Scientific Report for Cruise CK09-03 Expedition 904

Hidetaka Nomaki, Kyoma Takahashi, *et al.* November 18, 2009

1 Introduction

Paleoclimate changes at the Pacific Ocean is important for reconstructing global climate change, since currents in Pacific Ocean play crucial roles for heat transfer from equatorial to polar regions. The northwestern Pacific has some active plate margins, making high sedimentation rates in general. Drilling site off Boso, water depth of 2029 m, locates near from the Sagami Trough axis. Both terrestrial inputs along the Trough and biogenic particles from the ocean surface were expected to be sedimented on the seafloor with high sedimentation rate. The settings enable high-resolution paleoenvironmental reconstruction using microfossils in the sediments.

Off Boso is also a key area to reconstruct paleoceanographic changes because the area is a transition zone of two major currents: the Kuroshio current (warm, western boundary current of the large subtropical gyre in the North Pacific) and the Oyashio current (cold, nutrient enriched northern component water). Climatic changes during Cenozoic should affect to circulation patterns of Kuroshio/Oyashio, and vice versa, so cores from this area should provide detailed history of global climate changes and responses of land/ocean at western Pacific.

In this drilling cruise, we tried to establish standard age model for western Pacific Cenozoic strata by analyzing core samples off Boso Peninsula. Paleoceanographic analyses will be done with the cores for understanding climatic changes of the Japanese Islands, in particular to central Japan. We also carried out an experimental study to assess the possible contamination during drilling and recovery of cores for microbiological study. The results provide standard protocol for collecting intact, contamination-free microbiological samples during future IODP expeditions.

2 Site and holes

Site C9010 had been planned at the coordinate of 34 deg. 33.45 min. North, 139 deg. 53.40 min. East. The training region is south off Boso Peninsula and east from Ooshima and Niijima Islands. The site is at a gentle slope between Niijima and Miyake Canyons, which merge to large Bose and Awa Canyons, respectively (Fig. 2-1). Firstly, Holes C9010A and C9010B were drilled at the position of the site and the next holes were offset every 30 m toward 115 deg. Holes C9010C and C9010D were drilled at the same position. Ship locations were handled as the hole locations (Table 2-1).

According to water depths of eight transponders, which had been deployed at the sea bottom surrounding the site (approx. 808 m away), the water depth at the site had been estimated 2,014 to 2,039 mMSL (meter mean sea level). The seafloor at the site was tagged at 2026.7 mMSL by lowering the bottom hole assembly before spudin at Hole C9010A while monitoring by using Underwater TV (UWTV). After taking the first core by Hydraulic Piston Coring System (HPCS) at each hole excepting Hole C9010D, the water depths were corrected by the mud line levels in the recovered cores (Table 2-1). Water depth at Hole C9010D was regarded as the same as Hole C9010C.

3 Core and section summaries

During Expedition 904, we cored four Holes C9010A, B, C and D. At each hole, we obtained one, 15, two and 29 cores, respectively by Hydraulic Piston Coring System (HPCS), Extended Punch Coring system (EPCS) and Extended Shoe Coring System (ESCS). Cores C9010B-10X and C9010D-22X were empty. And we cut these cores into 4, 101, 15 and 97 sections, including core catchers (Table 3-1). The total length of curated cores is 207.24 m.

4 Sampling plan and summary

4.1 Sampling plan

We took seven types of samples during this expedition (Table 4-1-1 and Fig. 4-1-1); HS (Headspace gas) for shipboard gas analyses for safety, 904HKCC, 904NMA, 904NMB, 904HKMC and 904HKMH for onshore personal research, and SS (Smear Slide) for shipboard Visual Core Description.

Most of HS samples were taken from the top of second section at all HPCS and one ESCS cores of Holes C9010A and B, and at all the EPCS and ESCS cores below 52.98 m CSF-B (core depth below sea floor, scale if long) of Holes C9010C and D excepting poorly recovered cores.

904HKCC samples, 5 cm long whole round samples, were taken usually from the bottom of core catcher at all holes.

904NMA and 904NMB samples are both 10 cm long whole round samples. At the depth shallower than 10 m CSF-B, we took 904NMA samples from every section after the X-ray CT scanning process and one 904NMB sample from the section near the depth of 10 m CSF-B before X-ray CT scanning process. At the depth deeper than 10 m CSF-B, we took 904NMA samples usually from third section after the X-ray CT scanning process. In addition to these samples, we also took 904NMA samples from every section at the cores with fluorescent microspheres.

904HKMC and 904HKMH samples are discrete samples taken from working halves, 14 cc (two 7 cc cubes) samples and 20 cc half round samples, respectively. We took one sample of 904HKMC per section at the Holes C9010C and D. And we took samples of 904HKMH per 10 cm interval at the Hole C9010C and samples of 904HKMH per 30 cm interval at the Hole C9010D.

SS samples were taken from archive halves by toothpicks at all holes.

4.2 Sample and residues summary

461 samples are taken in total, including 49 ship samples (HS and SS) and 412 personal samples. 20 residues from HS and 29 SS samples will be shipped to KCC (Table 4-2-1).

5 Operation summary

The science party and the crew embarked at Tateyama Port area on November 4th, 2009. Drilling equipments were being prepared while anchoring till November 7th. Upon completion the crew boarding including Mark James Robinson, Coring Supervisor and Curtis Wayne Lambert Coring Service Engineer on November 7th,

Chikyu left at 10:30 to the site of coring in Expedition 904 of Cruise CK09-03 off Boso Peninsula. Chikyu arrived the site at 23:00 and prepared for positioning.

The 11-7/8" coring assembly started running down at 00:45 on November 8th. At 09:15, UWTV ran in order to check the sea bottom conditions. Upon running the bottom hole assembly to the seabed, the seafloor was tagged at 2,055 m DRF (drilling depth below rig floor, 2026.7 mMSL) at 12:30. The drill string was placed 3 m above the seafloor and HPCS inner core barrel was lowered down just above the bottom hole assembly. HPCS coring was carried out at Hole C9010A at 15:31. Core C9010A-1H was shot from 3 m above the seafloor and its recovery had been expected to 6.5 m but it was 4.59 m, much less than expected. HPCS coring was re-started again at Hole C9010B at the same position as Hole C9010A at 17:10. After taken seven HPCS cores (Cores C9010B-1H thorough 7H down to 60.33 m DSF, drilling depth below sea floor) until 06:54 on November 9th, Extended Shoe Coring System (ESCS) was employed to cut Core C9010B-8X (down to 69.83 m DSF). From 69.83 to 79.33 m DSF, the formation was drilled out and no core was taken. Core C9010B-9H was on deck by using HPCS again at 13:14. When Core 9H was laid at deck, the penetration was estimated to 1.5 m from the over pull of the drill string. Top 0.8 m dropped off from the core barrel and the next 0.5 m stayed inside the core barrel top outside the core liner. Sediments in the core liner and the core catcher (2.6 m) were thought as flow-in. Consequently, Core C9010B-10X was drilled after lowered 1.5 m (from 80.83 m DSF). Later, the 2.6 m sediments in the core liner were however identified to real formation recovery by observing X-ray CT scanogram and the advancement and recovery of Core C9010B-9H was corrected to the same as the recovery 3.78 m. Core C9010B-10X was attempted by ESCS down to 90.33 m DSF, but it had empty recovery. Core C9010B-11X was drilled with a full-close finger type core catcher. Coring continued to the deeper including almost empty recovery of Core C9010B-13X and finished at 11:42 on November 10th after taken Core C9010B-16X (down to 147.33 m DSF). After sweeping the hole with high-viscosity mud water, spotting the kill mud water, and pulling out of the hole to the surface. Chikyu moved to Tateyama Port area at 22:30 on November 10th.

Upon completion the crew changing including two scientists on November 11th and 12th, 2009, Chikyu left at 13:30 and arrived Site C9010 at 23:00. HPCS coring was carried out at Hole C9010C at 01:45 on November 14th. After taking Cores C9010C-1H and 2H, pulled out of the hole above the seafloor and waited on weather. HPCS coring was re-started again at Hole C9010D at the same position as Hole C9010C at 15:00. Core C9010D-1H was shot from 14.98 m DSF, one meter above the bottom of Core C9010C-2H. After taking four HPCS Cores C9010D-1H through 4H (down to 52.98 m DSF), Extended Punching Coring System (EPCS) Cores C9010D-5X through 19X were taken from 52.98 to 193.98 m DSF. Subsequently, ESCS Cores C9010D-20X through 30X were cut down to 293.48 m DSF. After sweeping the hole with high-viscosity mud water, spotting the kill mud water, and pulling out of the hole to the surface, Chikyu moved to Tateyama Port area at 20:00 on November 17th.

6 Measurement and initial results onboard

Fig. 6-1 plans the procedure of core sample measurements and sub-samplings and Fig. 6-2 shows some parts of the results for cores at each hole. At Core Cutting Area, a palaeontologist received a part of core catcher sample and carry out microscopy by making smear slides. Three technicians placed recovered core. If needed for safety, they released pressures from core liner by putting small holes. Cores were cut into sections, whose lengths were no longer than 1.5 m. ID numbers were issued for sections and their properties were recorded by using the database system. A technician took samples using a syringe for safety gas monitoring. He/she carried out the gas analysis downstairs. The results were reported from Lab. Officer and Assistant Lab. Officer to OSI once 12 hours. JAMSTEC Curators took samples for routine microbiological sampling (RMS) once here during the expedition.

After the sections were carried to Core Processing Deck, a technician carried out X-ray CT scan. Core sections are stored in Whole Core Reefer before measurements. In QA/QC Sampling Room, JAMSTEC Curators took RMS samples and processed them. After waiting several hours for the core sections temperature became the same as the room temperature (approx. 18.5 °C), some physical properties were measured non-destructively employing a Multi Sensor Core Logger (MSCL).

A few technicians split core section into working and archive halves. From the working halves, a palaeontologist took their personal samples. Another scientist took photographs of the archive halves by using a digital camera and described cores visually (VCD) for the archive halves. The VCDs were recorded into the database.

6.1 Radiolarian biostratigraphy

Most of the radiolarian slides were prepared by submersing the sample in hot water and then treating the sample with a 5 % HCl solution until the calcareous component was removed. Additionally, boiling the sample in 10 % hydrogen peroxide for 10 min was necessary if the sample was indurated. If the sediment did not fully disaggregate, the procedure was repeated. The residue was sieved using 63 µm mesh stainless-steel sieves, and the remaining siliceous microfossils were pipetted evenly onto labeled glass slides. The accompanying water was then evaporated under a heat lamp, after which the remaining residue was mounted in a suitable medium (in this instance, Norland Optical Adhesive) and covered with a 22 x 50 mm cover slip. One slide was prepared and examined for each sample. The wet residue was retained in the event that reexamination of the material proved to be necessary.

Qualitative assessments of the abundance (abundant, common, few, rare,) and preservation (good, moderately, poor) of radiolarians in each slide were recorded in the Fig. 6-1-1. In assessing the relative abundances of individual taxa, the following semiquantitative criteria were used:

A = Abundant (> 20 %);

C = Common (5 to 20 %);

F = Few (1 to 5 %);

R = Rare (0 to 1 %);

The preservation of radiolarians are good at Hole C9010B 1H-CC and 2H-CC, moderate from 3H-CC to 11X-CC, and poor from 12X-CC to 16X-CC. Radiolarians were rare through the cores. Because the low latitude species commonly occurred at the site, the low latitude Cenozic zonation of radiolarians proposed by Sanfilippo and Nigrini (1998) is adopted. The geomagnetic time scale of Cande and Kent (1995) has been applied throughout this study.

The studied sequence was divided into four zones, consisting of the RN17 (the *Buccinosphaera invaginata* Taxon-Range Zone), RN16/15 (the *Collosphaera tuberosa* Interval Zone/*Stylatractus universus* Concurrent Range Zone), RN14 (the *Amphirhopalum ypsilon* Interval Zone), and the RN13 (the *Anthocyrtidium angulare* Interval Zone) at Hole C9010B (Fig. 6-1-1). The base of RN17 was placed between 1H-CC (4.63 m CSF-B) and 2H-CC (14.13 m CSF-B) at Hole C9010B. The base of the RN16 Zone is defined by the last occurrence of S. universus, In this study, it was not placed because of the lack of S. universus. The base of RN15 was located between

3H-CC (23.63 m CSF-B) and 4H-CC (33.13 m CSF-B) at Hole C9010B. The base of RN14 was placed between 12X-CC (109.33 m CSF-B) and 14X-CC (128.33 m CSF-B) at Hole C9010B.

For the construction of the age-depth models for the Pleistocene sequence at Site C9010, we plotted the radiolarian events (Fig. 6-1-1).

6.2 Safety gas monitoring

In order to monitor gases for safety, we took samples from the tops of the second sections of Cores C9010A-1H, B-1H through 9H and D-6X and below, excepting poorly recovered cores (Cores C9010B-10X, 13X, D-8X, 10X, 11X, 17X through 20X, 22X and 24X through 30X). The 5 cc of sediment samples were taken by putting a syringe into cored sediments twice (to 4 cm deep from the top of the section) at Core Cutting Area immediately after core was cut into sections. The samples were put into 20 cc pre-combusted glass vials and sealed. We employed a gas chromatograph (GC) that has a flame ionization detector (FID) in order to measure concentrations of methane, ethane, propane, iso-butane, n-butane, ethylene, and propylene in the headspace gases quantitatively. Headspace gas sampler equipped with the GC introduced 5 cc gases automatically after 70°C and 30 minutes heating.

Only methane was detected and the other six species of gases were not detected at all from any samples (the data will be available at [http://sio7.jamstec.go.jp]). The methane concentrations were quite low (no more than 12 ppm) in Cores C9010A-1H and C9010B-1H (1.41 and 1.43 m CSF-B, respectively, Fig. 6-2-1). Cores C9010B-2H through 9H and C9010D-6X through 16X (5.97 to 157.39 m CSF-B) showed concentrations between 3.8 to 15×10^3 ppm, excepting Core C9010B-3H, C9010D-9X and 16X (15.31, 92.26 and 157.39 m CSF-B) recorded high concentration of 32, 21 and 23×10^3 ppm, respectively. The methane was not detected from Cores C9010D-21X or 23X.

6.3 X-ray CT scanning

X-ray computed tomography (CT) scanning was carried out for the 208 section out of all the 217 sections. Once in every 24 hours, we measured a check piece that consists of aluminium, water and air. Axial images were taken once in every 0.625 mm, and sections with typical lengths 1.4 m had 2,240 axial images each. Each axial image covered 96×96 mm area by 512×512 pixels. Each pixel height and width was 0.1875 mm (Axial image files will be available at [http://sio7.jamstec.go.jp]).

6.4 Nondestructive physical properties

For all the core sections, excepting core catcher sections, physical properties of P-wave velocity, gamma ray attenuation density, magnetic susceptibility, (non-contact) electrical resistivity and natural gamma radiation were measured by using a Multi Sensor Core Logger (MSCL) (Fig. 6-2; Numerical data of the results will be available at [http://sio7.jamstec.go.jp]). For Cores C9010C-1H and 2H, natural gamma radiation could not be measured due to a trouble on the control software program. As mentioned already, some series of whole-round samples were taken, and the physical properties measurements could not be done for such intervals.

6.5 Visual core description

6.5.1 Sediments and Sedimentary Rocks

Graphic and verbal core descriptions, smear-slide, sample locations, drilling disturbance, and biostratigraphic information constitute the shipboard data summarized on the core description forms in this volume. These sheets represent time-constrained field notes taken on board ship. Some ambiguities or discrepancies may be present.

The core description forms summarize the data obtained during shipboad analysis of each sediment core, which have been recorded in detail on a section-by-section basis on visual core description forms, or J-CORES VCD. Information recorded on the VCD is available as a searchable database through Chikyu Laboratory Data Center (http://sio7.jamstec.go.jp). This expedition used the IODP sediment classification scheme for sediments.

6.5.2 Sediment Disturbance

The degree of drilling disturbance for soft sediments is described using the following categories:

Slightly disturbed = bedding contacts are slightly bent;

Moderately disturbed = bedding contacts are extremely bowed;

Highly disturbed = bedding is completely disturbed and, in some cases, shows symmetrical diapir-like or flow structures; and

Soupy = intervals are water saturated and have lost all original structure.

6.5.3 Colour

Colours were determined by comparison with the Standard Soil Color Charts (Oyama and Takehara, 2005). Colours were determined immediately after the cores were split because chemical changes may occur when deep-sea sediments are exposed to the atmosphere (Moberly and Klein, 1976). Information on core colours is given in the text of the 'Lithologic Description' on the core description forms.

6.5.4 Smear Slides

Routine observations that were made include sample location, whether the lithology sampled was dominant or minor, an estimate of grain-size distribution, and estimates of the relative abundance of various components (Table 6-5-4-1). To characterize percentage estimates but maintained semiquantitative categories to facilitate the interpretation of plots of stratigraphic trends in sediment composition as follows:

N = none; VR = very rare (0 to 3 %); R = rare (3 to 10 %); C = common (10 to 20 %); and A = abundant (> 20 %).

6.5.5 Lithologic Description

Intervals: C9010A-1H-1, 0 cm through 1H-CC; C9010B-1H-1, 0 cm through 16X-CC; C9010C-1H-1, 0 cm through 2H-CC; C9010D-1H-1, 0 cm through 30X-CC

Depth: 0--4.59 m CSF-B, Hole C9010A; 0--147.33 m CSF-B, Hole C9010B; 0--15.98 m CSF-B, Hole C9010C; 0--293.48 m CSF-B

Thichness: 4.59 m, Hole C9010A; 105.56 m, Hole C9010B; 15.98 m, Hole C9010C; 74.84 m, Hole C9010D

Age: Pleistocene

Sediments are composed primarily of olive gray and dark gray silty clay, which consists of nannofossils, volcanish glass, silt, and clay, with foraminifers, radiolarians, diatoms, siliceous dinoflagellata, and sponge spicules. Nannofossils are common from Hole C9010B-1H to 3H, and rare from 4H to 16X. Radiolarians and diatoms are rare throughout the cores. Mafic vitric sand and silt are mainly composed of brown and opaque glass with variable amounts of orthopyroxene, clinopyloxene, and plagioclase crystals that are rare to few throughout the cores. On the other hand, the felsic sediments consist of translucent bubble-wall and pumice-type glass shards with only minor crystals. Several layers show normal grading, but scoured bases are rare. The sediments are variably mafic and dark colored or felsic and light colored; however, the total thickness of mafic sand is almost twice that of felsic sand. Many intervals are mixtures of mafic and felsic vitric material. Scoriaceous and puniceous prbble to granule gravel beds, from 5 to 50 cm in thickness, occur mainly in the middle part of sequence at Hole C9010B (Cores C9010B-4H through 12X).

6.6 Feasibility study for routine microbiological sampling

Whole round core samples were taken for a feasibility study for Routine Microbiological Sampling (RMS) which will be held in future IODP expeditions. In this study, tentative RMS workflow, including, sample processing, preparation of tools, and condition of storage, was simulated by onboard technicians and curatorial staffs.

6.6.1 Sample processing

Sample coded as 904NMB and 904NMAwere taken as 10 cm whole round cores. To evaluate the effect of timing of sampling during the core processing, samples coded as 904NMB were taken before X-ray CT scanning at Core Cutting Area, whereas those coded as 904NMA were taken at QA/QC Sampling Room after X-ray CT scanning followed by MSCL-W logging.

During the sample processing at Core Cutting Area, spatulas rubbed with alcohol and autoclaved end-caps were used for treating the cut surfaces of microbiological samples (Fig. 6-6-1a). People working for these treatments wore latex gloves and frequently wash their hands with kitchen detergent and sterilized them with rubbing alcohol (Fig. 6-6-1b).

Microbiological samples were cut from sections with rotary core cutter (Figs. 6-6-2a, b). Samples were sealed with end-caps and vinyl tapes, and labelled with J-CORES numbering (Fig. 6-6-2c).

Using an anaerobic workbench, each sample was sealed in a gas-barrier zipping bag with an O_2 -absorbing and CO_2 generating agent (Figs. 6-6-3a, b). The bag was clipped with a plastic clipper to confirm the seal. During the process of anaerobic packing, ice gel packs were used to keep the samples cold in the warm atmosphere of anaerobic workbench (Figs. 6-6-3c, d).

Samples put in anaerobic bags were stored at 4°C refrigerator. Each WRCs used for contamination test was sealed in a Ziploc bag and stored at 4°C without

anaerobic packing. These samples will be used for storage tests with various temperature conditions at Kochi Core Center. Evaluation of these samples for microbiological use will be performed after the storage tests.

6.6.2 Preparation of tools for microbiological sampling

Spatulas and end-caps were washed with kitchen detergent and sterilized using rubbing alcohol (70% ethanol) and/or autoclaves during the actual sampling. Before the actual sampling, we tested spatulas and end-caps for durability against sterilization using ethanol and/or autoclaves.

Wooden handled spatulas used in the Core Cutting Area were autoclaved at 121 °C for 20 minutes. This sterilization process results in a severe exsolution of wooden tar and possibly, colorant (Fig. 6-6-4). Thus we avoid autoclaving for wooden handled spatulas during actual sampling.

Two types of end-caps were tested for autoclave durability: the old-type which has been used for core processing on Chikyu for years, and the new-type which is currently used (Fig. 6-6-5). These end-caps were wiped with ethanol and subsequently processed with an autoclave. The old-type caps were durable for rubbing with 99.5% ethanol and autoclave processing at 121 °C for 20 minutes. The new-type caps were also durable for 99.5% ethanol, but heavily damaged with autoclave processing even at the temperature of 105 °C, which was the lowest temperature available for the onboard autoclave machine.

6.6.3 Durability of sample containers for storage at -80°C

Sample containers were tested for durability for -80°C storage (Fig. 6-6-6). As test samples, oceanic mud was put in whole round core-liners and sealed with end-caps and vinyl-tapes. Samples were labelled with dummy stickers printed by J-CORES, and put in gas-barrier plastic bags with zippers and firmly sealed with plastic clips. Even within 1 day after -80°C storage started, a clack was formed on the new type end-cap (Fig. 6-6-6b). In contrast, no clack was found on the old type endcap even past 10 days after the storage started. It found to be important that material of end-cap should be considered to use for RMS.

