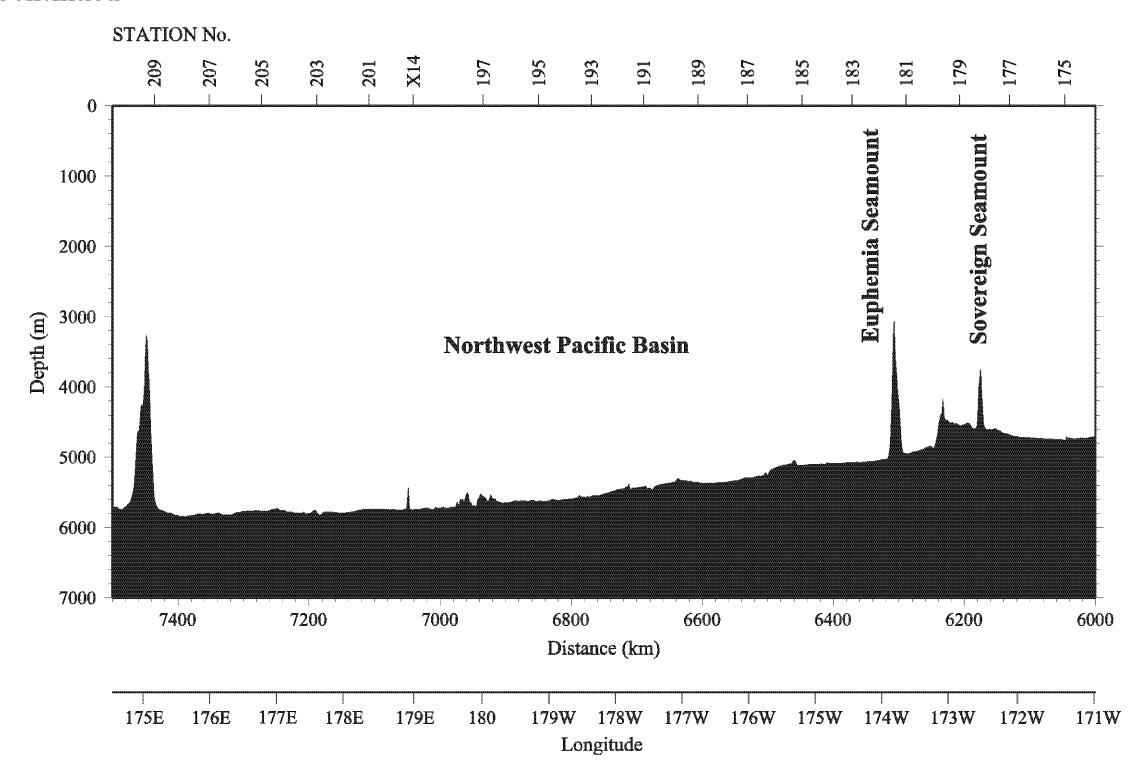


Figure 2 Continued

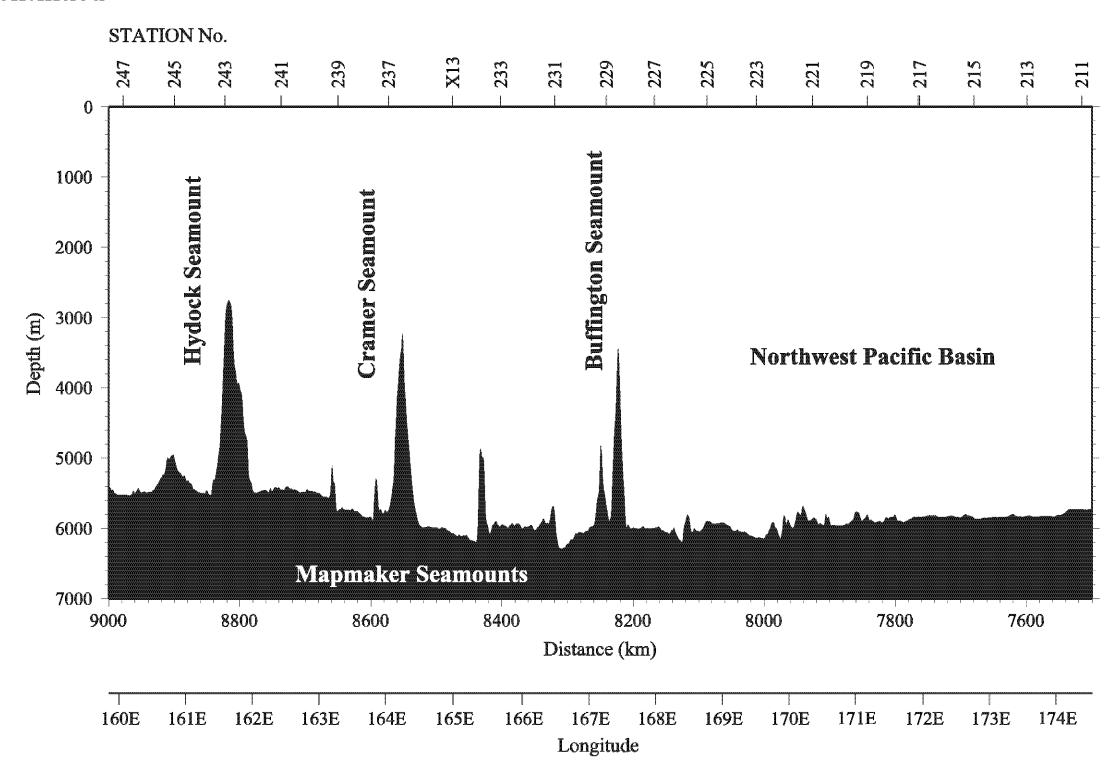


Figure 2 Continued

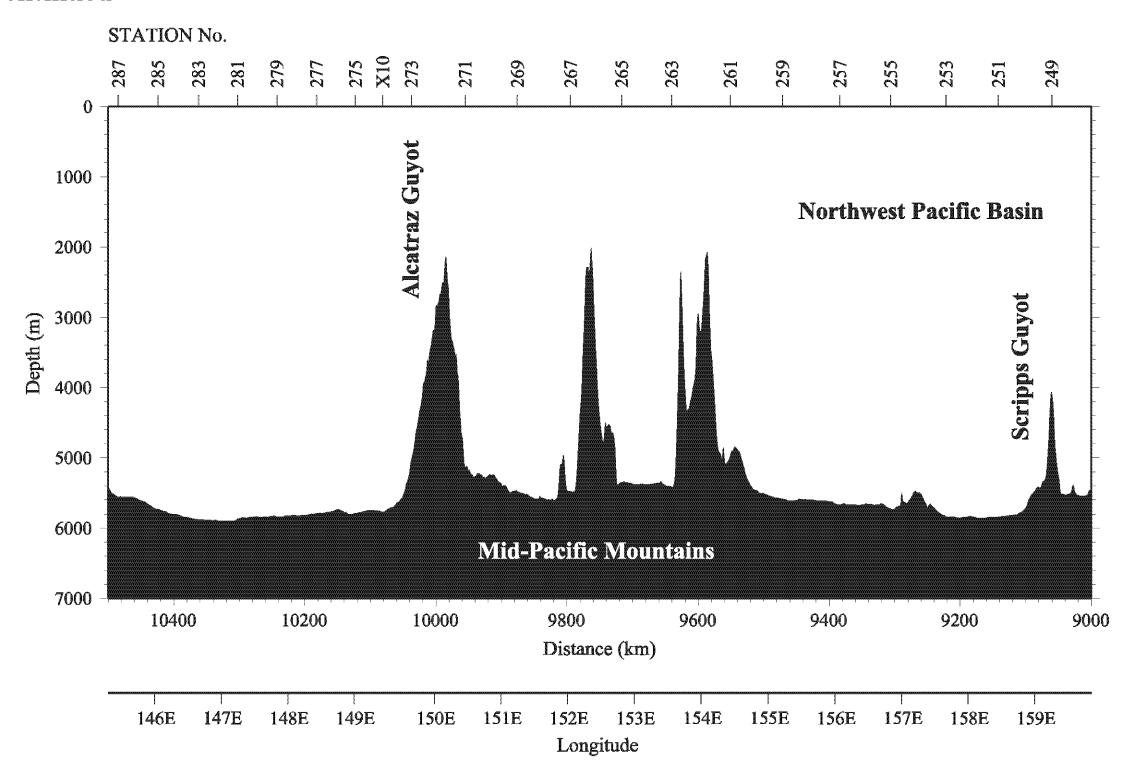


Figure 2 Continued

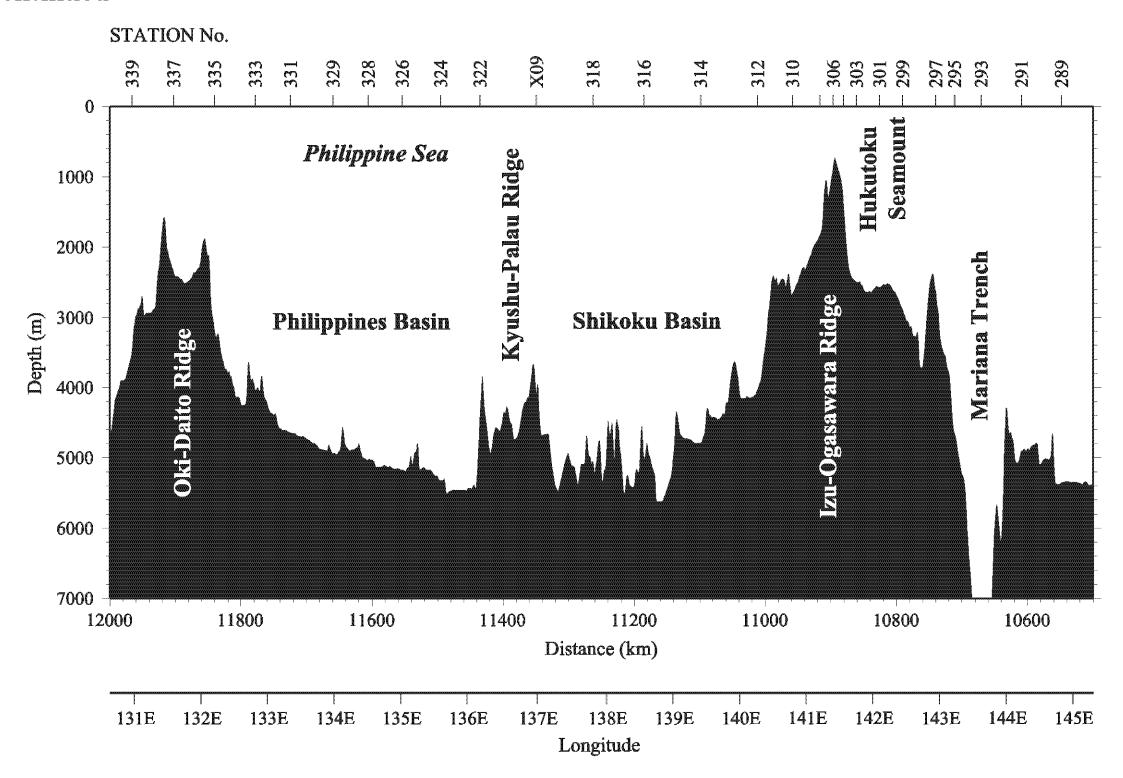


Figure 2 Continued

