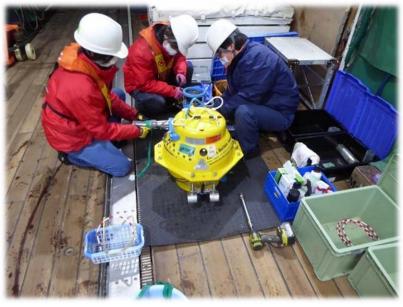
doi: 10.17596/0003412



# **KM22-07**



Wide-area 2-D seismic survey of earthquake source faults in and around the Kuril and Japan Trenches area


May. 26 - Jun. 17, 2022

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

# Contents:

- 1. Cruise Information
- 2. Researchers
- 3. Overview of Observations
- 4. Notice on using





### 1. Cruise Information:

- (1) Cruise ID, Ship name: KM22-07, R/V KAIMEI
- (2) Title of the cruise: 2022 FY "Wide-area 2-D seismic survey of earthquake source faults in and around the Kuril-Japan Trenches area"
- (3) Proposal title:

(6)

- High precision wide-area survey of earthquake source faults: seismic survey and crustal activity observation
- (4) Cruise period, Port call: 05/26/2022–06/17/2022, Yokosuka Headquarters to Yokosuka Headquarters
- (5) Research Area: Off the Southeastern Hokkaido to off the Ibaraki Prefecture, Northwestern Pacific Ocean

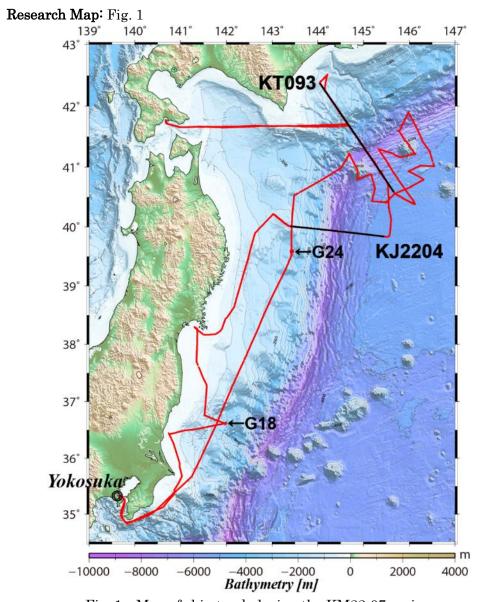



Fig. 1 Map of ship track during the KM22-07 cruise.

#### 2. Researchers:

#### (1) Chief Scientists [Affiliation]:

Tetsuo NO [Research Institute for Marine Geodynamics (IMG)/JAMSTEC]

# (2) Representative of Science Party [Affiliation]:

Seiichi MIURA [IMG/JAMSTEC]