6.6.4 Tracer experiment using fluorescent microspheres

We evaluated the potential contamination from the drilling fluids using microsphere beads set on the core barrel. Tracer experiment was conducted three coring systems (HPCS, EPCS and ESCS) by attaching five sets of plastic bags containing 50 ml of fluorescent microspheres suspension inside the core catcher (Fig. 6-6-7).

In the HPCS coring, the experiments were done for Cores C9010D-3H and 4H. All the four broken empty plastic bags were found: two above the core liner of Core 3H (Fig. 6-6-8a), one above the core liner of Core 4H (Fig. 6-6-8b) and the other at the lower part in the core liner of the Core 4H (Fig.6-6-8c). In the EPCS coring, the experiment was done for Core C9010D-13X. A broken empty bag was found at Female Quick Release at the top of the lower inner barrel assembly. The other one was not found. In the ESCS coring, the experiments were done for Cores C9010D-20X and 22X. Core 20X, onto which only one bag was attached, was on deck with empty core recovery. The bag was not found while a piece of the bag was remained on the spacer. We decided to try once more. Two bags were attached onto the spacer for Core 22X. The core barrel had a broken empty bag near the bottom inside the core liner and the other one was remained in the spacer; it was not broken and kept the

suspension while the bag was torn at the stitch line (Fig. 6-6-9). The core 22X recovery was also empty.

Tracer experiments seemed to be succeeded except for the ESCS cores, which were no recovery. We will conduct microscopy on the recovered cores to find the fluorescent microspheres onshore after the expedition.

6.7 Biostratigraphy Sampling

We picked up three types of the micropalaeontological samples for biostratigraphy as follows: 904HKCC, a 5 cm thickness whole round sample (175 cc) at the bottom end of the core catcher; 904HKMC, 2 cubes (7 cc each; total 14 cc) on a horizon per section from the working halves; 904HKMH, a 2 cm thickness half round sample (about 20 cc) par 10 cm from the working halves. We had planned to take 904HKMH samples every 10 cm (0, 10, 20, ... cm) except for a sample from 30 cm depth as 904HKMC.

We collected 904HKCC samples from all cores and the other two types only from the cores of the Holes 904-C9010C and D. We took 904HKMH samples every 30 cm (60, 90, 120 cm) from the cores of the Hole D. The sampling frequency was less than planned, because we didn't have enough time and manpower. According to the macroscopic visual observation of the sediments, we changed the sampling horizons within sections to collect fine hemipelagic sediments, which had been expected to contain microfossils well, except for the 904HKCC samples of the Holes C and D.

At the offshore laboratory, we have preliminarily tried to extract microfossils from each 904HKCC sample to check if it contains enough fossils (see Section 6.1). The residues of them and the other two series' of samples will be observed in detail at onshore laboratories. 904HKMC samples will be also used to measure the density and the mass accumulation rate of the sediments before extracting fossils.

6.7.1 Sampling methods

904HKCC samples were cut out from the core catcher samples (Fig. 6-7-1). About 10 cc of each samples were used to the onboard observation and the residues of them were packed in plastic bags.

904HKMC samples were filled in the plastic cubes for paleomagnetics to measure the exact volume of flesh sediments (Fig. 6-7-2). At some sampling horizons where the sediments are relatively consolidated, we slit them up with a spatula at first and drove the cubes into them with a plastic hammer. It was unavoidable to disturb the sediments around the sampling horizons, because we had to claw with a spatula through the cubes pushed into the soft sediments. A small opening for ventilation on the bottom of the cube was sealed with a label in order to prevent from drying out. Each pair of cubed samples was packed in a plastic bag. The bags were manually deflated and zipped.

904HKMH samples were picked up by using a stainless steel scoop. We used a reshaped spatula with two notches (5 mm depth) which fit the edges of the scoop, and swept out the rim part of the sediments sticking on the scoop (Fig. 6-7-3), because the rim of the core sample might be disturbed and contaminated due to the drilling process. In order to save operational troubles, we tried some other tools beforehand and finally chose using a scoop for 2 cm thickness quarter round sampling. The collected sediments were also packed in plastic bags.

7 Core quality evaluation

During this training cruise, three coring systems were employed: Hydraulic Piston Coring System (HPCS), Extended Punching Coring System (EPCS) and Extended Shoe Coring System (ESCS). The operation criteria for each coring systems had been defined as the followings: HPCS, do not apply under the overpull 100 kN or continuous shallow penetration in order to avoid risky overdrill situation; EPCS, unemployable if any damages are observed on the shoe or rate of penetration (ROP) become slower than 10 m/hour; ESCS, terminate drilling if weight on bit (WOB) exceeds 60 kN. We evaluated the qualities of the recovered cores on condition that this expedition was during the training cruise and the coring was operated under such safe criteria.

We collected 1, 16, 2, and 29 cores (excluding empty cores) from the Holes A, B, C, and D, respectively. Holes A and C cores were collected with HPCS down to 4.57 and 15.98 m DSF, respectively. Hole B cores were collected with both HPCS and ESCS down to 145.82 m DSF. Hole D cores were collected with HPCS down to 52.98 m DSF and with ESCS down to 293.48 m DSF.

Core recoveries were low below the Core 9H at the hole B and below the Core 5X at the Hole D. Thick, unconsolidated scoria layers and sandy sediments might not be kept their intact form during drilling rotation and subsequent pull out and retrieval of the core. Some of those layers and surrounding hemipelagic sediment layers would also be lost. Discontinuity in the sedimentary cores requires frequent determinations of age between gaps, making cautious interpretation on the core.

Horizontal cracks were detected abundantly from the silty clay sediment layers below 14 m CSF-B; Cores 3H to 6H from the Hole B and Cores 1H to 4H from the Hole D. These were probably caused by core dragging tension or gas expansion. Small, but abundant long-vertical cracks were well observed from X-ray CT images in the cores drilled by ESCS (Cores 11X to 16X from the Hole B; Fig. 7-1), probably due to rotation of core liners. Horizontal and vertical cracks themselves do not cause fatal contamination or damage on micropalaeontological works, but the cracks make it difficult for quantitative sampling of sediments and easier handling during samplings. Vertical cracks in silty clay layers made by ESCS severely affect to geophysical, microbiological and geochemical works, because the water or gasses pass through the cracks and contaminated upper and/or lower layers significantly.

Downward dragging in marginal part of cores were observed at the C9010B-2H-7, B-5H-2, 4, 5, 8, 9, B-6H-2, 3, D-3H-3, 7, 8, and D-4H-4. Except C9010B-5H-4 where the dragging occurred in silty clay sediments, all the dragging were observed at volcanic ash or gravel layers. When we need a sampling from these layers, we need to remove outer part of sediments for ensuring that the samples consist of same geological layer only.

As a whole, at the silt or clay layers, both HPCS and ESCS worked substantially for samplings on micropalaeontological studies. At the volcanic sand layers and siliciclastic sand layers, all coring systems, i.e., HPCS, EPCS, ESCS, represent low recovery because of unconsolidated, relatively large grain size sediments.

References

Cande, S.C., Kent, D.V., 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093-6095.

Moberly, R., Klein, G.deV., 1976. Ephemeral color in deep-sea cores. J. Sediment. Petrol. 46, 216-225.

Oyama, M., Takehara, H., 2005. Revised Standard Soil Color Charts. Nippon Sikiken company.

Sanfilippo, A., Nigrini, C., 1998. Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables. M. Micropaleont. 33, 109-156.

Shipboard Science Party

Hidetaka Nomaki¹, Chief Scientist, Visual core description and Core quality evaluation
Kyoma Takahashi², Expedition Project Manager (EPM)
Shin'ichi Kamikuri³, Visual core description, Core quality evaluation and Paleontology
Masako Koyanagi⁴, Paleontology
Noriaki Masui⁵, JAMSTEC Curator, Routine microbiological sampling
Sunao Mochizuki⁶, Paleontology
Takayuki Tomiyama⁵, JAMSTEC Curator, Routine microbiological sampling

Laboratory Staff

Toshikatsu Kuramoto⁷, Lab. Officer Soichi Moriya⁷, Assistant Lab. Officer Masaru Yasunaga⁷, Curator Akihiko Fujihara⁷ Toru Fujiki⁷ Kentaro Hatakeda⁷ Tatsuya Kawai⁷ Sayaka Kawamura⁷ Ryo Kurihara⁷ Shunsuke Miyabe⁷ Masumi Sakaguchi⁷ Takahiro Suzuki⁷

Affiliation

- 1: Institute of BioGeosciences (BioGeos), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- 2: Center for Deep Earth Exploration (CDEX), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- 3: Department of Earth Sciences, University of Tsukuba
- 4: Graduate School of Science and Technology, Kumamoto University
- 5: Kochi Core Center (KCC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- 6: Department of Natural History Sciences, Graduate School of Science, Hokkaido University
- 7: Marine Works Japan Ltd.

Tables

Table 2-1: Holes drilled during Cruise CK09-03 Expedition 904.

	Latitud	le (N)	Longitu	ıde (E)	Water Depth
Hole	(degree)	(arc	(degree)	(arc	(meter below
	(degree)	minute)	(degree)	minute)	<u>mean sea level)</u>
904-C9010A	34	33.4500	139	53.4000	2028.61
904-C9010B	34	33.4500	139	53.4000	2028.57
904-C9010C	34	33.4431	139	53.4178	2028.72
904-C9010D	34	33.4431	139	53.4178	2028.72

Table 3-1: Section list of each hole including section curated length and its depth.

Expedition	904	Site	C9010A
Expedition name	CHIKYU SHAKE DOV	VN 904	

Section Summary

Section	Section curated length (m)	Top Depth [m CSF-A]	Bottom Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-B]	Core Comment	Section Comment
C9010A-1H-1	1.41	0	1.41	0	1.41		
C9010A-1H-2	1.405	1.41	2.815	1.41	2.815		
C9010A-1H-3	1.03	2.815	3.845	2.815	3.845	HPU3	
C9010A-1H-CC	0.365	3.845	4.21	3.845	4.21		

Note: [m CSF-B] means a depth below sea floor by virtual compressed depth.

T3−1.xls 1/1

Expedition	904	Site	C9010B
Expedition name	CHIKYU SHAKE D	OWN 904	

Section Summary

Section	Section curated length (m)	Top Depth [m CSF-A]	Bottom Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-B]	Core Comment	Section Comment
C9010B-1H-1	1.43	0	1.43	0	1.43		
C9010B-1H-2	1.44	1.43	2.87	1.43	2.87		
C9010B-1H-3	1.4	2.87	4.27	2.87	4.27	HPCS	
C9010B-1H-CC	0.3	4.27	4.57	4.27	4.57		
C9010B-2H-1	1.41	4.63	6.04	4.63	5.968		
C9010B-2H-2	1.405	6.04	7.445	5.968	7.302		
C9010B-2H-3	1.405	7.445	8.85	7.302	8.635		
C9010B-2H-4	1.415	8.85	10.265	8.635	9.978		
C9010B-2H-5	1.42	10.265	11.685	9.978	11.326	HPC5	
C9010B-2H-6	1.435	11.685	13.12	11.326	12.687		
C9010B-2H-7	1.26	13.12	14.38	12.687	13.883		
C9010B-2H-CC	0.255	14.38	14.635	13.883	14.125		
C9010B-3H-1	1.32	14.13	15.45	14.13	15.307		
C9010B-3H-2	1.315	15.45	16.765	15.307	16.48		
C9010B-3H-3	1.36	16.765	18.125	16.48	17.694		
C9010B-3H-4	1.36	18.125	19.485	17.694	18.907		
C9010B-3H-5	1.355	19.485	20.84	18.907	20.115	HPCS	
C9010B-3H-6	1.31	20.84	22.15	20.115	21.284		
C9010B-3H-7	1.305	22.15	23.455	21.284	22.448		
C9010B-3H-8	0.8	23.455	24.255	22.448	23.162		
C9010B-3H-CC	0.52	24.255	24.775	23.162	23.625		
C9010B-4H-1	0.395	23.63	24.025	23.63	23.982		Expand from top side
C9010B-4H-2	1.335	24.025	25.36	23.982	25.17		
C9010B-4H-3	1.325	25.36	26.685	25.17	26.35		
C9010B-4H-4	1.18	26.685	27.865	26.35	27.401		
C9010B-4H-5	1.3	27.865	29.165	27.401	28.558	Прос	
C9010B-4H-6	1.305	29.165	30.47	28.558	29.72	HFU3	
C9010B-4H-7	1.3	30.47	31.77	29.72	30.877		
C9010B-4H-8	1.31	31.77	33.08	30.877	32.044		
C9010B-4H-9	0.715	33.08	33.795	32.044	32.68		
C9010B-4H-CC	0.505	33.795	34.3	32.68	33.13		
C9010B-5H-1	0.36	33.13	33.49	33.13	33.478		Remained the top of barrel
C9010B-5H-2	0.725	33.49	34.215	33.478	34.18		
C9010B-5H-3	0.975	34.215	35.19	34.18	35.123		
C9010B-5H-4	1.03	35.19	36.22	35.123	36.119		
C9010B-5H-5	1.405	36.22	37.625	36.119	37.479	HPCS	
C9010B-5H-6	1.405	37.625	39.03	37.479	38.838	11 00	
C9010B-5H-7	1.4	39.03	40.43	38.838	40.192		
C9010B-5H-8	1.415	40.43	41.845	40.192	41.561		
C9010B-5H-9	0.885	41.845	42.73	41.561	42.417		
C9010B-5H-CC	0.215	42.73	42.945	42.417	42.625		
C9010B-6H-1	0815	42 63	43 445	42 63	43 387		Remain the top of core and expand from top side
C9010B-6H-2	0.875	43 445	44 32	43 387	44 199		
C9010B-6H-3	1 405	44 32	45 725	44 199	45 504		
C9010B-6H-4	1.41	45.725	47.135	45.504	46.813		
C9010B-6H-5	1 405	47 135	48 54	46 813	48 1 18	HPCS	
C9010B-6H-6	1 405	48 54	49 945	48 118	49 423		
C9010B-6H-7	1.41	49.945	51.355	49.423	50.732		
C9010B-6H-8	1.455	51.355	52.81	50.732	52.084		
C9010B-6H-CC	0.05	52.81	52.86	52.084	52.13		All to 904HKCC
C9010B-7H-1	1.405	52.13	53.535	52.13	53.528		
C9010B-7H-2	1.4	53.535	54.935	53.528	54.921		
C9010B-7H-3	1.41	54.935	56.345	54.921	56.325		
C9010B-7H-4	1.405	56.345	57.75	56.325	57.723	HPCS	
C9010B-7H-5	1.405	57.75	59.155	57.723	59.121		
C9010B-7H-6	0.945	59.155	60.1	59.121	60.061		
C9010B-7H-CC	0.275	60.1	60.375	60.061	60.335		

C9010B-8X-1	1.41	60.33	61.74	60.33	61.74	
C9010B-8X-2	1.405	61.74	63.145	61.74	63.145	
C9010B-8X-3	1.405	63.145	64.55	63.145	64.55	ESCS
C9010B-8X-4	1.095	64.55	65.645	64.55	65.645	E303
C9010B-8X-5	0.56	65.645	66.205	65.645	66.205	
C9010B-8X-CC	0.3	66.205	66.505	66.205	66.505	

*Drilled out (9.5 m)

C9010B-9H-1	1.27	79.33	80.6	79.33	80.59		Replaced Liner / Disturbed
C9010B-9H-2	1.405	80.6	82.005	80.59	81.984	LIDCS	
C9010B-9H-3	0.87	82.005	82.875	81.984	82.847	HF03	
C9010B-9H-CC	0.26	82.875	83.135	82.847	83.105		
*Core 10X was no recovery						ESCS	
C9010B-11X-1	1.41	90.33	91.74	90.33	91.74		
C9010B-11X-2	1.4	91.74	93.14	91.74	93.14		
C9010B-11X-3	1.415	93.14	94,555	93.14	94,555		
C9010B-11X-4	1 405	94 555	95 96	94 555	95 96	ESCS	
C9010B-11X-5	0.4	95 96	96 36	95 96	96.36		
C9010B-11X-CC	0.16	96.36	96.52	96.36	96.52		
	0.10	00.00	00.02	00.00	00.02		
C9010B-12X-1	1.24	99.83	101.07	99.83	101.07		
C9010B-12X-2	1.05	101.07	102.12	101.07	102.12	ESCS	
C9010B-12X-CC	0.145	102.12	102.265	102.12	102.265		
							Scoria gravels No WH, Only AH
C9010B-13X-CC	0.02	109.33	109.35	109.33	109.35	ESCS	data, and photo.
C9010B-14X-1	1.4	118.83	120.23	118.83	120.23		
C9010B-14X-2	1.205	120.23	121.435	120.23	121.435		
C9010B-14X-3	1.2	121.435	122.635	121.435	122.635	5000	
C9010B-14X-4	1.105	122.635	123.74	122.635	123.74	ESCS	
C9010B-14X-5	0.57	123.74	124.31	123.74	124.31		
C9010B-14X-CC	0.15	124.31	124.46	124.31	124.46		
C9010B-15X-1	1.335	128.33	129.665	128.33	129.632		
C9010B-15X-2	1.14	129.665	130.805	129.632	130.744		
C9010B-15X-3	1.055	130.805	131.86	130.744	131.773		
C9010B-15X-4	1.04	131.86	132.9	131.773	132.787		
C9010B-15X-5	0.905	132.9	133.805	132.787	133.67		
C9010B-15X-6	1.09	133.805	134.895	133.67	134.733	ESCS	
C9010B-15X-7	1.24	134.895	136.135	134.733	135.943		
C9010B-15X-8	0.745	136.135	136.88	135.943	136.669		Replaced Liner / Disturbed
C9010B-15X-9	0.985	136.88	137.865	136.669	137.63		Replaced Liner / Disturbed
C9010B-15X-CC	0 205	137 865	138 07	137.63	137 83		
C9010B-16X-1	1.01	137.83	138.84	137.83	138.84		
C9010B-16X-2	0.965	138.84	139.805	138.84	139.805		
C9010B-16X-3	0.34	139.805	140.145	139.805	140.145		
C9010B-16X-4	1.285	140.145	141.43	140.145	141.43	ESOS	
C9010B-16X-5	1.41	141.43	142.84	141.43	142.84	E909	
C9010B-16X-6	1.41	142.84	144.25	142.84	144.25		
C9010B-16X-7	1.42	144.25	145.67	144.25	145.67		
C9010B-16X-CC	0.145	145.67	145.815	145.67	145.815		

Note: [m CSF-B] means a depth below sea floor by virtual compressed depth.

Expedition	904	Site	C9010C
Expedition name	CHIKYU SHAKE DOW	N 904	

Section Summary

Section	Section curated length (m)	Top Depth [m CSF-A]	Bottom Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-B]	Core Comment	Section Comment
C9010C-1H-1	1.405	0	1.405	0	1.405		
C9010C-1H-2	1.4	1.405	2.805	1.405	2.805		
C9010C-1H-3	1.41	2.805	4.215	2.805	4.215		
C9010C-1H-4	1.405	4.215	5.62	4.215	5.62	проз	
C9010C-1H-5	0.58	5.62	6.2	5.62	6.2		
C9010C-1H-CC	0.26	6.2	6.46	6.2	6.46		
C9010C-2H-1	1.41	6.48	7.89	6.48	7.758		
C9010C-2H-2	1.45	7.89	9.34	7.758	9.073		
C9010C-2H-3	1.41	9.34	10.75	9.073	10.351		
C9010C-2H-4	1.475	10.75	12.225	10.351	11.688		
C9010C-2H-5	1.405	12.225	13.63	11.688	12.961	HPCS	
C9010C-2H-6	1.43	13.63	15.06	12.961	14.258		
C9010C-2H-7	1.005	15.06	16.065	14.258	15.169		
C9010C-2H-8	0.625	16.065	16.69	15.169	15.735		
C9010C-2H-CC	0.275	16.69	16.965	15.735	15.984		

Note: [m CSF-B] means a depth below sea floor by virtual compressed depth.

