
# WHP P01 REVISIT IN 2014 DATA BOOK



Edited by Hiroshi Uchida (JAMSTEC), Toshimasa Doi (JAMSTEC)



#### WHP P01 REVISIT IN 2014 DATA BOOK

March 24, 2017 Published Edited by Hiroshi Uchida (JAMSTEC) and Toshimasa Doi (JAMSTEC)

Published by © JAMSTEC, Yokosuka, Kanagawa, 2017 Japan Agency for Marine-Earth Science and Technology 2-15 Natsushima, Yokosuka, Kanagawa. 237-0061, Japan Phone +81-46-867-9474, Fax +81-46-867-9835

ISBN 978-4-901833-22-6

Printed by Aiwa Enterprise, Ltd. 3-22-4 Takanawa, Minato-ku, Tokyo 108-0074, Japan

# Contents

| Contents                                                                                                                  |        | i   |
|---------------------------------------------------------------------------------------------------------------------------|--------|-----|
| Preface<br>H. Uchida (JAMSTEC)                                                                                            |        | iii |
| Documents and station summary files<br><b>1 Cruise Narrative</b><br>H. Uchida (JAMSTEC)<br><b>2 Underway Measurements</b> |        | 1   |
| 2 Underway Measurements<br>2.1 Navigation<br>H. Uchida (JAMSTEC), R. Oyama (GODI) et al.                                  |        | 10  |
| 2.2 Swath Bathymetry<br>T. Matsumoto (Univ. Ryukyus), R. Oyama (GODI) et al.                                              | t al.  | 12  |
| 2.3 Surface Meteorological Observations<br>M. Katsumata (JAMSTEC), R. Oyama (GODI) et al                                  |        | 14  |
| 2.4 Thermo-Salinograph and Related Measurements<br>H. Uchida (JAMSTEC) et al.                                             |        | 20  |
| 2.5 Underway pCO <sub>2</sub><br>A. Murata (JAMSTEC) et al.                                                               |        | 25  |
| 2.6 Shipboard ADCP<br>S. Kouketsu (JAMSTEC) et al.                                                                        |        | 27  |
| 2.7 XCTD<br>H. Uchida (JAMSTEC) et al.                                                                                    |        | 31  |
| 3 Hydrographic Measurement Techniques and Calibra                                                                         | ntions |     |
| 3.1 CTDO <sub>2</sub> Measurements<br>H. Uchida (JAMSTEC) et al.                                                          |        | 35  |
| 3.2 Bottle Salinity<br>H. Uchida (JAMSTEC) et al.                                                                         |        | 56  |
| 3.3 Density<br>H. Uchida (JAMSTEC)                                                                                        |        | 59  |
| 3.4 Oxygen<br>Y. Kumamoto (JAMSTEC) et al.                                                                                |        | 62  |
| 3.5 Nutrients                                                                                                             |        | 67  |
| M. Aoyama (Fukushima Univ./JAMSTEC) et al.<br>3.6 Carbon Items ( $C_T$ , $A_T$ and pH)<br>A. Murata (JAMSTEC) et al.      |        | 83  |

| 3.7 Chlorophyll a                                      |                       | 88  |
|--------------------------------------------------------|-----------------------|-----|
| K. Sasaoka (JAMSTEC) et al.                            |                       |     |
| 3.8 Absorption Coefficients of Particulate Matter and  |                       |     |
| Colored Dissolved Organic Matter (CDOM)                |                       | 90  |
| K. Sasaoka (JAMSTEC)                                   |                       |     |
| 3.9 Calcium                                            |                       | 93  |
| Y. Shinoda (JAMSTEC)                                   |                       |     |
| 3.10 Dissolved Organic Carbon                          |                       | 94  |
| T. Yoshimura (CRIEPI), D. A. Hansell and A. Margo      | olin (Univ. of Miami) |     |
| 3.11 Lowered Acoustic Doppler Current Profiler (LADCP) |                       | 96  |
| S. Kouketsu and H. Uchida (JAMSTEC)                    |                       |     |
| Station Summary                                        |                       |     |
| 49NZ20140709 .sum file                                 |                       | 97  |
| 49NZ20140717 .sum file                                 |                       | 99  |
|                                                        |                       | 55  |
| Figures                                                |                       |     |
| Figure captions                                        |                       | 112 |
| Station locations                                      |                       | 115 |
| Bathymetry                                             |                       | 117 |
| Surface wind                                           |                       | 121 |
| Sea surface temperature,                               |                       | 122 |
| salinity,                                              |                       | 123 |
| oxygen,                                                |                       | 124 |
| chlorophyll a                                          |                       | 125 |
| $\Delta p CO_2$                                        |                       | 126 |
| Surface current                                        |                       | 127 |
| Cross-sections                                         |                       |     |
| Potential temperature                                  |                       | 128 |
| CTD salinity                                           |                       | 129 |
| Absolute salinity                                      |                       | 130 |
| Density ( $\sigma_0$ and $\sigma_4$ ) (EOS-80)         |                       | 131 |
| Density ( $\sigma_0$ and $\sigma_4$ ) (TEOS-10)        |                       | 132 |
| Neutral Density $(\gamma^n)$                           |                       | 133 |
| CTD oxygen                                             |                       | 134 |
| CTD chlorophyll a                                      |                       | 135 |
| CTD beam attenuation coefficient                       |                       | 136 |

| Bottle sampled dissolved oxygen                 |         | 137 |
|-------------------------------------------------|---------|-----|
| Silicate                                        |         | 138 |
| Nitrate                                         |         | 139 |
| Nitrite                                         |         | 140 |
| Phosphate                                       |         | 141 |
| Dissolved inorganic carbon $(C_T)$              |         | 142 |
| Total alkalinity $(A_T)$                        |         | 143 |
| pН                                              |         | 144 |
| Dissolved organic carbon                        |         | 145 |
| Carrent velocity                                |         | 146 |
| Difference between previous occupations and the | revisit |     |
| Potential temperature (2014-2007)               |         | 147 |
| CTD Salinity (2014-2007)                        |         | 148 |
| CTD oxygen (2014-2007)                          |         | 149 |
|                                                 |         |     |

.sum, .sea, .wct and other data files

CD-ROM on the back cover

# Preface

In the 18 years since Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted a repeat hydrography observation along the World Ocean Circulation Experiment (WOCE) Hydrographic Program (WHP) line P01 in 1999, JAMSTEC revisited 17 WHP lines (P01 in 1999, P17N in 2001, P06, A10, I04 in 2003, I03 in 2004, P10, P03 in 2005, P01, P14 in 2007, P21 in 2009, P10 in 2011, P14S in 2012, S04I in 2013, P01 in 2014, I10 in 2015, and P17E in 2017) in the Pacific Ocean, Atlantic Ocean, Indian Ocean, and Southern Ocean.

The trans-Pacific section along 47°N reported in this data book is forth section for WHP P01 in recent 30 years from the original section conducted by the United States of America in 1985. From the results in 1985 and 1999, large-scale bottom water warming was revealed (*Fukasawa et al.*, 2004, doi:10.1038/nature02337). From the results in 2007, it was found that such large-scale bottom water warming continued after 1999 (*Kawano et al.*, 2010, doi:10.1016/j.dsr2.2009.12.003). After these discoveries, bottom water warming was clarified around the world ocean and reported in the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC) (*Rhein et al.*, 2013).

In recent repeat hydrography observations, measurement uncertainty is greatly reduced. For example, for temperature measurement, it was found that the in-situ reference thermometers have no pressure dependency and the overall expanded uncertainty of the deep ocean temperature measurement is estimated to be 0.7 mK (*Uchida et al.*, 2015, doi:10.1175/JTECH-D-15-0013.1). Also, for nutrients measurement, Reference Materials for Nutrients in Seawater (RMNS) has developed and used globally to improve the comparability of nutrients data (*Aoyama et al.*, Analytical Sciences, 28 (9), 911, 2012). These highly quality controlled data enable us to evaluate long-term changes in not only temperature but also dissolved materials in the ocean.

In the deep North Pacific, however, long-term change in salinity associated with the bottom water warming might be too small (an order of 0.0001 g/kg) to detect by the current measurement technology (a resolution of AUTOSAL salinometer is 0.0002 g/kg and uncertainty of the certified value of the IAPSO Standard Seawater might be  $\pm 0.001$  g/kg [*Kawano et al.*, 2006, doi:10.1007/s10872-006-0097-8; Table A1 of this data book]). Also, some parameters (such as dissolved oxygen and pH) require standard materials to improve the comparability. In the repeat hydrography observation, we should try to keep highest level of measurement technology, as well as

to develop more accurate measuring devices and standards.

You may find the contents of this data book, and links to other WHP revisit data books, on the website http:// www.jamstec.go.jp/iorgc/ocorp/data/post-woce.html. Updates and corrections will be found online.

I would like to acknowledge the dedication and passion that Drs. Takeshi Kawano and Masao Fukasawa have shown in leading Japanese repeat hydrography, and congratulate them for producing such a significant contribution to GO-SHIP activities. I am sure that JAMSTEC's repeat hydrography data will be used as reference data in a world ocean database.

At Screaming Sixties in the Middle of WHP P17E Revisit (February 2017) Hiroshi Uchida Global Chemical and Physical Oceanography Group, JAMSTEC

# **1** Cruise Narrative

September 28, 2014

Hiroshi Uchida (JAMSTEC)

# 1.1 Highlights

WOCE Section Designation: P10N, P01 Cruise code: MR14-04 **Expedition Designation:** Leg 1: 49NZ20140709 Leg 2: 49NZ20140717 **Chief Scientist and Affiliation:** Hiroshi Uchida huchida@jamstec.go.jp Research and Development Center for Global Change (RCGC) Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2-15 Natsushima, Yokosuka, Kanagawa, Japan 237-0061 Tel: +81-46-867-9474, Fax: +81-46-867-9835 Ship: R/V Mirai Ports of call: Leg 1: Yokosuka, Japan - Kushiro, Japan Leg 2: Kushiro, Japan - Dutch Harbor, USA **Cruise Dates:** Leg 1: July 9, 2014 – July 15, 2014 Leg 2: July 17, 2014 - August 29, 2014 Number of Stations: 121 stations for CTD/Carousel Water Sampler (Leg 1: 5, Leg 2: 116) 30 stations for XCTD 19 stations for radiosonde and 4 stations for HYVIS 2 stations for ORI net and 10 stations for NORPAC net Geographic Boundaries (for hydrographic stations):  $30^{\circ}N - 50^{\circ}N$ 

 $143^{\rm o}{\rm E}-125^{\rm o}{\rm W}$ 

#### Floats and Drifters Deployed:

6 Argo floats

(2 S2A floats with RINKO oxygen sensor and 4 NAVIS floats)

Mooring Deployed or Recovered Mooring:

None

# **1.2 Cruise Summary**

It is well known that the oceans play a central role in determining global climate. However heat and material transports in the ocean and their temporal changes have not yet been sufficiently quantified. Therefore, global climate change is not understood satisfactorily. The main purposes of this research are to evaluate heat and material transports such as anthropogenic CO<sub>2</sub>, nutrients, etc. in the Pacific Ocean and to detect their long-term changes and basin-scale biogeochemical changes since the 1990s.

This cruise is a reoccupation of the hydrographic sections called WHP-P10N along 149°E and WHP-P01 along 47°N of the North Pacific (Fig. 1.1.1). The WHP-P10N section was previously observed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in 2005 (Kawano and Uchida, 2007), in 2011 (Uchida et al., 2014), and in 2014 by the Japan Meteorological Agency. The WHP-P01 section was previously observed in 1985 by the Scripps Institution of Oceanography (USA), in 1999 by the Japan Fisheries Agency / the JAMSTEC / the Institute of Ocean Sciences (Canada) (Uchida et al., 2002), and in 2007 by the JAMSTEC (Kawano et al., 2009). This study was conducted under the Global Ocean Ship-based Hydrographic Investigations Program (abbreviated as GO-SHIP, http://www.go-ship.org/). Data obtained from those cruises are available from the CLIVAR & Carbon Hydrographic Data Office (CCHDO) web site (http://cchdo.ucsd.edu).

In leg 1 of this cruise, we conducted CTD and discrete water sampling at selected 5 stations and zooplankton sampling by using ORI net at two stations along the WHP-P10N section mainly for estimation of dispersion of radioactive substances released into the sea by the Fukushima Dai-ichi nuclear power plant accident in March 2011. To understand the oceanographic condition along the WHP-P10N section in detail,

we deployed XCTDs between the CTD stations. In addition, we launched radiosondes and HYdrometer VIdeo Sondes (HYVIS) to understand the atmospheric condition along the cruise track. Especially in the section across the Kuroshio Extension, we densely launched radiosondes simultaneously with the XCTDs (Fig. 1.1.2). At station 1, an ARGO float was deployed to take a photograph and recovered after that.

In leg 2 of this cruise, we conducted full-depth CTD, lowered acoustic Doppler current profiler (LADCP), Micro-Rider measurements, and discrete water sampling for physical, chemical and biogeochemical properties of seawater from a maximum of 36 layers along the WHP-P01 section and at the ocean station PAPA (Figs. 1.1.3 and 1.1.4). We deployed two ARGO floats with RINKO oxygen sensor in an anticyclonic eddy off Hokkaido and four ARGO floats in the area where the number of ARGO floats is small to maintain the global array. Furthermore, we sampled marine plankton by using NORPAC net to examine changes in calcification responses of planktonic organisms and pH in the subarctic North Pacific.

Also, we sampled seawater to examine horizontal and vertical distribution of microbial population (picoeukaryotes, bacteria, archaea, and viruses) in gene level to explain relationship between the microbial population and ocean circulations (seawater properties). In addition, we observed physical, chemical, and biogeochemical properties of seawater and atmosphere, and geophysical parameters (sea bottom topography, gravity acceleration, etc.) continuously along the cruise track in order to accumulate basic scientific data in global scale, especially for unobserved regions.

#### References

Kawano, T., and H. Uchida (Eds.) (2007): WHP P10 Revisit Data Book, JAMSTEC, 139 pp.
Kawano, T., H. Uchida, and T. Doi (Eds.) (2009): WHP P01, P14 Revisit Data Book, JAMSTEC, 212 pp.
Uchida, H., A. Murata, and T. Doi (Eds.) (2014): WHP P10 Revisit in 2011 Data Book, JAMSTEC, 179 pp.
Uchida, H., M. Fukasawa, and H. J. Freeland (Eds.) (2002): WHP P01 Revisit Data Book, JAMSTEC, 73 pp.

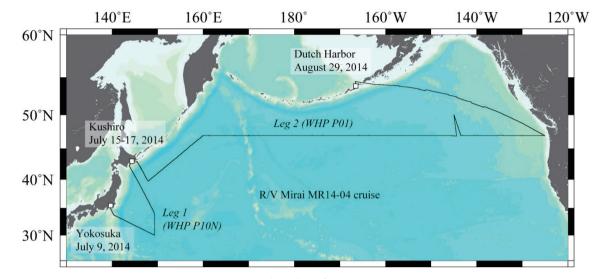



Fig. 1.1.1. Cruise track of the R/V Mirai cruise MR14-04.

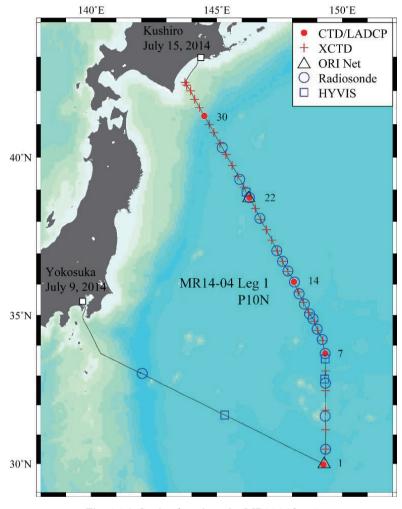



Fig. 1.1.2. Station locations for MR14-04 leg 1.

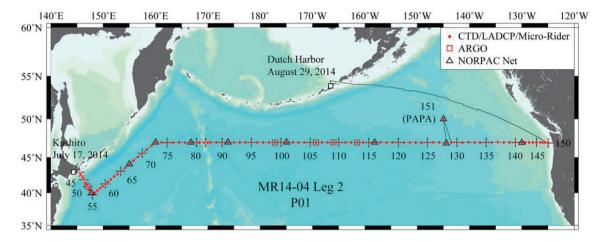



Figure 1.1.3. Station locations for MR14-04 leg 2.

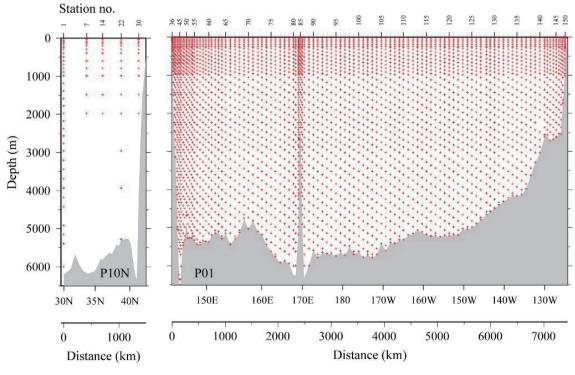



Fig. 1.1.4. Bottle depth diagram.

Ceilometer

# 1.3 List of Principal Investigator and Person in Charge on the Ship

The principal investigator (PI) and the person in charge responsible for major parameters measured on the cruise are listed in Table 1.3.1.

#### Table 1.3.1. List of principal investigator and person in charge on the ship. Principal Investigator Person in charge onboard Item Underway Hiroshi Uchida (JAMSTEC) Ryo Oyama (GODI) (leg 1) Navigation huchida@jamstec.go.jp Wataru Tokunaga (GODI) (leg 2) Bathymetry Takeshi Matsumoto (Univ. of Ryukyus) Ryo Oyama (GODI) (leg 1) tak@sci.u-ryukyu.ac.jp Wataru Tokunaga (GODI) (leg 2) Meteorology Masaki Katsumata (JAMSTEC) Ryo Oyama (GODI) (leg 1) Wataru Tokunaga (GODI) (leg 2) katsu@jamstec.go.jp TSG Hiroshi Uchida (JAMSTEC) Keitaro Matsumoto (MWJ) huchida@jamtec.go.jp $pCO_2$ Akihiko Murata (JAMSTEC) Atsushi Ono (MWJ) murataa@jamstec.go.jp ADCP Shinya Kouketsu (JAMSTEC) Ryo Oyama (GODI) (leg 1) skouketsu@jamstec.go.jp Wataru Tokunaga (GODI) (leg 2) XCTD Hiroshi Uchida (JAMSTEC) Ryo Oyama (GODI) (leg 1) huchida@jamstec.go.jp Wataru Tokunaga (GODI) (leg 2) Hiroshi Uchida (JAMSTEC) FlowCAM Hiroshi Uchida (JAMSTEC) huchida@jamstec.go.jp

Ryo Oyama (GODI) (leg 1)

Masaki Katsumata (JAMSTEC)

|                     | katsu@jamstec.go.jp                  | Wataru Tokunaga (GODI) (leg 2) |
|---------------------|--------------------------------------|--------------------------------|
| Raindrop            | Masaki Katsumata (JAMSTEC)           | Masaki Katsumata (JAMSTEC)     |
|                     | katsu@jamstec.go.jp                  |                                |
| Doppler Radar       | Masaki Katsumata (JAMSTEC)           | Ryo Oyama (GODI) (leg 1)       |
|                     | katsu@jamstec.go.jp                  | Wataru Tokunaga (GODI) (leg 2) |
| Radiosonde          | Masaki Katsumata (JAMSTEC)           | Ryo Oyama (GODI)               |
|                     | katsu@jamstec.go.jp                  |                                |
| HYVIS               | Masaki Katsumata (JAMSTEC)           | Ryo Oyama (GODI)               |
|                     | katsu@jamstec.go.jp                  |                                |
| Gravity             | Takeshi Matsumoto (Univ. of Ryukyus) | Ryo Oyama (GODI) (leg 1)       |
|                     | tak@sci.u-ryukyu.ac.jp               | Wataru Tokunaga (GODI) (leg 2) |
| Magnetic Field      | Takeshi Matsumoto (Univ. of Ryukyus) | Ryo Oyama (GODI) (leg 1)       |
|                     | tak@sci.u-ryukyu.ac.jp               | Wataru Tokunaga (GODI) (leg 2) |
| Satellite Image     | Masaki Katsumata (JAMSTEC)           | Ryo Oyama (GODI) (leg 1)       |
|                     | katsu@jamstec.go.jp                  | Wataru Tokunaga (GODI) (leg 2) |
| Sky Radiometer      | Kazuma Aoki (Univ. of Toyama)        | none                           |
|                     | kazuma@sci.u-toyama.ac.jp            |                                |
| MAX-DOAS            | Hisahiro Takashima (JAMSTEC)         | none                           |
|                     | hisahiro@jamstec.go.jp               |                                |
| Ozone and CO        | Yugo Kanaya (JAMSTEC)                | none                           |
|                     | yugo@jamstec.go.jp                   |                                |
| Black Carbon        | Takuma Miyakawa (JAMSTEC)            | none                           |
|                     | miyakawat@jamstec.go.jp              |                                |
| Fluorescent Aerosol |                                      |                                |
|                     | Fumikazu Taketani (JAMSTEC)          | none                           |
|                     | taketani@jamstec.go.jp               |                                |

| Aerosol Particle Size   |                                 |                                   |                                      | sasaoka@jamstec.go.jp        |                                       |
|-------------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------------|---------------------------------------|
|                         | Fumikazu Taketani (JAMSTEC)     | none                              | CDOM/Absorption C                    | oefficients                  |                                       |
|                         | taketani@jamstec.go.jp          |                                   |                                      | Kosei Sasaoka (JAMSTEC)      | Kosei Sasaoka (JAMSTEC)               |
| Hydrography             |                                 |                                   |                                      | sasaoka@jamstec.go.jp        |                                       |
| $CTD/O_2$               | Hiroshi Uchida (JAMSTEC)        | Shinsuke Toyoda (MWJ)             | Calcium                              | Yoshihiro Shinoda (JAMSTEC)  | Yoshihiro Shinoda (JAMSTEC)           |
|                         | huchida@jamstec.go.jp           |                                   |                                      | Yshinoda@jamstec.go.jp       |                                       |
| Salinity                | Hiroshi Uchida (JAMSTEC)        | Tatsuya Tanaka (MWJ)              | DOC                                  | Dennis A. Hansell (RSMAS)    | Yuichiro Kumamoto (JAMSTEC)           |
|                         | huchida@jamstec.go.jp           |                                   |                                      | dhansell@rsmas.miami.edu     |                                       |
| Density                 | Hiroshi Uchida (JAMSTEC)        | Hiroshi Uchida (JAMSTEC)          |                                      | Takeshi Yoshimura (CRIEPI)   |                                       |
|                         | huchida@jamstec.go.jp           |                                   |                                      | ytakeshi@criepi.denken.or.jp |                                       |
| Oxygen                  | Yuichiro Kumamoto (JAMSTEC)     | Keitaro Matsumoto (MWJ)           | DOC duplicate at stati               | on 73 (K2)                   |                                       |
|                         | kumamoto@jamstec.go.jp          |                                   |                                      | Masahide Wakita (JAMSTEC)    | Hiroshi Uchida (JAMSTEC)              |
| Nutrients               | Michio Aoyama (Fukushima Univ.) | Yasuhiro Arii (MWJ)               |                                      | mwakita@jamstec.go.jp        |                                       |
|                         | r706@ipc.fukushima-u.ac.jp      |                                   | $\Delta^{14}C/\delta^{13}C$          | Yuichiro Kumamoto (JAMSTEC)  | Yuichiro Kumamoto (JAMSTEC)           |
| CFCs/SF <sub>6</sub>    | Ken'ichi Sasaki (JAMSTEC)       | Ken'ichi Sasaki (JAMSTEC) (leg 1) |                                      | kumamoto@jamstec.go.jp       |                                       |
|                         | ksasaki@jamstec.go.jp           | Hironori Sato (MWJ) (leg 2)       | <sup>134</sup> Cs/ <sup>137</sup> Cs | Yuichiro Kumamoto (JAMSTEC)  | Yuichiro Kumamoto (JAMSTEC)           |
| DIC                     | Akihiko Murata (JAMSTEC)        | Atsushi Ono (MWJ)                 |                                      | kumamoto@jamstec.go.jp       |                                       |
|                         | murataa@jamstec.go.jp           |                                   | Iodine-129                           | Yuichiro Kumamoto (JAMSTEC)  | Yuichiro Kumamoto (JAMSTEC)           |
| Alkalinity              | Akihiko Murata (JAMSTEC)        | Tomonori Watai (MWJ)              |                                      | kumamoto@jamstec.go.jp       |                                       |
|                         | murataa@jamstec.go.jp           |                                   | $\delta^{18}O/\delta D$              | Hiroshi Uchida (JAMSTEC)     | Hiroshi Uchida (JAMSTEC)              |
| Alkalinity duplicate by | potentiometry                   |                                   |                                      | huchida@jamstec.go.jp        |                                       |
|                         | Yoshihiro Shinoda (JAMSTEC)     | Yoshihiro Shinoda (JAMSTEC)       | PFASs                                | Nobuyoshi Yamashita (AIST)   | Nobuyoshi Yamashita (AIST) (leg 1)    |
|                         | yshinoda@jamstec.go.jp          |                                   |                                      | nob.yamashita@aist.go.jp     | Sachi Taniyasu (AIST) (leg 2)         |
| pН                      | Akihiko Murata (JAMSTEC)        | Tomonori Watai (MWJ)              | $N_2O/CH_4$                          | Osamu Yoshida (RGU)          | Osamu Yoshida (RGU) (leg 1)           |
|                         | murataa@jamstec.go.jp           |                                   |                                      | yoshida@rakuno.ac.jp         | Takuya Takahashi (RGU) (leg 2)        |
| Chlorophyll a           | Kosei Sasaoka (JAMSTEC)         | Keitaro Matsumoto (MWJ)           | Cell abundance                       | Takuro Nunoura (JAMSTEC)     | Taichi Yokokawa (Ehime Univ.) (leg 1) |

|                                                          | takuron@jamstec.go.jp       | Takuro Nunoura (JAMSTEC) (leg 2)      |               | skouketsu@jamstec.go.jp          | Shinya Kouketsu (JAMSTEC) (leg 2) |
|----------------------------------------------------------|-----------------------------|---------------------------------------|---------------|----------------------------------|-----------------------------------|
| Microbial diversity                                      | Takuro Nunoura (JAMSTEC)    | Takuro Nunoura (JAMSTEC)              | Micro-Rider   | Ichiro Yasuda (AORI)             | Shinya Kouketsu (JAMSTEC)         |
|                                                          | takuron@jamstec.go.jp       |                                       |               | ichiro@aori.u-tokyo.ac.jp        |                                   |
| Microbial carbon upta                                    | ike                         |                                       | Biology       |                                  |                                   |
|                                                          | Takuro Nunoura (JAMSTEC)    | Taichi Yokokawa (Ehime Univ.) (leg 1) | ORI net       | Minoru Kitamura (JAMSTEC)        | Minoru Kitamura (JAMSTEC)         |
|                                                          | takuron@jamstec.go.jp       | Takuro Nunoura (JAMSTEC) (leg 2)      |               | kitamura@jamstec.go.jp           |                                   |
| Nitrification                                            | Akiko Makabe (TUAT)         | Akiko Makabe (TUAT)                   | NORPAC net    | Katsunori Kimoto (JAMSTEC)       | Shinya Iwasaki (AORI)             |
|                                                          | a-makabe@cc.tuat.ac.jp      |                                       |               | kimopy@jamstec.go.jp             |                                   |
| Nitrogen fixation                                        | Masanori Kaneko (JAMSTEC)   | Masanori Kaneko (JAMSTEC) (leg 1)     | Phytoplankton | Koji Sugie (JAMSTEC)             | Koji Sugie (JAMSTEC)              |
|                                                          | m_kaneko@jamstec.go.jp      | Shuichiro Matushima (TITECH) (leg 2)  | Incubation    | sugie@jamstec.go.jp              |                                   |
| Methanogen biomark                                       | er                          |                                       | Floats        |                                  |                                   |
|                                                          | Masanori Kaneko (JAMSTEC)   | Masanori Kaneko (JAMSTEC) (leg 1)     | ARGO float    | Toshio Suga (JAMSTEC)            | Hiroshi Matsunaga (MWJ)           |
|                                                          | m_kaneko@jamstec.go.jp      | Takuya Takahashi (RGU) (leg 2)        |               | sbaba@jamstec.go.jp              |                                   |
| $\delta^{13}C/CH_4$                                      | Masanori Kaneko (JAMSTEC)   | Masanori Kaneko (JAMSTEC) (leg 1)     | JAMST         | EC Japan Agency for Marine-Earth | Science and Technology            |
|                                                          | m_kaneko@jamstec.go.jp      | Takuya Takahashi (RGU) (leg 2)        | GODI          | Global Ocean Development Inc.    |                                   |
| $\delta^{15}N\;\delta^{18}O/NO_3^-$                      | Chisato Yoshikawa (JAMSTEC) | Chisato Yoshikawa (JAMSTEC) (leg 1)   | MWJ           | Marine Works Japan, Ltd.         |                                   |
|                                                          | yoshikawac@jamstec.go.jp    | Akiko Makabe (TUAT) (leg 2)           | RSMAS         |                                  | 1 Atmospheric Science,            |
| $\delta^{15}$ N/chlorophyll                              | Chisato Yoshikawa (JAMSTEC) | Chisato Yoshikawa (JAMSTEC) (leg 1)   |               | University of Miami              |                                   |
|                                                          | yoshikawac@jamstec.go.jp    | Takuya Takahashi (TUAT) (leg 2)       | CRIEP         | Central Research Institute of El | ectric Power Industry             |
| $\delta^{15}\!N\;\delta^{18}O/N_2O$ , $NO_2$             |                             |                                       | AIST          | National Institute of Advanced I | ndustrial Science and Technology  |
|                                                          | Sakae Toyoda (TITECH)       | Shuichiro Matsushima (TITECH) (leg 2) | RGU           | Rakuno Gakuen University         |                                   |
|                                                          | toyoda.s.aa@m.titech.ac.jp  |                                       | TUAT          | Tokyo University of Agriculture  | and Technology                    |
| $\delta^{15}$ N/NH <sub>4</sub> <sup>+</sup> , DON, urea | a                           |                                       | TITEC         | H Tokyo Institute of Technology  |                                   |
|                                                          | Akiko Makabe (TUAT)         | Akiko Makabe (TUAT)                   | AORI          | Atmosphere and Ocean Researc     | ch Institute, The Univ. of Tokyo  |
|                                                          | a-makabe@cc.tuat.ac.jp      |                                       |               |                                  |                                   |
| LADCP                                                    | Shinya Kouketsu (JAMSTEC)   | Hiroshi Uchida (JAMSTEC) (leg 1)      |               |                                  |                                   |

| 1.4 | List of | Cruise | Participants |
|-----|---------|--------|--------------|
|-----|---------|--------|--------------|

| Table 1.4.1. List of cruise participants for leg 1. |                                          |              |                         | geophysics/ADCP/XCTD             |
|-----------------------------------------------------|------------------------------------------|--------------|-------------------------|----------------------------------|
| N                                                   | יו יו יו                                 | A (C1'       | =<br>Souichiro Sueyoshi | Meteorology/geophysics/ADCP/X    |
| Name                                                | Responsibility                           | Affiliation  | Katsuhisa Maeno         | Meteorology/geophysics/ADCP/X    |
|                                                     |                                          |              | – Koichi Inagaki        | Meteorology/geophysics/ADCP/X    |
| Hiroshi Uchida                                      | Density/FlowCAM/LADCP/δ <sup>18</sup> O  | RCGC/JAMSTEC | Yutaro Murakami         | Meteorology/geophysics/ADCP/X    |
| Yuichiro Kumamoto                                   | DO/Radionuclides/Water sampling          | RCGC/JAMSTEC | Shinsuke Toyoda         | Chief technologist/CTD/water sam |
| Yoshihiro Shinoda                                   | Water sampling                           | RCGC/JAMSTEC | Hiroshi Matsunaga       | CTD/ARGO                         |
| Minoru Kitamura                                     | ORI net                                  | RCGC/JAMSTEC | Kenichi Katayama        | CTD                              |
| Masaki Katsumata                                    | HYVIS/Radiosonde/Doppler rader/Raindrop  | RCGC/JAMSTEC | Rei Ito                 | CTD                              |
| Biao Geng                                           | HYVIS/Radiosonde/Doppler rader           | RCGC/JAMSTEC | Akira Watanabe          | CTD                              |
| Shuichi Mori                                        | HYVIS/Radiosonde/Doppler rader           | DCOP/JAMSTEC | Tatsuya Tanaka          | Salinity                         |
| Ryuichi Shirooka                                    | HYVIS/Radiosonde/Doppler rader           | DCOP/JAMSTEC | Sonoka Wakatsuki        | Salinity                         |
| Ken'ichi Sasaki                                     | CFCs/SF <sub>6</sub>                     | MIO/JAMSTEC  | Keitaro Matsumoto       | DO/Chlorophyll-a/TSG             |
| Takuro Nunoura                                      | Microbiology                             | RCMB/JAMSTEC | Misato Kuwahara         | DO/Chlorophyll-a/TSG             |
| Miho Hirai                                          | Microbiology                             | RCMB/JAMSTEC | Haruka Tamada           | DO/Chlorophyll-a/TSG             |
| Chisato Yoshikawa                                   | Chlorophyll/NO $_3$ isotope geochemistry | BGC/JAMSTEC  | Yasuhiro Arii           | Nutrients                        |
| Masanori Kaneko                                     | CH4 geochemistry/Nitrogen fixation       | BGC/JAMSTEC  | Minoru Kamata           | Nutrients                        |
| Akiko Makabe                                        | Nitrification/Nitrogen geochemistry      | TUAT         | Tomomi Sone             | Nutrients                        |
| Taichi Yokokawa                                     | Microbiology                             | Ehime Univ.  | Katsunori Sagishima     | CFCs/SF <sub>6</sub>             |
| Nobuyoshi Yamashita                                 | PFASs                                    | AIST         | Hironori Sato           | CFCs/SF <sub>6</sub>             |
| Osamu Yoshida                                       | $N_2O/CH_4$                              | RGU          | Hideki Yamamoto         | CFCs/SF <sub>6</sub>             |
| Kanta Chida                                         | $N_2O/CH_4$                              | RGU          | Atsushi Ono             | DIC                              |
| Takuya Takahashi                                    | $N_2O/CH_4$                              | RGU          | Yoshiko Ishikawa        | DIC                              |
| Tomoyuki Shirakawa                                  | TV camera                                | JBC          | Tomonori Watai          | pH/Alkalinity                    |
|                                                     |                                          |              |                         |                                  |

Fumihiko Saito

Ryo Oyama

TV camera

Chief technologist /meteorology/

JBC

GODI

GODI

GODI

GODI GODI

MWJ

MWJ MWJ

MWJ MWJ MWJ

MWJ MWJ

MWJ

MWJ MWJ

MWJ

MWJ MWJ MWJ

MWJ MWJ MWJ MWJ

| ni Deguchi | pH/Alkalinity                        | MWJ                            |                      | Table 1.4.2. List of cruise participants for leg 2 |                     |
|------------|--------------------------------------|--------------------------------|----------------------|----------------------------------------------------|---------------------|
| JAMSTEC    | Japan Agency for Marine-Earth Scie   | nce and Technology             | Name                 | Responsibility                                     | Affiliation         |
| RCGC       | Research and Development Center f    | or Global Change               |                      |                                                    |                     |
| DCOP       | Department of Coupled Ocean-Atmo     | sphere-Land Processes Research |                      | 10                                                 |                     |
| MIO        | Mutsu Institute of Oceanography      |                                | Hiroshi Uchida       | Density/FlowCAM/LADCP/Micro-Rider/ $\delta^{18}$ O | RCGC/JAMSTEC        |
| RCMB       | Research and Development Center f    | or Marine Biosciences          | Yuichiro Kumamoto    | DO/Radionuclides/Water sampling                    | RCGC/JAMSTEC        |
| BGC        | Department of Biogeochemistry        |                                | Yoshihiro Shinoda    | Calcium/Water sampling                             | RCGC/JAMSTEC        |
| TUAT       | Tokyo University of Agriculture and  | Technology                     | Shinya Koketsu       | LADCP/Micro-Rider/δ <sup>18</sup> O                | RCGC/JAMSTEC        |
| AIST       | National Institute of Advanced Indus | strial Science and Technology  | Kosei Sasaoka        | CDOM/Absorption coefficient                        | RCGC/JAMSTEC        |
| RGU        | Rakuno Gakuen University             |                                | Koji Sugie           | Phytoplankton incubation/NORPAC net                | RCGC/JAMSTEC        |
| JBC        | Japan Broadcasting Corporation       |                                | Shinya Iwasaki       | NORPAC net/Phytoplankton incubation                | AORI/Univ. of Tokyo |
| GODI       | Global Ocean Development Inc.        |                                | Takuro Nunoura       | Microbiology                                       | RCMB/JAMSTEC        |
| MWJ        | Marine Works Japan, Ltd.             |                                | Akiko Makabe         | Nitrification/Nitrogen geochemistry                | TUAT                |
|            |                                      |                                | Shuichiro Matsushima | Nitrogen fixation/Nitrogen geochemistry/CH4        | TITECH              |
|            |                                      |                                | Seiya Takahashi      | Microbiology                                       | Tsukuba Univ.       |
|            |                                      |                                | Sachi Taniyasu       | PFASs                                              | AIST                |
|            |                                      |                                | Kanta Chida          | $N_2O/CH_4$                                        | RGU                 |
|            |                                      |                                | Takuya Takahashi     | N <sub>2</sub> O/CH <sub>4</sub>                   | RGU                 |
|            |                                      |                                | Wataru Tokunaga      | Chief technologist /meteorology/                   | GODI                |
|            |                                      |                                |                      | geophysics/ADCP/XCTD                               |                     |
|            |                                      |                                | Kazuho Yoshida       | Meteorology/geophysics/ADCP/XCTD                   | GODI                |
|            |                                      |                                | Yutaro Murakami      | Meteorology/geophysics/ADCP/XCTD                   | GODI                |
|            |                                      |                                | Tetsuya Kai          | Meteorology/geophysics/ADCP/XCTD                   | GODI                |
|            |                                      |                                | Shinsuke Toyoda      | Chief technologist/CTD/water sampling              | MWJ                 |
|            |                                      |                                | Hiroshi Matsunaga    | CTD/ARGO                                           | MWJ                 |
|            |                                      |                                | Tomoyuki Takamori    | CTD                                                | MWJ                 |
|            |                                      |                                | Tomoyuki Takamori    | CTD                                                | MWJ                 |

# Table 1.4.2. List of cruise participants for leg 2.

| Rei Ito             | CTD                  | MWJ |
|---------------------|----------------------|-----|
| Akira Watanabe      | CTD                  | MWJ |
| Tatsuya Tanaka      | Salinity             | MWJ |
| Sonoka Wakatsuki    | Salinity             | MWJ |
| Keitaro Matsumoto   | DO/Chlorophyll-a/TSG | MWJ |
| Katsunori Sagishima | DO/Chlorophyll-a/TSG | MWJ |
| Haruka Tamada       | DO/Chlorophyll-a/TSG | MWJ |
| Yasuhiro Arii       | Nutrients            | MWJ |
| Kenichiro Sato      | Nutrients            | MWJ |
| Elena Hayashi       | Nutrients            | MWJ |
| Hironori Sato       | CFCs/SF <sub>6</sub> | MWJ |
| Hideki Yamamoto     | CFCs/SF <sub>6</sub> | MWJ |
| Shoko Tatamisashi   | CFCs/SF <sub>6</sub> | MWJ |
| Kanako Yoshida      | CFCs/SF <sub>6</sub> | MWJ |
| Atsushi Ono         | DIC                  | MWJ |
| Yoshiko Ishikawa    | DIC                  | MWJ |
| Tomonori Watai      | pH/Alkalinity        | MWJ |
| Emi Deguchi         | pH/Alkalinity        | MWJ |
| Rina Tajima         | Water sampling       | MWJ |
| Toshiki Nosho       | Water sampling       | MWJ |
| Miho Arai           | Water sampling       | MWJ |
| Kohei Kumagai       | Water sampling       | MWJ |
| Yuki Kawabuchi      | Water sampling       | MWJ |
| Yuki Komuro         | Water sampling       | MWJ |
|                     |                      |     |

| JAMSTEC | Japan Agency for Marine-Earth Science and Technology             |
|---------|------------------------------------------------------------------|
| RCGC    | Research and Development Center for Global Change                |
| AORI    | Atmosphere and Ocean Research Institute, The Univ. of Tokyo      |
| RCMB    | Research and Development Center for Marine Biosciences           |
| TUAT    | Tokyo University of Agriculture and Technology                   |
| TITECH  | Tokyo Institute of Technology                                    |
| AIST    | National Institute of Advanced Industrial Science and Technology |
| RGU     | Rakuno Gakuen University                                         |
| GODI    | Global Ocean Development Inc.                                    |
| MWJ     | Marine Works Japan, Ltd.                                         |
|         |                                                                  |

# **2** Underway Measurements

# 2.1 Navigation

September 17, 2014

## (1) Personnel

| Hiroshi Uchida     | JAMSTEC: Principal investigator       |                  |
|--------------------|---------------------------------------|------------------|
| Ryo Oyama          | Global Ocean Development Inc., (GODI) | - leg 1 -        |
| Souichiro Sueyoshi | GODI                                  | - leg 1 -        |
| Katsuhisa Maeno    | GODI                                  | - leg 1 -        |
| Koichi Inagaki     | GODI                                  | - leg 1 -        |
| Wataru Tokunaga    | GODI                                  | - leg 2 -        |
| Kazuho Yoshida     | GODI                                  | - leg 2 -        |
| Tetsuya Kai        | GODI                                  | - leg 2 -        |
| Yutaro Murakami    | GODI                                  | - leg 1, leg 2 - |
| Masanori Murakami  | MIRAI crew                            | - leg 1, leg 2 - |

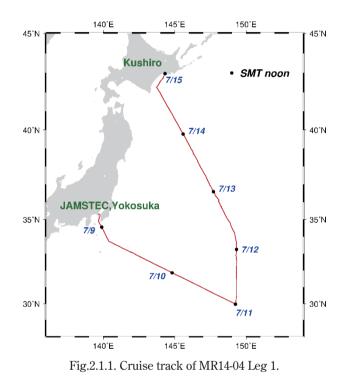
#### (2) System description

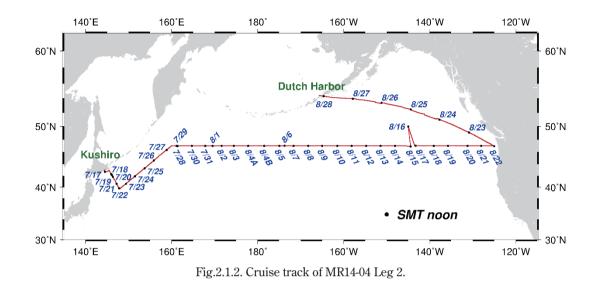
Ship's position and velocity were provided by Navigation System on R/V MIRAI. This system integrates GPS position, Doppler sonar log speed, Gyro compass heading and other basic data for navigation, and calculated speed and course over ground on workstation. This system also distributed ship's standard time synchronized to GPS time server via Network Time Protocol. These data were logged on the network server as "SOJ" data every 5 seconds.

Sensors for navigation data are listed below;

i) GPS system:

R/V MIRAI has four GPS systems, all GPS positions were offset to radar-mast position, datum point. Anytime changeable manually switched as to GPS receiving state.


a) MultiFix6 (software version 1.01), Differential GPS system.


|       |             | Receiver:     | Trimble SPS751, with GPS antenna located on navigation deck, starboard.         |
|-------|-------------|---------------|---------------------------------------------------------------------------------|
|       |             | Decoder:      | FUGURO STARFIX 4100LRS                                                          |
|       | b)          | MultiFix6     | (software version 1.01), Differential GPS system.                               |
|       |             | Receiver:     | Trimble SPS751, with two GPS antenna located on compass deck, port side.        |
|       |             | Decoder:      | FUGURO STARFIX 4100LRS                                                          |
|       | c)          | Standalone    | e GPS system.                                                                   |
|       |             | Receiver:     | Trimble 4000DS, GPS antenna located on navigation deck, port side.              |
|       | d)          | Standalone    | e GPS system.                                                                   |
|       |             | Receiver:     | FURUNO GP-36, GPS antenna located on navigation deck, starboard.                |
| ii)   | ) Dopple    | r sonar log   | :                                                                               |
|       | FURU        | NO DS-30, v   | which use three acoustic beam for current measurement under the hull.           |
| iii   | i) Gyro c   | ompass:       |                                                                                 |
|       | TOKY        | ) KEIKI TO    | G-6000, sperry type mechanical gyrocompass.                                     |
| iv    | ) GPS tir   | ne server:    |                                                                                 |
|       | SEIKO       | TS-2540 Ti    | me Server, synchronizing to GPS satellites every 1 second.                      |
|       |             |               |                                                                                 |
| (3) D | ata perio   | l (Times in   | n UTC)                                                                          |
|       | Leg         | 1: 22:10, 08  | Jul. 2014 to 04:00, 15 Jul. 2014                                                |
|       | Leg         | 2: 02:00, 17  | Jul. 2014 to 18:00, 29 Aug. 2014                                                |
|       |             |               |                                                                                 |
| (4) R | emarks (1   | limes in U    | TC)                                                                             |
| i)    | The fol     | lowing peri   | ods, navigation data (position, speed and course over ground) was often invalid |
| dı    | ue to posit | ion fix error | r for loss of GPS satellites.                                                   |
|       | Leg 1:      | 14 Jul. to    | 15 Jul., 2014                                                                   |
|       | Leg 2:      | 17 Jul. to    | 16 Aug., 2014                                                                   |

ii) The following periods, navigation data was invalid due to the system error.

Leg 2: 12:37 to 12:45 23 Aug., 2014

iii) Some data records were lacked due to the system error or GPS trouble. See data "readme.txt" which contains the time of data lost.





# 2.2 Swath Bathymetry

September 17, 2014

#### (1) Personnel

| Takeshi Matsumoto  | Univ. of Ryukyus: Principal investigator | (Not-onboard)    |
|--------------------|------------------------------------------|------------------|
| Ryo Oyama          | Global Ocean Development Inc., (GODI)    | - leg 1 -        |
| Souichiro Sueyoshi | GODI                                     | - leg 1 -        |
| Katsuhisa Maeno    | GODI                                     | - leg 1 -        |
| Koichi Inagaki     | GODI                                     | - leg 1 -        |
| Wataru Tokunaga    | GODI                                     | - leg 2 -        |
| Kazuho Yoshida     | GODI                                     | - leg 2 -        |
| Tetsuya Kai        | GODI                                     | - leg 2 -        |
| Yutaro Murakami    | GODI                                     | - leg 1, leg 2 - |
| Masanori Murakami  | MIRAI crew                               | - leg 1, leg 2 - |

#### (2) Introduction

R/V MIRAI is equipped with a Multi narrow Beam Echo Sounding system (MBES), SEABEAM 3012 (L3 Communications, ELAC Nautik). The objective of MBES is collecting continuous bathymetric data along ship's track to make a contribution to geological and geophysical investigations and global datasets.

#### (3) Data Acquisition

The "SEABEAM 3012" on R/V MIRAI was used for bathymetry mapping during the MR14-04 cruise. To get accurate sound velocity of water column for ray-path correction of acoustic multibeam, we used Surface Sound Velocimeter (SSV) data to get the sea surface sound velocity (at 6.62m), and the deeper depth sound velocity profiles were calculated by temperature and salinity profiles from CTD and XCTD data by the equation in Del Grosso (1974) during this cruise.

Table 2.2.1 shows system configuration and performance of SEABEAM 3012.

#### Table 2.2.1. SEABEMA 3012 system configuration and performance.

| Frequency:             | 12 kHz                                             |
|------------------------|----------------------------------------------------|
| Transmit beam width:   | 2.0 degree                                         |
| Transmit power:        | 4 kW                                               |
| Transmit pulse length: | 2 to 20 msec.                                      |
| Receive beam width:    | 1.6 degree                                         |
| Depth range:           | 50 to 11,000 m                                     |
| Number of beams:       | 301 beams (Spacing mode: Equi-angle)               |
| Beam spacing:          | 1.5 % of water depth (Spacing mode: Equi-distance) |
| Swath width:           | 60 to 150 degrees                                  |
| Depth accuracy:        | < 1% of water depth (average across the swath)     |
|                        |                                                    |

#### (4) Data processing

#### i) Sound velocity correction

Each bathymetry data were corrected with sound velocity profiles calculated from the nearest CTD or XCTD data in the distance. The equation of Del Grosso (1974) was used for calculating sound velocity. The data correction were carried out using the HIPS software version 8.1.7 (CARIS, Canada)

#### ii) Editing and Gridding

Editing for the bathymetry data were carried out using the HIPS. Firstly, the bathymetry data during ship's turning was basically deleted, and spike noise of each swath data was removed. Then the bathymetry data were checked by "BASE surface (resolution: 100 m averaged grid)".

Finally, all accepted data were exported as XYZ ASCII data (longitude [degree], latitude [degree],

depth [m]), and converted to 150 m grid data using "nearneighbor" utility of GMT (Generic Mapping Tool) software.

iv) The following periods, data acquisition was suspended due to the system error and maintenance.

01:55 30 Jul. to 01:59 30 Jul., 2014 06:43 30 Jul. to 07:40 30 Jul., 2014

### Table 2.2.2. Parameters for gridding on "nearneighbor" in GMT

| Gridding mesh size:      | 150 m |  |
|--------------------------|-------|--|
| Search radius size (-S): | 150 m |  |
| Number of sectors (-N):  | 1     |  |

#### (5) Data Archives

Bathymetric data obtained during this cruise will be submitted to the Data Management Group (DMG) of

JAMSTEC, and will be archived there.

## (6) Remarks (Times in UTC)

i) The following periods, the observations were carried out.

Leg 1: 02:52 09 Jul. to 23:22 14 Jul., 2014

Leg 2: 06:19 17 Jul. to 12:29 28 Aug., 2014

ii) The following periods, navigation data (position, speed and course over ground) was often invalid due to position fix error for loss of GPS satellites. If bathymetric data were included error position and heading information, we interpolated from the just before and behind correct data using the HIPS.

Leg 1: 14 Jul. to 15 Jul., 2014

Leg 2: 17 Jul. to 16 Aug., 2014

iii) The following periods, navigation data was invalid due to the server error.

Leg 2: 12:37 to 12:45 23 Aug., 2014

# 2.3 Surface Meteorological Observations

September 17, 2014

#### (1) Personnel

| Masaki Katsumata   | (JAMSTEC): Principal Investigator     |              |
|--------------------|---------------------------------------|--------------|
| Ryo Oyama          | (Global Ocean Development Inc., GODI) | -leg1-       |
| Souichiro Sueyoshi | (GODI)                                | -leg1-       |
| Katsuhisa Maeno    | (GODI)                                | -leg1-       |
| Koichi Inagaki     | (GODI)                                | -leg1-       |
| Wataru Tokunaga    | (GODI)                                | -leg2-       |
| Kazuho Yoshida     | (GODI)                                | -leg2-       |
| Tetsuya Kai        | (GODI)                                | -leg2-       |
| Yutaro Murakami    | (GODI)                                | -leg1, leg2- |
| Masanori Murakami  | (MIRAI Crew)                          | -leg1, leg2- |

#### (2) Objectives

Surface meteorological parameters are observed as a basic dataset of the meteorology. These parameters provide the temporal variation of the meteorological condition surrounding the ship.

#### (3) Methods

Surface meteorological parameters were observed during the MR14-04 cruise from 8th July 2014 to 29th August 2014, except for the USA territorial waters. In this cruise, we used two systems for the observation.

#### i) MIRAI Surface Meteorological observation (SMet) system

Instruments of SMet system are listed in Table 2.3.1 and measured parameters are listed in Table 2.3.2. Data were collected and processed by KOAC-7800 weather data processor made by Koshin-Denki, Japan. The data set consists of 6-second averaged data.

- ii) Shipboard Oceanographic and Atmospheric Radiation (SOAR) measurement system
   SOAR system designed by BNL (Brookhaven National Laboratory, USA) consists of major five parts.
   a) Portable Radiation Package (PRP) designed by BNL short and long wave downward radiation.
  - b) Analog meteorological data sampling with CR1000 logger manufactured by Campbell Inc. Canada wind, pressure, and rainfall (by a capacitive rain gauge) measurement.
  - c) Digital meteorological data sampling from individual sensors air temperature, relative humidity and rainfall (by ORG (optical rain gauge)) measurement.
  - d) Photosynthetically Available Radiation (PAR) sensor manufactured by Biospherical Instruments Inc.
     (USA) PAR measurement.
  - e) Scientific Computer System (SCS) developed by NOAA (National Oceanic and Atmospheric Administration, USA) - centralized data acquisition and logging of all data sets.

SCS recorded PRP data every 6 seconds, CR1000 data every 10 seconds, air temperature and relative humidity data every 2 seconds and ORG data every 5 seconds. SCS composed Event data (JamMet) from these data and ship's navigation data. Instruments and their locations are listed in Table 2.3.3 and measured parameters are listed in Table 2.3.4.

- For the quality control as post processing, we checked the following sensors, before and after the cruise.
- a) Young rain gauge (SMet and SOAR)
- Inspect of the linearity of output value from the rain gauge sensor to change input value by adding fixed quantity of test water.
- b) Barometer (SMet and SOAR)

Comparison with the portable barometer value, PTB220, VAISALA

c) Thermometer (air temperature and relative humidity) (SMet and SOAR) Comparison with the portable thermometer value, HMP41/45, VAISALA

#### (4) Preliminary results

Figs. 2.3-1 shows the time series of the following parameters;

Wind (SOAR)

Air temperature (SMet)

Relative humidity (SMet)

Precipitation (SOAR, rain gauge)

Short/long wave radiation (SOAR)

Pressure (SMet)

Sea surface temperature (SMet)

Significant wave height (SMet)

#### (5) Data archives

These meteorological data will be submitted to the Data Management Group (DMG) of JAMSTEC just after the cruise.

#### (6) Remarks (Times in UTC)

i) Data acquisition was suspended in the territorial waters of USA.

ii) The following periods, sea surface temperature of SMet data was available.

Leg 1: 01:39, 09 Jul. 2014 - 23:31, 14 Jul. 2014

Leg 2: 02:04, 17 Jul. 2014 - 12:30, 28 Aug. 2014

iii) The following periods, navigation data (position, speed and course over ground) of SMet and JamMet

were often invalid due to position fix error for loss of detected GPS satellites.

Leg 1: 14 Jul. to 15 Jul. 2014

Leg 2: 17 Jul. to 16 Aug. 2014

iv) The following period, navigation data of SMet was invalid due to network server trouble.

Leg 2: 12:37, 23 Aug. 2014 - 12:44, 23 Aug. 2014

v) The following period, ship gyro and LOG of JamMet were invalid due to communication error to network

server.

Leg 1: 07:57:06, 18:38:32; 11 Jul. 2014 Leg 2: 11:28:40, 08 Aug. 2014

19:21:00, 21 Aug. 2014

vi) The following time, increasing of SMet capacitive rain gauge data were invalid due to test transmitting for

VHF radio.

Leg 2: 14:23, 23:14; 19 Jul. 2014

05:18, 25 Jul. 2014

```
06:17, 26 Jul. 2014
```

06:06, 18:32; 27 Jul. 2014

18:13, 28 Jul. 2014

06:04, 17:19; 30 Jul. 2014

vii) The following period, PRP data was invalid due to PC trouble.

Leg 1: 01:08, 09 Jul. 2014 - 01:25, 09 Jul. 2014

14:48, 09 Jul. 2014 - 14:54, 09 Jul. 2014

viii) The following period, logging interval of PRP was longer than normal.

Leg 1: 08:50, 09 Jul. 2014 - 14:54, 09 Jul. 2014

ix) The following period, ORG data was invalid due to sensor error.

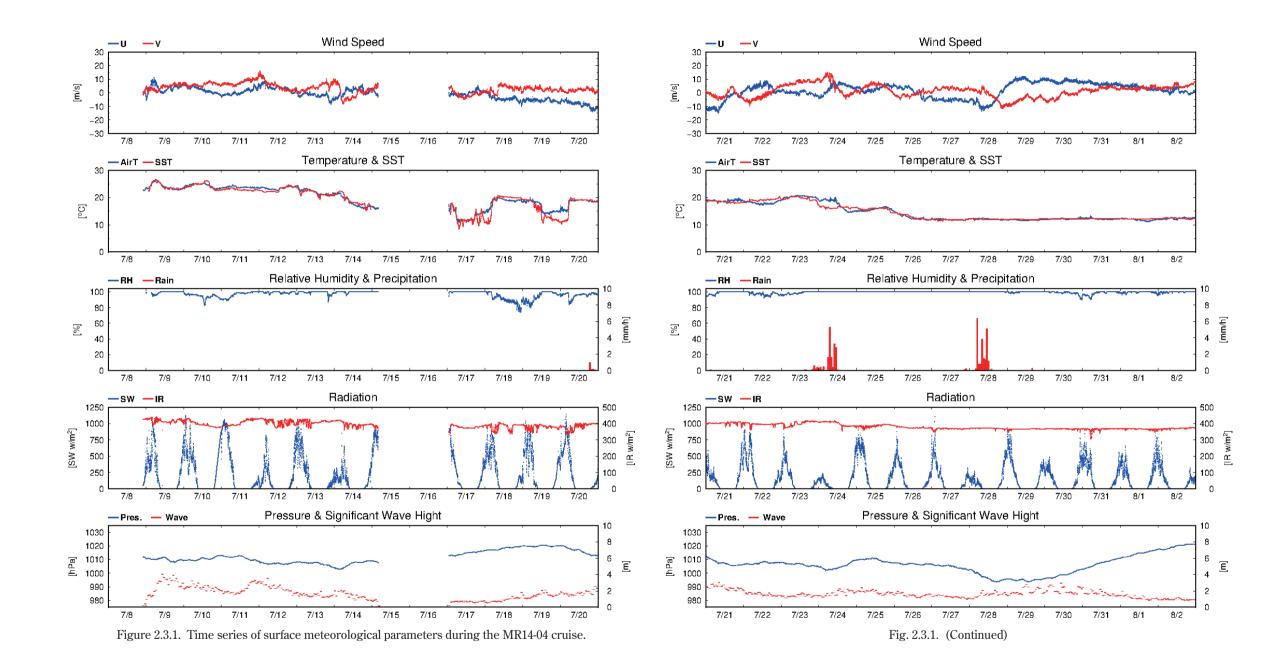
Leg 2: 19:37:51 to 19:40:33, 27 Aug. 2014,

Table 2.3.1. Instruments and installation locations of MIRAI Surface Meteorological observation system.

| Sensors                                     | Туре             | Manufacturer                             | Location (altitude from surface)                          |
|---------------------------------------------|------------------|------------------------------------------|-----------------------------------------------------------|
| Anemometer<br>Tair/RH                       | KE-500<br>HMP155 | Koshin Denki, Japan<br>Vaisala, Finland  | foremast (24 m)                                           |
| with 43408 Gill aspirated r                 |                  | R.M. Young, USA                          | compass deck (21 m)                                       |
| Thermometer: SST                            | RFN2-0           | Koshin Denki, Japan                      | starboard side and port side<br>4th deck (-1m, inlet -5m) |
| Barometer                                   | Model-370        | Setra System, USA                        | captain deck (13 m)<br>weather observation room           |
| Capacitive rain gauge                       | 50202            | R. M. Young, USA                         | compass deck (19 m)                                       |
| Optical rain gauge                          | ORG-815DS        | Osi, USA                                 | compass deck (19 m)                                       |
| Radiometer (short wave)                     | MS-802<br>MS-202 | Eko Seiki, Japan                         | radar mast (28 m)                                         |
| Radiometer (long wave)<br>Wave height meter | WM-2             | Eko Seiki, Japan<br>Tsurumi-seiki, Japan | radar mast (28 m)<br>bow (10 m)                           |

Table 2.3.2. Parameters of MIRAI Surface Meteorological observation system.

| Par | ameter       | Units  | Remarks                 |
|-----|--------------|--------|-------------------------|
| 1   | Latitude     | degree |                         |
| 2   | Longitude    | degree |                         |
| 3   | Ship's speed | knot   | Mirai log, DS-30 Furuno |


| 4  | Ship's heading                        | degree  | Mirai gyro,                   |
|----|---------------------------------------|---------|-------------------------------|
|    |                                       |         | TG-6000,TOKYO-KEIKI           |
| 5  | Relative wind speed                   | m/s     | 6sec./10min. averaged         |
| 6  | Relative wind direction               | degree  | 6sec./10min. averaged         |
| 7  | True wind speed                       | m/s     | 6sec./10min. averaged         |
| 8  | True wind direction                   | degree  | 6sec./10min. averaged         |
| 9  | Barometric pressure                   | hPa     | adjusted to sea surface level |
|    |                                       |         | 6sec. averaged                |
| 10 | Air temperature (starboard side)      | degC    | 6sec. averaged                |
| 11 | Air temperature (port side)           | degC    | 6sec. averaged                |
| 12 | Dewpoint temperature (starboard side) | degC    | 6sec. averaged                |
| 13 | Dewpoint temperature (port side)      | degC    | 6sec. averaged                |
| 14 | Relative humidity (starboard side)    | %       | 6sec. averaged                |
| 15 | Relative humidity (port side)         | %       | 6sec. averaged                |
| 16 | Sea surface temperature               | degC    | 6sec. averaged                |
| 17 | Rain rate (optical rain gauge)        | mm/hr   | hourly accumulation           |
| 18 | Rain rate (capacitive rain gauge)     | mm/hr   | hourly accumulation           |
| 19 | Down welling shortwave radiation      | $W/m^2$ | 6sec. averaged                |
| 20 | Down welling infra-red radiation      | $W/m^2$ | 6sec. averaged                |
| 21 | Significant wave height (bow)         | m       | hourly                        |
| 22 | Significant wave height (aft)         | m       | hourly                        |
| 23 | Significant wave period (bow)         | second  | hourly                        |
| 24 | Significant wave period (aft)         | second  | hourly                        |
|    |                                       |         |                               |

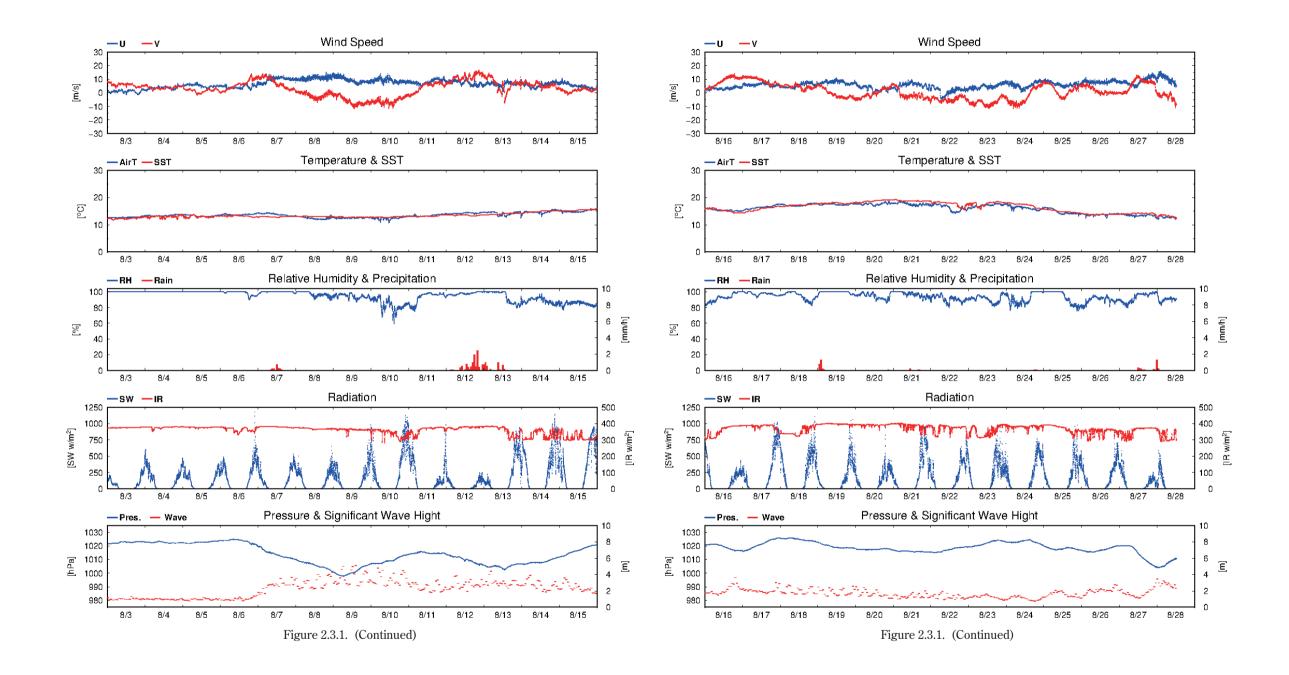

\_

Table 2.3.3. Instruments and installation locations of SOAR system.