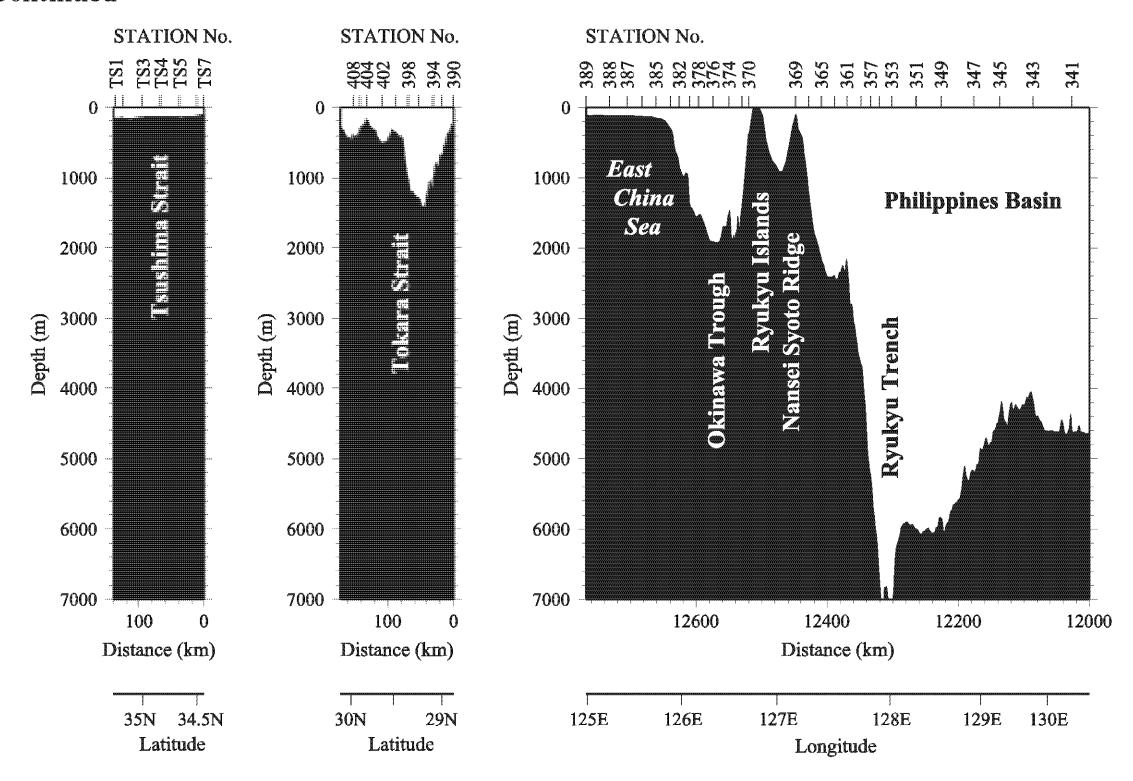


Figure 3
Surface wind measured at 25 m above sea level

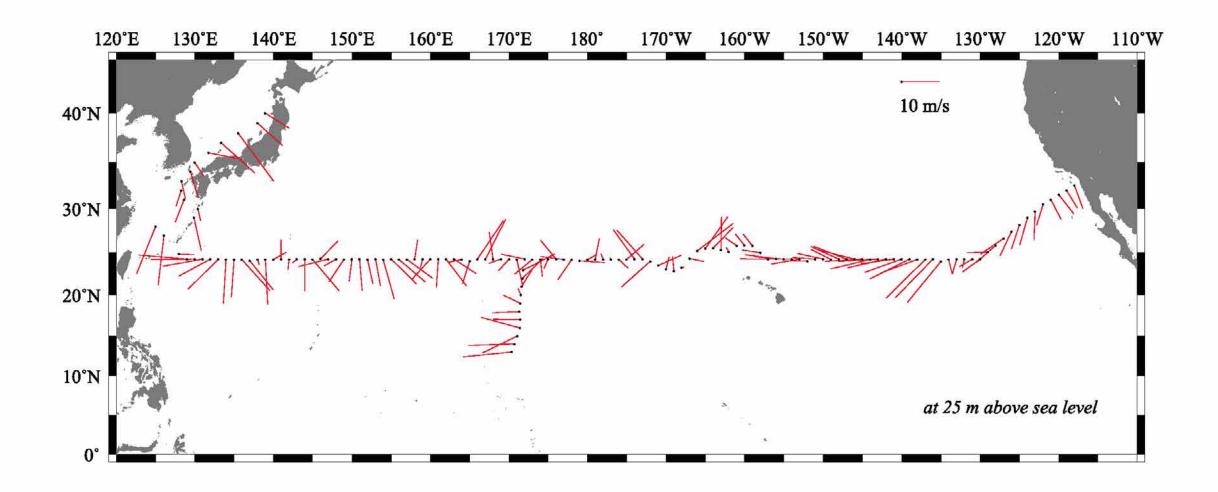


Figure 4
Sea surface temperature (SST)

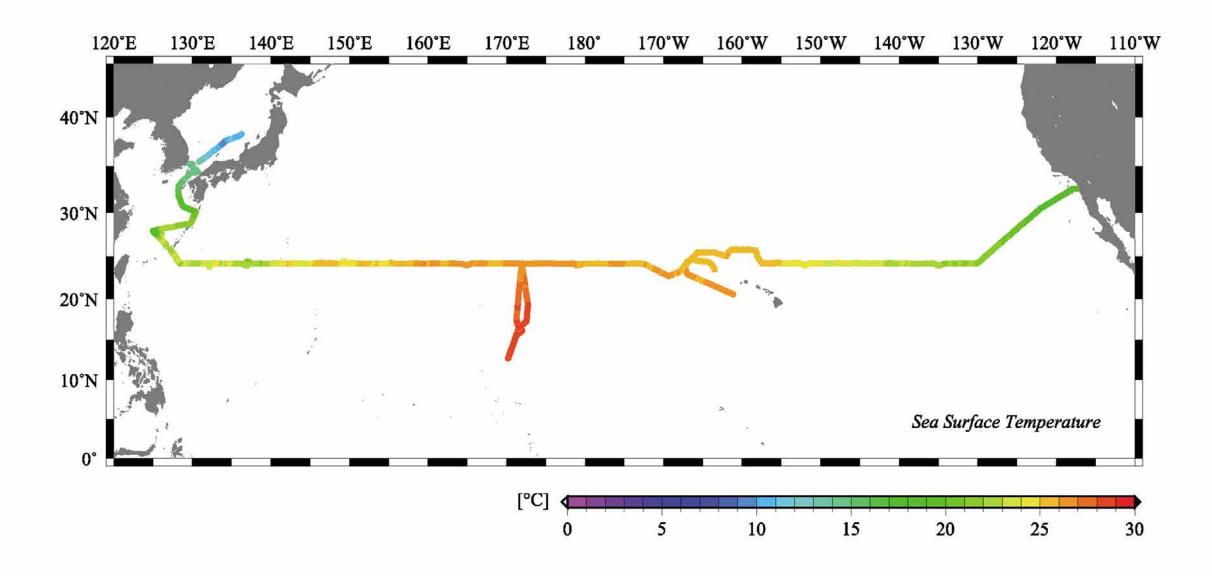


Figure 5 Sea surface salinity (SSS)