## (3) KM22-07 Shipboard Science Party:

Tetsuo NO [IMG/JAMSTEC]: Chief Scientist

Ryo MIURA [IMG/JAMSTEC]: Vice-chief Scientist

Yue SUN [University of Tokyo]: Graduate student

Yuki OHWATARI [Nippon Marine Enterprises, Ltd. (NME)]: Chief marine technician

Masayuki TOIZUMI [NME]: Marine technician

Keita SUZUKI [NME]: Marine technician

Kenya YAMANAKA [NME]: Marine technician

Haruki DOI [NME]: Marine technician

Kimiko SERIZAWA [NME]: Marine technician

Misaki HORIUCHI [NME]: Marine technician

Kaoru TAKIZAWA [NME]: Marine technician

Ikumasa TERADA [NME]: Marine technician

Hidenori SHIBATA [NME]: Marine technician

Takehiro HIGASHI [NME]: Marine technician

Tatsuya SUGIYAMA [NME]: Marine technician

Hiroyoshi SHIMIZU [NME]: Marine technician

Taiki KAWANO [NME]: Marine technician



#### 3. Overview Of Observations:

#### (1) Objective:

This survey's study areas are the Kuril Trench and the northern parts of the Japan Trench; there is a high tendency for large-magnitude earthquakes to occur in the subduction zones and outerrise areas of these regions (e.g., Earthquake Research Committee, 2019). In the past, such major earthquakes as the 1968 Tokachi–Oki Earthquake ( $M_J$ 7.9), the 1994 Sanriku Earthquake (MJ7.6), and the 2003 Tokachi–Oki Earthquake (MJ8.0) have occurred around these survey areas. Recently, seismic activity has increased off the east coast of Aomori Prefecture (Uehira et al., 2021). In addition, the Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net) has been deployed around the Japan and Kuril Trenches since the late 2010s (National Research Institute for Earth Science and Disaster Resilience, 2019), and new knowledge such as research on low-frequency tremor activity (Nishikawa et al., 2019; Tanaka et al., 2019) has been obtained. Moreover, source fault mapping and tsunami simulations have been performed on the basis of seismic and bathymetric surveys and seismic observation data around the outer-rise region of the Japan Trench (Baba et al., 2020). However, there is still a lack of crustal structure data for realtime tsunami predictions and earthquake cycle simulations in these trenches. This survey will be critical for determining structural changes from the Kuril Trench to the Japan Trench and gathering basic data on the possibility of large earthquakes occurring at this junction.

In the 2000s, JAMSTEC conducted the seismic surveys in the vicinity of these survey areas using R/V KAIREI and KAIYO. For example, based on ocean bottom seismograph (OBS) survey conducted using R/V KAIYO, Ito et al. (2004) investigated the geometry of the plate boundary off the eastern Aomori Prefecture, which includes the coseismic rupture zone of the 1994 Sanriku—Oki earthquake. Moreover, the results of the seismic surveys of the KR09-06 and KY09-03 cruises showed a markedly different seismic velocity structure in the Japan and Kuril Trenches, reflecting differences in the outerrise seismic activity that occurred near the two trenches (Fujie et al., 2019). Following the 2011 Tohoku—Oki earthquake, the R/V YOKOSUKA (YK16-17, YK18-12) conducted high-resolution seismic surveys across the bottom of the trench using a portable multichannel seismic reflection (MCS) system, and the seismic survey by the R/Vs KAIREI and KAIMEI also covered the area from southeast Hokkaido to the east of the Aomori Prefecture to investigate the crustal structure imaging of the plate boundary fault and outerrise faults in the subduction zone since 2019 (KR19-07, KM20-E02, and KM21-04 cruises).

In May—June 2022, a seismic survey was conducted from southeast Hokkaido to Iwate Prefecture. Additionally, OBSs for earthquake observation, deployed around the outer slopes of the Kuril Trench off the southeastern Hokkaido during the YK22-07 cruise in April 2022, were recovered. Additionally, we observed seafloor crustal movements at two sites to elucidate the interplate coupling and stress accumulation process around the Japan Trench.

# (2) List of observational instruments:

# 1) MCS survey (Figs. 2–4):

MCS surveys were conducted along the line KJ22204, with a total length of approximately  $176 \ \mathrm{km}$ .



Fig. 2 Seismic system on R/V KAIMEI.

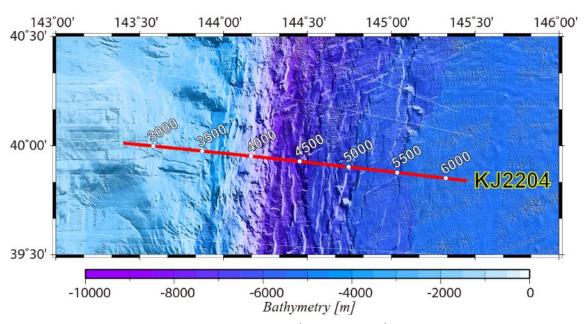



Fig. 3 Location map showing the MCS lines (solid red line) of this cruise. The white numbers indicate the shot point number.

#### a) Source:

To obtain superior-quality MCS data, we shot an air gun array with a spacing of 50 m. The tuned air gun array had a maximum total volume of 10,600 cubic inches (approximately 87 L) and consisted of 44 air guns (Bolt Long Life Air Gun). The standard air pressure was 2,000 psi (approximately 14 MPa). During the experiment, the air gun array depth was maintained at 10 m below the sea surface. More information about the towing geometry is shown in Fig. 4.