Table 2.3.4. Parameters of SOAR system (JamMet).

| Sensors                      | Туре           | Manufacturer          | Location (altitude from surface) | Pa | urameter                              | Units                  | Remarks        |
|------------------------------|----------------|-----------------------|----------------------------------|----|---------------------------------------|------------------------|----------------|
| Meteorological               |                |                       |                                  | 1  | Latitude                              | degree                 |                |
| Anemometer                   | 05106          | R.M. Young, USA       | foremast (25 m)                  | 2  | Longitude                             | degree                 |                |
| Barometer                    | PTB210         | Vaisala, Finland      |                                  | 3  | SOG                                   | knot                   |                |
| with 61002 Gill pressure po  | rt             | R.M. Young, USA       | foremast (23 m)                  | 4  | COG                                   | degree                 |                |
| Capacitive rain gauge        | 50202          | R.M. Young, USA       | foremast (24 m)                  | 5  | Relative wind speed                   | m/s                    |                |
| Tair/RH                      | HMP155         | Vaisala, Finland      |                                  | 6  | Relative wind direction               | degree                 |                |
| with 43408 Gill aspirated ra | diation shield | R.M. Young, USA       | foremast (23 m)                  | 7  | Barometric pressure                   | hPa                    |                |
| Optical rain gauge           | ORG-815DR      | Osi, USA              | foremast (24 m)                  | 8  | Air temperature                       | degC                   |                |
| PRP                          |                |                       |                                  | 9  | Relative humidity                     | %                      |                |
| Radiometer (short wave)      | PSP            | Epply Labs, USA       | foremast (25 m)                  | 10 | Rain rate (optical rain gauge)        | mm/hr                  |                |
| Radiometer (long wave)       | PIR            | Epply Labs, USA       | foremast (25 m)                  | 11 | Precipitation (capacitive rain gauge) | mm                     | reset at 50 mm |
| Fast rotating shadowband r   | adiometer      | Yankee, USA           | foremast (25 m)                  | 12 | Down welling shortwave radiation      | $W/m^2$                |                |
| PAR                          |                |                       |                                  | 13 | Down welling infra-red radiation      | $W/m^2$                |                |
| PAR sensor                   | PUV-510B       | Biospherical          | Navigation deck (18m)            | 14 | Defuse irradiance                     | $W/m^2$                |                |
|                              |                | Instruments Inc., USA |                                  | 15 | PAR                                   | E/cm <sup>2</sup> /sec |                |
|                              |                | -                     |                                  | 15 | PAR                                   |                        |                |





# 2.4 Thermo-Salinograph and Related Measurements

September 25, 2014

## (1) Personnel

Hiroshi Uchida (JAMSTEC) Keitaro Matsumoto (MWJ) Katsunori Sagishima (MWJ) Haruka Tamada (MWJ)

## (2) Objectives

The objective is to collect sea surface salinity, temperature, dissolved oxygen, fluorescence, and nitrate data continuously along the cruise track.

#### (3) Materials and methods

The Continuous Sea Surface Water Monitoring System (Marine Works Japan Co, Ltd.) has six sensors and automatically measures salinity, temperature, dissolved oxygen, and fluorescence in sea surface water every one minute. This system is located in the sea surface monitoring laboratory and connected to shipboard LAN system. Measured data along with time and location of the ship were displayed on a monitor and stored in a desktop computer. The sea surface water was continuously pumped up to the laboratory from about 5 m water depth and flowed into the system through a vinyl-chloride pipe. The flow rate of the surface seawater was controlled to be about 1.2 L/min. Periods of measurement, maintenance and problems are listed in Table 2.4.1.

A chemical-free nitrate sensor was also used with the Continuous Sea Surface Water Monitoring System in leg 2. The nitrate sensor was attached using a flow cell next to the thermo-salinograph.

Software and sensors used in this system are listed below.

## i. Software

Seamoni-kun Ver.1.50

#### ii. Sensors

Temperature and conductivity sensor

|       | Model:                | SBE-45, SEA-BIRD ELECTRONICS, INC.              |
|-------|-----------------------|-------------------------------------------------|
|       | Serial number:        | 4552788-0319                                    |
| Botto | m of ship thermometer |                                                 |
|       | Model:                | SBE 38, SEA-BIRD ELECTRONICS, INC.              |
|       | Serial number:        | 3852788-0457                                    |
| Disso | lved oxygen sensor    |                                                 |
|       | Model:                | OPTODE 3835, Aanderaa Data Instruments, AS.     |
|       | Serial number:        | 1519                                            |
|       | Model:                | RINKO-II, JFE Advantech Co. Ltd.                |
|       | Serial number:        | 0013                                            |
| Fluor | rometer               |                                                 |
|       | Model:                | C3, TURNER DESIGNS                              |
|       | Serial number:        | 2300123                                         |
| Nitra | te sensor             |                                                 |
|       | Model:                | Deep SUNA, Satlantic, LP. (used only for leg 2) |
|       | Serial number:        | 0385                                            |

| System Date<br>[UTC] | System Time<br>[UTC] | Event                            |
|----------------------|----------------------|----------------------------------|
| 2014/07/09           | 02:32                | Logging for leg 1 start          |
| 2014/07/14           | 23:30                | Logging for leg 1 end            |
| 2014/07/17           | 02:50                | Logging for leg 2 start          |
| 2014/07/28           | 23:52                | Logging stop for filter cleaning |
| 2014/07/29           | 00:48                | Logging restart                  |
| 2014/08/12           | 01:42                | Logging stop for filter cleaning |
| 2014/08/12           | 03:20                | Logging restart                  |
| 2014/08/22           | 02:27                | Logging stop for filter cleaning |
| 2014/08/22           | 03:27                | Logging restart                  |
| 2014/08/25           | 16:55                | Logging stop for filter cleaning |
| 2014/08/25           | 17:00                | Logging restart                  |
| 2014/08/28           | 12:29                | Logging for leg 2 end            |

Table 2.4.1. Events of the Continuous Sea Surface Water Monitoring System operation.

#### (4) Data Processing and Quality Control

The navigation data (latitude and longitude) for leg 2 was often invalid due to position fix error for loss of GPS satellites. The invalid navigation data were replaced by using the dataset "interpoGGA". The "interpoGGA" was made using all available navigation data and was interpolated on a time interval of 1 second and low-pass filtered with a window of 20 seconds.

Data from the Continuous Sea Surface Water Monitoring System were obtained at 1 minute intervals. Data from the nitrate sensor were obtained at 1 minute intervals until 2014/07/18 03:50. However, the nitrate sensor frequently continued to show invalid data (-1.0) and needed to restart the system. Therefore, the time interval was changed to 2 minutes since then.

These data were processed as follows. Spikes in the temperature and salinity data were removed using a median filter with a window of 3 scans (3 minutes) when difference between the original data and the median

filtered data was larger than 0.1 °C for temperature and 0.5 for salinity. Data gaps were linearly interpolated when the gap was  $\leq$  7 minutes. Fluorometer data were low-pass filtered using a median filter with a window of 3 scans (3 minutes) to remove spikes. Raw data from the RINKO oxygen sensor, fluorometer and nitrate data were low-pass filtered using a Hamming filter with a window of 15 scans (15 minutes).

Salinity (S [PSU]), dissolved oxygen (O [ $\mu$ mol/kg]), fluorescence (FI [RFU]), and nitrate (NRA [ $\mu$ mol/kg]) data were corrected using the water sampled data. Details of the measurement methods are described in Sections 3.2, 3.4, 3.5, and 3.8 for salinity, dissolved oxygen, nitrate and chlorophyll-a, respectively. Corrected salinity (S<sub>cor</sub>), dissolved oxygen (O<sub>cor</sub>), estimated chlorophyll *a* (Chl-a), and nitrate (NRA<sub>cor</sub>) were calculated from following equations

 $S_{cor} [PSU] = c_0 + c_1 S + c_2 t$   $O_{cor} [\mu mol/kg] = c_0 + c_1 O + c_2 T + c_3 t$   $Chl-a [\mu g/L] = c_0 + c_1 Fl$  $NRA_{cor} [\mu mol/kg] = NRA + c_0 + c_1 t$ 

where S is practical salinity, t is days from a reference time  $(2014/07/09\ 02:32\ [UTC])$ , T is temperature in °C. The best fit sets of calibration coefficients  $(c_0 \sim c_3)$  were determined by a least square technique to minimize the deviation from the water sampled data. The calibration coefficients were listed in Table 2.4.2. Comparisons between the Continuous Sea Surface Water Monitoring System data and water sampled data are shown in from Figs. 2.4.1 to 2.4.4.

For fluorometer data, water sampled data obtained at night [PAR (Photosynthetically Available Radiation)  $< 50 \ \mu\text{E}/(\text{m}^2 \text{ sec})$ , see Section 2.3] were used for the calibration, since sensitivity of the fluorometer to chlorophyll *a* is different at nighttime and daytime (Section 2.4 in Uchida et al., 2015). Sensitivity of the fluorometer to chlorophyll *a* may be also different between high and low temperature. Therefore, slope (c<sub>1</sub>) of the calibration coefficients was changed for temperature range (Table 2.4.3). For temperature between 20.5 °C and 19.5 °C, chlorophyll *a* was estimated from weighted mean of the two equations as

- $Chl-a = Chl-a_1 f_2 + Chl-a_2 f_1$
- $f_1 = 1 (TSG \text{ temperature } + 19.5 \text{ °C})$

# $f_2 = 1 - f_1$

where  $Chl-a_1$  is chlorophyll a calculated by using the set of coefficients A, and  $Chl-a_2$  is chlorophyll *a* calculated by using the set of coefficients B (Table 2.4.2).

Noise of the nitrate data tended to become large over time (Fig. 2.4.4). Dismounting of the flow cell improved the data quality probably because the optical windows were wiped and cleaned by the O rings of the flow cell. Data affected by the large noise were flagged as questionable data (Fig. 2.4.4).

#### (5) Reference

Uchida, H., K. Katsumata, and T. Doi (eds.) (2015): WHP P14S, S04I Revisit in 2012 Data Book, 187 pp., JAMSTEC.

| c0              | c1                                              | c2                       | c3            |  |
|-----------------|-------------------------------------------------|--------------------------|---------------|--|
| linity          |                                                 |                          |               |  |
| -8.026137e-02   | 1.002264                                        | 4.381446e-04             |               |  |
| issolved oxygen |                                                 |                          |               |  |
| 5.929262        | 0.9575661                                       | 0.1590061                | -5.164405e-02 |  |
| hlorophyll a    |                                                 |                          |               |  |
| 4.845356e-02    | 0.1030891 (A: for                               | TSG temperature ≥ 20.5 ° | C)            |  |
| 4.845356e-02    | 5.411620e-02 (B: for TSG temperature < 19.5 °C) |                          |               |  |
| trate           |                                                 |                          |               |  |
| -23.140         | 2.7154355 (t ≤ 14.                              | 76)                      |               |  |
| 14.304          | 0.2678845 (14.76                                | < t ≤ 34.0)              |               |  |
| -29.419         | 1.044715855 (34.0                               | $0 < t \le 44.0$         |               |  |
| -46.856         | 1.044715855 (44.0                               | ) < t)                   |               |  |

Table 2.4.2. Calibration coefficients for the salinity, dissolved oxygen, and chlorophyll *a*, and nitrate.

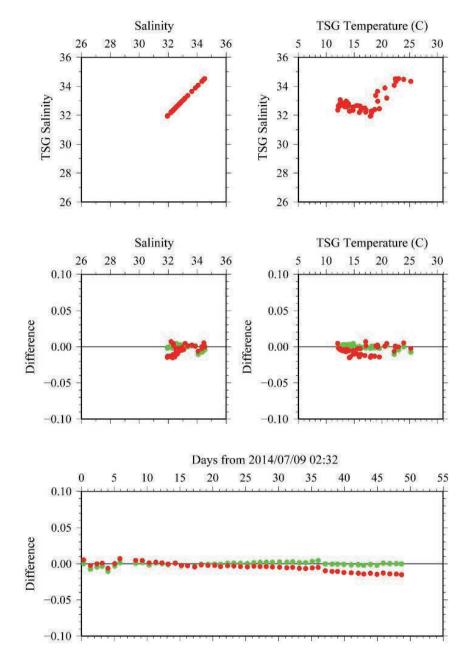



Figure 2.4.1. Comparison between TSG salinity (red: before correction, green: after correction) and sampled salinity.

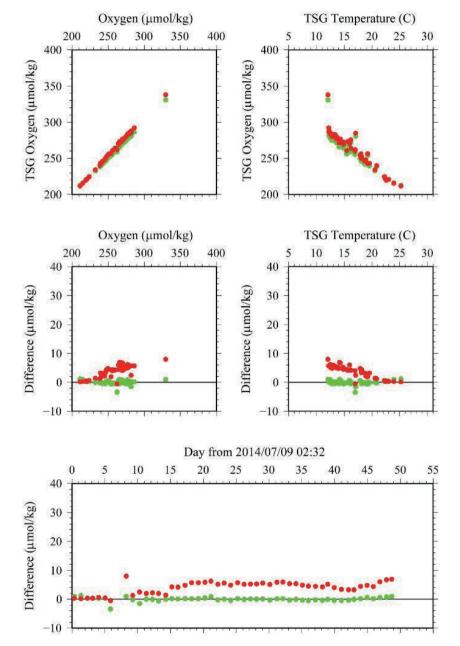



Figure 2.4.2. Comparison between TSG oxygen (red: before correction, green: after correction) and sampled

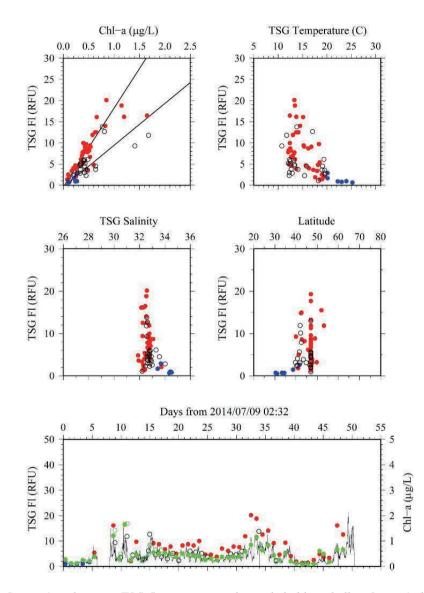



Figure 2.4.3. Comparison between TSG fluorescence and sampled chlorophyll *a*. Open circles indicate the daytime data. Blue dots indicate data obtained at temperature higher than or equal to 20 °C and red dots indicate data obtained at temperature lower than 20 °C. For bottom panel, blue or red dots indicate fluorescence and green dots indicate water sampled chlorophyll *a*. Line indicates chlorophyll *a* estimated from fluorometer.

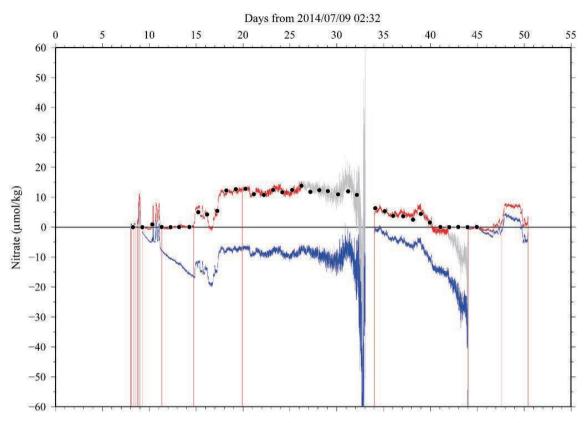



Figure 2.4.4. Comparison between TSG nitrate (blue line: before correction, red and gray lines: after correction) and sampled nitrate (dots). Gray lines indicate questionable data obtained during following periods: 26.3 < t ≤ 34.0 and 41.9 < t ≤ 44.0.</p>

## **2.5 Underway pCO**<sub>2</sub>

February 1, 2017

#### (1) Personnel

| Akihiko Murata   | (JAMSTEC) |
|------------------|-----------|
| Yoshiko Ishikawa | (MWJ)     |
| Atsushi Ono      | (MWJ)     |

#### (2) Introduction

According to the latest report from Intergovernmental Panel on Climate Change, concentrations of  $CO_2$  in the atmosphere have increased by 40% since pre-industrial times owing to human activities such as burning of fossil fuels, deforestation, and cement production. It is evaluated that the ocean has absorbed about 30% of the emitted anthropogenic  $CO_2$ . It is an urgent task to estimate as accurately as possible the absorption capacity of the oceans against the increased atmospheric  $CO_2$ , and to clarify the mechanism of the  $CO_2$  absorption, because the magnitude of future global warming depends on the levels of  $CO_2$  in the atmosphere.

The North Pacific is one of the regions where uncertainty of uptake of anthropogenic  $CO_2$  is large. In this cruise, therefore, we were aimed at quantifying how much anthropogenic  $CO_2$  is absorbed in the ocean interior of the North Pacific. For the purpose, we measured atmospheric and surface seawater partial pressures of  $CO_2$  (p $CO_2$ ) along the extended WHP P10 and P01 lines at 149°E and 47°N, respectively, in the North Pacific.

#### (3) Apparatus and shipboard measurement

Continuous underway measurements of atmospheric and surface seawater  $pCO_2$  were made with the  $CO_2$  measuring system (Nippon ANS, Ltd) installed in the R/V *Mirai* of JAMSTEC. The system comprises of a non-dispersive infrared gas analyzer (Li-COR LI-7000), an air-circulation module and a showerhead-type equilibrator. To measure concentrations (mole fraction) of  $CO_2$  in dry air ( $xCO_2a$ ), air sampled from the bow

of the ship (approx. 30 m above the sea level) was introduced into the NDIR through a dehydrating route with an electric dehumidifier (kept at ~2 °C), a Perma Pure dryer (GL Sciences Inc.), and a chemical desiccant  $(Mg(ClO_4)_2)$ . The flow rate of the air was 500 ml min<sup>-1</sup>. To measure surface seawater concentrations of  $CO_2$ in dry air ( $xCO_2$ s), the air equilibrated with seawater within the equilibrator was introduced into the NDIR through the same flow route as the dehydrated air used in measuring  $xCO_2$ a. The flow rate of the equilibrated air was 400 – 900 ml min<sup>-1</sup>. The seawater was taken by a pump from the intake placed at the approx. 4.5 m below the sea surface. The flow rate of seawater in the equilibrator was 4000 – 5000 ml min<sup>-1</sup>.

The CO<sub>2</sub> measuring system was set to repeat the measurement cycle such as 4 kinds of CO<sub>2</sub> standard gases (Table 2.5.1),  $xCO_2a$  (twice),  $xCO_2s$  (7 times). This measuring system was run automatically throughout the cruise by a PC control.

#### (4) Quality control

Concentrations of  $CO_2$  of the standard gases are listed in Table 2.5.1, which were calibrated after cruise by the JAMSTEC primary standard gases. The  $CO_2$  concentrations of the primary standard gases were calibrated by the Scripps Institution of Oceanography, La Jolla, CA, USA.

In actual shipboard observations, the signals of NDIR usually reveal a trend. The trends were adjusted linearly using the signals of the standard gases analyzed before and after the sample measurements.

Effects of water temperature increased between the inlet of surface seawater and the equilibrator on  $xCO_2s$  were adjusted based on Takahashi *et al.* (1993), although the temperature increases were slight, being ~0.3 °C.

We checked values of  $xCO_2a$  and  $xCO_2s$  by examining signals of the NDIR by plotting the  $xCO_2a$  and  $xCO_2s$  as a function of sequential day, longitude, sea surface temperature and sea surface salinity.

## (5) Reference

Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, and S. C. Southerland (1993) Seasonal variation of

 $CO_2$  and nutrients in the high-latitude surface oceans: a comparative study, *Global Biogeochem. Cycles*, 7, 843 – 878.

## Table 2.5.1. Concentrations of CO<sub>2</sub> standard gases used during the North Pacific cruise.

| Cylinder no. | Concentrations (ppmv) |  |
|--------------|-----------------------|--|
| CQB09459     | 249.59                |  |
| CQB09354     | 299.03                |  |
| CQB06574     | 398.90                |  |
| CRC00732     | 448.90                |  |

# 2.6 Shipboard ADCP

November 21, 2016

#### (1) Personnel

| Shinya Kouketsu    | (JAMSTEC)              | : Principal Investig | ator         |
|--------------------|------------------------|----------------------|--------------|
| Ryo Oyama          | (Global Ocean Developm | ent Inc., GODI)      | -leg1-       |
| Souichiro Sueyoshi | (GODI)                 |                      | -leg1-       |
| Katsuhisa Maeno    | (GODI)                 |                      | -leg1-       |
| Koichi Inagaki     | (GODI)                 |                      | -leg1-       |
| Wataru Tokunaga    | (GODI)                 |                      | -leg2-       |
| Kazuho Yoshida     | (GODI)                 |                      | -leg2-       |
| Tetsuya Kai        | (GODI)                 |                      | -leg2-       |
| Yutaro Murakami    | (GODI)                 |                      | -leg1, leg2- |
| Masanori Murakami  | (MIRAI Crew)           |                      | -leg1, leg2- |

#### (2) Objective

To obtain continuous measurement of the current profile along the ship's track.

#### (3) Methods

Upper ocean current measurements were made in the MR14-04 Leg1 and Leg2 cruises, using the hullmounted Acoustic Doppler Current Profiler (ADCP) system. For most of its operation the instrument was configured for water-tracking mode. Bottom-tracking mode, interleaved bottom-ping with water-ping, was made to get the calibration data for evaluating transducer misalignment angle in the shallow water. The system consists of following components;

 R/V MIRAI has installed vessel-mount ADCP (acoustic frequency 76.8 kHz "Ocean Surveyor", Teledyne RD Instruments). It has a phased-array transducer with single ceramic assembly and creates 4 acoustic beams electronically. We mounted the transducer head rotated to a ship-relative angle of 45 degrees azimuth from the keel.

- ii) For heading source, we use ship's gyro compass (TOKYO KEIKI, Japan), continuously providing heading to the ADCP system directory. Also we have Inertial Navigation System (PHINS, IXBLUE) which provide high-precision heading and attitude information are stored in ".N2R" data files.
- iii) DGPS system (Trimble SPS751 & StarFixXP) and GPS systems (Trimble 4000DS and FURUNO GP-36) providing position fixes. We selected the best system according to their positioning condition.
- iv) We used VmDas version 1.46.5 (TRDI) for data acquisition.
- v) To synchronize time stamp of pinging with GPS time, the clock of the logging computer is adjusted to GPS time every 5 minutes.
- vi) The sound speed at the transducer does affect the vertical bin mapping and vertical velocity measurement, is calculated from temperature, salinity (constant value; 35.0 psu) and depth (6.5 m; transducer depth) by equation in Medwin (1975).

Data was configured for 8-m intervals starting 23-m below the surface. Every ping was recorded as raw ensemble data (.ENR). Also, 60 seconds and 300 seconds averaged data were recorded as short term average (.STA) and long term average (.LTA) data, respectively. Major parameters for the measurement (Direct Command) are shown in Table 2.6.1. After the cruises, we plan to carry out the alignment correction and provide the processed data.

#### (4) Preliminary results

Fig.2.6.1 and 2.6.2 shows surface current profile along the ship's track, averaged four depth cells from 12<sup>th</sup> to 15<sup>th</sup>, about 110 m to 135 m with 60 minutes average.

#### (5) Data archive

These data obtained in this cruise will be submitted to the Data Management Group (DMG) of

JAMSTEC, and will be opened to the public via JAMSTEC home page.

#### (6) Remarks (Times in UTC)

- i) Data acquisition was suspended in the territorial waters of USA.
- During the Leg1 cruise, background signal under sail was large due to biofouling on the ship bottom window.
- iii) The following periods, data acquisition was suspended for system condition check.
  - Leg1: 23:29UTC 09 Jul. 2014 00:15UTC 10 Jul. 2014
    - 05:55UTC 10 Jul. 2014 06:48UTC 10 Jul. 2014
    - 03:42UTC 11 Jul. 2014 04:11UTC 11 Jul. 2014
    - 11:13UTC 12 Jul. 2014 11:20UTC 12 Jul. 2014
    - 00:42UTC 14 Jul. 2014 01:07UTC 14 Jul. 2014
- iv) The following periods, navigation data was often invalid due to GPS position fix error.
  - Leg1: 14 Jul. to 15 Jul. 2014
  - Leg2: 17 Jul. to 16 Aug. 2014

#### (7) Processed data

The processed data were corrected with the ADCP misalignment calculated by comparison between bottom track and ship velocities during the cruise. In this cruise, as there are many outliers in the GPS data, we did not use the data 3 times standard deviation far from the positions averaged in 5000 minutes. After that, by inverse method with the available beam velocities during 5 minutes, we obtained the velocity profiles and their estimation errors.

#### Table 2.6.1. Major parameters

#### **Bottom-Track Commands**

| BP = 001 | Pings per Ensemble (almost less than 1300m depth)   |  |
|----------|-----------------------------------------------------|--|
|          | Leg1: 22:32UTC 08 Jul. 2014 - 03:08UTC 09 Jul. 2014 |  |
|          | 16:44UTC 14 Jul. 2014 - 03:45UTC 14 Jul. 2014       |  |
|          | Leg2: 00:07UTC 17 Jul. 2014 - 14:21UTC 17 Jul. 2014 |  |
|          | 14:49UTC 22 Aug. 2014 - 23:59UTC 22 Aug. 2014       |  |
|          | 11:57UTC 28 Aug. 2014 - 12:30UTC 28 Aug. 2014       |  |

#### **Environmental Sensor Commands**

| EA = +04500   | Heading Alignment (1/100 deg)                             |
|---------------|-----------------------------------------------------------|
| EB = +00000   | Heading Bias (1/100 deg)                                  |
| ED = 00065    | Transducer Depth (0 - 65535 dm)                           |
| EF = +001     | Pitch/Roll Divisor/Multiplier (pos/neg) [1/99-99]         |
| EH = 00000    | Heading (1/100 deg)                                       |
| ES = 35       | Salinity (0-40 pp thousand)                               |
| EX = 00000    | Coord Transform (Xform:Type; Tilts; 3Bm; Map)             |
| EZ = 10200010 | Sensor Source (C; D; H; P; R; S; T; U)                    |
|               | C (1): Sound velocity calculates using ED, ES, ET (temp.) |
|               | D (0): Manual ED                                          |
|               | H (2): External synchro                                   |
|               | P (0), R (0): Manual EP, ER (0 degree)                    |
|               | S (0): Manual ES                                          |
|               | T (1): Internal transducer sensor                         |
|               | U (0): Manual EU                                          |
|               |                                                           |

# Timing Commands

| Time per Ensemble (hrs:min:sec.sec/100)                    |  |
|------------------------------------------------------------|--|
| Time per Ping (min:sec.sec/100)                            |  |
| Water-Track Commands                                       |  |
| False Target Threshold (Max) (0-255 count)                 |  |
| Mode 1 Bandwidth Control (0=Wid, 1=Med, 2=Nar)             |  |
| Low Correlation Threshold (0-255)                          |  |
| Data Out (V; C; A; PG; St; Vsum; Vsum <sup>2</sup> ;#G;P0) |  |
| Error Velocity Threshold (0-5000 mm/s)                     |  |
| Blank After Transmit (cm)                                  |  |
| Percent Good Minimum (0-100%)                              |  |
| Clip Data Past Bottom (0 = OFF, 1 = ON)                    |  |
| Rcvr Gain Select (0 = Low, 1 = High)                       |  |
| Profiling Mode (1-8)                                       |  |
| Number of depth cells (1-128)                              |  |
| Pings per Ensemble (0-16384)                               |  |
| Depth Cell Size (cm)                                       |  |
| Transmit Length (cm) [0 = Bin Length]                      |  |
| Mode 1 Ambiguity Velocity (cm/s radial)                    |  |
|                                                            |  |

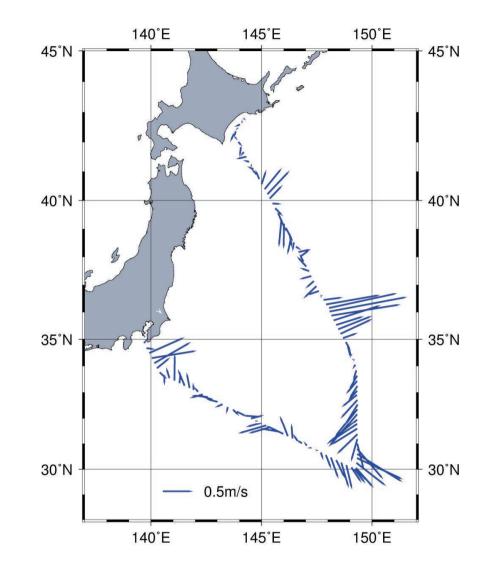



Figure 2.6.1. Current profile along the ship's track, about 110m to 136m depth, averaged every 60 minutes (Leg1).

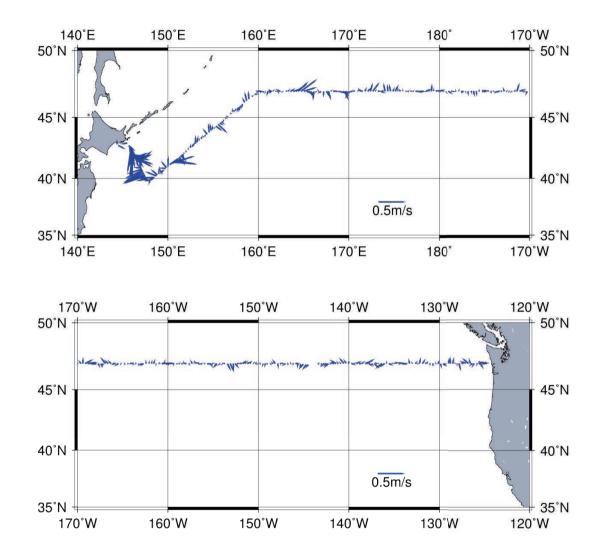



Figure 2.6.2. Current profile along the ship's track, about 110m to 135m depth, averaged every 60 minutes (Leg2).

# 2.7 XCTD

September 16, 2014

### (1) Personnel

Hiroshi Uchida (JAMSTEC) Ryo Oyama (GODI) (Leg 1) Souichiro Sueyoshi (GODI) (Leg 1) Katsuhisa Maeno (GODI) (Leg 1) Koichi Inagaki (GODI) (Leg 1) Yutaro Murakami (GODI) (Leg 1) Wataru Tokunaga (GODI) (Leg 2) Kazuho Yoshida (GODI) (Leg 2) Tetsuya Kai (GODI) (Leg 2)

### (2) Objectives

In this cruise, XCTD (eXpendable Conductivity, Temperature and Depth profiler) measurements were carried out to substitute for CTD measurements and to evaluate the fall rate equation and temperature by comparing with CTD (Conductivity, Temperature and Depth profiler) measurements.

#### (3) Instrument and Method

The XCTD used was XCTD-4 (Tsurumi-Seiki Co., Ltd., Yokohama, Kanagawa, Japan) with an MK-150N deck unit (Tsurumi-Seiki Co., Ltd.). The manufacturer's specifications are listed in Table 2.7.1. In this cruise, the XCTD probes were deployed by using 8-loading automatic launcher or hand launcher (Tsurumi-Seiki Co., Ltd.). For comparison with CTD, XCTD was deployed at about 10 minutes after the beginning of the down cast of the CTD (P10N\_1, P10N\_7, P10N\_14, P10N\_30, P01\_77, P01\_78, P01\_80 and P01\_81).

The fall-rate equation provided by the manufacturer was initially used to infer depth Z (m), Z = at - at - bar = at - b

 $bt^2$ , where *t* is the elapsed time in seconds from probe entry into the water, and *a* (terminal velocity) and *b* (acceleration) are the empirical coefficients (Table 2.7.2).

### (4) Data Processing and Quality Control

The XCTD data were processed and quality controlled based on a method by Uchida et al. (2011). Differences between XCTD and CTD depths were shown in Fig. 2.7.1. The terminal velocity error was estimated for the XCTD-4 (Table 2.7.2). The XCTD data were corrected for the depth error by using the estimated terminal velocities. Differences of temperature on pressure surfaces were examined by using side-by-side XCTD and CTD data (Fig. 2.7.2). The XCTD data used were corrected for the depth error. Average thermal bias below 900 dbar was 0.011 °C. Mean of the thermal biases of XCTD data estimated from five cruises was 0.014  $\pm$  0.004 °C (Table 2.7.3). The XCTD data were corrected for the mean thermal bias (0.014 °C). Differences of salinity on pressure surfaces were examined by using side-by-side XCTD and CTD data used were corrected for the depth error and thermal bias. Average salinity bias was 0.013  $\pm$  0.007 (Table 2.7.4). The XCTD data were corrected for the salinity bias. Temperature-salinity plot using the quality controlled XCTD data is shown in Fig. 2.7.4.

#### (5) References

- Kizu, S., H. Onishi, T. Suga, K. Hanawa, T. Watanabe, and H. Iwamiya (2008): Evaluation of the fall rates of the present and developmental XCTDs. *Deep-Sea Res I*, 55, 571–586.
- Uchida, H., K. Shimada, and T. Kawano (2011): A method for data processing to obtain high-quality XCTD data. *J. Atmos. Oceanic Technol.*, **28**, 816–826.

Uchida, H., A. Murata, and T. Doi (eds.) (2014): WHP P10 Revisit in 2011 Data Book, 179 pp., JAMSTEC.

Uchida, H., K. Katsumata, and T. Doi (eds.) (2015): WHP P14S, S04I Revisit in 2012 Data Book, 187 pp., JAMSTEC.

32

Table 2.7.1. Manufacturer's specifications of XCTD-4.

| Parameter    | Range                          | Accuracy                          |
|--------------|--------------------------------|-----------------------------------|
|              |                                |                                   |
| Conductivity | $0 \sim 60 \text{ mS cm}^{-1}$ | $\pm 0.03 \text{ mS cm}^{-1}$     |
| Temperature  | −2 ~ 35 °C                     | ±0.02 °C                          |
| Depth        | 0 ~ 1850 m                     | 5 m or 2%, whichever is greater * |
|              |                                |                                   |

\* Depth error is shown in Kizu et al (2008).

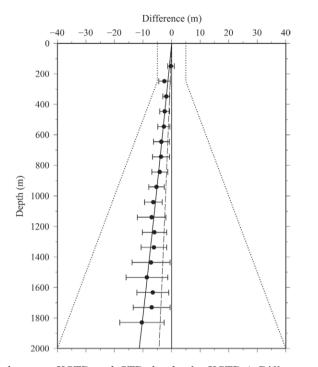

| Cruise  | Average thermal bias (°C) | Depth range  | Source               |
|---------|---------------------------|--------------|----------------------|
| MR09-01 | 0.016                     | >= 1100 dbar | Uchida et al. (2011) |
| КН-02-3 | 0.019                     | >= 1100 dbar | Uchida et al. (2011) |
| MR11-08 | 0.014                     | >= 1100 dbar | Uchida et al. (2014) |
| MR12-05 | 0.009                     | >= 400 dbar  | Uchida et al. (2015) |
| MR14-04 | 0.011                     | >= 900 dbar  | This report          |
| Mean    | $0.014 \pm 0.004$         |              |                      |

Table 2.7.2. Manufacturer's coefficients for the fall-rate equation.

| Model  | <i>a</i> (terminal velocity, m/s) | b (acceleration, m/s <sup>2</sup> ) | <i>e</i> (terminal velocity<br>error, m/s) |
|--------|-----------------------------------|-------------------------------------|--------------------------------------------|
| XCTD-4 | 3.68081                           | 0.00047                             | -0.0075                                    |

| Cruise  | Average salinity bias | Data                                  |
|---------|-----------------------|---------------------------------------|
| MR14-04 | $0.013 \pm 0.007$     | Stations 1, 7, 14, 30, 77, 78, 80, 81 |

# Table 2.7.3. Thermal biases of the XCTD temperature data.



Temperature difference (°C) Mean temperature (°C) 10 0 20 -0.10.0 0.1 -1030 -0.20.2 0 500 Pressure (dbar) 1000 1500 2000

Figure 2.7.1. Differences between XCTD and CTD depths for XCTD-4. Differences were estimated with the same method as Uchida et al. (2011). Standard deviation of the estimates (horizontal bars) and the manufacturer's specification for XCTD depth error (dotted lines) are shown. The regressions for the data (solid line) and for the data obtained in the cruise MR12-05 (broken line) are also shown.

Figure 2.7.2. Comparison between XCTD and CTD temperature profiles. (a) Mean temperature of CTD profiles with standard deviation (shade) and (b) mean temperature difference with standard deviation (shade) between the XCTD and CTD. Mean profiles were low-pass filtered by a running mean with a window of 51 dbar.

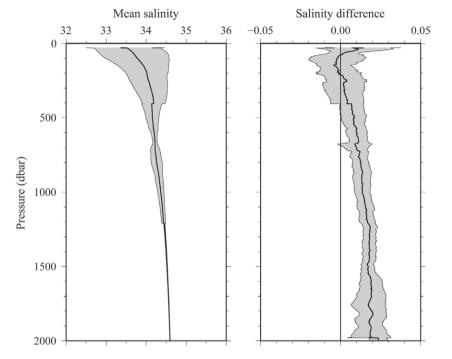



Figure 2.7.3. Comparison between XCTD and CTD salinity profiles. (a) Mean salinity of CTD profiles with standard deviation (shade) and (b) mean salinity difference with standard deviation (shade) between the XCTD and CTD. Mean profiles were low-pass filtered by a running mean with a window of 51 dbar.

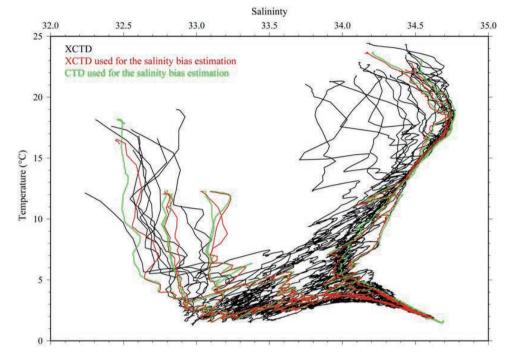



Figure 2.7.4. Comparison of temperature-salinity profiles of CTD (green lines) data used for the XCTD salinity bias estimation and salinity bias-corrected XCTD (red and black lines) data.

# **3** Hydrographic Measurements

## **3.1 CTDO**<sub>2</sub> Measurements

April 20, 2015

### (1) Personnel

Hiroshi Uchida (JAMSTEC) Shinsuke Toyoda (MWJ) Hiroshi Matsunaga (MWJ) Rei Ito (MWJ) Akira Watanabe (MWJ) Kenichi Katayama (MWJ) (leg 1) Tomoyuki Takamori (MWJ) (leg 2) Michinari Sunamura (The University of Tokyo) (CDOM measurement)

### (2) Winch arrangements

The CTD package was deployed by using 4.5 Ton Traction Winch System (Dynacon, Inc., Bryan, Texas, USA), which was renewed on the R/V Mirai in April 2014 (e.g. Fukasawa et al., 2004). Primary system components include a complete CTD Traction Winch System with up to 8500 m of 9.53 mm armored cable (Ocean Cable and Communications Co., Yokohama, Kanagawa, Japan).

#### (3) Overview of the equipment

The CTD system was SBE 911plus system (Sea-Bird Electronics, Inc., Bellevue, Washington, USA). The SBE 911plus system controls 36-position SBE 32 Carousel Water Sampler. The Carousel accepts 12-litre Niskin-X water sample bottles (General Oceanics, Inc., Miami, Florida, USA). The SBE 9plus was mounted horizontally in a 36-position carousel frame. SBE's temperature (SBE 3) and conductivity (SBE 4) sensor modules were used with the SBE 9plus underwater unit. The pressure sensor is mounted in the main housing of the underwater unit and is ported to outside through the oil-filled plastic capillary tube. A modular unit of underwater housing pump (SBE 5T) flushes water through sensor tubing at a constant rate independent of the CTD's motion, and pumping rate (3000 rpm) remain nearly constant over the entire input voltage range of 12-18 volts DC. Flow speed of pumped water in standard TC duct is about 2.4 m/s. Two sets of temperature and conductivity modules were used. An SBE's dissolved oxygen sensor (SBE 43) was placed between the primary conductivity sensor and the pump module. Auxiliary sensors, a Deep Ocean Standards Thermometer (SBE 35), an altimeter (PSA-916T; Teledyne Benthos, Inc., North Falmous, Massachusetts, USA), an oxygen optode (RINKO-III; JFE Advantech Co., Ltd, Kobe Hyogo, Japan), a fluorometer (Seapoint sensors, Inc., Kingston, New Hampshire, USA), a transmissometer (C-Star Transmissometer; WET Labs, Inc., Philomath, Oregon, USA), a Photosynthetically Active Radiation (PAR) sensor (Satlantic, LP, Halifax, Nova Scotia, Canada), a colored dissolved organic matter (ECO FL CDOM, WET Labs, Inc., Philomath, Oregon, USA), and an UV nitrate sensor (Deep SUNA, Satlantic, LP, Halifax, Nova Scotia, Canada) were also used with the SBE 9plus underwater unit. To minimize rotation of the CTD package, a heavy stainless frame (total weight of the CTD package without sea water in the bottles is about 1000 kg) was used with an aluminum plate (54 × 90 cm).

An additional set of SBE 911plus CTD system with 12-position SBE 32 was also used for four shallow casts (stations 73\_4, 73\_5, 124\_2, and 124\_3) for water sampling for phytoplankton incubation in leg 2. The SBE 9plus was mounted horizontally in a 12-position carousel frame. The 12-litre Niskin-X water sample bottles (General Oceanics, Inc.) were carefully cleaned and stored for the water sampling.

Summary of the system used in this cruise

#### 36-position Carousel system

Deck unit:

SBE 11plus, S/N 11P54451-0872

Under water unit:

SBE 9plus, S/N 09P54451-117457 (pressure sensor S/N: 1027)

Temperature sensor:

SBE 3plus, S/N 4811 (primary)

| SBE 3, S/N 1359 (secondary)                                                 | SBE 32, S/N 0924 (stations from 001_1 to 001_2)                                    |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Conductivity sensor:                                                        | SBE 32, S/N 0391 (stations from 007_1 to 150_1)                                    |
| SBE 4, S/N 2435 (primary)                                                   | Water sample bottle:                                                               |
| SBE 4, S/N 2854 (secondary)                                                 | 12-litre Niskin-X model 1010X (no TEFLON coating)                                  |
| Oxygen sensor:                                                              | 12-position Carousel system (used for water sampling for phytoplankton incubation) |
| SBE 43, S/N 0394 (stations from 001 to 057)                                 | Deck unit:                                                                         |
| SBE 43, S/N 0330 (stations from 058 to 150)                                 | SBE 11plus, S/N 11P54451-0872                                                      |
| JFE Advantech RINKO-III, S/N 0024 (foil batch no. 144002A)                  | Under water unit:                                                                  |
| Pump:                                                                       | SBE 9plus, S/N 09P27443-79511 (pressure sensor S/N: 0677)                          |
| SBE 5T, S/N 4595 (primary)                                                  | Temperature sensor:                                                                |
| SBE 5T, S/N 4598 (secondary)                                                | SBE 3, S/N 1524                                                                    |
| Altimeter:                                                                  | Conductivity sensor:                                                               |
| PSA-916T, S/N 1157                                                          | SBE 4, S/N 1088                                                                    |
| Deep Ocean Standards Thermometer:                                           | Pump:                                                                              |
| SBE 35, S/N 0022                                                            | SBE 5T, S/N 3118                                                                   |
| Fluorometer:                                                                | Carousel Water Sampler:                                                            |
| Seapoint Sensors, Inc., S/N 3618 (measurement range: 0-5 $\mu$ g/L)         | SBE 32, S/N 0278                                                                   |
| Transmissometer:                                                            | Water sample bottle:                                                               |
| C-Star, S/N CST-1363DR                                                      | 12-litre Niskin-X model 1010X (TEFLON coating)                                     |
| PAR:                                                                        |                                                                                    |
| Satlantic LP, S/N 0049                                                      |                                                                                    |
| CDOM:                                                                       |                                                                                    |
| ECO FL CDOM, S/N 2014 (measurement range: 0-500 ppb)                        |                                                                                    |
| Nitrate:                                                                    |                                                                                    |
| Deep SUNA, S/N 0385 (used only for stations 001_2, 007_1, 014_1, and 030_1) |                                                                                    |

36

Carousel Water Sampler:

### (4) Pre-cruise calibration

#### i. Pressure

The Paroscientific series 4000 Digiquartz high pressure transducer (Model 415K: Paroscientific, Inc., Redmond, Washington, USA) uses a quartz crystal resonator whose frequency of oscillation varies with pressure induced stress with 0.01 per million of resolution over the absolute pressure range of 0 to 15000 psia (0 to 10332 dbar). Also, a quartz crystal temperature signal is used to compensate for a wide range of temperature changes at the time of an observation. The pressure sensor has a nominal accuracy of 0.015 % FS (1.5 dbar), typical stability of 0.0015 % FS/month (0.15 dbar/month), and resolution of 0.001 % FS (0.1 dbar). Since the pressure sensor measures the absolute value, it inherently includes atmospheric pressure (about 14.7 psi). SEASOFT subtracts 14.7 psi from computed pressure automatically.

Pre-cruise sensor calibrations for linearization were performed at SBE, Inc.

S/N 1027, 4 February 2011

S/N 0677, 5 March 2014

The time drift of the pressure sensor is adjusted by periodic recertification corrections against a deadweight piston gauge (Model 480DA, S/N 23906; Piston unit, S/N 079K; Weight set, S/N 3070; Bundenberg Gauge Co. Ltd., Irlam, Manchester, UK). The corrections are performed at JAMSTEC, Yokosuka, Kanagawa, Japan by Marine Works Japan Ltd. (MWJ), Yokohama, Kanagawa, Japan, usually once in a year in order to monitor sensor time drift and linearity.

S/N 1027, 9 April 2014 slope = 0.99995022 offset = -0.74973 S/N 0677, 9 April 2014 slope = 0.99972807 offset = -0.10585

#### ii. Temperature (SBE 3)

The temperature sensing element is a glass-coated thermistor bead in a stainless steel tube, providing a pressure-free measurement at depths up to 10500 (6800) m by titanium (aluminum) housing. The SBE 3 thermometer has a nominal accuracy of 1 mK, typical stability of 0.2 mK/month, and resolution of 0.2 mK at 24 samples per second. The premium temperature sensor, SBE 3plus, is a more rigorously tested and calibrated version of standard temperature sensor (SBE 3).

Pre-cruise sensor calibrations were performed at SBE, Inc.

S/N 4811, 18 January 2014

S/N 1359, 1 May 2014

S/N 1524, 12 November 2013

Pressure sensitivities of SBE 3s were corrected according to a method by Uchida et al. (2007), for the following sensors.

S/N 4811, -2.7192e-7 [°C/dbar] S/N 1359, -1.8386e-7 [°C/dbar]

#### iii. Conductivity (SBE 4)

The flow-through conductivity sensing element is a glass tube (cell) with three platinum electrodes to provide in-situ measurements at depths up to 10500 (6800) m by titanium (aluminum) housing. The SBE 4 has a nominal accuracy of 0.0003 S/m, typical stability of 0.0003 S/m/month, and resolution of 0.00004 S/ m at 24 samples per second. The conductivity cells have been replaced to newer style cells for deep ocean measurements.

Pre-cruise sensor calibrations were performed at SBE, Inc.

S/N 2435, 1 May 2014 S/N 2854, 1 May 2014

S/N 1088, 17 July 2013

The value of conductivity at salinity of 35, temperature of 15 °C (IPTS-68) and pressure of 0 dbar is

### iv. Oxygen (SBE 43)

The SBE 43 oxygen sensor uses a Clark polarographic element to provide in-situ measurements at depths up to 7000 m. The range for dissolved oxygen is 120 % of surface saturation in all natural waters, nominal accuracy is 2 % of saturation, and typical stability is 2 % per 1000 hours.

Pre-cruise sensor calibration was performed at SBE, Inc.

S/N 0394, 29 April 2014

S/N 0330, 29 April 2014

#### v. Deep Ocean Standards Thermometer

Deep Ocean Standards Thermometer (SBE 35) is an accurate, ocean-range temperature sensor that can be standardized against Triple Point of Water and Gallium Melt Point cells and is also capable of measuring temperature in the ocean to depths of 6800 m. The SBE 35 was used to calibrate the SBE 3 temperature sensors in situ (Uchida et al., 2007; Uchida et al., 2015b).

Pre-cruise sensor linearization was performed at SBE, Inc.

S/N 0022, 4 March 2009

Then the SBE 35 is certified by measurements in thermodynamic fixed-point cells of the TPW (0.01 °C) and GaMP (29.7646 °C). The slow time drift of the SBE 35 is adjusted by periodic recertification corrections. Pre-cruise sensor calibration was performed at SBE, Inc. From the end of 2011, the SBE has been applying a NIST correction to the fixed-point cells used for the calibration.

S/N 0022, 3 September 2013 (slope and offset correction)

Slope = 1.000006

#### Offset = 0.000187

The time required per sample =  $1.1 \times NCYCLES + 2.7$  seconds. The 1.1 seconds is total time per an acquisition cycle. NCYCLES is the number of acquisition cycles per sample and was set to 4. The 2.7 seconds

is required for converting the measured values to temperature and storing average in EEPROM.

### vi. Altimeter

Benthos PSA-916T Sonar Altimeter (Teledyne Benthos, Inc.) determines the distance of the target from the unit by generating a narrow beam acoustic pulse and measuring the travel time for the pulse to bounce back from the target surface. It is rated for operation in water depths up to 10000 m. The PSA-916T uses the nominal speed of sound of 1500 m/s.

#### vii. Oxygen optode (RINKO)

RINKO (JFE Alec Co., Ltd.) is based on the ability of selected substances to act as dynamic fluorescence quenchers. RINKO model III is designed to use with a CTD system which accept an auxiliary analog sensor, and is designed to operate down to 7000 m.

Data from the RINKO can be corrected for the time-dependent, pressure-induced effect by means of the same method as that developed for the SBE 43 (Edwards et al., 2010). The calibration coefficients, H1 (amplitude of hysteresis correction), H2 (curvature function for hysteresis), and H3 (time constant for hysteresis) were determined empirically as follows.

H1 = 0.007 (for S/N 0024)

H2 = 5000 dbar

H3 = 2000 seconds

Outputs from RINKO are the raw phase shift data. The RINKO can be calibrated by the modified Stern-Volmer equation slightly modified from a method by Uchida et al. (2010):

$$O_2 (\mu mol/l) = [(V_0 / V)^E - 1] / K_{sv}$$

where V is voltage,  $V_0$  is voltage in the absence of oxygen,  $K_{sv}$  is Stern-Volmer constant. The coefficient E corrects nonlinearity of the Stern-Volmer equation. The  $V_0$  and the  $K_{sv}$  are assumed to be functions of temperature as follows.

$$\mathbf{K}_{sv} = \mathbf{C}_0 + \mathbf{C}_1 \times \mathbf{T} + \mathbf{C}_2 \times \mathbf{T}^2$$

$$V_0 = 1 + C_3 \times 7$$

### $\mathbf{V} = \mathbf{C}_4 + \mathbf{C}_5 \times \mathbf{V}_b$

where T is CTD temperature (°C) and  $V_b$  is raw output (volts).  $V_0$  and V are normalized by the output in the absence of oxygen at 0°C. The oxygen concentration is calculated using accurate temperature data from the CTD temperature sensor instead of temperature data from the RINKO. The pressure-compensated oxygen concentration  $O_{2c}$  can be calculated as follows.

 $O_{2c} = O_2 (1 + C_p p / 1000)$ 

where p is CTD pressure (dbar) and  $C_p$  is the compensation coefficient. Since the sensing foil of the optode is permeable only to gas and not to water, the optode oxygen must be corrected for salinity. The salinitycompensated oxygen can be calculated by multiplying the factor of the effect of salt on the oxygen solubility. The coefficients of the equation by García and Gordon (1992) were modified based on the laboratory experiment (Uchida et al., in prep.) and used for the compensation (B0 = -6.33568e-3, B1 = -6.84389e-3, B2 = -1.18326e-2, B3 = -5.51960e-2, C0 = 3.40543e-6).

Pre-cruise sensor calibrations were performed at RCGC/JAMSTEC.

S/N 0024, 14 May 2014

#### viii. Fluorometer

The Seapoint Chlorophyll Fluorometer (Seapoint Sensors, Inc., Kingston, New Hampshire, USA) provides in-situ measurements of chlorophyll-a at depths up to 6000 m. The instrument uses modulated blue LED lamps and a blue excitation filter to excite chlorophyll-a. The fluorescent light emitted by the chlorophyll-a passes through a red emission filter and is detected by a silicon photodiode. The low level signal is then processed using synchronous demodulation circuitry, which generates an output voltage proportional to chlorophyll-a concentration.

#### ix. Transmissometer

The C-Star Transmissometer (WET Labs, Inc., Philomath, Oregon, USA) measures light transmittance at

a single wavelength (650 nm) over a know path (25 cm). In general, losses of light propagating through water can be attributed to two primary causes: scattering and absorption. By projecting a collimated beam of light through the water and placing a focused receiver at a known distance away, one can quantify these losses. The ratio of light gathered by the receiver to the amount originating at the source is known as the beam transmittance. Suspended particles, phytoplankton, bacteria and dissolved organic matter contribute to the losses sensed by the instrument. Thus, the instrument provides information both for an indication of the total concentrations of matter in the water as well as for a value of the water clarity.

Light transmission  $T_r$  (in %) and beam attenuation coefficient  $c_p$  are calculated from the sensor output (V in volt) as follows.

 $T_r = (c_0 + c_1 V) \times 100$ 

 $c_{p} = -(1 / 0.25) \ln(T_{r} / 100)$ 

The calibration coefficients were determined by using the data obtained in the R/V Mirai MR13-06 cruise.

x. PAR

Photosynthetically Active Radiation (PAR) sensors (Satlantic, LP, Halifax, Nova Scotia, Canada) provide highly accurate measurements of PAR (400 – 700 nm) for a wide range of aquatic and terrestrial applications. The ideal spectral response for a PAR sensor is one that gives equal emphasis to all photons between 400 – 700 nm. Satlantic PAR sensors use a high quality filtered silicon photodiode to provide a near equal spectral response across the entire wavelength range of the measurement.

Pre-cruise sensor calibration was performed at Satlantic, LP.

S/N 0049, 22 January 2009

### xi. CDOM

The Environmental Characterization Optics (ECO) miniature fluorometer (WET Labs, Inc., Philomath, Oregon, USA) allows the user to measure relative Colored Dissolved Organic Matter (CDOM) concentrations by directly measuring the amount of fluorescence emission in a sample volume of water. The CDOM fluorometer uses an UV LED to provide the excitation source. An interference filter is used to reject the small amount of out-of-band light emitted by the LED. The light from the source enters the water volume at an angle of approximately 55-60 degrees with respect to the end face of the unit. Fluoresced light is received by a detector positioned where the acceptance angle forms a 140-degree intersection with the source beam. An interference filter is used to discriminate against the scattered excitation light.

CDOM (Quinine Dihydrate Equivalent) concentration expressed in ppb can be derived using the equation as follows.

CDOM = Scale Factor \* (Output – Dark Counts) Pre-cruise sensor calibration was performed at WET Labs. S/N 2014, 21 September 2010 Dark Counts: 0.027 V Scale Factor: 101 ppb/V Maximum Output: 4.94 V

### xii. Deep SUNA

The SUNA (Submersible Ultraviolet Nitrate Analyzer) is a chemical-free nitrate sensor (Satlantic, LP, Halifax, Nova Scotia, Canada). It is based on the ISUS (In Situ Ultraviolet Spectroscopy) technology developed at Monterey Bay Aquarium Research Institute (MBARI). The Deep SUNA housing is made from anodized aluminum. The housing is designed to withstand depths of up to 2000 m. The SUNA measures the concentration of dissolved nitrate in water. The sensor illuminates the water sample with its deuterium UV light source, and measures the throughput using its photo-spectrometer. The difference between this measurement and a prior baseline reference measurement of pure water constitutes an absorption spectrum.

Absorbance characteristics of natural water components are provided in the sensor calibration file. The Beer-Lambert Law for multiple absorbers establishes the relationship between the total measured absorbance and the concentrations of individual components. Based on this relationship, the sensor obtains a best estimate for the nitrate concentration using multi-variable linear regression. The Deep SUNA was used with the CTD system as an auxiliary analog sensor at shallow casts in leg 1 (stations 001\_2, 007\_1, 014\_1, and 030\_1), since it is designed to operate down to 2000 m and it was used with the Continuous Sea Surface Water Monitoring System (see Section 2.4) in leg 2.

#### (5) Data collection and processing

#### i. Data collection

CTD system was powered on at least 20 minutes in advance of the data acquisition to stabilize the pressure sensor and was powered off at least two minutes after the operation in order to acquire pressure data on the ship's deck.

The package was lowered into the water from the starboard side and held 10 m beneath the surface in order to activate the pump. After the pump was activated, the package was lifted to the surface and lowered at a rate of 1.0 m/s to 200 m (or 300 m when significant wave height was high) then the package was stopped to operate the heave compensator of the crane. The package was lowered again at a rate of 1.2 m/s to the bottom. For the up cast, the package was lifted at a rate of 1.1 m/s except for bottle firing stops. As a rule, the bottle was fired after waiting from the stop for 30 seconds (20 seconds from station 049\_1 to save the observation time) and the package was stayed at least 5 seconds for measurement of the SBE 35 at each bottle firing stops. For depths where vertical gradient of water properties were expected to be large, the bottle was exceptionally fired after waiting from the stop for 60 seconds (50 seconds from station 049\_1 to save the observation time) to enhance exchanging the water between inside and outside of the bottle. At 200 m (or 300 m) from the surface, the package was stopped to stop the heave compensator of the crane.

Water samples were collected using a 36-bottle (or 12-bottles) SBE 32 Carousel Water Sampler with 12-litre Niskin-X bottles. Before a cast taken water for CFCs, the bottle frame and Niskin-X bottles were wiped with acetone.

Data acquisition software

SEASAVE-Win32, version 7.23.2

### ii. Data collection problems

#### (a) Miss trip, miss fire, and remarkable leak

Niskin bottles did not trip correctly at the following stations.

| Miss trip  | Miss fire  | Remarkable leak   |
|------------|------------|-------------------|
| 140_1, #16 | 001_1, #6  | 074_1 ~ 093_1, #3 |
|            | 001_2, #24 |                   |

Since all of the latch assemblies for the SBE 32 (S/N 0924) was defective, the SBE 32 was replaced from S/ N 0924 to S/N 0391 after the station 001\_2. Also, the latch assembly for #16 of S/N 0391 was replaced after the station 140\_1. The bottle sampled salinity data were relatively lower (about 0.001) than the CTD salinity data for the bottle #3 at stations from 074 to 093. The drain cock of the bottle #3 was replaced after the station 094\_1.

### (b) Failure of insulation of the CTD winch armored cable

Failure of insulation of the CTD winch armored cable occurred at 2608 dbar of up cast of the station 041\_1. Therefore, the up cast was aborted and the armored cable was cut 1620 m after the cast.

#### (c) Detachment of some sensors at deep casts deeper than 6000 m

Fluorometer, transmissometer, CDOM, LADCP, and Micro Rider were detached at stations 047\_1, 046\_1, 045\_1, and 044\_1, because of the withstand depth of 6000 m for these sensors. At stations 001\_1, 080\_1, 081\_1, 088\_1, and 089\_1, the CTD package was lowered depths up to 6000 m without detachment of these sensors, although water depths of these stations were deeper than 6000 m.

#### (d) Noise of SBE 43 (S/N 0394)

Relatively large noise was found in the SBE 43 data at about 4762~4789 dbar of down cast. Therefore, the SBE 43 was replaced from S/N 0394 to S/N 0330 after the station 056\_1.

#### (e) Noise of primary temperature and salinity data

The primary temperature and/or salinity data were noisy for down cast of following stations: 074\_1 and 145\_1. Therefore, the secondary temperature and salinity data were used for these stations for vertical profile (wct file). The primary temperature and/or salinity data were noisy for up cast of following stations: 050\_1, 144\_1, and 145\_1. Therefore, the secondary temperature and salinity data were used for these stations for bottle data (seafile).

### (f) Noise of transmissometer

The transmissometer data were (partly) noisy for down cast at following stations: 022\_1, 043\_1, 057\_1, 065\_1, 077\_1, 079\_1, 080\_1, 089\_1, 091\_2, 092\_1, 095\_1, 097\_1, 126\_1, 130\_1, 141\_1, 142\_1, and 145\_1. Therefore, the up cast data were used for vertical profile data (wct file) for these stations instead using the down cast data.

#### iii. Data processing

SEASOFT consists of modular menu driven routines for acquisition, display, processing, and archiving of oceanographic data acquired with SBE equipment. Raw data are acquired from instruments and are stored as unmodified data. The conversion module DATCNV uses instrument configuration and calibration coefficients to create a converted engineering unit data file that is operated on by all SEASOFT post processing modules. The following are the SEASOFT and original software data processing module sequence and specifications used in the reduction of CTD data in this cruise.