Expedition	904	Site	C9010D
Expedition name	CHIKYU SHAKE DOW	/N 904	

Section Summary

Section	Section curated length (m)	Top Depth [m CSF-A]	Bottom Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-B]	Core Comment	Section Comment
C9010D-1H-1	1.42	14.98	16.4	14.98	16.253		
C9010D-1H-2	1.505	16.4	17.905	16.253	17.601		
C9010D-1H-3	1.415	17.905	19.32	17.601	18.87		
C9010D-1H-4	1 485	19.32	20 805	18.87	20 201		
C9010D-1H-5	1 44	20 805	22 245	20 20 1	21 491	HPCS	
C9010D-1H-6	1.11	22 245	23 455	21 491	22 576		
C0010D-1H-7	1.005	22.210	24.46	22.101	22.070		
C0010D-1H-9	0.715	23.455	24.40	22.370	23.470		
C9010D-1H-8	0.715	24.40	25.175	23.470	24.117		
C9010D-1H-CC	0.405	20.170	25.58	24.117	24.48		
C9010D-2H-1	0.31	24.48	24.79	24.48	24.764		Disturbed / Replaced Liner
C9010D-2H-2	1.405	24.79	26.195	24.764	26.053		
C9010D-2H-3	1.405	26.195	27.6	26.053	27.341		
C9010D-2H-4	1.1	27.6	28.7	27.341	28.35		
C9010D-2H-5	1.25	28.7	29.95	28.35	29.496	11000	
C9010D-2H-6	1.405	29.95	31.355	29.496	30.784	HPCS	
C9010D-2H-7	1.405	31.355	32.76	30.784	32.073		
C9010D-2H-8	1	32.76	33.76	32.073	32.99		
C9010D-2H-9	0.625	33.76	34.385	32.99	33,563		
C9010D-2H-CC	0.46	34.385	34.845	33.563	33.985		
C9010D-3H-1	1.275	33.98	35.255	33.98	35.255		Disturbed / Replaced Liner
C9010D-3H-2	0.905	35.255	36.16	35.255	36.16		
C9010D-3H-3	1.3	36.16	37.46	36.16	37.46		
C9010D-3H-4	1.405	37.46	38.865	37.46	38.865	HPCS /	
C9010D-3H-5	1.415	38.865	40.28	38.865	40.28	Used	
C9010D-3H-6	1.27	40.28	41.55	40.28	41.55	microspheres	
C9010D-3H-7	0.995	41.55	42.545	41.55	42.545		
C9010D-3H-8	0.745	42.545	43.29	42.545	43.29		
C9010D-3H-CC	0.155	43.29	43.445	43.29	43.445		
000100-44-1	0.265	42.40	42 745	42.40	10 70		Disturbed
00010D-4H-1	0.205	43.40	43.743	43.40	43.73		Disturbed
C9010D-4H-2	1.305	45.745	45.1	45.75	40.01		
C9010D-4H-3	1.365	40.1	40.465	40.01	40.310		
00010D-4H-4	1.4	40.465	47.000	40.316	47.04	HPCS /	
C9010D-4H-5	1.415	47.885	49.3	47.04	48.976	Used	
C9010D-4H-0	1.1	49.3	50.4	48.970	50.015	microspheres	
C9010D-4H-7	1.405	50.4	51.805	50.015	51.342		
C9010D-4H-8	0.805	51.805	52.61	51.342	52.102		
C9010D-4H-9	0.73	52.61	53.34	52.102	52.791		
C9010D-4H-CC	0.195	53.34	53.535	52.791	52.975		
C9010D-5X-1	0.23	52.98	53.21	52.98	53.21	5500	
C9010D-5X-CC	0.245	53.21	53.455	53.21	53.455	EPCS	
C9010D-6X-1	1.41	62.48	63.89	62.48	63.89	EDOS	
C9010D-6X-2	0.115	65.2	65 315	65.2	65 315	EPUS	
	0.110	00.2	00.010	00.2	00.010		
C9010D-7X-1	1.38	71.98	73.36	71.98	73.36		
C9010D-7X-2	1.135	73.36	74.495	73.36	74.495		
C9010D-7X-3	0.62	74.495	75.115	74.495	75.115	EPCS	
C9010D-7X-4	0.77	75.115	75.885	75.115	75.885		
C9010D-7X-CC	0.26	75.885	76.145	75.885	76.145		
							No X-CT image, MSCL-W data,
C9010D-8X-CC	0.01	81.48	81.49	81.48	81.49	EPCS	and photo.
C9010D-9X-1	1.28	90.98	92.26	90.98	92.26		
C9010D-9X-2	1.015	92.26	93.275	92.26	93.275		
C9010D-9X-3	87.0.1 AR (I	93 275	94 135	93 275	94 135	EPCS	
C9010D-9X-4	1 265	94 135	95.4	94 135	95.4		
C9010D-9X-CC	0.27	95.4	95.67	95.4	95.67		
	0.27	00.4	50.07	00.4	00.07		
C9010D-10X-1	0.12	98.98	99.1	98.98	99.1	EPCS	
C9010D-10X-CC	0.36	99.1	99.46	99.1	99.46	2.00	
							No WH only AH /
C9010D-11X-CC	0.01	100 /0	109.40	100 40	100 40	FDOS	No X-CT image, MSCL-W data,
030100-11X-00	0.01	108.48	108.49	108.48	108.49	EPUS	and proto.
				1/2			

C9010D-12X-1 C9010D-12X-CC	0.885 0.29	117.98 118.865	118.865 119.155	117.98 118.865	118.865 119.155	EPCS	
C9010D-13X-1	0.96	127.48	128.44	127.48	128.44	HPCS /	
C9010D-13X-2	0.575	128.44	129.015	128.44	129.015	Used microspheres	
C9010D-13X-CC	0.21	129.015	129.225	129.015	129.225		
C9010D-14X-1	1.4	136.98	138.38	136.98	138.38		
C9010D-14X-2	1.035	138.38	139.415	138.38	139.415	EPCS	
C9010D-14X-CC	0.17	139.415	139.585	139.415	139.585		
C9010D-15X-1	1.4	146.48	147.88	146.48	147.88		
C9010D-15X-2	1.405	147.88	149.285	147.88	149.285		
C9010D-15X-3	1.01	149.285	150.295	149.285	150.295	EPCS	
C9010D-15X-4	0.725	150.295	151.02	150.295	151.02		
C9010D-15X-CC	0.385	151.02	151.405	151.02	151.405		
C9010D-16X-1	1.405	155.98	157.385	155.98	157.385		
C9010D-16X-2	1.38	157.385	158.765	157.385	158.765		
C9010D-16X-3	1.405	158.765	160.17	158.765	160.17	EPCS	
C9010D-16X-4	0.62	160.17	160.79	160.17	160.79		
C9010D-16X-CC	0.36	160.79	161.15	160.79	161.15		
C9010D-17X-CC	0.05	165.48	165.53	165.48	165.53	EPCS	All to 904HKCC
C9010D-18X-1	0.21	174.98	175.19	174.98	175.19		
C9010D-18X-CC	0.235	175.19	175.425	175.19	175.425	EPCS	
C9010D-19X-1	0.895	184.48	185.375	184.48	185.375		
C9010D-19X-CC	0.105	185.375	185.48	185.375	185.48	EPCS	
						ESCS /	No WH only AH /
C9010D-20X-CC	0.01	193.98	193.99	193.98	193.99	ESCS / Used microspheres	No WH only AH $/$ No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1	0.01 0.505	193.98 203.48	193.99 203.985	193.98 203.48	193.99 203.985	ESCS / Used microspheres	No WH only AH $/$ No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2	0.01 0.505 0.745	193.98 203.48 203.985	193.99 203.985 204.73	193.98 203.48 203.985	193.99 203.985 204.73	ESCS / Used microspheres ESCS	No WH only AH $/$ No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC	0.01 0.505 0.745 0.31	193.98 203.48 203.985 204.73	193.99 203.985 204.73 205.04	193.98 203.48 203.985 204.73	193.99 203.985 204.73 205.04	ESCS / Used microspheres ESCS	No WH only AH $/$ No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC	0.01 0.505 0.745 0.31	193.98 203.48 203.985 204.73	193.99 203.985 204.73 205.04	193.98 203.48 203.985 204.73	193.99 203.985 204.73 205.04	ESCS / Used microspheres ESCS ESCS / Used microspheres	No WH only AH $/$ No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery	0.01 0.505 0.745 0.31	193.98 203.48 203.985 204.73	193.99 203.985 204.73 205.04	193.98 203.48 203.985 204.73	193.99 203.985 204.73 205.04	ESCS / Used microspheres ESCS ESCS / Used microspheres	No WH only AH / No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1	0.01 0.505 0.745 0.31	193.98 203.48 203.985 204.73 217.48	193.99 203.985 204.73 205.04 218.19	193.98 203.48 203.985 204.73 217.48	193.99 203.985 204.73 205.04 218.19	ESCS / Used microspheres ESCS ESCS / Used microspheres	No WH only AH / No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2	0.01 0.505 0.745 0.31 0.71 0.545	193.98 203.48 203.985 204.73 217.48 218.19	193.99 203.985 204.73 205.04 218.19 218.735	193.98 203.48 203.985 204.73 217.48 218.19	193.99 203.985 204.73 205.04 218.19 218.735	ESCS / Used microspheres ESCS Used microspheres ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC	0.01 0.505 0.745 0.31 0.71 0.545 0.455	193.98 203.48 203.985 204.73 217.48 218.19 218.735	193.99 203.985 204.73 205.04 218.19 218.735 219.19	193.98 203.48 203.985 204.73 217.48 218.19 218.735	193.99 203.985 204.73 205.04 218.19 218.735 219.19	ESCS / Used microspheres ESCS / Used microspheres ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-24X-CC	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.135	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-24X-CC C9010D-25X-CC	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.135	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo.
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-24X-CC C9010D-25X-CC C9010D-25X-CC	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.135 0.05	193.98 203.48 203.985 204.73 217.48 218.735 226.98 236.48 245.98	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98	193.99 203.985 204.73 205.04 218.19 218.735 219.19 2227.115 236.53 246.03	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo. All to 904HKCC All to 904HKCC
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-24X-CC C9010D-25X-CC C9010D-25X-CC C9010D-25X-CC C9010D-26X-CC C9010D-27X-1	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.135 0.05 0.05 0.05 0.67	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo. All to 904HKCC All to 904HKCC Replaced liner
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-24X-CC C9010D-25X-CC C9010D-25X-CC C9010D-25X-CC C9010D-25X-CC C9010D-27X-1 C9010D-27X-1 C9010D-27X-2	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.135 0.05 0.05 0.05 0.67 0.54	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 245.98 255.48 255.48	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15 256.69	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48 255.48 256.15	193.99 203.985 204.73 205.04 218.19 218.735 219.19 2227.115 236.53 246.03 256.15 256.69	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo. All to 904HKCC All to 904HKCC Replaced liner Replaced liner Replaced liner / Disturbed
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-25X-CC C9010D-25X-CC C9010D-25X-CC C9010D-27X-1 C9010D-27X-1 C9010D-27X-2 C9010D-27X-CC	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.455 0.05 0.05 0.05 0.67 0.54 0.31	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 245.98 255.48 256.15 256.69	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15 256.69 257	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48 256.15 256.69	193.99 203.985 204.73 205.04 218.735 219.19 227.115 236.53 246.03 256.15 256.69 257	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS ESCS ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo. All to 904HKCC All to 904HKCC Replaced liner Replaced liner
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-24X-CC C9010D-25X-CC C9010D-25X-CC C9010D-27X-1 C9010D-27X-1 C9010D-27X-2 C9010D-27X-2 C9010D-27X-2 C9010D-27X-1	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.135 0.05 0.05 0.67 0.54 0.31 0.825	193.98 203.48 203.985 204.73 217.48 218.735 226.98 236.48 245.98 255.48 256.15 256.69 264.98	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15 256.69 257 265.805	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48 255.48 256.15 256.69 256.69	193.99 203.985 204.73 205.04 218.19 218.735 219.19 2227.115 236.53 246.03 256.15 256.69 257 265.805	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo. All to 904HKCC All to 904HKCC Replaced liner Replaced liner Replaced liner / Disturbed
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-24X-CC C9010D-25X-CC C9010D-25X-CC C9010D-27X-1 C9010D-27X-1 C9010D-27X-2 C9010D-27X-2 C9010D-27X-2 C9010D-27X-2 C9010D-27X-1 C9010D-27X-1 C9010D-27X-1 C9010D-27X-2 C9010D-27X-2 C9010D-27X-2 C9010D-27X-1 C9010D-27X-2 C9010D-27X-2 C9010D-27X-1 C9010D-27X-2 C9010D-27X-1 C9010D-27X-2 C9010D-27X-	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.135 0.05 0.05 0.05 0.67 0.54 0.31 0.825 0.3	193.98 203.48 203.985 204.73 217.48 218.735 226.98 236.48 245.98 255.48 256.15 256.69 264.98 265.805	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15 256.69 257 265.805 266.105	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48 256.15 256.69 264.98 264.98 265.805	193.99 203.985 204.73 205.04 218.19 218.735 219.19 2227.115 236.53 246.03 256.15 256.69 257 265.805 266.105	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS ESCS ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo. All to 904HKCC All to 904HKCC Replaced liner Replaced liner Replaced liner / Disturbed
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-24X-CC C9010D-25X-CC C9010D-25X-CC C9010D-27X-1 C9010D-27X-1 C9010D-27X-2 C9010D-27X-2 C9010D-27X-CC C9010D-28X-1 C9010D-28X-CC	0.01 0.505 0.745 0.31 0.71 0.545 0.455 0.135 0.05 0.05 0.05 0.67 0.54 0.31 0.825 0.3	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48 255.48 256.15 256.69 264.98 265.805	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15 256.69 257 265.805 266.105	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48 255.48 256.15 256.69 264.98 265.805	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15 256.69 257 265.805 266.105	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS ESCS ESCS ESCS	No WH only AH / No X-CT image, MSCL-W data, and photo. All to 904HKCC All to 904HKCC Replaced liner Replaced liner Replaced liner/Disturbed
C9010D-20X-CC C9010D-21X-1 C9010D-21X-2 C9010D-21X-CC *Core 22X was no recovery C9010D-23X-1 C9010D-23X-2 C9010D-23X-CC C9010D-24X-CC C9010D-25X-CC C9010D-25X-CC C9010D-27X-1 C9010D-27X-1 C9010D-27X-2 C9010D-28X-1 C9010D-28X-CC C9010D-28X-CC C9010D-28X-CC	0.01 0.505 0.745 0.31 0.71 0.545 0.135 0.05 0.05 0.67 0.54 0.31 0.825 0.3	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48 256.15 256.69 264.98 265.805	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15 256.69 257 265.805 266.105	193.98 203.48 203.985 204.73 217.48 218.19 218.735 226.98 236.48 245.98 255.48 256.15 256.69 264.98 265.805	193.99 203.985 204.73 205.04 218.19 218.735 219.19 227.115 236.53 246.03 256.15 256.69 257 265.805 266.105 266.105	ESCS / Used microspheres ESCS / Used microspheres ESCS ESCS ESCS ESCS ESCS ESCS ESCS ESC	No WH only AH / No X-CT image, MSCL-W data, and photo. All to 904HKCC All to 904HKCC Replaced liner Replaced liner Replaced liner / Disturbed

Note: [m CSF-B] means a depth below sea floor by virtual compressed depth.

Table 4-1-1: Summarized table of sample requests submitted to Exp. 904.

Exp.904 sample request summary

#	Requester	Sample Code	Requesting Materials	Storing condition	Sta	itus	The number of samples taken
		904NAE	Educational Purpose We do not request specific horizon, core section, or core lithology beforehand Need soft to consolidated sediment samples that are cored by several coring tools (HPCS, EPCS, ESCS and RCB) Sample will be requested after core is recovered. Samples will be taken after sampling for requests #3 and #4, even if these samplings are done onshore after the expedition	Need information about storing condition.			-
1	Naokazu Ahagon Takamitsu Sugihara	NA	Educational Purpose Data of onboard measurements acquired during EXP 904 and 905 The requested measurement data: -X-ray CT scanner, -Wisture and Density, -Molisture and Density, -Interstitial Water chemistry (e.g., refractive index (salinity), alkalinity, pHm, CI content, major cations, minor to trace cations, and anions), -Thermal Conductivity, -Bulk Chemistry (major and trace elements), -WSCL-1, -WSual Core Description, -Electrical Resistivity, -P-wave Velocity for discrete sample. Data is requested if measured.	NA	Approved on 29th Oct. But detailed request will be need after sampling for request No. 3 and 4 finish.		NA
		904NAQ	Quality control Purpose We do not request specific horizon, core section, or core lithology beforehand Need soft to consolidated sediment samples that are cored by several coring tools (HPCS, EPCS, ESCS and RCB) Specific samples will be requested after core is recovered. Samples will be taken after sampling for requests #3 and #4, even if these samplings are done onshore after the expedition	Need information about storing condition.			-
2	Naokazu Ahagon Takamitsu Sugihara	NA	Quality control Purpose The requested measurement data: -X-ray CT scanner, -MSCL-W, -Moisture and Density, -Interstitul Water chemistry (e.g., refractive index (salinity), alkalinity, pHm, Cl content, major cations, minor to trace cations, and anions), -Thermal Conductivity, -Bulk Chemistry (major and trace elements), -MSCL-1, -Visual Core Description, -Electrical Resistivity, -P-wave Velocity for discrete sample. Data is requested if measured.	NA	Approved on 29th Oct. But detailed request will be need after sampling for request No. 3 and 4 finish.		NA
3	Noriaki Masui	904NMA	Take sample AFTER CT scan Each Sample Amount: 10 cm WRC Sampling Interval: 1 per section (< 10 mbsf, Bottom of Section) 1 per core (> 10 mbsf, Bottom of Section 3) *Sections should be stored in the refrigerator before CT scan. *If coring with fluorescent beads is conducted, take WRC samples from all sections even if depth is over 10 mbsf.	Frozen: Scientists will- arrange the use of Deep Freezers 4°C	Approved on 29th Oct.	Completed	59
	3 Noriaki Masui	904NMB	Take sample BEFORE CT scan 2 WRC samples are taken by the requester. 1 sample is from section 6 (< 10 mbsf) at the depth near 10 mbsf at Hole C 1 sample is from section ? (> 10 mbsf) at Hole D →This sample was not taken because the PCS and ESCS core recovery was low. →Take sample during Exp.905 *If samples are not taken during Exp.904, take samples during Exp.905.	Frozen- Scientists will- arrange the use of Deep Freezers- 4°C	Approved on 29th Oct. Partially taken		1

Exp.904 sample request summary

#	Requester	Sample Code	Requesting Materials	Storing condition	Sta	tus	The number of samples taken
		904НКМС	Micropaleonotological personal samples: 10 cm stratigraphic intervals from the core top to the end of cores. 2 cubed samples (not 10 c but 7 c each) will be taken Expected numbers of cubes are 6000 (300m X 10 cm intervals X 2). If fossil contents are scarce, half round core sampling will be done for two cm thickness. The samples can not be taken from WRC sampling (904NM) intervals. It seems to be difficult to take 1 sample (2 cubed sample) from every 10 cm onboard. So sampling plan onboard was changed as below; -Hole A and B No sampling -Hole C and D Take 1 sample (2 cubed sample) / section at 30-32 cm of each section. Not take samples from -Cer - Additional sampling at KCC will be conducted after coordination.	Room temperature		Partially taken	74
4	Hiroshi Kitazato + MRC	904нкмн	Micropaleonotological personal samples: 10 cm stratigraphic intervals from the core top to the end of cores. 2 cubed samples (not 10 c cbt 7 cc each) will be taken Expected numbers of cubes are 6000 (300m X 10 cm intervals X 2). If fossil contents are scarce, half round core sampling will be done for two cm thickness. The samples can not be taken from WRC sampling (904NM) intervals. It seems to be difficult to take 1 samples from every 10 cm onboard. So sampling plan onboard was changed as below; •Hole A and B No sampling •Hole C Take half round core sample. 2 cm in thickness, 20 cc. 1 / 10 cm. No sample from CC. •Hole D Take half round core sample. 2 cm in thickness, 20 cc. At 60-62, 90-92, 120-122 cm of each section.	Room temperature	Approved on 29th Oct.	Partially taken	236
		904HKU	Plaeomagnetic samples: Sampling will be held at Kochi core center after finishing the training cruise. Samples will be taken from archive half with u-channel. The samples can not be taken from WRC sampling (904NM) intervals. Samples are taken from the sections of the Holes which are necessary for microfossils study. Quarter round of archive half should be kept.	Need information about storing condition.			-
		904НКСС	Core catcher samples: Core catcher samples will be used for on-board age determination with microfossils. - Smear slides - S20 mesh washed samples All the processed samples will be brought back to own laboratory and continue to use for age asignments. This is personal sample request, not residue request. "PAL" sample will not be taken. From the bottom of CC. 5 cm long WRC sample, 175 cc.	Room temperature		Completed	42

Table 4-2-1: Sample list for each sample code including sampling position and its depth.