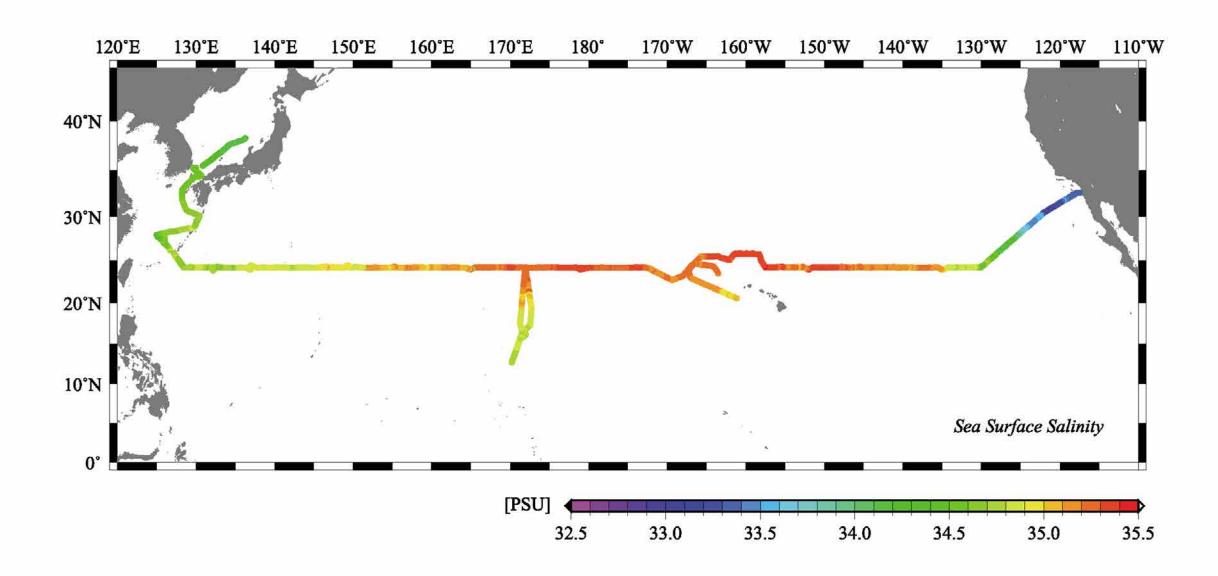


Figure 6 ΔpCO_2

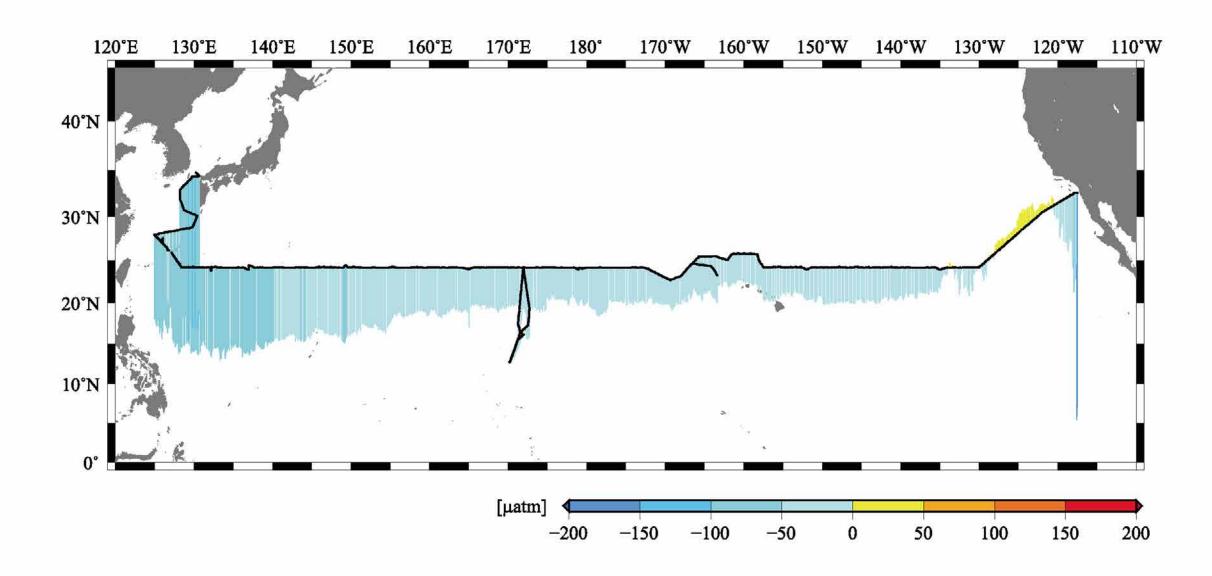


Figure 7
Surface current measured by shipboard ADCP

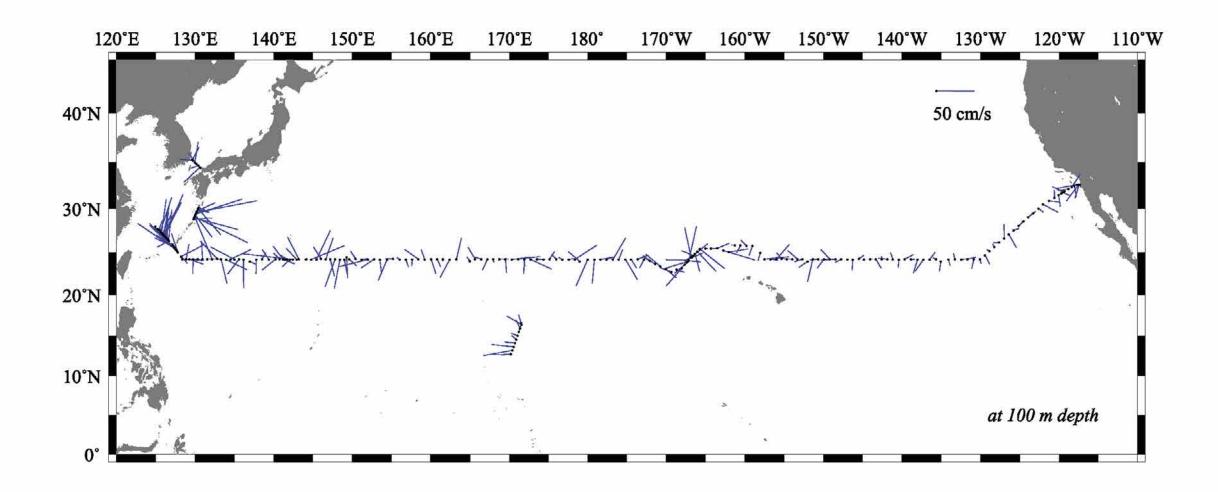


Figure 8
Potential temperature (°C)

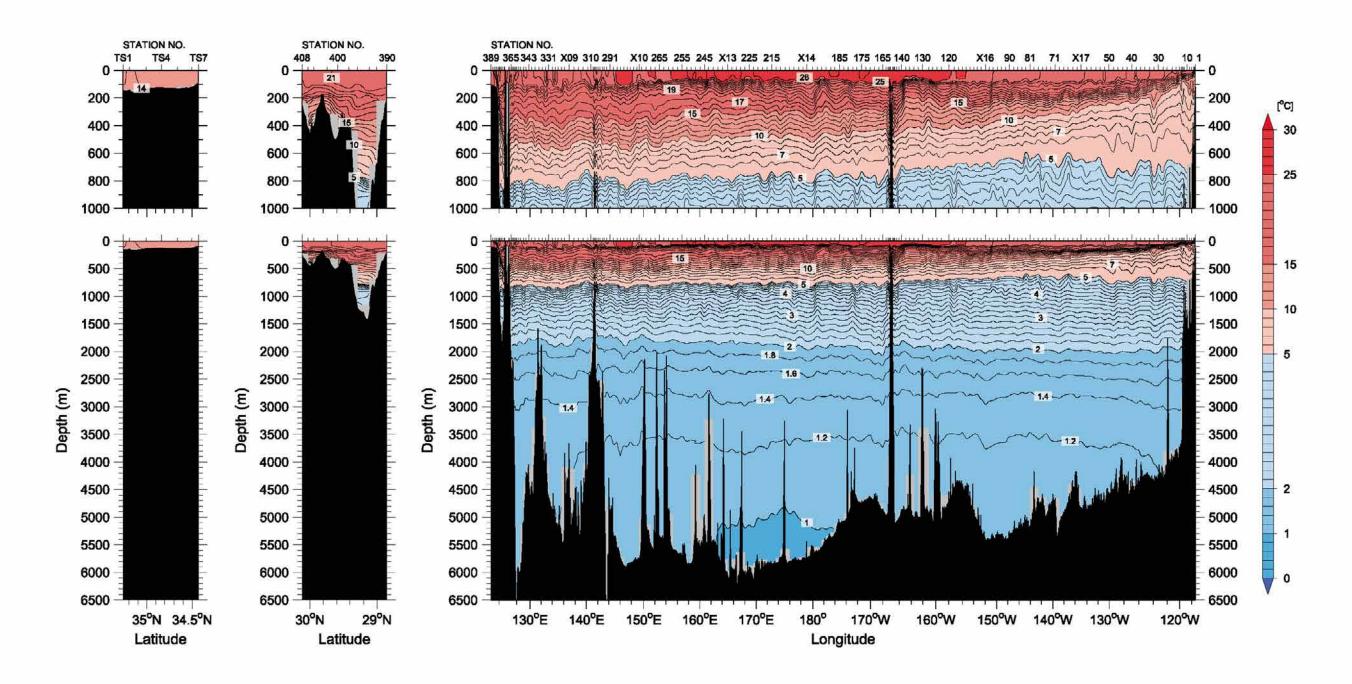


Figure 9 CTD salinity (psu)