#### Data processing software

#### SBEDataProcessing-Win32, version 7.23.2

DATCNV converted the raw data to engineering unit data. DATCNV also extracted bottle information where scans were marked with the bottle confirm bit during acquisition. The duration was set to 4.4 seconds, and the offset was set to 0.0 second. The hysteresis correction for the SBE 43 data (voltage) was applied for both profile and bottle information data.

TCORP (original module, version 1.1) corrected the pressure sensitivity of the SBE 3 for both profile and bottle information data.

RINKOCOR (original module, version 1.0) corrected the time-dependent, pressure-induced effect (hysteresis) of the RINKO for both profile data.

RINKOCORROS (original module, version 1.0) corrected the time-dependent, pressure-induced effect (hysteresis) of the RINKO for bottle information data by using the hysteresis-corrected profile data.

BOTTLESUM created a summary of the bottle data. The data were averaged over 4.4 seconds (or 1 second for the bottle fired without stop).

ALIGNCTD converted the time-sequence of sensor outputs into the pressure sequence to ensure that all calculations were made using measurements from the same parcel of water. For a SBE 9plus CTD with the ducted temperature and conductivity sensors and a 3000-rpm pump, the typical net advance of the conductivity relative to the temperature is 0.073 seconds. So, the SBE 11plus deck unit was set to advance the primary and the secondary conductivity for 1.73 scans (1.75/24 = 0.073 seconds). Oxygen data are also systematically delayed with respect to depth mainly because of the long time constant of the oxygen sensor and of an additional delay from the transit time of water in the pumped plumbing line. This delay was compensated by 6 seconds advancing the SBE 43 oxygen sensor output (voltage) relative to the temperature data. Delay of the RINKO data was also compensated by 1 second advancing sensor output (voltage) relative to the temperature data.

WILDEDIT marked extreme outliers in the data files. The first pass of WILDEDIT obtained an accurate estimate of the true standard deviation of the data. The data were read in blocks of 1000 scans. Data greater than 10 standard deviations were flagged. The second pass computed a standard deviation over the same 1000 scans excluding the flagged values. Values greater than 20 standard deviations were marked bad. This process was applied to pressure, temperature, conductivity, and SBE 43 output.

CELLTM used a recursive filter to remove conductivity cell thermal mass effects from the measured conductivity. Typical values used were thermal anomaly amplitude alpha = 0.03 and the time constant 1/beta =

7.0.

FILTER performed a low pass filter on pressure with a time constant of 0.15 seconds. In order to produce zero phase lag (no time shift) the filter runs forward first then backwards.

WFILTER performed as a median filter to remove spikes in fluorometer, transmissometer, and CDOM data. A median value was determined by 49 scans of the window.

SECTIONU (original module, version 1.1) selected a time span of data based on scan number in order to reduce a file size. The minimum number was set to be the start time when the CTD package was beneath the sea-surface after activation of the pump. The maximum number was set to be the end time when the depth of the package was 1 dbar below the surface. The minimum and maximum numbers were automatically calculated in the module.

LOOPEDIT marked scans where the CTD was moving less than the minimum velocity of 0.0 m/s (traveling backwards due to ship roll).

DESPIKE (original module, version 1.0) removed spikes of the data. A median and mean absolute deviation was calculated in 1-dbar pressure bins for both down- and up-cast, excluding the flagged values. Values greater than 4 mean absolute deviations from the median were marked bad for each bin. This process was performed 2 times for temperature, conductivity, SBE 43, and RINKO output.

DERIVE was used to compute oxygen (SBE 43).

BINAVG averaged the data into 1-dbar pressure bins. The center value of the first bin was set equal to the bin size. The bin minimum and maximum values are the center value plus and minus half the bin size. Scans with pressures greater than the minimum and less than or equal to the maximum were averaged. Scans were interpolated so that a data record exist every dbar.

BOTTOMCUT (original module, version 0.1) deleted the deepest pressure bin when the averaged scan number of the deepest bin was smaller than the average scan number of the bin just above.

DERIVE was re-used to compute salinity, potential temperature, and density ( $\sigma_{o}$ ).

SPLIT was used to split data into the down cast and the up cast.

Remaining spikes in the CTD data were manually eliminated from the 1-dbar-averaged data. The data

gaps resulting from the elimination were linearly interpolated with a quality flag of 6.

#### (6) Post-cruise calibration

### i. Pressure

The CTD pressure sensor offset in the period of the cruise was estimated from the pressure readings on the ship deck. For best results the Paroscientific sensor was powered on for at least 20 minutes before the operation. In order to get the calibration data for the pre- and post-cast pressure sensor drift, the CTD deck pressure was averaged over first and last one minute, respectively. Then the atmospheric pressure deviation from a standard atmospheric pressure (14.7 psi) was subtracted from the CTD deck pressure to check the pressure sensor time drift. The atmospheric pressure was measured at the captain deck (20 m high from the base line) and sub-sampled one-minute interval as a meteorological data. Time series of the CTD deck pressure is shown in Fig. 3.1.1. The CTD pressure sensor offset was estimated from the deck pressure. Mean of the pre- and the post-casts data over the whole period gave an estimation of the pressure sensor offset (-0.04 dbar) from the pre-cruise calibration. The post-cruise correction of the pressure data is not deemed necessary for the pressure sensor.

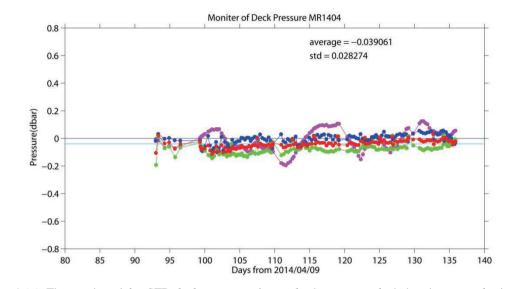



Figure 3.1.1. Time series of the CTD deck pressure. Atmospheric pressure deviation (magenta dots) from a standard atmospheric pressure was subtracted from the CTD deck pressure. Blue and green dots indicate pre- and post-cast deck pressures, respectively. Red dots indicate averages of the pre- and the post-cast deck pressures.

### ii. Temperature

The CTD temperature sensors (SBE 3) were calibrated with the SBE 35 under the assumption that discrepancies between SBE 3 and SBE 35 data were due to pressure sensitivity, the viscous heating effect, and time drift of the SBE 3, according to a method by Uchida et al. (2007).

Post-cruise sensor calibration for the SBE 35 was performed at SBE, Inc in February 2015.

S/N 0022, 4 February 2015 (2nd step: fixed point calibration)

Slope = 1.000007

Offset = 0.000246

Offset of the SBE 35 data from the pre-cruise calibration was estimated to be smaller than 0.1 mK for temperature smaller than 4.5°C. So the post-cruise correction of the SBE 35 temperature data was not deemed

necessary for the SBE 35.

The CTD temperature was preliminary calibrated as

Calibrated temperature =  $T - (c_0 \times P + c_1 \times t + c_2)$ 

where T is CTD temperature in  $^{\circ}$ C, P is pressure in dbar, t is time in days from pre-cruise calibration date of the CTD temperature and c<sub>0</sub>, c<sub>1</sub>, and c<sub>2</sub> are calibration coefficients. The coefficients were determined using the data for the depths deeper than 1950 dbar.

The primary temperature data were basically used for the post-cruise calibration. The secondary temperature sensor was also calibrated and used instead of the primary temperature data when the data quality of the primary temperature data was bad. The calibration coefficients are listed in Table 3.1.1. The results of the post-cruise calibration for the CTD temperature are summarized in Table 3.1.2 and shown in Figs. 3.1.2 and 3.1.3.

Table 3.1.2. Difference between the CTD temperature and the SBE 35 after the post-cruise calibration. Mean and standard deviation (Sdev) are calculated for the data below and above 950 dbar. Number of data used is also shown.

| Serial number | Pressure ≥ 950 dbar |              | number Pressure $\ge$ 950 dbar Pressure $<$ 950 dbar |              |              |              |
|---------------|---------------------|--------------|------------------------------------------------------|--------------|--------------|--------------|
|               | Number              | Mean<br>(mK) | Sdev<br>(mK)                                         | Number       | Mean<br>(mK) | Sdev<br>(mK) |
| 4811<br>1359  | 1544<br>1546        | -0.0<br>0.0  | 0.2<br>0.2                                           | 2756<br>2774 | -0.1<br>0.3  | 11.7<br>9.1  |

### Table 3.1.1. Calibration coefficients for the CTD temperature sensors.

| Serial number | $c_0$ (°C/dbar) | $c_1$ (°C/day) | c <sub>2</sub> (°C) |
|---------------|-----------------|----------------|---------------------|
| 4811          | -1.29748e-8     | 4.02418e-6     | -0.0003             |
| 1359          | 1.67653e-8      | 5.20248e-6     | -0.0002             |



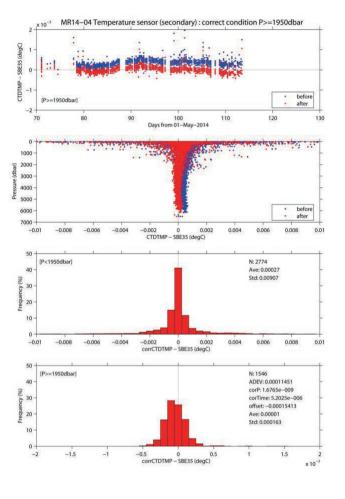



Figure 3.1.2. Difference between the CTD temperature (primary) and the SBE 35. Blue and red dots indicate before and after the post-cruise calibration using the SBE 35 data, respectively. Lower two panels show histogram of the difference after the calibration.

Figure 3.1.3.Same as Fig. 3.1.2, but for secondary temperature sensor.

### iii. Salinity

The discrepancy between the CTD conductivity and the conductivity calculated from the bottle salinity data with the CTD temperature and pressure data is considered to be a function of conductivity, pressure and time. The CTD conductivity was calibrated as

Calibrated conductivity =  $c_0 \times C + c_1 \times P + c_2 \times C \times P + c_3 \times t + c_4$ 

where C is CTD conductivity in S/m, P is pressure in dbar, t is time in days from 11 July 2009, 00:58 (UTC) and  $c_0$ ,  $c_1$ ,  $c_2$ ,  $c_3$  and  $c_4$  are calibration coefficients. The best fit sets of coefficients were determined by a least square technique to minimize the deviation from the conductivity calculated from the bottle salinity data.

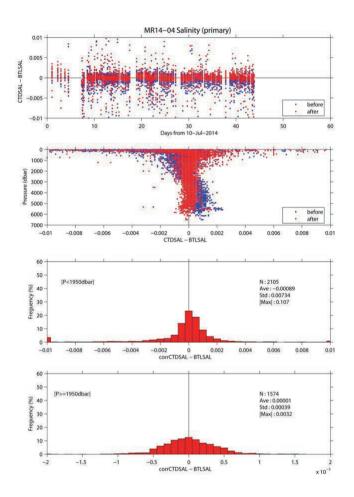

The primary conductivity data created by the software module ROSSUM were basically used after the post-cruise calibration for the temperature data. The secondary conductivity sensor was also calibrated and used instead of the primary conductivity data when the data quality of the primary temperature or conductivity data was bad. The calibration coefficients are listed in Table 3.1.3. The results of the post-cruise calibration for the CTD salinity are summarized in Table 3.1.4 and shown in Figs. 3.1.4 and 3.1.5.

Table 3.1.3. Calibration coefficients for the CTD conductivity sensors.

| Serial<br>Number | C <sub>0</sub> | c <sub>1</sub><br>[S/(m dbar)] | c <sub>2</sub><br>(1/dbar) | c <sub>3</sub><br>[S/(m day)] | c <sub>4</sub><br>(S/m) |  |
|------------------|----------------|--------------------------------|----------------------------|-------------------------------|-------------------------|--|
| 2435             | -7.51283e-5    | 2.42062e-7                     | -6.89235e-8                | -5.29014e-7                   | 1.93028e-4              |  |
| 2854             | -2.18278e-4    | -1.62860e-7                    | 5.27345e-8                 | 1.50084e-6                    | 5.46236e-4              |  |

Table 3.1.4. Difference between the CTD salinity and the bottle salinity after the post-cruise calibration. Mean and standard deviation (Sdev) (in  $10^{-3}$ ) are calculated for the data below and above 1950 dbar. Number of data used is also shown.

| Serial number | Pressure ≥ 1 | Pressure ≥ 1950 dbar |      | Pressure < 2 | 1950 dbar |      |
|---------------|--------------|----------------------|------|--------------|-----------|------|
|               | Number       | Mean                 | Sdev | Number       | Mean      | Sdev |
| 2435          | 1574         | 0.0                  | 0.4  | 2105         | -0.9      | 7.3  |
| 2854          | 1580         | 0.0                  | 0.5  | 2140         | -0.9      | 7.5  |



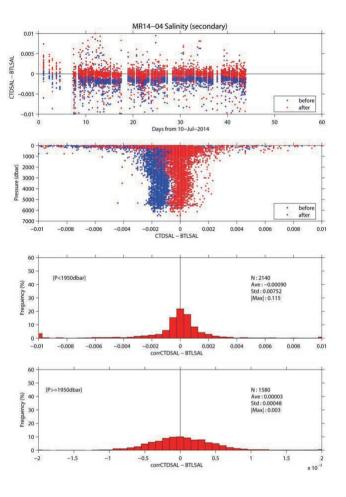



Figure 3.1.4. Difference between the CTD salinity (primary) and the bottle salinity. Blue and red dots indicate before and after the post-cruise calibration, respectively. Lower two panels show histogram of the difference after the calibration.

Figure 3.1.5. Same as Fig. 3.1.4, but for secondary salinity.

### iv. Oxygen

The RINKO oxygen optode (S/N 0024) was calibrated and used as the CTD oxygen data, since the RINKO has a fast time response. The pressure-hysteresis corrected RINKO data was calibrated by the modified Stern-Volmer equation, basically according to a method by Uchida et al. (2010) with slight modification:

$$[O_2] (\mu mol/l) = [(V_0 / V)^{1.1} - 1] / K_{sv}$$

$$\begin{split} K_{sv} &= C_0 + C_1 \times T + C_2 \times T^2 \\ V_0 &= 1 + C_3 \times T \\ V &= C_4 + C_5 \times V_b + C_6 \times t + C_7 \times t \times V_b \end{split}$$

where  $V_b$  is the RINKO output (voltage),  $V_0$  is voltage in the absence of oxygen, T is temperature in °C, and t is exciting time (days) integrated from the first CTD cast for each leg. Time drift of the RINKO output was corrected. The calibration coefficients were determined by minimizing the sum of absolute deviation with a weight from the bottle oxygen data. The revised quasi-Newton method (DMINF1) was used to determine the sets.

The post-cruise calibrated temperature and salinity data were used for the calibration. The calibration coefficients are listed in Table 3.1.5. The results of the post-cruise calibration for the RINKO oxygen are summarized in Table 3.1.6 and shown in Fig. 3.1.6.

Table 3.1.6. Difference between the RINKO oxygen and the bottle oxygen after the post-cruise calibration. Mean and standard deviation (Sdev) are calculated for the data below and above 1950 dbar. Number of data used is also shown.

Sdev

0.30

Mean

-0.03

[µmol/kg]

Pressure < 1950 dbar

Mean

0.01

[µmol/kg]

Number

2100

Sdev

1.50

| on for the KINKO oxygen are | Mean and standard deviation (Sdev) are calculated for |                      |  |  |  |
|-----------------------------|-------------------------------------------------------|----------------------|--|--|--|
|                             | data used is also                                     | o snown.             |  |  |  |
|                             | Serial number                                         | Pressure ≥ 1950 dbar |  |  |  |
|                             |                                                       |                      |  |  |  |

0024

Number

1571

\_\_\_\_

| Coefficient           | S/N 0024    |  |
|-----------------------|-------------|--|
| c <sub>0</sub>        | 4.08789e-3  |  |
| $c_1$                 | 1.58333e-4  |  |
| $c_2$                 | 2.10854e-6  |  |
| <b>C</b> <sub>3</sub> | -1.14204e-3 |  |
| $c_4$                 | -0.109961   |  |
| $c_5$                 | 0.356093    |  |
| $c_6$                 | -2.55873e-4 |  |
| <b>c</b> <sub>7</sub> | 3.13918e-4  |  |
| C <sub>p</sub>        | 0.014       |  |
|                       |             |  |

Table 3.1.5. Calibration coefficients for the RINKO oxygen sensors.

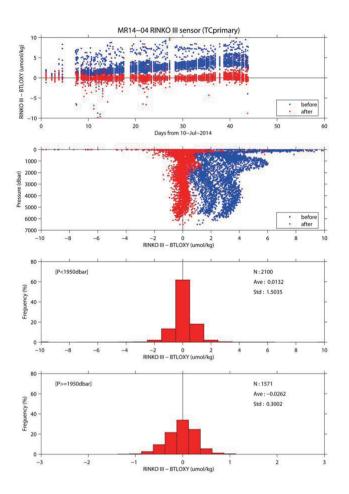



Figure 3.1.6. Difference between the CTD oxygen and the bottle oxygen for leg 1. Blue and red dots indicate before and after the post-cruise calibration, respectively. Lower two panels show histogram of the difference after the calibration.

### Correction of down cast RINKO profiles for pressure hysteresis

Data from the RINKO can be corrected for the time-dependent, pressure-induced effect by means of the same method as that developed for the SBE 43 (Edwards et al., 2010). The calibration coefficients, H1 (amplitude of hysteresis correction), H2 (curvature function for hysteresis), and H3 (time constant for hysteresis) were empirically determined before the R/V Mirai cruise MR12-05 and used for the cruises MR12-05 and MR14-04 as follows:

- H1 = 0.007 (for serial no. 0024)
- H2 = 5000 dbar
- H3 = 2000 seconds.

However, it was found that magnitude of the time-dependent, pressure-induced hysteresis was changed in time (Fig. 3.1.7). Although to determine the calibration coefficients (H1, H2, and H3) and to reprocess from the raw RINKO data is the best way for correction of the hysteresis, it is actually quite time-consuming to reprocess. Therefore, the discrepancy between the down and up cast profiles for depths deeper than 300 dbar were simply corrected by using a model as a function of pressure and the maximum pressure of the cast as follows:

 $Ocor = O + C \times (pmax-300) / (6500.0-300.0) \times sin(\pi / (pmax-300.0) \times (P-300.0))$ 

where O is the RINKO oxygen in µmol/kg before the correction, P is pressure in dbar, pmax is maximum pressure of the CTD cast, and C is correction factor. The correction factor C was estimated to be 0.3, 0.5 and 0.7 for MR12-05 leg 2, MR12-05 leg 3, and MR14-04 cruise, respectively.

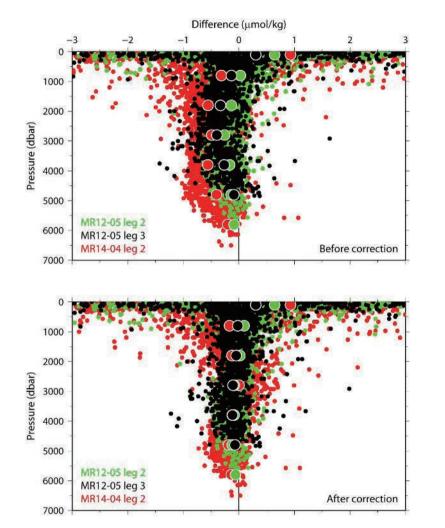



Figure 3.1.7. Difference between down and up cast CTD oxygen. Data at depths shallower than 300 dbar were compared on the same pressure surface and data at depths deeper than 300 dbar were compared on the same density surface (potential density with a reference pressure of 2500 dbar). Large dots indicate median value estimated from the data obtained at depths shallower than 300 dbar or at depths deeper than 300 dbar at 1000-dbar intervals.

### v. Fluorometer

The CTD fluorometer (FLUOR in  $\mu g/L$ ) was calibrated by comparing with the bottle sampled chlorophyll-a as

### $FLUORc = c_0 + c_1 \times FLUOR$

where  $c_0$  and  $c_1$  are calibration coefficients. The CTD fluorometer data is slightly noisy so that the up cast profile data which was averaged over one decibar agree with the bottle sampled data better than the discrete CTD fluorometer data obtained at bottle-firing stop. Therefore, the CTD fluorometer data at water sampling depths extracted from the up cast profile data were compared with the bottle sampled chlorophyll-a data. The bottle sampled data obtained at dark condition [PAR (Photosynthetically Available Radiation) < 50 µE/ (m<sup>2</sup> sec), see Section 2.3] were used for the calibration, since sensitivity of the fluorometer to chlorophyll *a* is different at nighttime and daytime (Section 2.4 in Uchida et al., 2015a). Sensitivity of the fluorometer to chlorophyll *a* may be also different between high and low temperature (see Section 2.4). Therefore, the slopes ( $c_1$ ) of the calibration coefficients are determined for three groups of stations: stations south of 38.8° N in leg 1 (001, 007, 014, and 022), the closest station to the coast (036), and other stations (Fig. 3.1.8). For the last group of stations, sensitivity of the fluorometer to chlorophyll *a* change at about 0.3 µg/L of the fluorometer data, so that the slope ( $c_1$ ) is changed for the fluorometer data larger than 0.3 µg/L. The calibration coefficients are listed in Table 3.1.7. The results of the post-cruise calibration for the fluorometer are summarized in Table 3.1.8 and shown in Fig. 3.1.9.

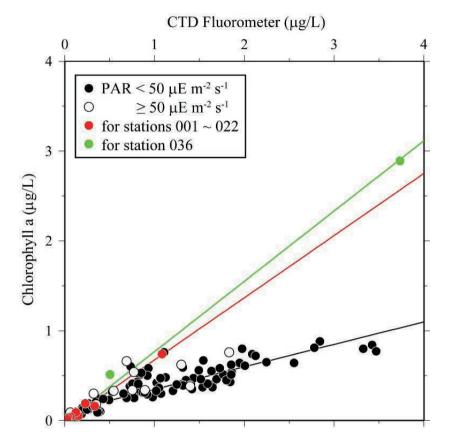



Figure 3.1.8. Comparison of the CTD fluorometer and the bottle sampled chlorophyll-a. The regression lines

are also shown.

| Stations           | C <sub>0</sub> | c <sub>1</sub> | Note                            |
|--------------------|----------------|----------------|---------------------------------|
| 001, 007, 014, 022 | -1.64441e-2    | 0.691796       |                                 |
| 036                | -1.64441e-2    | 0.783024       |                                 |
| Other stations     | -1.64441e-2    | 0.630088       | Fluorometer data $\leq 0.3$ g/L |
|                    | 9.75510e-2     | 0.250104       | Fluorometer data > 0.3 g/L      |

Table 3.1.8. Difference between the CTD fluorometer and the bottle chlorophyll-*a* after the post-cruise calibration. Mean, standard deviation (Sdev), and number of data used are shown. Data obtained at daytime are also used in this calculation.

 Number
 Mean
 Sdev

 221
 -0.00 μg/L
 0.08 μg/L

Table 3.1.7. Calibration coefficients for the CTD fluorometer.

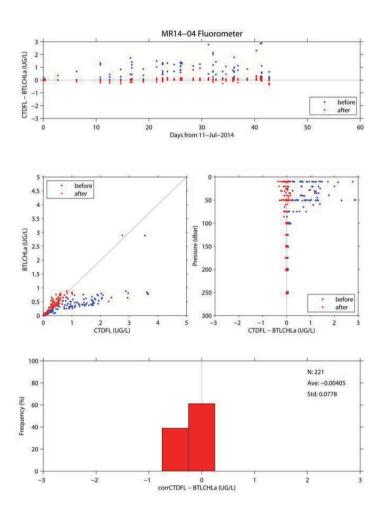
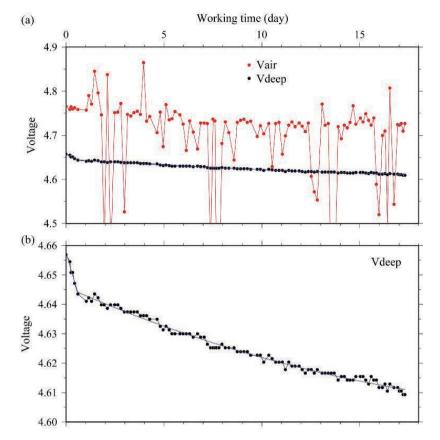
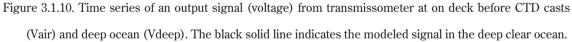



Figure 3.1.9. Comparison of the CTD fluorometer and the bottle sampled chlorophyll-*a*. Blue and red dots indicate before and after the post-cruise calibration, respectively. Lower panel shows histogram of the difference after the calibration. Data obtained at daytime are also shown in this figure.

### vi. Transmissometer

The transmissometer (T $_{\rm r}$  in %) is calibrated as


 $T_r = (V - V_d) / (V_r - V_d) \times 100$ 


where V is the measured signal (voltage),  $V_d$  is the dark offset for the instrument, and  $V_r$  is the signal for clear water.  $V_d$  can be obtained by blocking the light path.  $V_d$  and  $V_{air}$ , which is the signal for air, were measured on deck before each cast after wiping the optical windows with ethanol.  $V_d$  was constant (0.0012) during the cruise.  $V_r$  is estimated from the measured maximum signal in the deep ocean at each cast. Since the transmissometer drifted in time (Fig. 3.1.10),  $V_r$  is expressed as

$$V_r = c_0 + c_1 \times t + c_2 \times t^2$$

where t is working time (in days) of the transmissometer, and c<sub>0</sub>, c<sub>1</sub>, and c<sub>2</sub> are calibration coefficients.

The calibration coefficients are listed in Table 3.1.9. For stations 066 and 097,  $V_r$  shifted though  $V_d$  was same as others. Therefore,  $V_r$  was individually estimated as to be 4.6166 and 4.6044 for stations 066 and 097, respectively. In addition, the transmissometer data for station 141\_1 was also corrected with an offset of +0.0055 volts.





### Table 3.1.9. Calibration coefficients for the CTD transmissometer.

| Leg | C <sub>0</sub> | c <sub>1</sub> | $C_2$      | $V_d$  |  |
|-----|----------------|----------------|------------|--------|--|
| 1   | 4.65763        | -2.28408e-2    | -          | 0.0012 |  |
| 2   | 4.64582        | -2.91438e-3    | 5.23667e-5 | 0.0012 |  |

### vii. PAR

The PAR sensor was calibrated with an offset correction. The offset was estimated from the data measured in the deep ocean during the cruise. The corrected data (PARc) is calculated from the raw data (PAR) as follows:

PARc  $[\mu E m^{-2} s^{-1}] = PAR - 0.046.$ 

### viii. CDOM

The CDOM sensor wasn't calibrated, since the reference data (see Section 3.9) was not adequate for the in-situ calibration. The data were low-pass filtered by a running mean with a window of 15 seconds (about 13 m), since the data was noisy (Fig. 3.1.11). Moreover, the data were flagged as 4 (bad measurement) for depths deeper than about 4500 m due to large shift of the data (Fig. 3.1.11).

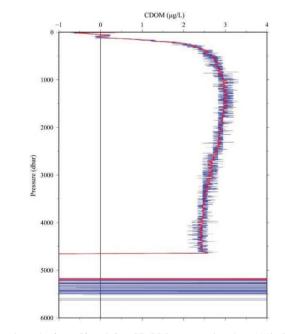



Figure 3.1.11. An example of vertical profile of the CDOM sensor (station 100). Blue line shows original data and red line shows low-pass filtered data.

### ix. Deep SUNA

The down and up cast profile from the Deep SUNA showed relatively large difference (Fig. 3.1.12). Maximum difference between the down and up cast data was about 0.084 volts and it corresponded to 4 µmol/kg of nitrate (Fig. 3.1.13). Since average of the down and up cast data at same pressure surface showed better linearity against the bottle sampled nitrate data (Fig. 3.1.13), nitrate from the Deep SUNA (NRA in µmol/kg) was estimated from the average data (NRAVave in volts) by comparing with the bottle sampled nitrate data as

NRA =  $c_0 + c_1 \times NRAVave$ 

where  $c_0$  and  $c_1$  are calibration coefficients. The calibration coefficients are listed in Table 3.1.10. The average of the down and up cast data was used for the bottle sampled data (seafile) and profile data (wct file).

Table 3.1.10. Calibration coefficients for the Deep SUNA.

| number of comparison | C <sub>0</sub> | c <sub>1</sub> | Sdev         |
|----------------------|----------------|----------------|--------------|
| 43                   | -5.84651       | 22.7101        | 0.53 μmol/kg |

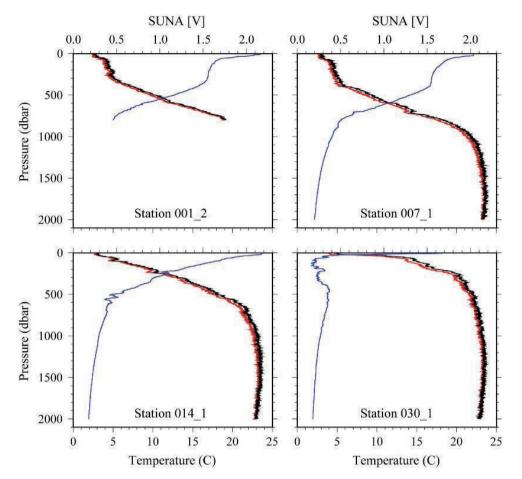



Figure 3.1.12. Vertical profiles of raw data (voltage) of the Deep SUNA (red line: down cast, black line: up cast) and temperature (blue line).

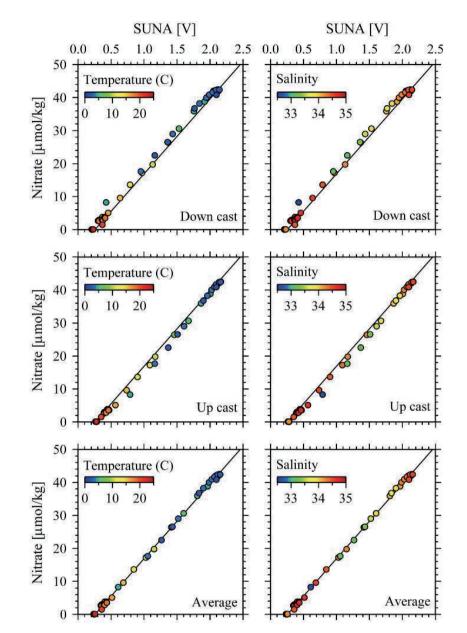



Figure 3.1.13. Comparison of the Deep SUNA output (voltage) and the bottle sampled nitrate. Upper panels are for down cast, middle panels are for up cast, and lower panels are for average of the down and up cast for the Deep SUNA data. The regression lines for the average data are shown.

### (7) References

- Edwards, B., D. Murphy, C. Janzen and N. Larson (2010): Calibration, response, and hysteresis in deep-sea dissolved oxygen measurements, *J. Atmos. Oceanic Technol.*, 27, 920–931.
- Fukasawa, M., T. Kawano and H. Uchida (2004): Blue Earth Global Expedition collects CTD data aboard Mirai, BEAGLE 2003 conducted using a Dynacon CTD traction winch and motion-compensated crane, *Sea Technology*, 45, 14–18.
- García, H. E. and L. I. Gordon (1992): Oxygen solubility in seawater: Better fitting equations. *Limnol. Oceanogr.*, 37 (6), 1307–1312.
- Uchida, H., G. C. Johnson, and K. E. McTaggart (2010): CTD oxygen sensor calibration procedures, The GO-SHIP Repeat Hydrography Manual: A collection of expert reports and guidelines, IOCCP Rep., No. 14, ICPO Pub. Ser. No. 134.
- Uchida, H., K. Katsumata, and T. Doi (eds.) (2015a): WHP P14S, S04I Revisit in 2012 Data Book, 187 pp., JAMSTEC.
- Uchida, H., T. Nakano, J. Tamba, J.V. Widiatmo, K. Yamazawa, S. Ozawa and T. Kawano (2015b): Deep ocean temperature measurements with an uncertainty of 0.7 mK, *J. Atmos. Oceanic Technol.*, 32, 2199–2210.
- Uchida, H., K. Ohyama, S. Ozawa, and M. Fukasawa (2007): In situ calibration of the Sea-Bird 9plus CTD thermometer, J. Atmos. Oceanic Technol., 24, 1961–1967.

# **3.2 Bottle Salinity**

September 10, 2014

### (1) Personnel

Hiroshi Uchida (JAMSTEC) Tatsuya Tanaka (MWJ) Sonoka Wakatsuki (MWJ)

### (2) Objectives

Bottle salinities were measured to calibrate CTD salinity data.

#### (3) Instrument and Method

Salinity measurement was conducted basically based on a method by Kawano (2010).

#### i. Salinity Sample Collection

The bottles in which the salinity samples were collected and stored were 250 ml brown borosilicate glass bottles with screw caps (PTFE packing). Each bottle was rinsed three times with sample water and was filled to the shoulder of the bottle. The caps were also thoroughly rinsed. Salinity samples were stored more than 24 hours in the same laboratory as the salinity measurement was made.

#### ii. Instruments and Methods

Salinity of water samples was measured with a salinometer (Autosal model 8400B; Guildline Instruments Ltd., Ontario, Canada; S/N 62827), which was modified by adding an peristaltic-type intake pump (Ocean Scientific International Ltd., Hampshire, UK) and two platinum thermometers (Guildline Instruments Ltd., model 9450). One thermometer monitored an ambient temperature and the other monitored a salinometer's bath temperature. The resolution of the thermometers was 0.001 °C. The measurement system was almost

same as Aoyama et al. (2002). The salinometer was operated in the air-conditioned laboratory of the ship at a bath temperature of 24  $^{\circ}$ C.

The ambient temperature varied from approximately 22.5 to 24.5 °C, while the bath temperature was stable and varied within  $\pm 0.002$  °C. A measure of a double conductivity ratio of a sample was taken as a median of 31 readings. Data collection was started after 10 seconds and it took about 10 seconds to collect 31 readings by a personal computer. Data were sampled for the sixth and seventh filling of the cell. In case where the difference between the double conductivity ratio of this two fillings was smaller than 0.00002, the average value of the two double conductivity ratios was used to calculate the bottle salinity with the algorithm for practical salinity scale, 1978 (UNESCO, 1981). When the difference was greater than or equal to the 0.00003, we measured another additional filling of the cell. In case where the double conductivity ratio salinity was 10 and those fillings did not satisfy the criteria above, the median of the double conductivity ratios of five fillings were used to calculate the bottle salinity.

The measurement was conducted about from 3 to 18 hours per day and the cell was cleaned with soap (50 times diluted solution of S-CLEAN WO-23 [Neutral], Sasaki Chemical Co. Ltd., Kyoto, Japan) after the measurement for each day. A total of 4584 water samples were measured during the cruise.

#### (4) Results

#### i. Standard Seawater

Standardization control was set to 512. The value of STANDBY was 5392 or 5393±0001 and that of ZERO was 0.00000 or -0.00001. We used IAPSO Standard Seawater batch P156 whose conductivity ratio is 0.99984 (double conductivity ratio is 1.99968) as the standard for salinity measurement. We measured 188 bottles of the Standard Seawater during the cruise. History of double conductivity ratio measurement of the Standard Seawater is shown in Fig. 3.2.1.

Time drift of the salinometer was corrected by using the Standard Seawater measurements. Linear time drift of the salinometer was estimated from the Standard Seawater measurement by using the least square

method (thin black line in Fig. 3.2.1). No remarkable time drift was estimated from the Standard Seawater measurement. The average of double conductivity ratio was 1.99968 and the standard deviation was 0.00001, which is equivalent to 0.0003 in salinity.

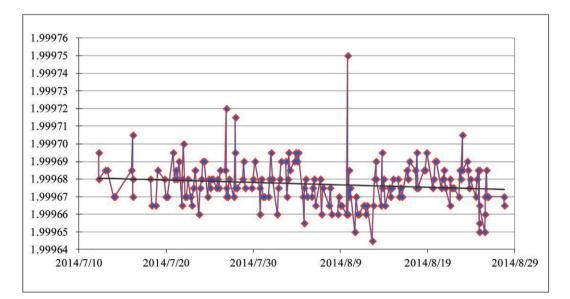



Figure 3.2.1. History of double conductivity ratio measurement of the Standard Seawater (P156). Horizontal and vertical axes represents date and double conductivity ratio, respectively. Blue dots indicate raw data and red dots indicate corrected data.

### iii. Replicate Samples

We took 675 pairs of replicate samples collected from the same Niskin bottle. Histogram of the absolute difference between replicate samples is shown in Fig. 3.2.2. The root-mean-square of the absolute deference was 0.0002.

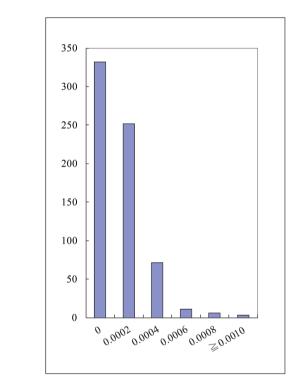



Figure 3.2.2. Histogram of the absolute difference between replicate samples. Horizontal axis is absolute difference in salinity and vertical axis is frequency.

### ii. Sub-Standard Seawater

We also used sub-standard seawater which was deep-sea water filtered by pore size of  $0.45 \ \mu m$  and stored in a 20 liter cubitainer made of polyethylene and stirred for at least 24 hours before measuring. It was measured every 6 samples in order to check the possible sudden drift of the salinometer. During the whole measurements, there was no detectable sudden drift of the salinometer.

### iv. Duplicate Samples

We took 37 pairs of duplicate samples collected from the different Niskin bottle at same depth. Histogram of the absolute difference between duplicate samples is shown in Fig. 3.2.3. The root-mean-square of the absolute deference was 0.0003.

### (5) References

- Aoyama, M., T. Joyce, T. Kawano and Y. Takatsuki (2002): Standard seawater comparison up to P129. Deep-Sea Research, I, Vol. 49, 1103-1114.
- Kawano (2010): Salinity. The GO-SHIP Repeat Hydrography Manual: A collection of Expert Reports and Guidelines, IOCCP Report No. 14, ICPO Publication Series No. 134, Version 1.

UNESCO (1981): Tenth report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Papers in Mar. Sci., 36, 25 pp.

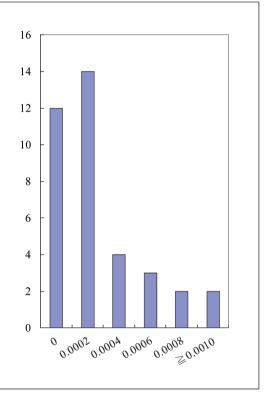



Fig. 3.2.3. Histogram of the absolute difference between duplicate samples. Horizontal axis is absolute

difference in salinity and vertical axis is frequency.

### 3.3 Density

November 25, 2014

### (1) Personnel

Hiroshi Uchida (JAMSTEC)

### (2) Objectives

The objective of this study is to collect absolute salinity (also called "density salinity") data, and to evaluate an algorithm to estimate absolute salinity provided along with TEOS-10 (the International Thermodynamic Equation of Seawater 2010) (IOC et al., 2010).

#### (3) Materials and methods

Seawater densities were measured during the cruise with an oscillation-type density meter (DMA 5000M, serial no. 80570578, Anton-Paar GmbH, Graz, Austria) with a sample changer (Xsample 122, serial no. 80548492, Anton-Paar GmbH). The sample changer was used to load samples automatically from up to ninetysix 12-mL glass vials.

The water samples were collected in 100-mL aluminum bottles (Mini Bottle Can, Daiwa Can Company, Japan). The bottles were stored at room temperature (~23 °C) upside down usually for 12 to 24 hours to make the temperature of the sample equal to the room temperature. The water sample was filled in a 12-mL glass vial and the glass vial was sealed with Parafilm M (Pechiney Plastic Packaging, Inc., Menasha, Wisconsin, USA) immediately after filling. Densities of the samples were measured at 20 °C by the density meter two times for each bottle and averaged to estimate the density. When the difference between the two measurements was greater than 0.002, additional measurements were conducted until two samples satisfying the above criteria were obtained.

Time drift of the density meter was monitored by periodically measuring the density of ultra-pure water (Milli-Q water, Millipore, Billerica, Massachusetts, USA) prepared from Yokosuka (Japan) tap water in October 2012. The true density at 20 °C of the Milli-Q water was estimated to be 998.2042 kg m<sup>-3</sup> from the isotopic composition ( $\delta D = -8.76 \%$ ,  $\delta^{18}O = -56.86 \%$ ) and International Association for the Properties of Water and Steam (IAPWS)-95 standard. An offset correction was applied to the measured density by using the Milli-Q water measurements ( $\rho_{Milli-Q}$ ) with a slight modification of the density dependency (Uchida et al., 2011). The offset ( $\rho_{offset}$ ) of the measured density ( $\rho$ ) was reevaluated in November 2014 as follows:

 $\rho_{offset} = (\rho_{Milli\cdot Q} - 998.2042) - (\rho - 998.2042) \times 0.000411 \ [kg \ m^{-3}].$ 

The offset correction was verified by measuring Reference Material for Density in Seawater (prototype Dn-RM1 and Pre 18) developing with Marine Works Japan, Ltd., Kanagawa, Japan, and produced by Kanso Technos Co., Ltd., Osaka, Japan, along with the Milli-Q water.

Density salinity can be back calculated from measured density and temperature (20 °C) with TEOS-10.

### (4) Results

Results of density measurements of the Reference Material for Density in Seawater (Dn-RM1 and Pre 18) were shown in Table 3.3.1 and Table 3.3.2. Mean densities of the Dn-RM1 and Pre 18 were in good agreement with the measurements before the reevaluation of the offset of density measurements (Table 3.3.2).

A total of 16 pairs of replicate samples were measured. The root-mean square of the absolute difference of replicate samples was 0.0008 g/kg.

The measured density salinity anomalies ( $\delta S_A$ ) are shown in Fig. 3.3.1. The measured  $\delta S_A$  well agree with calculated  $\delta S_A$  from Pawlowicz et al. (2011) which exploits the correlation between  $\delta S_A$  and nutrient concentrations and carbonate system parameters based on mathematical investigation using a model relating composition, conductivity and density of arbitrary seawaters.

### (5) References

IOC, SCOR and IAPSO (2010): The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, United Nations Educational, Scientific and Cultural Organization (English), 196 pp.

| Pawlowicz, R., D. G. Wright and F. J. Millero (2011): The effects of biogeochemical processes on ocean       | 2014/08/03 089 1024.2615                                                              |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| conductivity/salinity/density relationships and the characterization of real seawater. Ocean Science, 7,     | 2014/08/05 095 1024.2613                                                              |
| 363–387.                                                                                                     | 2014/08/07 101 1024.2621                                                              |
| Uchida, H., T. Kawano, M. Aoyama and A. Murata (2011): Absolute salinity measurements of standard            | 2014/08/11 110 1024.2625                                                              |
| seawaters for conductivity and nutrients. La mer, 49, 237-244.                                               | 2014/08/14 120 1024.2618                                                              |
|                                                                                                              | 2014/08/16 128 1024.2631                                                              |
|                                                                                                              | 2014/08/17 151 1024.2620                                                              |
| Table 3.3.1. Result of density measurements of the Reference Material for Density in Seawater (prototype Dn- | 2014/08/20 136 1024.2623                                                              |
| RM1).                                                                                                        | 2014/08/22         140,143         1024.2639         Stn. 140 #16: Miss trip (flag 4) |
|                                                                                                              | 2014/08/23 145,147 1024.2621                                                          |
| Date Stations Mean density of Note                                                                           | 2014/08/24 148,149,150 1024.2618                                                      |
| (sample no.) Dn-RM1 (kg/m <sup>3</sup> )                                                                     | Average: 1024.2627 ± 0.0010                                                           |

| Leg 1      |                 |           |
|------------|-----------------|-----------|
| 2014/07/11 | 001             | 1024.2625 |
| 2014/07/12 | 007,014         | 1024.2649 |
| 2014/07/14 | 022,030         | 1024.2645 |
| Leg 2      |                 |           |
| 2014/07/18 | 036,037,038,040 | 1024.2641 |
| 2014/07/19 | 045             | 1024.2627 |
| 2014/07/20 | 043             | 1024.2622 |
| 2014/07/21 | 051             | 1024.2643 |
| 2014/07/25 | 060             | 1024.2617 |
| 2014/07/27 | 067             | 1024.2632 |
| 2014/07/29 | 073             | 1024.2621 |
| 2014/08/01 | 079             | 1024.2619 |

| Table 3.3.2. Comparison of densit | v measurement of the Reference Mater | ial for Density in Seawater (prototype |
|-----------------------------------|--------------------------------------|----------------------------------------|
|                                   |                                      |                                        |

Dn-RM1 and Pre 18).

| Date            | Serial no.             | Density [kg/m <sup>3</sup> ] | Note            |   |
|-----------------|------------------------|------------------------------|-----------------|---|
| Measurements on | this cruise            |                              |                 |   |
| Pre 18          |                        |                              |                 |   |
| 2014/07/23      | 270                    | ) 1024.2222                  |                 |   |
| 2014/08/18      | 150                    | ) 1024.2216                  |                 |   |
| 2014/08/18      | 309                    | ) 1024.2219                  |                 |   |
| 2014/08/20      | 370                    | ) 1024.2223                  |                 |   |
| 2014/08/22      | 289                    | ) 1024.2223                  |                 |   |
|                 | Ave                    | erage: 1024.2221 ± 0.0003    |                 |   |
| Dn-RM1          |                        |                              |                 |   |
| 2014/07/11-     |                        | $1024.2627 \pm 0.0010$       | See Table 3.3.1 |   |
| 2014/08/24      |                        |                              |                 |   |
| Recent measurem | ents before this cruis | e                            |                 |   |
| Pre 18          |                        |                              |                 |   |
| 2014/03/27-     |                        | $1024.2216 \pm 0.0012$       | 4 bottles       | I |
| 2014/04/06      |                        |                              |                 |   |
| Dn-RM1          |                        |                              |                 |   |
| 2014/04/03-06   |                        | $1024.2623 \pm 0.0007$       | 8 bottles       |   |

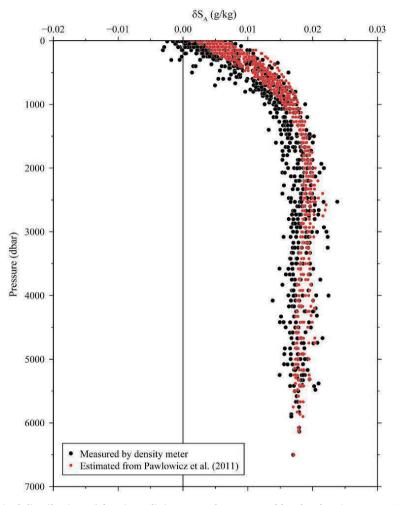



Figure 3.3.1. Vertical distribution of density salinity anomaly measured by the density meter. Absolute Salinity anomaly estimated from nutrients and carbonate parameters (Pawlowicz et al., 2011) are also shown for comparison.

# 3.4 Oxygen

August 26, 2014

### (1) Personnel

Yuichiro Kumamoto<sup>1)</sup>, Misato Kuwahara<sup>2)</sup>, Keitaro Matsumoto<sup>2)</sup>, Katsunori Sagishima<sup>2)</sup>, and Haruka Tamada<sup>2)</sup>

1) Japan Agency for Marine-Earth Science and Technology

2) Marine Works Japan Co. Ltd

### (2) Objectives

Dissolved oxygen is one of good tracers for the ocean circulation. Climate models predict a decline in oceanic dissolved oxygen concentration and a consequent expansion of the oxygen minimum layers under global warming conditions, which results mainly from decreased interior advection and ongoing oxygen consumption by remineralization. The mechanism of the decrease, however, is still unknown. During MR14-04 cruise, we measured dissolved oxygen concentration from surface to bottom layers at all the hydrocast stations in the North Pacific Ocean. All the stations reoccupied the WOCE Hydrographic Program P10N (Leg-1) and P01 (Leg-2) stations in the 1990s. Our purpose is to evaluate temporal change in dissolved oxygen concentration in the North Pacific Ocean during the past decades.

### (3) Reagents

Pickling Reagent I: Manganous chloride solution (3M)

Pickling Reagent II: Sodium hydroxide (8M) / sodium iodide solution (4M)

Sulfuric acid solution (5M)

Sodium thiosulfate (0.025M)

Potassium iodate (0.001667M): Wako Pure Chemical Industries, Ltd., volumetric standard, reference material for iodometry, Lot No.TLG0272, Purity: 99.97 ± 0.04 %

CSK standard of potassium iodate: Lot TLM1372, Wako Pure Chemical Industries Ltd., 0.0100N

### (4) Instruments

Burette for sodium thiosulfate and potassium iodate;

APB-620 and APB-510 manufactured by Kyoto Electronic Co. Ltd. /  $10 \text{ cm}^3$  of titration vessel Detector;

Automatic photometric titrator, DOT-01X manufactured by Kimoto Electronic Co. Ltd.

### (5) Seawater sampling

Following procedure is based on a determination method in the WHP Operations Manual (Dickson, 1996). Seawater samples were collected from 12-liters Niskin sampler bottles attached to the CTD-system. Seawater for bottle oxygen measurement was transferred from the Niskin sampler bottle to a volume calibrated glass flask (ca. 100 cm<sup>3</sup>). Three times volume of the flask of seawater was overflowed. Sample temperature was measured using a thermometer (ARO-PR, JFE Advantech Co. Ltd.) that was calibrated with a standard thermometer (SBE 3plus, Sea-Bird Electronics, Inc.). Then two reagent solutions (Reagent I, II) of 0.5 cm<sup>3</sup> each were added immediately into the sample flask and the stopper was inserted carefully into the flask. The sample flask was then shaken vigorously to mix the contents and to disperse the precipitate finely throughout. After the precipitate has settled at least halfway down the flask, the flask was shaken again to disperse the precipitate. The sample flasks containing pickled samples were stored in a laboratory until they were titrated.

#### (6) Sample measurement

At least two hours after the re-shaking, the pickled samples were measured on board. A magnetic stirrer bar and 1 cm<sup>3</sup> sulfuric acid solution were added into the sample flask and stirring began. Samples were titrated by sodium thiosulfate solution whose molarity was determined by potassium iodate solution. Temperature of sodium thiosulfate during titration was recorded by a thermometer. We measured dissolved

oxygen concentration using two sets of the titration apparatus, named DOT-7 and DOT-8. Dissolved oxygen concentration (µmol kg<sup>-1</sup>) was calculated by the sample temperature during the sampling, CTD salinity, flask volume, and titrated volume of the sodium thiosulfate solution.

#### (7) Standardization

Concentration of sodium thiosulfate titrant (ca. 0.025M) was determined by potassium iodate solution. Pure potassium iodate was dried in an oven at  $130^{\circ}$ C. 1.7835 g potassium iodate weighed out accurately was dissolved in deionized water and diluted to final volume of 5 dm<sup>3</sup> in a calibrated volumetric flask (0.001667M). 10 cm<sup>3</sup> of the standard potassium iodate solution was added to a flask using a volume-calibrated dispenser. Then 90 cm<sup>3</sup> of deionized water, 1 cm<sup>3</sup> of sulfuric acid solution, and 0.5 cm<sup>3</sup> of pickling reagent solution II and I were added into the flask in order. Amount of titrated volume of sodium thiosulfate (usually 5 times measurements average) gave the molarity of the sodium thiosulfate titrant. Table 3.4.1 shows result of the standardization during this cruise. Coefficient of variation (C.V.) for the standardizations was 0.02 ± 0.01 % (n = 36), c.a. 0.05 µmol kg<sup>-1</sup>.

#### (8) Determination of the blank

The oxygen in the pickling reagents I ( $0.5 \text{ cm}^3$ ) and II ( $0.5 \text{ cm}^3$ ) was assumed to be  $3.8 \times 10^8$  mol (Murray *et al.*, 1968). The blank from the presence of redox species apart from oxygen in the reagents (the pickling reagents I, II, and the sulfuric acid solution) was determined as follows. 1 and 2 cm<sup>3</sup> of the standard potassium iodate solution were added to two flasks respectively. Then 100 cm<sup>3</sup> of deionized water, 1 cm<sup>3</sup> of sulfuric acid solution, and  $0.5 \text{ cm}^3$  of pickling reagent solution II and I each were added into the two flasks in order. The blank was determined by difference between the two times of the first (1 cm<sup>3</sup> of KIO<sub>3</sub>) titrated volume of the sodium thiosulfate and the second (2 cm<sup>3</sup> of KIO<sub>3</sub>) one. The results of 3 times blank determinations were averaged (Table 3.4.1). The averaged blank values for DOT-7 and DOT-8 were 0.000 ± 0.001 (standard deviation, S.D., n=18) and 0.000 ± 0.001 (S.D., n=18) cm<sup>3</sup>, respectively.

Table 3.4.1. Results of the standardization (End point, E.P.) and the blank determinations (cm<sup>3</sup>).

| Data (UTC) | VIO No               | No S O No        | DC    | )T-7   | DC    | )T-8   | Stationa                                                                                               |
|------------|----------------------|------------------|-------|--------|-------|--------|--------------------------------------------------------------------------------------------------------|
| Date(UTC)  | KIO <sub>3</sub> No. | $Na_2S_2O_3$ No. | E.P.  | blank  | E.P.  | blank  | Stations                                                                                               |
| 2014/7/10  | K1404B01             | T1406A           | 3.957 | -0.002 | 3.960 | -0.002 | 001, 007, 014, 022, 030                                                                                |
| 2014/7/16  | K1404B02             | T1406C           | 3.956 | 0.000  | 3.961 | -0.001 | 036, 037, 038, 039, 040, 047,<br>046, 045, 044, 041, 042, 043,<br>048, 049, 050, 051, 052, 053,<br>054 |
| 2014/7/22  | K1404B03             | T1406D           | 3.957 | 0.000  | 3.963 | -0.001 | 055, 056, 057, 058, 059, 060,<br>061, 062, 063, 064, 065, 066,<br>067, 068                             |
| 2014/7/26  | K1404B04             | T1406D           | 3.958 | 0.001  | 3.962 | 0.001  | 069, 070, 071, 072, 073, 074,<br>075, 076, 077, 078                                                    |
| 2014/7/30  | K1404B05             | T1406E           | 3.958 | 0.001  | 3.958 | 0.000  | 079, 080, 081, 082, 083, 084,<br>085, 086, 087, 088, 089, 090,<br>091, 092, 093, 094, 095, 096,<br>097 |
| 2014/8/5   | K1404B06             | T1406E           | 3.956 | 0.000  | 3.962 | -0.001 | 098, 099, 100, 101, 102, 103,<br>104                                                                   |
| 2014/8/8   | K1404B07             | T1406F           | 3.957 | 0.001  | 3.958 | -0.001 | 105, 106, 107, 108, 109, 110,<br>111, 112, 113, 114, 115, 116,<br>117, 118                             |
| 2014/8/13  | K1404B09             | T1406F           | 3.955 | 0.002  | 3.959 | 0.000  | 119, 120, 121, 122, 123, 124,<br>125, 126, 127, 128, 151                                               |
| 2014/8/17  | K1404C01             | T1406G           | 3.956 | 0.001  | 3.958 | 0.000  | 129, 130, 131, 132, 133, 134,<br>135, 136                                                              |
| 2014/8/20  | K1404C02             | T1406G           | 3.955 | 0.000  | 3.958 | 0.000  | 137, 138, 139, 140, 141, 142,<br>143, 144, 145, 146, 147, 148,<br>149, 150                             |

#### (9) Replicate sample measurement

From a routine CTD cast at all the stations, a pair of replicate samples was collected at four layers of 50, 400, 1800, and 3500 dbars. The total number of the replicate sample pairs in good measurement (flagged 2) was 447 (Fig. 3.4.1). The standard deviation of the replicate measurement was 0.12 µmol kg<sup>-1</sup> calculated by a procedure (SOP23) in DOE (1994).

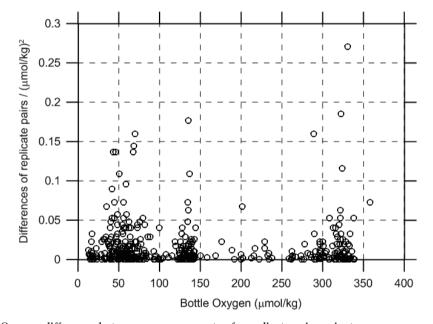



Figure 3.4.1. Oxygen difference between measurements of a replicate pair against oxygen concentration (Data from Stn. 139-1 #35: 0.79 and Stn. 146-1 #35: 4.00 (µmol kg<sup>-1</sup>)<sup>2</sup> are not shown in this figure).

#### (10) Duplicate sample measurement

During the Leg-2 duplicate sampling were taken for all the Niskin bottles (36 bottles, Table 3.4.2). The standard deviation of the duplicate measurements were calculated to be 0.09 µmol kg<sup>-1</sup>, which were equivalent with that of the replicate measurements (0.12 µmol kg<sup>-1</sup>, see section 9).

#### (11) CSK standard measurements

The CSK standard is a commercial potassium iodate solution (0.0100 N) for analysis of dissolved oxygen. We titrated the CSK standard solution (Lot TLM1372) against our  $\text{KIO}_3$  standards as samples before and during the cruise (Table 3.4.3). A good agreement among them confirms that there was no systematic shift in our oxygen analyses between preparation of our  $\text{KIO}_3$  standards onshore and the sample measurements on board.

#### (12) Quality control flag assignment

Quality flag values were assigned to oxygen measurements using the code defined in Table 0.2 of WHP Office Report WHPO 91-1 Rev.2 section 4.5.2 (Joyce *et al.*, 1994). Measurement flags of 2 (good), 3 (questionable), 4 (bad), and 5 (missing) have been assigned (Table 3.4.4). For the choice between 2, 3, or 4, we basically followed a flagging procedure as listed below:

- a. Bottle oxygen concentration at the sampling layer was plotted against sampling pressure. Any points not lying on a generally smooth trend were noted.
- b. Difference between bottle oxygen and CTD oxygen was then plotted against sampling pressure. If a datum deviated from a group of plots, it was flagged 3.
- c. Vertical sections against pressure and potential density were drawn. If a datum was anomalous on the section plots, datum flag was degraded from 2 to 3, or from 3 to 4.
- d. If there was problem in the measurement, the datum was flagged 4.
- e. If the bottle flag was 4 (did not trip correctly), a datum was flagged 4 (bad). In case of the bottle flag 3 (leaking) or 5 (unknown problem), a datum was flagged based on steps a, b, c, and d.

|    | Log | Stations | Duplicated | Niskins     | Duplicated | Dissolved        | l oxygen         |
|----|-----|----------|------------|-------------|------------|------------------|------------------|
|    | Leg | Stations | Niskin #   | INISKIIIS   | Pres.(db)  | (µmol            | /kg)             |
|    |     |          |            | X12J02, 03, |            | 150.62           | 150.54           |
| 1  | 2   | 042      | 2-9        | 04, 05, 06, | 4000       | 150.56           | 150.63           |
|    |     |          |            | 07, 08 ,09  |            | 150.68<br>150.49 | 150.53<br>150.44 |
| 2  | 2   | 048      | 1, (2)     | X12J01      | 5575       | 160.04           | 159.98           |
| 3  | 2   | 049      | (4), 10    | X12J10      | 5330       | 159.42           | 159.25           |
| 4  | 2   | 051      | (4), 11    | X12J11      | 5250       | 159.90           | 160.04           |
| 5  | 2   | 052      | (5), 12    | X12J12      | 5080       | 159.06           | 159.29           |
| 6  | 2   | 053      | (4), 13    | X12113      | 5170       | 160.64           | 160.54           |
| 7  | 2   | 055      | (4), 14    | X12J14      | 5330       | 160.77           | 160.72           |
| 8  | 2   | 056      | (3), 15    | X12J15      | 5420       | 163.02           | 162.98           |
| 9  | 2   | 057      | (3), 16    | X12J16      | 5500       | 160.68           | 160.60           |
| 10 | 2   | 059      | (4), 17    | X12J17      | 5170       | 159.17           | 159.10           |
| 11 | 2   | 061      | (5), 18    | X12J18      | 5080       | 157.19           | 157.17           |
| 12 | 2   | 062      | (4), 19    | X12J19      | 5170       | 157.33           | 157.42           |
| 13 | 2   | 063      | (5), 20    | X12J20      | 5000       | 157.24           | 157.34           |
| 14 | 2   | 064      | (4), 21    | X12J21      | 5330       | 157.35           | 157.23           |
| 15 | 2   | 065      | (4), 22    | X12J22      | 5170       | 158.59           | 158.63           |
| 16 | 2   | 066      | (4), 23    | X12J23      | 5250       | 157.28           | 157.20           |
| 17 | 2   | 068      | (4), 24    | X12J24      | 5170       | 157.09           | 157.13           |
| 18 | 2   | 069      | (6), 25    | X12J25      | 4750       | 157.17           | 157.05           |
| 19 | 2   | 070      | (6), 26    | X12J26      | 4830       | 156.52           | 156.46           |
| 20 | 2   | 071      | (6), 27    | X12J27      | 4670       | 155.65           | 155.44           |

# Table 3.4.2. Results of duplicate sample measurements.

| 21 | 2 | 072 | (5), 28 | X12J28 | 5000 | 157.30 | 157.11 |
|----|---|-----|---------|--------|------|--------|--------|
| 22 | 2 | 074 | (3), 29 | X12J29 | 5420 | 159.10 | 159.25 |
| 23 | 2 | 075 | (3), 30 | X12J30 | 5500 | 157.10 | 157.05 |
| 24 | 2 | 082 | (5), 31 | X12J31 | 5080 | 156.15 | 155.97 |
| 25 | 2 | 083 | (8), 32 | X12J32 | 4170 | 150.07 | 149.90 |
| 26 | 2 | 086 | (9), 33 | X12J33 | 3920 | 147.63 | 147.43 |
| 27 | 2 | 090 | (3), 34 | X12J34 | 5500 | 155.63 | 155.68 |
| 28 | 2 | 094 | (3), 35 | X12J35 | 5580 | 154.33 | 154.23 |
| 29 | 2 | 096 | (3), 36 | X12J36 | 5500 | 152.86 | 152.84 |
| 30 | 2 | 106 | (2), 3  | X12J03 | 5580 | 152.84 | 152.63 |
| 31 | 2 | 107 | (2), 3  | X12J03 | 5420 | 151.88 | 151.69 |

| Date       | KIO3     | DOT-5     |           |           | -         | Dementer      |
|------------|----------|-----------|-----------|-----------|-----------|---------------|
| (UTC)      | ID No.   | Conc. (N) | error (N) | -         | -         | Remarks       |
| 2014/05/13 | K1404A01 | 0.010012  | 0.000005  |           |           | Onshore lab.  |
| 2014/05/14 | K1404C12 | 0.010013  | 0.000003  |           |           | Onshore lab.  |
| 2014/05/15 | K1404I12 | 0.010010  | 0.000002  |           |           | Onshore lab.  |
|            |          | DO        | T-7       | DO        | )T-8      |               |
|            |          | Conc. (N) | error (N) | Conc. (N) | error (N) |               |
| 2014/06/09 | K1404A09 | 0.010009  | 0.000004  | 0.010005  | 0.000003  | MR14-03       |
| 2014/07/10 | K1404B01 | 0.010005  | 0.000003  | 0.010004  | 0.000005  | MR14-04 Leg-1 |
| 2014/08/17 | K1404C01 | 0.010007  | 0.000004  | 0.010006  | 0.000003  | MR14-04 Leg-2 |

Table 3.4.3. Results of the CSK standard (Lot TLM1372) measurements.

- DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. A.G. Dickson and C. Goyet (eds), ORNL/CDIAC-74.
- Joyce, T., and C. Corry, eds., C. Corry, A. Dessier, A. Dickson, T. Joyce, M. Kenny, R. Key, D. Legler, R. Millard, R. Onken, P. Saunders, M. Stalcup (1994) Requirements for WOCE Hydrographic Programme Data Reporting, WHPO Pub. 90-1 Rev. 2, May 1994 Woods Hole, Mass., USA.
- Murray, C.N., J.P. Riley, and T.R.S. Wilson (1968) The solubility of oxygen in Winkler reagents used for determination of dissolved oxygen, Deep-Sea Res., 15, 237-238.

#### Table 3.4.4. Summary of assigned quality control flags.

| Flag | Definition           | Number* |
|------|----------------------|---------|
| 2    | Good                 | 3714    |
| 3    | Questionable         | 1       |
| 4    | Bad                  | 4       |
| 5    | Not report (missing) | 2       |
|      | Total                | 3721    |

\*Replicate samples (n = 447) were not included.

### References

Dickson, A. (1996) Determination of dissolved oxygen in sea water by Winkler titration, in WHPO Pub. 91-1

Rev. 1, November 1994, Woods Hole, Mass., USA.

# **3.5** Nutrients

October 14, 2016 (ver.2.2)

#### (1) Personnel

Michio AOYAMA (JAMSTEC / Fukushima University, Principal Investigator) Leg 1

Yasuhiro ARII (Department of Marine Science, Marine Works Japan Ltd.) Minoru KAMATA (Department of Marine Science, Marine Works Japan Ltd.) Tomomi SONE (Department of Marine Science, Marine Works Japan Ltd.) Leg 2

Yasuhiro ARII (Department of Marine Science, Marine Works Japan Ltd.) Kenichiro SATO (Department of Marine Science, Marine Works Japan Ltd.) Elena HAYASHI (Department of Marine Science, Marine Works Japan Ltd.)

#### (2) Objectives

The objectives of nutrients analyses during the R/V Mirai MR1404 cruise, WOCE P1 revisited cruise in 2014, in the North Pacific Ocean are as follows;

- Describe the present status of nutrients concentration with excellent comparability.

- The determinants are nitrate, nitrite, silicate, phosphate and Ammonium.

- Study the temporal and spatial variation of nutrients concentration based on the previous high quality experiments data of WOCE previous P1 cruises in 2007, GEOSECS, IGY and so on.

- Study of temporal and spatial variation of nitrate: phosphate ratio, so called Redfield ratio.

- Obtain more accurate estimation of total amount of nitrate, silicate and phosphate in the interested area.

- Provide more accurate nutrients data for physical oceanographers to use as tracers of water mass movement.

#### (3) Summary of nutrients analysis

We made 129 QuAAtro 2-HR runs for the samples at 118 casts, 113 stations in MR1404. The total amount of layers of the seawater sample reached up to 3918 for MR1404. We made duplicate measurement at all layers, except for ammonium samples.

#### (4) Instrument and Method

#### (4.1) Analytical detail using QuAAtro 2-HR systems (BL-Tech)

We applied three units of QuAAtro in this cruise. Unit 1 and Unit 2 were put for R/V Mirai equipment. Unit 3 was carried on R/V Mirai. Configurations of all three units are completely same for four parameters, Nitrate, Nitrite, Silicate and Phosphate, while Unit 3 has ammonium measurement channel as channel 5.

Nitrate + nitrite and nitrite were analyzed according to the modification method of Grasshoff (1970). The sample nitrate was reduced to nitrite in a cadmium tube inside of which was coated with metallic copper. The sample streamed with its equivalent nitrite was treated with an acidic, sulfanilamide reagent and the nitrite forms nitrous acid which reacted with the sulfanilamide to produce a diazonium ion. N-1-Naphthylethylene-diamine added to the sample stream then coupled with the diazonium ion to produce a red, azo dye. With reduction of the nitrate to nitrite, both nitrate and nitrite reacted and were measured; without reduction, only nitrite reacted. Thus, for the nitrite analysis, no reduction was performed and the alkaline buffer was not necessary. Nitrate was computed by difference.

The silicate method was analogous to that described for phosphate. The method used was essentially that of Grasshoff et al. (1983), wherein silicomolybdic acid was first formed from the silicate in the sample and added molybdic acid; then the silicomolybdic acid was reduced to silicomolybdous acid, or "molybdenum blue" using ascorbic acid as the reductant. The analytical methods of the nutrients, nitrate, nitrite, silicate and phosphate, during this cruise were same as the methods used in (Kawano et al. 2009).

The phosphate analysis was a modification of the procedure of Murphy and Riley (1962). Molybdic acid was added to the seawater sample to form phosphomolybdic acid which was in turn reduced to phosphomolybdous acid using L-ascorbic acid as the reductant.

The details of modification of analytical methods for four parameters, Nitrate, Nitrite, Silicate and Phosphate, used in this cruise are also compatible with the methods described in nutrients section in GO-SHIP repeat hydrography manual (Hydes et al., 2010), while an analytical method of ammonium is compatible with Determination of ammonia in seawater using a vaporization membrane permeability method (Kimura, 2000). The flow diagrams and reagents for each parameter are shown in Figures 3.5.1 to 3.5.5.

#### (4.2) Nitrate Reagents

Imidazole (buffer), 0.06 M (0.4 % w/v)

Dissolve 4 g imidazole,  $C_3H_4N_2$ , in 1000 ml DIW, add 2 ml concentrated HCl and 0.2 ml 1% CuSO<sub>4</sub> solution. After mixing, 1 ml Triton<sup>TM</sup> X-100 (50 % solution in ethanol) is added.

Sulfanilamide,  $0.06~{\rm M}~(1~\%~{\rm w/v})$  in 1.2 M HCl

Dissolve 10 g sulfanilamide,  $4\text{-NH}_2C_6H_4SO_3H$ , in 900 ml of DIW, add 100 ml concentrated HCl. After mixing, 2 ml Triton<sup>TM</sup> X-100 (50 % solution in ethanol) is added.

WHT/WHT debubble (258 µL min.<sup>-1</sup>) Waste 1ch  $NO_3 + NO_2$ ORN/WHT Air (111) 20T 5T 10T GRN/GRN Imidazole (635) BLK/BLK sample or base sea water (151) Cd coil x2<sup>a</sup> ORN/WHT Air (111) WHT/WHT sulfanilamide (258) ORN/WHT NED (111) Waste 1.0 mm I.D. × 10.0 mm

LED 545 nm

Figure 3.5.1.  $NO_3 + NO_2$  (1ch.) Flow diagram.

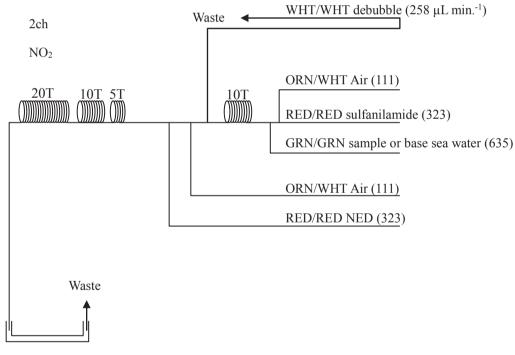
note a: 5turn Cd coil were doubled during MR1404 cruise

N-1-Napthylethylene-diamine dihydrochloride, 0.004 M (0.1 % w/v)

Dissolve 1 g NED, C<sub>10</sub>H<sub>7</sub>NHCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>•2HCl, in 1000 ml of DIW and add 10 ml concentrated HCl. After

mixing, 1 ml Triton<sup>TM</sup> X-100 (50 % solution in ethanol) is added.

Stored in a dark bottle.


# (4.3) Nitrite Reagents

Sulfanilamide,  $0.06~{\rm M}$  (1% w/v) in 1.2 M HCl

Dissolve 10 g sulfanilamide,  $4\text{-NH}_2C_6H_4SO_3H$ , in 900 ml of DIW, add 100 ml concentrated HCl. After mixing, 2 ml Triton<sup>TM</sup> X-100 (50% solution in ethanol) is added.

#### N-1-Napthylethylene-diamine dihydrochloride, $0.004~{\rm M}~(0.1\%~{\rm w/v})$

Dissolve 1 g NED,  $C_{10}H_7NHCH_2CH_2NH_2 \cdot 2HCl$ , in 1000 ml of DIW and add 10 ml concentrated HCl. After mixing, 1 ml Triton<sup>TM</sup> X-100 (50% solution in ethanol) is added. This reagent was stored in a dark bottle.



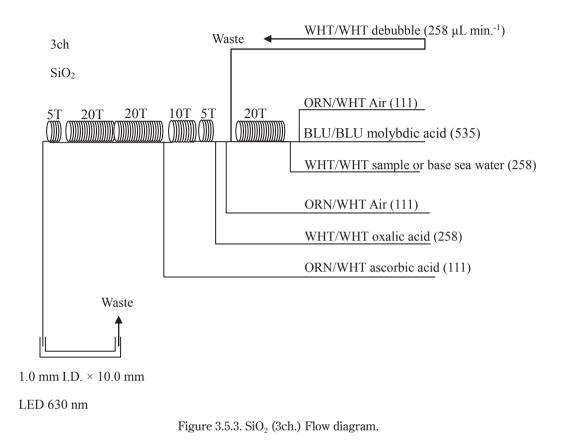
 $1.0 \text{ mm I.D.} \times 30.0 \text{ mm}$ 

# LED 545 nm

Figure 3.5.2. NO<sub>2</sub> (2ch.) Flow diagram.

# (4.4) Silicate Reagents

# Molybdic acid, 0.06 M (2% w/v)


Dissolve 15 g disodium Molybdate(VI) dihydrate,  $Na_2MoO_4 \bullet 2H_2O$ , in 980 ml DIW, add 8 ml concentrated  $H_2SO_4$ . After mixing, 20 ml sodium dodecyl sulphate (15% solution in water) is added.

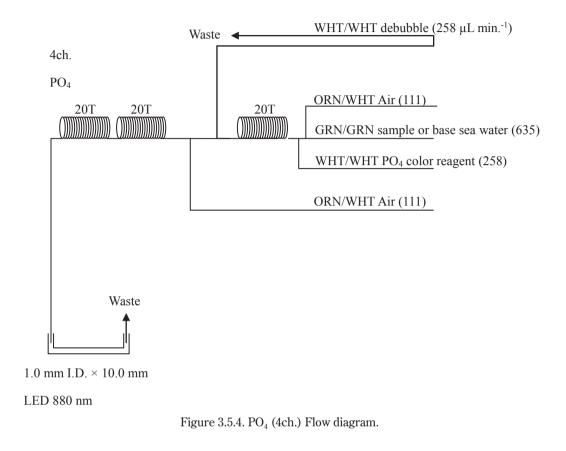
# Oxalic acid, 0.6 M (5% w/v)

Dissolved 50 g oxalic acid anhydrous, HOOC: COOH, in 950 ml of DIW.

# Ascorbic acid, 0.01 M (3% w/v)

Dissolved 2.5g L(+)-ascorbic acid,  $C_6H_8O_6$ , in 100 ml of DIW. This reagent was freshly prepared at every day.






```
Stock molybdate solution, 0.03 M (0.8% w/v)
```

Dissolved 8 g disodium molybdate(VI) dihydrate,  $Na_2MoO_4 \bullet 2H_2O$ , and 0.17 g antimony potassium tartrate,  $C_8H_4K_2O_{12}Sb_2 \bullet 3H_2O$ , in 950 ml of DIW and added 50 ml concentrated  $H_2SO_4$ .

# Mixed Reagent

Dissolved 1.2 g L(+)-ascorbic acid,  $C_6H_8O_6$ , in 150 ml of stock molybdate solution. After mixing, 3 ml sodium dodecyl sulphate (15% solution in water) was added. This reagent was freshly prepared before every measurement.



# (4.6) Ammonium Reagents

# EDTA

Dissolve 41 g EDTA (ethylenediaminetetraacetatic acid tetrasodium salt),  $C_{10}H_{12}N_2O_8Na_4 \cdot 4H_2O$ , and 2 g boric acid,  $H_3BO_3$ , in 200 ml of DIW. After mixing, 1 ml Triton<sup>TM</sup> X-100 (30% solution in DIW) is added. This reagent is prepared at a week about.

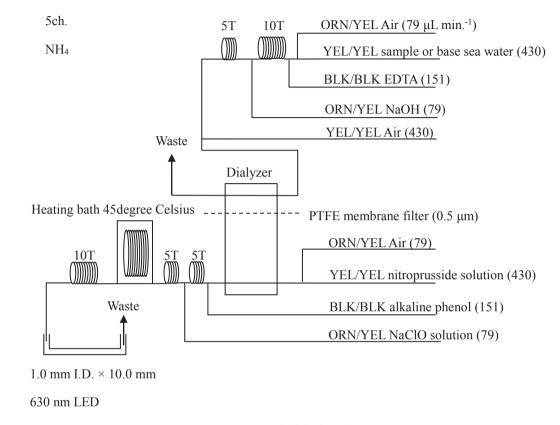
# NaOH

Dissolve 5 g sodium hydroxide, NaOH, and 16 g EDTA in 100 ml of DIW. This reagent is prepared at a week about.

#### Stock Nitroprusside

Dissolved 0.25 g sodium pentacyanonitrosylferrate(II),  $Na_2[Fe(CN)_5NO]$ , in 100 ml of DIW and add 0.2 ml 1N  $H_2SO_4$ . Stored in a dark bottle and prepared at a month about.

#### Nitroprusside solution


Mixed 4 ml stock nitroprusside and 5 ml 1N  $H_2SO_4$  in 500 ml of DIW. After mixing, 2 ml Triton<sup>TM</sup> X-100 (30% solution in DIW) is added. This reagent is stored in a dark bottle and prepared at every 2 or 3 days.

#### Alkaline phenol

Dissolved 10 g phenol,  $C_6H_5OH$ , 5 g sodium hydroxide and citric acid,  $C_6H_8O_7$ , in 200 ml DIW. Stored in a dark bottle and prepared at a week about.

#### NaClO solution

Mixed 3 ml sodium hypochlorite solution, NaClO, in 47 ml DIW. Stored in a dark bottle and fleshly prepared before every measurement. This reagent is prepared 0.3% available chlorine.





#### (4.7) Sampling procedures

Sampling of nutrients followed that oxygen, salinity and trace gases. Samples were drawn into two of virgin 10 ml polyacrylates vials without sample drawing tubes. These were rinsed three times before filling and then vials were capped immediately after the drawing. The vials were put into water bath adjusted to ambient temperature,  $24 \pm 2$  degree Celsius, in about 30 minutes before use to stabilize the temperature of samples in MR1404.

No transfer was made and the vials were set an auto sampler tray directly. Samples were analyzed after collection basically within 24 hours in principal.

7 casts among 29 casts of samples for ammonium were drawn into a virgin 50 ml PE tubes and frozen using liquid nitrogen after the water sampling immediately. After that, these samples were stored in deep freezer, -70 degree Celsius. Frozen samples were thawed using water bath, 40 degree Celsius, and put on room temperature just before the measurement. Samples were transferred into the virgin 10 ml vial due to set an auto sampler tray directly. However we observed concentrations changes of ammonium for frozen samples stated above 7casts, we measured samples of remaining 22 casts as NOT frozen.

#### (4.8) Data processing

Raw data from QuAAtro 2-HR was treated as follows:

- Checked baseline shift.

- Checked the shape of each peak and positions of peak values taken, and then changed the positions of peak values taken if necessary.

- Carry-over correction and baseline drift correction were applied to peak heights of each samples followed by sensitivity correction.

Baseline correction and sensitivity correction were done basically using liner regression.
Loaded pressure and salinity from CTD data to calculate density of seawater. In case of bucket sample, we generally used bottle salinity from AUTOSAL, while in case of MBC cast we used surface CTD data.
Calibration curves to get nutrients concentration were assumed second order equations.

#### (5) Nutrients standards

#### (5.1) Volumetric laboratory ware of in-house standards

All volumetric glass ware and polymethylpentene (PMP) ware were gravimetrically calibrated. These volumetric flasks were gravimetrically calibrated at the temperature of using in the laboratory within 4 K.

#### Volumetric flasks

Volumetric flasks of Class quality (Class A) are used because their nominal tolerances are 0.05 % or less over the size ranges likely to be used in this work. Class A flasks are made of borosilicate glass, and the standard solutions were transferred to plastic bottles as quickly as possible after they are made up to volume and well mixed in order to prevent excessive dissolution of silicate from the glass. High quality plastic (polymethylpentene, PMP, or polypropylene) volumetric flasks were gravimetrically calibrated and used only within 4 K of the calibration temperature.

The computation of volume contained by glass flasks at various temperatures other than the calibration temperatures were done by using the coefficient of linear expansion of borosilicate crown glass.

Because of their larger temperature coefficients of cubical expansion and lack of tables constructed for these materials, the plastic volumetric flasks were gravimetrically calibrated over the temperature range of intended use and used at the temperature of calibration within 4 K. The weights obtained in the calibration weightings were corrected for the density of water and air buoyancy.

#### **Pipettes and pipettors**

All pipettes have nominal calibration tolerances of 0.1 % or better. These were gravimetrically calibrated in order to verify and improve upon this nominal tolerance.

#### (5.2) Reagents, general considerations

#### Specifications

For nitrate standard, "potassium nitrate 99.995 suprapur®" provided by Merck, Lot. B0771365211, CAS

No. 7757-91-1, was used.

For nitrite standard, "sodium nitrite" provided by Wako, Lot. HLK7554, CAS No. 7632-00-0, was used. The assay of nitrite salts was determined according JIS K8019 and the result of the assay was 98.53%. We use that value to adjust the weights taken.

For phosphate standard, "potassium dihydrogen phosphate anhydrous 99.995 suprapur®" provided by Merck, Lot. B0691108204, CAS No.: 7778-77-0, was used.

For the silicate standard, we use "Silicon standard solution  $SiO_2$  in NaOH 0.5 mol/l CertiPUR®" provided by Merck, CAS No. 1310-73-2, of which lot number is HC382250 are used. The silicate concentration is certified by NIST-SRM3150 with the uncertainty of 0.5 %. HC382250 was certified as 1001 mg L<sup>1</sup>.

#### Treatment of silicate standard due to high alkalinity

Since the silicon standard solution Merck CertiPUR® is in NaOH 0.5 mol/l, we need to dilute and neutralize to avoid make precipitation of  $MgOH_2$  etc. When we make B standard, silicon standard solution is diluted by factor 12 with pure water and neutralized by HCl 1.0 mol L<sup>-1</sup> to be about 7. After that B standard solution is used to prepare C standards.

#### Ultra pure water

Ultra pure water (Milli-Q water) freshly drawn was used for preparation of reagents, standard solutions and for measurement of reagent and system blanks.

#### Low-Nutrient Seawater (LNSW)

Surface water having low nutrient concentration was taken and filtered using 0.20 µm pore size capsule cartridge filter. This water is stored in 20 liter cubitainer with paper box. The concentrations of nutrient of this water were measured carefully in October 2014.

#### (5.3) Concentrations of nutrients for A, B and C standards

Concentrations of nutrients for A, B and C standards are set as shown in Table 3.5.1. The C standard is prepared according recipes as shown in Table 3.5.2. All volumetric laboratory tools were calibrated prior the cruise as stated in chapter (5.1). Then the actual concentration of nutrients in each fresh standard was calculated based on the ambient, solution temperature and determined factors of volumetric laboratory wares. The calibration curves for each run were obtained using 6 levels, C-1, C-2, C-3, C-4, C-5 and C-6. C-1, C-2, C-3, C-4 and C-5 were the reference material of nutrients in seawater and C-6 was in-house standard.

Table 3.5.1. Nominal concentrations of nutrients for A, B and C standards.

|                      | Α     | В    | C-1 | C-2 | C-3 | C-4 | C-5 | C-6 | C-7 | C-8 |
|----------------------|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| NO <sub>3</sub> (µM) | 22500 | 900  | BY  | BU  | CA  | BW  | BZ  | 54  | -   | -   |
| $NO_2(\mu M)$        | 4000  | 20   | BY  | BU  | CA  | BW  | BZ  | 1.2 | -   | -   |
| $SiO_2(\mu M)$       | 35000 | 2760 | BY  | BU  | CA  | BW  | BZ  | 166 | -   | -   |
| $PO_4(\mu M)$        | 3000  | 60   | BY  | BU  | CA  | BW  | BZ  | 3.7 | -   | -   |
| $NH_4(\mu M)$        | 4000  | 200  | -   | -   | -   | -   | -   | 6.0 | 2.0 | 0   |

| _ | C std. | B-1 std. | B-2 std. | B-3 std. |
|---|--------|----------|----------|----------|
|   | C-6    | 25 ml    | 25 ml    | 15 ml    |
|   | C-7    | -        | -        | 5 ml     |
|   | C-8    | -        | -        | 0 ml     |

B-1 std.: Mixture of nitrate, silicate and phosphate

B-2 std.: Nitrite

B-3 std.: Ammonium

#### (5.4) Renewal of in-house standard solutions.

In-house standard solutions as stated in paragraph (5.2) were renewed as shown in Table 3.5.3(a) to (c).

#### Table 3.5.3(a). Timing of renewal of in-house standards.

| NO <sub>3</sub> , NO <sub>2</sub> , SiO <sub>2</sub> , PO <sub>4</sub> , NH <sub>4</sub> | Renewal                      |
|------------------------------------------------------------------------------------------|------------------------------|
| A-1 std. (NO <sub>3</sub> )                                                              | maximum a month              |
| A-2 std. (NO <sub>2</sub> )                                                              | maximum a month              |
| A-3 std. (SiO <sub>2</sub> )                                                             | commercial prepared solution |
| A-4 std. (PO <sub>4</sub> )                                                              | maximum a month              |
| A-5 std. (NH <sub>4</sub> )                                                              | maximum a month              |
| B-1 std. (mixture of A-1, A-3 and A-4 std.)                                              | maximum 8 days               |
| B-2 std. (dilute A-2 std.)                                                               | maximum 8 days               |
| B-3 std. (dilute A-4 std.)                                                               | maximum 8 days               |

Table 3.5.3(b). Timing of renewal of in-house standards.

| Working standards                      | Renewal        |
|----------------------------------------|----------------|
| C-6 std. (mixture of B-1 and B-2 std.) |                |
| C-7 std. (dilute B-3 std.)             | every 24 hours |
| C-8 (LNSW)                             |                |

Table 3.5.3(c). Timing of renewal of in-house standards for reduction estimation.

| Reduction estimation                | Renewal             |
|-------------------------------------|---------------------|
| D-1 std. (3600 µM NO <sub>3</sub> ) | maximum 8 days      |
| $43\mu M \; NO_3$                   | when C Std. renewed |
| $47\mu M \; NO_2$                   | when C Std. renewed |

#### (6) Reference material of nutrients in seawater

To get the more accurate and high quality nutrients data to achieve the objectives stated above, huge numbers of the bottles of the reference material of nutrients in seawater (hereafter RMNS) are prepared (Aoyama et al., 2006, 2007, 2008, 2009). In the previous worldwide expeditions, such as WOCE cruises, the higher reproducibility and precision of nutrients measurements were required (Joyce and Corry, 1994). Since no standards were available for the measurement of nutrients in seawater at that time, the requirements were described in term of reproducibility. The required reproducibility was 1%, 1 to 2%, 1 to 3% for nitrate, phosphate and silicate, respectively. Although nutrient data from the WOCE one-time survey was of unprecedented quality and coverage due to much care in sampling and measurements, the differences of nutrients concentration at crossover points are still found among the expeditions (Aoyama and Joyce, 1996, Mordy et al., 2000, Gouretski and Jancke, 2001). For instance, the mean offset of nitrate concentration at deep waters was 0.5 µmol kg<sup>-1</sup> for 345 crossovers at world oceans, though the maximum was

1.7 μmol kg<sup>-1</sup> (Gouretski and Jancke, 2001). At the 31 crossover points in the Pacific WHP one-time lines, the WOCE standard of reproducibility for nitrate of 1 % was fulfilled at about half of the crossover points and the maximum difference was 7 % at deeper layers below 1.6 degree Celsius in potential temperature (Aoyama and Joyce, 1996).

During the period from 2003 to 2010, RMNS were used to keep comparability of nutrients measurement among the 8 cruises of CLIVAR project (Sato et al., 2010), MR1005 cruise for Arctic research (Aoyama et al., 2010) and MR1006 cruise for "Change in material cycles and ecosystem by the climate change and its feedback" (Aoyama et al., 2011).

#### (6.1) RMNSs for this cruise

RMNS lots BY, BU, CA, BW and BZ, which cover full range of nutrients concentrations in the North Pacific Ocean are prepared for MR1404. 87 sets of BY, BU, CA, BW and BZ are prepared.

59 bottles of RMNS lot BV are prepared for this cruise. Lot BV was analyzed at all stations to keep the comparability. These RMNS assignment were completely done based on random number. The RMNS bottles were stored at a room in the ship, REAGENT STORE, where the temperature was maintained around 20 - 24 degree Celsius.

#### (6.2) Assigned concentration for RMNSs

We assigned nutrients concentrations for RMNS lots BY, BU, CA, BW, BZ, and BV as shown in Table 3.5.4.

#### (6.3) Homogeneity of RMNSs

The homogeneity of lot BV used in MR1404 cruise and analytical precisions are shown in Table 3.5.5. These are for the assessment of the magnitude of homogeneity of the RMNS bottles those are used during this cruise. As shown in Table 3.5.5, the homogeneity of RMNS lot BV for nitrate, phosphate and silicate are the same magnitude of analytical precision derived from fresh raw seawater in January 2009.

|      |         |                                |                        | unit: µmol kg <sup>-1</sup> |
|------|---------|--------------------------------|------------------------|-----------------------------|
|      | Nitrate | $\mathbf{Phosphate}^{\dagger}$ | Silicate <sup>††</sup> | Nitrite                     |
| BY*  | 0.07    | 0.041                          | 1.58                   | 0.03                        |
| BU** | 3.96    | 0.348                          | 20.79                  | 0.07                        |
| CA*  | 19.65   | 1.423                          | 36.57                  | 0.07                        |
| BW*  | 24.59   | 1.545                          | 59.67                  | 0.08                        |
| BZ*  | 43.40   | 3.059                          | 160.65                 | 0.21                        |
| BV** | 35.32   | 2.512                          | 102.10                 | 0.06                        |

The values are assigned for this cruise on 5 March 2014.

\*\* The values are assigned for MR1205 cruise on 7 November 2012.

† The values of phosphate are re-assigned on 28 October 2014 due to correct by LNSW offset.

†† The values of silicate are re-assigned on June 2016 by one of Merck KGaA silicon standard solution 1000 mg L<sup>1</sup> Si traceable to National Institute of Standards and Technology (NIST) SRM of silicon standard solution (SRM3150).

Table 3.5.5. The homogeneity of lot BV derived from simultaneous samples measurements and analytical precision onboard R/V Mirai in MR1404 and offshore laboratory at YOKOSUKA in 2012.

|                        | Nitrate | Phosphate | Silicate |
|------------------------|---------|-----------|----------|
|                        | CV %    | CV %      | CV %     |
| BV (on board)*         | 0.12    | 0.15      | 0.12     |
| BV (laboratory)**      | 0.10    | 0.12      | 0.08     |
| Precision (on board)   | 0.09    | 0.08      | 0.07     |
| Precision (laboratory) | 0.16    | 0.07      | 0.08     |

\*: N = 125 \*\*: N = 30

Table 3.5.4. Assigned concentration of RMNSs.

# (7) Quality control

#### (7.1) Precision of nutrients analyses during the cruise

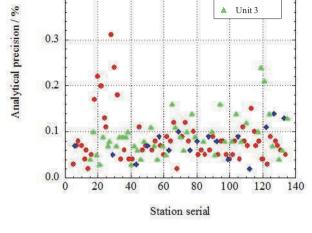
Precision of nutrients analyses during this cruise was evaluated based on the 7 to 11 measurements, which are measured every 8 to 13 samples, during a run at the concentration of C-6 std. Summary of precisions are shown as Table 3.5.6 and Figures 3.5.6 to 3.5.8, the precisions for each parameter are generally good considering the analytical precisions during the R/V Mirai cruses conducted in 2009 - 2014. During this cruise, analytical precisions were 0.09% for nitrate, 0.08% for phosphate and 0.07% for silicate in terms of median of precision, respectively.

An improvement of analytical precisions of all parameters was estimated that replacement roller of the pump that improvement as shown Table 3.5.6. The reason of relative poor precision observed was contamination of the sample line tube.

|         | Nitrate     | Nitrite     | Silicate | Phosphate   | Ammonium    |
|---------|-------------|-------------|----------|-------------|-------------|
|         | <b>CV</b> % | <b>CV</b> % | CV %     | <b>CV</b> % | <b>CV</b> % |
| Median  | 0.08        | 0.13        | 0.07     | 0.07        | 0.23        |
| Mean    | 0.10        | 0.14        | 0.09     | 0.08        | 0.23        |
| Maximum | 0.31        | 0.34        | 0.27     | 0.31        | 0.33        |
| Minimum | 0.03        | 0.05        | 0.03     | 0.02        | 0.16        |
| Ν       | 63          | 63          | 63       | 63          | 5           |

#### Table 3.5.6(a). Summary of precision based on the replicate analyses for unit 1.

#### Table 3.5.6(b). Summary of precision based on the replicate analyses for unit 2.


|         | Nitrate     | Nitrite | Silicate    | Phosphate   | Ammonium    |
|---------|-------------|---------|-------------|-------------|-------------|
|         | <b>CV</b> % | CV %    | <b>CV</b> % | <b>CV</b> % | <b>CV</b> % |
| Median  | 0.07        | 0.14    | 0.06        | 0.08        | 0.22        |
| Mean    | 0.07        | 0.18    | 0.07        | 0.08        | 0.25        |
| Maximum | 0.14        | 0.54    | 0.12        | 0.14        | 0.49        |
| Minimum | 0.03        | 0.04    | 0.04        | 0.02        | 0.03        |
| Ν       | 17          | 17      | 17          | 17          | 20          |

| Table 3.5.6. Summary o | f precision bas | ed on the replicate | analyses for all unit |
|------------------------|-----------------|---------------------|-----------------------|
| Table 5.5.0. Summary 0 | i precision bas | cu on me replicate  | analyses for an unit. |

|         | Nitrate     | Nitrite     | Silicate    | Phosphate   | Ammonium    |
|---------|-------------|-------------|-------------|-------------|-------------|
|         | <b>CV</b> % |
| Median  | 0.09        | 0.14        | 0.07        | 0.08        | 0.22        |
| Mean    | 0.09        | 0.15        | 0.09        | 0.09        | 0.24        |
| Maximum | 0.31        | 0.54        | 0.27        | 0.31        | 0.49        |
| Minimum | 0.03        | 0.04        | 0.02        | 0.02        | 0.03        |
| Ν       | 125         | 125         | 125         | 125         | 25          |

|         | Nitrate     | Nitrite     | Silicate    | Dhaanhata | Ammonium    |
|---------|-------------|-------------|-------------|-----------|-------------|
|         | Murate      | Nutte       | Silicate    | Phosphate | Ammonum     |
|         | <b>CV</b> % | <b>CV</b> % | <b>CV</b> % | CV %      | <b>CV</b> % |
| Median  | 0.10        | 0.14        | 0.09        | 0.08      | -           |
| Mean    | 0.10        | 0.15        | 0.09        | 0.09      | -           |
| Maximum | 0.22        | 0.29        | 0.21        | 0.24      | -           |
| Minimum | 0.03        | 0.05        | 0.02        | 0.03      | -           |
| Ν       | 46          | 46          | 46          | 46        | -           |

Table 3.5.6(c). Summary of precision based on the replicate analyses for unit 3.



Unit 1Unit 2

0.5

0.4

Figure 3.5.7. Time series of precision of phosphate in MR1404.

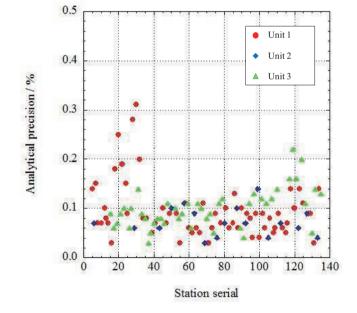



Figure 3.5.6. Time series of precision of nitrate in MR1404

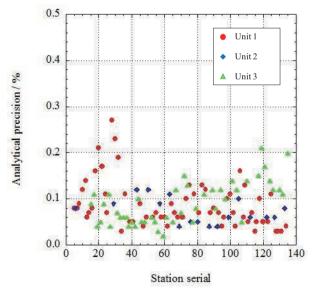



Figure 3.5.8. Time series of precision of silicate in MR1404.

# (7.2) RMNS lot. BV measurement during this cruise

RMNS lot. BV was measured every run to keep the comparability. The results of lot. BV during this cruise are shown as Figures 3.5.9 to 3.5.11. Error bars represent analytical precision in figure 3.5.6 to 3.5.8.

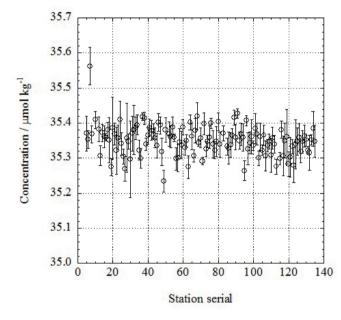



Figure 3.5.9. Time series of RMNS-BV of nitrate in MR1404.

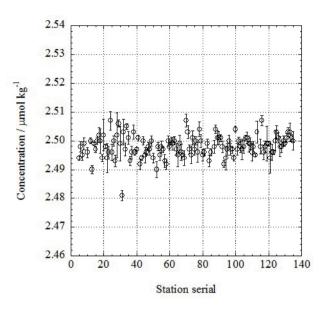



Figure 3.5.10. Time series of RMNS-BV of phosphate in MR1404.

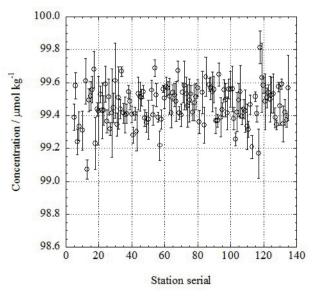



Figure 3.5.11. Time series of RMNS-BV of silicate in MR1404.

# (7.3) Carryover

We can also summarize the magnitudes of carryover throughout the cruise. These are small enough within acceptable levels as shown in Table 3.5.7 and Figures 3.5.12 to 3.5.14. The carryover in silicate had a bias by equipment. It was 0.1%, mean value, at Unit 1 and Unit 2, R/V Mirai equipment. The other hand, it was 0.2%, mean value, at Unit 3. We carried out the maintenance for Unit 3 by cleaning of the glass coils and changing for new transmission tube before the stn. 144. The bias was clearly solved by the maintenance.

|         | Table 3.5.7. Summary of carry over throughout MR1404. |             |             |             |             |  |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------|-------------|-------------|-------------|-------------|--|--|--|--|--|--|--|--|
|         | Nitrate                                               | Nitrite     | Silicate    | Phosphate   | Ammonium    |  |  |  |  |  |  |  |  |
|         | <b>CV</b> %                                           | <b>CV</b> % | <b>CV</b> % | <b>CV</b> % | <b>CV</b> % |  |  |  |  |  |  |  |  |
| Median  | 0.14                                                  | 0.07        | 0.11        | 0.17        | 0.55        |  |  |  |  |  |  |  |  |
| Mean    | 0.14                                                  | 0.09        | 0.13        | 0.18        | 0.55        |  |  |  |  |  |  |  |  |
| Maximum | 0.22                                                  | 0.40        | 0.34        | 0.41        | 0.92        |  |  |  |  |  |  |  |  |
| Minimum | 0.00                                                  | 0.00        | 0.05        | 0.02        | 0.22        |  |  |  |  |  |  |  |  |
| Ν       | 125                                                   | 125         | 125         | 125         | 25          |  |  |  |  |  |  |  |  |

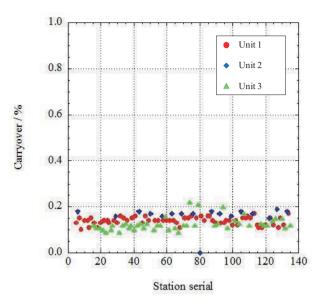



Figure 3.5.12. Time series of carryover of nitrate in MR1404.

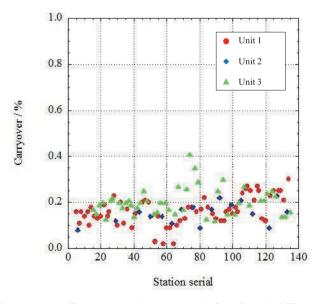



Figure 3.5.13. Time series of carryover of phosphate in MR1404.

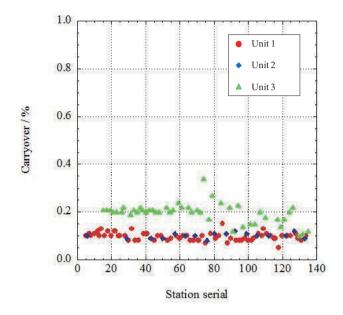



Figure 3.5.14. Time series of carryover of silicate in MR1404.

Empirical equations, eq. (1), (2) and (3) to estimate uncertainty of measurement of phosphate, nitrate

and silicate are used based on measurements of 60 sets of RMNSs during this cruise. Empirical equations,

eq. (4) and (5) to estimate uncertainty of measurement of nitrite and ammonium are used based on duplicate

(7.4) Estimation of uncertainty of phosphate, nitrate and silicate concentrations

measurements of the samples. These empirical equations are as follows, respectively.

# Uncertainty of measurement of nitrate (%) = $0.10084 + 1.0963 \times (1 / Cno_3) + 0.042373 \times (1 / Cno_3) \times (1 / Cno_3)$ – (2) where Cno<sub>3</sub> is nitrate concentration of sample. Silicate Concentration Cs in µmol kg<sup>-1</sup>: Uncertainty of measurement of silicate (%) = $0.063921 + 7.3785 \times (1 / Cs) + 5.4241 \times (1 / Cs) \times (1 / Cs)$ – (3) where Cs is silicate concentration of sample.

Nitrite Concentration  $Cno_2$  in µmol kg<sup>-1</sup>: Uncertainty of measurement of nitrite (%) =  $-0.1648 + 0.2457 \times (1 / Cno_2) - 0.00050611 \times (1 / Cno_2) \times (1 / Cno_2) - (4)$ where Ca is ammonium concentration of sample. Ammonium Concentration Ca in µmol kg<sup>-1</sup>:

| Uncertainty of measurement of ammonium (%) =                                             |       |
|------------------------------------------------------------------------------------------|-------|
| $1.8748 + 1.5641 \times (1 \ / \ Ca) - 0.009571 \times (1 \ / \ Ca) \times (1 \ / \ Ca)$ | - (5) |
| where Ca is ammonium concentration of sample.                                            |       |

Phosphate Concentration Cp in µmol kg<sup>-1</sup>:

Uncertainty of measurement of phosphate (%) =

0.035031 + 0.35937 × (1 / Cp)

where Cp is phosphate concentration of sample.

(8) Problems / improvements occurred and solutions

Nitrate Concentration Cno<sub>3</sub> in µmol kg<sup>-1</sup>:

# (8.1) LNSW offset

-(1)

LNSW was assigned concentration of each parameter before the cruise. We found an offset for concentration of phosphate, -0.03  $\mu$ mol L<sup>1</sup> between this year assign and past, as a result to assess the value of the reagent blank. We corrected assign values of RMNSs from this cruise.

#### (8.2) Contamination of ammonium from the air in the laboratory

cruise.

In ammonium data, we could find a contamination from the air in the laboratory in this cruise leg2. We made a closed supply system of the LNSW from the 20 liter cubitainer to auto sampler due to avoid the contamination from the air. We could not find the contamination on and after using this system.

#### (8.3) Contamination of nitrite from the LNSW bottle

In nitrite data, we could find a contamination. But we could not calculate an origin of the contamination. As the result of the maintenance and cleaning of the equipment, the origin was the contamination of the LNSW bottle. We applied the closed supply system as same as the contamination of ammonium on and after cleared this problem,.

#### (8.4) Remove of the dilution line at phosphate measurement

Karel Bakker at NIOZ suggested us to remove the dilution line at phosphate measurement to improve the peak shape in Spring 2013, therefore we had removed dilution line since MR1304 R/V Mirai cruise. As a result of this, precision of phosphate measurement becomes drastically excellent up to 0.08% in terms of median of 127 runs.

#### (8.5) Usage of a power pipettor

We have applied a power pipettor to avoid a bias by operators since this cruise, when made calibration standards for nutrients analysis. The power pipettor was gravimetrically calibrated according to paragraph (5.1) before the cruise.

#### (8.6) Improvement of reduction rate at nitrate measurement

We added a 5 turn Cu-Cd coil to previously used a 5 turn Cu-Cd coil in nitrate measurement flow line and also added  $CuSO_4$  in the imidazole solution to get a stable and high redaction rate in this cruise. As a result, we achieved a good stable and high reduction rate which was 99.0% in terms of median of 126 runs during this

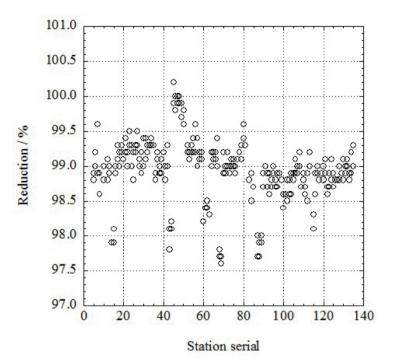



Figure 3.5.15. Time series of reduction of nitrate in MR1404.

#### (9) Data archive

All data will be submitted to JAMSTEC Data Management Office (DMO) and is currently under its control.

#### References

Aminot, A. and Kerouel, R. 1991. Autoclaved seawater as a reference material for the determination of nitrate

and phosphate in seawater. Anal. Chim. Acta, 248: 277-283.

- Aminot, A. and Kirkwood, D.S. 1995. Report on the results of the fifth ICES intercomparison exercise for nutrients in sea water, ICES coop. Res. Rep. Ser., 213.
- Aminot, A. and Kerouel, R. 1995. Reference material for nutrients in seawater: stability of nitrate, nitrite, ammonia and phosphate in autoclaved samples. Mar. Chem., 49: 221-232.
- Aoyama M., and Joyce T.M. 1996, WHP property comparisons from crossing lines in North Pacific. In Abstracts, 1996 WOCE Pacific Workshop, Newport Beach, California.
- Aoyama, M., 2006: 2003 Intercomparison Exercise for Reference Material for Nutrients in Seawater in a Seawater Matrix, Technical Reports of the Meteorological Research Institute No.50, 91pp, Tsukuba, Japan.
- Aoyama, M., Susan B., Minhan, D., Hideshi, D., Louis, I. G., Kasai, H., Roger, K., Nurit, K., Doug, M., Murata,
  A., Nagai, N., Ogawa, H., Ota, H., Saito, H., Saito, K., Shimizu, T., Takano, H., Tsuda, A., Yokouchi,
  K., and Agnes, Y. 2007. Recent Comparability of Oceanographic Nutrients Data: Results of a 2003
  Intercomparison Exercise Using Reference Materials. Analytical Sciences, 23: 1151-1154.
- Aoyama M., J. Barwell-Clarke, S. Becker, M. Blum, Braga E. S., S. C. Coverly, E. Czobik, I. Dahllof, M. H. Dai,
  G. O. Donnell, C. Engelke, G. C. Gong, Gi-Hoon Hong, D. J. Hydes, M. M. Jin, H. Kasai, R. Kerouel, Y. Kiyomono, M. Knockaert, N. Kress, K. A. Krogslund, M. Kumagai, S. Leterme, Yarong Li, S. Masuda,
  T. Miyao, T. Moutin, A. Murata, N. Nagai, G.Nausch, M. K. Ngirchechol, A. Nybakk, H. Ogawa, J. van
  Ooijen, H. Ota, J. M. Pan, C. Payne, O. Pierre-Duplessix, M. Pujo-Pay, T. Raabe, K. Saito, K. Sato, C. Schmidt, M. Schuett, T. M. Shammon, J. Sun, T. Tanhua, L. White, E.M.S. Woodward, P. Worsfold,
  P. Yeats, T. Yoshimura, A.Youenou, J. Z. Zhang, 2008: 2006 Intercomparison Exercise for Reference
  Material for Nutrients in Seawater in a Seawater Matrix, Technical Reports of the Meteorological
  Research Institute No. 58, 104pp.
- Aoyama, M., Nishino, S., Nishijima, K., Matsushita, J., Takano, A., Sato, K., 2010a. Nutrients, In: R/V Mirai Cruise Report MR10-05. JAMSTEC, Yokosuka, pp. 103-122.
- Aoyama, M., Matsushita, J., Takano, A., 2010b. Nutrients, In: MR10-06 preliminary cruise report. JAMSTEC, Yokosuka, pp. 69-83

- Gouretski, V.V. and Jancke, K. 2001. Systematic errors as the cause for an apparent deep water property variability: global analysis of the WOCE and historical hydrographic data · REVIEW ARTICLE, Progress In Oceanography, 48: Issue 4, 337-402.
- Grasshoff, K., Ehrhardt, M., Kremling K. et al. 1983. Methods of seawater analysis. 2nd rev. Weinheim: VerlagChemie, Germany, West.
- Hydes, D.J., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S., Daniel, A., Dickson, A.G., Grosso, O., Kerouel, R., Ooijen, J. van, Sato, K., Tanhua, T., Woodward, E.M.S., Zhang, J.Z., 2010. Determination of Dissolved Nutrients (N, P, Si) in Seawater with High Precision and Inter-Comparability Using Gas-Segmented Continuous Flow Analysers, In: GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. IOCCP Report No. 14, ICPO Publication Series No 134.
- Joyce, T. and Corry, C. 1994. Requirements for WOCE hydrographic programmed data reporting. WHPO Publication, 90-1, Revision 2, WOCE Report No. 67/91.

Kawano, T., Uchida, H. and Doi, T. WHP P01, P14 REVISIT DATA BOOK, (Ryoin Co., Ltd., Yokohama, 2009).Kimura, 2000. Determination of ammonia in seawater using a vaporization membrane permeability method. 7th auto analyzer Study Group, 39-41.

# 3.6 Carbon Items ( $C_T$ , $A_T$ and pH)

November 18, 2016

#### (1) Personnel

Akihiko Murata (JAMSTEC) Yoshihiro Shinoda (JAMSTEC) Tomonori Watai (MWJ) Yoshiko Ishikawa (MWJ) Atsushi Ono (MWJ) Emi Deguchi (MWJ)

#### (2) Objectives

Concentrations of  $CO_2$  in the atmosphere are now increasing at a rate of about 2.0 ppmv y<sup>-1</sup> owing to human activities such as burning of fossil fuels, deforestation, and cement production. It is an urgent task to estimate as accurately as possible the absorption capacity of the oceans against the increased atmospheric  $CO_2$ , and to clarify the mechanism of the  $CO_2$  absorption, because the magnitude of the anticipated global warming depends on the levels of  $CO_2$  in the atmosphere, and because the ocean currently absorbs 1/3 of the 6 Gt of carbon emitted into the atmosphere each year by human activities.

The North Pacific is one of the regions where uncertainty of uptake of anthropogenic  $CO_2$  is large. In this cruise, therefore, we were aimed at quantifying how much anthropogenic  $CO_2$  was absorbed in the ocean interior of the North Pacific. For the purpose, we measured  $CO_2$ -system parameters such as dissolved inorganic carbon ( $C_T$ ), total alkalinity ( $A_T$ ) and pH along the extended WHP P10 and P01 lines at 149°E and 47°N, respectively, in the North Pacific.

# (3) Apparatus

#### i. $C_T$

Measurement of  $C_T$  was made with two total  $CO_2$  measuring systems (called as Systems C and D, respectively; Nippon ANS, Inc.), which were slightly different from each other. The systems comprised of a seawater dispensing system, a  $CO_2$  extraction system and a coulometer. In this cruise, we used coulometers, Seacat2000 and Model23000 for Systems C and D, respectively, both of which were constructed by Nippon ANS. Each of the two systems had almost a same specification as follows:

The seawater dispensing system has an auto-sampler (6 ports), which dispenses seawater from a 300 ml borosilicate glass bottle into a pipette of about 15 ml volume by PC control. The pipette is kept at 20 °C by a water jacket, in which water from a water bath set at 20 °C is circulated.  $CO_2$  dissolved in a seawater sample is extracted in a stripping chamber of the  $CO_2$  extraction system by adding phosphoric acid (~ 10 % v/v) of about 2 ml. The stripping chamber is approx. 25 cm long and has a fine frit at the bottom. The acid is added to the stripping chamber from the bottom of the chamber by pressurizing an acid bottle for a given time to push out the right amount of acid. The pressurizing is made with nitrogen gas (99.9999 %). After the acid is transferred to the stripping chamber, a seawater sample kept in a pipette is introduced to the stripped of  $CO_2$  by bubbling the nitrogen gas through a fine frit at the bottom of the stripping chamber. The  $CO_2$  stripped in the chamber is carried by the nitrogen gas (flow rates is 140 ml min<sup>-1</sup>) to the coulometer through a dehydrating module. The modules of Systems C and D consist of two electric dehumidifiers (kept at ~4 °C) and a chemical desiccant (Mg( $CIO_4)_2$ ).

The measurement sequence such as system blank (phosphoric acid blank),  $1.865 \ \% CO_2$  gas in a nitrogen base, sea water samples (6) is programmed to repeat. The measurement of  $1.865 \ \% CO_2$  gas is made to monitor response of coulometer solutions purchased from UIC, Inc. or laboratory-made.

ii. A<sub>T</sub>

Measurement of  $A_T$  was made based on spectrophotometry using a custom-made system (Nippon ANS, Inc.). The system comprises of a water dispensing unit, an auto-syringe (Hamilton) for hydrochloric acid, a spectrophotometer (TM-UV/VIS C10082CAH, Hamamatsu Photonics), and a light source (Mikropack), which are automatically controlled by a PC. The water dispensing unit has a water-jacketed pipette (42.2663 mL at  $25^{\circ}$ C) and a titration cell, which is also controlled at  $25^{\circ}$ C.

A seawater of approx. 42 ml is transferred from a sample bottle (DURAN<sup>®</sup> glass bottle, 100 ml) into the pipette by pressurizing the sample bottle (nitrogen gas), and is introduced into the titration cell. The seawater is used to rinse the titration cell. Then, Milli-Q water is introduced into the titration cell, also for rinse. A seawater of approx. 42 ml is weighted again by the pipette, and is transferred into the titration cell. Then, for seawater blank, absorbances are measured at three wavelengths (730, 616 and 444 nm). After the measurement, an acid titrant, which is a mixture of approx. 0.05 M HCl in 0.65 M NaCl and 38  $\mu$ M bromocresol green (BCG) is added into the titration cell. The volume of the acid titrant is changed between 1.980 mL and 2.200 mL according to estimated values of A<sub>T</sub>. The seawater + acid titrant solution is stirred for over 9 minutes with bubbling by nitrogen gas in the titration cell. Then, absorbances at the three wavelengths are measured.

Calculation of  $A_{\! T}$  is made by the following equation:

$$A_{T} = (-[H^{+}]_{T}V_{SA} + M_{A}V_{A})/V_{S},$$

where  $M_A$  is the molarity of the acid titrant added to the seawater sample,  $[H^*]_T$  is the total excess hydrogen ion concentration in the seawater, and  $V_S$ ,  $V_A$  and  $V_{SA}$  are the initial seawater volume, the added acid titrant volume, and the combined seawater plus acid titrant volume, respectively.  $[H^*]_T$  is calculated from the measured absorbances based on the following equation (Yao and Byrne, 1998):

$$pH_{T} = -\log[H^{+}]_{T} = 4.2699 + 0.002578(35 - S) + \log((R - 0.00131)/(2.3148 - 0.1299R)) - \log(1 - 0.001005S),$$

where S is the sample salinity, and R is the absorbance ratio calculated as:

$$\mathbf{R} = (\mathbf{A}_{616} - \mathbf{A}_{730}) / (\mathbf{A}_{444} - \mathbf{A}_{730}),$$

where  $A_i$  is the absorbance at wavelength *i* nm.

The HCl in the acid titrant is standardized on land. The concentrations of BCG were estimated to be approx.  $2.0 \times 10^{6}$  M in sample seawater.

#### iii. pH

Measurement of pH was made by a pH measuring system (Nippon ANS, Inc.). For the detection of pH, spectrophotometry is adopted. The system comprises of a water dispensing unit and a spectrophotometer (Bio 50 Scan, Varian). For an indicator, *m*-cresol purple (2 mM), which is purified based on Patsavas et al. (2013), is used.

Seawater is transferred from borosilicate glass bottle (250 ml) to a sample cell in the spectrophotometer. The length and volume of the cell are 8 cm and 13 ml, respectively, and the sample cell is kept at 25.00 ± 0.05 °C in a thermostated compartment. First, absorbance of seawater only is measured at three wavelengths (730, 578 and 434 nm). Then the indicator is injected and circulated for about 4 minutes to mix the indicator and seawater sufficiently. After the pump is stopped, the absorbance of seawater + indicator is measured at the same wavelengths. The pH is calculated based on the following equation (Liu et al., 2011):

$$\mathrm{pH}_{\mathrm{T}} = -\log(K_2^{\mathrm{T}} e_2) + \log\left(\frac{R - e_1}{1 - R(e_3/e_2)}\right),$$

where  $-\log(K_T^2 e_2) = a + (b/T) + c \times \ln T - d \times T$ ;  $a = -246.64209 + 0.315971 \times S + 2.86855 \times 10^4 \times S^2$ ;  $b = 7229.23864 - 7.098137 \times S - 0.057034 \times S^2$ ;  $c = 44.493382 - 0.052711 \times S$ ; d = 0.007762;  $e_1 = -0.007762 + 4.5174 \times 10^5 T$ ;  $e_3/e_2 = -0.020813 + 2.60262 \times 10^4 \times T + 1.0436 \times 10^4 \times (S - 35)$ . The *T* and *S* indicate temperature in K and salinity, respectively. The  $K_T^2$  is the dissociation constant of HI, which is a protonated species of sulfonephthalein indicators. The *R* is the ratio of sulfonephthalein absorbances (=  $_{578}A/_{433}A$ ) at wavelengths of 578 nm and 434 nm.

#### (4) Shipboard measurement

#### (4.1) Sampling

#### **i.** C<sub>T</sub>

All seawater samples were collected from depth with 12 liter Niskin bottles basically at every other station. The seawater samples for  $C_T$  were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into a 250 ml DURAN<sup>®</sup> glass bottle. The glass bottle was filled with seawater smoothly from the bottom following a rinse with sample seawater of 2 full, bottle volumes. The glass bottle was closed by an inner cap loosely, which was fitted tightly to the bottle mouth after mercuric chloride was added.

At a chemical laboratory on ship, a volume of about 3mL seawater was removed with a plastic pipette from sampling bottles to have a headspace of approx. 1 % of the bottle volume. A saturated mercuric chloride of 100 µl was added to poison seawater samples. The seawater samples were kept at 5°C in a refrigerator until analysis. A few hours just before analysis, the seawater samples were kept at 20°C in a water bath.

#### ii. A<sub>T</sub>

All seawater samples were collected from depth using 12 liter Niskin bottles at the same stations as for  $C_T$ . The seawater samples for  $A_T$  were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into DURAN glass bottles of 100 ml. The glass bottle was filled with seawater smoothly from the bottom after rinsing it with sample seawater of 2 full, bottle volume.

The samples were stored at about  $5^{\circ}$ C in a refrigerator. A few hours before analysis, the seawater samples were kept at 25 °C in a water bath.

#### iii. pH

All seawater samples were collected from depth with 12 liter Niskin bottles at the same stations as for  $C_T$  and  $A_T$ . The seawater samples for pH were taken with a plastic drawing tube (PFA tubing connected to silicone rubber tubing) into a 250 ml borosilicate glass bottle. The glass bottle was filled with seawater smoothly from the bottom following a rinse with sample seawater of 2 full, bottle volumes. The glass bottle

was closed by a stopper, which was fitted to the bottle mouth gravimetrically without additional force. A few hours just before analysis, the seawater samples were kept at  $25^{\circ}$ C in a water bath.

#### (4.2) Analyses

#### **i.** C<sub>T</sub>

At the start of each leg, we calibrated the measuring systems by blank and 5 kinds of  $Na_2CO_3$  solutions (nominally 500, 1000 1500, 2000, 2500 µmol/L). As it was empirically known that coulometers do not show a stable signal (low repeatability) with fresh (low absorption of carbon) coulometer solutions. Therefore, we measured 1.865%  $CO_2$  gas repeatedly until the measurements became stable. Then we started the calibration.

The measurement sequence such as system blank (phosphoric acid blank), 1.865%  $CO_2$  gas in a nitrogen base, seawater samples (6) was programmed to repeat. The measurement of 1.865%  $CO_2$  gas was made to monitor response of coulometer solutions (from UIC, Inc. or in-house made). For every renewal of coulometer solutions, certified reference materials (CRMs, batch 136, certified value = 2021.15 µmol kg<sup>-1</sup>) provided by Prof. A. G. Dickson of Scripps Institution of Oceanography were analyzed. In addition, in-house reference materials (RM) (batch QRM Q30 and Q31) were measured at the initial, intermediate and end times of a coulometer solution's lifetime.

The preliminary values were reported in a data sheet on the ship. Repeatability and vertical profiles of  $C_T$  based on raw data for each station helped us check performances of the measuring systems.

In the cruise, we finished all the analyses for  $C_T$  on board the ship.

# ii. A<sub>T</sub>

We analyzed reference materials (RM), which were produced for  $C_T$  measurement by JAMSTEC, but were efficient also for the monitor of  $A_T$  measurement. In addition, certified reference materials (CRM, batches 136, certified value = 2246.74 µmol kg<sup>-1</sup>) were analyzed periodically to monitor systematic differences of measured  $A_T$ . The reported values of  $A_T$  were set to be comparable to the certified value of the batch 136. The preliminary values were reported in a data sheet on ship. Repeatability calculated from replicate samples and vertical profiles of  $A_T$  based on raw data for each station helped us check performance of the measuring system.

In the cruise, we finished all the analyses for  $A_{\!\scriptscriptstyle T}$  on board the ship.

iii. pH

For an indicator solution, purified *m*-cresol purple (2 mM) was used. The indicator solution was produced on board a ship, and retained in a 1000 ml DURAN<sup>®</sup> laboratory bottle. The absorbance ratios of the indicator solution were kept between 1.4 and 1.6 by adding acid or alkali solution appropriately.

It is difficult to mix seawater with an indicator solution sufficiently under no headspace condition. However, by circulating the mixed solution with a peristaltic pump, a well-mixed condition came to be attained rather shortly, leading to a rapid stabilization of absorbance. We renewed a TYGON<sup>®</sup> tube of a peristaltic pump periodically, when a tube deteriorated. We measured absorbances at 25°C.

Absorbances of seawater only and seawater + indicator solutions were measured 5 times each after stable absorbances were attained, and the averaged values were used for the calculation of pH.

The preliminary values of pH were reported in a data sheet on the ship. Repeatability calculated from replicate samples and vertical profiles of pH based on raw data for each station helped us check performance of the measuring system.

We finished all the analyses for pH on board the ship.

#### (5) Quality control

#### i. C<sub>T</sub>

We conducted quality control of the data after return to a laboratory on land. With calibration factors, which had been determined on board a ship based on blank and 5 kinds of  $Na_2CO_3$  solutions, we calculated  $C_T$  of CRM (batches 136), and plotted the values as a function of sequential day, separating legs and the systems used. There were no statistically-significant trends of CRM measurements.

The repeatability of measurements was estimated to be  $0.7 \ \mu mol \ kg^{-1}$ , which was calculated from 230 differences of replicate measurements.

#### ii. A<sub>T</sub>

Temporal changes of  $A_T$ , which originate from analytical problems, were monitored by measuring  $A_T$  of CRM. We found no abnormal measurements during the cruises.

The repeatability of measurements was estimated to be  $1.1 \ \mu mol \ kg^{-1}$ , which was calculated from 210 differences of replicate measurements.

#### iii. pH

It is recommended that correction for pH change resulting from addition of indicator solutions is made (Dickson et al., 2007). To check the perturbation of pH due to the addition, we measured absorbance ratios by doubling the volume of indicator solution and added it to a replicate seawater sample. We corrected absorbance ratios based on an empirical method (Dickson et al., 2007), although the perturbations were small. The correction was made by subtracting 0.0019 from measured absorbances. The repeatability of measurements was estimated to be 0.0005 pH unit, which was calculated from 272 differences of replicate measurements.

We evaluated accuracy of pH values by comparing the corrected values with those computed from measured  $C_T$  and  $A_T$ . Averaged differences (computed – measured) of pH values were 0.011 ± 0.008 (n = 1957).

#### References

- Clayton T. D. and R. H. Byrne (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Research 40, 2115-2129.
- Dickson, A. G., C. L. Sabine and J. R. Christian eds. (2007) *Guide to best practices for ocean CO*<sub>2</sub> measurements, PICES Special Publication 3, 191 pp.
- Liu, X., M. C. Patsavas and R. H. Byrne (2011) Purification and characterization of meta-cresol purple for spectrophotometric seawater pH measurements. Environmental Science and Technology, 45, 4862-4868.
- Patsavas, M. C., R. H. Byrne and X. Liu (2013) Purification of meta-cresol purple and cresol red by flash chromatography: Procedures for ensuring accurate spectrophotometric seawater pH measurements. Marine Chemistry, 150, 19-24.
- Yao, W. and R. B. Byrne (1998) Simplified seawater alkalinity analysis: Use of linear array spectrometers. Deep-Sea Research 45, 1383-1392.

# 3.7 Chlorophyll a

December 16, 2016

#### (1) Personnel

Kosei Sasaoka (JAMSTEC) (Leg 2) Hiroshi Uchida (JAMSTEC) (Legs 1, 2) Kanta Chida (Rakuno Gakuen University) (Legs 1, 2) Takuya Takahashi (Rakuno Gakuen University) (Legs 1, 2) Keitaro Matsumoto (MWJ) (Legs 1, 2) Katsunori Sagishima (MWJ) (Legs 1, 2) Haruka Tamada (MWJ) (Legs 1, 2) Misato Kuwahara (MWJ) (Legs 1)

#### (2) Objectives

Chlorophyll *a* is one of the most convenient indicators of phytoplankton stock, and has been used extensively for the estimation of phytoplankton abundance in various aquatic environments. In this study, we investigated horizontal and vertical distribution of phytoplankton along the P01 section in the North Pacific. The chlorophyll *a* data is also utilized for calibration of fluorometers, which were installed in the surface water monitoring and CTD profiler system.