LAP.004 Campic Cummary	Exp.	.904	Samp	ble S	Summ	ary
------------------------	------	------	------	-------	------	-----

	C9010A	C9010B	C9010C	C9010D	Total
HS	1	9	0	10	20
904HKCC	1	14	2	25	42
904NMA	3	18	9	29	59
904NMB	0	0	1	0	1
904HKMC	0	0	13	61	74
904HKMH	0	0	132	104	236
SS	2	23	0	4	29
					461

T4-2-1.xls

Exp.904 HS sample list

١	No. Sample source	Sample code	Top Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-A]	Bottom Depth [m CSF-B]	Sample volume (cm3)	Sample entered by	Sample time-stamp	J-CORES sample ID
	1 C9010A-1H-2 WR, 0.04.0 cm	HS	1.41	1.41	1.45	1.45		5 yasunagam	2009-11-08T16:50:24Z	CKY00000000000000150
	2 C9010B-1H-2 WR, 0.04.0 cm	HS	1.43	1.43	1.47	1.47		5 yasunagam	2009-11-08T18:18:51Z	CKY000000000000000650
	3 C9010B-2H-2 WR, 0.04.0 cm	HS	6.04	5.968	6.08	6.006		5 moriyas	2009-11-08T20:05:33Z	CKY00000000000001150
	4 C9010B-3H-2 WR, 0.04.0 cm	HS	15.45	15.307	15.49	15.343		5 moriyas	2009-11-08T23:19:25Z	CKY00000000000001650
	5 C9010B-4H-3 WR, 0.04.0 cm	HS	25.36	25.17	25.4	25.206		5 moriyas	2009-11-09T00:51:14Z	CKY00000000000002050
	6 C9010B-5H-3 WR, 0.04.0 cm	HS	34.215	34.18	34.255	34.218		5 moriyas	2009-11-09T04:27:44Z	CKY00000000000002350
	7 C9010B-6H-5 WR, 0.04.0 cm	HS	47.135	46.813	47.175	46.851		5 moriyas	2009-11-09T05:49:27Z	CKY00000000000002650
	8 C9010B-7H-3 WR, 0.04.0 cm	HS	54.935	54.921	54.975	54.961		5 yasunagam	2009-11-09T07:10:37Z	CKY00000000000002850
	9 C9010B-8X-2 WR, 0.04.0 cm	HS	61.74	61.74	61.78	61.78		5 yasunagam	2009-11-09T11:40:18Z	CKY00000000000003150
	10 C9010B-9H-2 WR, 0.04.0 cm	HS	80.6	80.59	80.64	80.63		5 yasunagam	2009-11-09T14:03:53Z	CKY0000000000003450
	11 C9010D-6X-1 WR, 137.0141.0 cm	HS	63.85	63.85	63.89	63.89		5 moriyas	2009-11-15T01:35:10Z	CKY00000000000028250
	12 C9010D-7X-2 WR, 0.04.0 cm	HS	73.36	73.36	73.4	73.4		5 moriyas	2009-11-15T03:33:02Z	CKY00000000000029950
	13 C9010D-9X-2 WR, 0.04.0 cm	HS	92.26	92.26	92.3	92.3		5 yasunagam	2009-11-15T08:04:37Z	CKY00000000000032750
	14 C9010D-12X-1 WR, 84.588.5 cm	HS	118.825	118.825	118.865	118.865		5 yasunagam	2009-11-15T15:04:24Z	CKY00000000000036750
	15 C9010D-13X-2 WR, 0.04.0 cm	HS	128.44	128.44	128.48	128.48		5 yasunagam	2009-11-15T17:21:22Z	CKY00000000000037450
	16 C9010D-14X-2 WR, 0.04.0 cm	HS	138.38	138.38	138.42	138.42		5 moriyas	2009-11-15T19:46:20Z	CKY00000000000037950
	17 C9010D-15X-2 WR, 0.04.0 cm	HS	147.88	147.88	147.92	147.92		5 moriyas	2009-11-15T21:49:37Z	CKY00000000000038450
	18 C9010D-16X-2 WR, 0.04.0 cm	HS	157.385	157.385	157.425	157.425		5 moriyas	2009-11-15T23:57:26Z	CKY00000000000039550
	19 C9010D-21X-2 WR, 0.04.0 cm	HS	203.985	203.985	204.025	204.025		5 yasunagam	2009-11-16T12:15:11Z	CKY00000000000043350
	20 C9010D-23X-2 WR, 0.04.0 cm	HS	218.19	218.19	218.23	218.23		5 yasunagam	2009-11-16T17:03:55Z	CKY00000000000043850

Exp.904 904HKCC sample list

No. Sample source	Sample code	Top Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-A]	Bottom Depth [m CSF-B]	Sample volume (cm3)	Sample entered by
1 C9010A-1H-CC WR, 31.536.5 cm	904HKCC	4.16	4.16	4.21	4.21	1	175 yasunagam
2 C9010B-1H-CC WR, 25.030.0 cm	904HKCC	4.52	4.52	4.57	4.57	1	175 yasunagam
3 C9010B-2H-CC WR, 13.018.0 cm	904HKCC	14.51	14.007	14.56	14.054	. 1	175 yasunagam
4 C9010B-3H-CC WR, 47.052.0 cm	904HKCC	24.725	23.581	24.775	23.625	1	175 moriyas
5 C9010B-4H-CC WR, 45.550.5 cm	904HKCC	34.25	33.085	34.3	33.13	1	175 moriyas
6 C9010B-5H-CC WR, 16.521.5 cm	904HKCC	42.895	42.577	42.945	42.625	1	175 moriyas
7 C9010B-6H-CC WR, 0.05.0 cm	904HKCC	52.81	52.084	52.86	52.13	1	175 moriyas
8 C9010B-7H-CC WR, 22.527.5 cm	904HKCC	60.325	60.285	60.375	60.335	1	175 yasunagam
9 C9010B-8X-CC WR, 25.030.0 cm	904HKCC	66.455	66.455	66.505	66.505	1	175 yasunagam
10 C9010B-9H-CC WR, 21.026.0 cm	904HKCC	83.085	83.055	83.135	83.105	1	175 yasunagam
11 C9010B-11X-CC WR, 11.016.0 cm	904HKCC	96.47	96.47	96.52	96.52	1	175 moriyas
12 C9010B-12X-CC WR, 9.514.5 cm	904HKCC	102.215	102.215	102.265	102.265	1	175 moriyas
13 C9010B-14X-CC WR, 10.015.0 cm	904HKCC	124.41	124.41	124.46	124.46	1	175 yasunagam
14 C9010B-15X-CC WR, 0.05.0 cm	904HKCC	137.865	137.63	137.915	137.679	1	175 yasunagam
15 C9010B-16X-CC WR, 9.514.5 cm	904HKCC	145.765	145.765	145.815	145.815	1	75 yasunagam
16 C9010C-1H-CC WR, 21.026.0 cm	904HKCC	6.41	6.41	6.46	6.46	1	175 moriyas
17 C9010C-2H-CC WR, 22.527.5 cm	904HKCC	16.915	15.939	16.965	15.984	. 1	175 moriyas
18 C9010D-1H-CC WR, 35.540.5 cm	904HKCC	25.53	24.435	25.58	24.48	1	75 yasunagam
19 C9010D-2H-CC WR, 41.046.0 cm	904HKCC	34.795	33.939	34.845	33.985	1	75 yasunagam
20 C9010D-3H-CC WR, 10.515.5 cm	904HKCC	43.395	43.395	43.445	43.445	1	75 moriyas
21 C9010D-5X-CC WR, 19.524.5 cm	904HKCC	53.405	53.405	53.455	53.455	1	175 moriyas
22 C9010D-4H-CC WR, 14.519.5 cm	904HKCC	53.485	52.928	53.535	52.975	1	175 moriyas
23 C9010D-6X-CC WR, 6.511.5 cm	904HKCC	65.265	65.265	65.315	65.315	1	175 moriyas
24 C9010D-7X-CC WR, 21.026.0 cm	904HKCC	76.095	76.095	76.145	76.145	1	175 moriyas
25 C9010D-9X-CC WR, 22.027.0 cm	904HKCC	95.62	95.62	95.67	95.67	1	75 yasunagam
26 C9010D-10X-CC WR, 31.036.0 cm	904HKCC	99.41	99.41	99.46	99.46	1	75 yasunagam
27 C9010D-12X-CC WR, 24.029.0 cm	904HKCC	119.105	119.105	119.155	119.155	1	75 yasunagam
28 C9010D-13X-CC WR, 16.021.0 cm	904HKCC	129.175	129.175	129.225	129.225	1	175 yasunagam
29 C9010D-14X-CC WR, 12.017.0 cm	904HKCC	139.535	139.535	139.585	139.585	1	175 moriyas
30 C9010D-15X-CC WR, 33.538.5 cm	904HKCC	151.355	151.355	151.405	151.405	1	175 moriyas
31 C9010D-16X-CC WR, 31.036.0 cm	904HKCC	161.1	161.1	161.15	161.15	1	175 moriyas
32 C9010D-17X-CC WR, 0.05.0 cm	904HKCC	165.48	165.48	165.53	165.53	1	175 moriyas
33 C9010D-18X-CC WR, 18.523.5 cm	904HKCC	175.375	175.375	175.425	175.425	1	175 moriyas
34 C9010D-19X-CC WR, 5.510.5 cm	904HKCC	185.43	185.43	185.48	185.48	1	175 yasunagam
35 C9010D-21X-CC WR, 26.031.0 cm	904HKCC	204.99	204.99	205.04	205.04	. 1	175 yasunagam
36 C9010D-23X-CC WR, 40.545.5 cm	904HKCC	219.14	219.14	219.19	219.19	1	75 yasunagam
37 C9010D-24X-CC WR, 8.513.5 cm	904HKCC	227.065	227.065	227.115	227.115	1	175 moriyas
38 C9010D-25X-CC WR, 0.05.0 cm	904HKCC	236.48	236.48	236.53	236.53	1	175 moriyas
39 C9010D-26X-CC WR, 0.05.0 cm	904HKCC	245.98	245.98	246.03	246.03	1	175 moriyas
40 C9010D-27X-CC WR, 26.031.0 cm	904HKCC	256.95	256.95	257	257	'	175 moriyas
41 C9010D-28X-CC WR, 25.030.0 cm	904HKCC	266.055	266.055	266.105	266.105	1	175 moriyas
42 C9010D-30X-CC WR, 32.537.5 cm	904HKCC	284.305	284.305	284.355	284.355	1	75 yasunagam

Sample time-stamp 2009-11-08T16:50:56Z 2009-11-08T18:28:58Z 2009-11-08T23:21:52Z 2009-11-15T08:06:38Z 2009-11-15T19:45:48Z

J-CORES sample ID CKY00000000000000250 CKY000000000000000750 2009-11-08T20:08:31Z CKY00000000000001250 CKY00000000000001750 2009-11-09T00:50:40Z CKY00000000000001950 2009-11-09T04:18:16Z CKY0000000000002250 2009-11-09T05:48:50Z CKY0000000000002550 2009-11-09T07:15:32Z CKY0000000000002950 2009-11-09T11:42:26Z CKY0000000000003250 2009-11-09T14:04:27Z CKY0000000000003550 2009-11-09T22:29:13Z CKY0000000000003750 2009-11-10T00:49:57Z CKY0000000000003950 2009-11-10T06:20:16Z CKY00000000000004150 2009-11-10T10:03:57Z CKY00000000000005150 2009-11-10T12:19:11Z CKY0000000000005550 2009-11-14T02:52:26Z CKY00000000000007250 2009-11-14T04:50:26Z CKY00000000000007950 2009-11-14T16:17:39Z CKY00000000000017750 2009-11-14T18:06:58Z CKY00000000000019750 2009-11-14T20:18:27Z CKY0000000000023250 2009-11-14T23:41:01Z CKY0000000000026550 2009-11-14T21:30:47Z CKY0000000000023850 2009-11-15T01:36:26Z CKY0000000000028350 2009-11-15T03:33:35Z CKY000000000000000000000000 CKY00000000000032850 2009-11-15T10:34:09Z CKY0000000000034050 2009-11-15T15:03:25Z CKY00000000000036650 2009-11-15T17:22:12Z CKY0000000000037550 CKY00000000000037850 2009-11-15T21:59:46Z CKY0000000000038550 2009-11-15T23:56:57Z CKY0000000000039450 2009-11-16T02:45:04Z CKY00000000000039750 2009-11-16T05:25:34Z CKY00000000000041150 2009-11-16T08:17:06Z CKY0000000000042650 2009-11-16T12:14:54Z CKY0000000000043250 2009-11-16T17:11:35Z CKY0000000000043950 2009-11-16T19:34:12Z CKY0000000000044150 2009-11-16T21:50:27Z CKY0000000000044450 2009-11-17T00:01:05Z CKY0000000000044550 2009-11-17T02:43:46Z CKY00000000000044650 2009-11-17T05:22:33Z CKY0000000000044750 2009-11-17T11:07:35Z CKY0000000000045750

Exp.904 904NMA sample list

No.	Sample source	Sample code	Top Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-A]	Bottom Depth [m CSF-B]	Sample volume (cm3)	Sample entered by	Sample time-stamp	J-CORE
1	C9010A-1H-1 WR, 131.0141.0 cm	904NMA	1.31	1.31	1.41	1.41	:	350 tomiyama904	2009-11-08T17:21:58Z	CKY000
2	2 C9010A-1H-2 WR, 130.5140.5 cm	904NMA	2.715	2.715	2.815	2.815	:	350 tomiyama904	2009-11-08T17:30:39Z	CKY000
3	8 C9010A-1H-3 WR, 93.0103.0 cm	904NMA	3.745	3.745	3.845	3.845	:	350 tomiyama904	2009-11-08T17:41:06Z	CKY000
4	C9010B-1H-1 WR, 133.0143.0 cm	904NMA	1.33	1.33	1.43	1.43	;	350 tomiyama904	2009-11-08T18:50:44Z	CKY000
5	5 C9010B-1H-2 WR, 135.0144.0 cm	904NMA	2.78	2.78	2.87	2.87	;	315 tomiyama904	2009-11-08T19:05:45Z	CKY000
6	6 C9010B-1H-3 WR. 130.0140.0 cm	904NMA	4.17	4.17	4.27	4.27	(350 tomivama904	2009-11-08T19:12:51Z	CKY000
7	C9010B-2H-1 WR 13101410 cm	904NMA	5 94	5 873	6.04	5 968		350 tomiyama904	2009-11-08T20:52·477	CKY000
, 2	R C9010B - 2H - 2 WR 130 5 140 5 cm	904NMA	7.345	7 207	7 445	7 302		350 tomiyama904	2009-11-08T21.08.037	CKY000
c	$C_{0010B-2H-3} WP 13051405 cm$		8 75	8.54	8 85	9.635		350 tomiyama904	2000-11-08T21:00:002	CKV000
10	$C_{0010B-3H-3} WP 1260-1360 cm$		18.025	17.604	18 125	17 604		350 tomiyama904	2000-11-00700.11.097	CKV000
11	C0010B-4H-2 WP 12251225 cm		10.025	17.004	26 695	17.034		250 tomiyama904	2009 11 09100.11.002	
10	C0010D 5H 2 WD 875 075 are		20.000	20.201	20.000	20.33			2009 11 09101.32.322	
12	C9010B-5H-3 WR, 87.5-97.5 Cm	904NMA	35.09	33.020	30.19	35.123			2009-11-09105:02:022	CKTUUU
10	C9010B-0H-3 WR, 130.5140.5 cm	904NMA	40.020	40.411	40.720	40.004				OK TUUU
14	C9010B-7H-3 WR, 131.0141.0 cm	904NMA	56.245	56.225	50.345	56.325		350 tomiyama904	2009-11-09107:57:362	CKYUUU
15	C9010B-8X-3 WR, 130.5140.5 cm	904NMA	64.45	64.45	64.55	64.55		350 tomiyama904	2009-11-09112:37:212	CKYUUU
16	C9010B-9H-3 WR, 0.010.0 cm	904NMA	82.005	81.984	82.105	82.083	·	350 tomiyama904	2009-11-09114:37:142	CKYUUU
17	C9010B-11X-3 WR, 131.5141.5 cm	904NMA	94.455	94.455	94.555	94.555	;	350 tomiyama904	2009-11-09T23:02:03Z	CKY000
18	3 C9010B-12X-1 WR, 114.0124.0 cm	904NMA	100.97	100.97	101.07	101.07	:	350 tomiyama904	2009-11-10T01:20:57Z	CKY000
19	0 C9010B-14X-3 WR, 110.0120.0 cm	904NMA	122.535	122.535	122.635	122.635	ć	350 tomiyama904	2009-11-10T06:54:54Z	CKY000
20) C9010B-15X-3 WR, 95.5105.5 cm	904NMA	131.76	131.676	131.86	131.773	:	350 tomiyama904	2009-11-10T10:54:49Z	CKY000
21	C9010B-16X-3 WR, 24.034.0 cm	904NMA	140.045	140.045	140.145	140.145	:	350 tomiyama904	2009-11-10T12:40:07Z	CKY000
22	2 C9010C-1H-1 WR, 130.5140.5 cm	904NMA	1.305	1.305	1.405	1.405	:	350 moriyas	2009-11-14T03:31:51Z	CKY000
23	8 C9010C-1H-2 WR, 130.0140.0 cm	904NMA	2.705	2.705	2.805	2.805	:	350 masui2exp904	2009-11-14T03:42:23Z	CKY000
24	C9010C-1H-3 WR, 131.0141.0 cm	904NMA	4.115	4.115	4.215	4.215	:	350 masui2exp904	2009-11-14T03:51:41Z	CKY000
25	5 C9010C-1H-4 WR, 130.5140.5 cm	904NMA	5.52	5.52	5.62	5.62	:	350 masui2exp904	2009-11-14T04:04:42Z	CKY000
26	6 C9010C-1H-5 WR, 48.058.0 cm	904NMA	6.1	6.1	6.2	6.2	:	350 masui2exp904	2009-11-14T04:18:50Z	CKY000
27	′ C9010C-2H-1 WR, 131.0141.0 cm	904NMA	7.79	7.668	7.89	7.758	:	350 masui2exp904	2009-11-14T05:35:01Z	CKY000
28	8 C9010C-2H-2 WR, 135.0145.0 cm	904NMA	9.24	8.982	9.34	9.073	;	350 masui2exp904	2009-11-14T05:44:52Z	CKY000
29) C9010C-2H-3 WR, 121.0131.0 cm	904NMA	10.55	10.169	10.65	10.26	;	350 masui2exp904	2009-11-14T06:07:35Z	CKY000
30) C9010C-2H-3 WR, 131.0141.0 cm	904NMB	10.65	10.26	10.75	10.351	:	350 moriyas	2009-11-14T04:47:16Z	CKY000
31	C9010D-1H-3 WR, 131.5141.5 cm	904NMA	19.22	18.78	19.32	18.87	:	350 masui2exp904	2009-11-14T17:10:12Z	CKY000
32	2 C9010D-2H-3 WR, 130.5140.5 cm	904NMA	27.5	27.249	27.6	27.341	:	350 masui2exp904	2009-11-14T18:41:58Z	CKY000
33	3 C9010D-3H-1 WR. 117.5127.5 cm	904NMA	35,155	35,155	35,255	35,255	(350 masui2exp904	2009-11-14T21:01:57Z	CKY000
34	C9010D-3H-2 WR. 80.590.5 cm	904NMA	36.06	36.06	36.16	36.16		350 masui2exp904	2009-11-14T21:09:11Z	CKY000
35	5 C9010D-3H-3 WR 12001300 cm	904NMA	37 36	37 36	37 46	37 46		350 masui2exp904	2009-11-14T21·00·447	CKY000
36	3 C9010D-3H-4 WR 13051405 cm	904NMA	38 765	38 765	38 865	38 865		350 masui2exp904	2009-11-14T21-16-297	CKY000
37	V = C9010D = 3H = 5 WR = 1315 = -1415 cm	904NMA	40.18	40.18	40.28	40.28		350 masui2exp904	2009-11-14T21:28:067	CKY000
35	$C_{0010D-3H-6} WR 1170-1270 cm$	904NMA	40.10	41.45	41.55	41.55		350 masui2exp904	2009-11-14T21:20:002	CK/000
30	$C_{0010D-3H-7} WP 895995 am$		41.45	41.45	41.00	41.00		350 masui2exp304	2000-11-14121.57.432	CKV000
10	$C_{0010D}^{-2}H_{-9}^{-9}WP_{-64}^{74} = -745$		42.445	42.445	42.040	42.040			2009 11 14121.32.332	
40	C9010D - 3H - 8 WR, 04.3 - 74.3 Cm		43.19	43.13	43.23	43.23			2009-11-14122.00.322	CK 1000
41	C9010D-4H-1 WR, 10.5-20.3 Cm	904NMA	43.040	43.030	43.743	43.73		350 masuizexp904	2009-11-14122:23:332	
42	C9010D-4H-2 WR, 125.5135.5 cm	904NMA	40	44.915	45.1	40.010			2009-11-14122:33:052	CK YUUU
43	C9010D-4H-3 WR, 128.5138.5 cm	904NMA	40.385	40.223	40.480	40.318			2009-11-14122:09:282	CK YUUU
44	C9010D-4H-4 WR, 130.0140.0 cm	904NMA	47.785	47.545	47.885	4/.64		350 masui2exp904	2009-11-14122:40:072	CKYUUU
45	C9010D-4H-5 WR, 131.5141.5 cm	904NMA	49.2	48.882	49.3	48.976		350 masui2exp904	2009-11-14122:44:282	CKY000
46	6 C9010D-4H-6 WR, 100.0110.0 cm	904NMA	50.3	49.92	50.4	50.015	÷	350 masui2exp904	2009-11-14122:53:132	CKY000
47	C9010D-4H-7 WR, 130.5140.5 cm	904NMA	51.705	51.247	51.805	51.342	:	350 masui2exp904	2009-11-14T23:01:55Z	CKY000
48	8 C9010D-4H-8 WR, 70.580.5 cm	904NMA	52.51	52.007	52.61	52.102	:	350 masui2exp904	2009-11-14T23:07:47Z	CKY000
49	0 C9010D-4H-9 WR, 63.073.0 cm	904NMA	53.24	52.697	53.34	52.791	ć	350 masui2exp904	2009-11-14T23:14:02Z	CKY000
50) C9010D-6X-2 WR, 0.010.0 cm	904NMA	63.89	63.89	63.99	63.99	÷	350 masui2exp904	2009-11-15T02:10:11Z	CKY000
51	C9010D-7X-3 WR, 52.062.0 cm	904NMA	75.015	75.015	75.115	75.115	;	350 masui2exp904	2009-11-15T03:52:31Z	CKY000
52	2 C9010D-9X-3 WR, 0.010.0 cm	904NMA	93.275	93.275	93.375	93.375	:	350 masui2exp904	2009-11-15T08:35:34Z	CKY000
53	8 C9010D-13X-1 WR, 86.096.0 cm	904NMA	128.34	128.34	128.44	128.44	;	350 masui2exp904	2009-11-15T17:42:36Z	CKY000
54	C9010D-13X-2 WR, 47.557.5 cm	904NMA	128.915	128.915	129.015	129.015	;	350 masui2exp904	2009-11-15T17:49:13Z	CKY000
55	5 C9010D-14X-1 WR, 130.0140.0 cm	904NMA	138.28	138.28	138.38	138.38	;	350 masui2exp904	2009-11-15T20:07:13Z	CKY000
56	6 C9010D-15X-3 WR, 91.0101.0 cm	904NMA	150.195	150.195	150.295	150.295	;	350 masui2exp904	2009-11-15T22:17:44Z	CKY000
57	′ C9010D-16X-3 WR, 130.5140.5 cm	904NMA	160.07	160.07	160.17	160.17	:	350 masui2exp904	2009-11-16T00:22:05Z	CKY000
58	8 C9010D-21X-1 WR, 40.550.5 cm	904NMA	203.885	203.885	203.985	203.985	÷	350 masui2exp904	2009-11-16T12:32:33Z	CKY000
59	0 C9010D-23X-1 WR, 61.071.0 cm	904NMA	218.09	218.09	218.19	218.19	:	350 masui2exp904	2009-11-16T17:27:14Z	CKY000

Exp.904 904NMB sample list

No. Sample source	Sample code	Top Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-A]	Bottom Depth [m CSF-B]	Sample volume (cm3)	Sample entered by
1 C9010C-2H-3 WR, 131.0141.0 cm	904NMB	10.65	10.2	6 10.75	10.351	350) moriyas