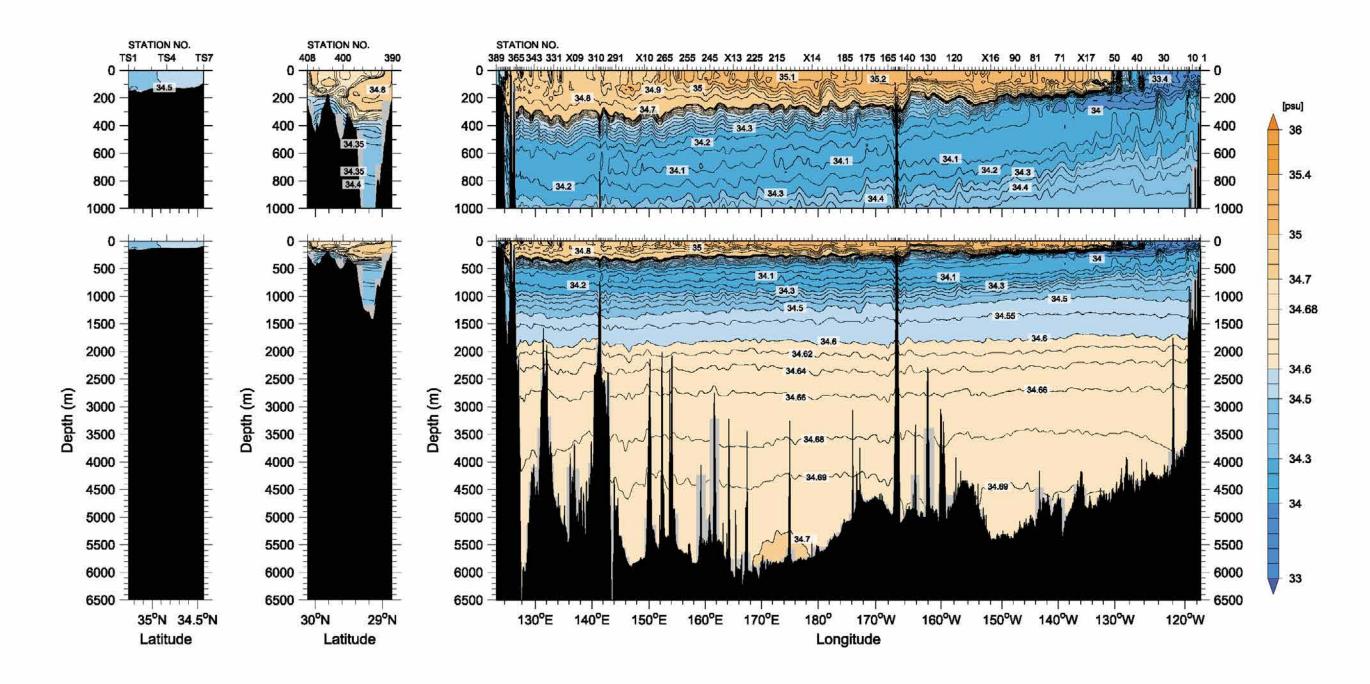


Figure 10 CTD salinity (psu) with SSW batch correction

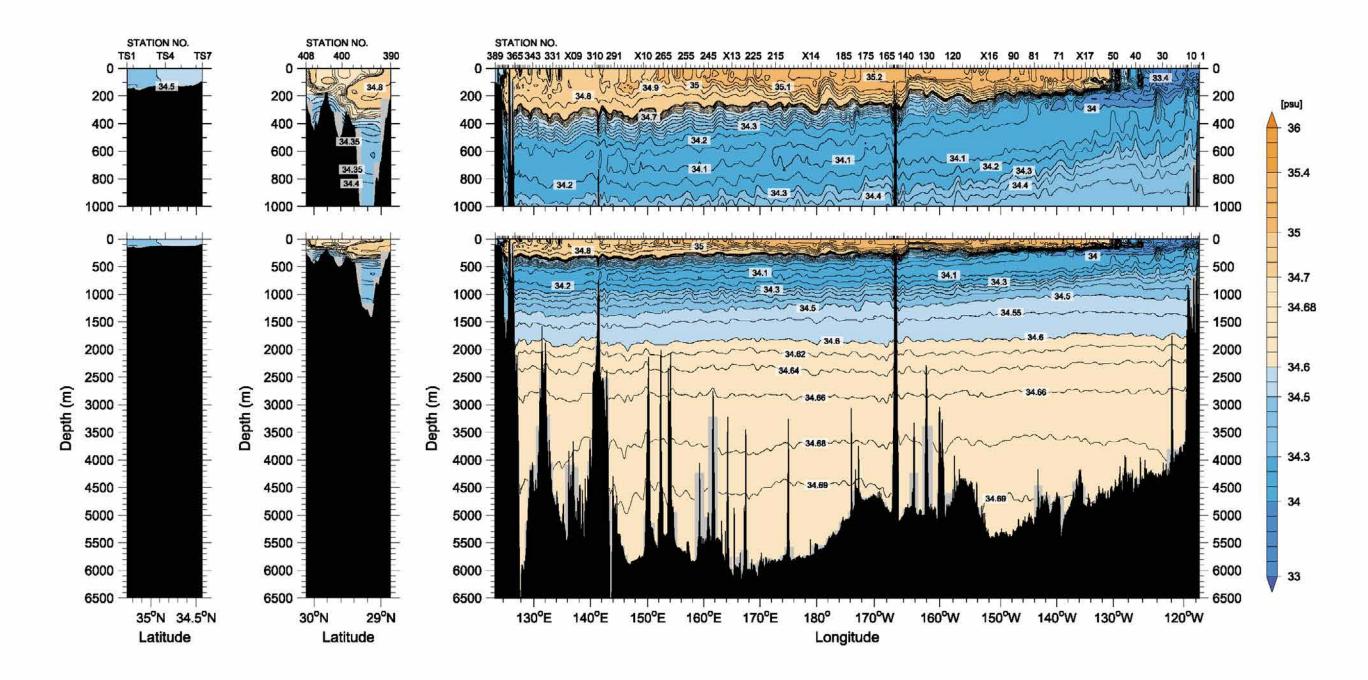


Figure 11 Density (σ_0) (kg/m³)

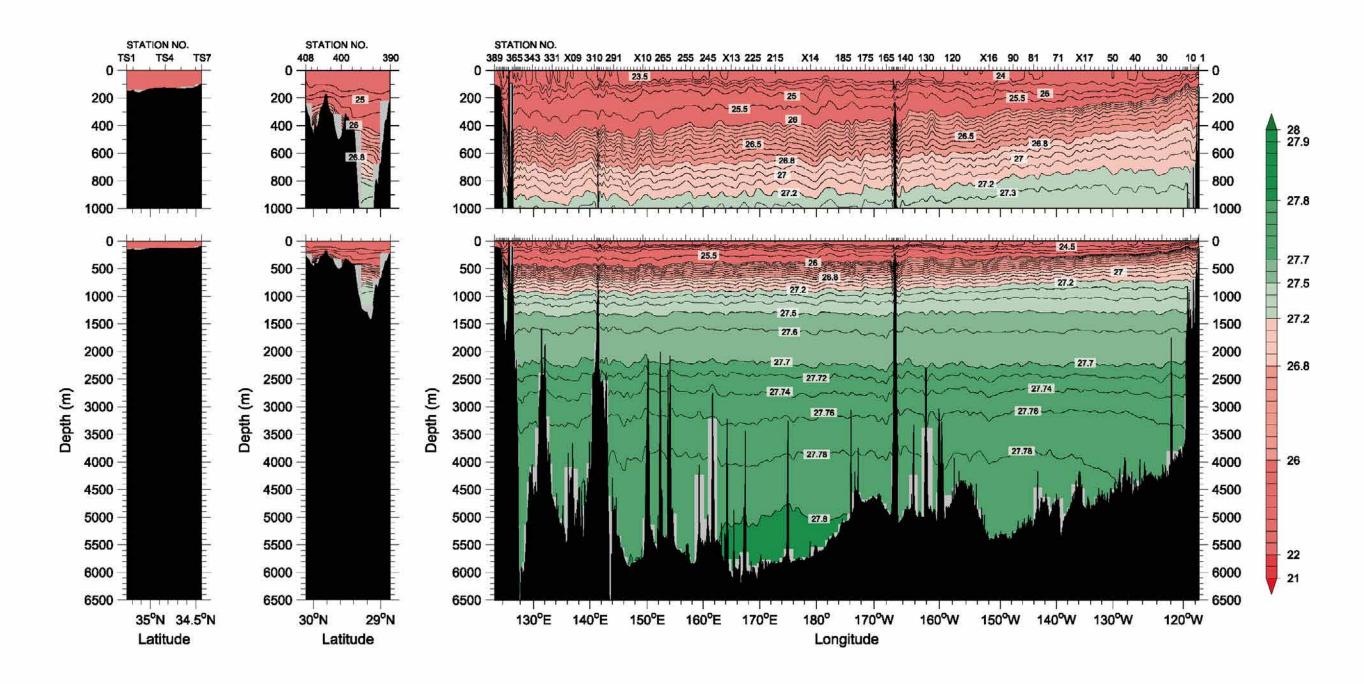


Figure 12 Density (σ₄) (kg/m³)

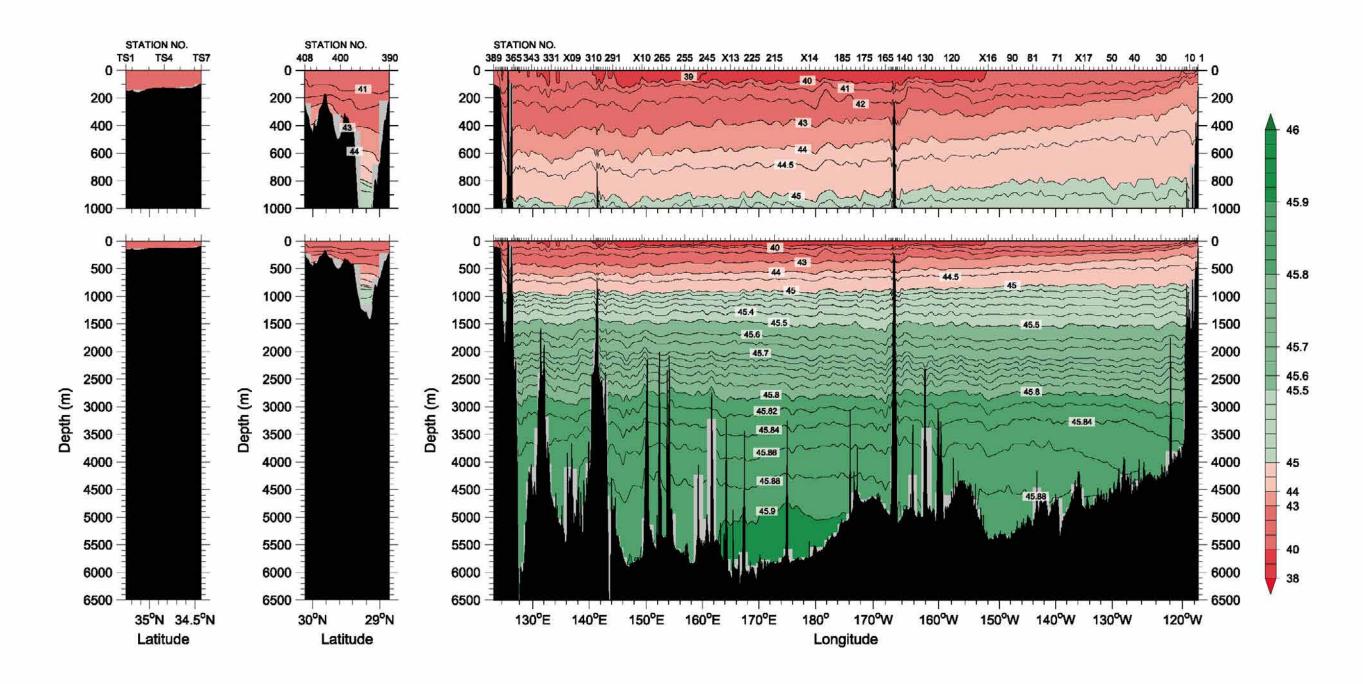


Figure 13
Density (γ n) (kg/m³)

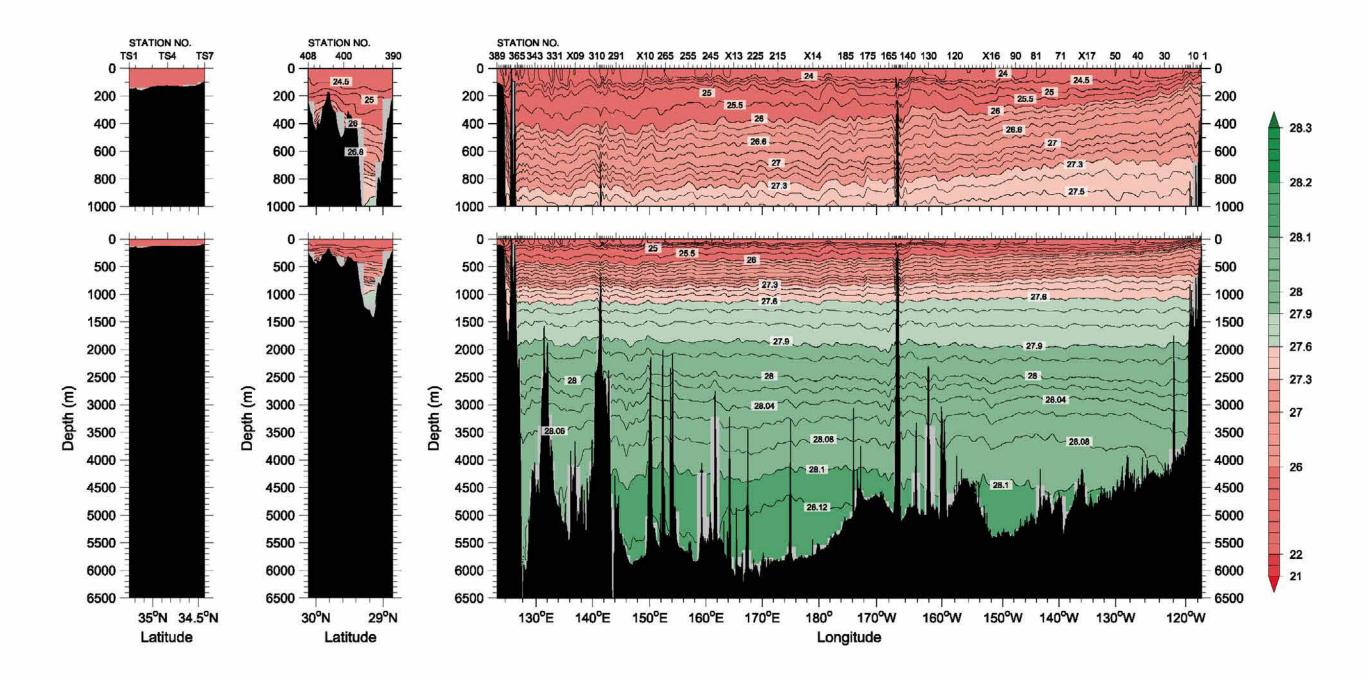


Figure 14 Bottle sampled dissolved oxygen (µmol/kg)