#### (3) Instrument and Method

Seawater samples were collected in 250 ml brown Nalgene bottles without head-space (500 ml bottles for samples from the surface water monitoring system). The whole samples were gently filtrated by low vacuum pressure (<0.02 MPa) through Whatman GF/F filter (diameter 25 mm) in the dark room. Whole volume of each sampling bottle was precisely measured in advance. After filtration, phytoplankton pigments were immediately extracted in 7 ml of N,N-dimethylformamide (DMF), and samples were stored at –20°C under

the dark condition to extract chlorophyll *a* more than 24 hours. Chlorophyll *a* concentrations were measured by the Turner fluorometer (10-AU-005, TURNER DESIGNS), which was previously calibrated against a pure chlorophyll *a* (Sigma-Aldrich Co., LLC) (Fig. 3.7.1). To estimate the chlorophyll *a* concentrations, we applied to the fluorometric "Non-acidification method" (Welschmeyer, 1994).

#### (4) Results

Vertical profiles of chlorophyll *a* concentrations along the P10N (Leg 1) and P01 (Leg 2) sections during the cruise are shown in Figure 3.7.2. and Figure 3.7.3. respectively. Cross section of chlorophyll *a* concentrations along the P01 line (Leg 2) is shown in Figure 3.7.4. To estimate the measurement precision, 41-pairs of replicate samples were obtained from hydrographic casts. All pairs of the replicate samples were collected in 250 ml bottles. Standard deviation calculated from 41-pairs of the replicate samples was  $0.008 \mu g/L$ , although absolute difference values between 36-pairs of the replicate samples were smaller than  $0.01 \mu g/L$ .

#### (5) Reference

Welschmeyer, N. A. (1994): Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39, 1985-1992.

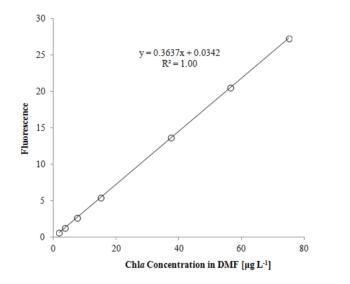



Figure 3.7.1. Relationships between pure chlorophyll *a* concentrations and fluorescence light intensity.

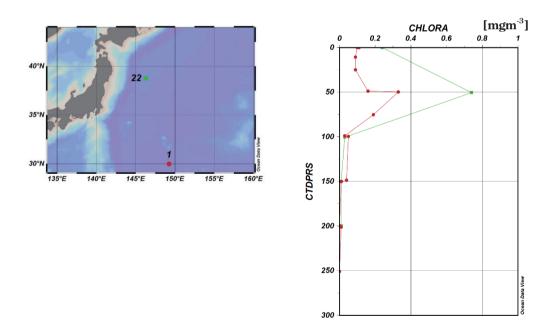
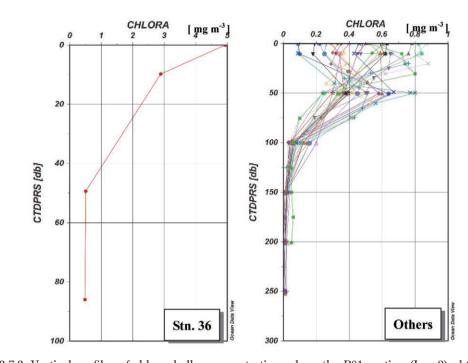




Figure 3.7.2. Vertical profiles of chlorophyll a concentrations along the P10N section (Leg 1) obtained from

hydrographic casts.



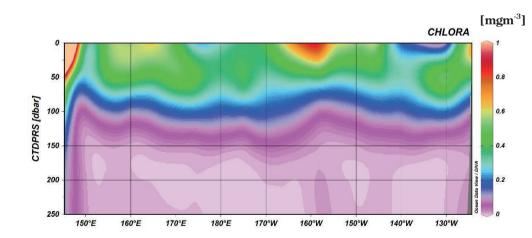



Figure 3.7.3. Vertical profiles of chlorophyll *a* concentrations along the P01 section (Leg 2) obtained from hydrographic casts.

Figure 3.7.4. Cross section of chlorophyll *a* concentrations along the P01-line (Leg 2) obtained from hydrographic casts.

# **3.8** Absorption Coefficients of Particulate Matter and Colored Dissolved Organic Matter (CDOM)

September 12, 2014

#### (1) Personnel

Kosei Sasaoka (JAMSTEC) (Leg 2)

#### (2) Objectives

Absorption coefficients of particulate matter (phytoplankton and non-phytoplankton particles, defined as 'detritus') and colored dissolved organic matter (CDOM) play an important role in determining the optical properties of seawater. In particular, light absorption by phytoplankton is a fundamental process of photosynthesis, and their chlorophyll a (Chl-a) specific coefficient,  $a^*_{ph}$ , can be essential factors for bio-optical models to estimate primary productivities. Absorption coefficients of CDOM are also important parameters to validate and develop the bio-optical algorithms for ocean color sensors, because the absorbance spectrum of CDOM overlaps that of Chl-a. The global colored detrital and dissolved materials (CDOM) distribution appears regulated by a coupling of biological, photochemical, and physical oceanographic processes all acting on a local scale, and greater than 50% of blue light absorption is controlled by CDOM (Siegel et al., 2002). Additionally, some investigators have reported that CDOM emerges as a unique tracer for diagnosing changes in biogeochemistry and the overturning circulation, similar to dissolved oxygen (e.g., Nelson et al., 2010). The objectives of this study are to understand the east-west variability of light absorption by phytoplankton and CDOM along the P01 section in the North Pacific.

#### (3) Methods

Seawater samples for absorption coefficient of total particulate matter  $(a_p(\lambda))$  were performed using Niskin bottles and a bucket above 100m depth along the P01 section (Fig. 3.8.1, Table 3.8.1). Samples were collected in 3000ml dark bottles and filtered (500 – 3000 ml) through 25-mm What-man GF/F glass-fiber filters under a gentle vacuum (< 0.013 MPa) on board in the dark room. After filtration, the optical density of total particulate matter on filter ( $OD_{fp}(\lambda)$ ) between 350 and 750 nm at a rate of 1.0 nm was immediately measured by an UV-VIS recording spectrophotometer (UV-2400, Shimadzu Co.), and absorption coefficient was determined from the OD according to the quantitative filter technique (QFT) (Mitchell, 1990). A blank filter with filtered seawater was used as reference. All spectra were normalized to 0.0 at 750nm to minimize difference between sample and reference filter. To determine the optical density of non-pigment detrital particles ( $OD_{fd}(\lambda)$ ), the filters were then soaked in methanol for a few hours and rinsed with filtered seawater to extract and remove the pigments (Kishino et al., 1985), and its absorption coefficient was measured again by UV-2400. These measured optical densities on filters ( $OD_{fp}(\lambda)$  and  $OD_{fd}(\lambda)$ ) were converted to optical densities in suspensions ( $OD_{sp}(\lambda)$  and  $OD_{sd}(\lambda)$ ) using the pathlength amplification factor of Cleveland and Weidemann (1993) as follows:

> $OD_{sp}(\lambda) = 0.378 OD_{fp}(\lambda) + 0.523 OD_{fp}(\lambda)^2$  and  $OD_{sd}(\lambda) = 0.378 OD_{cl}(\lambda) + 0.523 OD_{cl}(\lambda)^2$ .

The absorption coefficient of total particles  $(a_p(\lambda) \text{ (m}^{-1}))$  and non-pigment detrital particles  $(a_d(\lambda) \text{ (m}^{-1}))$  are computed from the corrected optical densities  $(OD_s(\lambda))$ :

$$a_{\rm p}(\lambda) = 2.303 \times \text{OD}_{\rm sp}(\lambda) / \text{L} (\text{L} = \text{V} / \text{S}), \text{ and}$$
  
 $a_{\rm d}(\lambda) = 2.303 \times \text{OD}_{\rm sd}(\lambda) / \text{L} (\text{L} = \text{V} / \text{S}),$ 

Where S is the clearance area of the filter (m<sup>2</sup>) and V is the volume filtered (m<sup>3</sup>). Absorption coefficient of phytoplankton ( $a_{nb}(\lambda)$ ) was obtained by subtracting  $a_d(\lambda)$  from  $a_n(\lambda)$  as follows:

$$a_{\rm ph}(\lambda) = a_{\rm p}(\lambda) - a_{\rm d}(\lambda).$$

Finally, we calculated Chl-*a* normalized specific absorption spectra  $(a^*_{ph})$  to divide  $a_{ph}$  by Chl-*a* concentrations obtained from same hydrographic casts.

Seawater samples for absorption coefficient of CDOM  $(a_y(\lambda))$  were collected in 250ml bottles using Niskin bottles and a bucket from surface to bottom (Fig. 3.8.1, Table 3.8.1). CDOM samples were filtered using 0.2 µm Nuclepore polycarbonate filters on board. Optical densities of the CDOM  $(OD_y(\lambda))$  in this filtered seawater were recorded against UV-2400 in the range from 300 to 800 nm using 10-cm pathlength glass cells. Milli-Q water was used as a base line. A blank (Milli-Q water versus Milli-Q water) was subtracted from each wavelength of the spectrum. The absorption coefficient of CDOM ( $a_y(\lambda)$  (m<sup>-1</sup>)) was calculated from measured optical densities (OD<sub>y</sub>( $\lambda$ )) as follows:

 $a_{\rm v}(\lambda) = 2.303 \times OD_{\rm v}(\lambda) / L$  (L is the cuvette path-length (m)).

#### (4) Preliminary results

Some examples of Chl-*a* normalized specific absorption spectra  $(a_{ph}^*)$  were shown in Fig.3.8.2. Cross section of CDOM (as absorption coefficient at 325 nm, unit = m<sup>-1</sup>) along the P01 section were shown in Fig. 3.8.3.

#### (5) References

- Cleveland, J.S. and Weidemann, A.D., 1993, Quantifying absorption by aquatic particles: a multiple scattering correction for glass fiber filters, Limnology and Oceanography, 38, 1321-1327.
- Kishino, M., Takahashi, M., Okami, N. and Ichimura, S., 1985, Estimation of the spectral absorption coefficients of phytoplankton in the sea, Bulletin of Marine Science, 37, 634-642.
- Mitchell, B.G., 1990, Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT), Ocean Optics X, SPIE 1302, 137-148.
- Nelson, N. B., D. A. Siegel, C. A. Carlson, and C. M. Swan, 2010, Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter, Geophys. Res. Lett., 37, L03610, doi:10.1029/2009GL042325.
- Siegel, D.A., Maritorena, S., Nelson, N.B., Hansell, D.A., Lorenzi-Kayser, M., 2002, Global distribution and dynamics of colored dissolved and detrital organic materials. J. Geophys. Res., 107, C12, 3228, doi:10.1029/2001JC000965.

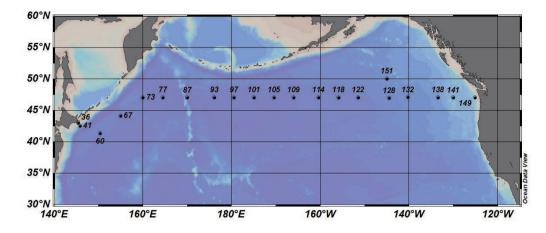
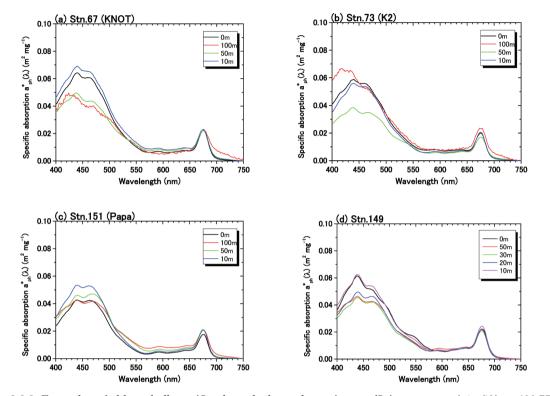




Fig. 3.8.1. Location of sampling stations for absorption coefficients of phytoplankton and CDOM along the P01 section during MR14-04.

Table 3.8.1. List of sampling stations for absorption coefficients of phytoplankton and CDOM during MR14-04.

| <b>a</b> | D ( (170   | <b>T</b> ( <b>TTC</b> ) |          |   |          |   | a             | <b>a</b> . <b>v</b> |                        | Sampling depth (db)                                               |
|----------|------------|-------------------------|----------|---|----------|---|---------------|---------------------|------------------------|-------------------------------------------------------------------|
| Station  | Date (UTC) | Time(UTC)               | Latitude | , | Longitud | e | Sampling type | Cast No.            | Particle absorbance    | CDOM absorbance                                                   |
| 36       | 07/17/2014 | 7:28                    | 42.97    | N | 145.45   | E | CTD + Bucket  | 1                   | 0, 10, 50, 86          | 0, 10, 50, 86                                                     |
| 41       | 07/19/2014 | 15:56                   | 42.48    | N | 145.84   | E | CTD + Bucket  | 2                   | none                   | Bottom-10, 2930, 1930, 970, 470, 200, 100, 50, 10, 0              |
| 60       | 07/23/2014 | 13:34                   | 41.27    | N | 150.39   | E | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 5000, 4000, 3000, 2000, 1000, 500, 200, 100, 50, 10, 0 |
| 67       | 07/25/2014 | 15:59                   | 44.09    | N | 155.02   | E | CTD + Bucket  | 2                   | 0, 10, 50, 100         | Bottom-10, 5080, 4080, 3080, 2070, 1070, 530, 200, 100, 50, 10, 0 |
| 73       | 07/27/2014 | 11:59                   | 47.01    | N | 160.02   | E | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 5000, 3000, 2000, 1000, 800, 500, 200, 100, 50, 10, 0  |
| 77       | 07/29/2014 | 22:47                   | 47.00    | N | 164.51   | E | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 4920, 2930, 1930, 970, 770, 470, 200, 100, 50, 10, 0   |
| 87       | 08/01/2014 | 11:06                   | 46.98    | N | 170.00   | E | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 3000, 2000, 1000, 800, 500, 200, 100, 50, 10, 0        |
| 93       | 08/03/2014 | 12:05                   | 47.00    | N | 176.09   | E | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 5000, 3000, 2000, 1000, 800, 500, 200, 100, 50, 10, 0  |
| 97       | 08/04/2014 | 18:25                   | 46.99    | N | 179.43   | w | CTD + Bucket  | 1                   | 0, 10, 50              | Bottom-10, 5080, 3080, 2070, 1070, 830, 530, 200, 100, 50, 10, 0  |
| 101      | 08/06/2014 | 5:30                    | 47.00    | N | 174.95   | w | CTD + Bucket  | 3                   | 0, 10, 50, 100         | Bottom-10, 4920, 2930, 1930, 970, 770, 470, 200, 100, 50, 10, 0   |
| 105      | 08/08/2014 | 9:33                    | 47.00    | N | 170.42   | w | CTD + Bucket  | 1                   | 0, 10, 50              | Bottom-10, 5000, 3000, 2000, 1000, 800, 500, 200, 100, 50, 10, 0  |
| 109      | 08/09/2014 | 15:55                   | 47.01    | N | 165.98   | w | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 5080, 3080, 2070, 1070, 830, 530, 200, 100, 50, 10, 0  |
| 114      | 08/11/2014 | 6:33                    | 46.99    | N | 160.36   | w | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 5000, 3000, 2000, 1000, 800, 500, 200, 100, 50, 10, 0  |
| 118      | 08/12/2014 | 16:39                   | 46.99    | N | 155.85   | w | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 5080, 3080, 2070, 1070, 830, 530, 200, 100, 50, 10, 0  |
| 122      | 08/13/2014 | 23:25                   | 47.00    | N | 151.40   | w | CTD + Bucket  | 2                   | 0, 10, 50, 100         | Bottom-10, 4920, 2930, 1930, 970, 770, 470, 200, 100, 50, 10, 0   |
| 128      | 08/15/2014 | 21:25                   | 46.90    | N | 144.44   | w | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 2930, 1930, 970, 770, 470, 280, 200, 100, 50, 10, 0    |
| 151      | 08/16/2014 | 20:20                   | 50.00    | N | 144.99   | w | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 3000, 2000, 1000, 800, 500, 300, 200, 100, 50, 10, 0   |
| 132      | 08/18/2014 | 14:48                   | 47.03    | N | 140.23   | w | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 3000, 2000, 1000, 800, 500, 300, 200, 100, 50, 10, 0   |
| 138      | 08/20/2014 | 8:35                    | 46.99    | N | 133.47   | w | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 3000, 2000, 1000, 800, 500, 300, 200, 100, 50, 10, 0   |
| 141      | 08/21/2014 | 3:25                    | 46.98    | N | 130.03   | w | CTD + Bucket  | 1                   | 0, 10, 50, 100         | Bottom-10, 2000, 1000, 800, 500, 300, 200, 100, 50, 10, 0         |
| 149      | 08/22/2014 | 18:29                   | 47.00    | N | 125.06   | w | CTD + Bucket  | 1                   | 0, 10, 20, 30, 50, 100 | Bottom-10, 970, 770, 470, 280, 200, 100, 50, 30, 20, 10, 0        |



**CDOM-325** [m<sup>-1</sup>] 0 02 \_\_\_\_\_ 0.6 0.3 1000 0.5 CTDDPT [m] 0.3 2 0.4 2. 0.3 0.2 5000 0.1 0.2 n i 6000 0 160°E 180°E 160°W 140°W

Fig.3.8.3. Contours showing distribution of CDOM (as absorption coefficient at 325 nm, unit = m<sup>-1</sup>) along the P01 section during MR14-04.

Fig.3.8.2. Examples of chlorophyll-specific phytoplankton absorption coefficient spectra  $(a^*_{ph}(\lambda))$  at 400-750 nm, (a) Stn.KNOT, (b) Stn. K2, (c) Stn. Papa, (d) Stn. 149. All spectra were normalized to 0.0 at 750nm.

# 3.9 Calcium

September 16, 2014

# (1) Personnel

Yoshihiro Shinoda (JAMSTEC)

#### (2) Objectives

According to the recent IPCC report, concentrations of  $CO_2$  in the atmosphere have increased by 40% since pre-industrial times, primarily from fossil fuel emissions and secondarily from net land use change emissions. The ocean has absorbed about 30% of the emitted anthropogenic carbon dioxide, causing ocean acidification. Ocean acidification is characterized by an increase of H<sup>+</sup> (i.e., a decrease of pH) and a concurrent decrease of carbonate ion concentration ( $CO_3^{2-}$ ). The decrease of  $CO_3^{2-}$  is unfavorable to marine calcifying organisms, which utilize  $CO_3^{2-}$ , together with  $Ca^{2+}$ , to produce their calcium carbonate ( $CaCO_3$ ) shells and skeletons. To evaluate dissolution and precipitation of calcium carbonate, we measured directly the concentration of calcium in the sea water in the subarctic region of the North Pacific.

## (3) Reagents

| NH <sub>3</sub> /NH <sub>4</sub> buffer: | $0.4 \text{ mol/l NH}_4\text{Cl/} 0.4 \text{ mol/l NH}_3 \text{ buffer}$                                                                                 |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zincon solution:                         | $0.004 \ \mathrm{mol/l} \ \mathrm{Zincon},  0.0925 \mathrm{g} \ \mathrm{Zincon}$ was dissolved $0.8 \ \mathrm{ml} \ \mathrm{1M} \ \mathrm{NaOH}$ and was |
|                                          | diluted to 50 ml                                                                                                                                         |
| EGTA titrant:                            | $0.02 \ \mathrm{mol/l} \ \mathrm{EGTA},  3.80 \mathrm{g} \ \mathrm{EGTA}$ was dissolved 30 ml 1M NaOH and was                                            |
|                                          | diluted to 500 ml                                                                                                                                        |
| Zn/EGTA solution:                        | 0.004 mol/l ZnSO <sub>4</sub> / 0.004 mol/l EGTA                                                                                                         |
| STD solution:                            | 40ml 1000mg/l Ca standard solution was diluted to 100ml                                                                                                  |

#### (4) Apparatus

Measurement of calcium was made by a modified Dissolved Oxygen Titrator DOT-01 (Kimoto Electronic Co. Ltd.). Bandpass filter was replaced to  $f_0$ =620nm. The system comprises of a light source, photodiode detectors, auto-burette and control unit.

Seawater of approx. 10ml is transferred from a sample bottle (60ml HDPE bottle) into 100 ml tall beaker by transfer pipet. A magnetic stirrer bar was added into beaker. 5ml  $NH_3/NH_4$ buffer, 1ml Zincon solution, 1ml Zn/EGTA solution and about 60ml  $H_2O$  were added into the beaker. The seawater samples were titrated by the EGTA titrant. The EGTA titrant was calibrated by measuring STD solution.

#### (5) Performances

The system worked well no troubles. The repeatability was estimated to  $0.0089 \pm 0.0076$  (n=20 pairs) mmol kg<sup>-1</sup>.

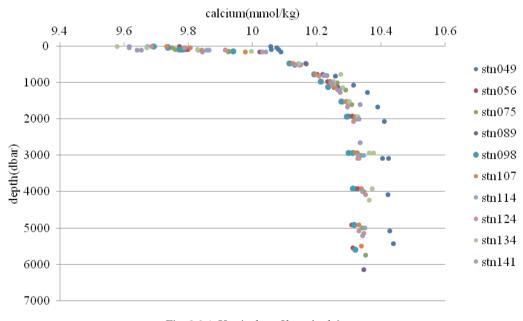



Fig. 3.9.1. Vertical profiles of calcium.

# 3.10 Dissolved Organic Carbon

February 9, 2017

#### (1) Personnel

Takeshi Yoshimura<sup>1</sup>, Dennis A. Hansell<sup>2</sup>, and Andrew Margolin<sup>2</sup> <sup>1</sup>Central Research Institute of Electric Power Industry

<sup>2</sup>Rosenstiel School of Marine and Atmospheric Science, University of Miami

#### (2) Background and objectives

For several years, the Hansell Laboratory has pursued opportunities to determine the global ocean distribution of dissolved organic carbon (DOC), which plays a significant role in marine carbon cycle. In the Pacific, in collaboration with Prof. Craig Carlson at the Univ. of California Santa Barbara, we have measured DOC on several of the CLIVAR Repeat Hydrography lines, including P16 (north and south), P06, P02, and P18 (http://yyy.rsmas.miami.edu/groups/biogeochem/Data.html). On the map given at that website, the major gaps in coverage of the global ocean are readily apparent, including the NW and the NE Pacific Ocean. P10N and P01 are well located for filling these critical gaps as they cover the distal end of the global ocean thermohaline circulation cell. Ultimately our goal is to evaluate the cause of DOC concentration gradients in the deep Pacific, but those gradients must first be established by surveys such as P01. Gradients indicate sources and sinks for refractory DOC (RDOC) in the deep layers, processes that are not understood at the present. RDOC has been implicated by paleoceanographers as the source of carbon responsible for climate hyperthermals of the Paleocene/Eocene epochs (45–50M ybp), but we know too little about RDOC in the modern ocean to confirm or refute that role. To fill the gaps in global coverage of DOC, we collected seawater samples at the stations on P10N and P01 lines during the MR14-04 cruise.

#### (3) Samplings

Seawater samples were collected in P10N (Leg. 1) and P01 line (Leg. 2) at all of the stations and layers where inorganic carbon parameters were measured in the main subject of this cruise. Water was collected directly into 60 mL polycarbonate bottles from the 12-L Niskin bottles attached to a CTD system. The bottles were then stored frozen until analysis at our laboratory at the University of Miami. Total number of the samples collected was approximately 2100.

#### (4) Sample analyses and data managements

The frozen samples were returned to the laboratory and thawed for analysis by high temperature catalytic oxidation using a Shimadzu TOC analyzer. The method used was described in a chapter in the methods manual by Dickson et al. (2007). The method: An acidified water sample is sparged with oxygen to remove inorganic carbon. The water is then injected onto a combustion column packed with platinum-coated alumina beads held at  $680^{\circ}$ C. Non-purgeable organic carbon compounds are combusted and converted to CO<sub>2</sub>, which is detected by a non-dispersive infrared detector (NDIR). The instrument was a Shimadzu TOC-L with ASI-V auto sampler.

| Instrument conditions were as follows: |                          |
|----------------------------------------|--------------------------|
| Combustion temperature                 | 680°C                    |
| Carrier gas                            | UHP Oxygen               |
| Carrier flow rate                      | $50 \text{ ml min}^{-1}$ |
| Sample sparge time                     | 2.0 min                  |
| Minimum number of injections           | 3                        |
| Maximum number of injections           | 5                        |
| Number of washes                       | 2                        |
| Standard deviation maximum             | 0.10 ppm                 |
| CV maximum                             | 2.0%                     |
| Injection volume                       | 100 µL                   |
|                                        |                          |

Trace-impurity analyzed concentrated hydrochloric acid is used to acidify samples prior to analysis. Approximately 0.1% by volume of the concentrated acid is added to each sample prior to analysis to lower the pH of the sample to pH < 2. At this pH and with sparging, all inorganic carbon species are converted to CO<sub>2</sub> and removed from the sample. The system is calibrated using potassium hydrogen phthalate in Milli-Q<sup>®</sup> water. System performance is verified daily using Consensus Reference Water (www.rsmas.miami.edu/ groups/biogeochem/CRM.html). This reference water is deep Sargasso Sea water (DSR) that has been acidified and sealed in 10 ml ampoules, the concentrations of which have been determined by the consensus of up to six expert and independent laboratories. Low Carbon Water (LCW) that has gone through the same acidification, sealing process, and consensus verification program as the DSR, and has an agreed upon carbon concentration of  $1-2 \mu mol C L^{-1}$ , is also analyzed and used to determine the instrument blank. After verifying proper operation of the instrument, samples are placed on an auto sampler for analysis. The run starts with a QW (Q Water) blank and a reference seawater analysis. Then six samples are analyzed, followed by another QW blank and reference sea water. This sequence is repeated until all samples for that run are analyzed. The run ends with a QW blank, reference water, and a QW blank that had not been acidified. This last blank verifies that the hydrochloric acid used to acidify the samples is not contaminated. QW blanks and reference water samples are used to evaluate system performance during the analytical run. If a problem is detected with the blanks or reference waters, the samples are reanalyzed.

On a daily basis, CRM is analyzed to verify system performance. If the value of the CRM does not fall within the expected range, samples are not analyzed until the expected performance has been established. The QW blanks and reference seawater samples analyzed with the samples are used for quality assurance and quality control (QA/QC). By evaluating the performance of these reference waters, instrument drift and performance can be evaluated. If a problem is detected with either drift or performance, the samples are reanalyzed.

#### (5) Reference

Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. Guide to best practices for ocean CO<sub>2</sub> measurements. PICES Special Publication 3, 191 pp.

# 3.11 Lowered Acoustic Doppler Current Profiler (LADCP)

November 17, 2016

# (1) Personnel

Shinya Kouketsu(JAMSTEC) (Principal Investigator, Leg 2)Hiroshi Uchida(JAMSTEC) (Legs 1 and 2)

#### (2) Overview of the equipment

An acoustic Doppler current profiler (ADCP) was integrated with the CTD/RMS package. The lowered ADCP (LADCP), Workhorse Monitor WHM300 (Teledyne RD Instruments, San Diego, California, USA), which has 4 downward facing transducers with 20-degree beam angles, rated to 6000 m. The LADCP makes direct current measurements at the depth of the CTD, thus providing a full profile of velocity. The LADCP was powered during the CTD casts by a 48 volts battery pack. The LADCP unit was set for recording internally prior to each cast. After each cast the internally stored observed data was uploaded to the computer on-board. By combining the measured velocity of the sea water and bottom with respect to the instrument, and shipboard navigation data during the CTD cast, the absolute velocity profile were obtained (e.g. Visbeck, 2002). However, in some stations, the shipboard ADCP profiles were not obtained due to GPS problems, and the estimation errors of the velocity estimations of lowered ADCP were slightly large at the stations. Furthermore, the first cast at station 1, the data process software did not work well due to small echo intensities in the deep layers.

The instrument used in this cruise was as follows.

Teledyne RD Instruments, WHM300

S/N 20754(CPU firmware ver. 50.40)

#### (3) Data collection

In this cruise, data were collected with the following configuration.

Bin size: 4.0 m Number of bins: 25 Pings per ensemble: 1 Ping interval: 1.0 sec At the following stations, the CTD cast was carried out without the LADCP, because the maximum pressure was beyond the pressure-proof of the LADCP (6000 m). Stations from P01\_44 to P01\_46

# Reference

Visbeck, M. (2002): Deep velocity profiling using Lowered Acoustic Doppler Current Profilers: Bottom track and inverse solutions. *J. Atmos. Oceanic Technol.*, **19**, 794-807.

# **Station Summary**

R/V MIRAI CRUISE MR1404 LEG1

|              | WOCE<br>SECT | STNNBR CA | STNO CAST<br>TYPE | DATE          | UTC<br>TIME | EVENT<br>CODE | LA   | TITUDE |     | OSITION<br>NGITUDE | NAV | UNC<br>DEPTH | COR<br>DEPTH | HT ABOVE<br>BOTTOM | WIRE<br>OUT |      | NO. OF<br>BOTTLES | PARAMETERS                                          | COMMENTS                    |
|--------------|--------------|-----------|-------------------|---------------|-------------|---------------|------|--------|-----|--------------------|-----|--------------|--------------|--------------------|-------------|------|-------------------|-----------------------------------------------------|-----------------------------|
| 49NZ20140709 |              | 901       | 1 UNK             | 070914        | 1500        | DE            | 33   | 3.99 N | 142 | 2.21 E             | GPS | -9           | 8939         |                    |             |      |                   |                                                     | RADIOSONDE #1               |
| 49NZ20140709 |              | 902       | 1 UNK             | 071014        | 0513        | DE            | 31 3 | 9.97 N | 145 | 19.16 E            | GPS | -9           | 6045         |                    |             |      |                   | HYVIS #1                                            |                             |
| 49NZ20140709 | P10N         | 1         | 1 ROS             | 071014        | 2326        | BE            | 29 5 | 8.78 N | 149 | 15.23 E            | GPS | -9           | 6198         |                    |             |      |                   |                                                     |                             |
| 49NZ20140709 | P10N         | 1         | 1 BUC             | 071014        | 2335        | UN            | 29 5 | 8.81 N | 149 | 15.28 E            | GPS | -9           | 6197         |                    |             |      |                   | 1,3-6,20,30,31,33,34,82,90,100,102,103,106          | 22.9C                       |
| 49NZ20140709 | P10N         | 1         | 1 XCT             | 071014        | 2339        | DE            | 29 5 | 8.82 N | 149 | 15.30 E            | GPS | -9           | 6196         |                    |             | 431  |                   |                                                     |                             |
|              |              |           |                   |               |             |               |      |        |     |                    |     |              |              |                    |             |      |                   |                                                     | TSK XCTD-4 #14015331, FAIL  |
|              |              |           |                   |               |             |               |      |        |     |                    |     |              |              |                    |             |      |                   |                                                     | ISK ACID-4 #14015551, FAIL  |
| 49NZ20140709 | P10N         | 1         | 1 ROS             | 071114        | 0058        | BO            | 29 5 | 8.86 N | 149 | 15.50 E            | GPS | -9           | 6198         | 79                 | 5986        | 6128 | 35                | 1,3-6,20,23,24,26,30,31,33,34,43,82,90,92,100,102-1 | 104,106,113                 |
|              |              |           |                   |               |             |               |      |        |     |                    |     |              |              |                    |             |      |                   | #2 CHLORA MAX,                                      | #6 MISS FIRE, LADCP SOUNDI  |
| 49NZ20140709 | D1 0N        | 1         | 1 ROS             | 071114        | 0352        | EN            | 29 5 | 877 N  | 149 | 15.96 E            | CPS | -9           | 6189         |                    |             |      |                   |                                                     |                             |
| 49NZ20140709 |              | 1         | 1 FLT             | 071114        |             |               |      |        |     | 16.20 E            |     | -9           | 6190         |                    |             |      |                   |                                                     |                             |
|              |              | _         |                   | • • • • • • • |             |               |      |        |     |                    |     | -            |              |                    |             |      |                   |                                                     |                             |
|              |              |           |                   |               |             |               |      |        |     |                    |     |              |              |                    |             |      |                   | ARGO #OIN13JAP-ARL-60/ID13                          | 1532 (FOR PHOTOGRAPHY BY JE |
| 49NZ20140709 | P10N         | 1         | 1 FLT             | 071114        | 0458        | RE            | 29 5 | 8.87 N | 149 | 16.32 E            | GPS | -9           | 6181         |                    |             |      |                   |                                                     |                             |
| 49NZ20140709 | P10N         | 1         | 1 BIO             | 071114        | 0514        | BE            | 29 5 | 8.78 N | 149 | 16.45 E            | GPS | -9           | 6177         |                    |             |      |                   |                                                     | ORI NET                     |
| 49NZ20140709 | P10N         | 1         | 1 BIO             | 071114        | 0715        | EN            | 29 5 | 5.74 N | 149 | 14.12 E            | GPS | -9           | 6192         |                    |             |      |                   |                                                     |                             |
| 49NZ20140709 | P10N         | 1         | 2 ROS             | 071114        | 0759        | BE            | 29 5 | 7.48 N | 149 | 15.04 E            | GPS | -9           | 6191         |                    |             |      |                   |                                                     |                             |
| 49NZ20140709 | P10N         | 1         | 2 BUC             | 071114        | 0807        | UN            | 29 5 | 7.44 N | 149 | 15.13 E            | GPS | -9           | 6205         |                    |             |      |                   | 3-6,22,30,31,33,34,82,89,91,100-104,106,108,112,113 | 3 23.6C                     |
| 49NZ20140709 | P10N         | 1         | 2 ROS             | 071114        | 0820        | BO            | 29 5 | 7.37 N | 149 | 15.27 E            | GPS | -9           | 6180         | -9                 | 790         | 802  | 2 35              | 3-6,22,30,31,33,34,82,89,91,100-104,106,108,112,113 | 3                           |
|              |              |           |                   |               |             |               |      |        |     |                    |     |              |              |                    |             |      |                   |                                                     | #1 CHLORA MAX, #24 MISS FI  |
| 49NZ20140709 | D10N         | 1         | 2 ROS             | 071114        | 0906        | EN            | 20 5 | 7 20 M | 140 | 15.76 E            | GPS | -9           | 6167         |                    |             |      |                   |                                                     |                             |
| 49NZ20140709 |              | 903       | 2 K03<br>1 UNK    |               |             |               |      |        |     | 20.08 E            |     | -9           | 6136         |                    |             |      |                   |                                                     | RADIOSONDE #2               |
| 49NZ20140709 |              | 2         | 1 XCT             |               |             | DE            |      |        |     | 20.00 E            |     | -9           | 6139         |                    |             | 2031 |                   |                                                     | TSK XCTD-4 #1401533         |
| 49NZ20140709 |              | 3         | 1 XCT             |               |             |               |      |        |     | 20.22 E            |     | -9           | 6045         |                    |             | 1979 |                   |                                                     | TSK XCTD-4 #1401533         |
| 49NZ20140709 |              | 904       | 1 UNK             |               | 1800        | DE            |      |        |     | 19.41 E            |     | -9           | 5416         |                    |             |      |                   |                                                     | RADIOSONDE #3               |
| 49NZ20140709 |              | 4         | 1 XCT             |               |             | DE            |      |        |     | 19.64 E            |     | -9           | 5672         |                    |             | 2031 |                   |                                                     | TSK XCTD-4 #1401533         |
| 49NZ20140709 |              | 5         | 1 XCT             | 071114        | 2234        | DE            |      |        |     | 20.06 E            |     | -9           | 5943         |                    |             | 2031 |                   |                                                     | TSK XCTD-4 #1404663         |
| 49NZ20140709 | P10N         | 905       | 1 UNK             | 071214        | 0000        | DE            | 32 4 | 4.67 N | 149 | 19.75 E            | GPS | -9           | 5997         |                    |             |      |                   |                                                     | RADIOSONDE #4               |
| 49NZ20140709 | P10N         | 906       | 1 UNK             | 071214        | 0051        | DE            | 32 5 | 2.82 N | 149 | 18.02 E            | GPS | -9           | 6026         |                    |             |      |                   |                                                     | HYVIS #2                    |
| 49NZ20140709 | P10N         | 6         | 1 XCT             | 071214        | 0220        | DE            | 33   | 9.27 N | 149 | 19.72 E            | GPS | -9           | 6115         |                    |             | 2031 |                   |                                                     | TSK XCTD-4 #1404664         |
| 49NZ20140709 | P10N         | 907       | 1 UNK             | 071214        | 0426        | DE            | 33 3 | 3.00 N | 149 | 19.34 E            | GPS | -9           | 6143         |                    |             |      |                   |                                                     | HYVIS #3                    |
| 49NZ20140709 | P10N         | 7         | 1 ROS             | 071214        | 0539        | BE            | 33 4 | 4.16 N | 149 | 19.35 E            | GPS | -9           | 6168         |                    |             |      |                   |                                                     |                             |
| 49NZ20140709 | P10N         | 7         | 1 BUC             | 071214        | 0547        | UN            | 33 4 | 4.11 N | 149 | 19.35 E            | GPS | -9           | 6172         |                    |             |      |                   | 1,3-6,20,22,30,31,33,82,89-91,102,103,106           | 22.4C                       |
| 49NZ20140709 | P10N         | 7         | 1 XCT             | 071214        | 0552        | DE            | 33 4 | 4.10 N | 149 | 19.35 E            | GPS | -9           | 6171         |                    |             | 1236 | 5                 |                                                     | TSK XCTD-4 #1404664         |
| 49NZ20140709 | P10N         | 908       | 1 UNK             | 071214        | 0600        | DE            | 33 4 | 4.07 N | 149 | 19.34 E            | GPS | -9           | 6170         |                    |             |      |                   |                                                     | RADIOSONDE #5               |
| 49NZ20140709 | P10N         | 7         | 1 ROS             | 071214        | 0618        | BO            | 33 4 | 3.96 N | 149 | 19.31 E            | GPS | -9           | 6169         | -9                 | 1976        | 2002 | 36                | 1,3-6,20,22-24,26,30,31,33,43,82,89-92,102,103,106  |                             |
| 49NZ20140709 |              | 7         | 1 ROS             |               |             | EN            |      |        |     | 19.29 E            |     | -9           | 6172         |                    |             |      |                   |                                                     |                             |
| 49NZ20140709 |              | 8         | 1 XCT             | 071214        |             |               |      |        |     | 13.03 E            |     | -9           | 6174         |                    |             | 2031 |                   |                                                     | TSK XCTD-4 #1404664         |
| 49NZ20140709 |              | 909       | 1 UNK             |               |             |               |      |        |     | 12.29 E            |     | -9           | 6153         |                    |             |      |                   |                                                     | RADIOSONDE #6               |
| 49NZ20140709 |              | 9         | 1 XCT             | 071214        |             |               |      |        |     | 1.34 E             |     | -9           | 6138         |                    |             | 2031 | -                 |                                                     | TSK XCTD-4 #1404664         |
| 49NZ20140709 |              | 910       | 1 UNK             |               | 1200        |               |      |        |     | 59.92 E            |     | -9           | 6132         |                    |             |      |                   |                                                     | RADIOSONDE #7               |
| 49NZ20140709 |              | 10        | 1 XCT             | 071214        |             |               |      |        |     | 53.58 E            |     | -9           | 6142         |                    |             | 2031 |                   |                                                     | TSK XCTD-4 #1404664         |
| 49NZ20140709 |              | 911       | 1 UNK             |               |             |               |      |        |     | 50.22 E            |     | -9           | 6125         |                    |             |      |                   |                                                     | RADIOSONDE #8               |
| 49NZ20140709 |              | 912       | 1 UNK             | 071214        | 1500        | DE            | 35   | 2.55 N | 148 | 41.91 E            | GPS | -9           | 6078         |                    |             |      |                   |                                                     | RADIOSONDE #9               |

| 49NZ20140709 P10N | 913 | 1 UNK | 071214 1700 | DE 35 21.94 N 148 29.24 E GPS | -9 | 5997 |    |      |      |                                                    | RADIOSONDE #10              |
|-------------------|-----|-------|-------------|-------------------------------|----|------|----|------|------|----------------------------------------------------|-----------------------------|
| 49NZ20140709 P10N | 12  | 1 XCT | 071214 1722 | DE 35 25.19 N 148 27.21 E GPS | -9 | 5956 |    |      | 2031 |                                                    | TSK XCTD-4 #14046644        |
| 49NZ20140709 P10N | 914 | 1 UNK | 071214 1900 | DE 35 41.70 N 148 16.98 E GPS | -9 | 5851 |    |      |      |                                                    | RADIOSONDE #11              |
| 49NZ20140709 P10N | 13  | 1 XCT | 071214 1926 | DE 35 45.56 N 148 14.44 E GPS | -9 | 5792 |    |      | 2031 |                                                    | TSK XCTD-4 #14046638        |
| 49NZ20140709 P10N | 14  | 1 ROS | 071214 2127 | BE 36 4.77 N 148 3.30 E GPS   | -9 | 5815 |    |      |      |                                                    |                             |
| 49NZ20140709 P10N | 14  | 1 BUC | 071214 2136 | UN 36 4.80 N 148 3.69 E GPS   | -9 | 5824 |    |      |      | 1,3-6,20,22,30,31,33,82,89-91,102,106              | 23.9C                       |
| 49NZ20140709 P10N | 14  | 1 XCT | 071214 2139 | DE 36 4.82 N 148 3.82 E GPS   | -9 | 5822 |    |      | 2032 |                                                    | TSK XCTD-4 #14046646        |
| 49NZ20140709 P10N | 14  | 1 ROS | 071214 2203 | BO 36 4.84 N 148 4.44 E GPS   | -9 | 5829 | -9 | 002  | 2004 | 36 1,3-6,20,22-24,26,30,31,33,82,89-92,102,106     |                             |
| 49NZ20140709 P10N | 915 | 1 UNK | 071214 2300 | DE 36 4.76 N 148 5.80 E GPS   | -9 | 5846 |    |      |      |                                                    | RADIOSONDE #12              |
| 49NZ20140709 P10N | 14  | 1 ROS | 071214 2320 | EN 36 4.81 N 148 6.78 E GPS   | -9 | 5855 |    |      |      |                                                    |                             |
| 49NZ20140709 P10N | 15  | 1 XCT | 071314 0150 | DE 36 25.15 N 147 50.19 E GPS | -9 | 5739 |    |      | 2032 |                                                    | TSK XCTD-4 #14046647        |
| 49NZ20140709 P10N | 916 | 1 UNK | 71314 0200  | DE 36 25.92 N 147 50.21 E GPS | -9 | 5771 |    |      |      |                                                    | RADIOSONDE #13              |
| 49NZ20140709 P10N | 16  | 1 XCT | 071314 0356 | DE 36 44.35 N 147 37.48 E GPS | -9 | 5695 |    |      | 2032 |                                                    | TSK XCTD-4 #14046648        |
| 49NZ20140709 P10N | 917 | 1 UNK | 071314 0400 | DE 36 44.65 N 147 37.26 E GPS | -9 | 5693 |    |      |      |                                                    | RADIOSONDE #14              |
| 49NZ20140709 P10N | 17  | 1 XCT | 071314 0550 | DE 37 4.62 N 147 24.84 E GPS  | -9 | 5628 |    |      | 2032 |                                                    | TSK XCTD-4 #14046649        |
| 49NZ20140709 P10N | 918 | 1 UNK | 071314 0600 | DE 37 4.79 N 147 23.78 E GPS  | -9 | 5624 |    |      |      |                                                    | RADIOSONDE #15              |
| 49NZ20140709 P10N | 18  | 1 XCT | 071314 0746 | DE 37 25.00 N 147 11.61 E GPS | -9 | 5671 | 1  |      | 688  |                                                    | TSK XCTD-4 #14046650        |
| 49NZ20140709 P10N | 19  | 1 XCT | 071314 0940 | DE 37 44.92 N 146 58.51 E GPS | -9 | 5550 |    |      | 2032 |                                                    | TSK XCTD-4 #14046651        |
| 49NZ20140709 P10N | 20  | 1 XCT | 071314 1140 | DE 38 4.21 N 146 44.59 E GPS  | -9 | 5416 |    |      | 2032 |                                                    | TSK XCTD-4 #14046652        |
| 49NZ20140709 P10N | 919 | 1 UNK | 071314 1200 | DE 38 6.52 N 146 43.16 E GPS  | -9 | 5324 |    |      |      |                                                    | RADIOSONDE #16              |
| 49NZ20140709 P10N | 21  | 1 XCT | 071314 1334 | DE 38 24.83 N 146 32.25 E GPS | -9 | 5462 |    |      | 2033 |                                                    | TSK XCTD-4 #14046653        |
| 49NZ20140709 P10N | 22  | 1 BIO | 071314 1537 | BE 38 44.14 N 146 16.77 E GPS | -9 | 5292 |    |      |      |                                                    | ORI NET                     |
| 49NZ20140709 P10N | 22  | 1 BIO | 071314 1630 | EN 38 44.86 N 146 18.05 E GPS | -9 | 5290 |    |      |      |                                                    |                             |
| 49NZ20140709 P10N | 22  | 1 ROS | 071314 1653 | BE 38 44.94 N 146 18.09 E GPS | -9 | 5287 |    |      |      |                                                    |                             |
| 49NZ20140709 P10N | 22  | 1 BUC | 071314 1701 | UN 38 44.98 N 146 18.12 E GPS | -9 | 5298 |    |      |      | 1,3-6,20,22,30,31,33,34,82,89-91,102-104,106       | 21.2C                       |
| 49NZ20140709 P10N | 920 | 1 UNK | 071314 1800 | DE 38 45.07 N 146 18.42 E GPS | -9 | 5293 |    |      |      |                                                    | RADIOSONDE #17              |
| 49NZ20140709 P10N | 22  | 1 ROS | 071314 1815 | BO 38 45.08 N 146 18.45 E GPS | -9 | 5294 | 9  | 5295 | 5383 | 36 1,3-6,20,22-24,26,30,31,33,82,89-92,102-104,106 |                             |
| 49NZ20140709 P10N | 22  | 1 ROS | 071314 2030 | EN 38 45.06 N 146 19.34 E GPS | -9 | 5283 |    |      |      |                                                    |                             |
| 49NZ20140709 P10N | 921 | 1 UNK | 071314 2140 | DE 38 55.71 N 146 10.45 E GPS | -9 | 5298 |    |      |      |                                                    | HYVIS #4                    |
| 49NZ20140709 P10N | 23  | 1 XCT | 071314 2233 | DE 39 4.97 N 146 4.95 E GPS   | -9 | 5290 |    |      | 2033 |                                                    | TSK XCTD-4 #14046655        |
| 49NZ20140709 P10N | 922 | 1 UNK | 071414 0000 | DE 39 19.02 N 145 55.29 E GPS | -9 | 5261 |    |      |      |                                                    | RADIOSONDE #18              |
| 49NZ20140709 P10N | 24  | 1 XCT | 071414 0039 | DE 39 24.95 N 145 50.72 E GPS | -9 | 5265 |    |      | 2033 |                                                    | TSK XCTD-4 #14046656        |
| 49NZ20140709 P10N | 25  | 1 XCT | 071414 0242 | DE 39 45.12 N 145 36.72 E GPS | -9 | 5272 |    |      | 2033 |                                                    | TSK XCTD-4 #14046657        |
| 49NZ20140709 P10N | 26  | 1 XCT | 071414 0441 | DE 40 5.09 N 145 22.14 E GPS  | -9 | 5375 |    |      | 1996 |                                                    | TSK XCTD-4 #14046658        |
| 49NZ20140709 P10N | 923 | 1 UNK | 071414 0600 | DE 40 17.73 N 145 13.46 E GPS | -9 | 5526 |    |      |      |                                                    | RADIOSONDE #19              |
| 49NZ20140709 P10N | 27  | 1 XCT | 071414 0641 | DE 40 24.90 N 145 8.10 E GPS  | -9 | 5826 |    |      | 1960 |                                                    | TSK XCTD-4 #14046659        |
| 49NZ20140709 P10N | 28  | 1 XCT | 071414 0837 | DE 40 45.18 N 144 53.22 E GPS | -9 | 6227 |    |      | 2033 |                                                    | TSK XCTD-4 #14046660        |
| 49NZ20140709 P10N | 29  | 1 XCT | 071414 1007 | DE 40 59.92 N 144 42.15 E GPS | -9 | 6338 |    |      | 2033 |                                                    | TSK XCTD-4 #14046662        |
| 49NZ20140709 P10N | 30  | 1 ROS | 071414 1151 | BE 41 14.78 N 144 30.60 E GPS | -9 | 4124 |    |      |      |                                                    |                             |
| 49NZ20140709 P10N | 30  | 1 BUC | 071414 1159 | UN 41 14.81 N 144 30.56 E GPS | -9 | 4099 |    |      |      | 1,3-6,20,22,30,31,33,82,89-91,102,106              | 18.3C                       |
| 49NZ20140709 P10N | 30  | 1 XCT | 071414 1202 | DE 41 14.82 N 144 30.54 E GPS | -9 | 4072 |    |      | 2033 |                                                    | TSK XCTD-4 #14046667        |
| 49NZ20140709 P10N | 30  | 1 ROS | 071414 1225 | BO 41 14.90 N 144 30.51 E GPS | -9 | 4061 | -9 | 1972 | 1976 | 36 1-6,20,23,24,26,30,31,33,43,82,89-92,102,106    |                             |
| 49NZ20140709 P10N | 30  | 1 ROS | 071414 1326 | EN 41 14.93 N 144 30.31 E GPS | -9 | 4044 |    |      |      |                                                    |                             |
| 49NZ20140709 P10N | 31  | 1 XCT | 071414 1503 | DE 41 29.97 N 144 19.21 E GPS | -9 | 2693 |    |      | 2033 |                                                    | TSK XCTD-4 #14046661        |
| 49NZ20140709 P10N | 32  | 1 XCT | 071414 1640 | DE 41 45.04 N 144 7.59 E GPS  | -9 | 1485 |    |      | 1502 |                                                    | TSK XCTD-4 #14046663        |
| 49NZ20140709 P10N | 33  | 1 XCT | 071414 1810 | DE 42 0.17 N 143 57.64 E GPS  | -9 | 1081 |    |      | 1086 |                                                    | TSK XCTD-4 #14046664        |
| 49NZ20140709 P10N | 34  | 1 XCT | 071414 1911 | DE 42 10.05 N 143 48.52 E GPS | -9 | 721  |    |      | 731  |                                                    | TSK XCTD-4 #14046665        |
| 49NZ20140709 P10N | 35  | 1 XCT | 071414 1944 | DE 42 15.19 N 143 44.40 E GPS | -9 | 481  |    |      | 484  |                                                    | TSK XCTD-4 #14046666        |
| 49NZ20140709      | 924 | 1 UNK | 071414 1951 | BE 42 15.69 N 143 44.06 E GPS | -9 | 450  |    |      |      |                                                    |                             |
|                   |     |       |             |                               |    |      |    |      |      | 3-A                                                | XIS MAGNETMETER CALIBRATION |
|                   |     |       |             |                               |    |      |    |      |      |                                                    |                             |
| 49NZ20140709      | 924 | 1 UNK | 071414 2015 | EN 42 15.53 N 143 44.06 E GPS | -9 | 455  |    |      |      |                                                    |                             |
|                   |     |       |             |                               |    |      |    |      |      |                                                    |                             |

R/V MIRAI CRUISE MR1404 LEG2

| SHIP/CRS<br>EXPOCODE         | WOCE<br>SECT | STNNBR CAST | NO I   | CAST<br>TYPE | DATE   | UTC<br>TIME  | EVENT<br>CODE | LATITUDE   | POSITION<br>LONGITUDE      | NAV | UNC<br>DEPTH | COR<br>DEPTH | HT ABOVE<br>BOTTOM | WIRE<br>OUT |       | NO. OF<br>BOTTLES | PARAMETERS                                        | COMMENTS                                                    |
|------------------------------|--------------|-------------|--------|--------------|--------|--------------|---------------|------------|----------------------------|-----|--------------|--------------|--------------------|-------------|-------|-------------------|---------------------------------------------------|-------------------------------------------------------------|
| 49NZ20140717                 | P01          | 36          | 1      | BUC          | 071714 | 0720         | UN            | 42 58.41 N | 145 27.22 E                | GPS | -9           | 96           |                    |             |       |                   | 1,3,4,5,6,20,31,33,34,90,98,99,102                | 9.0C                                                        |
| 49NZ20140717                 | P01          | 36          | 1      | ROS          | 071714 | 0721         | BE            | 42 58.41 N | 145 27.20 E                | GPS | -9           | 97           |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 36          | 1      | ROS          | 071714 | 0727         | BO            | 42 58.41 N | 145 27.12 E                | GPS | -9           | 96           | 10                 | 82          | 86    | 6                 | 1-8,20,23,24,26,27,31,33,34,43,90,92,93,98,99,102 |                                                             |
| 49NZ20140717                 | P01          | 36          | 1      | ROS          | 071714 | 0737         | EN            |            | i 145 27.04 E              |     | -9           | 95           |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 37          | 1      | ROS          | 071714 | 0933         | BE            |            | 145 31.20 E                |     | -9           | 349          |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 37          | 1      | BUC          |        | 0941         | UN            |            | 145 31.20 E                |     | -9           | 380          |                    |             |       |                   | 1,3-6,102                                         | 12.6C                                                       |
| 49NZ20140717                 | P01          | 37          | 1      | ROS          |        | 0944         | BO<br>EN      |            | 145 31.20 E                |     | -9           | 381          | 10                 | 344         | 350   | 12                | 1-8,20,23,24,26,27,31,33,34,43,90,92,93,98,99,102 |                                                             |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01   | 37<br>38    | 1<br>1 | ROS<br>ROS   |        | 1014<br>1205 | EN<br>BE      |            | 145 31.17 E<br>145 32.41 E |     | -9<br>-9     | 351<br>911   |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 38          | 1      |              |        |              | UN            |            | 145 32.41 E                |     | -9           | 907          |                    |             |       |                   | 1,3-6,20,102                                      | 11.5C                                                       |
| 49NZ20140717                 | P01          | 38          | 1      | ROS          |        | 1227         | BO            |            | 145 32.37 E                |     | -9           | 899          | 8                  | 893         | 905   | 13                | 1-8,20,23,24,26,27,43,92,93,101,102               | 11.00                                                       |
| 49NZ20140717                 | P01          | 38          | 1      | ROS          |        | 1318         | EN            |            | 145 32.27 E                |     | -9           | 898          | C C                | 000         | 500   |                   | - 0,-0,-0,-1,-0,-1,-0,0-,00,-0-,-0-               |                                                             |
| 49NZ20140717                 | P01          | 39          | 1      | ROS          |        | 1524         | BE            |            | 145 35.60 E                |     | -9           | 1532         |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 39          | 1      | BUC          | 071714 | 1534         | UN            | 42 48.77 N | 145 35.66 E                | GPS | -9           | 1541         |                    |             |       |                   | 1-8,20,23,24,26,27,43,93,102                      | 12.9C                                                       |
| 49NZ20140717                 | P01          | 39          | 1      | ROS          | 071714 | 1558         | BO            | 42 48.68 N | 145 35.69 E                | GPS | -9           | 1544         | 11                 | 1524        | 1546  |                   | 17 1-8,27,93,101,102                              |                                                             |
| 49NZ20140717                 | P01          | 39          | 1      | ROS          | 071714 | 1702         | EN            | 42 48.49 N | 145 35.80 E                | GPS | -9           | 1587         |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 40          | 1      | ROS          | 071714 | 1855         | BE            | 42 38.39 N | i 145 42.04 E              | GPS | -9           | 2444         |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 40          | 1      | BUC          | 071714 | 1903         | UN            | 42 38.38 N | 145 42.11 E                | GPS | -9           | 2453         |                    |             |       |                   | 1,3-6,20,82,102,103,106                           | 11.0C                                                       |
| 49NZ20140717                 | P01          | 40          | 1      | ROS          |        | 1938         | BO            |            | 145 42.37 E                |     | -9           | 2474         | 9                  | 2454        | 2493  | 21                | 1-8,20,23,24,26,27,30,43,82,92,93,101-103,106     |                                                             |
| 49NZ20140717                 | P01          | 40          | 1      | ROS          | 071714 | 2108         | EN            |            | i 145 42.73 E              |     | -9           | 2495         |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 41          | 1      | ROS          | 071714 | 2333         | BE            |            | 145 50.32 E                |     | -9           | 3149         |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 41          | 1      | BUC          |        |              | UN            |            | 145 50.25 E                |     | -9           | 3149         |                    | 2125        | 21.02 | 0                 | 1,3-6,102                                         | 12.8C                                                       |
| 49NZ20140717                 | P01          | 41          | 1      | ROS          | 071814 | 0029         | BO            | 42 29.36 N | 145 49.99 E                | GPS | -9           | 3145         | 8                  | 3135        | 3183  | 0                 |                                                   |                                                             |
| 49NZ20140717                 | P01          | 41          | 1      | ROS          | 071814 | 0148         | EN            | 42 29.43 N | 145 49.43 E                | GPS | -9           | 3133         |                    |             |       |                   |                                                   | BORT DUE TO CTD CABLE TROUB:<br>CABLE (1620M) AFTER THE CAM |
| 49NZ20140717                 | P01          | 925         | 1      | UNK          | 071814 | 0555         | BE            | 41 51.91 N | 146 19.13 E                | GPS | -9           | 6698         |                    |             |       |                   |                                                   |                                                             |
|                              |              |             |        |              |        |              |               |            |                            |     |              |              |                    |             |       |                   | 3                                                 | -AXIS MAGNETMETER CALIBRATIO                                |
| 49NZ20140717                 | P01          | 925         | 1      | UNK          | 071814 | 0620         | EN            | 41 51.35 N | 146 19.53 E                | GPS | -9           | 7088         |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 47          | 1      | ROS          | 071814 | 1103         | BE            | 41 38.64 N | 146 29.35 E                | GPS | -9           | 6026         |                    |             |       |                   |                                                   |                                                             |
|                              |              |             |        |              |        |              |               |            |                            |     |              |              |                    |             |       |                   |                                                   | WITHOUT LADCP/MR/FL/TX/CDC                                  |
| 49NZ20140717                 | P01          | 47          | 1      | BUC          | 071814 | 1111         | UN            | 41 20 15 N | 146 30.06 E                | GPS | -9           | 6025         |                    |             |       |                   | 1,3-6,20,30,82,102,106                            | 20.5C                                                       |
| 49NZ20140717<br>49NZ20140717 | P01          | 47          | 1      |              |        |              | BO            |            | 146 30.88 E                |     | -9           | 6035         | 9                  | 6007        | 6153  | 36                | 1-8,20,23,24,26,27,30,43,82,93,102,106            | 20.30                                                       |
| 49NZ20140717                 | P01          | 47          | 1      |              |        | 1529         | EN            |            | 146 32.62 E                |     | -9           | 6029         | 5                  | 0007        | 0100  | 50                | 1 0,20,23,24,20,27,30,43,62,33,102,100            |                                                             |
| 49NZ20140717                 | P01          | 46          | 1      |              | 071814 |              | BE            |            | 146 24.97 E                |     | -9           | 6521         |                    |             |       |                   |                                                   |                                                             |
|                              |              |             |        |              |        |              |               |            |                            |     |              |              |                    |             |       |                   |                                                   | WITHOUT LADCP/MR/FL/TX/CDC                                  |
| 49NZ20140717                 | P01          | 46          | 1      | BUC          | 071814 | 1754         | UN            | 41 42.63 N | 146 25.16 E                | GPS | -9           | 6502         |                    |             |       |                   | 1,3-6,102                                         | 20.0C                                                       |
| 49NZ20140717                 | P01          | 46          | 1      | ROS          | 071814 | 1922         | BO            | 41 42.89 N | 146 25.82 E                | GPS | -9           | 6512         | -9                 | 6345        | 6502  | 36                | 1-8,27,93,102                                     |                                                             |
| 49NZ20140717                 | P01          | 46          | 1      | ROS          | 071814 | 2216         | EN            | 41 42.81 N | 146 26.76 E                | GPS | -9           | 6484         |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717                 | P01          | 45          | 1      | ROS          | 071914 | 0000         | BE            | 41 52.07 N | 146 18.95 E                | GPS | -9           | 6697         |                    |             |       |                   |                                                   |                                                             |
|                              |              |             |        |              |        |              |               |            |                            |     |              |              |                    |             |       |                   |                                                   | WITHOUT LADCP/MR/FL/TX/CDC                                  |
| 49NZ20140717                 | P01          | 45          | 1      | BUC          | 071914 | 0009         | UN            | 41 52.10 N | 146 18.99 E                | GPS | -9           | 6699         |                    |             |       |                   | 1,3-6,20,30,82,100,102-104,106                    | 19.4C                                                       |
| 49NZ20140717                 | P01          | 45          | 1      | ROS          | 071914 | 0138         | во            | 41 52.42 N | 146 19.16 E                | GPS | -9           | 6760         | -9                 | 6348        | 6501  | 36                | 1-8,20,23,24,26,27,30,43,82,92,93,102-104,106     |                                                             |
| 4911220140717                |              |             |        |              |        |              |               |            |                            |     |              |              |                    |             |       |                   |                                                   |                                                             |
| 49NZ20140717<br>49NZ20140717 | P01          | 45          | 1      | ROS          | 071914 | 0436         | EN            | 41 53.43 N | 146 20.66 E                | GPS | -9           | 6773         |                    |             |       |                   |                                                   |                                                             |