 Sample time-stamp
 J-CORES sample ID

 2009-11-14T04:47:16Z
 CKY00000000000007850

Exp.904 904HKMC sample list

No.	Sample source	Sample code	Top Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-A]	Bottom Depth [m CSF-B]	Sample volume (cm3)	Sample entered by	Sample time-stamp	J-CORES sample ID
1	C9010C-1H-1 W, 30.032.0 cm	904HKMC	0.3	0.3	0.32	0.32		14 koyanagi904	2009-11-14T09:23:04Z	CKY0000000000008350
2	C9010C-1H-2 W, 30.032.0 cm	904HKMC	1.705	1.705	1.725	1.725		14 koyanagi904	2009-11-14T10:20:01Z	CKY00000000000008750
3	C9010C-1H-3 W, 30.032.0 cm	904HKMC	3.105	3.105	3.125	3.125		14 koyanagi904	2009-11-14T10:42:58Z	CKY000000000000009150
4	C9010C-1H-4 W, 30.032.0 cm	904HKMC	4.515	4.515	4.535	4.535		14 koyanagi904	2009-11-14T11:21:47Z	CKY000000000000009550
5	C9010C-1H-5 W, 30.032.0 cm	904HKMC	5.92	5.92	5.94	5.94		14 koyanagi904	2009-11-14T12:02:49Z	CKY000000000000009950
6	C9010C-2H-1 W, 30.032.0 cm	904HKMC	6.78	6.752	6.8	6.77		14 mochizuki904	2009-11-14T13:52:17Z	CKY00000000000014250
7	C9010C-2H-2 W, 20.022.0 cm	904HKMC	8.09	7.939	8.11	7.958		14 mochizuki904	2009-11-14T13:52:17Z	CKY00000000000014350
8	C9010C-2H-3 W, 30.032.0 cm	904HKMC	9.64	9.344	9.66	9.363		14 mochizuki904	2009-11-14T13:52:17Z	CKY00000000000014450
9	C9010C-2H-4 W, 30.032.0 cm	904HKMC	11.05	10.623	11.07	10.641		14 mochizuki904	2009-11-14T14:29:21Z	CKY00000000000015450
10	C9010C-2H-5 W, 30.032.0 cm	904HKMC	12.525	11.96	12.545	11.978		14 mochizuki904	2009-11-14T14:42:20Z	CKY00000000000015850
11	C9010C-2H-6 W, 70.072.0 cm	904HKMC	14.33	13.596	14.35	13.614		14 mochizuki904	2009-11-14T14:42:20Z	CKY00000000000015950
12	C9010C-2H-7 W, 30.032.0 cm	904HKMC	15.36	14.53	15.38	14.548		14 mochizuki904	2009-11-14T14:42:20Z	CKY00000000000016050
13	C9010C-2H-8 W, 30.032.0 cm	904HKMC	16.365	15.441	16.385	15.459		14 mochizuki904	2009-11-14T15:07:13Z	CKY000000000000016650
14	C9010D-1H-1 W, 30.032.0 cm	904HKMC	15.28	15.249	15.3	15.267		14 mochizuki904	2009-11-14T22:40:23Z	CKY00000000000024650
15	C9010D-1H-2 W, 31.033.0 cm	904HKMC	16.71	16.531	16.73	16.548		14 mochizuki904	2009-11-14T23:03:54Z	CKY00000000000025350
16	C9010D-1H-3 W, 30.032.0 cm	904HKMC	18.205	17.87	18.225	17.888		14 mochizuki904	2009-11-14T23:03:54Z	CKY00000000000025750
17	C9010D-1H-4 W, 33.035.0 cm	904HKMC	19.65	19.165	19.67	19.183		14 mochizuki904	2009-11-14T23:31:52Z	CKY00000000000026250
18	C9010D-1H-5 W, 30.032.0 cm	904HKMC	21.105	20.469	21.125	20.487		14 mochizuki904	2009-11-14T23:42:56Z	CKY00000000000026650
19	C9010D-1H-6 W, 30.032.0 cm	904HKMC	22.545	21.76	22.565	21.778		14 mochizuki904	2009-11-14T23:57:00Z	CKY00000000000027050
20	C9010D-1H-7 W, 30.032.0 cm	904HKMC	23./55	22.844	23.775	22.862		14 mochizuki904	2009-11-15100:16:252	CKY0000000000002/350
21	C9010D-2H-1 W, 24.026.0 cm	904HKMC	24./2	24.7	24./4	24./18		14 koyanagi904	2009-11-15101:04:252	CKY00000000000027850
22	C9010D-1H-8 W, 28.030.0 cm	904HKMC	24.74	23.727	24.76	23.745		14 mochizuki904	2009-11-15T00:33:39Z	CKY00000000000027650
23	C9010D-2H-2 W, 30.032.0 cm	904HKMC	25.09	25.039	25.11	25.058		14 koyanagi904	2009-11-15T01:18:14Z	CKY00000000000027950
24	C9010D-2H-3 W, 30.032.0 cm	904HKMC	26.495	26.328	26.515	26.346		14 koyanagi904	2009-11-15T01:45:11Z	CKY00000000000028450
25	C9010D-2H-4 W, 30.032.0 cm	904HKMC	27.9	27.616	27.92	27.634		14 koyanagi904	2009-11-15101:50:062	CKY00000000000028850
26	C9010D-2H-6 W, 30.032.0 cm	904HKMC	30.25	29.771	30.27	29.789		14 koyanagi904	2009-11-15102:39:452	CKY00000000000029150
27	C9010D-2H-7 W, 30.032.0 cm	904HKMC	31.655	31.059	31.675	31.078		14 koyanagi904	2009-11-15T03:13:55Z	CKY00000000000029550
28	C9010D-2H-8 W, 30.032.0 cm	904HKMC	33.06	32.348	33.08	32.366		14 koyanagi904	2009-11-15T03:41:35Z	CKY00000000000000030150
29	C9010D-2H-9 W, 30.032.0 cm	904HKMC	34.06	33.265	34.08	33.283		14 koyanagi904	2009-11-15T04:00:01Z	CKY000000000000030550
30	C9010D-3H-1 W, 32.034.0 cm	904HKMC	34.3	34.3	34.32	34.32		14 koyanagi904	2009-11-15T04:29:35Z	CKY0000000000000030750
31	C9010D-3H-2 W, 12.014.0 cm	904HKMC	35.375	35.375	35.395	35.395		14 koyanagi904	2009-11-15T04:55:53Z	CKY000000000000031050
32	C9010D-3H-5 W, 30.032.0 cm	904HKMC	39.165	39.165	39.185	39.185		14 koyanagi904	2009-11-15T05:12:03Z	CKY000000000000031150
33	C9010D-3H-6 W, 29.031.0 cm	904HKMC	40.57	40.57	40.59	40.59		14 koyanagi904	2009-11-15T05:40:27Z	CKY000000000000031550
34	C9010D-4H-1 W, 2.0-4.0 cm	904HKMC	43.5	43.499	43.52	43.518		14 koyanagi904	2009-11-1510/:01:152	CKY00000000000031850
35	C9010D-4H-2 W, 37.039.0 cm	904HKMC	44.115	44.08	44.135	44.098		14 koyanagi904	2009-11-15107:16:232	CKY000000000000031950
36	C9010D-4H-3 W, 30.032.0 cm	904HKMC	45.4	45.293	45.42	45.312		14 koyanagi904	2009-11-1510/:46:552	CKY00000000000032350
37	C9010D-4H-4 W, 30.032.0 cm	904HKMC	46.785	46.601	46.805	46.62		14 koyanagi904	2009-11-15108:24:282	CKY00000000000032950
38	C9010D-4H-5 W, 30.032.0 cm	904HKMC	48.185	47.923	48.205	47.942		14 koyanagi904	2009-11-15108:53:482	CKY00000000000033450
39	C9010D-4H-6 W, 28.030.0 cm	904HKMC	49.58	49.24	49.6	49.259		14 koyanagi904	2009-11-15109:27:122	CKY00000000000033850
40	C9010D-6X-1 W, 30.032.0 cm	904HKMC	62.78	62.78	62.8	62.8		14 koyanagi904	2009-11-15111:26:392	CKY00000000000034150
41	C9010D-6X-2 W, 30.032.0 cm	904HKMC	64.19	64.19	64.21	64.21		14 mochizuki904	2009-11-15112:13:362	CKY0000000000034550
42	C9010D-7X-1 W, 30.032.0 cm	904HKMC	72.28	72.28	/2.3	72.3		14 mochizuki904	2009-11-15112:41:462	CKY00000000000034950
43	C9010D-7X-2 W, 30.032.0 cm	904HKMC	/3.66	/3.66	/3.08	/3.68		14 mochizuki904	2009-11-15112:41:462	CKY00000000000035250
44	C9010D-7X-3 W, 20.0-22.0 cm	904HKMC	74.095	74.095	74.713	74.713			2009-11-15113:03:492	CK100000000000035550
40	C9010D-7X-4 W, S0.032.0 cm		/5.415	/5.415	/0.400	/0.430			2009-11-15113:03:492	CK1000000000000000000000000000000000000
40	C9010D-9X-1 W, 20.0-22.0 cm		91.10	91.10	91.2	91.2			2009-11-15114:45:492	CK10000000000000035850
4/	C9010D-9X-2 W, 30.0-32.0 cm		92.00	92.00	92.30	92.00			2009-11-15114:50:502	CK1000000000000000000000000000000000000
40	C9010D-9X-3 W, 30.0-32.0 cm		93.373	93.575	93.393	93.393			2009-11-15114:56:432	CK1000000000000000000000000000000000000
49 50	$C_{9010D} = 3 \times -4$ W, $S_{900} = -32.0$ cm		110.00	110.00	110.2	110.2		14 mochizuki904	2009-11-15115.17.252	CK1000000000000000000000000000000000000
51	$C_{9010D-12X-1} = W_{200-220} = 32.0 \text{ cm}$		110.20	110.20	10.3	110.3		14 mochizuki904	2009-11-15110.31.312	CK10000000000000000007250
52	C9010D = 13X = 2W = 280 = -300 cm	904HKMC	127.70	127.70	127.0	127.0		14 mochizuki904	2009-11-15T20.00.07Z	CKY000000000000038150
53	C9010D = 14X = 1 W 50.0 = 52.0 cm	904HKMC	137.48	137.48	137.5	137.5		14 mochizuki904	2009-11-15T23:05:527	CKY000000000000000000000000000000000000
54	$C_{0010D} = 14X = 2 W_{000} = 32.0 \text{ cm}$		137.40	132.68	137.3	137.3		14 mochizuki904	2009 11 15123.03.322	CKV000000000000033350
55	C9010D = 15X = 1 W 310 = -330 cm		1/6 70	1/6 70	1/6.81	1/6.81			2009 11 10122.04.072	CKY000000000000000000000000000000000000
56	C9010D = 15X = 2 W 30.0 = -32.0 cm	904HKMC	148.18	148.18	148.2	148.2		14 kovanagi904	2009-11-16T04·14·557	CKY000000000000000000000000000000000000
57	C9010D = 15X = 3 W = 30.0 = -32.0 cm	904HKMC	149 585	149 585	149 605	149 605		14 kovanagi904	2009-11-16T04:46:347	CKY00000000000000040650
58	C9010D = 15X = 4 W = 30.0 = -32.0 cm	904HKMC	150 595	150 595	150.615	150.615		14 kovanagi904	2009-11-16T05:18:327	CKY000000000000000000000000000000000000
50	C9010D - 16X - 1 W 320340 cm	904HKMC	156.2	156 2	156 22	156 22		14 kovanagi904	2009-11-16T06-42-087	CKY00000000000000040300
60	C9010D - 16X - 2 W 200220 cm	904HKMC	157 525	157 525	157 605	157 605		14 kovanagi904	2009-11-16T07-13-177	CKY0000000000000041250
61	C9010D - 16X - 3 W - 300 320 cm	904HKMC	159.065	159.065	159 085	159 085		14 kovanagi904	2009-11-16T07-44-017	CKY000000000000000000000000000000000000
62	C9010D - 16X - 4 W - 30.0 32.0 cm	904HKMC	160.47	160.003	160.40	160 /0		14 kovanagi904	2009-11-16T08-15-527	CKY00000000000000042050
62	C9010D - 18X - 1 W = 4060 cm	904HKMC	175.09	175.02	175 04	175 04		14 kovanagi904	2009-11-16T08-57-267	CKY00000000000000042430
64	C9010D-19X-1 W 26 028 0 cm	904HKMC	184 74	184 74	184 76	184 76		14 kovanagi904	2009-11-16T11-44-397	CKY000000000000042750
65	C9010D-21X-1 W = 30.032.0 cm	904HKMC	203.28	20.3 78	2013 R	203 R		14 mochizuki904	2009-11-16T14-45-117	CKY00000000000043550
88 88	C9010D-21X-2 W 30.032.0 cm	904HKMC	200.70	200.70	203.0 201 205	203.0		14 mochizuki904	2009-11-16T14-55-467	CKY000000000000043550
67	C9010D-23X-1 = 350-370 cm	904HKMC	207.203	207.203	204.000	207.303		14 mochizuki904	2009-11-16T20.05.257	CKY0000000000000043050
62	C9010D-23X-2 W = 30.032.0 cm	904HKMC	217.00	217.00	217.00	217.00		14 mochizuki904	2009-11-16T20-15-497	CKY00000000000044250
69	C9010D-27X-1 W. 21.023.0 cm	904HKMC	255.69	255.69	255 71	255 71		14 kovanagi904	2009-11-17T06·28·547	CKY000000000000044850
	,							, , , , , , , , , , , , , , , , , , , ,		

70 C9010D-27X-2 W, 30.032.0 cm	904HKMC	256.45	256.45	256.47	256.47	14 koyanagi904	2009-11-17T06:47:15Z	CKY00000000000045050
71 C9010D-27X-CC W, 5.07.0 cm	904HKMC	256.74	256.74	256.76	256.76	14 koyanagi904	2009-11-17T07:08:48Z	CKY00000000000045250
72 C9010D-28X-1 W, 32.034.0 cm	904HKMC	265.3	265.3	265.32	265.32	14 koyanagi904	2009-11-17T08:43:39Z	CKY00000000000045450
73 C9010D-28X-CC W, 11.013.0 cm	904HKMC	265.915	265.915	265.935	265.935	14 koyanagi904	2009-11-17T09:06:57Z	CKY00000000000045650
74 C9010D-30X-CC W, 20.022.0 cm	904HKMC	284.18	284.18	284.2	284.2	14 mochizuki904	2009-11-17T12:17:39Z	CKY00000000000045850

Exp.904 904HKMH sample list

No. Sample source	Sample code	Top Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-A]	Bottom Depth [m CSF-B]	Sample volume (cm3)	Sample entered by	Sample time-stamp	J-CORES sample ID
1 C9010C-1H-1 W, 0.02.0 cm	904HKMH	0	0	0.02	0.02		20 mochizuki904	2009-11-14T12:52:36Z	CKY0000000000012750
2 C9010C-1H-1 W, 10.012.0 cm	904HKMH	0.1	0.1	0.12	0.12		20 mochizuki904	2009-11-14T12:16:44Z	CKY00000000000010050
3 C9010C-1H-1 W, 20.022.0 cm	904HKMH	0.2	0.2	0.22	0.22		20 mochizuki904	2009-11-14T12:16:44Z	CKY00000000000010150
4 C9010C-1H-1 W, 40.042.0 cm	904HKMH	0.4	0.4	0.42	0.42		20 mochizuki904	2009-11-14T12:16:44Z	CKY00000000000010250
5 C9010C-1H-1 W, 50.052.0 cm	904HKMH	0.5	0.5	0.52	0.52		20 mochizuki904	2009-11-14T12:16:44Z	CKY00000000000010350
6 C9010C-1H-1 W, 60.062.0 cm	904HKMH	0.6	0.6	0.62	0.62		20 koyanagi904	2009-11-14T09:23:04Z	CKY0000000000008450
7 C9010C-1H-1 W, 70.072.0 cm	904HKMH	0.7	0.7	0.72	0.72		20 mochizuki904	2009-11-14T12:16:44Z	CKY00000000000010450
8 C9010C-1H-1 W, 80.082.0 cm	904HKMH	0.8	0.8	0.82	0.82		20 mochizuki904	2009-11-14T12:16:44Z	CKY00000000000010550
9 C9010C-1H-1 W, 90.092.0 cm	904HKMH	0.9	0.9	0.92	0.92		20 koyanagi904	2009-11-14T09:23:04Z	CKY0000000000008550
10 C9010C-1H-1 W, 100.0102.0 cm	904HKMH	1	1	1.02	1.02		20 mochizuki904	2009-11-14T12:16:44Z	CKY00000000000010650
11 C9010C-1H-1 W, 120.0122.0 cm	904HKMH	1.2	1.2	1.22	1.22		20 koyanagi904	2009-11-14T09:23:04Z	CKY0000000000008650
12 C9010C-1H-1 W, 129.0131.0 cm	904HKMH	1.29	1.29	1.31	1.31		20 mochizuki904	2009-11-14T12:16:45Z	CKY00000000000010750
13 C9010C-1H-2 W, 10.012.0 cm	904HKMH	1.505	1.505	1.525	1.525		20 mochizuki904	2009-11-14T12:35:50Z	CKY00000000000010850
14 C9010C-1H-2 W, 20.022.0 cm	904HKMH	1.605	1.605	1.625	1.625		20 mochizuki904	2009-11-14T12:35:50Z	CKY00000000000010950
15 C9010C-1H-2 W, 40.042.0 cm	904HKMH	1.805	1.805	1.825	1.825		20 mochizuki904	2009-11-14T12:35:50Z	CKY00000000000011050
16 C9010C-1H-2 W, 50.052.0 cm	904HKMH	1.905	1.905	1.925	1.925		20 mochizuki904	2009-11-14T12:35:50Z	CKY00000000000011150
17 C9010C-1H-2 W, 62.064.0 cm	904HKMH	2.025	2.025	2.045	2.045		20 koyanagi904	2009-11-14T10:20:01Z	CKY0000000000008850
18 C9010C-1H-2 W, 70.072.0 cm	904HKMH	2.105	2.105	2.125	2.125		20 mochizuki904	2009-11-14T12:35:50Z	CKY00000000000011250
19 C9010C-1H-2 W, 80.082.0 cm	904HKMH	2.205	2.205	2.225	2.225		20 mochizuki904	2009-11-14T12:35:50Z	CKY00000000000011350
20 C9010C-1H-2 W, 90.092.0 cm	904HKMH	2.305	2.305	2.325	2.325		20 koyanagi904	2009-11-14T10:20:01Z	CKY0000000000008950
21 C9010C-1H-2 W, 100.0102.0 cm	904HKMH	2.405	2.405	2.425	2.425		20 mochizuki904	2009-11-14T12:35:50Z	CKY00000000000011450
22 C9010C-1H-2 W, 110.0112.0 cm	904HKMH	2.505	2.505	2.525	2.525		20 mochizuki904	2009-11-14T12:46:36Z	CKY00000000000011650
23 C9010C-1H-2 W, 120.0122.0 cm	904HKMH	2.605	2.605	2.625	2.625		20 koyanagi904	2009-11-14T10:20:01Z	CKY000000000000009050
24 C9010C-1H-2 W, 128.0130.0 cm	904HKMH	2.685	2.685	2.705	2.705		20 mochizuki904	2009-11-14T12:35:50Z	CKY00000000000011550
25 C9010C-1H-3 W, 0.02.0 cm	904HKMH	2.805	2.805	2.825	2.825		20 mochizuki904	2009-11-14T12:51:15Z	CKY00000000000012050
26 C9010C-1H-3 W, 10.012.0 cm	904HKMH	2.905	2.905	2.925	2.925		20 mochizuki904	2009-11-14T12:51:15Z	CKY00000000000011750
27 C9010C-1H-3 W, 20.022.0 cm	904HKMH	3.005	3.005	3.025	3.025		20 mochizuki904	2009-11-14T12:51:15Z	CKY000000000000011850
28 C9010C-1H-3 W, 40.042.0 cm	904HKMH	3.205	3.205	3.225	3.225		20 mochizuki904	2009-11-14T12:51:15Z	CKY000000000000011950
29 C9010C-1H-3 W. 50.052.0 cm	904HKMH	3.305	3.305	3.325	3.325		20 mochizuki904	2009-11-14T12:51:15Z	CKY000000000000012150
30 C9010C-1H-3 W. 60.062.0 cm	904HKMH	3.405	3.405	3.425	3.425		20 kovanagi904	2009-11-14T10:42:58Z	CKY000000000000009250
31 C9010C-1H-3 W. 70.072.0 cm	904HKMH	3.505	3.505	3.525	3.525		20 mochizuki904	2009-11-14T12:51:15Z	CKY000000000000012250
32 C9010C-1H-3 W. 80.082.0 cm	904HKMH	3.605	3.605	3.625	3.625		20 mochizuki904	2009-11-14T12:51:15Z	CKY000000000000012350
33 C9010C-1H-3 W 90 092 0 cm	904HKMH	3 705	3 705	3 725	3 725		20 kovanagi904	2009-11-14T10·42·587	CKY000000000000009350
34 C9010C-1H-3 W. 100.0102.0 cm	904HKMH	3.805	3.805	3.825	3.825		20 mochizuki904	2009-11-14T12:51:15Z	CKY00000000000012450
35 C9010C-1H-3 W. 110.0112.0 cm	904HKMH	3.905	3.905	3.925	3.925		20 mochizuki904	2009-11-14T12:51:15Z	CKY000000000000012550
36 C9010C-1H-3 W. 120.0122.0 cm	904HKMH	4.005	4.005	4.025	4.025		20 kovanagi904	2009-11-14T10:42:58Z	CKY000000000000009450
37 C9010C-1H-3 W. 129.0131.0 cm	904HKMH	4.095	4.095	4.115	4.115		20 mochizuki904	2009-11-14T12:51:15Z	CKY000000000000012650
38 C9010C-1H-4 W. 0.02.0 cm	904HKMH	4.215	4.215	4.235	4.235		20 mochizuki904	2009-11-14T13:15:08Z	CKY000000000000012850
39 C9010C-1H-4 W. 10.012.0 cm	904HKMH	4.315	4.315	4.335	4.335		20 mochizuki904	2009-11-14T13:15:08Z	CKY000000000000012950
40 C9010C-1H-4 W 20022 0 cm	904HKMH	4 415	4 4 1 5	4 435	4 435		20 mochizuki904	2009-11-14T13·15·087	CKY000000000000013050
41 C9010C-1H-4 W 40042 0 cm	904HKMH	4 6 1 5	4 615	4 635	4 635		20 mochizuki904	2009-11-14T13·15·087	CKY000000000000013150
42 C9010C-1H-4 W 50052 0 cm	904HKMH	4 715	4 715	4 735	4 735		20 mochizuki904	2009-11-14T13·15·087	CKY000000000000013250
43 C9010C-1H-4 W 60.062.0 cm	904HKMH	4 815	4 815	4 835	4 835		20 kovanagi904	2009-11-14T11:21:477	CKY0000000000000009650
44 C9010C-1H-4 W 70072 0 cm	904HKMH	4.915	4 9 1 5	4 935	4 935		20 mochizuki904	2009-11-14T13·15·087	CKY000000000000013350
45 C9010C-1H-4 W 80082 0 cm	904HKMH	5 0 1 5	5 0 1 5	5 035	5 035		20 mochizuki904	2009-11-14T13·15·087	CKY00000000000013450
46 C9010C-1H-4 W 900920 cm	904HKMH	5 1 1 5	5 1 1 5	5 135	5 135		20 kovanagi904	2009-11-14T11·21·477	CKY0000000000000009750
47 C9010C-1H-4 W 10001020 cm	904HKMH	5 2 1 5	5.115	5 235	5 235		20 mochizuki904	2009-11-14T13:15:087	CKY000000000000013550
48 C9010C-1H-4 W 11001120 cm	904HKMH	5.315	5.215	5.335	5.335		20 mochizuki904	2009-11-14T13:15:08Z	CKY000000000000013650
49 C9010C-1H-4 W 12001220 cm	904HKMH	5.415	5.415	5.435	5.435		20 kovanagi904	2000-11-14T11:21:477	СКУ000000000000000000000000000000000000
50 C9010C-1H-4 W 12801300 cm	904HKMH	5.495	5.495	5.515	5 5 1 5		20 mochizuki904	2009-11-14T13:15:087	CKY000000000000000000000000000000000000
51 C9010C-1H-5 W 0.02.0 cm	904HKMH	5.62	5.62	5.64	5.64		20 mochizuki904	2009-11-14T13:33:037	CKY000000000000013850
52 C9010C-1H-5 W 100120 cm	904HKMH	5.72	5.72	5.74	5.74		20 mochizuki904	2009-11-14T13:33:037	CKY000000000000013950
53 C9010C-1H-5 W 210230 cm	904HKMH	5.83	5.83	5.85	5.85		20 mochizuki904	2000-11-14T13:33:037	CKY000000000000014050
54 C9010C-1H-5 W 400420 cm	2041 IKMH	0.00 6.02	5.03	5.00	6.04		20 mochizuki904	2009 11 14113.33.032 2000-11-14T13.33.032	CKV000000000000014150
55 C0010C-2H-1 W 0.0		6.49	6.49	0.04	6.409		20 mochizuki904	2009 11 14113.33.032	CKV00000000000014150
56 C0010C-2H-1 W 10.012.0 cm		0.40	6.571	6.6	6.500		20 mochizuki904	2003 11 14110.05.202	CKV000000000000000000000000000000000000
50 C9010C-2H-1 W, 10.0-12.0 cm		0.00	0.371	0.0	6.509		20 mochizuki904	2009-11-14110.05.282	CKY000000000000000000000000000000000000
57 C9010C-2H-1 W, 20.0-22.0 cm		00.0	6 942	6.0	6.075		20 mochizuki904	2009-11-14110.05.282	CKY000000000000000000000000000000000000
50 C0010C 2H 1 W 50.0 52.0 cm		0.00	0.843		0.001		20 mochizuki904	2009-11-14110.05.282	CK100000000000017050
$33 - 50100 - 2\Pi - 1 W, 50.0 - 52.0 CM$		0.98	0.933	/	0.951		20 mochizuki904	2009-11-14110:00:282	
61 C0010C-2H-1 W, 00.0-02.0 CM		7.08	7.024	/.1	7.042		20 mochizuki904	2009-11-14114:04:132	
$01 000100-2\Pi = 1 W, 10.0=-72.0 Cm$		7.18	7.115	/.2	. /.133		20 mochizuki904	2000-11-14110:00:282	
02 030100-2H-1 W, 81.0-83.0 Cm		7.29	7.214	/.31	7.232			2009-11-14110:05:282	
64 COOLOG CH 1 W 1000 100 CM	904HKMH	7.38	7.296	7.4	/.314		20 mocnizuki904	2009-11-14114:04:132	
04 050100-2H-1 W, 100.0102.0 cm		7.48	/.386	7.5	/.405			2009-11-14110:05:282	
66 000100 001 1 W 1000 1000		7.58	1.4//	7.t	/.495			2009-11-14110:05:282	
00 G9010G-2H-1 W, 120.0122.0 cm	904HKMH	7.68	7.568	1.1	/.586		20 mocnizuki904	2009-11-14114:04:132	
07 G9010G-2H-1 W, 129.0131.0 cm	904HKMH	1.77	/.649	7.79	/.668		20 mocnizuki904	2009-11-14116:05:28Z	
00 C9010C-2H-2 W, U.U2.U cm	904HKMH	7.89	7.758	7.91	/.776		20 mocnizuki904	2009-11-14116:36:01Z	
09 090100-2H-2 W, 10.012.0 cm	904HNMH	7.99	7.849	8.01	/.86/		20 mochizuki904	2009-11-14110:30:012	GR 100000000000017950