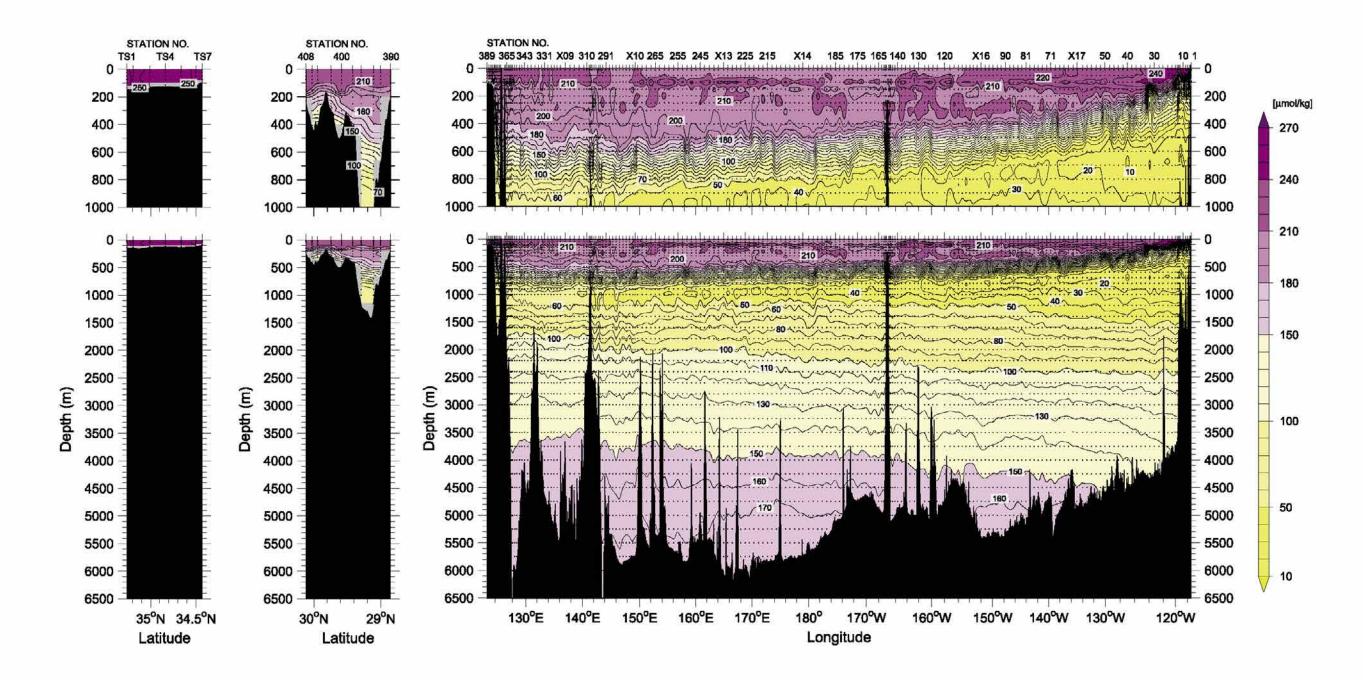


Figure 15 Silicate (µmol/kg)

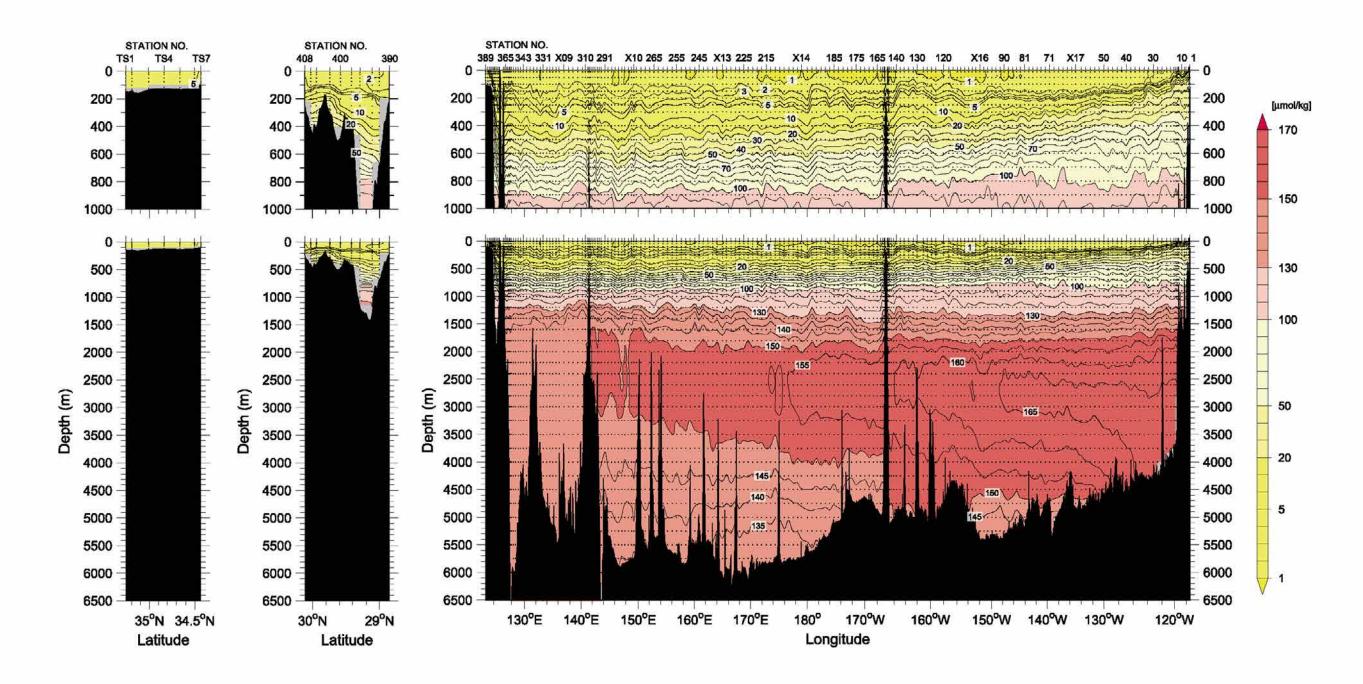


Figure 16 Nitrate (µmol/kg)

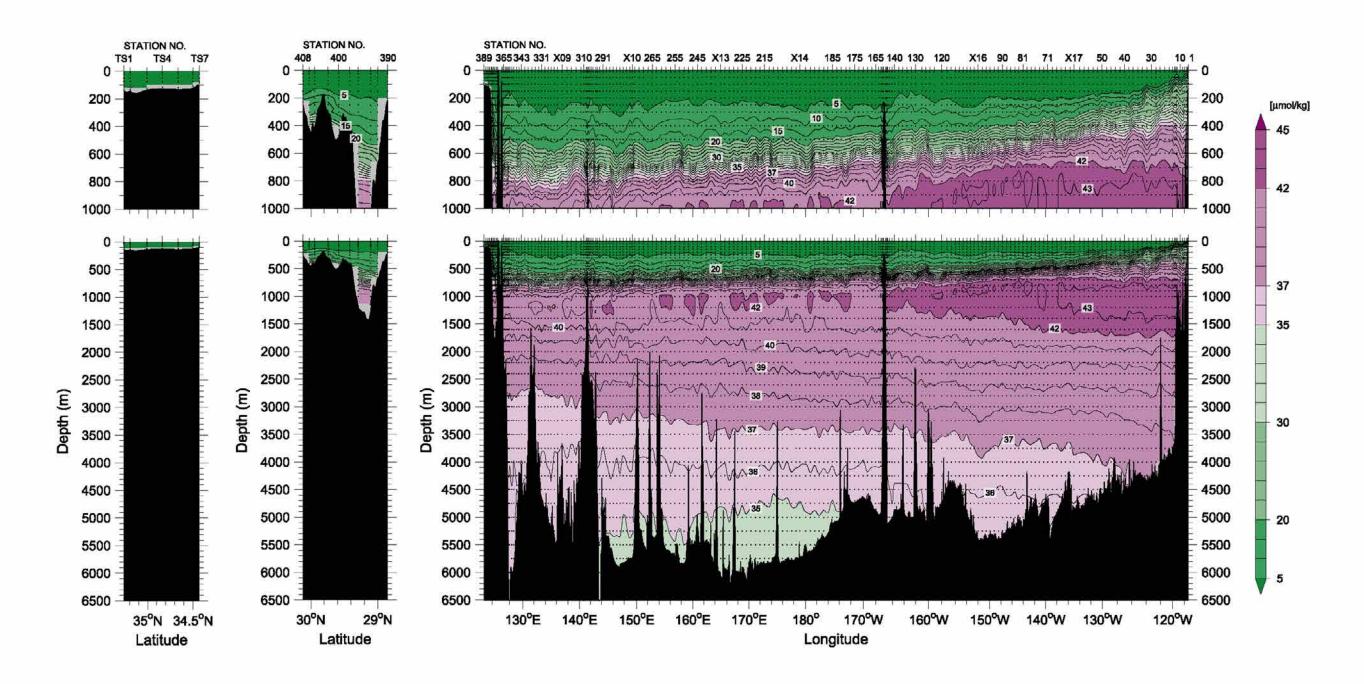


Figure 17 Nitrate (µmol/kg)

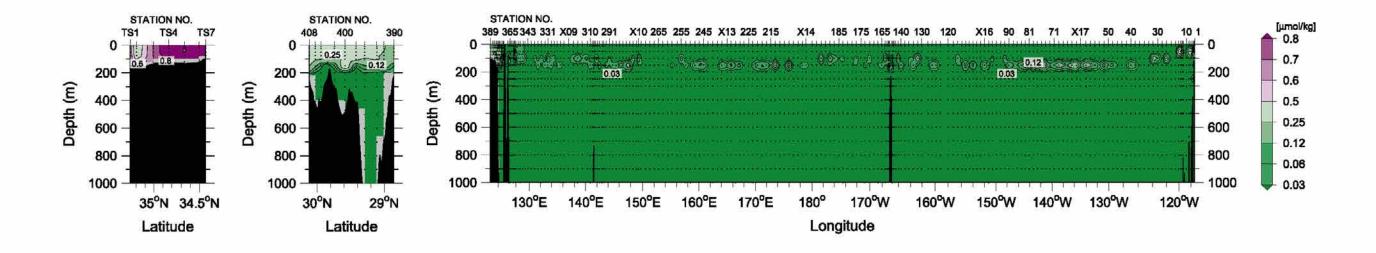


Figure 18 Phosphate (µmol/kg)