|                              |            |          |                |                  |      |              |            |                        |       |          |              |    |      |       |     |                                                      | WITHOUT LADCP/MR/FL/TX/0 | CDOM   |
|------------------------------|------------|----------|----------------|------------------|------|--------------|------------|------------------------|-------|----------|--------------|----|------|-------|-----|------------------------------------------------------|--------------------------|--------|
| 49NZ20140717                 | P01        | 44       | 1 BUC          | 071914           | 0652 | UN 4         | 1 58.89 N  | 146 14.75              | E GPS | -9       | 6300         |    |      |       |     | 1,3-6,102                                            | 18.6C                    |        |
| 49NZ20140717                 | P01        | 44       | 1 ROS          | 071914           | 0825 | BO 4         | 41 59.41 N | 146 15.04              | E GPS | -9       | 6187         | 10 | 6245 | 6372  | 36  | 1-8,27,93,102                                        |                          |        |
| 49NZ20140717                 | P01        | 44       | 1 ROS          | 071914           | 1115 | EN 4         | 1 59.94 N  | 146 16.51              | E GPS | -9       | 6169         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 41       | 2 ROS          | 071914           | 1501 | BE 4         | 12 29.18 N | 145 50.04              | E GPS | -9       | 3153         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 41       | 2 BUC          | 071914           | 1511 | UN 4         | 12 29.08 N | 145 50.02              | E GPS | -9       | 3154         |    |      |       |     | 1,3-6,98,102                                         | 12.4C                    |        |
| 49NZ20140717                 | P01        | 41       | 2 ROS          | 071914           | 1556 | BO 4         | 12 28.92 N | 145 50.20              | E GPS | -9       | 3163         | 10 | 3144 | 3197  | 25  | 1-8,27,93,98,102                                     |                          |        |
| 49NZ20140717                 | P01        | 41       | 2 ROS          | 071914           | 1737 | EN 4         | 12 28.83 N | 145 50.36              | E GPS | -9       | 3170         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 42       | 1 ROS          | 071914           | 1910 | BE 4         | 12 17.09 N | 146 3.31               | E GPS | -9       | 4175         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 42       | 1 BUC          | 071914           | 1919 | UN 4         | 2 17.14 N  | 146 3.26               | E GPS | -9       | 4163         |    |      |       |     | 1,3-6,20,31,33,43,102                                | 12.0C                    |        |
| 49NZ20140717                 | P01        | 42       | 1 ROS          | 071914           | 2019 | BO 4         | 2 17.15 N  | 146 2.96               | E GPS | -9       | 4153         | 10 | 4135 | 4214  | 36  | 1-8,23,24,26,27,31,33,43,92,93,101,102               |                          |        |
|                              |            |          |                |                  |      |              |            |                        |       |          |              |    |      |       |     |                                                      | RROM #2 TO #9 DUPL       | סייד פ |
|                              |            |          |                |                  |      |              |            |                        |       |          |              |    |      |       |     |                                                      | RROM #2 10 #9 DOPL 1     | 8103   |
| 49NZ20140717                 | P01        | 42       | 1 ROS          | 071914           | 2220 | EN 4         | 12 17.25 N | 146 2.88               | E GPS | -9       | 4134         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 43       | 1 ROS          | 072014           | 0028 | BE 4         | 12 10.77 N | 146 4.99               | E GPS | -9       | 5066         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 43       | 1 BUC          | 072014           | 0036 | UN 4         | 2 10.78 N  | 146 5.00               | E GPS | -9       | 5056         |    |      |       |     | 1,3-6,20,30,82,102,106                               | 11.2C                    |        |
| 49NZ20140717                 | P01        | 43       | 1 ROS          | 072014           | 0148 | во 4         | 12 10.83 N | 146 4.88               | E GPS | -9       | 5040         | 9  | 5035 | 5142  | 34  | 1-8,20,23,24,26,27,30,43,82,92,93,101,102,106        |                          |        |
| 49NZ20140717                 | P01        | 43       | 1 ROS          | 072014           | 0405 | EN 4         | 2 11.29 N  | 146 4.41               | E GPS | -9       | 4959         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 48       | 1 ROS          | 072014           | 0907 | BE 4         | 1 21.56 N  | 146 41.27              | E GPS | -9       | 5475         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 48       | 1 BUC          | 072014           | 0916 | UN 4         | 1 21.69 N  | 146 41.36              | E GPS | -9       | 5479         |    |      |       |     | 1,3-6,102                                            | 19.1C                    |        |
| 49NZ20140717                 | P01        | 48       | 1 ROS          |                  | 1035 | во 4         | 1 22.56 N  | 146 42.18              | E GPS | -9       | 5480         | 12 | 5494 | 5576  | 36  | 1-8,27,93,102                                        | #1=#8 DUPL BTLS          |        |
| 49NZ20140717                 | P01        | 48       | 1 ROS          | 072014           | 1300 | EN 4         | 11 24.08 N | 146 44.12              | E GPS | -9       | 5481         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 49       | 1 ROS          |                  | 1446 | BE 4         | 11 7.72 N  | 146 53.08              | E GPS | -9       | 5338         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 49       | 1 BUC          | 072014           |      |              |            | 146 53.07              |       | -9       | 5334         |    |      |       |     | 1,3-6,20,31,33,90,102                                | 18.3C                    |        |
| 49NZ20140717                 | P01        | 49       | 1 ROS          |                  | 1612 |              | 1 8.17 N   |                        |       | -9       | 5336         | 10 | 5316 | 5430  | 35  | 1-8,20,23,24,26,27,31,33,43,90,93,97,101,102         | #4=#10 DUPL BTLS         |        |
| 49NZ20140717                 | P01        | 49       | 1 ROS          |                  | 1833 |              |            | 146 53.80              |       | -9       | 5335         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 50       | 1 ROS          |                  | 2104 |              |            | 147 3.96               |       | -9       | 4778         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 50       | 1 BUC          |                  | 2114 |              |            | 147 3.95               |       | -9       | 4763         |    |      |       |     | 1,3-6,30,82,102,103,106                              | 18.5C                    |        |
| 49NZ20140717                 | P01        | 50       | 1 ROS          |                  | 2220 |              |            | 147 4.01               |       | -9       | 4830         | 10 | 4685 | 4768  | 36  | 1-8,27,30,82,93,101-103,106                          |                          |        |
| 49NZ20140717                 | P01        | 50       | 1 ROS          | 072114           | 0025 |              | 10 53.26 N |                        |       | -9       | 5001         |    |      |       |     | FURUNO GPS                                           |                          |        |
| 49NZ20140717                 | P01        | 50       | 1 FLT          | 072114           | 0032 |              | 10 53.39 N |                        |       | -9       | 4998         |    |      |       |     | ARGO S3A RINKO #7251                                 |                          |        |
| 49NZ20140717                 | P01        | 50       | 2 FLT          |                  | 0034 |              |            | 147 4.08               |       | -9       | 4998         |    |      |       |     | ARGO S3A RINKO #7252                                 |                          |        |
| 49NZ20140717                 | P01        | 51       | 1 ROS          | 072114           | 0227 |              |            | 147 12.70              |       | -9       | 5289         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 51       | 1 BUC          | 072114           | 0236 |              |            | 147 12.61              |       | -9       | 5292         |    |      |       |     | 1,3-6,20,31,33,43,102                                | 18.9C                    |        |
| 49NZ20140717                 | P01        | 51       | 1 ROS          |                  | 0353 |              |            | 147 12.30              |       | -9       | 5302         | 10 | 5304 | 5382  | 35  | 1-8,23,24,26,27,31,33,43,92,93,101,102               | #4=#11 DUPL BTLS         |        |
| 49NZ20140717                 | P01        | 51       | 1 ROS          | 072114           | 0608 |              |            | 147 11.67              |       | -9       | 5301         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717                 | P01        | 52       | 1 ROS          | 072114           | 0833 |              |            | 147 22.78              |       | -9       | 5278         |    |      |       |     |                                                      | 10.00                    |        |
| 49NZ20140717                 | P01        | 52       | 1 BUC          |                  | 0842 |              |            | 147 22.69              |       | -9       | 5275         | •  |      | 50.65 | ~ ~ | 1,3-6,102                                            | 18.8C                    |        |
| 49NZ20140717                 | P01        | 52       | 1 ROS          |                  | 0956 |              |            | 147 21.93              |       | -9       | 5279         | 9  | 5291 | 5365  | 34  | 1-8,27,93,101,102                                    | #5=#12 DUPL BTLS         |        |
| 49NZ20140717                 | P01        | 52       | 1 ROS          | 072114           |      |              |            | 147 20.65              |       | -9       | 5273         |    |      |       |     |                                                      |                          |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 53<br>53 | 1 ROS<br>1 BUC | 072114<br>072114 | 1409 |              |            | 147 33.45              |       | -9<br>-9 | 5294<br>5293 |    |      |       |     | 1 2 6 102                                            | 18.3C                    |        |
|                              | P01<br>P01 |          | 1 ROS          | 072114           |      |              |            | 147 33.39<br>147 33.00 |       | -9<br>-9 |              | 9  | 5266 | E 201 | 25  | 1,3-6,102                                            |                          |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 53<br>53 | 1 ROS          | 072114           |      |              |            |                        |       | -9<br>-9 | 5293<br>5295 | 9  | 5266 | 5381  | 35  | 1-8,27,93,101,102                                    | #4=#13 DUPL BTLS         |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 53<br>54 | 1 ROS          | 072114           |      |              |            | 147 32.71<br>147 42.83 |       | -9<br>-9 | 5295<br>5234 |    |      |       |     |                                                      |                          |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54       | 1 BUC          |                  | 1913 |              |            | 147 42.83              |       | -9       | 5234<br>5234 |    |      |       |     | 3-6,30-34,82,100-104,106-112                         | 18.1C                    |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54<br>54 | 1 ROS          | 072114           |      |              |            | 147 42.80              |       | -9       | 5234<br>5236 | -9 | 491  | 502   | 25  | 3-6,30-34,82,100-104,106-113                         | FOR BGC                  |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54<br>54 | 1 ROS<br>1 ROS | 072114           |      |              |            | 147 42.79              |       | -9<br>-9 | 5236         | -9 | 491  | JUZ   | 55  | 2 0,50 34,02,100-104,100-113                         | FOR BGC                  |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54<br>54 | 1 ROS<br>1 BIO | 072114           | 2009 |              |            | 147 42.62              |       | -9<br>-9 | 5238<br>5234 |    |      |       |     | NORPAC NET #1                                        |                          |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54       | 1 BIO<br>1 BIO |                  | 2024 |              |            | 147 42.80              |       | -9       | 5234<br>5234 |    |      |       |     | NOVERO NEL #1                                        |                          |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54<br>54 | 2 ROS          |                  | 2209 |              |            | 147 41.82              |       | -9<br>-9 | 5234<br>5235 |    |      |       |     |                                                      |                          |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54<br>54 | 2 ROS<br>2 BUC |                  | 2228 |              |            | 147 41.94<br>147 41.91 |       | -9<br>-9 | 5235<br>5235 |    |      |       |     | 1,3-6,20,30,31,33,102                                | 18.4C                    |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54<br>54 | 2 BOC<br>2 ROS |                  | 2236 |              |            | 147 41.91              |       | -9       | 5235<br>5246 | 9  | 5224 | 5329  | 34  | 1-8,12,13,20,23,24,26,27,30,31,33,43,82,93,101-103,  |                          |        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 54       | 2 ROS<br>2 ROS |                  | 0202 |              |            | 147 41.80              |       | -9       | 5246<br>5249 | 9  | J224 | 5525  | 24  | - 0,-2,-10,20,20,24,20,21,00,01,00,40,02,90,101-100, | 100                      |        |
| 4914620140/1/                | FOT        | 34       | Z RUS          | 0/2214           | 0202 | <u>с</u> и 3 | 9 31.30 N  | 14/ 41.90              | E GPS | -9       | 5249         |    |      |       |     |                                                      |                          |        |

#### WITHOUT LADCP/MR/FL/TX/CDOM

| 49NZ201            | 40717  | P01        | 55 | 1 | ROS | 072214 | 0421 | BE | 39       | 41.64 N          | 147 | 55.15 | Е  | GPS | -9       | 5346 |    |
|--------------------|--------|------------|----|---|-----|--------|------|----|----------|------------------|-----|-------|----|-----|----------|------|----|
| 49NZ201            | 40717  | P01        | 55 | 1 | BUC | 072214 | 0431 | UN | 39       | 41.64 N          | 147 | 55.11 | Е  | GPS | -9       | 5346 |    |
| 49NZ201            | 40717  | P01        | 55 | 1 | ROS | 072214 | 0546 | во | 39       | 41.58 N          | 147 | 54.82 | Е  | GPS | -9       | 5343 | 10 |
| 49NZ201            | 40717  | P01        | 55 | 1 | ROS | 072214 | 0801 | EN | 39       | 41.57 N          | 147 | 54.55 | Е  | GPS | -9       | 5345 |    |
| 49NZ201            | 40717  | P01        | 56 | 1 | ROS | 072214 | 1049 | BE | 40       | 1.24 N           | 148 | 24.15 | Е  | GPS | -9       | 5459 |    |
| 49NZ201            | 40717  | P01        | 56 | 1 | BUC | 072214 | 1057 | UN | 40       | 1.20 N           | 148 | 24.07 | Е  | GPS | -9       | 5457 |    |
| 49NZ201            | 40717  | P01        | 56 | 1 | ROS | 072214 | 1216 | во | 40       | 0.91 N           | 148 | 23.23 | Е  | GPS | -9       | 5446 | 9  |
| 49NZ201            | 40717  | P01        | 56 | 1 | ROS | 072214 | 1437 | EN | 40       | 0.44 N           | 148 | 22.44 | Е  | GPS | -9       | 5426 |    |
| 49NZ201            | 40717  | P01        | 57 | 1 | ROS | 072214 | 1724 | BE | 40       | 19.36 N          | 148 | 52.39 | Е  | GPS | -9       | 5455 |    |
| 49NZ201            | 40717  | P01        | 57 | 1 | BUC | 072214 | 1732 | UN | 40       | 19.42 N          | 148 | 52.33 | Е  | GPS | -9       | 5462 |    |
| 49NZ201            | 40717  | P01        | 57 | 1 | ROS | 072214 | 1851 | во | 40       | 19.50 N          | 148 | 52.23 | Е  | GPS | -9       | 5458 | 11 |
| 49NZ201            | 40717  | P01        | 57 | 1 | ROS | 072214 | 2109 | EN | 40       | 19.34 N          | 148 | 52.28 | Е  | GPS | -9       | 5457 |    |
| 49NZ201            | 40717  | P01        | 58 | 1 | ROS | 072214 | 2345 | BE | 40       | 37.45 N          | 149 | 22.79 | Е  | GPS | -9       | 5344 |    |
| 49NZ201            | 40717  | P01        | 58 | 1 | BUC | 072214 | 2353 | UN | 40       | 37.44 N          | 149 | 22.79 | Е  | GPS | -9       | 5344 |    |
| 49NZ201            | 40717  | P01        | 58 | 1 | ROS | 072314 | 0109 | во | 40       | 37.44 N          | 149 | 22.97 | Е  | GPS | -9       | 5343 | 10 |
| 49NZ201            | 40717  | P01        | 58 | 1 | ROS | 072314 | 0325 | EN | 40       | 37.17 N          | 149 | 23.77 | Е  | GPS | -9       | 5302 |    |
| 49NZ201            | 40717  | P01        | 59 | 1 | ROS | 072314 | 0552 | BE | 40       | 55.82 N          | 149 | 51.78 | Е  | GPS | -9       | 5378 |    |
| 49NZ201            | 40717  | P01        | 59 | 1 | BUC | 072314 | 0600 | UN | 40       | 55.86 N          | 149 | 51.79 | Е  | GPS | -9       | 5373 |    |
| 49NZ201            | 40717  | P01        | 59 | 1 | ROS | 072314 | 0718 | во | 40       | 55.74 N          | 149 | 51.92 | Е  | GPS | -9       | 5374 | 10 |
| 49NZ201            |        | P01        | 59 | 1 | ROS | 072314 | 0930 | EN |          | 55.87 N          |     | 52.25 |    | GPS | -9       | 5369 |    |
| 49NZ201            |        | P01        | 60 | 1 | ROS | 072314 | 1206 | BE | 41       | 15.85 N          |     |       | Е  | GPS | -9       | 5383 |    |
| 49NZ201            |        | P01        | 60 | 1 | BUC | 072314 | 1215 | UN |          | 15.87 N          |     |       | E  | GPS | -9       | 5386 |    |
| 49NZ201            |        | P01        | 60 | 1 | ROS | 072314 | 1334 | BO |          | 16.08 N          |     | 23.20 |    | GPS | -9       | 5382 | 12 |
| 49NZ201            |        | P01        | 60 | 1 | ROS | 072314 | 1557 | EN |          | 17.22 N          |     |       | E  | GPS | -9       | 5123 |    |
| 49NZ201            |        | P01        | 61 | 1 | ROS | 072314 | 1814 | BE |          | 33.73 N          |     | 52.54 |    | GPS | -9       | 5219 |    |
| 49NZ201            |        | P01        | 61 | 1 | BUC | 072314 | 1823 | UN |          | 33.74 N          |     | 52.61 |    | GPS | -9       | 5213 |    |
| 49NZ201            |        | P01        | 61 | 1 | ROS | 072314 | 1936 | BO |          | 33.65 N          |     | 53.04 |    | GPS | -9       | 5210 | 10 |
| 49NZ201            |        | P01        | 61 | 1 | ROS | 072314 | 2150 | EN |          | 33.33 N          |     | 54.07 |    | GPS | -9       | 5209 |    |
| 49NZ201            |        | P01        | 62 | 1 | ROS | 072414 | 0044 | BE |          | 56.36 N          |     | 28.26 |    | GPS | -9       | 5162 |    |
| 49NZ201            |        | P01        | 62 | 1 | BUC | 072414 | 0052 | UN |          | 56.39 N          |     | 28.33 |    | GPS | -9       | 5165 |    |
| 49NZ201            |        | P01        | 62 | 1 | ROS | 072414 | 0205 | BO |          | 56.30 N          |     | 28.67 |    | GPS | -9       | 5158 | 9  |
| 49NZ201            |        | P01        | 62 | 1 | ROS | 072414 | 0415 | EN |          | 56.24 N          |     | 28.78 |    | GPS | -9       | 5160 | 5  |
| 49NZ201            |        | P01        | 63 | 1 | ROS | 072414 | 0722 | BE |          | 19.83 N          |     |       |    | GPS | -9       | 5121 |    |
| 49NZ201            |        | P01        | 63 | 1 | BUC | 072414 | 0731 | UN |          | 19.87 N          |     |       |    | GPS | -9       | 5119 |    |
| 49NZ201            |        | P01        | 63 | 1 | ROS | 072414 | 0843 | BO |          | 20.01 N          |     |       |    | GPS | -9       | 5116 | 10 |
| 49NZ201            |        | P01        | 63 | 1 | ROS | 072414 | 1054 | EN |          | 19.92 N          |     |       |    | GPS | -9       | 5127 | 10 |
| 49NZ201            |        | P01        | 64 | 1 | ROS | 072414 | 1338 | BE |          | 40.86 N          |     | 41.02 |    | GPS | -9       | 5308 |    |
| 49NZ201            |        | P01        | 64 | 1 | BUC | 072414 | 1347 | UN |          | 40.87 N          |     |       | E  | GPS | -9       | 5307 |    |
| 49NZ201            |        | P01        | 64 | 1 | ROS | 072414 | 1503 | BO |          | 40.67 N          |     | 41.39 | _  | GPS | -9       | 5305 | 11 |
| 49NZ201            |        | P01        | 64 | 1 | ROS | 072414 | 1717 | EN |          | 40.34 N          |     | 42.46 |    | GPS | -9       | 5295 |    |
| 49NZ201            |        | P01        | 65 | 1 | ROS | 072414 | 2032 | BE | 43       | 4.87 N           |     | 19.41 |    | GPS | -9       | 5160 |    |
| 49NZ201            |        | P01        | 65 | 1 | BUC | 072414 | 2039 | UN | 43       | 4.86 N           |     | 19.38 |    | GPS | -9       | 5162 |    |
| 49NZ201            |        | P01        | 65 | 1 | ROS | 072414 | 2150 | BO | 43       | 4.88 N           |     | 19.45 |    | GPS | -9       | 5163 | 10 |
| 49NZ201            |        | P01        | 65 | 1 | ROS | 072414 | 2358 | EN | 43       | 4.86 N           |     | 19.50 |    | GPS | -9       | 5166 |    |
| 49NZ201            |        | P01        | 66 | 1 | ROS | 072514 | 0357 | BE |          | 33.99 N          |     | 10.28 |    | GPS | -9       | 5445 |    |
| 49NZ201            |        | P01        | 66 | 1 | BUC | 072514 | 0406 | UN |          |                  |     | 10.34 |    | GPS | -9       | 5446 |    |
| 49NZ201            |        | P01        | 66 | 1 | ROS | 072514 | 0524 | BO |          | 33.98 N          |     | 10.54 |    | GPS | -9       | 5437 | 10 |
| 49NZ201            |        | P01        | 66 | 1 | ROS | 072514 | 0732 | EN |          | 34.11 N          |     | 11.74 |    | GPS | -9       | 5467 | 10 |
| 49NZ201<br>49NZ201 |        | P01<br>P01 | 67 | 1 | ROS | 072514 | 1116 | BE | 43       | 4.88 N           |     |       | E  | GPS | -9       | 5349 |    |
| 49NZ201<br>49NZ201 |        | P01<br>P01 | 67 | 1 | ROS | 072514 | 1136 | BO | 44       | 4.88 N<br>5.04 N |     |       | E  | GPS | -9<br>-9 | 5335 | -9 |
| 49NZ201            |        | P01<br>P01 | 67 | 1 | ROS | 072514 | 1215 | EN | 44       | 5.15 N           |     | 59.69 |    | GPS | -9       | 5324 | ,  |
| 49NZ201            |        | P01<br>P01 | 67 | 1 | BIO | 072514 | 1215 | BE | 44       | 5.13 N<br>5.14 N |     | 59.80 |    | GPS | -9       | 5324 |    |
| 49NZ201<br>49NZ201 |        | P01<br>P01 | 67 | 1 | BIO | 072514 | 1423 | EN | 44       | 5.14 N<br>5.27 N |     |       | E  | GPS | -9<br>-9 | 5316 |    |
| 49NZ201<br>49NZ201 |        | P01<br>P01 | 67 | 2 | ROS | 072514 | 1423 | BE | 44<br>44 | 5.27 N<br>5.24 N |     |       |    | GPS | -9<br>-9 | 5310 |    |
| 49NZ201<br>49NZ201 |        | P01<br>P01 | 67 | 2 | BUC | 072514 |      | UN | 44<br>44 | 5.24 N<br>5.25 N |     |       |    | GPS | -9<br>-9 | 5310 |    |
| 49NZ201            | -=0/1/ | POT        | 07 | 2 | DUC | 012514 | T442 | UN | 44       | 5.25 N           | 102 | 0.0/  | E. | GPS | -9       | 5307 |    |

| 10 | 5317 | 5439 | 35 | 1,3-6,102<br>1-8,27,93,102                                                          | 19.3C<br>#4=#14 DUPL BTLS |
|----|------|------|----|-------------------------------------------------------------------------------------|---------------------------|
| 9  | 5480 | 5553 | 36 | 1,3-6,102<br>1-8,20,23,24,26,27,43,93,97,102                                        | 19.2C<br>#3=#15 DUPL BTLS |
| 11 | 5435 | 5558 | 36 | 1,3-6,102<br>1-8,27,93,102                                                          | 19.3C<br>#3=#16 DUPL BTLS |
| 10 | 5333 | 5448 | 34 | 1,3-6,20,30,82,102,103<br>1-8,23,24,26,27,30,43,82,93,102,103                       | 19.4C                     |
| 10 | 5357 | 5470 | 35 | 1,3-6,102<br>1-8,27,93,102                                                          | 20.5C<br>#4=#17 DUPL BTLS |
| 12 | 5501 | 5481 | 36 | 1,3-6,20,31,33,34,90,98,99,102<br>1-8,20,23,24,26,27,31,33,34,43,90,92,93,98,99,102 | 20.1C                     |
| 10 | 5186 | 5298 | 34 | 1,3-6,102<br>1-8,27,93,102                                                          | 19.1C<br>#5=#18 DUPL BTLS |
| 9  | 5136 | 5246 | 35 | 1,3-6,20,102<br>1-8,20,23,24,26,27,43,93,                                           | 17.0C<br>#4=#19 DUPL BTLS |
| 10 | 5116 | 5207 | 34 | 1,3-6,102<br>1-8,27,93                                                              | 16.1C<br>#5=#20 DUPL BTLS |
| 11 | 5291 | 5401 | 35 | 1,3-6,20,31,33,102<br>1-8,20,23,24,26,27,31,33,43,93,102                            | 16.7C<br>#4=#21 DUPL BTLS |
| 10 | 5139 | 5254 | 35 | 1,3-6,102<br>1-8,27,93,102                                                          | 16.3C<br>#4=#22 DUPL BTLS |
| 10 | 5432 | 5547 | 35 | 1,3-6,20,102<br>1-8,20,23,24,26,27,43,93,102                                        | 15.6C<br>#4=#23 DUPL BTLS |
| -9 | 837  | 833  | 36 | 22,89,91                                                                            | FOR RN                    |
|    |      |      |    |                                                                                     | NORPAC NET #2             |
|    |      |      |    | 1,3-6,20,22,31,33,34,82,89-91,98,99,102,103,106                                     | 16.1C                     |

| 49NZ20140717                 | P01        | 67        | 2 ROS          | 072514           | 1558 | BO | 44 5.16 1               | N 155 | 0.92 E  | GPS | -9       | 5308         | 9  | 5293 | 5405 | 36 | 1-8,12,13,20,23,24,26,27,34,43,82,90,92,93,98,9 | 9,102,103,106 | STATION KNOT           |
|------------------------------|------------|-----------|----------------|------------------|------|----|-------------------------|-------|---------|-----|----------|--------------|----|------|------|----|-------------------------------------------------|---------------|------------------------|
| 49NZ20140717                 | P01        | 67        | 2 ROS          | 072514           | 1810 | EN | 44 5.10 1               | N 155 | 1.66 E  | GPS | -9       | 5311         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 68        | 1 ROS          | 072514           | 2201 | BE | 44 34.57 1              | N 155 | 47.80 E | GPS | -9       | 5140         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 68        | 1 BUC          | 072514           | 2209 | UN | 44 34.65 1              | N 155 | 47.82 E | GPS | -9       | 5138         |    |      |      |    | 1,3-6,102                                       |               | 14.6C                  |
| 49NZ20140717                 | P01        | 68        | 1 ROS          | 072514           | 2320 | BO | 44 35.05 1              | N 155 | 47.55 E | GPS | -9       | 5146         | 9  | 5142 | 5233 | 35 | 1-8,27,93,102                                   |               | #4=#24 DUPL BTLS       |
| 49NZ20140717                 | P01        | 68        | 1 ROS          | 072614           | 0130 | EN | 44 35.31 1              | N 155 | 47.72 E | GPS | -9       | 5137         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 69        | 1 ROS          | 072614           | 0522 | BE | 45 4.40 1               | N 156 | 38.28 E | GPS | -9       | 4768         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 69        | 1 BUC          | 072614           | 0530 | UN | 45 4.39 1               | N 156 | 38.27 E | GPS | -9       | 4766         |    |      |      |    | 1,3-6,20,102                                    |               | 13.8C                  |
| 49NZ20140717                 | P01        | 69        | 1 ROS          | 072614           | 0637 | BO | 45 4.28 1               | N 156 | 38.27 E | GPS | -9       | 4783         | 9  | 4752 | 4853 | 33 | 1-8,20,23,24,26,27,43,102                       |               | #6=#25 DUPL BTLS       |
| 49NZ20140717                 | P01        | 69        | 1 ROS          | 072614           | 0833 | EN | 45 3.87 1               | N 156 | 38.10 E | GPS | -9       | 4803         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 70        | 1 ROS          | 072614           | 1249 | BE | 45 33.71 1              | N 157 | 28.96 E | GPS | -9       | 5031         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 70        | 1 BUC          | 072614           | 1259 | UN | 45 33.67 1              | N 157 | 28.75 E | GPS | -9       | 5039         |    |      |      |    | 1,3-6,102                                       |               | 12.4C                  |
| 49NZ20140717                 | P01        | 70        | 1 ROS          | 072614           | 1409 | BO | 45 33.64 1              | N 157 | 28.07 E | GPS | -9       | 5038         | 8  | 5036 | 5128 | 33 | 1-6,27,93,102                                   |               | #6=#26 DUPL BTLS       |
| 49NZ20140717                 | P01        | 70        | 1 ROS          | 072614           | 1618 | EN | 45 33.41 1              | N 157 | 26.79 E | GPS | -9       | 5036         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 71        | 1 ROS          | 072614           | 2022 | BE | 46 3.94 1               | N 158 | 19.56 E | GPS | -9       | 4838         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 71        | 1 BUC          | 072614           | 2035 | UN | 46 3.97 1               | N 158 | 19.58 E | GPS | -9       | 4832         |    |      |      |    | 1,3-6,20,31,33,102                              |               | 12.1C                  |
| 49NZ20140717                 | P01        | 71        | 1 ROS          | 072614           | 2142 | BO | 46 4.22 1               | N 158 | 19.68 E | GPS | -9       | 4837         | 10 | 4823 | 4916 | 33 | 1-8,20,23,24,26,27,31,33,43,93,102              |               | #6=#27 DUPL BTLS       |
| 49NZ20140717                 | P01        | 71        | 1 ROS          | 072614           | 2343 | EN | 46 4.86 1               | N 158 | 20.24 E | GPS | -9       | 4840         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 72        | 1 ROS          | 072714           | 0341 | BE | 46 33.36 1              | N 159 | 13.66 E | GPS | -9       | 5126         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 72        | 1 BUC          | 072714           | 0349 | UN | 46 33.41 1              | N 159 | 13.65 E | GPS | -9       | 5121         |    |      |      |    | 1,3-6,102                                       |               | 11.4C                  |
| 49NZ20140717                 | P01        | 72        | 1 ROS          | 072714           | 0500 | BO | 46 33.54 1              | N 159 | 13.69 E | GPS | -9       | 5109         | 10 | 5095 | 5205 | 34 | 1-8,27,93,102                                   |               | #5=#25 DUPL BTLS       |
| 49NZ20140717                 | P01        | 72        | 1 ROS          | 072714           | 0702 | EN | 46 33.55 1              | N 159 | 13.78 E | GPS | -9       | 5122         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 73        | 1 ROS          | 072714           | 1038 | BE | 47 0.46 1               | N 160 | 1.25 E  | GPS | -9       | 5195         |    |      |      |    |                                                 |               | OCEAN STATION K2       |
| 49NZ20140717                 | P01        | 73        | 1 BUC          | 072714           | 1046 | UN | 47 0.36 1               | N 160 | 1.36 E  | GPS | -9       | 5202         |    |      |      |    | 1,3-6,20,31,33,34,43,82,90,98,99,102            |               | 11.5C                  |
| 49NZ20140717                 | P01        | 73        | 1 ROS          | 072714           | 1158 | BO | 47 0.56 1               | N 160 | 1.31 E  | GPS | -9       | 5197         | 8  | 5182 | 5292 | 36 | 1-8,12,13,20,23,24,26,27,31,33,34,43,82,90,92   | .,98,99,102   |                        |
| 49NZ20140717                 | P01        | 73        | 1 ROS          | 072714           | 1409 | EN | 47 1.05 1               | N 160 | 1.13 E  | GPS | -9       | 5189         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 73        | 1 BIO          | 072714           | 1421 | BE | 47 1.11 1               | N 160 | 1.11 E  | GPS | -9       | 5188         |    |      |      |    |                                                 |               | NORPAC NET #3          |
| 49NZ20140717                 | P01        | 73        | 1 BIO          | 072714           |      |    |                         |       | 0.73 E  |     | -9       | 5189         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 73        | 2 ROS          | 072714           | 1623 | BE | 47 1.88 1               | N 160 | 0.66 E  | GPS | -9       | 5194         |    |      |      |    |                                                 |               | FOR RN                 |
| 49NZ20140717                 | P01        | 73        | 2 ROS          | 072714           |      |    | 47 2.03 1               |       | 0.64 E  |     | -9       | 5191         | -9 | 821  | 831  | 36 | 22,89,91                                        |               |                        |
| 49NZ20140717                 | P01        | 73        | 2 ROS          | 072714           |      |    |                         |       | 0.78 E  |     | -9       | 5187         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 73        | 3 ROS          | 072714           | 1808 |    | 47 0.64 1               |       | 1.13 E  |     | -9       | 5188         |    |      |      |    |                                                 |               | FOR BGC                |
| 49NZ20140717                 | P01        | 73        | 3 ROS          |                  | 1821 |    | 47 0.73 1               |       | 1.15 E  |     | -9       | 5190         | -9 | 525  | 534  | 34 | 3-6,30,31-34,82,100-104,106-113,                |               |                        |
| 49NZ20140717                 | P01        | 73        | 3 ROS          | 072714           |      |    |                         |       | 1.30 E  |     | -9       | 5187         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 73        | 4 ROS          | 072714           | 1957 | BE | 47 0.89 1               | N 160 | 1.38 E  | GPS | -9       | 5188         |    |      |      |    |                                                 |               |                        |
|                              |            |           |                |                  |      |    |                         |       |         |     |          |              |    |      |      |    | FOI                                             | R BIO, 12L CL | EAN NISKIN x12 CTD/CWS |
| 4007200140212                | 501        |           | 4 500          | 070714           | 0001 | -  | 47 0 01                 | 1.00  | 1 40 5  |     | •        | 5100         | •  |      | 50   | 10 |                                                 |               |                        |
| 49NZ20140717                 | P01        | 73        | 4 ROS          | 072714           | 2001 |    |                         |       | 1.40 E  |     | -9       | 5188         | -9 | 46   | 50   | 12 | 64                                              |               |                        |
| 49NZ20140717                 | P01        | 73        | 4 ROS          | 072714           |      |    |                         |       | 1.43 E  |     | -9       | 5191         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717                 | P01        | 73        | 5 ROS          | 072714           | 2056 | BE | 47 0.58 1               | N 160 | 1.40 E  | GPS | -9       | 5194         |    |      |      |    |                                                 |               |                        |
|                              |            |           |                |                  |      |    |                         |       |         |     |          |              |    |      |      |    | FOI                                             | R BIO, 12L CL | EAN NISKIN x12 CTD/CWS |
| 49NZ20140717                 | P01        | 73        | 5 ROS          | 072714           | 0100 | во | 47 0.58                 | 1.00  | 1.42 E  | CDC | -9       | 5194         | -9 | 46   | 51   | 10 | 64                                              |               |                        |
|                              | P01<br>P01 |           |                |                  |      |    |                         |       |         |     |          | 5194<br>5197 | -9 | 40   | 51   | 12 | 64                                              |               |                        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 73<br>926 | 5 ROS<br>1 UNK | 072714<br>072814 | 2106 |    | 47 0.59 1<br>46 58.22 1 |       | 1.51 E  |     | -9<br>-9 | 5197         |    |      |      |    |                                                 |               |                        |
| 49NZ20140/1/                 | POI        | 926       | I UNK          | 072814           | 0622 | BE | 40 38.22                | N 161 | 20.04 E | GPS | -9       | 5057         |    |      |      |    |                                                 |               |                        |
|                              |            |           |                |                  |      |    |                         |       |         |     |          |              |    |      |      |    |                                                 | 3-AXIS M      | AGNETMETER CALIBRATION |
| 49NZ20140717                 | P01        | 926       | 1 UNK          | 072814           | 0649 | EN | 46 58.00 1              | N 161 | 25 97 F | GPS | -9       | 5650         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 74        | 1 ROS          |                  |      |    | 46 59.97 1              |       |         |     | -9       | 5429         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 74        | 1 BUC          | 072814           | 2205 |    | 46 59.95 1              |       | 9.25 E  |     | -9       | 5452         |    |      |      |    | 1,3-6,102                                       |               | 12.0C                  |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 74        | 1 ROS          | 072814           | 2330 |    | 46 59.98 1              |       |         |     | -9       | 5459         | 11 | 5441 | 5561 | 36 | 1-8,27,93                                       |               | #3=#29 DUPL BTLS       |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 74        | 1 ROS          |                  | 0142 |    | 40 39.98 1              |       |         |     | -9       | 5281         | 11 | 5441 | 3301 | 50 | 1 0,2,,,,,,                                     |               | "3-"E9 DOED DIES       |
| 49NZ20140717<br>49NZ20140717 | P01        | 75        | 1 ROS          | 072914           | 0548 |    | 46 59.48 1              |       |         |     | -9       | 5651         |    |      |      |    |                                                 |               |                        |
| 49NZ20140717<br>49NZ20140717 | P01        | 75        | 1 BUC          | 072914           |      |    | 46 59.44 1              |       |         |     | -9       | 5645         |    |      |      |    | 1,3-6,20,31,33,102                              |               | 12.1C                  |
| 49NZ20140717<br>49NZ20140717 | P01<br>P01 | 75        | 1 ROS          | 072914           |      |    | 46 59.14 1              |       |         |     | -9       | 5626         | 10 | 5626 | 5741 | 36 | 1-8,20,23,24,26,27,31,33,43,93,97,102           |               | #3=#30 DUPL BTLS       |
| 191220140/1/                 | FOT        | ,5        | 1 103          | 012314           | 0/14 | 00 | -10 09.14 1             | 102   | 13.91 E | GED | 9        | 3020         | 10 | 5020 | 3/41 | 50 | - 0,20,23,23,20,21,31,33,43,73,71,102           |               | "2-#20 DOLT 0110       |

| 49NZ20140717 | P01 | 75 | 1 | ROS | 072914 | 0928 | EN | 46 | 58.54 | N | 162 | 14.61 | E G | PS | -9 | 5692 |
|--------------|-----|----|---|-----|--------|------|----|----|-------|---|-----|-------|-----|----|----|------|
| 49NZ20140717 | P01 | 76 | 1 | ROS | 072914 | 1322 | BE | 46 | 59.72 | N | 163 | 22.83 | E G | PS | -9 | 5771 |
| 49NZ20140717 | P01 | 76 | 1 | BUC | 072914 | 1330 | UN | 46 | 59.64 | N | 163 | 22.90 | E G | PS | -9 | 5765 |
| 49NZ20140717 | P01 | 76 | 1 | ROS | 072914 | 1451 | BO | 46 | 59.23 | N | 163 | 22.79 | E G | PS | -9 | 5767 |
| 49NZ20140717 | P01 | 76 | 1 | ROS | 072914 | 1719 | EN | 46 | 58.53 | N | 163 | 22.44 | E G | PS | -9 | 5750 |
| 49NZ20140717 | P01 | 77 | 1 | ROS | 072914 | 2117 | BE | 46 | 60.00 | N | 164 | 30.77 | E G | PS | -9 | 5902 |
| 49NZ20140717 | P01 | 77 | 1 | BUC | 072914 | 2126 | UN | 47 | 0.01  | N | 164 | 30.76 | E G | PS | -9 | 5889 |
| 49NZ20140717 | P01 | 77 | 1 | XCT | 072914 | 2129 | DE | 47 | 0.01  | N | 164 | 30.75 | E G | PS | -9 | 5890 |
| 49NZ20140717 | P01 | 77 | 1 | ROS | 072914 | 2247 | BO | 46 | 59.93 | N | 164 | 30.86 | E G | PS | -9 | 5920 |
| 49NZ20140717 | P01 | 77 | 1 | ROS | 073014 | 0113 | EN | 46 | 59.94 | N | 164 | 31.06 | E G | PS | -9 | 5938 |
| 49NZ20140717 | P01 | 78 | 1 | ROS | 073014 | 0503 | BE | 46 | 58.71 | N | 165 | 38.26 | E G | PS | -9 | 5880 |
| 49NZ20140717 | P01 | 78 | 1 | BUC | 073014 | 0511 | UN | 46 | 58.69 | N | 165 | 38.24 | E G | PS | -9 | 5887 |
| 49NZ20140717 | P01 | 78 | 1 | XCT | 073014 | 0515 | DE | 46 | 58.68 | N | 165 | 38.23 | E G | PS | -9 | 5884 |
| 49NZ20140717 | P01 | 78 | 1 | ROS | 073014 | 0633 | BO | 46 | 58.58 | N | 165 | 38.24 | E G | PS | -9 | 5887 |
| 49NZ20140717 | P01 | 78 | 1 | ROS | 073014 | 0852 | EN | 46 | 58.36 | N | 165 | 38.37 | E G | PS | -9 | 5892 |
| 49NZ20140717 | P01 | 79 | 1 | ROS | 073014 | 1245 | BE | 46 | 59.16 | N | 166 | 44.24 | E G | PS | -9 | 5955 |
| 49NZ20140717 | P01 | 79 | 1 | ROS | 073014 | 1305 | BO | 46 | 59.17 | N | 166 | 44.30 | E G | PS | -9 | 5957 |
| 49NZ20140717 | P01 | 79 | 1 | ROS | 073014 | 1339 | EN | 46 | 59.10 | N | 166 | 44.33 | E G | PS | -9 | 5955 |
| 49NZ20140717 | P01 | 79 | 1 | BIO | 073014 | 1350 | BE | 46 | 59.08 | N | 166 | 44.34 | E G | PS | -9 | 5961 |
| 49NZ20140717 | P01 | 79 | 1 | BIO | 073014 | 1615 | EN | 46 | 58.69 | N | 166 | 44.78 | E G | PS | -9 | 5960 |
| 49NZ20140717 | P01 | 79 | 2 | ROS | 073014 | 1626 | BE | 46 | 58.65 | N | 166 | 44.77 | E G | PS | -9 | 5956 |
| 49NZ20140717 | P01 | 79 | 2 | BUC | 073014 | 1634 | UN | 46 | 58.61 | N | 166 | 44.79 | E G | PS | -9 | 5957 |
| 49NZ20140717 | P01 | 79 | 2 | ROS | 073014 | 1756 | BO | 46 | 58.31 | N | 166 | 44.83 | E G | PS | -9 | 5955 |
| 49NZ20140717 | P01 | 79 | 2 | ROS | 073014 | 2017 | EN | 46 | 57.82 | N | 166 | 44.53 | E G | PS | -9 | 5944 |
| 49NZ20140717 | P01 | 80 | 1 | ROS | 073114 | 0005 | BE | 46 | 59.95 | N | 167 | 49.94 | E G | PS | -9 | 6243 |
| 49NZ20140717 | P01 | 80 | 1 | BUC | 073114 | 0012 | UN | 46 | 59.91 | N | 167 | 49.94 | E G | PS | -9 | 6246 |
| 49NZ20140717 | P01 | 80 | 1 | XCT | 073114 | 0017 | DE | 46 | 59.88 | N | 167 | 49.94 | E G | PS | -9 | 6246 |
| 49NZ20140717 | P01 | 80 | 1 | ROS | 073114 | 0134 | во | 46 | 59.75 | N | 167 | 49.92 | E G | PS | -9 | 6246 |
| 49NZ20140717 | P01 | 80 | 1 | ROS | 073114 | 0402 | EN | 46 | 59.66 | N | 167 | 49.94 | E G | PS | -9 | 6247 |
| 49NZ20140717 | P01 | 81 | 1 | ROS | 073114 | 0603 | BE | 46 | 59.45 | N | 168 | 22.62 | E G | PS | -9 | 6240 |
| 49NZ20140717 | P01 | 81 | 1 | BUC | 073114 | 0611 | UN | 46 | 59.42 | N | 168 | 22.64 | E G | PS | -9 | 6244 |
| 49NZ20140717 | P01 | 81 | 1 | XCT | 073114 | 0615 | DE | 46 | 59.42 | N | 168 | 22.65 | E G | PS | -9 | 6241 |
| 49NZ20140717 | P01 | 81 | 1 | ROS | 073114 | 0733 | BO | 46 | 59.41 | N | 168 | 22.75 | E G | PS | -9 | 6250 |
| 49NZ20140717 | P01 | 81 | 1 | ROS | 073114 | 0958 | EN | 46 | 59.36 | N | 168 | 23.29 | E G | PS | -9 | 6237 |
| 49NZ20140717 | P01 | 82 | 1 | ROS | 073114 | 1211 | BE | 46 | 59.35 | N | 168 | 59.58 | E G | PS | -9 | 5210 |
| 49NZ20140717 | P01 | 82 | 1 | BUC | 073114 | 1219 | UN | 46 | 59.33 | N | 168 | 59.64 | E G | PS | -9 | 5195 |
| 49NZ20140717 | P01 | 82 | 1 | ROS | 073114 | 1332 | во | 46 | 59.22 | N | 168 | 59.72 | E G | PS | -9 | 5200 |
| 49NZ20140717 | P01 | 82 | 1 | ROS | 073114 | 1540 | EN | 46 | 58.94 | N | 168 | 59.99 | E G | PS | -9 | 5198 |
| 49NZ20140717 | P01 | 83 | 1 | ROS | 073114 | 1703 | BE | 47 | 0.20  | N | 169 | 5.83  | E G | PS | -9 | 4202 |
| 49NZ20140717 | P01 | 83 | 1 | BUC | 073114 | 1712 | UN | 47 | 0.17  | N | 169 | 5.87  | E G | PS | -9 | 4190 |
| 49NZ20140717 | P01 | 83 | 1 | ROS | 073114 | 1809 | BO | 47 | 0.11  | N | 169 | 5.89  | E G | PS | -9 | 4167 |
| 49NZ20140717 | P01 | 83 | 1 | ROS | 073114 | 1955 | EN | 47 | 0.02  | N | 169 | 5.77  | E G | PS | -9 | 4179 |
| 49NZ20140717 | P01 | 84 | 1 | ROS | 073114 | 2146 | BE | 47 | 0.23  | N | 169 | 11.02 | E G | PS | -9 | 2679 |
| 49NZ20140717 | P01 | 84 | 1 | BUC | 073114 | 2153 | UN | 47 | 0.22  | N | 169 | 11.02 | E G | PS | -9 | 2681 |
| 49NZ20140717 | P01 | 84 | 1 | ROS | 073114 | 2229 | BO | 47 | 0.18  | N | 169 | 10.98 | E G | PS | -9 | 2687 |
| 49NZ20140717 | P01 | 84 | 1 | ROS | 073114 | 2346 | EN | 47 | 0.12  | N | 169 | 10.97 | E G | PS | -9 | 2691 |
| 49NZ20140717 | P01 | 85 | 1 | ROS | 080114 | 0120 | BE | 46 | 59.18 | N | 169 | 34.46 | E G | PS | -9 | 2393 |
| 49NZ20140717 | P01 | 85 | 1 | BUC | 080114 | 0128 | UN | 46 | 59.15 | N | 169 | 34.46 | E G | PS | -9 | 2396 |
| 49NZ20140717 | P01 | 85 | 1 | ROS | 080114 | 0201 | во | 46 | 59.06 | N | 169 | 34.46 | E G | PS | -9 | 2401 |
| 49NZ20140717 | P01 | 85 | 1 | ROS | 080114 | 0311 | EN | 46 | 58.76 | N | 169 | 34.53 | E G | PS | -9 | 2415 |
| 49NZ20140717 | P01 | 86 | 1 | ROS | 080114 | 0503 | BE | 46 | 58.21 | N | 169 | 48.48 | E G | PS | -9 | 4047 |
| 49NZ20140717 | P01 | 86 | 1 | BUC | 080114 | 0512 | UN | 46 | 58.16 | N | 169 | 48.50 | E G | PS | -9 | 4056 |
| 49NZ20140717 | P01 | 86 | 1 | ROS | 080114 | 0611 | BO | 46 |       | N |     |       |     | PS | -9 | 4095 |
| 49NZ20140717 | P01 | 86 | 1 | ROS | 080114 | 0800 | EN | 46 | 57.62 | N | 169 | 48.95 | E G | PS | -9 | 4321 |
| 49NZ20140717 | P01 | 87 | 1 | ROS | 080114 | 0949 | BE | 46 | 59.01 | N | 169 | 59.71 | EG  | PS | -9 | 4918 |
|              |     |    |   |     |        |      |    |    |       |   |     |       |     |    |    |      |

| 10 | 5769 | 5884 | 36         | 1,3-6,102<br>1-8,27,93,102                                                          | 11.8C                         |
|----|------|------|------------|-------------------------------------------------------------------------------------|-------------------------------|
| 9  | 5913 | 6050 | 2034<br>36 | 1,3-8,20,31,33,34,98,102<br>1-8,20,23,24,26,27,31,33,34,43,93,98,99,102             | 12.3C<br>TSK XCTD-4 #14046669 |
| 10 | 5863 | 6004 | 2034<br>36 | 1,3-6,102<br>1-8,27,93,102                                                          | 12.3C<br>TSK XCTD-4 #14046668 |
| -9 | 820  | 831  | 36         | 22,89,91                                                                            | FOR RN                        |
|    |      |      |            |                                                                                     | NORPAC NET #3                 |
| 10 | 5936 | 6074 | 36         | 1,3-6,20,82,100,102-104,106<br>1-8,12,13,20,23,24,26,27,43,82,92,93,100,102-104,106 | 12.3C                         |
| -9 | 5994 | 6137 | 2035<br>36 | 1,3-6,102<br>1-8,27,93,102                                                          | 12.1C<br>TSK XCTD-4 #14046670 |
| -9 | 5991 | 6137 | 2035<br>36 | 1,3-6,20,31,33,102<br>1-8,20,23,24,26,27,31,33,43,93,102                            | 12.4C<br>TSK XCTD-4 #14046671 |
| 9  | 5174 | 5287 | 34         | 1,3-6,102<br>1-8,27,93,102                                                          | 12.3C<br>#5=#31 DUPL BTLS     |
| 9  | 4161 | 4241 | 31         | 1,3-6,20,102,106<br>1-8,20,23,24,26,27,43,93,102,106                                | 12.2C<br>#8=#32 DUPL BTLS     |
| 10 | 2662 | 2702 | 23         | 1,3-6,102<br>1-8,27,93,102                                                          | 12.3C                         |
| 10 | 2375 | 2409 | 32         | 1,3-6,20,30,82,102,103<br>1-8,20,23,24,26,27,30,43,82,102,103,106                   | 12.2C                         |
| 10 | 4065 | 4145 | 30         | 1,3-6,20,102<br>1-8,20,23,24,26,27,43,93,102                                        | 12.3C<br>#9=#33 DUPL BTLS     |

| 49NZ20140717 | P01 | 87 | 1 BUC | 080114 | 0956 | UN | 46 58.97 N | 169 59.74 | E GPS | -9 | 4921 |    |      |      |    | 1,3-6,20,31,33,34,90,98,99,102                            | 12.1C            |
|--------------|-----|----|-------|--------|------|----|------------|-----------|-------|----|------|----|------|------|----|-----------------------------------------------------------|------------------|
| 49NZ20140717 | P01 | 87 | 1 ROS | 080114 | 1106 | BO | 46 58.86 N | 169 59.75 | E GPS | -9 | 4923 | 9  | 4901 | 5006 | 36 | 1-8,20,23,24,26,27,31,33,34,43,90,93,98,99,102,106        |                  |
| 49NZ20140717 | P01 | 87 | 1 ROS | 080114 | 1307 | EN | 46 58.59 N | 169 59.85 | E GPS | -9 | 4946 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 88 | 1 ROS | 080114 | 1502 | BE | 46 59.77 N | 170 28.22 | E GPS | -9 | 6335 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 88 | 1 BUC | 080114 | 1510 | UN | 46 59.78 N | 170 28.29 | E GPS | -9 | 6336 |    |      |      |    | 1,3-6,102                                                 | 12.1C            |
| 49NZ20140717 | P01 | 88 | 1 ROS | 080114 | 1634 | BO | 46 59.69 N | 170 28.48 | E GPS | -9 | 6334 | 63 | 5996 | 6137 | 36 | 1-8,27,93,102                                             | LADCP SOUNDING   |
| 49NZ20140717 | P01 | 88 | 1 ROS | 080114 | 1905 | EN | 46 59.49 N | 170 28.43 | E GPS | -9 | 6335 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 89 | 1 ROS | 080114 | 2253 | BE | 47 0.10 N  | 171 36.80 | E GPS | -9 | 6060 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 89 | 1 BUC | 080114 | 2301 | UN | 47 0.06 N  | 171 36.82 | E GPS | -9 | 6049 |    |      |      |    | 1,3-6,20,102                                              | 12.2C            |
| 49NZ20140717 | P01 | 89 | 1 ROS | 080214 | 0024 | BO | 46 59.91 N | 171 37.05 | E GPS | -9 | 6022 | 23 | 6004 | 6138 | 36 | 1-8,20,23,24,26,27,43,93,97,102                           |                  |
| 49NZ20140717 | P01 | 89 | 1 ROS | 080214 | 0248 | EN | 46 59.81 N | 171 37.22 | E GPS | -9 | 6027 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 90 | 1 ROS | 080214 | 0641 | BE | 46 59.98 N | 172 43.04 | E GPS | -9 | 5626 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 90 | 1 BUC | 080214 | 0649 | UN | 47 0.04 N  | 172 43.05 | E GPS | -9 | 5615 |    |      |      |    | 1,3-8,102                                                 | 12.5C            |
| 49NZ20140717 | P01 | 90 | 1 ROS | 080214 | 0809 | BO | 47 0.20 N  | 172 43.23 | E GPS | -9 | 5606 | 10 | 5596 | 5719 | 36 | 1-8,27,93,102                                             | #3=#34 DUPL BTLS |
| 49NZ20140717 | P01 | 90 | 1 ROS | 080214 | 1029 | EN | 47 0.12 N  | 172 43.86 | E GPS | -9 | 5632 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 91 | 1 ROS | 080214 | 1415 | BE | 47 0.34 N  | 173 49.54 | E GPS | -9 | 5807 |    |      |      |    |                                                           | FOR BGC          |
| 49NZ20140717 | P01 | 91 | 1 ROS | 080214 | 1431 | BO | 47 0.35 N  | 173 49.54 | E GPS | -9 | 5813 | -9 | 523  | 531  | 36 | 3-6,30-34,82,100-104,106-113                              |                  |
| 49NZ20140717 | P01 | 91 | 1 ROS | 080214 | 1512 | EN | 47 0.32 N  | 173 49.65 | E GPS | -9 | 5809 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 91 | 1 BIO | 080214 | 1522 | BE | 47 0.31 N  | 173 49.70 | E GPS | -9 | 5807 |    |      |      |    |                                                           | NORPAC NET #4    |
| 49NZ20140717 | P01 | 91 | 1 BIO | 080214 | 1712 | EN | 47 0.35 N  | 173 50.20 | E GPS | -9 | 5713 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 91 | 2 ROS | 080214 | 1723 | BE | 47 0.33 N  | 173 50.28 | E GPS | -9 | 5715 |    |      |      |    |                                                           | FOR RN           |
| 49NZ20140717 | P01 | 91 | 2 ROS | 080214 | 1743 | BO | 47 0.34 N  | 173 50.41 | E GPS | -9 | 5712 | -9 | 820  | 831  | 36 | 22,89,91                                                  |                  |
| 49NZ20140717 | P01 | 91 | 2 ROS | 080214 | 1819 | EN | 47 0.26 N  | 173 50.60 | E GPS | -9 | 5723 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 91 | 3 ROS | 080214 | 1906 | BE | 47 0.32 N  | 173 49.81 | E GPS | -9 | 5804 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 91 | 3 BUC | 080214 | 1915 | UN | 47 0.30 N  | 173 49.85 | E GPS | -9 | 5803 |    |      |      |    | 1,3-6,20,31,33,102,106                                    | 12.1C            |
| 49NZ20140717 | P01 | 91 | 3 ROS | 080214 | 2037 | BO | 47 0.35 N  | 173 50.02 | E GPS | -9 | 5784 | 10 | 5775 | 5910 | 36 | 1-8,12,13,20,23,24,26,27,31,33,43,93,102,106              |                  |
| 49NZ20140717 | P01 | 91 | 3 ROS | 080214 | 2255 | EN | 47 0.27 N  | 173 50.46 | E GPS | -9 | 5734 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 92 | 1 ROS | 080314 | 0245 | BE | 47 0.31 N  | 174 57.70 | E GPS | -9 | 5676 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 92 | 1 BUC | 080314 | 0254 | UN | 47 0.30 N  | 174 57.77 | E GPS | -9 | 5674 |    |      |      |    | 1,3-6,102                                                 | 12.0C            |
| 49NZ20140717 | P01 | 92 | 1 ROS | 080314 | 0413 | BO | 47 0.31 N  | 174 58.01 | E GPS | -9 | 5680 | 10 | 5648 | 5779 | 36 | 1-8,27,93,102                                             |                  |
| 49NZ20140717 | P01 | 92 | 1 ROS | 080314 | 0635 | EN | 47 0.25 N  | 174 57.97 | E GPS | -9 | 5672 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 93 | 1 ROS | 080314 | 1038 | BE | 46 59.76 N | 176 5.54  | E GPS | -9 | 5691 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 93 | 1 BUC | 080314 | 1045 | UN | 46 59.76 N | 176 5.52  | E GPS | -9 | 5692 |    |      |      |    | 1,3-6,20,31,33,34,98,99,102                               | 12.1C            |
| 49NZ20140717 | P01 | 93 | 1 ROS | 080314 | 1205 | BO | 46 59.81 N | 176 5.64  | E GPS | -9 | 5693 | 10 | 5669 | 5803 | 35 | 1-8,20,23,24,26,27,31,33,34,43,93,98,99,102               |                  |
| 49NZ20140717 | P01 | 93 | 1 ROS | 080314 | 1427 | EN | 46 59.96 N | 176 6.31  | E GPS | -9 | 5694 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 94 | 1 ROS | 080314 | 1804 | BE | 46 59.73 N | 177 10.73 | E GPS | -9 | 5680 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 94 | 1 BUC | 080314 | 1815 | UN | 46 59.71 N | 177 10.82 | E GPS | -9 | 5677 |    |      |      |    | 1,3-6,102                                                 | 12.0C            |
| 49NZ20140717 | P01 | 94 | 1 ROS | 080314 | 1933 | BO | 46 59.60 N | 177 11.39 | E GPS | -9 | 5683 | 10 | 5669 | 5786 | 36 | 1-8,27,93,102                                             | #3=#35 DUPL BTLS |
| 49NZ20140717 | P01 | 94 | 1 ROS | 080314 | 2154 | EN | 46 59.40 N | 177 11.90 | E GPS | -9 | 5697 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 95 | 1 ROS | 080414 | 0137 | BE | 46 59.95 N | 178 17.52 | E GPS | -9 | 5752 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 95 | 1 BUC | 080414 | 0146 | UN | 46 59.95 N | 178 17.60 | E GPS | -9 | 5750 |    |      |      |    | 1,3-6,20,31,33,102                                        | 13.4C            |
| 49NZ20140717 | P01 | 95 | 1 ROS | 080414 | 0307 | BO | 46 59.84 N | 178 18.28 | E GPS | -9 | 5760 | 10 | 5754 | 5865 | 36 | 1-8,20,23,24,26,27,31,33,43,92,102                        |                  |
| 49NZ20140717 | P01 | 95 | 1 ROS | 080414 | 0532 | EN | 46 59.17 N | 178 18.82 | E GPS | -9 | 5733 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 96 | 1 ROS | 080414 | 0926 | BE | 47 0.66 N  | 179 26.76 | E GPS | -9 | 5619 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 96 | 1 BUC | 080414 | 0933 | UN | 47 0.67 N  | 179 26.78 | E GPS | -9 | 5611 |    |      |      |    | 1,3-8,102                                                 | 12.2C            |
| 49NZ20140717 | P01 | 96 | 1 ROS | 080414 | 1051 | BO | 47 0.65 N  | 179 26.96 | E GPS | -9 | 5640 | 11 | 5600 | 5729 | 36 | 1-8,27,93,102                                             | #3=#36 DUPL BTLS |
| 49NZ20140717 | P01 | 96 | 1 ROS | 080414 | 1310 | EN | 47 0.56 N  | 179 27.24 | E GPS | -9 | 5678 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 97 | 1 ROS | 080414 | 1656 | BE | 46 59.58 N | 179 25.73 | W GPS | -9 | 5720 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 97 | 1 BUC | 080414 | 1704 | UN | 46 59.52 N | 179 25.72 | W GPS | -9 | 5720 |    |      |      |    | 1,3-6,20,30,31,33,34,82,98-100,102-104,106                | 13.4C            |
| 49NZ20140717 | P01 | 97 | 1 ROS | 080414 | 1825 | BO | 46 59.15 N | 179 25.58 | W GPS | -9 | 5740 | 10 | 5724 | 5846 | 36 | 1-8,20,23,24,26,27,30,31,33,34,43,82,93,98-100,102-104,10 | 6                |
| 49NZ20140717 | P01 | 97 | 1 ROS | 080414 | 2048 | EN | 46 58.90 N | 179 25.35 | W GPS | -9 | 5742 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 98 | 1 ROS | 080514 | 0038 | BE | 46 59.88 N | 178 18.42 | W GPS | -9 | 5500 |    |      |      |    |                                                           |                  |
| 49NZ20140717 | P01 | 98 | 1 BUC | 080514 | 0047 | UN | 46 59.88 N | 178 18.42 | W GPS | -9 | 5503 |    |      |      |    | 1,3-8,20,90,102                                           | 12.8C            |
| 49NZ20140717 | P01 | 98 | 1 ROS | 080514 | 0204 | BO | 46 59.90 N | 178 18.08 | W GPS | -9 | 5494 | 9  | 5484 | 5603 | 35 | 1-8,20,23,24,26,27,43,90,93,97,102                        |                  |
| 49NZ20140717 | P01 | 98 | 1 ROS | 080514 | 0421 | EN | 46 59.67 N | 178 17.47 | W GPS | -9 | 5576 |    |      |      |    |                                                           |                  |
|              |     |    |       |        |      |    |            |           |       |    |      |    |      |      |    |                                                           |                  |

| 49NZ20140717 | P01 | 99  | 1 R | OS 080514 | 0804 | BE | 46 | 59.97 N | 177 | 12.87 W | I GPS | -9 | 5719 |
|--------------|-----|-----|-----|-----------|------|----|----|---------|-----|---------|-------|----|------|
| 49NZ20140717 | P01 | 99  | 1 B | UC 080514 | 0811 | UN | 46 | 59.96 N | 177 | 12.85 W | I GPS | -9 | 5717 |
| 49NZ20140717 | P01 | 99  | 1 R | OS 080514 | 0930 | BO | 46 | 59.83 N | 177 | 12.87 W | GPS   | -9 | 5710 |
| 49NZ20140717 | P01 | 99  | 1 R | OS 080514 | 1153 | EN | 46 | 59.64 N | 177 | 12.90 W | I GPS | -9 | 5698 |
| 49NZ20140717 | P01 | 99  | 1 F | LT 080514 | 1201 | DE | 46 | 59.77 N | 177 | 12.61 W | I GPS | -9 | 5688 |
| 49NZ20140717 | P01 | 100 | 1 R | OS 080514 | 1553 | BE | 47 | 0.80 N  | 176 | 2.67 0  | GPS   | -9 | 5632 |
| 49NZ20140717 | P01 | 100 | 1 B | UC 080514 | 1601 | UN | 47 | 0.78 N  | 176 | 2.60 W  | I GPS | -9 | 5632 |
| 49NZ20140717 | P01 | 100 | 1 R | OS 080514 | 1720 | BO | 47 | 0.63 N  | 176 | 2.25 0  | I GPS | -9 | 5628 |
| 49NZ20140717 | P01 | 100 | 1 R | OS 080514 | 1941 | EN | 47 | 0.51 N  | 176 | 1.84 0  | GPS   | -9 | 5627 |
| 49NZ20140717 | P01 | 101 | 1 R | OS 080514 | 2318 | BE | 47 | 0.32 N  | 174 | 57.29 W | I GPS | -9 | 5788 |
| 49NZ20140717 | P01 | 101 | 1 R | OS 080514 | 2331 | BO | 47 | 0.28 N  | 174 | 57.30 W | GPS   | -9 | 5790 |
| 49NZ20140717 | P01 | 101 | 1 R | OS 080614 | 0010 | EN | 47 | 0.22 N  | 174 | 57.21 W | GPS   | -9 | 5788 |
| 49NZ20140717 | P01 | 101 | 1 B | 10 080614 | 0026 | BE | 47 | 0.21 N  | 174 | 57.22 ¥ | GPS   | -9 | 5793 |
| 49NZ20140717 | P01 | 101 | 1 B | IO 080614 | 0207 | EN | 46 | 59.92 N | 174 | 57.07 ¥ | I GPS | -9 | 5795 |
| 49NZ20140717 | P01 | 101 | 2 R | OS 080614 | 0219 | BE | 46 | 59.92 N | 174 | 57.06 ¥ | GPS   | -9 | 5797 |
| 49NZ20140717 | P01 | 101 | 2 R | OS 080614 | 0237 | BO | 46 | 59.87 N | 174 | 57.03 W | GPS   | -9 | 5792 |
| 49NZ20140717 | P01 | 101 | 2 R | OS 080614 | 0312 | EN | 46 | 59.80 N | 174 | 56.95 W | I GPS | -9 | 5794 |
| 49NZ20140717 | P01 | 101 | 3 R | OS 080614 | 0404 | BE | 47 | 0.29 N  | 174 | 57.36 W | I GPS | -9 | 5786 |
| 49NZ20140717 | P01 | 101 | 3 B | UC 080614 | 0410 | UN | 47 | 0.29 N  | 174 | 57.33 W | GPS   | -9 | 5787 |
| 49NZ20140717 | P01 | 101 | 3 R | OS 080614 | 0530 | BO | 47 | 0.14 N  | 174 | 57.24 1 | I GPS | -9 | 5796 |
| 49NZ20140717 | P01 | 101 | 3 R | OS 080614 | 0758 | EN | 46 | 59.96 N | 174 | 57.02 W | I GPS | -9 | 5787 |
| 49NZ20140717 | P01 | 927 | 1 U | NK 080614 | 0809 | BE | 46 | 59.75 N | 174 | 56.22 W | GPS   | -9 | 5791 |
|              |     |     |     |           |      |    |    |         |     |         |       |    |      |
|              |     |     |     |           |      |    |    |         |     |         |       |    |      |
| 49NZ20140717 | P01 | 927 | 1 U | NK 080614 | 0838 | EN | 46 | 59.74 N | 174 | 55.80 W | GPS   | -9 | 5784 |
| 49NZ20140717 | P01 | 102 | 1 R | os 080714 | 0902 | BE | 46 | 60.00 N | 173 | 47.60 W | GPS   | -9 | 5723 |
| 49NZ20140717 | P01 | 102 | 1 B | UC 080714 | 0912 | UN | 46 | 59.93 N | 173 | 47.45 W | I GPS | -9 | 5728 |
| 49NZ20140717 | P01 | 102 | 1 R | OS 080714 | 1030 | BO | 46 | 59.59 N | 173 | 47.16 W | I GPS | -9 | 5724 |
| 49NZ20140717 | P01 | 102 | 1 R | os 080714 | 1253 | EN | 46 | 59.21 N | 173 | 46.97 W | GPS   | -9 | 5574 |
| 49NZ20140717 | P01 | 103 | 1 R | os 080714 | 1635 | BE | 46 | 59.61 N | 172 | 42.37 W | GPS   | -9 | 5786 |
| 49NZ20140717 | P01 | 103 | 1 B | UC 080714 | 1644 | UN | 46 | 59.56 N | 172 | 42.37 W | GPS   | -9 | 5789 |
| 49NZ20140717 | P01 | 103 | 1 R | os 080714 | 1805 | BO | 46 | 59.35 N | 172 | 42.26 W | GPS   | -9 | 5795 |
| 49NZ20140717 | P01 | 103 | 1 R | os 080714 | 2028 | EN | 46 | 59.11 N | 172 | 42.03 W | GPS   | -9 | 5802 |
| 49NZ20140717 | P01 | 104 | 1 R | OS 080814 | 0027 | BE | 47 | 0.56 N  | 171 | 33.54 W | GPS   | -9 | 5712 |
| 49NZ20140717 | P01 | 104 | 1 B | UC 080814 | 0037 | UN | 47 | 0.56 N  | 171 | 33.55 W | GPS   | -9 | 5726 |
| 49NZ20140717 | P01 | 104 | 1 R | OS 080814 | 0156 | BO | 47 | 0.50 N  | 171 | 33.55 W | GPS   | -9 | 5731 |
| 49NZ20140717 | P01 | 104 | 1 R | os 080814 | 0420 | EN | 47 | 0.30 N  | 171 | 33.26 0 | GPS   | -9 | 5764 |
| 49NZ20140717 | P01 | 105 | 1 R | os 080814 | 0810 | BE | 46 | 59.91 N | 170 | 25.60 W | GPS   | -9 | 5500 |
| 49NZ20140717 | P01 | 105 | 1 B | UC 080814 | 0819 | UN | 46 | 59.88 N | 170 | 25.58 ¥ | GPS   | -9 | 5448 |
| 49NZ20140717 | P01 | 105 | 1 R | os 080814 | 0933 | BO | 46 | 59.73 N | 170 | 25.49 W | GPS   | -9 | 5407 |
| 49NZ20140717 | P01 | 105 | 1 R | os 080814 | 1145 | EN | 46 | 59.21 N | 170 | 25.54 W | GPS   | -9 | 5532 |
| 49NZ20140717 | P01 | 106 | 1 R | OS 080814 | 1533 | BE | 46 | 59.61 N | 169 | 20.63 W | I GPS | -9 | 5617 |
| 49NZ20140717 | P01 | 106 | 1 B | UC 080814 | 1541 | UN | 46 | 59.49 N | 169 | 20.64 W | GPS   | -9 | 5613 |
| 49NZ20140717 | P01 | 106 | 1 R | os 080814 | 1701 | BO | 46 | 59.43 N | 169 | 20.66 0 | GPS   | -9 | 5617 |
| 49NZ20140717 | P01 | 106 | 1 R | OS 080814 | 1920 | EN | 46 | 59.07 N | 169 | 20.65 W | I GPS | -9 | 5622 |
| 49NZ20140717 | P01 | 106 | 1 F | LT 080814 | 1927 | DE | 46 | 59.16 N | 169 | 20.58 W | GPS   | -9 | 5619 |
| 49NZ20140717 | P01 | 107 | 1 R | os 080814 | 2321 | BE | 46 | 59.91 N | 168 | 12.71 W | GPS   | -9 | 5408 |
| 49NZ20140717 | P01 | 107 | 1 B | UC 080814 | 2330 | UN | 46 | 59.89 N | 168 | 12.69 W | GPS   | -9 | 5402 |
| 49NZ20140717 | P01 | 107 | 1 R | os 080914 | 0045 | во | 46 | 59.72 N | 168 | 12.53 W | GPS   | -9 | 5395 |
| 49NZ20140717 | P01 | 107 | 1 R | os 080914 | 0300 | EN | 46 | 58.80 N | 168 | 12.37 W | GPS   | -9 | 5377 |
| 49NZ20140717 | P01 | 108 | 1 R | os 080914 | 0657 | BE | 46 | 59.96 N | 167 | 4.92 V  | GPS   | -9 | 5428 |
| 49NZ20140717 | P01 | 108 | 1 B | UC 080914 | 0705 | UN | 46 | 59.90 N | 167 | 4.92 V  | GPS   | -9 | 5419 |
| 49NZ20140717 | P01 | 108 | 1 R | os 080914 | 0820 | во | 46 | 59.79 N | 167 | 5.05 W  | GPS   | -9 | 5425 |
| 49NZ20140717 | P01 | 108 | 1 R | OS 080914 | 1031 | EN | 46 | 59.66 N | 167 | 5.06 ¥  | I GPS | -9 | 5425 |
| 49NZ20140717 | P01 | 109 | 1 R | OS 080914 | 1429 | BE | 47 | 0.58 N  | 165 | 58.93 W | I GPS | -9 | 5338 |
|              |     |     |     |           |      |    |    |         |     |         |       |    |      |

|    |       |      |    | 1,3-6,20,31,33,102                                | 13.2C             |
|----|-------|------|----|---------------------------------------------------|-------------------|
| 9  | 5687  | 5820 | 36 | 1-8,20,23,24,26,27,31,33,43,93,102                |                   |
|    |       |      |    |                                                   |                   |
|    |       |      |    |                                                   | ARGO NAVIS #F0349 |
|    |       |      |    | 1.2.6.102                                         | 12.4C             |
| •  | F (10 | 5740 | 25 | 1,3-6,102                                         | 12.40             |
| 9  | 5612  | 5740 | 35 | 1-8,27,93,102                                     |                   |
|    |       |      |    |                                                   |                   |
| -9 | 4.65  | 470  | 26 | 2 6 20 24 20 100 104 106 112                      | FOR BGC           |
| -9 | 465   | 472  | 36 | 3-6,30-34,82,100-104,106-113                      |                   |
|    |       |      |    |                                                   | NODDAG NEW #F     |
|    |       |      |    |                                                   | NORPAC NET #5     |
|    |       |      |    |                                                   | FOR RN            |
| -9 | 760   | 770  | 26 | 22,89,91                                          | FOR RN            |
| -9 | 760   | //0  | 30 | 22,89,91                                          |                   |
|    |       |      |    |                                                   |                   |
|    |       |      |    | 1,3-6,20,31,33,34,98,99,102                       | 13.3C             |
| 11 | 5769  | 5901 | 36 | 1-8,12,13,20,23,24,26,27,31,33,34,43,92,98,99,102 | 20.00             |
| 11 | 5/69  | 2901 | 30 | 1-0,12,13,20,23,24,20,27,31,33,34,43,92,98,99,102 |                   |