70 C9010C-2H-2 W, 40.042.0 cm	904HKMH	8.29	8.121	8.31	8.139	20 mochizuki904	2009-11-14T16:36:02Z	CKY00000000000018050
71 C9010C-2H-2 W, 50.052.0 cm	904HKMH	8.39	8.211	8.41	8.229	20 mochizuki904	2009-11-14T16:36:02Z	CKY00000000000018150
72 C9010C-2H-2 W, 60.062.0 cm	904HKMH	8.49	8.302	8.51	8.32	20 mochizuki904	2009-11-14T14:06:06Z	CKY00000000000014850
73 C9010C-2H-2 W, 70.072.0 cm	904HKMH	8.59	8.393	8.61	8.411	20 mochizuki904	2009-11-14T16:36:02Z	CKY00000000000018250
74 C9010C-2H-2 W, 80.082.0 cm	904HKMH	8.69	8.483	8.71	8.502	20 mochizuki904	2009-11-14T16:36:02Z	CKY00000000000018350
75 C9010C-2H-2 W, 90.092.0 cm	904HKMH	8.79	8.574	8.81	8.592	20 mochizuki904	2009-11-14T14:06:06Z	CKY00000000000014950
76 C9010C-2H-2 W, 100.0102.0 cm	904HKMH	8.89	8.665	8.91	8.683	20 mochizuki904	2009-11-14T16:36:02Z	CKY00000000000018450
77 C9010C-2H-2 W, 110.0112.0 cm	904HKMH	8.99	8.755	9.01	8.773	20 mochizuki904	2009-11-14T16:36:02Z	CKY00000000000018550
78 C9010C-2H-2 W, 120.0122.0 cm	904HKMH	9.09	8.846	9.11	8.864	20 mochizuki904	2009-11-14T14:06:06Z	CKY00000000000015050
79 C9010C-2H-2 W. 130.0132.0 cm	904HKMH	9.19	8.937	9.21	8.955	20 mochizuki904	2009-11-14T16:36:02Z	CKY000000000000018650
80 C9010C-2H-3 W. 0.02.0 cm	904HKMH	9.34	9.073	9.36	9.091	20 mochizuki904	2009-11-14T16:58:40Z	CKY000000000000018750
81 C9010C-2H-3 W 100120 cm	904HKMH	9 44	9 163	946	9 181	20 mochizuki904	2009-11-14T16:58:407	CKY00000000000018850
82 C9010C = 2H = 3 W = 20.0 = -22.0 cm	904HKMH	9.54	9 254	9.56	9 272	20 mochizuki904	2009-11-14T16:58:407	CKY000000000000018950
82 C0010C-2H-2 W 40.042.0 cm		0.74	0.425	0.76	0.452		2000-11-14T16:50:402	CKV000000000000010050
84 C0010C-2H-2 W 500-52 0 cm		0.94	0.526	9.76	0.544		2000-11-14T16.50.402	CKV00000000000019050
84 C9010C-2H-3 W, 50.052.0 cm		9.04	9.520	9.80	9.044		2009-11-14110:36:402	GK10000000000019150
85 C9010C-2H-3 W, 60.062.0 cm	904HKMH	9.94	9.010	9.96	9.035		2009-11-14114:07:552	GKY0000000000015150
86 C9010C-2H-3 W, 70.072.0 cm	904HKMH	10.04	9.707	10.06	9.725	20 mochizuki904	2009-11-14116:58:402	CKY0000000000019250
87 C9010C-2H-3 W, 80.082.0 cm	904HKMH	10.14	9.798	10.16	9.816	20 mochizuki904	2009-11-14T16:58:40Z	CKY000000000000019350
88 C9010C-2H-3 W, 90.092.0 cm	904HKMH	10.24	9.888	10.26	9.906	20 mochizuki904	2009-11-14T14:07:55Z	CKY000000000000015250
89 C9010C-2H-3 W, 100.0102.0 cm	904HKMH	10.34	9.979	10.36	9.997	20 mochizuki904	2009-11-14T16:58:40Z	CKY000000000000019450
90 C9010C-2H-3 W, 110.0112.0 cm	904HKMH	10.44	10.07	10.46	10.088	20 mochizuki904	2009-11-14T16:58:40Z	CKY00000000000019550
91 C9010C-2H-3 W, 119.0121.0 cm	904HKMH	10.53	10.151	10.55	10.169	20 mochizuki904	2009-11-14T14:07:55Z	CKY00000000000015350
92 C9010C-2H-4 W, 0.02.0 cm	904HKMH	10.75	10.351	10.77	10.369	20 mochizuki904	2009-11-14T18:31:07Z	CKY00000000000019850
93 C9010C-2H-4 W, 10.012.0 cm	904HKMH	10.85	10.441	10.87	10.46	20 mochizuki904	2009-11-14T18:31:07Z	CKY00000000000019950
94 C9010C-2H-4 W, 20.022.0 cm	904HKMH	10.95	10.532	10.97	10.55	20 mochizuki904	2009-11-14T18:31:07Z	CKY000000000000000000000000000000000000
95 C9010C-2H-4 W, 40.042.0 cm	904HKMH	11.15	10.713	11.17	10.731	20 mochizuki904	2009-11-14T18:31:07Z	CKY00000000000000020150
96 C9010C-2H-4 W, 50.052.0 cm	904HKMH	11.25	10.804	11.27	10.822	20 mochizuki904	2009-11-14T18:31:07Z	CKY00000000000020250
97 C9010C-2H-4 W, 60.062.0 cm	904HKMH	11.35	10.895	11.37	10.913	20 mochizuki904	2009-11-14T14:29:21Z	CKY00000000000015550
98 C9010C-2H-4 W, 70.072.0 cm	904HKMH	11.45	10.985	11.47	11.003	20 mochizuki904	2009-11-14T18:31:07Z	CKY000000000000020350
99 C9010C-2H-4 W. 80.082.0 cm	904HKMH	11.55	11.076	11.57	11.094	20 mochizuki904	2009-11-14T18:31:07Z	CKY000000000000020450
100 C9010C-2H-4 W 90 092 0 cm	904HKMH	11.65	11 167	11.67	11 185	20 mochizuki904	2009-11-14T14·29·217	CKY000000000000015650
101 C9010C-2H-4 W 10001020 cm	904HKMH	11.75	11 257	11 77	11 275	20 mochizuki904	2009-11-14T18:31:077	CKY0000000000000020550
$102 \ C9010C = 2H = 4 \ W, \ 1000 = -1120 \ cm$		11.75	11.207	11.87	11.276		2000-11-14T18:31:07Z	CKY000000000000000000000000000000000000
102 C9010C-2H-4 W, 110.0 112.0 cm		11.05	11.040	11.07	11.500		2000-11-14110.31.072	CKV000000000000000000000000000000000000
103 C9010C-2H-4 W, 120.0-122.0 Cm		10.05	11.439	10.07	11.437		2009-11-14114.29.212	GK100000000000015750
104 C9010C-2H-4 W, 130.0132.0 cm	904HKMH	12.03	11.529	12.07	11.547		2009-11-14118:31:072	GKY000000000000000020750
105 C9010C-2H-4 W, 140.0142.0 cm	904HKMH	12.15	11.62	12.17	11.038		2009-11-14118:31:072	CKY00000000000020850
106 C9010C-2H-5 W, 0.02.0 cm	904HKMH	12.225	11.688	12.245	11.706	20 mochizuki904	2009-11-14118:46:002	CKY00000000000021050
107 C9010C-2H-5 W, 10.012.0 cm	904HKMH	12.325	11.778	12.345	11.797	20 mochizuki904	2009-11-14T18:46:00Z	CKY000000000000021150
108 C9010C-2H-5 W, 20.022.0 cm	904HKMH	12.425	11.869	12.445	11.887	20 mochizuki904	2009-11-14T18:46:00Z	CKY000000000000021250
109 C9010C-2H-5 W, 40.042.0 cm	904HKMH	12.625	12.05	12.645	12.068	20 mochizuki904	2009-11-14T18:46:00Z	CKY000000000000021350
110 C9010C-2H-6 W, 60.062.0 cm	904HKMH	14.23	13.505	14.25	13.523	20 mochizuki904	2009-11-14T18:54:24Z	CKY00000000000021450
111 C9010C-2H-6 W, 80.082.0 cm	904HKMH	14.43	13.687	14.45	13.705	20 mochizuki904	2009-11-14T18:54:24Z	CKY00000000000021550
112 C9010C-2H-6 W, 90.092.0 cm	904HKMH	14.53	13.777	14.55	13.795	20 mochizuki904	2009-11-14T14:42:20Z	CKY00000000000016150
113 C9010C-2H-6 W, 100.0102.0 cm	904HKMH	14.63	13.868	14.65	13.886	20 mochizuki904	2009-11-14T18:54:24Z	CKY00000000000021650
114 C9010C-2H-6 W, 110.0112.0 cm	904HKMH	14.73	13.958	14.75	13.977	20 mochizuki904	2009-11-14T18:54:24Z	CKY00000000000021750
115 C9010C-2H-6 W, 120.0122.0 cm	904HKMH	14.83	14.049	14.85	14.067	20 mochizuki904	2009-11-14T14:42:20Z	CKY00000000000016250
116 C9010C-2H-6 W, 130.0132.0 cm	904HKMH	14.93	14.14	14.95	14.158	20 mochizuki904	2009-11-14T18:54:24Z	CKY00000000000021850
117 C9010C-2H-6 W, 140.0142.0 cm	904HKMH	15.03	14.231	15.05	14.249	20 mochizuki904	2009-11-14T18:54:24Z	CKY00000000000021950
118 C9010C-2H-7 W, 0.02.0 cm	904HKMH	15.06	14.258	15.08	14.276	20 mochizuki904	2009-11-14T19:03:39Z	CKY00000000000022050
119 C9010C-2H-7 W, 10.012.0 cm	904HKMH	15.16	14.348	15.18	14.366	20 mochizuki904	2009-11-14T19:03:39Z	CKY00000000000022150
120 C9010C-2H-7 W. 20.022.0 cm	904HKMH	15.26	14.439	15.28	14.457	20 mochizuki904	2009-11-14T19:03:39Z	CKY000000000000022250
121 C9010C-2H-7 W. 40.042.0 cm	904HKMH	15.46	14.62	15.48	14.638	20 mochizuki904	2009-11-14T19:03:39Z	CKY000000000000022350
122 C9010C-2H-7 W 500-52 0 cm	904HKMH	15.56	14 711	15.58	14 729	20 mochizuki904	2009-11-14T19:03:397	CKY00000000000022450
123 C9010C-2H-7 W 60.062.0 cm	904HKMH	15.66	14 802	15.68	14.82	20 mochizuki904	2009-11-14T14·42·207	CKY00000000000016350
124 C9010C = 2H = 7 W = 70.0 = -72.0 cm	904HKMH	15.00	14.892	15.78	14.91	20 mochizuki904	2009-11-14T19:03:397	CKY0000000000000022550
125 - C9010C - 2H - 7 W - 80 0 82 0 cm		15.86	14.983	15.88	15 001		2000-11-14T10:03:307	CKV00000000000022650
125 C9010C 2H 7 W, 80.0 - 82.0 Cm		15.00	14.303	15.66	15.001		2009-11-14119.03.392	CK100000000000022050
120 C9010C-2H-7 W, 90.092.0 cm		10.005	15.073	10.98	15.092		2009-11-14114:42:202	GK 100000000000010450
127 C9010C-2H-8 W, 0.02.0 cm	904HKMH	16.065	15.169	16.085	15.187	20 mochizuki904	2009-11-14119:14:102	CKY0000000000022750
128 C9010C-2H-8 W, 10.012.0 cm	904HKMH	16.165	15.259	16.185	15.278	20 mochizuki904	2009-11-14119:14:102	CKY0000000000022850
129 C9010C-2H-8 W, 21.023.0 cm	904HKMH	16.275	15.359	16.295	15.377	20 mochizuki904	2009-11-14T19:14:10Z	CKY00000000000022950
130 C9010C-2H-8 W, 40.042.0 cm	904HKMH	16.465	15.531	16.485	15.549	20 mochizuki904	2009-11-14T19:14:10Z	CKY00000000000023050
131 C9010C-2H-8 W, 50.052.0 cm	904HKMH	16.565	15.622	16.585	15.64	20 mochizuki904	2009-11-14T19:14:10Z	CKY00000000000023150
132 C9010C-2H-8 W, 59.061.0 cm	904HKMH	16.655	15.703	16.675	15.722	20 mochizuki904	2009-11-14T15:06:16Z	CKY00000000000016550
133 C9010D-1H-1 W, 60.062.0 cm	904HKMH	15.58	15.518	15.6	15.536	20 mochizuki904	2009-11-14T22:40:23Z	CKY0000000000024750
134 C9010D-1H-1 W, 90.092.0 cm	904HKMH	15.88	15.787	15.9	15.804	20 mochizuki904	2009-11-14T22:40:23Z	CKY0000000000024850
135 C9010D-1H-1 W, 120.0122.0 cm	904HKMH	16.18	16.056	16.2	16.073	20 mochizuki904	2009-11-14T22:40:23Z	CKY0000000000024950
136 C9010D-1H-2 W, 60.062.0 cm	904HKMH	17	16.79	17.02	16.808	20 mochizuki904	2009-11-14T23:03:54Z	CKY0000000000025450
137 C9010D-1H-2 W, 90.092.0 cm	904HKMH	17.3	17.059	17.32	17.077	20 mochizuki904	2009-11-14T23:03:54Z	CKY00000000000025550
138 C9010D-1H-2 W, 120.0122.0 cm	904HKMH	17.6	17.328	17.62	17.346	20 mochizuki904	2009-11-14T23:03:54Z	CKY00000000000025650
139 C9010D-1H-3 W, 60.062.0 cm	904HKMH	18.505	18.139	18.525	18.157	20 mochizuki904	2009-11-14T23:03:54Z	CKY00000000000025850
140 C9010D-1H-3 W, 90.092.0 cm	904HKMH	18.805	18.408	18.825	18.426	20 mochizuki904	2009-11-14T23:03:54Z	CKY00000000000025950
141 C9010D-1H-4 W, 60.062.0 cm	904HKMH	19.92	19.407	19.94	19.425	20 mochizuki904	2009-11-14T23:31:52Z	CKY00000000000026350