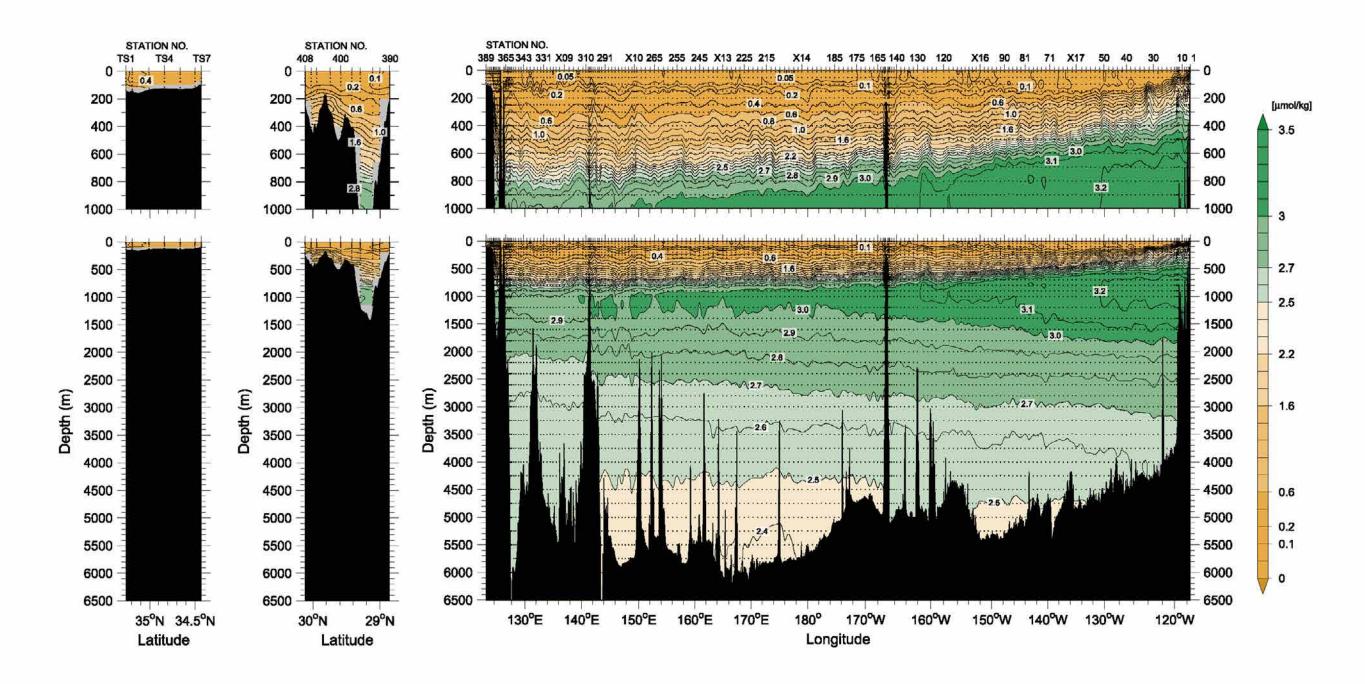


Figure 19 Dissolved inorganic carbon (µmol/kg)

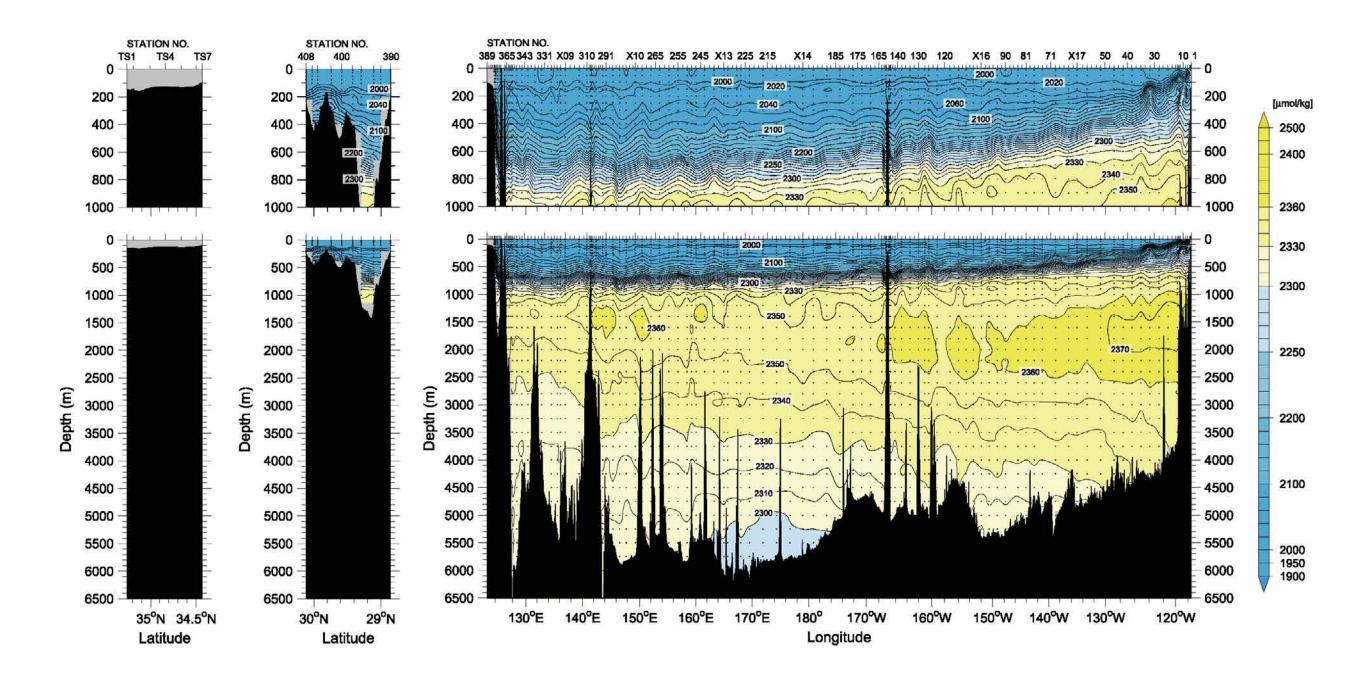


Figure 20 Total alkalinity (µmol/kg)

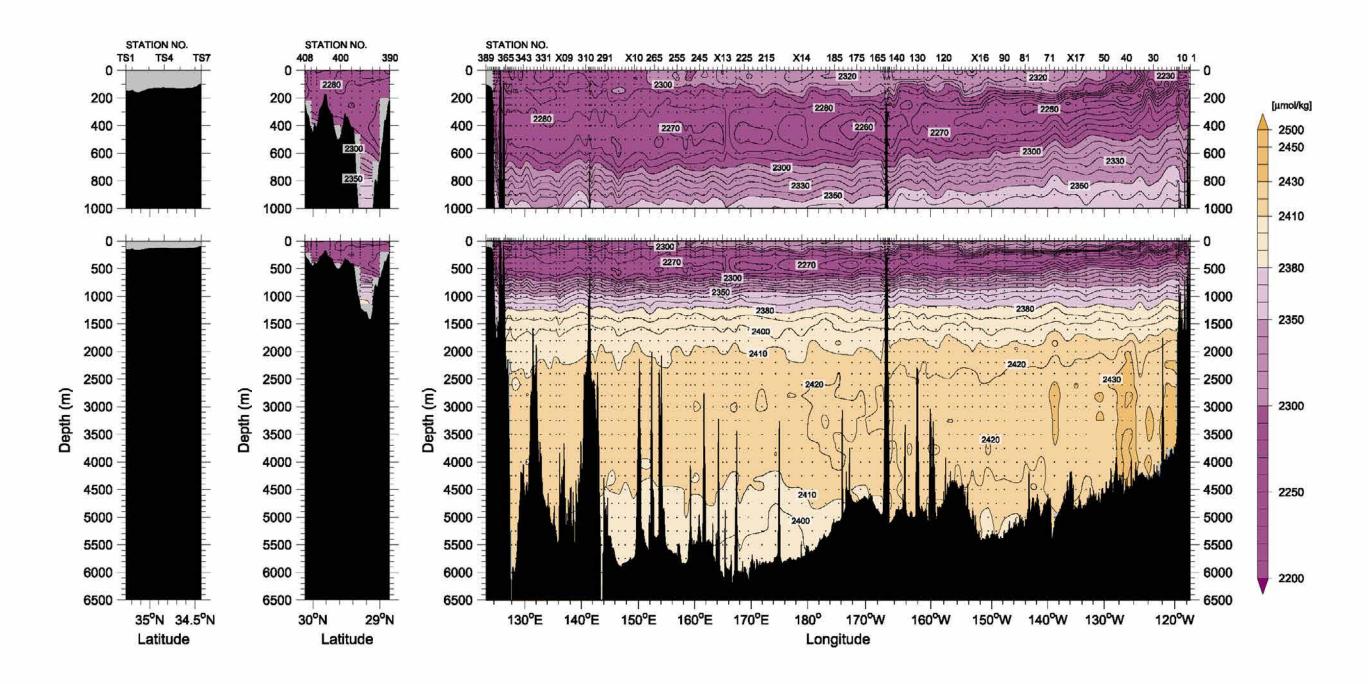


Figure 21 pH

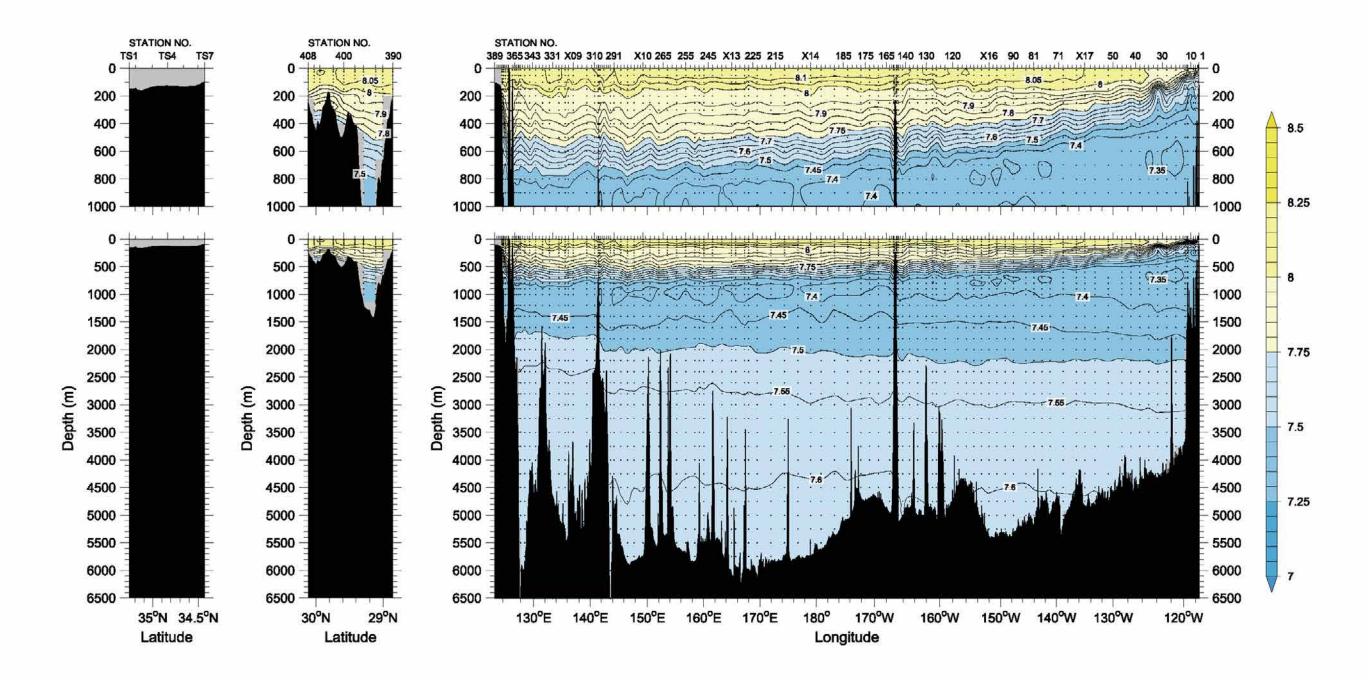


Figure 22 CFC-11 (pmol/kg)