#### b) Receiver:

During the air gun shooting, we towed a hydrophone streamer cable with a group interval of 12.5 m (Sentinel Digital Streamer System, Sercel Inc.). Signals from eight sensors in the same group (channel) were stacked before A/D conversion. The towing depth of the streamer cable was maintained at 12 m below the sea surface using depth controllers called Bird (ION DigiCOURSE streamer depth controllers).

#### c) Recording and navigation systems

A Sercel Seal System, constructed by Sercel Inc., was used in this survey, which collected seismic data on a hard disk in the SEG-D 8058 Rev.1 format. The system delay was set to 200 ms, the sampling rate was 2 ms, and the recording length was 16 s. A differential global positioning system was used to determine the accurate positions. We adopted Fugro's StarFix\_G2 as the primary positioning system and backup. We used ORCA (ION) as navigation software for seismic data acquisition. Shot times and points were set on the ORCA, and a trigger signal was sent to the recording system and the gun controller (SeaMap GunLink2500). The navigation parameters are as follows: the survey datum was WGS84, the map projection was UTM, and the UTM zone parameter was 55 N.



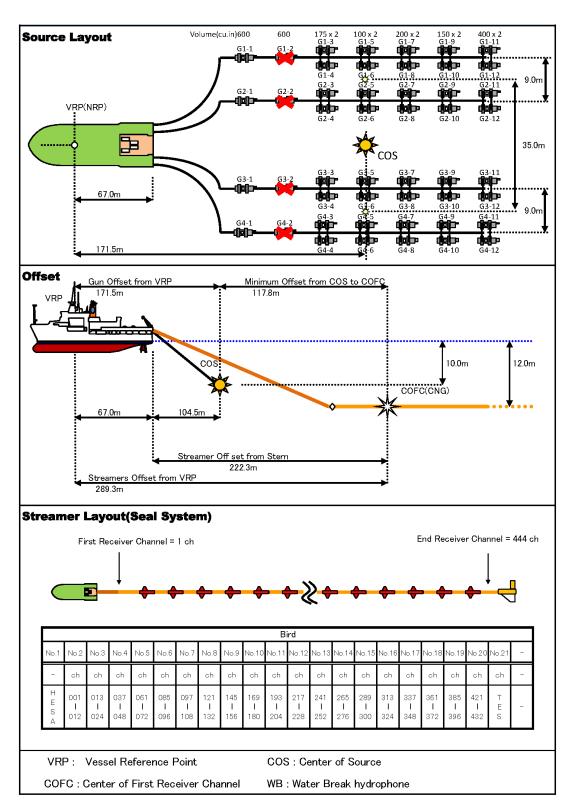



Fig. 4 Vessel towing geometry during this seismic survey. The top figure shows the source (air gun system) layout, the middle figure represents the source—receiver depth and position and navigation offsets, and the bottom figure shows the streamer cable configuration during the MCS survey.

# d) Onboard processing of MCS data:

Raw MCS data from the study areas were processed onboard for quality control. Onboard data processing was performed in the conventional processing sequence, which included trace header edit, common midpoint (CMP) binning with an interval of 6.25 m, bandpass filter, datum correction, amplitude compensation, predictive deconvolution, velocity analysis, normal moveout correction, multiple suppression, mute, CMP stack, and time migration (Fig. 5).

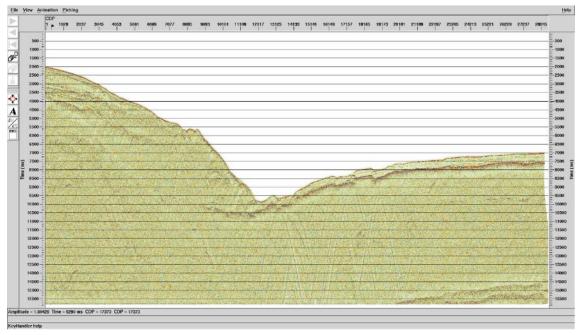



Fig. 5 Example of MCS imaging with onboard processing on the KJ2204 line.



# 2) Seismic survey using OBSs

The seismic survey using OBSs was conducted along the line KT093 (Fig. 6). The air gun array in this survey was placed in almost the same configuration as that in the MCS survey (Fig. 3), and we shot an air gun array with a spacing of 200 m.