142 C9010D-1H-4 W, 90.092.0 cm	904HKMH	20.22	19.676	20.24	19.694	20 mochizuki904	2009-11-14T23:31:52Z	CKY00000000000026450
143 C9010D-1H-5 W, 60.062.0 cm	904HKMH	21.405	20.738	21.425	20.756	20 mochizuki904	2009-11-14T23:42:57Z	CKY00000000000026750
144 C9010D-1H-5 W, 90.092.0 cm	904HKMH	21.705	21.007	21.725	21.025	20 mochizuki904	2009-11-14T23:42:57Z	CKY00000000000026850
145 C9010D-1H-5 W, 120.0122.0 cm	904HKMH	22.005	21.276	22.025	21.294	20 mochizuki904	2009-11-14T23:42:57Z	CKY00000000000026950
146 C9010D-1H-6 W, 60.062.0 cm	904HKMH	22.845	22.029	22.865	22.047	20 mochizuki904	2009-11-14T23:57:00Z	CKY00000000000027150
147 C9010D-1H-6 W, 88.090.0 cm	904HKMH	23.125	22.28	23.145	22.298	20 mochizuki904	2009-11-14T23:57:00Z	CKY00000000000027250
148 C9010D-1H-7 W, 58.060.0 cm	904HKMH	24.035	23.095	24.055	23.113	20 mochizuki904	2009-11-15T00:17:33Z	CKY00000000000027450
149 C9010D-1H-7 W, 90.092.0 cm	904HKMH	24.355	23.382	24.375	23.4	20 mochizuki904	2009-11-15T00:17:33Z	CKY00000000000027550
150 C9010D-1H-8 W, 60.062.0 cm	904HKMH	25.06	24.014	25.08	24.032	20 mochizuki904	2009-11-15T00:33:39Z	CKY00000000000027750
151 C9010D-2H-2 W, 90.092.0 cm	904HKMH	25.69	25.59	25.71	25.608	20 koyanagi904	2009-11-15T01:18:14Z	CKY00000000000028050
152 C9010D-2H-2 W, 120.0122.0 cm	904HKMH	25.99	25.865	26.01	25.883	20 koyanagi904	2009-11-15T01:18:14Z	CKY00000000000028150
153 C9010D-2H-3 W, 60.062.0 cm	904HKMH	26.795	26.603	26.815	26.621	20 koyanagi904	2009-11-15T01:45:11Z	CKY00000000000028550
154 C9010D-2H-3 W, 93.095.0 cm	904HKMH	27.125	26.905	27.145	26.924	20 koyanagi904	2009-11-15T01:45:11Z	CKY00000000000028650
155 C9010D-2H-3 W, 120.0122.0 cm	904HKMH	27.395	27.153	27.415	27.171	20 koyanagi904	2009-11-15T01:45:11Z	CKY00000000000028750
156 C9010D-2H-4 W, 60.062.0 cm	904HKMH	28.2	27.891	28.22	27.91	20 koyanagi904	2009-11-15T01:50:06Z	CKY00000000000028950
157 C9010D-2H-6 W, 60.062.0 cm	904HKMH	30.55	30.046	30.57	30.065	20 koyanagi904	2009-11-15T02:39:45Z	CKY00000000000029250
158 C9010D-2H-6 W, 90.092.0 cm	904HKMH	30.85	30.321	30.87	30.34	20 koyanagi904	2009-11-15T02:39:45Z	CKY000000000000029350
159 C9010D-2H-6 W, 114.0116.0 cm	904HKMH	31.09	30.541	31.11	30.56	20 koyanagi904	2009-11-15T02:39:45Z	CKY00000000000029450
160 C9010D-2H-7 W, 60.062.0 cm	904HKMH	31.955	31.334	31.975	31.353	20 koyanagi904	2009-11-15T03:13:55Z	CKY00000000000029650
161 C9010D-2H-7 W, 88.090.0 cm	904HKMH	32.235	31.591	32.255	31.61	20 koyanagi904	2009-11-15T03:13:55Z	CKY000000000000029750
162 C9010D-2H-7 W, 123.0125.0 cm	904HKMH	32.585	31.912	32.605	31.931	20 koyanagi904	2009-11-15T03:13:55Z	CKY000000000000029850
163 C9010D-2H-8 W, 60.062.0 cm	904HKMH	33.36	32.623	33.38	32.641	20 koyanagi904	2009-11-15103:41:352	CKY00000000000000030250
164 C9010D-2H-8 W, 90.092.0 cm	904HKMH	33.66	32.898	33.68	32.916	20 koyanagi904	2009-11-15103:41:352	CKY00000000000030350
165 C9010D-2H-9 W, 57.059.0 cm	904HKMH	34.33	33.512	34.35	33.531	20 koyanagi904	2009-11-15104:00:012	CKY000000000000000000000000000000000000
166 C9010D-3H-1 W, 60.062.0 cm	904HKMH	34.58	34.58	34.6	34.6	20 koyanagi904	2009-11-15104:29:352	CKY00000000000030850
167 C9010D-3H-1 W, 104.0106.0 cm	904HKMH	35.02	35.02	35.04	35.04	20 koyanagi904	2009-11-15104:29:352	CKY00000000000000030950
168 C9010D-3H-5 W, 60.062.0 cm	904HKMH	39.465	39.465	39.485	39.485	20 koyanagi904	2009-11-15105:12:032	CKY00000000000031250
169 C9010D-3H-5 W, 90.092.0 cm	904HKMH	39.765	39.765	39.785	39.785	20 koyanagi904	2009-11-15105:12:032	CKY00000000000031350
170 C9010D-3H-5 W, 120.0122.0 cm	904HKMH	40.065	40.065	40.085	40.085	20 koyanagi904	2009-11-15105:12:042	CKY00000000000031450
171 C9010D-3H-6 W, 60.062.0 cm	904HKMH	40.88	40.88	40.9	40.9	20 koyanagi904	2009-11-15105:40:272	CKY000000000000031650
172 C9010D-3H-6 W, 90.092.0 cm		41.18	41.18	41.2	41.2	20 koyanagi904	2009-11-15105:40:272	CKY000000000000000031750
173 C9010D-4H-2 W, 63.065.0 cm		44.375	44.325	44.395	44.344	20 koyanagi904	2009-11-15107:16:232	CK100000000000032050
174 C9010D-4H-2 W, 93.0-95.0 cm		44.075	44.009	44.095	44.027		2009-11-15107:16:232	CK1000000000000000000000000000000000000
175 C9010D = 4H = 2 W, 120.0 = -122.0 cm		44.945	44.003	44.903	44.002		2009-11-15107:10:232	CK100000000000032250
177 C9010D-4H-3 W, 90.092.0 cm		45.75	45.024	45.77	45.043	20 kovanagi904	2009-11-15107.40.552	CKY00000000000032450
177 C9010D - 4H - 3 W, 90.0 - 92.0 cm	904HKMH	40	45.80	40.02	45.879	20 koyanagi904	2009-11-15107.40.552	CKY00000000000032550
179 C9010D -4H - 4 W = 60.062.0 cm	904нкмн	47.085	46.884	47.105	46.903	20 kovanagi904	2009-11-15T08:24:287	CKY0000000000000002000
180 C9010D - 4H - 4 W, 900920 cm	904HKMH	47.385	47 168	47.100	40.300	20 koyanagi904	2009-11-15T08:24:282	CKY000000000000033150
181 C9010D-4H-4 W 1200-1220 cm	904HKMH	47.685	47 451	47 705	47 47	20 kovanagi904	2009-11-15T08:24:287	CKY000000000000033250
182 C9010D-4H-5 W 60 062 0 cm	904HKMH	48 485	48 206	48 505	48 225	20 kovanagi904	2009-11-15T08:53:487	CKY000000000000033550
183 C9010D-4H-5 W 88 090 0 cm	904HKMH	48 765	48 471	48 785	48 49	20 kovanagi904	2009-11-15T08:53:487	CKY00000000000033650
184 C9010D-4H-5 W. 120.0122.0 cm	904HKMH	49.085	48.773	49.105	48.792	20 kovanagi904	2009-11-15T08:53:48Z	CKY00000000000033750
185 C9010D-4H-6 W. 60.062.0 cm	904HKMH	49.9	49.543	49.92	49.562	20 kovanagi904	2009-11-15T09:27:12Z	CKY00000000000033950
186 C9010D-6X-1 W. 60.062.0 cm	904HKMH	63.08	63.08	63.1	63.1	20 kovanagi904	2009-11-15T11:26:39Z	CKY00000000000034250
187 C9010D-6X-1 W, 88.090.0 cm	904HKMH	63.36	63.36	63.38	63.38	20 koyanagi904	2009-11-15T11:26:39Z	CKY00000000000034350
188 C9010D-6X-1 W, 123.0125.0 cm	904HKMH	63.71	63.71	63.73	63.73	20 koyanagi904	2009-11-15T11:26:39Z	CKY00000000000034450
189 C9010D-6X-2 W, 55.057.0 cm	904HKMH	64.44	64.44	64.46	64.46	20 mochizuki904	2009-11-15T12:13:36Z	CKY00000000000034650
190 C9010D-6X-2 W, 90.092.0 cm	904HKMH	64.79	64.79	64.81	64.81	20 mochizuki904	2009-11-15T12:13:36Z	CKY00000000000034750
191 C9010D-6X-2 W, 120.0122.0 cm	904HKMH	65.09	65.09	65.11	65.11	20 mochizuki904	2009-11-15T12:13:36Z	CKY0000000000034850
192 C9010D-7X-1 W, 60.062.0 cm	904HKMH	72.58	72.58	72.6	72.6	20 mochizuki904	2009-11-15T12:41:46Z	CKY00000000000035050
193 C9010D-7X-1 W, 90.092.0 cm	904HKMH	72.88	72.88	72.9	72.9	20 mochizuki904	2009-11-15T12:41:46Z	CKY00000000000035150
194 C9010D-7X-2 W, 60.062.0 cm	904HKMH	73.96	73.96	73.98	73.98	20 mochizuki904	2009-11-15T12:41:46Z	CKY00000000000035350
195 C9010D-7X-2 W, 90.092.0 cm	904HKMH	74.26	74.26	74.28	74.28	20 mochizuki904	2009-11-15T12:41:46Z	CKY00000000000035450
196 C9010D-7X-4 W, 60.062.0 cm	904HKMH	75.715	75.715	75.735	75.735	20 mochizuki904	2009-11-15T13:03:49Z	CKY0000000000035750
197 C9010D-9X-1 W, 60.062.0 cm	904HKMH	91.58	91.58	91.6	91.6	20 mochizuki904	2009-11-15T14:45:49Z	CKY00000000000035950
198 C9010D-9X-1 W, 90.092.0 cm	904HKMH	91.88	91.88	91.9	91.9	20 mochizuki904	2009-11-15T14:45:49Z	CKY0000000000036050
199 C9010D-9X-1 W, 120.0122.0 cm	904HKMH	92.18	92.18	92.2	92.2	20 mochizuki904	2009-11-15T14:45:49Z	CKY00000000000036150
200 C9010D-9X-2 W, 60.062.0 cm	904HKMH	92.86	92.86	92.88	92.88	20 mochizuki904	2009-11-15T14:56:50Z	CKY0000000000036350
201 C9010D-9X-3 W, 60.062.0 cm	904HKMH	93.875	93.875	93.895	93.895	20 mochizuki904	2009-11-15T14:58:43Z	CKY0000000000036550
202 C9010D-9X-4 W, 60.062.0 cm	904HKMH	94.735	94.735	94.755	94.755	20 mochizuki904	2009-11-15T15:17:25Z	CKY00000000000036950
203 C9010D-9X-4 W, 90.092.0 cm	904HKMH	95.035	95.035	95.055	95.055	20 mochizuki904	2009-11-15T15:17:25Z	CKY0000000000037050
204 C9010D-9X-4 W, 120.0122.0 cm	904HKMH	95.335	95.335	95.355	95.355	20 mochizuki904	2009-11-15T15:17:25Z	CKY0000000000037150
205 C9010D-12X-1 W, 55.057.0 cm	904HKMH	118.53	118.53	118.55	118.55	20 mochizuki904	2009-11-15T16:31:51Z	CKY0000000000037350
206 C9010D-13X-1 W, 70.072.0 cm	904HKMH	128.18	128.18	128.2	128.2	20 mochizuki904	2009-11-15T20:00:07Z	CKY0000000000038250
207 C9010D-14X-1 W, 58.060.0 cm	904HKMH	137.56	137.56	137.58	137.58	20 mochizuki904	2009-11-15T22:54:37Z	CKY00000000000039050
208 C9010D-14X-1 W, 90.092.0 cm	904HKMH	137.88	137.88	137.9	137.9	20 mochizuki904	2009-11-15T22:54:37Z	CKY00000000000039150
209 C9010D-14X-1 W, 120.0122.0 cm	904HKMH	138.18	138.18	138.2	138.2	20 mochizuki904	2009-11-15T22:54:37Z	CKY0000000000039250
210 C9010D-14X-2 W, 60.062.0 cm	904HKMH	138.98	138.98	139	139	20 mochizuki904	2009-11-15T22:54:37Z	CKY00000000000038850
211 C9010D-14X-2 W, 90.092.0 cm	904HKMH	139.28	139.28	139.3	139.3	20 mochizuki904	2009-11-15T22:54:37Z	CKY00000000000038950
212 C9010D-15X-1 W, 60.062.0 cm	904HKMH	147.08	147.08	147.1	147.1	20 koyanagi904	2009-11-16T03:46:10Z	CKY00000000000039950
213 C9010D-15X-1 W, 90.092.0 cm	904HKMH	147.38	147.38	147.4	147.4	20 koyanagi904	2009-11-16T03:46:10Z	GKY000000000000000000000000000000000000

214 C9010D-15X-1 W, 120.0122.0 cm	904HKMH	147.68	147.68	147.7	147.7	20 koyanagi904	2009-11-16T03:46:10Z	CKY000000000000040150
215 C9010D-15X-2 W, 60.062.0 cm	904HKMH	148.48	148.48	148.5	148.5	20 koyanagi904	2009-11-16T04:14:55Z	CKY00000000000040350
216 C9010D-15X-2 W, 90.092.0 cm	904HKMH	148.78	148.78	148.8	148.8	20 koyanagi904	2009-11-16T04:14:55Z	CKY00000000000040450
217 C9010D-15X-2 W, 120.0122.0 cm	904HKMH	149.08	149.08	149.1	149.1	20 koyanagi904	2009-11-16T04:14:55Z	CKY00000000000040550
218 C9010D-15X-3 W, 60.062.0 cm	904HKMH	149.885	149.885	149.905	149.905	20 koyanagi904	2009-11-16T04:46:34Z	CKY000000000000040750
219 C9010D-15X-4 W, 60.062.0 cm	904HKMH	150.895	150.895	150.915	150.915	20 koyanagi904	2009-11-16T05:18:32Z	CKY000000000000041050
220 C9010D-16X-1 W, 60.062.0 cm	904HKMH	156.58	156.58	156.6	156.6	20 koyanagi904	2009-11-16T06:42:08Z	CKY000000000000041350
221 C9010D-16X-1 W, 90.092.0 cm	904HKMH	156.88	156.88	156.9	156.9	20 koyanagi904	2009-11-16T06:42:09Z	CKY000000000000041450
222 C9010D-16X-1 W, 120.0122.0 cm	904HKMH	157.18	157.18	157.2	157.2	20 koyanagi904	2009-11-16T06:42:09Z	CKY000000000000041550
223 C9010D-16X-2 W, 60.062.0 cm	904HKMH	157.985	157.985	158.005	158.005	20 koyanagi904	2009-11-16T07:13:17Z	CKY000000000000041750
224 C9010D-16X-2 W, 90.092.0 cm	904HKMH	158.285	158.285	158.305	158.305	20 koyanagi904	2009-11-16T07:13:17Z	CKY000000000000041850
225 C9010D-16X-2 W, 120.0122.0 cm	904HKMH	158.585	158.585	158.605	158.605	20 koyanagi904	2009-11-16T07:13:17Z	CKY000000000000041950
226 C9010D-16X-3 W, 60.062.0 cm	904HKMH	159.365	159.365	159.385	159.385	20 koyanagi904	2009-11-16T07:44:01Z	CKY00000000000042150
227 C9010D-16X-3 W, 90.092.0 cm	904HKMH	159.665	159.665	159.685	159.685	20 koyanagi904	2009-11-16T07:44:01Z	CKY00000000000042250
228 C9010D-16X-3 W, 120.0122.0 cm	904HKMH	159.965	159.965	159.985	159.985	20 koyanagi904	2009-11-16T07:44:01Z	CKY00000000000042350
229 C9010D-16X-4 W, 58.060.0 cm	904HKMH	160.75	160.75	160.77	160.77	20 koyanagi904	2009-11-16T08:15:52Z	CKY00000000000042550
230 C9010D-18X-1 W, 14.016.0 cm	904HKMH	175.12	175.12	175.14	175.14	20 koyanagi904	2009-11-16T08:57:26Z	CKY00000000000042850
231 C9010D-19X-1 W, 60.062.0 cm	904HKMH	185.08	185.08	185.1	185.1	20 koyanagi904	2009-11-16T11:44:39Z	CKY00000000000043150
232 C9010D-21X-2 W, 60.062.0 cm	904HKMH	204.585	204.585	204.605	204.605	20 mochizuki904	2009-11-16T15:11:14Z	CKY00000000000043750
233 C9010D-27X-1 W, 43.045.0 cm	904HKMH	255.91	255.91	255.93	255.93	25 koyanagi904	2009-11-17T06:28:54Z	CKY00000000000044950
234 C9010D-27X-2 W, 47.049.0 cm	904HKMH	256.62	256.62	256.64	256.64	20 koyanagi904	2009-11-17T06:47:15Z	CKY00000000000045150
235 C9010D-27X-CC W, 15.017.0 cm	904HKMH	256.84	256.84	256.86	256.86	20 koyanagi904	2009-11-17T07:08:48Z	CKY00000000000045350
236 C9010D-28X-1 W, 60.062.0 cm	904HKMH	265.58	265.58	265.6	265.6	20 koyanagi904	2009-11-17T08:43:39Z	CKY00000000000045550
Exp.904 SS sample list

No. Sample source	Sample code	Top Depth [m CSF-A]	Top Depth [m CSF-B]	Bottom Depth [m CSF-A]	Bottom Depth [m CSF-B]	Sample volume (cm3) Sample entered by
1 C9010A-1H-1 A, 14.0 cm	SS	0.14	0.14	0.14	0.14	0.1 nomaki904
2 C9010A-1H-1 A, 112.0 cm	SS	1.12	1.12	1.12	1.12	0.1 nomaki904
3 C9010B-1H-1 A, 18.0 cm	SS	0.18	0.18	0.18	0.18	0.1 nomaki904
4 C9010B-1H-1 A, 120.0 cm	SS	1.2	1.2	1.2	1.2	0.1 nomaki904
5 C9010B-2H-4 A, 130.0 cm	SS	10.15	9.869	10.15	9.869	0.1 nomaki904
6 C9010B-3H-7 A, 53.0 cm	SS	22.68	21.757	22.68	21.757	0.1 nomaki904
7 C9010B-4H-2 A, 82.0 cm	SS	24.845	24.712	24.845	24.712	0.1 mochizuki904
8 C9010B-5H-4 A, 10.0 cm	SS	35.29	35.22	35.29	35.22	0.1 mochizuki904
9 C9010B-5H-6 A, 86.0 cm	SS	38.485	38.311	38.485	38.311	0.1 mochizuki904
10 C9010B-5H-6 A, 110.0 cm	SS	38.725	38.543	38.725	38.543	0.1 mochizuki904
11 C9010B-5H-7 A, 15.0 cm	SS	39.18	38.983	39.18	38.983	0.1 mochizuki904
12 C9010B-5H-7 A, 64.0 cm	SS	39.67	39.457	39.67	39.457	0.1 mochizuki904
13 C9010B-5H-8 A, 48.0 cm	SS	40.91	40.657	40.91	40.657	0.1 mochizuki904
14 C9010B-6H-5 A, 80.0 cm	SS	47.935	47.556	47.935	47.556	0.1 mochizuki904
15 C9010B-6H-5 A, 90.0 cm	SS	48.035	47.649	48.035	47.649	0.1 mochizuki904
16 C9010B-6H-8 A, 85.0 cm	SS	52.205	51.522	52.205	51.522	0.1 mochizuki904
17 C9010B-8X-4 A, 20.0 cm	SS	64.75	64.75	64.75	64.75	0.1 nomaki904
18 C9010B-11X-3 A, 75.0 cm	SS	93.89	93.89	93.89	93.89	0.1 nomaki904
19 C9010B-14X-3 A, 60.0 cm	SS	122.035	122.035	122.035	122.035	0.1 mochizuki904
20 C9010B-14X-4 A, 54.5 cm	SS	123.18	123.18	123.18	123.18	0.1 mochizuki904
21 C9010B-15X-2 A, 90.0 cm	SS	130.565	130.51	130.565	130.51	0.1 mochizuki904
22 C9010B-15X-6 A, 52.0 cm	SS	134.325	134.177	134.325	134.177	0.1 mochizuki904
23 C9010B-15X-8 A, 26.0 cm	SS	136.395	136.196	136.395	136.196	0.1 mochizuki904
24 C9010B-16X-2 A, 56.0 cm	SS	139.4	139.4	139.4	139.4	0.1 mochizuki904
25 C9010B-16X-2 A, 60.0 cm	SS	139.44	139.44	139.44	139.44	0.1 mochizuki904
26 C9010D-3H-5 A, 73.0 cm	SS	39.595	39.595	39.595	39.595	0.1 nomaki904
27 C9010D-15X-2 A, 50.0 cm	SS	148.38	148.38	148.38	148.38	0.1 nomaki904
28 C9010D-19X-1 A, 87.0 cm	SS	185.35	185.35	185.35	185.35	0.1 yasunagam
29 C9010D-21X-1 A, 45.0 cm	SS	203.93	203.93	203.93	203.93	0.1 yasunagam

Sample time-stamp

J-CORES sample ID 2009-11-10T07:02:19Z CKY0000000000004350 2009-11-10T07:02:36Z CKY0000000000004450 2009-11-10T07:04:08Z CKY0000000000004550 2009-11-10T07:07:39Z CKY00000000000004650 2009-11-10T07:07:39Z CKY00000000000004750 2009-11-10T07:07:39Z CKY0000000000004850 2009-11-10T12:12:31Z CKY00000000000005350 2009-11-10T12:18:20Z CKY0000000000005450 2009-11-10T12:21:35Z CKY00000000000005650 2009-11-10T12:21:35Z CKY0000000000005750 2009-11-10T12:21:35Z CKY0000000000005850 2009-11-10T12:21:36Z CKY00000000000005950 2009-11-10T12:21:36Z CKY00000000000000000000000 2009-11-10T12:24:03Z CKY0000000000006150 2009-11-10T12:24:03Z CKY0000000000006250 2009-11-10T12:24:03Z CKY0000000000006350 2009-11-10T07:07:39Z CKY00000000000004950 2009-11-10T07:07:39Z CKY00000000000005050 2009-11-10T22:37:10Z CKY0000000000006550 2009-11-10T22:37:10Z CKY0000000000006650 2009-11-10T22:39:09Z CKY0000000000006750 2009-11-10T22:39:09Z CKY0000000000006850 2009-11-10T22:39:53Z CKY0000000000006950 2009-11-10T22:41:01Z CKY000000000000007050 2009-11-10T22:41:01Z CKY00000000000007150 2009-11-16T09:15:46Z CKY0000000000042950 2009-11-16T05:07:36Z CKY00000000000040850 2009-11-17T15:00:33Z CKY0000000000045950 2009-11-17T15:00:33Z CKY00000000000046050 Table 6-5-4-1: Census counts to facilitate the interpretation of plots of stratigraphic trends in sediment composition at Hole C9010B.