#### 3-AXIS MAGNETMETER CALIBRATION

| 8  | 5710 | 5835 | 36 | 1,3-6,102<br>1-8,27,93,102                                                                             | 12.9C                                         |
|----|------|------|----|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 10 | 5771 | 5907 | 36 | 1,3-6,20,31,33,90,102<br>1-8,20,23,24,26,27,31,33,43,90,93,102                                         | 13.2C                                         |
| 10 | 5695 | 5830 | 36 | 1,3-6,102<br>1-8,27,93,102                                                                             | 13.3C                                         |
| 10 | 5406 | 5530 | 36 | 1,3-8,20,30,31,33,34,82,98,99,102,103,106<br>1-8,20,23,24,26,27,30,31,33,34,43,82,93,98,99,102,103,106 | 13.1C                                         |
| 10 | 5595 | 5725 | 36 | 1,3-6,102<br>1-8,27,93,102                                                                             | 13.1C<br>#2=#3 DUPL BTLS<br>ARGO NAVIS #F0350 |
| 8  | 5378 | 5503 | 36 | 1,3-6,20,31,33,102<br>1-8,20,23,24,26,27,31,33,43,93,97,102                                            | 13.1C<br>#2=#3 DUPL BTLS                      |
| 10 | 5401 | 5522 | 34 | 1,3-6,102<br>1-8,27,93,102                                                                             | 12.7C                                         |

| 49NZ20140  | 0717 PO | 1 109 | 1 BU | C 080914 | 1443 UI | 47 0.59        | 9 N 165 58.98 | W GPS | -9 | 5337 |    |      |      |    | 1,3-6,20,31,33,34,98,99,102                         |
|------------|---------|-------|------|----------|---------|----------------|---------------|-------|----|------|----|------|------|----|-----------------------------------------------------|
| 49NZ20140  | 0717 PO | 1 109 | 1 RO | s 080914 | 1555 вс | 47 0.59        | 9 N 165 58.99 | W GPS | -9 | 5340 | 10 | 5312 | 5434 | 36 | 1-8,20,23,24,26,27,31,33,34,43,93,98,99,102,        |
| 49NZ20140  | 0717 PO | 1 109 | 1 RO | s 080914 | 1810 EN | 47 0.70        | 0 N 165 58.95 | W GPS | -9 | 5341 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 PO | 1 109 | 1 FL | т 080914 | 1817 DI | <b>47</b> 0.85 | 5 N 165 58.83 | W GPS | -9 | 5334 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 PO | 1 110 | 1 RO | s 080914 | 2143 вн | 46 59.93       | 3 N 164 59.20 | W GPS | -9 | 5330 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 P0 | 1 110 | 1 RO | s 080914 | 2201 во | 46 59.83       | 3 N 164 59.21 | W GPS | -9 | 5329 | -9 | 762  | 772  | 36 | 22,89,91                                            |
| 49NZ20140  | 0717 P0 | 1 110 | 1 RO | s 080914 | 2233 EI | 46 59.78       | 8 N 164 59.28 | W GPS | -9 | 5331 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 PO | 1 110 | 2 RO | s 080914 | 2314 вн | 46 59.79       | 9 N 164 59.28 | W GPS | -9 | 5331 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 P0 | 1 110 | 2 BU | C 080914 | 2321 UI | 46 59.78       | 8 N 164 59.32 | W GPS | -9 | 5333 |    |      |      |    | 1,3-8,20,30,82,100,102-104,106                      |
| 49NZ20140  | 0717 P0 | 1 110 | 2 RO | s 081014 | 0036 во | 46 59.63       | 3 N 164 59.27 | W GPS | -9 | 5329 | 10 | 5307 | 5425 | 36 | 1-8,12,13,20,23,24,26,27,30,43,82,92,93,102-104,106 |
| 49NZ20140  | 0717 P0 | 1 110 | 2 RO | s 081014 | 0248 E1 | 46 59.28       | 8 N 164 59.30 | W GPS | -9 | 5330 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 P0 | 1 111 | 1 RO | s 081014 | 0712 BE | 47 0.60        | ON 163 43.34  | W GPS | -9 | 5207 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 P0 | 1 111 | 1 BU | C 081014 | 0720 UI | 47 0.57        | 7 N 163 43.37 | W GPS | -9 | 5205 |    |      |      |    | 1,3-6,102                                           |
| 49NZ20140  |         | 1 111 | 1 RO |          | 0833 во |                | 6 N 163 43.27 |       | -9 | 5205 | 9  | 5181 | 5298 | 33 | 1-8,27,93,102                                       |
| 49NZ20140  | 0717 P0 | 1 111 | 1 RO | s 081014 | 1038 E1 | 47 0.46        | 6 N 163 43.28 | W GPS | -9 | 5209 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 P0 | 1 112 | 1 RO | s 081014 | 1430 BE | 47 0.23        | 3 N 162 37.16 | W GPS | -9 | 5179 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 PO | 1 112 | 1 BU | C 081014 | 1438 UI |                | 4 N 162 37.16 |       | -9 | 5182 |    |      |      |    | 1,3-6,20,31,33,102                                  |
| 49NZ20140  |         | 1 112 | 1 RO | s 081014 | 1549 во |                | 5 N 162 37.21 |       | -9 | 5171 | 10 | 5151 | 5266 | 33 | 1-8,20,23,24,26,27,31,33,43,93,102                  |
| 49NZ20140  | 0717 PO | 1 112 | 1 RO | s 081014 | 1758 EN |                | 7 N 162 37.18 |       | -9 | 5175 |    |      |      |    | -, -, -, , -, ,-, -, -, -, -                        |
| 49NZ20140  | 0717 PO | 1 113 | 1 RO | s 081014 | 2154 в  | <b>47</b> 0.11 | 1 N 161 29.20 | W GPS | -9 | 5081 |    |      |      |    |                                                     |
| 49NZ20140  | 0717 PO | 1 113 | 1 BU | C 081014 | 2202 UI | 47 0.07        | 7 N 161 29.20 | W GPS | -9 | 5080 |    |      |      |    | 1,3-6,102                                           |
| 49NZ20140  | 0717 PO | 1 113 | 1 RO | s 081014 | 2314 во | 46 59.77       | 7 N 161 28.98 | W GPS | -9 | 5083 | 10 | 5075 | 5171 | 33 | 1-8,27,93,102                                       |
| 49NZ20140  |         | 1 113 | 1 RO | s 081114 | 0120 E1 |                | 4 N 161 28.96 |       | -9 | 5077 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 FL |          | 0127 DI |                | 9 N 161 28.76 |       | -9 | 5077 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 RO |          | 0513 BI |                | 5 N 160 21.75 |       | -9 | 5127 |    |      |      |    |                                                     |
| 49NZ20140  |         | 1 114 | 1 BU |          | 0521 UI |                | 9 N 160 21.74 |       | -9 | 5124 |    |      |      |    | 1,3-6,20,31,33,34,43,90,98,99,102                   |
| 49NZ20140  |         |       | 1 RO |          | 0633 BC |                |               |       | -9 | 5132 | 10 | 5101 | 5215 | 36 | 1-8,20,23,24,26,27,31,33,34,43,90,98,99,102         |
| 49NZ20140  |         | 1 114 | 1 RO |          | 0839 EN |                | 3 N 160 21.58 |       | -9 | 5126 |    |      |      |    | -, -, -, , -, ,-,-,-, -, -,, -,                     |
| 49NZ20140  |         |       | 1 RO |          | 1226 BI |                | 7 N 159 15.51 |       | -9 | 5188 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 BU |          | 1235 UI |                | 0 N 159 15.40 |       | -9 | 5191 |    |      |      |    | 1,3-6,102                                           |
| 49NZ20140  |         |       | 1 RO |          | 1347 BC |                | 3 N 159 15.32 |       | -9 | 5188 | 9  | 5170 | 5283 | 33 | 1-8,27,93,102,106                                   |
| 49NZ20140  |         |       | 1 RO |          | 1557 EN |                |               | W GPS | -9 | 5190 | 2  | 02/0 | 0200 |    | - 0,,00,-01,-00                                     |
| 49NZ20140  |         |       | 1 RO |          | 1943 BI |                |               |       | -9 | 5230 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 BU |          | 1950 UN |                | 4 N 158 8.33  |       | -9 | 5228 |    |      |      |    | 1,3-6,20,31,33,102                                  |
| 49NZ20140  |         |       | 1 RO |          | 2103 BC |                |               | W GPS | -9 | 5230 | 9  | 5213 | 5326 | 34 | 1-8,12,13,20,23,24,26,27,31,33,43,93,102,106        |
| 49NZ20140  |         |       | 1 RO |          | 2312 EN |                |               | W GPS | -9 | 5227 | 2  | 0220 | 0020 |    | _ 0,,_0,_0,_0,,_0,_0,_0,0,0,0,00,00,00              |
| 49NZ20140  |         |       | 1 BI |          | 2323 BI |                |               |       | -9 | 5226 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 BI |          | 0128 EN |                |               |       | -9 | 5226 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 2 RO |          | 0139 BI |                |               | W GPS | -9 | 5226 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 2 RO |          | 0159 BC |                |               | W GPS | -9 | 5224 | -9 | 759  | 770  | 36 | 22,89,91                                            |
| 49NZ20140  |         |       | 2 RO |          | 0234 EN |                |               |       | -9 | 5225 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 3 RO |          | 0313 BI |                |               | W GPS | -9 | 5209 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 3 RO |          | 0326 BC |                |               |       | -9 | 5188 | -9 | 459  | 471  | 36 | 1,3-6,30-34,82,100-104,106,107-113                  |
| 49NZ20140  |         |       | 3 RO |          | 0404 EN |                |               |       | -9 | 5223 | -  |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 RO |          | 0751 BI |                |               | W GPS | -9 | 5224 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 BU |          | 0759 UI |                |               | W GPS | -9 | 5224 |    |      |      |    | 1,3-6,102                                           |
| 49NZ20140  |         |       | 1 RO |          | 0911 BC |                | BN 157 1.26   |       | -9 | 5225 | 10 | 5203 | 5319 | 34 | 1-8,27,93,102                                       |
| 49NZ20140  |         |       | 1 RO |          |         |                |               | W GPS | -9 | 5230 |    |      |      |    | ,_ :,,                                              |
| 49NZ20140  |         |       | 1 RO |          | 1516 BI |                |               | W GPS | -9 | 5246 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 80 |          |         |                | 3 N 155 51.69 |       | -9 | 5245 |    |      |      |    | 1,3-6,20,31,33,34,98,99,102                         |
| 49NZ20140  |         |       | 1 RO |          | 1638 BC |                | 6 N 155 51.09 |       | -9 | 5250 | 9  | 5245 | 5344 | 34 | 1-8,20,23,24,26,27,31,33,34,43,93,98,99,102         |
| 49NZ20140  |         |       | 1 RO |          | 1847 EN |                | 3 N 155 49.72 |       | -9 | 5246 | 2  | 0110 | 2011 |    | ,,,,,,,,,,,,,                                       |
| 49NZ20140  |         |       | 1 RO |          | 2233 BI |                | 3 N 155 45.97 |       | -9 | 5240 |    |      |      |    |                                                     |
| 49NZ20140  |         |       | 1 BU |          | 2243 UN |                |               |       | -9 | 5208 |    |      |      |    | 1,3-6,102                                           |
| 49NZ20140  |         |       | 1 BO |          |         |                | 1 N 154 44.93 |       | -9 | 5206 | 9  | 5260 | 5303 | 34 | 1-8,27,93,102                                       |
| 1311220140 | 5,1, FO |       | 1 KO | 001214   | 2000 BC | , to 07.01     |               | . 615 | 2  | 5200 | 9  | 5200 | 5505 | 54 | 1 0/2//00/102                                       |
|            |         |       |      |          |         |                |               |       |    |      |    |      |      |    |                                                     |

12.8C

FOR RN

12.8C

12.8C

13.1C

13.2C

13.2C

13.2C

13.7C

FOR RN

FOR BGC

13.7C

13.4C

13.7C

NORPAC NET #6

ARGO NAVIS #F0363

ARGO NAVIS #F0362

| 49NZ20140717 | P01 | 119 | 1 ROS | 081314 0206 | EN | 46 58.98 N | 154 43.10 W | GPS | -9 | 5206 |    |      |      |    |                                                      |                              |
|--------------|-----|-----|-------|-------------|----|------------|-------------|-----|----|------|----|------|------|----|------------------------------------------------------|------------------------------|
| 49NZ20140717 | P01 | 120 | 1 ROS | 081314 0553 | BE | 46 59.98 N | 153 37.80 W | GPS | -9 | 5219 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 120 | 1 BUC | 081314 0602 | UN | 46 59.96 N | 153 37.63 W | GPS | -9 | 5223 |    |      |      |    | 1,3-6,20,31,33,102                                   | 14.0C                        |
| 49NZ20140717 | P01 | 120 | 1 ROS | 081314 0715 | BO | 46 59.77 N | 153 37.04 W | GPS | -9 | 5228 | 9  | 5217 | 5318 | 34 | 1-8,20,23,24,26,27,31,33,43,92,93,102                |                              |
| 49NZ20140717 | P01 | 120 | 1 ROS | 081314 0925 | EN | 46 59.17 N | 153 36.02 W | GPS | -9 | 5223 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 121 | 1 ROS | 081314 1308 | BE | 46 59.37 N | 152 31.76 W | GPS | -9 | 5182 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 121 | 1 BUC | 081314 1317 | UN | 46 59.31 N | 152 31.66 W | GPS | -9 | 5182 |    |      |      |    | 1,3-6,102                                            | 14.2C                        |
| 49NZ20140717 | P01 | 121 | 1 ROS | 081314 1429 | во | 46 59.26 N |             | GPS | -9 | 5185 | 9  | 5161 | 5277 | 33 | 1-8,27,93,102                                        |                              |
| 49NZ20140717 | P01 | 121 | 1 ROS | 081314 1636 | EN | 46 59.28 N | 152 31.66 W | GPS | -9 | 5184 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 122 | 1 ROS | 081314 2029 | BE | 47 0.16 N  | 151 25.01 W | GPS | -9 | 5173 |    |      |      |    |                                                      | FOR RN                       |
| 49NZ20140717 | P01 | 122 | 1 ROS | 081314 2047 | во | 47 0.19 N  | 151 24.98 W | GPS | -9 | 5176 | -9 | 763  | 772  | 36 | 22,89,91                                             |                              |
| 49NZ20140717 | P01 | 122 | 1 ROS | 081314 2120 | EN | 47 0.20 N  | 151 24.84 W | GPS | -9 | 5200 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 122 | 1 UNK | 081314 2128 | BE | 47 0.23 N  | 151 24.81 W | GPS | -9 | 5198 |    |      |      |    |                                                      |                              |
|              |     |     |       |             |    |            |             |     |    |      |    |      |      |    |                                                      |                              |
|              |     |     |       |             |    |            |             |     |    |      |    |      |      |    | NORPAC                                               | C NET FLOW METER CALIBRATION |
| 49NZ20140717 | P01 | 122 | 1 UNK | 081314 2154 | EN | 47 0.30 N  | 151 24.63 W | GPS | -9 | 5209 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 122 | 2 ROS | 081314 2203 | BE | 47 0.26 N  | 151 24.61 W | GPS | -9 | 5205 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 122 | 2 BUC | 081314 2211 | UN | 47 0.26 N  | 151 24.57 W | GPS | -9 | 5204 |    |      |      |    | 1,3-6,20,30,31,33,34,98-100,102-104,106              | 14.4C                        |
| 49NZ20140717 | P01 | 122 | 2 ROS | 081314 2325 | во | 47 0.21 N  | 151 24.29 W | GPS | -9 | 5199 | 10 | 5183 | 5296 | 36 | 1-8,12,13,20,23,24,26,27,30,31,33,34,43,82,93,98-100 | ,102-104,106                 |
| 49NZ20140717 | P01 | 122 | 2 ROS | 081414 0135 | EN | 47 0.05 N  | 151 23.68 W | GPS | -9 | 5192 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 123 | 1 ROS | 081414 0516 | BE | 46 59.33 N | 150 17.87 W | GPS | -9 | 5041 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 123 | 1 BUC | 081414 0530 | UN | 46 59.34 N | 150 17.73 W | GPS | -9 | 5044 |    |      |      |    | 1,3-6,20,102                                         | 14.8C                        |
| 49NZ20140717 | P01 | 123 | 1 ROS | 081414 0635 | во | 46 59.34 N |             | GPS | -9 | 5042 | 9  | 5021 | 5132 | 33 | 1-8,27,93,102                                        |                              |
| 49NZ20140717 | P01 | 123 | 1 ROS | 081414 0842 | EN | 46 59.13 N |             | GPS | -9 | 5026 |    |      |      |    | -, ,-, -                                             |                              |
| 49NZ20140717 | P01 | 124 | 1 ROS | 081414 1236 | BE | 46 59.47 N | 149 8.96 W  | GPS | -9 | 5061 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 124 | 1 BUC | 081414 1244 | UN | 46 59.44 N | 149 8.82 W  | GPS | -9 | 5053 |    |      |      |    | 1,3-6,20,31,33,34,90,102                             | 15.1C                        |
| 49NZ20140717 | P01 | 124 | 1 ROS | 081414 1355 | во | 46 59.41 N |             | GPS | -9 | 5060 | 10 | 5033 | 5141 | 33 | 1-8,20,23,24,26,27,31,33,34,43,90,93,97,102          |                              |
| 49NZ20140717 | P01 | 124 | 1 ROS | 081414 1600 | EN | 46 59.26 N |             | GPS | -9 | 5054 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 124 | 2 ROS | 081414 1646 | BE | 46 59.13 N |             | GPS | -9 | 5054 |    |      |      |    |                                                      |                              |
|              |     |     |       |             |    |            |             |     |    |      |    |      |      |    |                                                      |                              |
|              |     |     |       |             |    |            |             |     |    |      |    |      |      |    | FOR BIO, 3                                           | 12L CLEAN NISKIN x12 CTD/CWS |
| 49NZ20140717 | P01 | 124 | 2 ROS | 081414 1651 | во | 46 59.10 N | 149 8.65 W  | GPS | -9 | 5059 | -9 | 45   | 50   | 12 | 64                                                   |                              |
| 49NZ20140717 | P01 | 124 | 2 ROS | 081414 1657 | EN | 46 59.05 N |             | GPS | -9 | 5054 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 124 | 3 ROS | 081414 1751 | BE | 46 58.85 N | 149 9.15 W  | GPS | -9 | 5045 |    |      |      |    |                                                      |                              |
|              |     |     |       |             |    |            |             |     |    |      |    |      |      |    |                                                      |                              |
|              |     |     |       |             |    |            |             |     |    |      |    |      |      |    | FOR BIO, 1                                           | 12L CLEAN NISKIN x12 CTD/CWS |
| 49NZ20140717 | P01 | 124 | 3 ROS | 081414 1755 | во | 46 58.83 N | 149 9.16 W  | GPS | -9 | 5045 | -9 | 16   | 20   | 12 | 64                                                   |                              |
| 49NZ20140717 | P01 | 124 | 3 ROS | 081414 1800 | EN | 46 58.81 N | 149 9.19 W  | GPS | -9 | 5046 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 125 | 1 ROS | 081414 2156 | BE | 47 0.42 N  | 148 2.34 W  | GPS | -9 | 5001 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 125 | 1 BUC | 081414 2204 | UN | 47 0.43 N  | 148 2.35 W  | GPS | -9 | 5003 |    |      |      |    | 1,3-6,102                                            | 15.3C                        |
| 49NZ20140717 | P01 | 125 | 1 ROS | 081414 2314 | во | 47 0.46 N  | 148 2.29 W  | GPS | -9 | 5001 | 9  | 4979 | 5089 | 33 | 1-8,27,93,102                                        |                              |
| 49NZ20140717 | P01 | 125 | 1 ROS | 081514 0119 | EN | 47 0.29 N  | 148 2.01 W  | GPS | -9 | 5002 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 126 | 1 ROS | 081514 0507 | BE | 46 59.91 N | 146 55.87 W | GPS | -9 | 4908 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 126 | 1 BUC | 081514 0517 | UN | 46 59.98 N | 146 55.85 W | GPS | -9 | 4909 |    |      |      |    | 1,4-6,20,102                                         | 15.3C                        |
| 49NZ20140717 | P01 | 126 | 1 ROS | 081514 0625 | во | 46 59.90 N | 146 55.73 W | GPS | -9 | 4915 | 10 | 4883 | 4990 | 32 | 1-8,20,23,24,26,27,43,93,102                         |                              |
| 49NZ20140717 | P01 | 126 | 1 ROS | 081514 0828 | EN | 46 59.79 N | 146 55.55 W | GPS | -9 | 4909 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 127 | 1 ROS | 081514 1217 | BE | 46 59.62 N |             | GPS | -9 | 4806 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 127 | 1 BUC | 081514 1226 | UN | 46 59.58 N | 145 48.49 W | GPS | -9 | 4805 |    |      |      |    | 1,3-6,102                                            | 15.5C                        |
| 49NZ20140717 | P01 | 127 | 1 ROS | 081514 1333 | во | 46 59.62 N |             | GPS | -9 | 4806 | 10 | 4779 | 4882 | 32 | 1-8,27,93,102                                        |                              |
| 49NZ20140717 | P01 | 127 | 1 ROS | 081514 1529 | EN | 46 59.63 N |             | GPS | -9 | 4808 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 128 | 1 ROS | 081514 2012 | BE | 46 53.96 N |             | GPS | -9 | 4686 |    |      |      |    |                                                      |                              |
| 49NZ20140717 | P01 | 128 | 1 BUC | 081514 2020 | UN | 46 53.95 N |             | GPS | -9 | 4676 |    |      |      |    | 1,3-6,20,31,33,34,98,99,102,106                      | 15.8C                        |
| 49NZ20140717 | P01 | 128 | 1 ROS | 081514 2125 | BO | 46 53.98 N |             | GPS | -9 | 4680 | 10 | 4646 | 4743 | 34 | 1-8,12,13,20,23,24,26,27,31,33,34,43,92,93,98,99,102 |                              |
| 49NZ20140717 | P01 | 128 | 1 ROS | 081514 2323 | EN | 46 54.10 N |             | GPS | -9 | 4678 |    |      |      |    |                                                      | -                            |
| 49NZ20140717 | P01 | 128 | 1 BIO | 081514 2334 |    | 46 54.12 N |             | GPS | -9 | 4674 |    |      |      |    |                                                      | NORPAC NET #7                |
|              |     |     |       |             |    |            |             |     | -  |      |    |      |      |    |                                                      |                              |

| 49NZ20140717 | P01  | 128 | 1 B | IO O | 081614 | 0126 | EN | 46 54.42 N | 144 20 | 6.17 W | GPS | -9 | 4677 |    |      |      |    |                                                         |
|--------------|------|-----|-----|------|--------|------|----|------------|--------|--------|-----|----|------|----|------|------|----|---------------------------------------------------------|
| 49NZ20140717 | P01  | 128 | 2 R | os ( | 081614 | 0138 | BE | 46 54.41 N | 144 20 | 6.14 W | GPS | -9 | 4677 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 128 | 2 R | os ( | 081614 | 0155 | во | 46 54.40 N | 144 20 | 6.06 W | GPS | -9 | 4674 | -9 | 760  | 771  | 36 | 22,89,91                                                |
| 49NZ20140717 | P01  | 128 | 2 R | os ( | 081614 | 0229 | EN | 46 54.34 N | 144 20 | 6.02 W | GPS | -9 | 4672 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 928 | 1 U | NK ( | 081614 | 0236 | BE | 46 54.17 N | 144 20 | 6.20 W | GPS | -9 | 4678 |    |      |      |    |                                                         |
|              |      |     |     |      |        |      |    |            |        |        |     |    |      |    |      |      |    |                                                         |
|              |      |     |     |      |        |      |    |            |        |        |     |    |      |    |      |      |    | 3-AXIS M                                                |
| 49NZ20140717 | P01  | 928 | 1 U | NK ( | 081614 | 0310 | EN | 46 54.20 N | 144 25 | 5.92 W | GPS | -9 | 4672 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 128 | 3 R | os ( | 081614 | 0322 | BE | 46 53.93 N | 144 25 | 5.98 W | GPS | -9 | 4675 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 128 | 3 R | os ( | 081614 | 0334 | во | 46 53.88 N | 144 25 | 5.82 W | GPS | -9 | 4679 | -9 | 464  | 473  | 36 | 3-6,30-34,82,100-104,106-113                            |
| 49NZ20140717 | P01  | 128 | 3 R | os ( | 081614 | 0415 | EN | 46 53.73 N | 144 25 | 5.54 W | GPS | -9 | 4674 |    |      |      |    |                                                         |
| 49NZ20140717 | PAPA | 151 | 1 R | os ( | 081614 | 1912 | BE | 49 59.87 N | 144 59 | 9.70 W | GPS | -9 | 4256 |    |      |      |    |                                                         |
| 49NZ20140717 | PAPA | 151 | 1 B | UC C | 081614 | 1921 | UN | 49 59.83 N | 144 59 | 9.55 W | GPS | -9 | 4256 |    |      |      |    | 1,3-6,20,31,33,34,98,99,102                             |
| 49NZ20140717 | PAPA | 151 | 1 R | os ( | 081614 | 2020 | во | 49 59.70 N | 144 59 | 9.14 W | GPS | -9 | 4253 | 9  | 4238 | 4317 | 30 | 1-8,20,23,24,26,27,31,33,34,43,92,93,98,99,102          |
| 49NZ20140717 | PAPA | 151 | 1 R | os ( | 081614 | 2208 | EN | 49 59.48 N | 144 58 | 8.96 W | GPS | -9 | 4255 |    |      |      |    |                                                         |
| 49NZ20140717 | PAPA | 151 | 1 B | IO C | 081614 | 2219 | BE | 49 59.43 N | 144 58 | 8.91 W | GPS | -9 | 4256 |    |      |      |    |                                                         |
| 49NZ20140717 | PAPA | 151 | 1 B | IO 0 | 081714 | 0009 | EN | 49 59.39 N | 144 58 | 8.40 W | GPS | -9 | 4258 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 129 | 1 R | os ( | 081714 | 1701 | BE | 47 0.86 N  | 143 29 | 9.76 W | GPS | -9 | 4598 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 129 | 1 B | UC C | 081714 | 1710 | UN | 47 0.83 N  | 143 29 | 9.73 W | GPS | -9 | 4596 |    |      |      |    | 1,3-6,102                                               |
| 49NZ20140717 | P01  | 129 | 1 R | os ( | 081714 | 1813 | во | 47 0.78 N  | 143 29 | 9.57 W | GPS | -9 | 4598 | 8  | 4571 | 4667 | 31 | 1-8,27,102                                              |
| 49NZ20140717 | P01  | 129 | 1 R | os ( | 081714 | 2007 | EN | 47 0.80 N  | 143 29 | 9.45 W | GPS | -9 | 4593 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 130 | 1 R | os ( | 081714 | 2346 | BE | 47 0.48 N  | 142 20 | 6.29 W | GPS | -9 | 4504 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 130 | 1 B | UC C | 081714 | 2355 | UN | 47 0.49 N  | 142 20 | 6.24 W | GPS | -9 | 4500 |    |      |      |    | 1,3-6,20,31,33,102                                      |
| 49NZ20140717 | P01  | 130 | 1 R | os ( | 081814 | 0057 | во | 47 0.41 N  | 142 20 | 6.08 W | GPS | -9 | 4501 | 10 | 4484 | 4574 | 30 | 1-8,20,23,24,26,27,31,33,43,93,102                      |
| 49NZ20140717 | P01  | 130 | 1 R | os ( | 081814 | 0254 | EN | 47 0.23 N  | 142 25 | 5.59 W | GPS | -9 | 4505 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 131 | 1 R | os ( | 081814 | 0634 | BE | 46 59.30 N | 141 21 | 1.22 W | GPS | -9 | 4412 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 131 | 1 B | UC C | 081814 | 0643 | UN | 46 59.26 N | 141 21 | 1.14 W | GPS | -9 | 4412 |    |      |      |    | 1,3-6,102                                               |
| 49NZ20140717 | P01  | 131 | 1 R | os ( | 081814 | 0744 | BO | 46 59.27 N | 141 21 | 1.15 W | GPS | -9 | 4416 | 9  | 4389 | 4480 | 31 | 1-8,27,93,102                                           |
| 49NZ20140717 | P01  | 131 | 1 R | os ( | 081814 | 0942 | EN | 46 59.24 N | 141 21 | 1.11 W | GPS | -9 | 4412 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 132 | 1 R | os ( | 081814 | 1339 | BE | 47 1.57 N  | 140 13 | 3.65 W | GPS | -9 | 4336 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 132 | 1 B | UC C | 081814 | 1347 | UN | 47 1.58 N  | 140 13 | 3.65 W | GPS | -9 | 4336 |    |      |      |    | 1,3-6,20,31,33,34,90,98,99,102,106                      |
| 49NZ20140717 | P01  | 132 | 1 R | os ( | 081814 | 1448 | BO | 47 1.66 N  | 140 13 | 3.58 W | GPS | -9 | 4333 | 9  | 4309 | 4399 | 32 | 1-8,20,23,24,26,27,31,33,34,43,90,98,99,102,106         |
| 49NZ20140717 | P01  | 132 | 1 R | os ( | 081814 | 1635 | EN | 47 1.67 N  | 140 13 | 3.46 W | GPS | -9 | 4332 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 133 | 1 R | os ( | 081814 | 2027 | BE | 46 59.66 N | 139 3  | 3.91 W | GPS | -9 | 4231 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 133 | 1 B | UC C | 081814 | 2035 | UN | 46 59.62 N | 139 3  | 3.84 W | GPS | -9 | 4231 |    |      |      |    | 1,3-6,102                                               |
| 49NZ20140717 | P01  | 133 | 1 R | os ( | 081814 | 2134 | во | 46 59.57 N | 139 3  | 3.76 W | GPS | -9 | 4230 | 10 | 4209 | 4293 | 29 | 1-8,27,93,102                                           |
| 49NZ20140717 | P01  | 133 | 1 R | os ( | 081814 | 2320 | EN | 46 59.28 N | 139 3  | 3.56 W | GPS | -9 | 4232 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 134 | 1 R | os ( | 081914 | 0300 | BE | 46 59.58 N | 137 5  | 7.93 W | GPS | -9 | 4172 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 134 | 1 B | UC C | 081914 | 0308 | UN | 46 59.51 N | 137 5  | 7.81 W | GPS | -9 | 4171 |    |      |      |    | 1,3-6,20,31,33,102                                      |
| 49NZ20140717 | P01  | 134 | 1 R | os ( | 081914 | 0407 | BO | 46 59.46 N | 137 5  | 7.78 W | GPS | -9 | 4171 | 10 | 4151 | 4235 | 30 | 1-8,20,23,24,26,27,31,33,43,93,97,102                   |
| 49NZ20140717 | P01  | 134 | 1 R |      | 081914 | 0557 | EN | 46 59.19 N |        |        | GPS | -9 | 4174 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 135 | 1 R |      | 081914 | 0946 | BE | 46 59.57 N |        |        | GPS | -9 | 4177 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 135 | 1 B | UC ( | 081914 | 0955 | UN | 46 59.55 N | 136 51 | 1.33 W | GPS | -9 | 4175 |    |      |      |    | 1,3-6,102                                               |
| 49NZ20140717 | P01  | 135 | 1 R |      |        | 1053 | во | 46 59.53 N |        |        | GPS | -9 | 4176 | 10 | 4154 | 4237 | 29 | 1-8,27,93,102                                           |
| 49NZ20140717 | P01  | 135 | 1 R |      |        | 1242 | EN | 46 59.51 N |        |        | GPS | -9 | 4174 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 136 | 1 R |      |        | 1630 | BE | 47 0.02 N  |        |        | GPS | -9 | 4141 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 136 | 1 R | os ( | 081914 | 1649 | BO | 46 59.92 N | 135 43 | 3.96 W | GPS | -9 | 4143 | -9 | 819  | 831  | 36 | 22,89,91                                                |
| 49NZ20140717 | P01  | 136 | 1 R |      |        | 1723 | EN | 46 59.78 N |        |        | GPS | -9 | 4143 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 136 | 2 R |      |        | 1808 | BE | 46 60.00 N |        |        | GPS | -9 | 4141 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 136 | 2 B | UC C | 081914 | 1817 | UN | 46 59.95 N | 135 44 | 4.12 W | GPS | -9 | 4142 |    |      |      |    | 1,3-6,20,30,82,102-104,106                              |
| 49NZ20140717 | P01  | 136 | 2 R |      |        | 1916 | во | 46 59.80 N |        |        | GPS | -9 | 4143 | 9  | 4123 | 4203 | 35 | 1-8,12,13,20,23,24,26,27,30,43,82,92,93,100,102-104,106 |
| 49NZ20140717 | P01  | 136 | 2 R |      | 081914 | 2104 | EN | 46 59.62 N |        |        | GPS | -9 | 4148 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 137 | 1 R |      | 082014 | 0058 | BE |            | 134 3  |        | GPS | -9 | 3998 |    |      |      |    |                                                         |
| 49NZ20140717 | P01  | 137 | 1 B |      | 082014 | 0106 | UN |            | 134 3  |        | GPS | -9 | 3996 |    |      |      |    | 1,3-6,102                                               |
| 49NZ20140717 | P01  | 137 | 1 R | os ( | 082014 | 0201 | во | 47 1.17 N  | 134 3  | 7.12 W | GPS | -9 | 3997 | 10 | 3973 | 4052 | 29 | 1-8,27,93,102                                           |
|              |      |     |     |      |        |      |    |            |        |        |     |    |      |    |      |      |    |                                                         |

#### 3-AXIS MAGNETMETER CALIBRATION

OCEAN STATION PAPA

NORPAC NET #8

FOR BGC

14.5C

16.5C

16.9C

17.5C

17.4C

17.7C

18.0C

18.3C

FOR RN

17.8C

18.2C

FOR RN

| 49NZ20140717 | P01 | 137 | 1 | ROS | 082014 | 0340 | EN | 47 | 1.24 1  | 1          | 134 | 36.94 W | GPS | -9 | 3999 |   |    |      |      |
|--------------|-----|-----|---|-----|--------|------|----|----|---------|------------|-----|---------|-----|----|------|---|----|------|------|
| 49NZ20140717 | P01 | 138 | 1 | ROS | 082014 | 0736 | BE | 46 | 59.70 M | 1          | 133 | 28.23 W | GPS | -9 | 3640 |   |    |      |      |
| 49NZ20140717 | P01 | 138 | 1 | BUC | 082014 | 0744 | UN | 46 | 59.73 M | 1          | 133 | 28.22 W | GPS | -9 | 3644 |   |    |      |      |
| 49NZ20140717 | P01 | 138 | 1 | ROS | 082014 | 0835 | BO | 46 | 59.57 B | 1          | 133 | 28.11 W | GPS | -9 | 3641 |   | 9  | 3628 | 3690 |
| 49NZ20140717 | P01 | 138 | 1 | ROS | 082014 | 1017 | EN | 46 | 59.53 M | 1          | 133 | 28.01 W | GPS | -9 | 3643 |   |    |      |      |
| 49NZ20140717 | P01 | 139 | 1 | ROS | 082014 | 1401 | BE | 46 | 59.81 N | 1          | 132 | 21.95 W | GPS | -9 | 3301 |   |    |      |      |
| 49NZ20140717 | P01 | 139 | 1 | BUC | 082014 | 1410 | UN | 46 | 59.78 M | 1          | 132 | 21.96 W | GPS | -9 | 3300 |   |    |      |      |
| 49NZ20140717 | P01 | 139 | 1 | ROS | 082014 | 1457 | BO | 46 | 59.68 1 | 1          | 132 | 22.03 W | GPS | -9 | 3299 | 1 | .0 | 3283 | 3340 |
| 49NZ20140717 | P01 | 139 | 1 | ROS | 082014 | 1621 | EN | 46 | 59.52 M | 1          | 132 | 22.09 W | GPS | -9 | 3300 |   |    |      |      |
| 49NZ20140717 | P01 | 140 | 1 | ROS | 082014 | 2016 | BE | 47 | 0.26 1  | 1          | 131 | 13.87 W | GPS | -9 | 2917 |   |    |      |      |
| 49NZ20140717 | P01 | 140 | 1 | BUC | 082014 | 2024 | UN | 47 | 0.19 1  | 1          | 131 | 13.83 W | GPS | -9 | 2883 |   |    |      |      |
| 49NZ20140717 | P01 | 140 | 1 | ROS | 082014 | 2114 | BO | 47 | 0.07 1  | 1          | 131 | 13.24 W | GPS | -9 | 3053 | 1 | 0  | 3049 | 3080 |
| 49NZ20140717 | P01 | 140 | 1 | ROS | 082014 | 2241 | EN | 46 | 59.90 M | 1          | 131 | 12.16 W | GPS | -9 | 3065 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 1 | ROS | 082114 | 0241 | BE | 46 | 58.70 M | 1          | 130 | 1.87 W  | GPS | -9 | 2634 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 1 | BUC | 082114 | 0249 | UN | 46 | 58.65 1 | 1          | 130 | 1.83 W  | GPS | -9 | 2630 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 1 | ROS | 082114 | 0325 | BO | 46 | 58.68 1 | 1          | 130 | 1.79 W  | GPS | -9 | 2632 | 1 | 0  | 2609 | 2654 |
| 49NZ20140717 | P01 | 141 | 1 | ROS | 082114 | 0440 | EN | 46 | 58.59 1 | 1          | 130 | 1.59 W  | GPS | -9 | 2626 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 1 | BIO | 082114 | 0451 | BE | 46 | 58.52 M | 1          | 130 | 1.56 W  | GPS | -9 | 2626 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 1 | BIO | 082114 | 0643 | EN | 46 | 58.31 M | 1          | 130 | 1.53 W  | GPS | -9 | 2620 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 2 | ROS | 082114 | 0651 | BE | 46 | 58.30 1 | 1          | 130 | 1.55 W  | GPS | -9 | 2620 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 2 | ROS | 082114 | 0709 | BO | 46 | 58.30 M | 1          | 130 | 1.51 W  | GPS | -9 | 2618 | - | -9 | 790  | 801  |
| 49NZ20140717 | P01 | 141 | 2 | ROS | 082114 | 0742 | EN | 46 | 58.30 1 | 1          | 130 | 1.55 W  | GPS | -9 | 2619 |   |    |      |      |
| 49NZ20140717 | P01 | 929 | 1 | UNK | 082114 | 0749 | BE | 46 | 58.35 M | 1          | 130 | 1.89 W  | GPS | -9 | 2623 |   |    |      |      |
|              |     |     |   |     |        |      |    |    |         |            |     |         |     |    |      |   |    |      |      |
|              |     |     |   |     |        |      |    |    |         |            |     |         |     |    |      |   |    |      |      |
| 49NZ20140717 | P01 | 929 | 1 | UNK | 082114 | 0815 | EN | 46 | 58.44 M | 1          | 130 | 1.98 W  | GPS | -9 | 2626 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 3 | ROS | 082114 | 0831 | BE | 46 | 58.90 1 | 1          | 130 | 2.08 W  | GPS | -9 | 2637 |   |    |      |      |
| 49NZ20140717 | P01 | 141 | 3 | ROS | 082114 | 0844 | BO | 46 | 58.93 1 | 1          | 130 | 2.06 W  | GPS | -9 | 2632 | - | 9  | 494  | 503  |
| 49NZ20140717 | P01 | 141 | 3 | ROS | 082114 | 0928 | EN | 46 | 58.87 M | 1          | 130 | 1.99 W  | GPS | -9 | 2632 |   |    |      |      |
| 49NZ20140717 | P01 | 142 | 1 | ROS | 082114 | 1212 | BE | 46 | 59.77 Þ | 1          | 129 | 22.94 W | GPS | -9 | 2580 |   |    |      |      |
| 49NZ20140717 | P01 | 142 | 1 | BUC | 082114 | 1219 | UN | 46 | 59.74 M | 1 3        | 129 | 22.94 W | GPS | -9 | 2576 |   |    |      |      |
| 49NZ20140717 | P01 | 142 | 1 | ROS | 082114 | 1255 | BO | 46 | 59.72 M | 1 3        | 129 | 22.97 W | GPS | -9 | 2580 | 1 | .0 | 2563 | 2605 |
| 49NZ20140717 | P01 | 142 | 1 | ROS | 082114 | 1407 | EN | 46 | 59.64 M | 1          | 129 | 22.87 W | GPS | -9 | 2582 |   |    |      |      |
| 49NZ20140717 | P01 | 143 | 1 | ROS | 082114 | 1652 | BE | 47 | 0.22 1  | 1          | 128 | 38.62 W | GPS | -9 | 2724 |   |    |      |      |
| 49NZ20140717 | P01 | 143 | 1 | BUC | 082114 | 1700 | UN | 47 | 0.17 1  | 1          | 128 | 38.63 W | GPS | -9 | 2724 |   |    |      |      |
| 49NZ20140717 | P01 | 143 | 1 | ROS | 082114 | 1737 | во | 47 | 0.13 1  | 1          | 128 | 38.65 W | GPS | -9 | 2724 |   | 9  | 2712 | 2753 |
| 49NZ20140717 | P01 | 143 | 1 | ROS | 082114 | 1855 | EN | 46 | 59.99 M | 1          | 128 | 38.73 W | GPS | -9 | 2724 |   |    |      |      |
| 49NZ20140717 | P01 | 144 | 1 | ROS | 082114 | 2130 | BE | 46 | 59.75 M | 1          | 127 | 55.01 W | GPS | -9 | 2701 |   |    |      |      |
| 49NZ20140717 | P01 | 144 | 1 | BUC | 082114 | 2137 | UN | 46 | 59.75 M | 1          | 127 | 55.03 W | GPS | -9 | 2699 |   |    |      |      |
| 49NZ20140717 | P01 | 144 | 1 | ROS | 082114 | 2214 | BO | 46 | 59.73 M | 1          | 127 | 55.03 W | GPS | -9 | 2698 |   | 9  | 2680 | 2724 |
| 49NZ20140717 | P01 | 144 | 1 | ROS | 082114 | 2335 | EN | 46 | 59.68 M | 1          | 127 | 54.95 W | GPS | -9 | 2702 |   |    |      |      |
| 49NZ20140717 | P01 | 145 | 1 | ROS | 082214 | 0217 | BE | 46 | 59.62 M | 1 3        | 127 | 12.02 W | GPS | -9 | 2637 |   |    |      |      |
| 49NZ20140717 | P01 | 145 | 1 | BUC | 082214 | 0227 | UN | 46 | 59.60 M | 1          | 127 | 12.09 W | GPS | -9 | 2637 |   |    |      |      |
| 49NZ20140717 | P01 | 145 | 1 | ROS | 082214 | 0302 | BO | 46 | 59.66 M | 1          | 127 | 12.13 W | GPS | -9 | 2636 | 1 | .0 | 2618 | 2660 |
| 49NZ20140717 | P01 | 145 | 1 | ROS | 082214 | 0422 | EN | 46 | 59.75 M | 1 3        | 127 | 11.95 W | GPS | -9 | 2637 |   |    |      |      |
| 49NZ20140717 | P01 | 146 | 1 | ROS | 082214 | 0707 | BE | 47 | 0.32 1  | 1          | 126 | 28.29 W | GPS | -9 | 2552 |   |    |      |      |
| 49NZ20140717 | P01 | 146 | 1 | BUC | 082214 | 0715 | UN | 47 | 0.33 1  | 1          | 126 | 28.28 W | GPS | -9 | 2550 |   |    |      |      |
| 49NZ20140717 | P01 | 146 | 1 | ROS | 082214 | 0749 | BO | 47 | 0.31 1  | a 1        | 126 | 28.26 W | GPS | -9 | 2553 |   | 9  | 2532 | 2572 |
| 49NZ20140717 | P01 | 146 | 1 | ROS | 082214 | 0909 | EN | 47 | 0.33 1  | 1          | 126 | 28.23 W | GPS | -9 | 2551 |   |    |      |      |
| 49NZ20140717 | P01 | 147 | 1 | ROS | 082214 | 1057 | BE | 47 | 0.30 1  | N 1        | 126 | 0.20 W  | GPS | -9 | 2553 |   |    |      |      |
| 49NZ20140717 | P01 | 147 | 1 | BUC | 082214 | 1104 | UN | 47 | 0.28 1  | N 1        | 126 | 0.25 W  | GPS | -9 | 2555 |   |    |      |      |
| 49NZ20140717 | P01 | 147 | 1 | ROS | 082214 | 1139 | во | 47 | 0.25 1  | N 1        | 126 | 0.23 W  | GPS | -9 | 2554 |   | 9  | 2537 | 2577 |
| 49NZ20140717 | P01 | 147 | 1 | ROS | 082214 | 1253 | EN | 47 | 0.09 1  | N 1        | 126 | 0.22 W  | GPS | -9 | 2557 |   |    |      |      |
| 49NZ20140717 | P01 | 148 | 1 | ROS | 082214 | 1443 | BE | 47 | 0.21 1  | N 1        | 125 | 30.65 W | GPS | -9 | 1748 |   |    |      |      |
| 49NZ20140717 | P01 | 148 | 1 | BUC | 082214 | 1451 | UN | 47 | 0.17 1  | <b>N</b> 1 | 125 | 30.67 W | GPS | -9 | 1757 |   |    |      |      |
|              |     |     |   |     |        |      |    |    |         |            |     |         |     |    |      |   |    |      |      |

| 9  | 3628 | 3690 | 29 | 1,3-6,20,31,33,34,98,99,102<br>1-8,20,23,24,26,27,31,33,34,43,93,98,99,102                 | 18.8C                       |
|----|------|------|----|--------------------------------------------------------------------------------------------|-----------------------------|
| 10 | 3283 | 3340 | 25 | 1,3-6,102<br>1-8,27,93,102                                                                 | 19.1C                       |
| 10 | 3049 | 3080 | 25 | 1,3-6,20,31,33,102<br>1-8,20,23,24,26,27,31,33,43,92,93,102                                | 19.2C<br>#16 MISS TRIP      |
| 10 | 2609 | 2654 | 31 | 1,3-6,20,31,33,43,90,98,99,102<br>1-8,12,13,20,23,24,26,27,31,33,34,43,90,93,97-99,102,106 | 18.9C<br>#15=#16 DUPL SMPLS |
|    |      |      |    |                                                                                            | NORPAC NET #9               |
| -9 | 790  | 801  | 36 | 22,89,91                                                                                   | FOR RN                      |
|    |      |      |    | 3-AXIS M                                                                                   | AGNETMETER CALIBRATION      |
| -9 | 494  | 503  | 35 | 3-6,30,31-34,82,100-104,106-113                                                            | FOR BGC                     |
| 10 | 2563 | 2605 | 23 | 1,3-6<br>1-8,27,93                                                                         | 18.8C<br>#1=#16 DUPL BTLS   |

1,3-6,20,31,33

1,3-6,102

24 1-8,27,93,102

1,3-6,20,102

1,3-6,102

23 1-8,27,93,102

1,3-6,20,102

24 1-8,20,23,24,26,27,31,33,43,92,93

23 1-8,20,23,24,26,27,43,90,102

1,3-6,20,82,102,103,106

26 1-8,20,23,24,26,27,43,82,92,93,102,103,106

18.7C

18.9C

18.4C

18.3C

18.0C

17.9C

#15=#16 DUPL BTLS

#15=#16 DUPL SMPLS

#1=#16 DUPL BTLS

#1=#16 DUPL BTLS

| 49NZ20140717 | P01 | 148 | 1 ROS | 082214 1 | 1516 в  | 0 47 | 7 0.12 N  | 125 30 | 0.73 W | GPS | -9 | 1752 | 10 | 1732 | 1756 | 18 | 1-8,20,23,24,26,27,43,92,93,102          |                                |
|--------------|-----|-----|-------|----------|---------|------|-----------|--------|--------|-----|----|------|----|------|------|----|------------------------------------------|--------------------------------|
| 49NZ20140717 | P01 | 148 | 1 ROS | 082214 1 | 1618 EI | N 47 | 0.02 N    | 125 30 | 0.60 W | GPS | -9 | 1752 |    |      |      |    |                                          |                                |
| 49NZ20140717 | P01 | 149 | 1 ROS | 082214 1 | 1801 BI | E 46 | 5 59.94 N | 125 3  | 3.52 W | GPS | -9 | 999  |    |      |      |    |                                          |                                |
| 49NZ20140717 | P01 | 149 | 1 BUC | 082214 1 | 1808 ហ  | N 46 | 59.93 N   | 125 3  | 3.55 W | GPS | -9 | 1009 |    |      |      |    | 1,3-6,20,31,33,34,43,98,99,102           | 16.3C                          |
| 49NZ20140717 | P01 | 149 | 1 ROS | 082214 1 | 1829 во | 0 46 | 5 59.89 N | 125 3  | 3.62 W | GPS | -9 | 1049 | 31 | 1012 | 1026 | 17 | 1-8,20,23,24,26,27,31,33,34,43,98,99,102 | LADCP SOUNDING                 |
| 49NZ20140717 | P01 | 149 | 1 ROS | 082214 1 | 1915 EI | N 46 | 5 59.79 N | 125 3  | 3.73 W | GPS | -9 | 1080 |    |      |      |    |                                          |                                |
| 49NZ20140717 | P01 | 150 | 1 ROS | 082214 2 | 2051 ві | E 46 | 5 56.31 N | 124 59 | 9.05 W | GPS | -9 | 283  |    |      |      |    |                                          |                                |
| 49NZ20140717 | P01 | 150 | 1 BUC | 082214 2 | 2053 ປາ | N 46 | 556.30 N  | 124 59 | 9.05 W | GPS | -9 | 284  |    |      |      |    | 1,3-6,20,90,102                          | 16.1C                          |
| 49NZ20140717 | P01 | 150 | 1 ROS | 082214 2 | 2101 во | o 46 | 5 56.31 N | 124 59 | 9.04 W | GPS | -9 | 281  | 13 | 289  | 294  | 7  | 1-8,20,23,24,26,27,43,90,102             |                                |
| 49NZ20140717 | P01 | 150 | 1 ROS | 082214 2 | 2119 EI | N 46 | 556.30 N  | 124 59 | 9.04 W | GPS | -9 | 283  |    |      |      |    |                                          |                                |
| 49NZ20140717 |     | 930 | 1 UNK | 082414 2 | 2259 ві | E 51 | 3.65 N    | 138 32 | 2.35 W | GPS | -9 | 3249 |    |      |      |    |                                          |                                |
|              |     |     |       |          |         |      |           |        |        |     |    |      |    |      |      |    |                                          | 3-AXIS MAGNETMETER CALIBRATION |
| 49NZ20140717 |     | 930 | 1 UNK | 082414 2 | 2324 EI | N 51 | 1 3.81 N  | 138 32 | 2.85 W | GPS | -9 | 3082 |    |      |      |    |                                          |                                |

#### Water sample parameters:

|    | Parameter                    | Mnemonic | Mnemonic for   | Nu<br> |
|----|------------------------------|----------|----------------|--------|
|    |                              |          | expected error |        |
|    | Salinity                     | SALNTY   |                | 45     |
| 2  | Oxygen                       | OXYGEN   |                | 46     |
| 3  | Silicate                     | SILCAT   | SILUNC *1      | 47     |
| 4  | Nitrate                      | NITRAT   | NRAUNC *1      | 48     |
| 5  | Nitrite                      | NITRIT   | NRIUNC *1      | 64     |
| 6  | Phosphate                    | PHSPHT   | PHPUNC *1      | 81     |
| 7  | Freon-11                     | CFC-11   |                | 82     |
| 8  | Freon-12                     | CFC-12   |                | 83     |
| 9  | Tritium                      |          |                | 84     |
| 10 | Helium                       |          |                | 85     |
| 11 | He-3/He-4                    |          |                | 86     |
| 12 | 14Carbon                     | DELC14   | C14ERR         | 87     |
| 13 | 13Carbon                     | DELC13   | C13ERR         | 88     |
| 14 | Kr-85                        |          |                | 89     |
| 15 | Argon                        |          |                | 90     |
| 16 | Ar-39                        |          |                | 91     |
| 17 | Neon                         |          |                | 92     |
| 18 | Ra-228                       |          |                | 93     |
| 19 | Ra-226                       |          |                | 94     |
| 20 | Ratio of 018 to 016          | 018/016  |                | 95     |
| 21 | Sr-90                        |          |                | 96     |
| 22 | Cesium-137                   | CS-137   | CS137ER *2     | 97     |
| 23 | Total carbon                 | TCARBN   |                | 98     |
| 24 | Total alkalinity             | ALKALI   |                |        |
| 25 | pCO2                         |          |                | 99     |
| 26 | рН                           | PH       |                |        |
| 27 | Freon-113                    | CFC113   |                | 10     |
| 28 | Carbon tetrachloride         | CCL4     |                | 10     |
| 29 | Iodate/Iodide                |          |                | 10     |
| 30 | Ammonium                     | NH4      |                | 10     |
| 31 | Methane                      | CH4      |                | 10     |
| 32 | Dissolved organic nitrogen   | DON      |                | 10     |
| 33 | Nitrous oxide                | N20      |                | 10     |
| 34 | Chlorophyll-a                | CHLORA   |                | 10     |
| 35 | Pheophytin                   |          |                | 10     |
| 36 | Halocarbons                  |          |                | 10     |
| 37 | Biogenic sulfur compounds    | DMS      |                | 11     |
| 38 | Hydrocarbons                 |          |                | 11     |
| 39 | Barium                       |          |                | 11     |
| 40 | Particulate organic carbon   | POC      |                | 11     |
| 41 | Particulate organic nitrogen | PON      |                |        |
| 42 | Abundance of bacteria        | BACT     |                |        |
| 43 | Dissolved organic carbon     | DOC      |                |        |
| 44 | Carbon monoxide              |          |                |        |

|     | Parameter                                     |         | Mnemonic for<br>expected error |
|-----|-----------------------------------------------|---------|--------------------------------|
| 45  | Nitrogen (gas)                                |         |                                |
| 46  | Total organic carbon                          | TOC     |                                |
| 47  | Plutonium                                     | PLUTO   | PLUTOER *2                     |
| 48  | Primary productivity                          |         |                                |
| 64  | Incubation                                    |         |                                |
| 81  | Particulate organic matter                    | POM     |                                |
| 82  | 15N-Nitrate                                   | 15NO3   |                                |
| 83  | Particulate inorganic matter                  | PIM     |                                |
| 84  | Dissolved organic phosphate                   |         |                                |
| 85  | Ratio of 0-17 to 0-16                         | 017/016 |                                |
| 86  | Flowcytometry                                 |         |                                |
| 87  | Genetic analysis                              |         |                                |
| 88  | Nitrogen fixation                             |         |                                |
| 89  | Cesium-134                                    | CS-134  | CS134ER                        |
| 90  | Perfluoroalkyl substances                     | PFAS    |                                |
| 91  | Iodine-129                                    | I-129   |                                |
| 92  | Density salinity                              | DNSSAL  |                                |
| 93  | Sulfur hexafluoride                           | SF6     |                                |
| 94  | Isoprene                                      |         |                                |
| 95  | Pigment                                       |         |                                |
| 96  | Microscope                                    |         |                                |
| 97  | Calcium                                       |         |                                |
| 98  | Colored dissolved<br>organic matter           | CDOM    |                                |
| 99  | Absorption coefficients of particulate matter | AP      |                                |
| 100 | Nitrification                                 |         |                                |
| 101 | 13C-CH4                                       |         |                                |
| 102 | Prokaryotic abundance                         |         |                                |
| 103 | Fluorescence in situ hybridiza                | ation   |                                |
| 104 | Prokaryotic activity                          |         |                                |
| 105 | Viral production                              |         |                                |
| 106 | Microbial diversity                           |         |                                |
| 107 | N2O 15N-isotope                               |         |                                |
| 108 | Nitrogen fixation                             |         |                                |
| 109 | NH4 15N-isotope                               |         |                                |
| 110 | Urea                                          |         |                                |
| 111 | NO2 15N-isotope                               |         |                                |
| 112 | Coenzyme F430                                 |         |                                |
| 113 | Chlorophyll 15N-isotope                       |         |                                |

#### **Figure captions**

- Figure 1 Station locations for (a) WHP P10N and (b) WHP P01 revisit in 2014 cruise with bottom topography.
- Figure 2 Bathymetry measured by Multi Narrow Beam Echo Sounding system.
- Figure 3 Surface wind measured at 25 m above sea level. Wind data is averaged over 6-hour.
- Figure 4 (a) Sea surface temperature (°C), (b) sea surface salinity (psu), (c) sea surface oxygen (µmol/kg), and (d) sea surface chlorophyll *a* (mg/m<sup>3</sup>) measured by the Continuous Sea Surface Water Monitoring System.
- Figure 5 Difference in the partial pressure of  $CO_2$  between the ocean and the atmosphere,  $\Delta pCO_2$ .
- Figure 6 Surface current at 100 m depth measured by ship board acoustic Doppler current profiler (ADCP).
- Figure 7 Potential temperature (°C) cross sections calculated by using CTD temperature and salinity data calibrated by bottle salinity measurements. Vertical exaggeration of the 0-6500 m section is 1000:1, and expanded section of the upper 1000 m is made with a vertical exaggeration of 2500:1.
- Figure 8 CTD salinity (psu) cross sections calibrated by bottle salinity measurements. Vertical exaggeration is same as Fig. 7.
- Figure 9 Absolute salinity (g/kg) cross sections calculated by using CTD salinity data. Vertical exaggeration is same as Fig. 7.