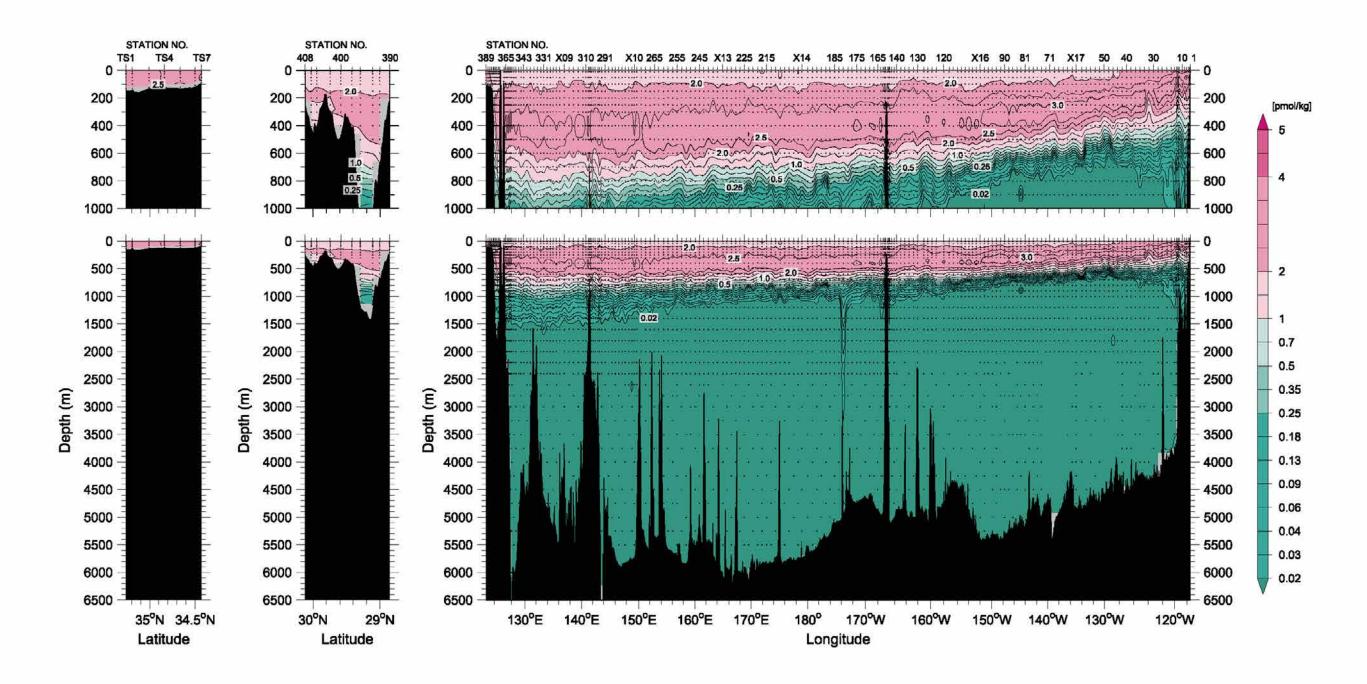


Figure 23 CFC-12 (pmol/kg)

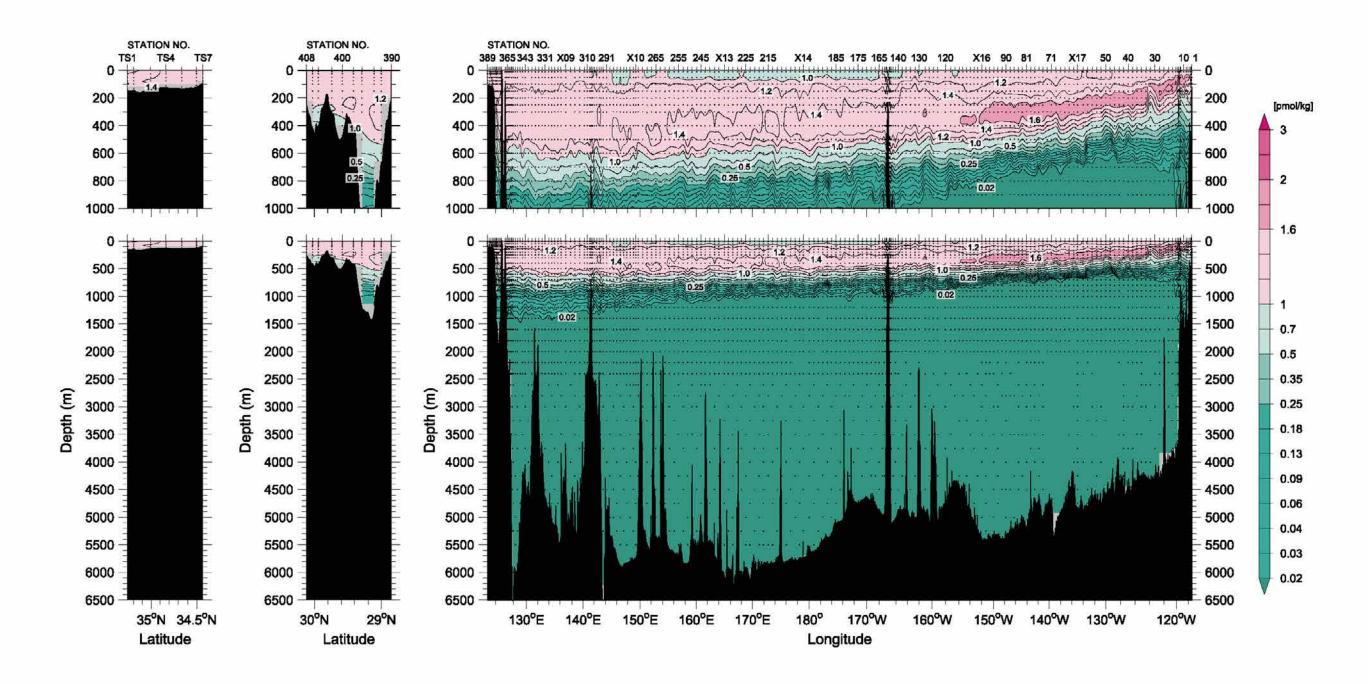


Figure 24 CFC-113 (pmol/kg)

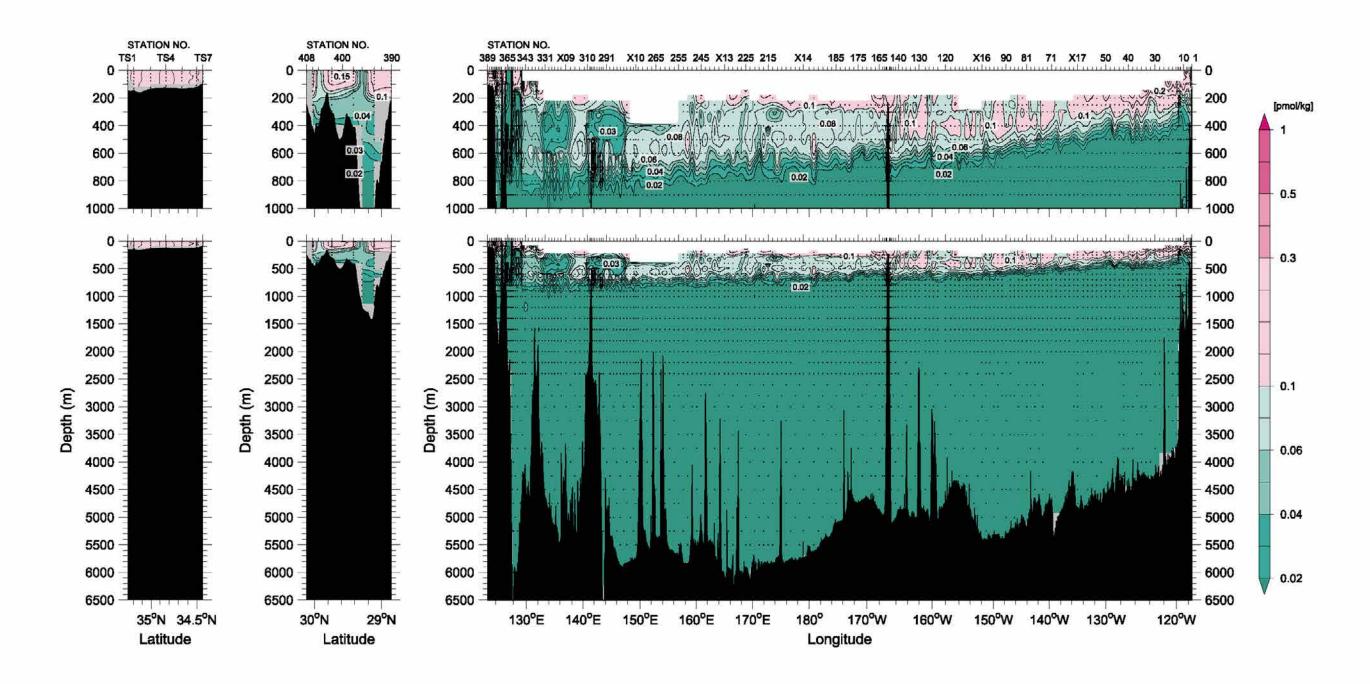


Figure 25
Current velocity (cm/s) normal to the cruise track measured by LADCP (northward is positive)