	Core Sec	. I	nt.	lithology	Nannof	ossils Diatoms	Sponge	Spic Radiola	rians Foramin	nifers Glass	Орх.	Срх.	PI.	Pumice	Scoria
904-C9010B	1H	1	18.0	Nannofossil and diatom clay	A	A	R	VR	VR	VR	VR	VR	VR		
	1H	1	120.0	Nannofossil and diatom clay	A	A	R	VR	VR	VR	VR	VR	VR		
	2H	4	130.0	Nannofossil and diatom clay	A	A	R	VR	VR	VR	VR	VR	VR		
	3H	7	53.0	Nannofossil and diatom clay	A	А	R	VR	VR	VR	VR	VR	VR		
	4H	2	82.0	Nannofossil and diatom clay	A	A	VR	VR	VR	VR	VR	VR	VR		
	5H	4	10.0	Nannofossil and diatom clay	A	A	R	VR	VR	VR	VR	VR	VR		
	5H	6	86.0	Nannofossil clay	А	С	R	VR	VR	VR	VR	VR	VR		
	5H	6	110.0	Nannofossil clay	A	С	VR	VR	VR	VR	VR	VR	VR		
	5H	7	15.0	Nannofossil clay	С	С	VR	VR	VR	VR	VR	VR	VR		
	5H	7	64.0	Nannofossil clay	С	С	VR	VR	VR	VR	VR	VR	VR		
	5H	8	48.0		С	С	VR	VR	VR	R	VR	VR	R		
	6H	5	80.0	Sandy Silt	R	VR	VR	Ν	VR	А	R	R	R		
	6H	5	90.0	Nannofossil clay	A	С	VR	VR	VR	VR	VR	VR	VR		
	6H	8	85.0	Nannofossil clay	А	R	VR	VR	VR	VR	VR	VR	VR		
	8X	4	20.0	Nannofossil clay	A	R	VR	VR	VR	VR	VR	VR	VR		
	11X	3	75.0	Nannofossil clay	A	R	VR	VR	VR	VR	VR	VR	VR		
	14X	3	60.0	Nannofossil clay	А	R	VR	VR	VR	VR	VR	VR	VR		
	14X	4	54.5	Coarse ash with nannofossil	С	Ν	Ν	Ν	Ν	А	VR	VR	VR		
	15X	2	90.0	Nannofossil clay	А	R	VR	VR	VR	VR	VR	VR	VR		
	15X	6	52.0	Nannofossil clay	А	R	VR	VR	VR	VR	VR	VR	VR		
	15X	8	26.0	Sandy Silt with nannofossil	С	Ν	Ν	Ν	Ν	А	R	R	R		
	16X	2	56.0	Clay with nannofossil	С	R	VR	VR	VR	VR	VR	VR	VR		
	16X	2	60.0	Nannofossil clay	А	R	VR	VR	VR	VR	VR	VR	VR		

Abbr.		Parcentage		
Α	Abundant	20~		
С	Common	10~20		
R	Rare	3~10		
VR	Very Rare	0~3		
Ν	None	0		

Figures

Fig. 2-1: Site location and bathymetry. White open circles in Figs. a and b, indicate Site C9010.

35°00' ateyama -2000 Boso Canyon lzu-Oshima So-o Knoll RIAR CANTON 0 Toshima 0 34°30' 00 Niijima Canyon Niijima Miyake Canyon hikinejima 200 8 7 Miyakejima 34°00'

139°30'

140°00'

Fig. 4-1-1: Visualized plan showing where-to take samples at cores of each hole.

Exp.904 Sampling Plan

Hole A and B

To change sampling position, ask Curator before doing that. To take another sample, another Sample Request needs to be approved by Azuma, Director General, CDEX. Contact EPM.

F4-1-1.xls

Exp.904 Sampling Plan

To change sampling position, ask Curator before doing that. To take another sample, another Sample Request needs to be approved by Azuma, Director General, CDEX. Contact EPM.

F4-1-1.xls

Exp.904 Sampling Plan

To change sampling position, ask Curator before doing that. To take another sample, another Sample Request needs to be approved by Azuma, Director General, CDEX. Contact EPM.

F4-1-1.xls

Fig. 6-1: Core processing flow.

Expedition 904 Core Flow

Fig. 6-2: Stratigraphic changes in various parameters at Holes 904-C9010A, B, C and D: Core recovery, sampling horizons of headspace gas analyses (HS) and palaeontology (904HKMCC), methane concentration in headspace gases (ppm), sampling horizons for routine microbiological sampling (RMS; 904NMB and 904NMA), gamma ray attenuation density (g/cm³), magnetic susceptibility (×10⁻³ SI), P-wave velocity (m/s), electrical resistivity (Ωm) and natural gamma radiation (CPS) measured by using a Multi Sensor Core Logger (MSCL), lithology, sedimentary structures and drilling disturbances observed in split core section halves, and sampling horizons for age-modelling (904HKMC and 904HKMH).

Sedimentary Structure

Drilling Disturbance

Lithol... Fossils Biotu... Diag... Volca... Pore .. Drilling Disturbance Sedi.. Sedi...

904HKMH

SF-B (m)	Recovery	HS 904HKCC	Methane, HS (ppm) 904NMA	MSCL GRA density (g/cm ³) M	lagnetic susceptibili P-wavev ty (×10□³ SI)	velocity (m/s) Electrical resistivity Ωm)	(NGR (CPS)	Lithology	Sedimentary Structure	Drilling Disturbance	904HKMC	904HKMH
			0 0 0						Se Se Lith Fossils Bio	ot Dia Vol Por Drilling Disturbance		
			0000 10000.00 30000.00		0.00 500.00 1500.00 1500.00	4 5 0 1500	0000 0000 0000 20.000					
15.000) - 1H									i	⊲— _{904НКМС}	904нкмн
16.000)-									(<⊢_ _{904НКМС}	<1 904нкмн
18.000								 			<\904НКМС	<
19.000)								_	ţ	<904нкмс	<+ 904нкмн <-
20.000) -							<u> </u>	∇			
21.000								 	$\overline{\nabla}$	¦ ▲		
22.000								 		↓ ſ		
23.000) - -							 		i i	 904нкмс √—904нкмс 	
25.000	2H	<⊢_ _{904НКСС}								₹ •	€904нкмс	
26.000) -								$\overline{\nabla}$, ° ▲		
27.000) -									¥		904НКМН
28.000								 // // // //		ç o o	✓ 904HKMC	
29.000) -							<u> </u>		¥ ▼ I		904НКМН 904НКМН
30.000												904HKMH 904HKMH
32.000) -							 <u></u>			✓ 904HKMC	904нкмн
33.000											<⊢_ _{904HKMC}	
34.000) – зн	<⊢_ _{904НКСС}										
35.000) -									° ↓ ° ▼		
36.000) -									f		904НКМН 904НКМН
37.000										↓ ↓		
38.000											4	
40.000								 			<⊢_ _{904НКМС}	904нкмн
41.000			904NMA								<904нкмс	
42.000)									▼ ↑		Ч_904НКМН 904НКМН
43.000			1 904NMA								< <u> </u>	
44.000	→ 4H) →	904HKCC									 904HKMC √-904HKMC 	<u></u> 904нкмн
45.000			- - - - - - - - - - - - - - - - 904NMA							Ť	<\	<br 904нкмн 904нкмн
46.000										v	<	
48.000)											
49.000			⊲— _{904NMA}						~	▼		904HKMH
50.000)							<u> </u>		i A	✓ 904HKMC	
51.000)-				MW I					ş ţ		904НКМН 904НКМН
52.000) -											904HKMH
53.000) _ 5X	<⊢_ _{904НКСС} 	♥ 904NMA							<pre></pre>		
54.000												
56.000)-											
57.000)-											
58.000												
59.000) -											
60.000)-											
61.000												
63.000	6X										<⊢	
64.000		< _{HS}	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □									904НКМН 904НКМН
65.000								 			- 904HKMC	904НКМН 904НКМН
66.000)	904HKUU										_904нкмн 904нкмн
67.000)											
68.000												
69.000												
70.000												
72.000	7x								—		<u> </u>	
73.000								1.1.1.	$\overline{\Delta}$	I	√904НКМС	
74.000		∼ HS						<u>4 1 1</u> 		i	<904нкмс	
75.000									~	ž		_904НКМН
76.000		<⊢_ _{904НКСС}										√904НКМН
77.000												
78.000												
80.000												
81.000												

904-C9010CnD; 904-C9010D; Depth 14.98–293.48(mbsf, CMP)

CSF-B (m)

Fig. 6-1-1: Summary of lithology, radiolarian events, and sedimentation rates at Site C9010 in the middle latitude of the Northwest Pacific Ocean.

Hole C9010B

Hole C9010C, D

Fig. 6-2-1: Stratigraphic changes in methane concentration (ppm) in headspace gas at Holes 904-C9010A, B and D.

Fig. 6-6-1: (a) Core cutting tools rubbed with alcohol, and autoclaved end-caps, used at Core Cutting Area. (b) Sterilizing latex gloves with rubbing alcohol during sample processing at Core Cutting Area.

Fig. 6-6-2: (a, b) Whole round core cutting operated at QA/QC Sampling Room. (c) Samples were sealed and labelled immediately after cutting.

904 690108 $0.0\,0.0\,1\,H=0.5=w_{\rm P}$ +130.0//+140.0 904NMA

CHINYU

al at a ---

2 the for

90, 11**11 11** 90, 10**11 11** 00000 18 00 18 130, 0, 0 0 18 140, 0

904NMA

....

100

abot 2

11-150

111350

21

1.6.80

100 1.11 1. A \$ 950 111 11:53

Fig. 6-6-3: (a) Samples were put in gas-barrier bags in anaerobic atmosphere. (b) A sample firmly sealed in a gas barrier bag. (c, d) Samples were kept cold with ice gel packs against warm gas filled in the anaerobic work bench.

Fig. 6-6-4: (a) An autoclaved spatula contaminated with tar-like exsolution. (b) Handles of autoclaved spatulas showing variation of exsolution.

Fig. 6-6-5: (a) End-caps processed with autoclaves. (b) New type end-caps were bended, shrunk and stuck together by autoclaving.

Fig. 6-6-6: (a) A dummy samples storage at -80°C. (b) A clack was formed on the new type end-cap.

Fig. 6-6-7: Plastic bags containing suspension of fluorescent microspheres, attached on spacer.

Fig. 6-6-8: Broken plastic bag in recovered cores. (a) Above the core liner of Core 3H. (b) Above the core liner of Core 4H. (c) Lower part in the core liner of Core 4H.

Fig. 6-6-9: Tracer bag that was not broken and remained in the spacer.

Fig. 6-7-1: 904HKCC: the whole round samples from the core catcher. They were cut out from the recovered core catcher samples (a) and soon packed (b).

Fig. 6-7-2: 904HKMC: the cubed samples from the working halves. The plastic cubes (a) were plugged in (b, right cube) and out with a hook-like spatula (b, left cube). Each cube was labeled and fully sealed up (c) and zipped (d).

+030.0//+032.0

904-C90100

30 - 32 904HKMC

- 2-

Fig. 6-7-3: 904HKMH: the half round core samples. The samples were taken with a stainless steel scoop for quarter round sampling (a). The rim of the sediments was swept out with a spatula with notches (b and c). These samples were packed in plastic bags (d).

Fig. 7-1: X-ray CT image examples of horizontal cracks (upper) and vertical cracks (lower) observed in silty clay sediments.

C9010B-9H-3 (81.98 - 82.85 m CSF)

Тор

Тор

Horizontal cracks

C9010B-12X-2 (101.07 – 102.12 m CSF)

Vertical cracks

Appendices

A: Visual core descriptions for each core shown with some physical properties measured by a Multi Sensor Core Logger (MSCL) as well as re-constructed coronal images of X-ray CT scan.

B: Photographs of archive halves of split core sections. Core tops direct to the right side of photographs. Sections are lined up from the bottom to the top of the photographs. The lowest section in each photograph is with its identification label.

904 VCD; 904-C9010D-1H; CSF (m)	Depth 14.98–25.58(mbsf) section X ray CT scan (se	Lithology	Sedimentary Structure Drilling Disturba	Comment	GRA density (g/cm ³) Magnetic susceptibi	P-wave velocity (m/s Electrical resistivity NGR [CPS]: MSCL-W
	index caon)		Sed Lith Fossils Biot Mun Drilling Distur		itty (* 10 31)) (1211)
					6 6 2	000 0000 0000 0000 0000 0000 0000 0000 0000
15.000 -		[
15.200						
15.400-						
15.600-						
15.800-						
16.000-						
16.200 -						
16.400-						
16.600						
16.800			1			
17.000						
17.200 -	2					
17.400						
17.600-			¥			
17.800-						
18 000-						
18 200-						
18 400-			Ţ			
18 600 -	-					
18 900-			↓ I			
10.000						
19.000					$\left \begin{array}{c} \xi \\ \xi \\ \zeta \\$	
19.200		\mathbb{X}				
19.400 -						
19.600 -					$ \langle \rangle$	
19.800 -						
20.000 -	4		$\overline{\mathbf{a}}$			
20.200 -			Ļ			
20.400						
20.600 -			<u></u>			
20.800 -			•			
21.000 -						
21.200 -						
21.400 -	- - 5					
21.600			∽ ↑			
21.800			Ļ			
22.000 -						
22.200			†			
22.400					$ \rangle$	
22.600					$ \rangle \rangle$	
22.800 -	6					
23.000						
23.200 -						
23.400 -			•			
23.600 -			†			
23.800						
24.000					1 / 11	
24.200			Ļ			
24.400					$ \leq $	
24.600 -	F		^			
24.800 -	8					
25.000 -	$\left - \right $		Ļ			
25.200	-					
25.400			4			
		\times			1	╾┥╹╾╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸

904 VCD; 904-C9010D-3H; CSF (m)	Depth 33.98–43.45(mbsf) section X ray CT scan (se index ction)	Lithology	Sedimentary Structure	Drilling Disturba	Comment	GRA density (g/cm³)	Magnetic susceptibi lity (×10 ° SI)	P-wave velocity (m/s	Electrical resistivity (Ωm)	NGR [CPS]: MSCL-W
	index biolity		Sedi Litho Fossils Biotu	Muns Drilling Distur	sedimentology	,	ing (*18 - 61)	,	(2007)	
					clay and thick volcanic ash layers. At the 80-88cm of section 1, plactic bag of Masui-san fluorescent tracer experiment	200	000000	1200	0 7 7	0000 00000 00000
34.000 -	-			Ť	had been found.		 			``````````````````````````````````
34.200	-	<u> </u>					5		3	
34.400	-					1Ş	1		1 >	
34.600				1		$ \leq$	1	\sim	\downarrow	
34.800				ž.					1 {	
35.000						\geq			12	
35.200	-	\ge		•						
35.400 -	-					$\{ \zeta \}$	1			
35.600	-	<u> </u>				\downarrow		\leq	-	
35.800	-			Ī		\neq		\downarrow		
36.000	_			•		1 5				
36.200 -										
36.400		0 0 0		Ť						
36.600 -						\downarrow			-	
36.800 -	3					\downarrow			-	
37.000-						\downarrow			1	
37.200 -		11 11 11 11 11 11		Ļ		+		$\frac{1}{2}$		
37.400 -	-					+				$\left \frac{1}{2} \right\rangle$
37.600 -		ိုလိုလိုင်		Î		15		\leq		
37.800-						\downarrow	$ \downarrow \rangle$		-	
38.000 -		<u>, , , ,</u>				+			-	
38.200 -	- 4			1						
38.400 -	-							15		
38.600						\downarrow		$ \langle \rangle$		
38.800 -	-			+		\downarrow				
39.000 -				Ţ				5		
39.200 -				+		\downarrow		$ \langle \rangle$	-	
39.400 -						\downarrow	$ \rangle$		-	
39.600 -	- 5									
39.800 -				Ť					1	
40.000		222								
40.200 -		\times		Ļ						
40.400				Ť		\downarrow				
40.600								$\left \frac{1}{2}\right\rangle$		
40.800										
41.000				ļ		\mathbb{N}	{			
41.200						\mathbf{H}			$\frac{1}{2}$	
41.400									\leq	
41.600				•			11			
41.800 -				Ť						
42.000	- 7						1	-		
42.200		<u>, , ,</u>				15	1			
42.400 -						\downarrow $>$			15	
42.600 -				Ť		$\frac{1}{2}$			1	
42.800						\downarrow		15		
43.000	8					\downarrow	11/		1)	
43.200 -				Ļ		1	1		1	
43.400	_ cc					1			-]-[

904 VCD; 904-C9010D-5 CSF (m)	X; Depth 52.98–53.46(mbsf section X ray CT scan (index ction)) se Lithology	Sedimentary Structure	Drilling Disturba nce	Comment	GRA density (g/cm³)	Magnetic susceptibi lity (×10 ° SI)	P-wave velocity (m/s	Electrical resistivity (Ωm)	NGR [CPS]: MSCL-W
53.00	o-1 []		Sedi Litho Fossils Biotu Mu	Ins Drilling Distur	sedimentology This quite short core only consist of scoria. At the top part, sity clay mixed in the scoria, but it could be a re-deposition in the core.	00. <u>0</u> 9. 	0.00 	····	<u></u>	000 000 000 000 000 000 000 000 000 00
53.20										

904 VCD: 904-C9010D-8X; Depth 81.48–81.49(mbsf) CSF (m) section X ray CT scan (se Lithology Sedimentary Structure Dnilling Disturba nce Comment GRA density (g/cm³) Magnetic susceptibil P-wave velocity (m/s Electrical resistivity NGR [CPS]: MSCL-W lity (×10 ² SI)) (Cm) (Cm)

904 VCD: 904-C9010D-11X: Depth 108.48–108.49(mbsf) CSF (m) section X ray CT scan (se Lithology Sedimentary Structure Drilling Disturba nce
Comment GRA density (g/cm³) Magnetic susceptibil P-wave velocity (m/s Electrical resistivity MSR [CPS]: MSCL-W lity (×10 ² SI)) (Ωm)
NGR [CPS]: MSCL-W

904 VCD; 904-C9010D-12X	c; Depth 1	17.98–119.16(mbst)										
CSF (m)	section index	X ray CT scan (se ction)	Lithology	Sedimentary Structure	Drilling Disturba nce	Comment	GRA density (g/cm ^a)	Magnetic susceptibi lity (×10 ° SI)	P-wave velocity (m/s)	Electrical resistivity (Ωm)	NGR [CPS]: MSCL-\	N
			Sed	i Litho Fossils Biotu Muns	Drilling Distur							
							20.00	00.00 900.00	1200	. P Y *	0.000 10.000	30 000
118.000 -	ŀ		<u></u>		(<u> </u>		$ \langle$	1.	,	
118.200 -	E											
118.400 -	E'							5	5			
118.600 -	ŀ		<u> </u>		i			15	$\left \right\rangle$			
118.800 -			<u>~~</u>		¢							
119.000 -			~~~				-		1]]	_

904 VCD; 904-C9010D-17	'X; Depth '	165.48–165.53(mbsf))								
CSF (m)	section	X ray CT scan (se	Lithology	Sedimentary Structure	Drilling Disturban	Comment	GRA density (g/cm3)	Magnetic susceptibili	P-wave velocity (m/s)	Electrical resistivity (NGR [CPS]: MSCL-W
	index	ction)			ce			ty (×10 ° SI)		Ωm)	
165.480 165.500 165.520		2	X	Sedi Lithol Fossils Biotu	Muns Drilling Distur	sedimentology Whole part of the CC sample was sampled for micropaleontology. Lower pappox. 2 cm thickness of black mudstone or tuff has been found.					

904 VCD; 904-C9010D- CSF (m)	18X; Depth section index	174.98–175.43(mbst X ray CT scan (se ction)	f) Lithology	Sedimentary Structure	Drilling Disturban ce	Comment	GRA density (g/cm ³) Magnetic susceptibili P-wave velocity (m/s) Electrical resistivity (NGR [CPS]: MSCL- ty (×10 ³ SI) Ωm)
175.0 175.2 175.4	00 1 00	c		Sedi Lithol Fossils Biotu Mu	ns Drilling Distur	sedimentology Pieces of drill pipores. Hemipelagic sediments in section 1 are so hard. In CC, the sediment is still soft.	

904 \	/CD; 904-C9010D-2	0X; Depth	193.98-193.99(mbsf)								
	CSF (m)	section index	X ray CT scan (se ction)	Lithology	Sedimentary Structure	Drilling Disturban ce	Comment	GRA density (g/cm³)	Magnetic susceptibili ty (×10 ° SI)	P-wave velocity (m/s)	Electrical resistivity (Ωm)	NGR [CPS]: MSCL-W
				Sec	di Lithol Fossils Biotu Muns.	Drilling Distur	sedimentology Approx 20 grains of scoria and few pumices.					
	193.98	°][]									
	193.98	2										
	193.98	4- C	c									
	193.98	6-										
	193.98	8-										
	193.99	u	-									

CSF (m) Lithology Sedimentary Structure Drilling Disturban Comment GRA density (g/cm ²) Magnetic susceptibili P-wave velocity (m/s) Electrical resistivity (NGR [C lg (×10 ° SI)	904 VCD; 904-C9010D-29X;	C; Depth 274.48	3–274.49(mt	bst, CMP	')										
Sedi Lithol Fossils Biotu Muns Drilling Distur 274.482 274.482 274.484 274.488 274.48	CSF (m)	Lithology	Se	edimentar	ry Struct	ture	0	Drilling Disturban ce	Comment	GRA density (g/cm ^a)	Magnetic susceptibili ty (×10 ° SI)	P-wave velocity (m/s)	Electrical resistivity (Ωm)	NGR [CPS]: N	ASCL-W
274.482 274.484 274.486 274.486 274.486	1		Sedi Li	ithol Fo	ossils I	Biotu N	Muns	Drilling Distur	sedimentology Core catcher sample of a scoria grain (5 mm).						
	274.482 - 274.484 - 274.486 - 274.488 -														

Г

904	VCD; 904-C9010	D-30X; D	epth 283	3.98–284.47(mbsf))								
	CSF (m)	se	ction X	ray CT scan (se	Lithology	Sedimentary Structure	Drilling Disturba	Comment	GRA density (g/cm ^a)	Magnetic susceptibi	P-wave velocity (m/s	Electrical resistivity	NGR [CPS]: MSCL-W
		in	ndex	ction)			nce			lity (×10 ° SI))	(Ωm)	
						Sedi Litho Fossils Biotu	Muns Drilling Distur						
	284 284 284	4.000 - 4.200 - 4.400 -	cc 										