- Figure 10 Density (upper:  $\sigma_0$ , lower:  $\sigma_4$ ) (kg/m<sup>3</sup>) cross sections calculated by using CTD temperature and salinity data. Vertical exaggeration of the 0-1500 m and 1500-6500 m section are 2500:1 and 1000:1, respectively. (a) EOS-80 and (b) TEOS-10 definition.
- Figure 11 Neutral density  $(y^n)$  (kg/m<sup>3</sup>) cross sections calculated by using CTD temperature and salinity data. Vertical exaggeration is same as Fig. 7.
- Figure 12 CTD oxygen (µmol/kg) cross sections. Vertical exaggeration is same as Fig. 7.
- Figure 13 CTD chlorophyll  $a \text{ (mg/m}^3)$  cross section. Vertical exaggeration of the upper 1000 m section is same as Fig. 7.
- Figure 14 CTD beam attenuation coefficient (m<sup>-1</sup>) cross sections. Vertical exaggeration is same as Fig. 7.
- Figure 15 Bottle sampled dissolved oxygen (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig. 7.
- Figure 16 Silicate (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig. 7.
- Figure 17 Nitrate (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig. 7.
- Figure 18 Nitrite (µmol/kg) cross section. Data with quality flags of 2 were plotted. Vertical exaggeration of the upper 1000 m section is same as Fig. 7.

- Figure 19 Phosphate (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig. 7.
- Figure 20 Dissolved inorganic carbon (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig. 7.
- Figure 21 Total alkalinity (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig. 7.
- Figure 22 pH cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig. 7.
- Figure 23 Dissolved organic carbon (µmol/kg) cross sections. Data with quality flags of 2 were plotted. Vertical exaggeration is same as Fig. 7.
- Figure 24 Cross sections of current velocity (cm/s) normal to the cruise track measured by LADCP (eastward or northward is positive). Vertical exaggeration is same as Fig. 7.
- Figure 25 Difference in potential temperature (°C) between results from the WOCE revisit cruise in 2007 and the revisit in 2014. Red and blue areas show areas where potential temperature increased and decreased in the revisit cruise, respectively. On white areas differences in temperature do not exceed the detection limit of 0.002 °C. Vertical exaggeration is same as Fig. 7.
- Figure 26 Same as Fig. 25, but for salinity (psu). CTD salinity data with SSW batch correction<sup>1</sup> were used.On white areas differences in salinity do not exceed the detection limit of 0.002 psu.

Figure 27 Same as Fig. 25, but for dissolved oxygen (µmol/kg). CTD oxygen data were used. On white areas differences in dissolved oxygen do not exceed the detection limit of 2 µmol/kg.

#### Note

 As for the traceability of SSW to Kawano's value (Kawano et al., 2006), the offset for the batches P148 (WOCE P01 revisit in 2007) and P156 (WOCE P01 revisit in 2014) are 0.0000 and 0.0004, respectively. The offset values for the recent batches are listed in Table A1 (Uchida et al., in preparation).

| Batch no. | Production date | K15     | Sp      | Batch to batch difference (×10 <sup>-3</sup> ) |                   |
|-----------|-----------------|---------|---------|------------------------------------------------|-------------------|
|           |                 |         |         | Mantyla's standard                             | Kawano's standard |
| P145      | 2004/07/15      | 0.99981 | 34.9925 | -2.3                                           | -1.0              |
| P146      | 2005/05/12      | 0.99979 | 34.9917 | -2.8                                           | -1.5              |
| P147      | 2006/06/06      | 0.99982 | 34.9929 | -1.9                                           | -0.6              |
| P148      | 2006/10/01      | 0.99982 | 34.9929 | -1.3                                           | 0.0               |
| P149      | 2007/10/05      | 0.99984 | 34.9937 | -0.6                                           | 0.7               |
| P150      | 2008/05/22      | 0.99978 | 34.9913 | -0.6                                           | 0.7               |
| P151      | 2009/05/20      | 0.99997 | 34.9984 | -1.7                                           | -0.4              |
| P152      | 2010/05/05      | 0.99981 | 34.9926 | -1.3                                           | 0.0               |
| P153      | 2011/03/08      | 0.99979 | 34.9918 | -0.9                                           | 0.4               |
| P154      | 2011/10/20      | 0.99990 | 34.9961 | -0.7                                           | 0.6               |
| P155      | 2012/09/19      | 0.99981 | 34.9925 | -1.2                                           | 0.1               |
| P156      | 2013/07/23      | 0.99984 | 34.9937 | -0.9                                           | 0.4               |
| P157      | 2014/05/15      | 0.99985 | 34.9941 | -2.0                                           | -0.7              |
| P158      | 2015/03/25      | 0.99970 | 34.9883 | -1.5                                           | -0.2              |
| P159      | 2015/12/15      | 0.99988 | 34.9953 | -1.6                                           | -0.3              |

Table A1. SSW batch to batch differences from P145 to P159 (Uchida et al., in preparation). The difference of

#### Reference

P145 is reevaluated.

Kawano, T., M. Aoyama, T. Joyce, H. Uchida, Y. Takatsuki and M. Fukasawa (2006): The latest batch-to-batch difference table of standard seawater and its application to the WOCE onetime sections, *J. Oceanogr.*, 62, 777–792.

#### Figure 1a Station locations for WHP P10N

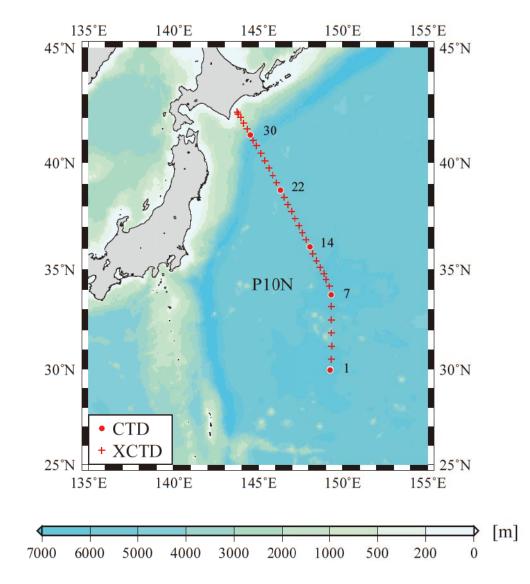



Figure 1b Station locations for WHP P01

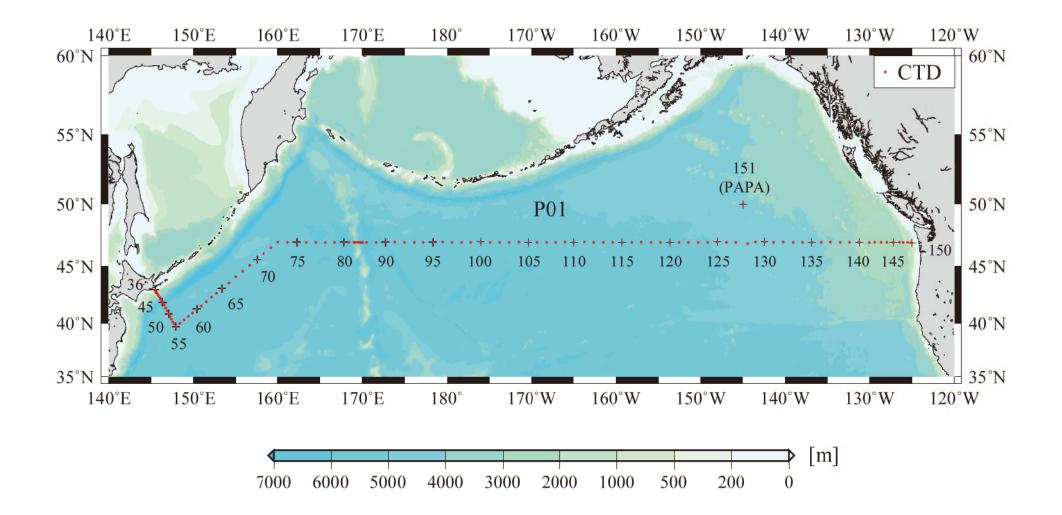
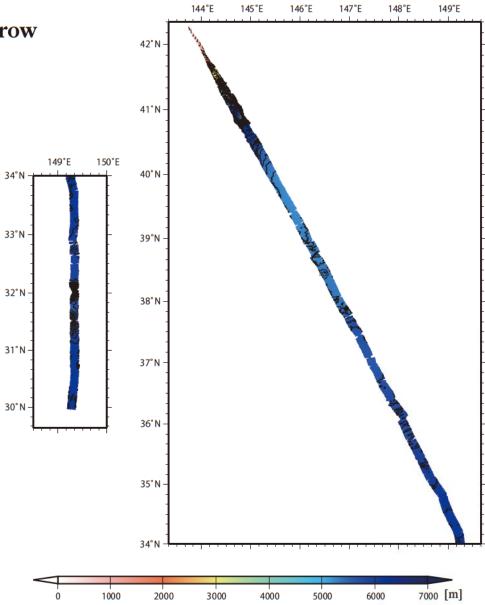




Figure 2 Bathymetry measured by Multi Narrow Beam Echo Sounding system



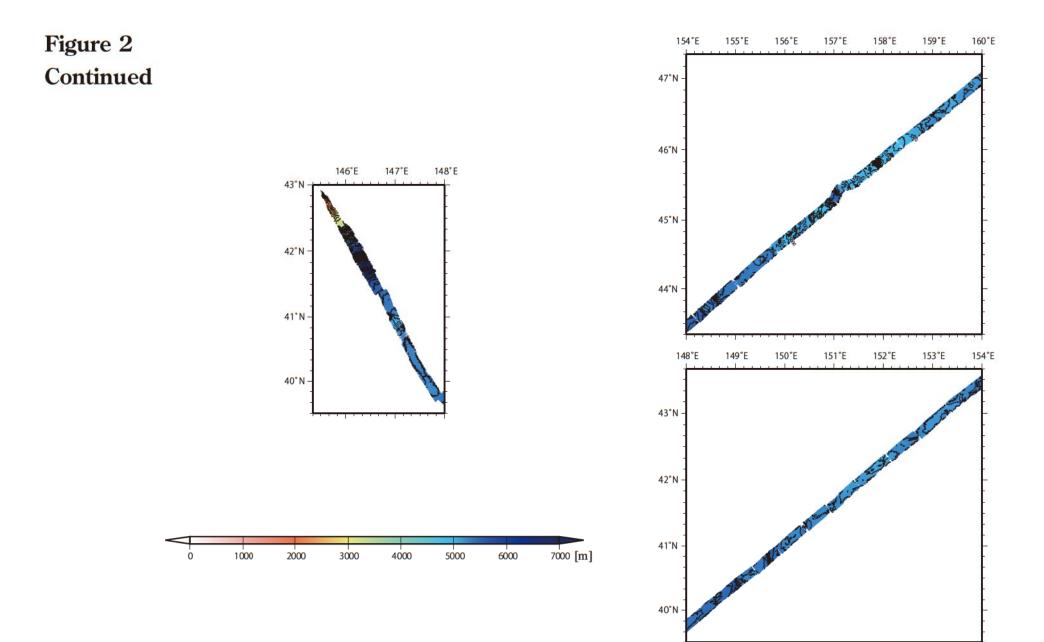
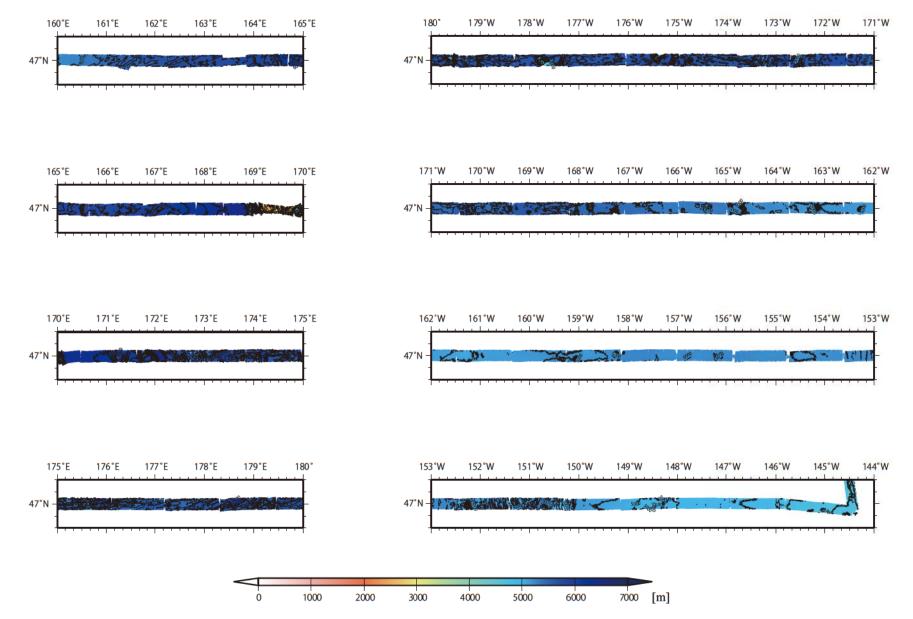
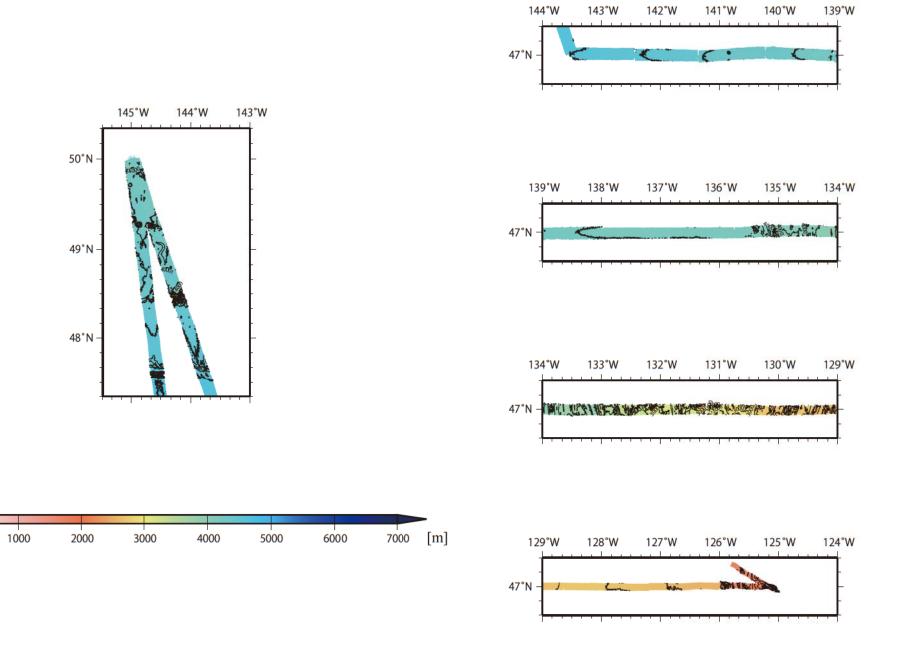





Figure 2 Continued



#### Figure 2 Continued



0

#### Figure 3 Surface wind measured at 25 m above sea level

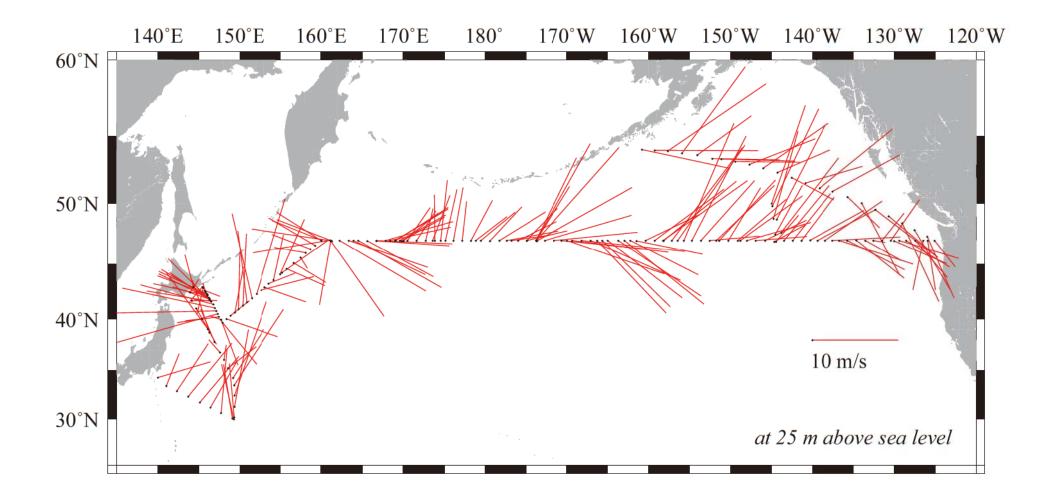
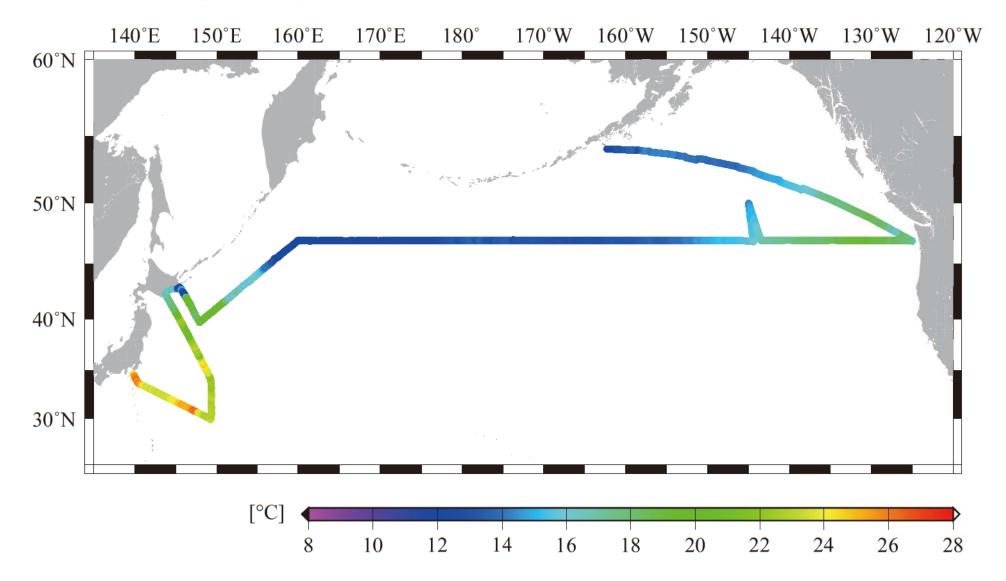
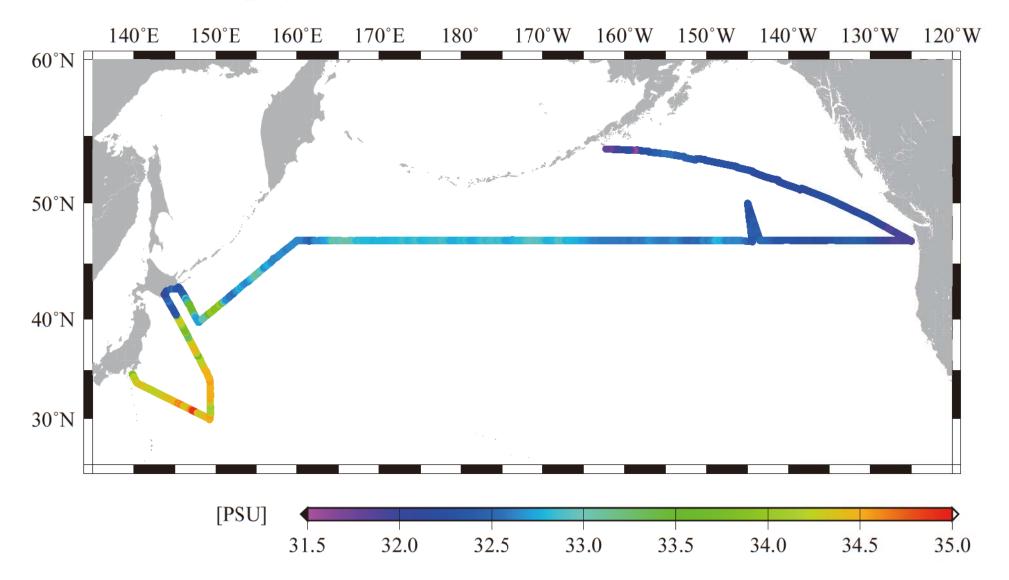




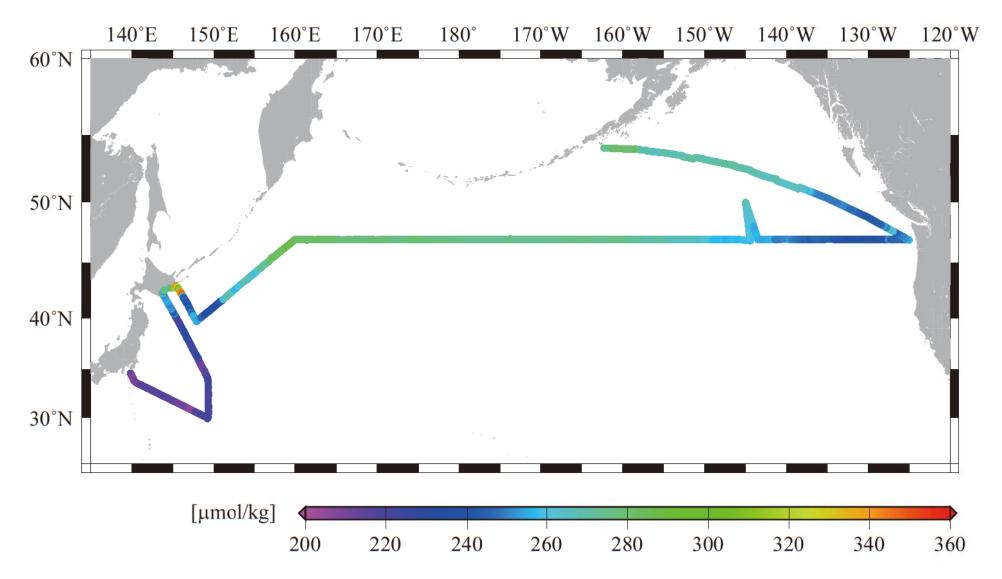
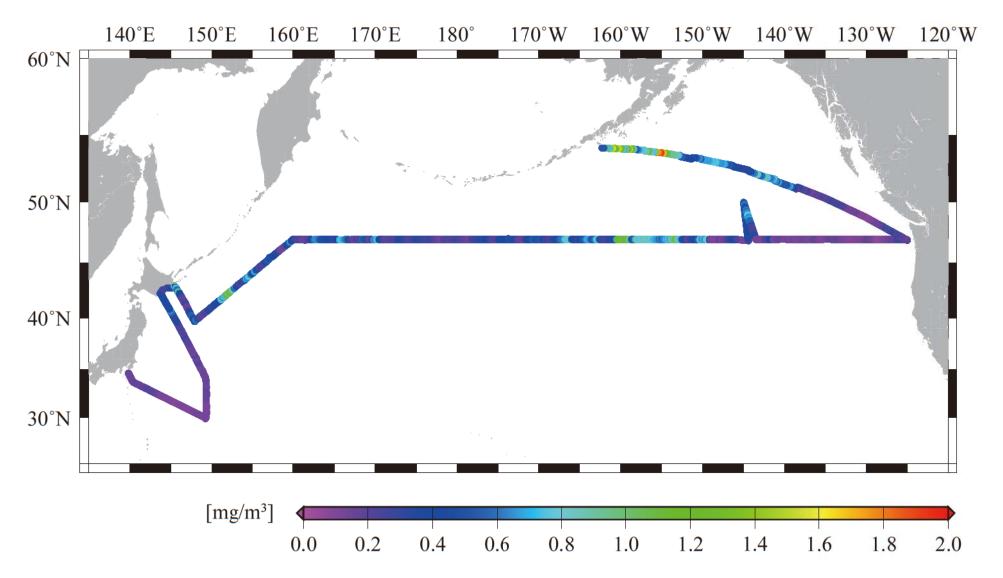
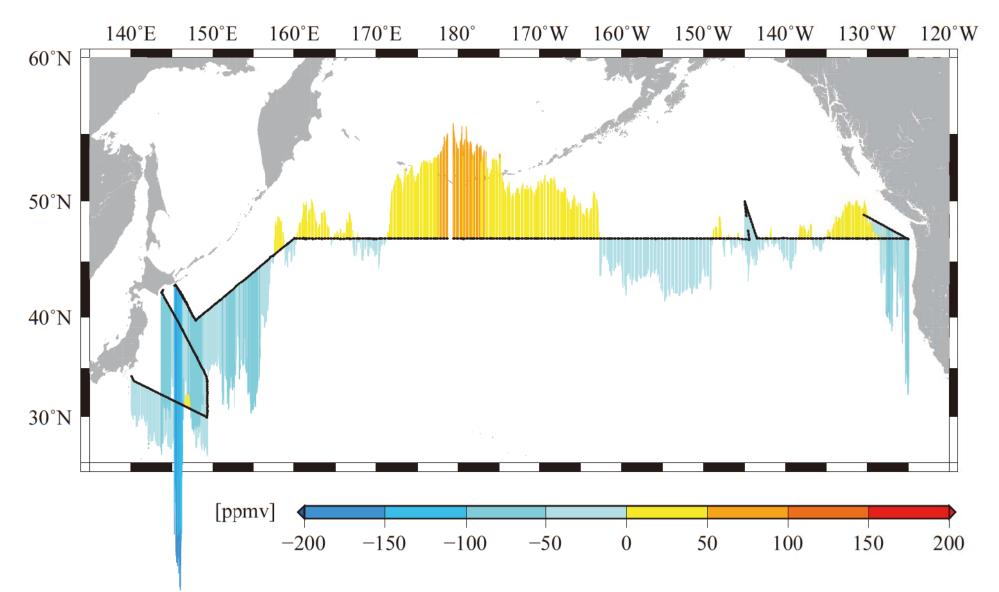

Figure 4a Sea surface temperature (°C)

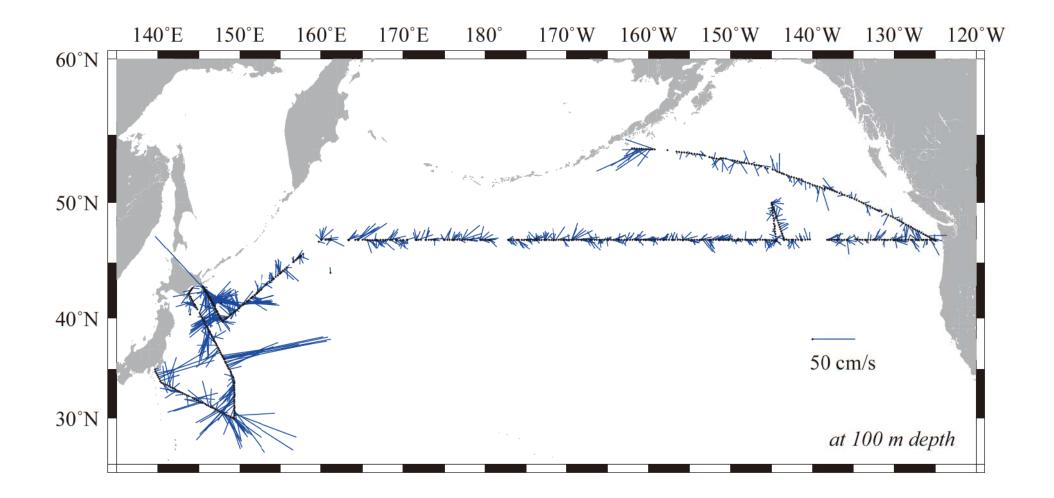


#### Figure 4b Sea surface salinity (psu)

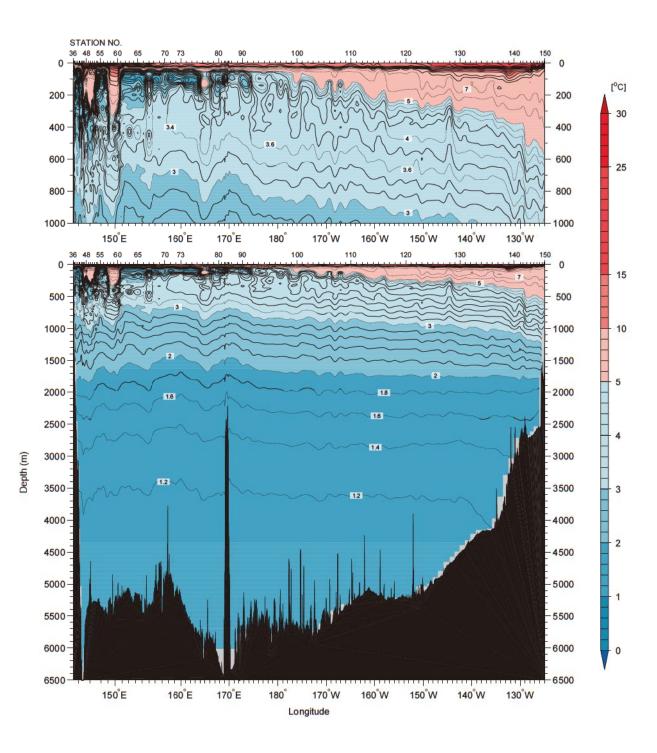


#### Figure 4c Sea surface oxygen (µmol/kg)

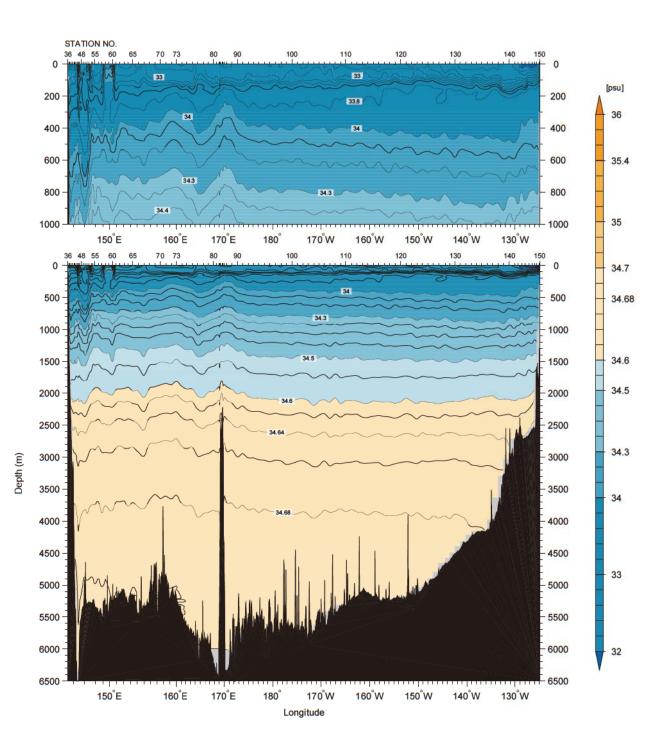






Figure 4d Sea surface chlorophyll *a* (mg/m<sup>3</sup>)




# Figure 5 $\Delta pCO_2$ (ppmv)




### Figure 6 Surface current measured by shipboard ADCP



### Figure 7 Potential temperature (°C)



### Figure 8 CTD salinity (psu)



## Figure 9 Absolute Salinity (g/kg)

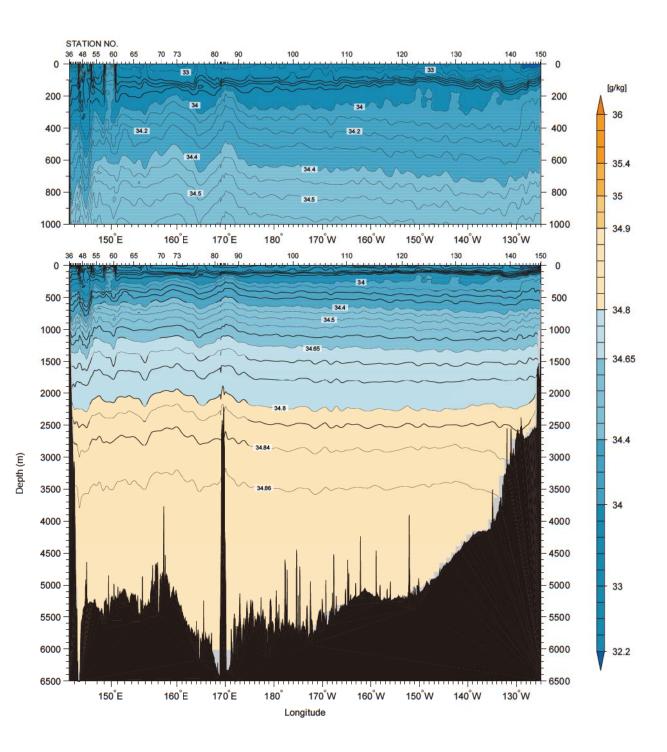
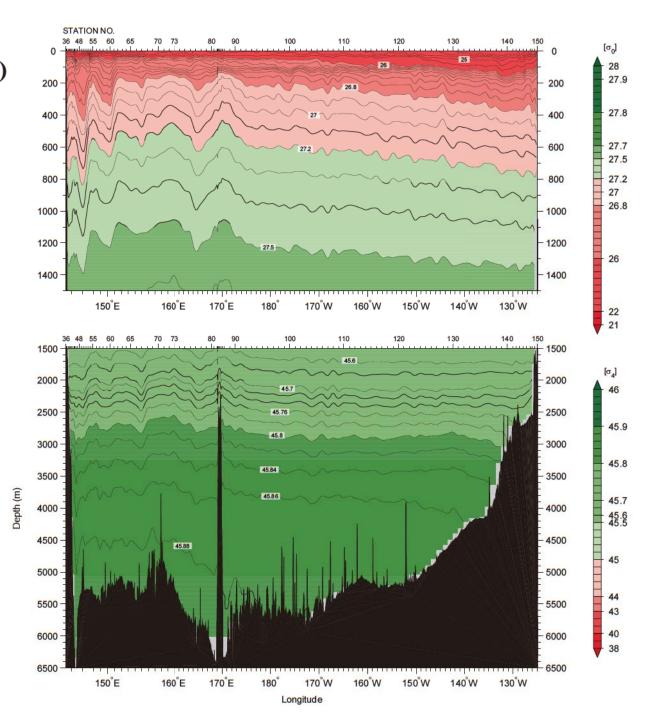
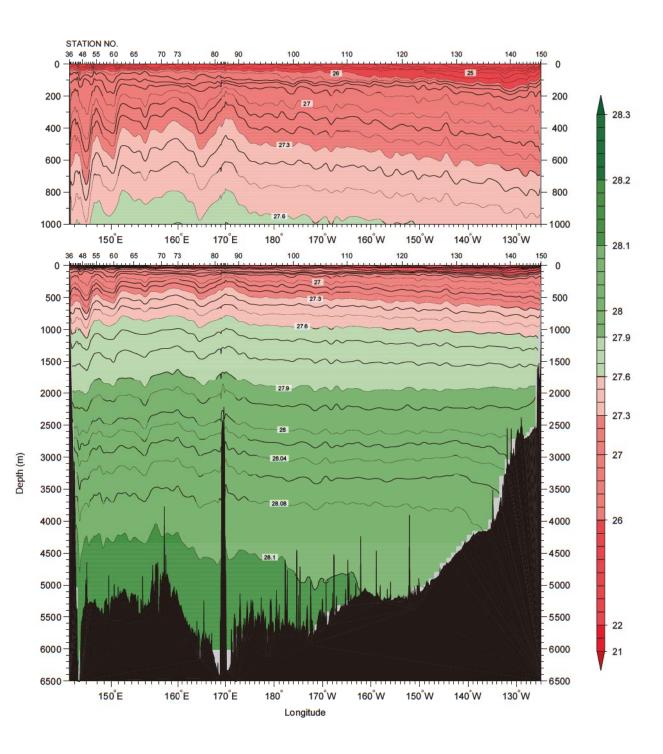
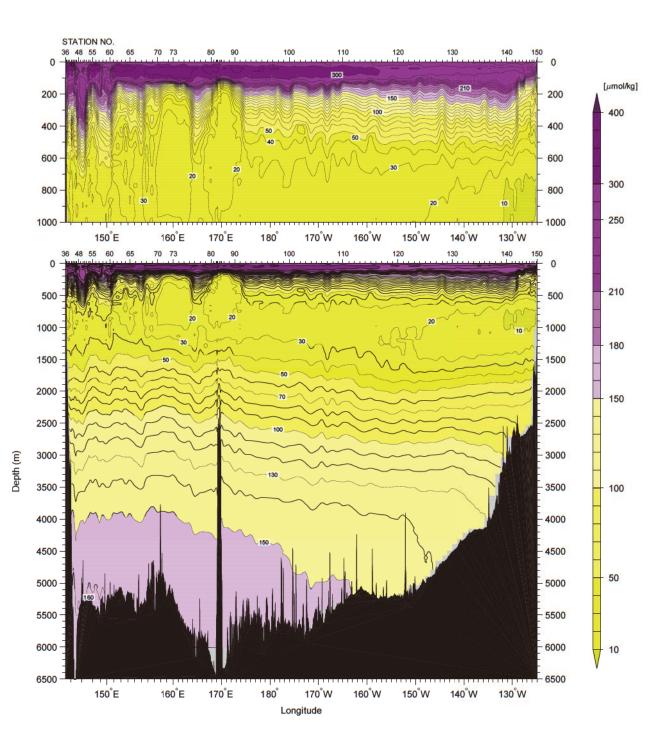



Figure 10a Density (upper:  $\sigma_0$ , lower:  $\sigma_4$ ) (kg/m<sup>3</sup>) (EOS-80)



Figure 10b Density (upper:  $\sigma_0$ , lower:  $\sigma_4$ ) (kg/m<sup>3</sup>) (TEOS-10)



### Figure 11 Density $(\gamma^n)$ (kg/m<sup>3</sup>)



## Figure 12 CTD oxygen (µmol/kg)



### Figure 13 CTD chlorophyll *a* (mg/m<sup>3</sup>)

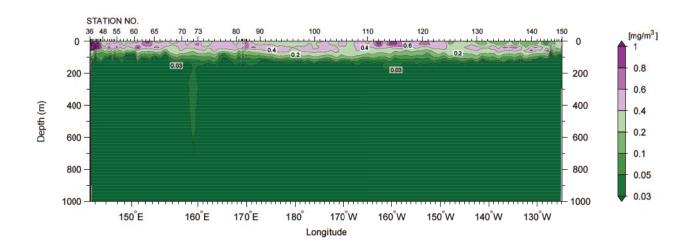
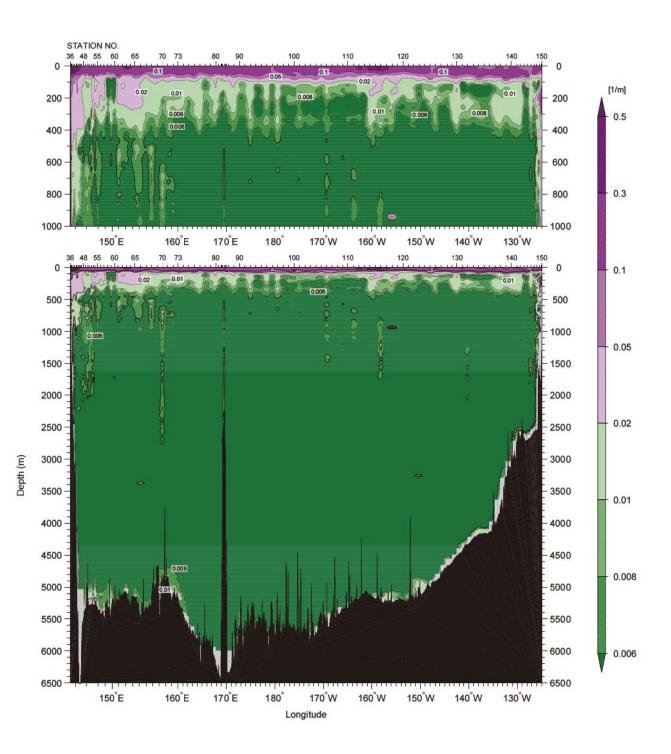
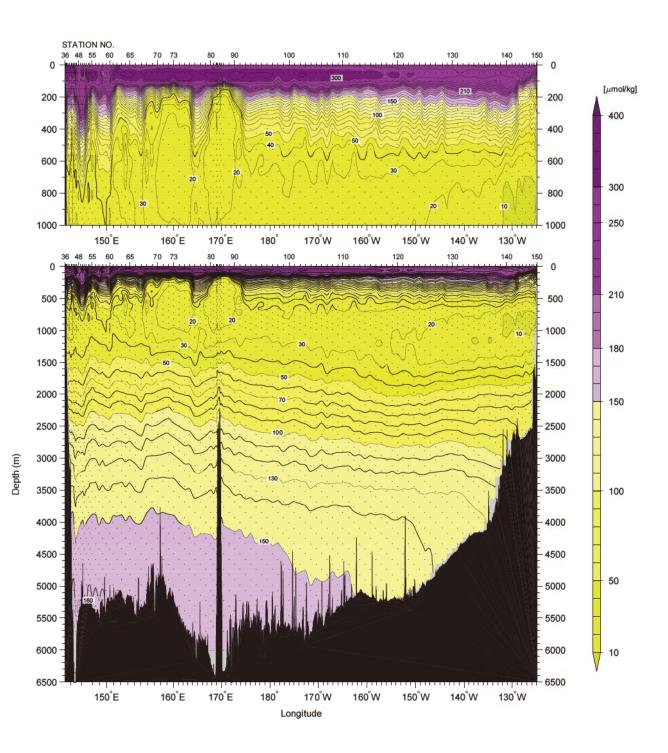
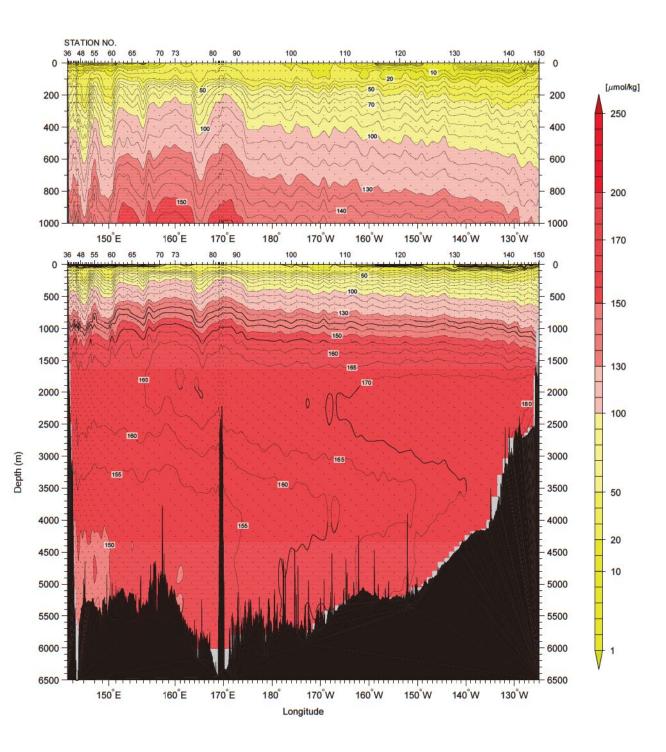
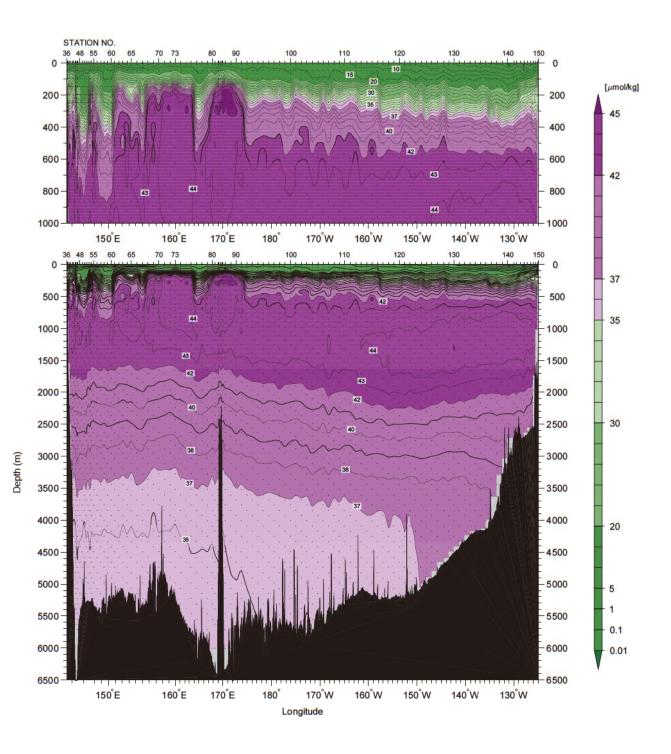
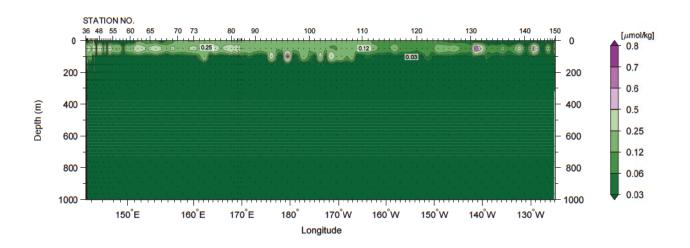



Figure 14 CTD beam attenuation coefficient (m<sup>-1</sup>)



Figure 15 Bottle sampled dissolved oxygen (µmol/kg)




### Figure 16 Silicate (µmol/kg)



### Figure 17 Nitrate (µmol/kg)



#### Figure 18 Nitrite (µmol/kg)



### Figure 19 Phosphate (µmol/kg)

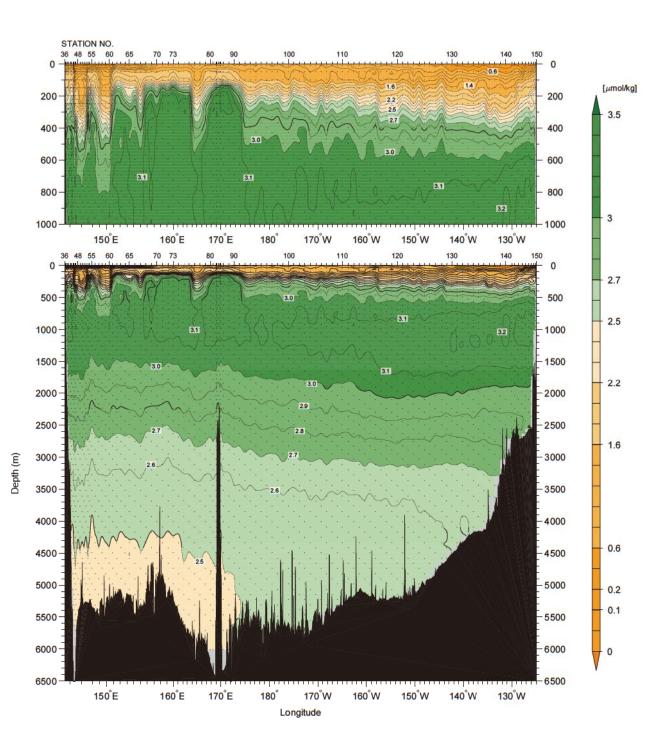
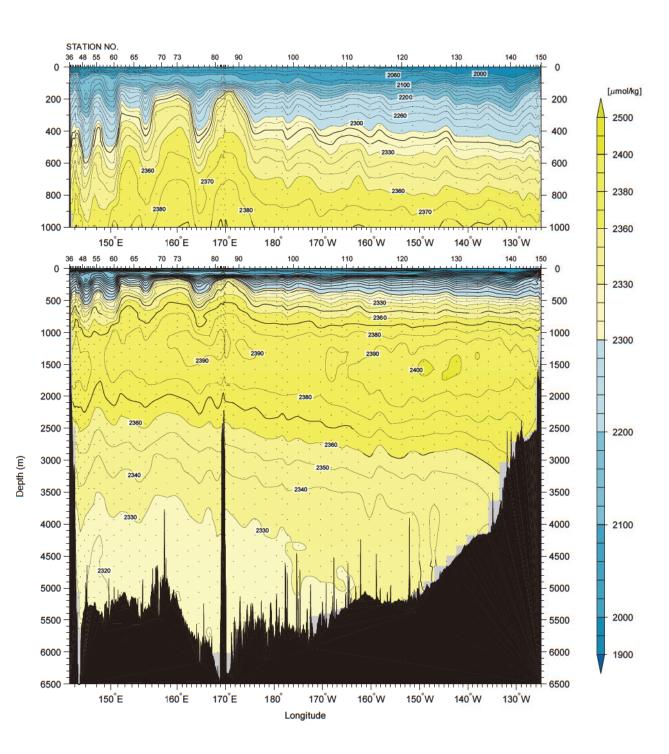




Figure 20 Dissolved inorganic carbon (C<sub>T</sub>) (µmol/kg)



## Figure 21 Total alkalinity (A<sub>T</sub>) (µmol/kg)

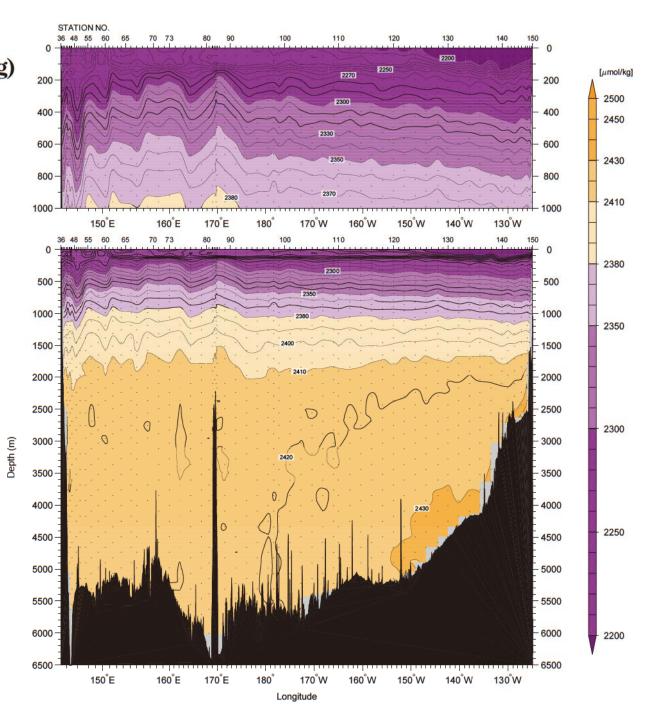



Figure 22 pH (pH<sub>T</sub>)

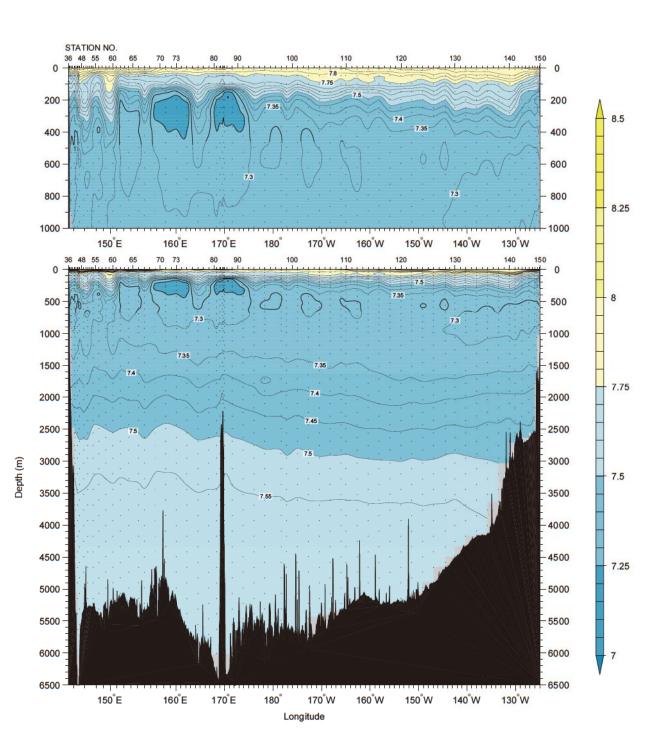



Figure 23 Dissolved organic carbon (µmol/kg)

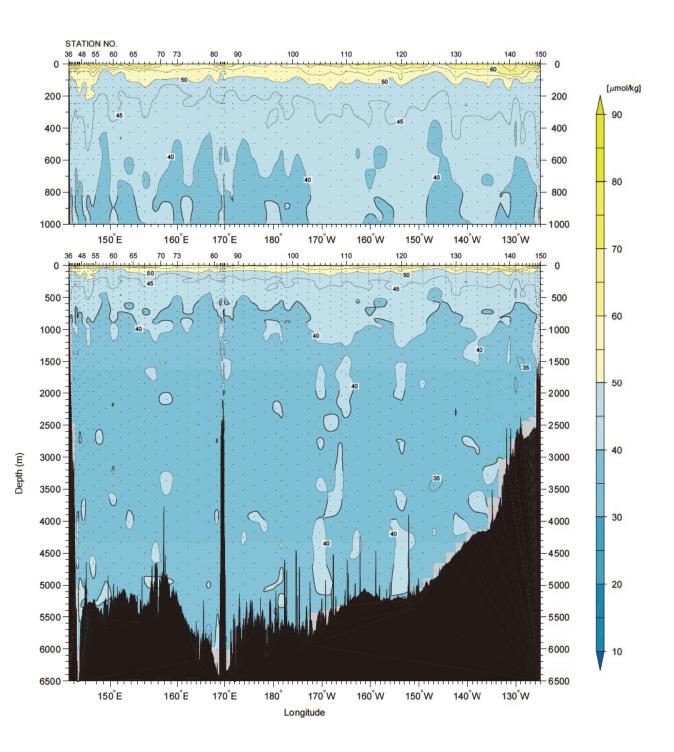



Figure 24 Current velocity (cm/s) normal to the cruise track measured By LADCP (northward is positive)

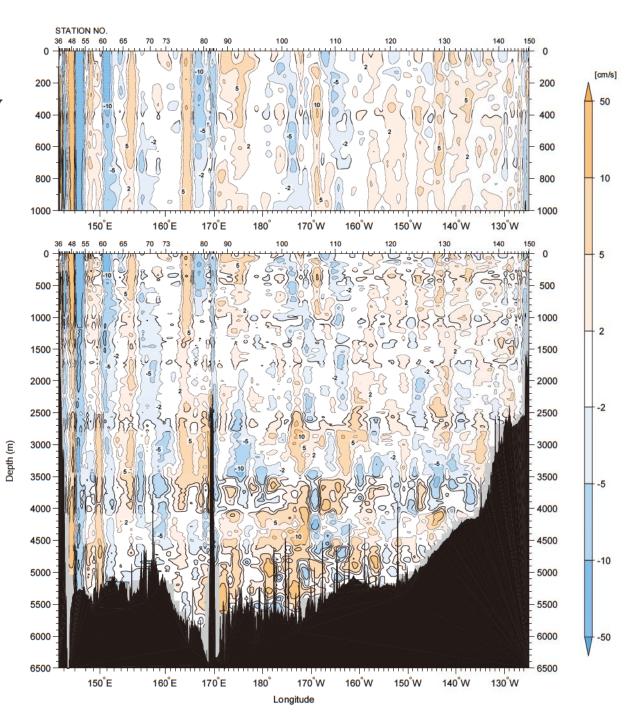



Figure 25 Difference in potential temperature (°C) between results from P01 revisit in 2007 and the revisit in 2014

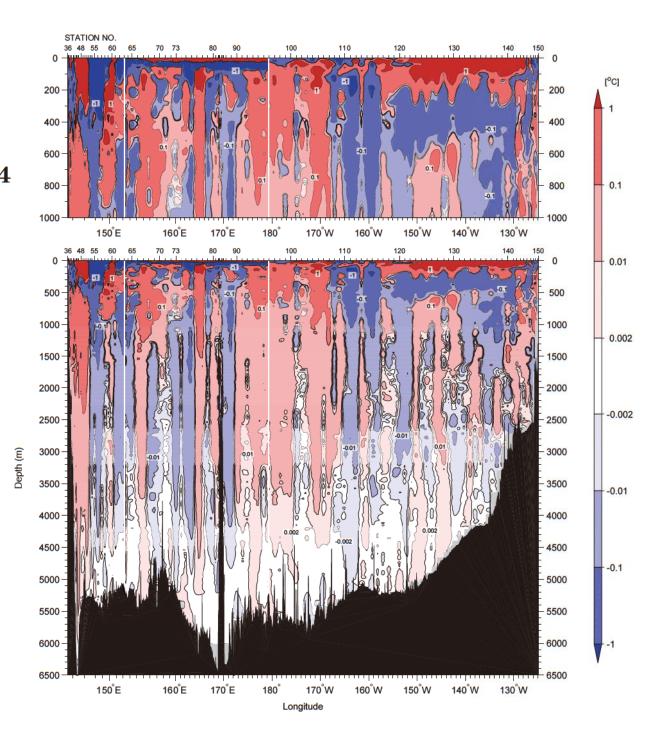



Figure 26 Difference in CTD salinity (psu) between results from P01 revisit in 2007 and the revisit in 2014

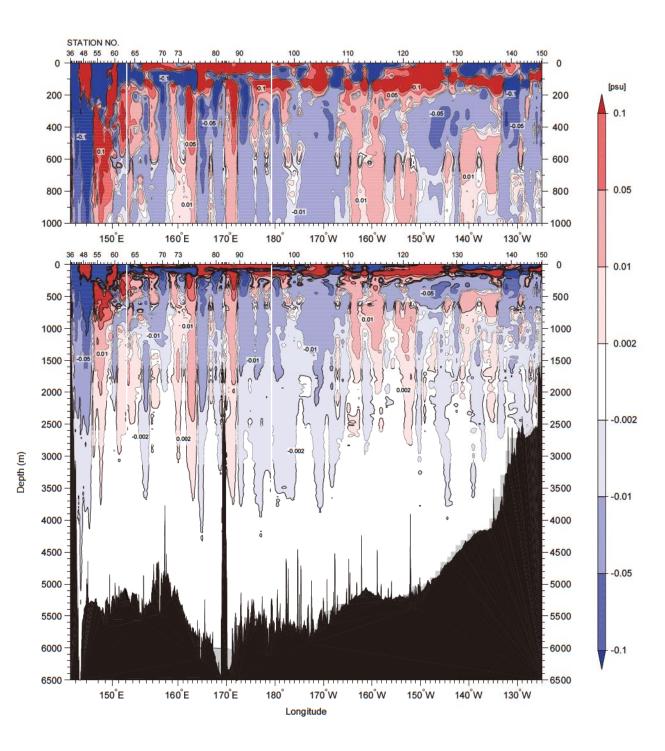
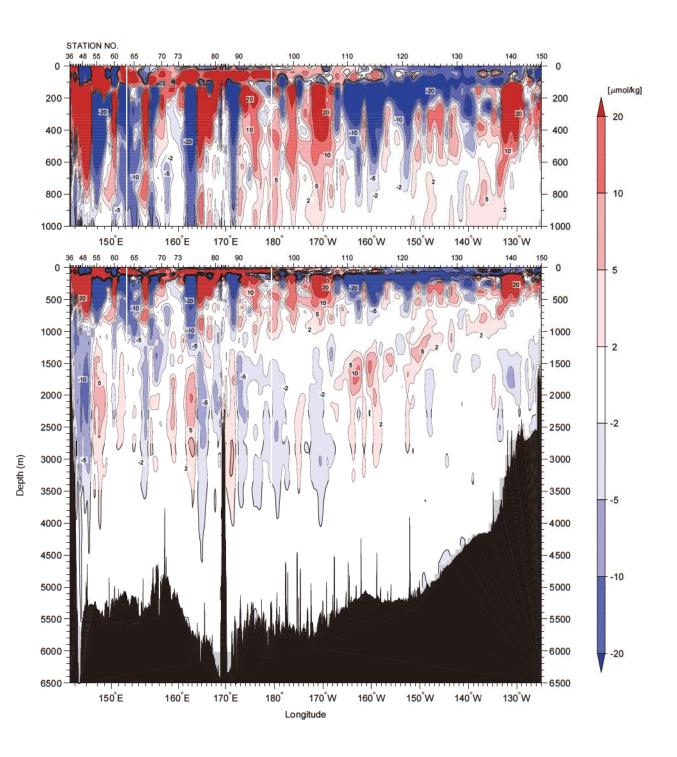




Figure 27 Difference in CTD oxygen (µmol/kg) between results from P01 revisit in 2007 and the revisit in 2014