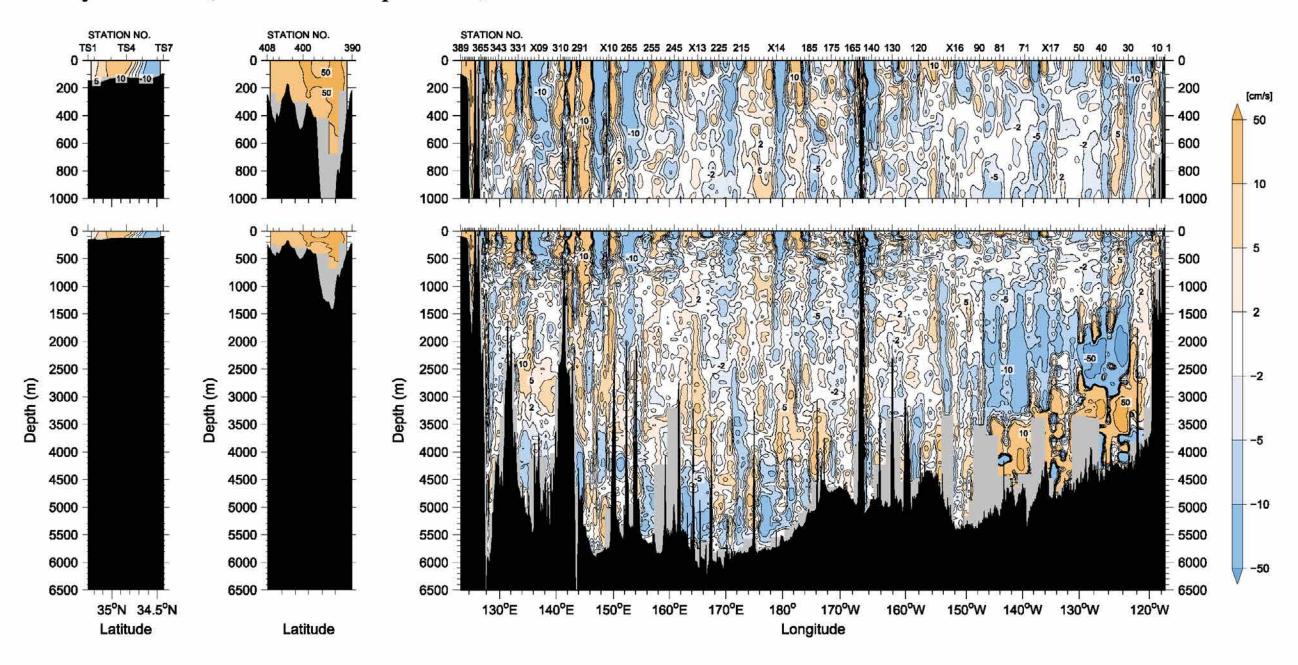


Figure 26
Difference in potential temperature (°C) between results from WOCE and the revisit cruise

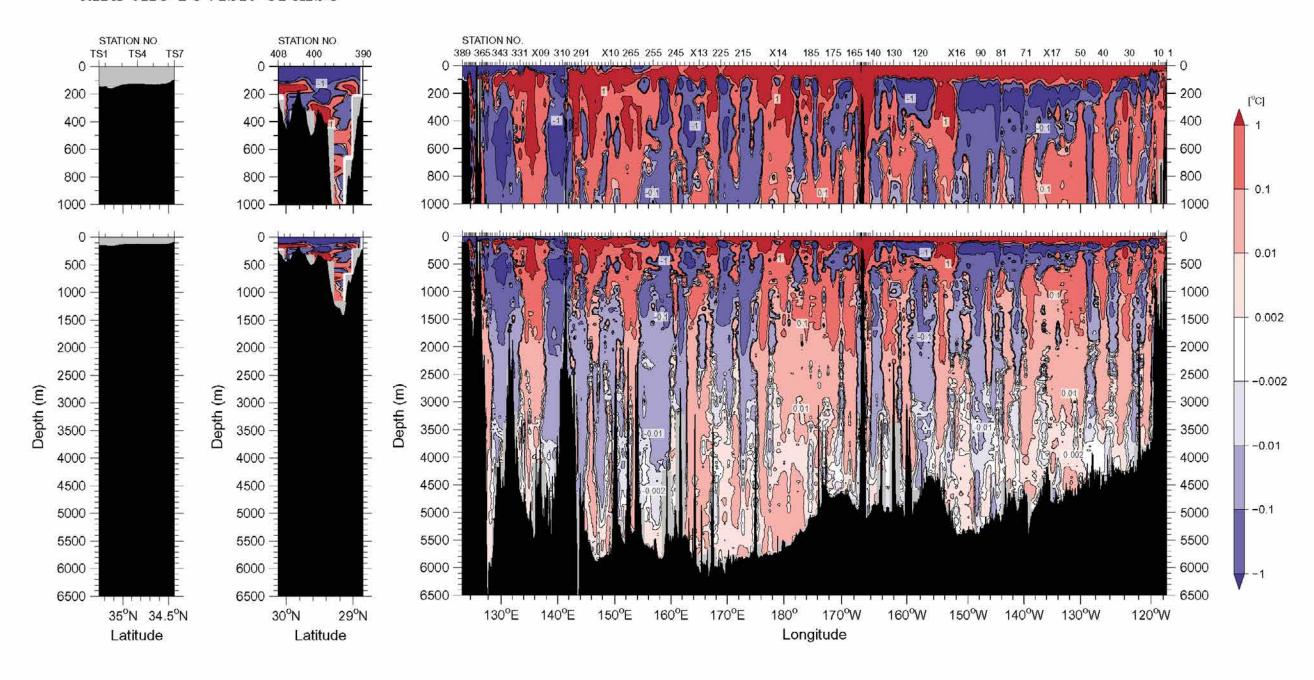


Figure 27
Difference in salinity (psu) between results from WOCE and the revisit cruise

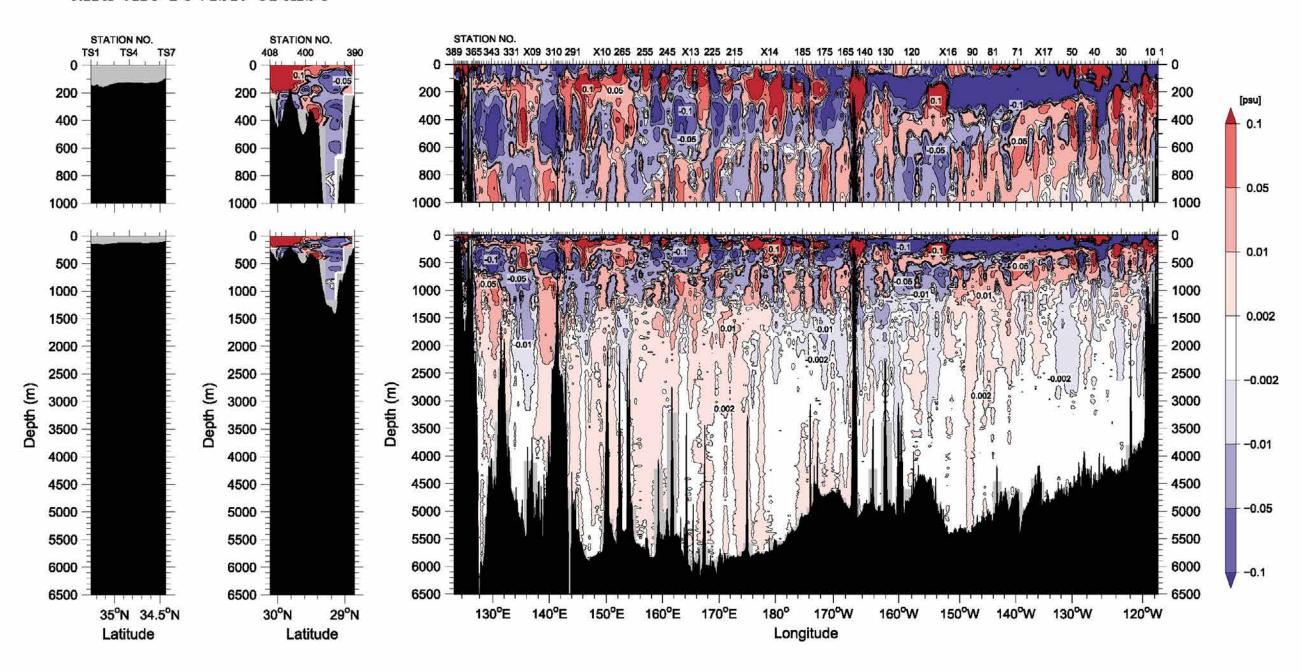
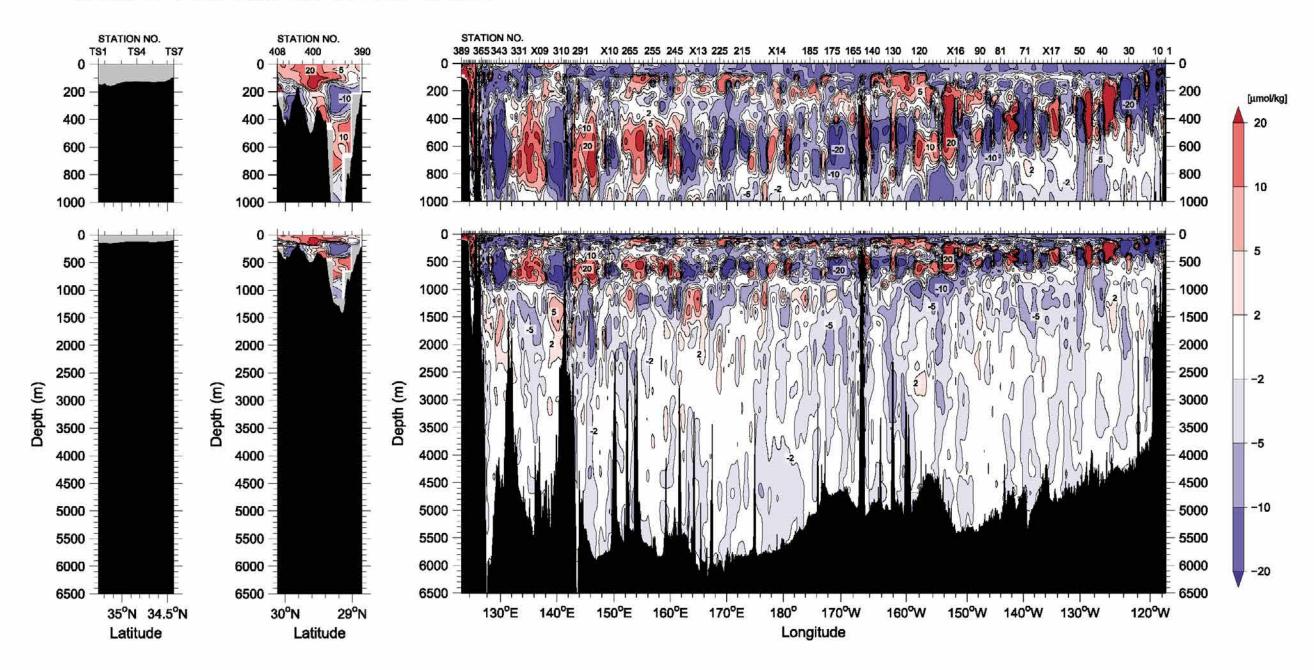



Figure 28 Difference in dissolved oxygen (μ mol/kg) between results from WOCE and the revisit cruise