78 OBSs (Sites 1–78) for the seismic survey were deployed on the YK22-07 cruise. Two types of OBSs were used depending on the depth of the water in which they were deployed. Type "K" OBSs (Shinohara et al., 1993; Kanazawa and Shiobara., 1994) were used for depths shallower than 6000 m (Tables 1 and 5), and Type "U" OBSs (Asakawa et al., 2012) were used for depths deeper than 6000 m (Tables 2 and 5). OBSs were retrieved during this cruise. Fig. 7 shows examples of record sections for OBSs (Sites 30 and 60).

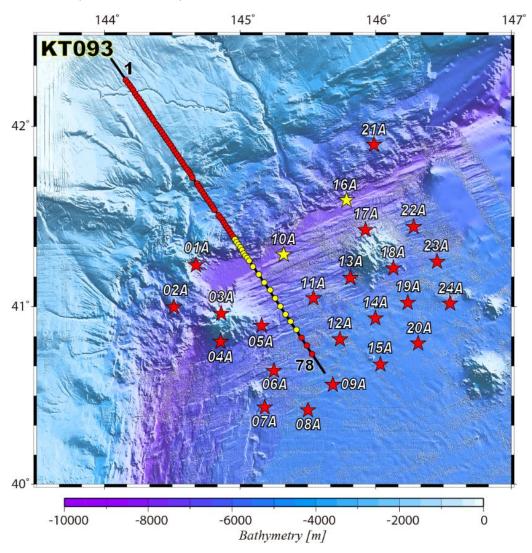



Fig. 6 Location maps of OBS sites. The black line represents the line KT093, and circles represent the positions of OBS sites for seismic survey (red: Type K; yellow: Type U). Stars represent OBSs for earthquake observation (red: Type K; yellow: Type U).

| Туре                   | POBS-150, Katsujima Co., LTD.                              |  |  |  |  |  |
|------------------------|------------------------------------------------------------|--|--|--|--|--|
| Maximum Depth          | 6000 m                                                     |  |  |  |  |  |
| Dimension (w/ anchor)  | 120 * 100 * 52 cm                                          |  |  |  |  |  |
| W-1-1-4 (11)           | 101 kg in air, 46 kg in water (Site1–57,75–78, JKT01A–     |  |  |  |  |  |
| Weight (w/ anchor)     | 09A, 11A–15A, 17A–24A)                                     |  |  |  |  |  |
|                        | Three-component Geophone [One vertical and two             |  |  |  |  |  |
| Sensor                 | horizontal components, Natural frequency: 4.5Hz,           |  |  |  |  |  |
|                        | Sensitivity:0.8V/inch/s (OPEN)] & Hydrophone               |  |  |  |  |  |
| Recorder               | SPM2, Nippon Marine Enterprises, Ltd.                      |  |  |  |  |  |
| Recording System       | Sampling continuously (Timer control is possible for start |  |  |  |  |  |
| Necoraing System       | time)                                                      |  |  |  |  |  |
| Sampling Rate          | 24 bit, 250Hz                                              |  |  |  |  |  |
| Power                  | Lithium-Ion Rechargeable Battery                           |  |  |  |  |  |
| Acoustic Communication |                                                            |  |  |  |  |  |
| & Release System       | Electric corrosion method                                  |  |  |  |  |  |
| Attached Parts         | Weight, Flash light, Radio beacon                          |  |  |  |  |  |
| Pressure Resistant     | 17 in the release surhams                                  |  |  |  |  |  |
| Container              | 17 inch glass sphere                                       |  |  |  |  |  |

Table 1 Specifications of OBS of Type K.



| Туре                                       | UD (ultra-deep) - OBS [made by JAMSTEC/Kyocera/NME (Site 67–74, JKT10A, JKT16A), made by NME (Site 58–66)]                                   |  |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Maximum Depth                              | 11000 m                                                                                                                                      |  |  |  |  |  |
| Dimension (w/ anchor)                      | 120 * 100 * 65 cm                                                                                                                            |  |  |  |  |  |
| Weight (w/ anchor)                         | 104 kg in air, 47 kg in water (Site67–74, JKT10A, JKT16A), 106 kg in air, 46 kg in water (Site58–66)                                         |  |  |  |  |  |
| Sensor                                     | Three-component Geophone [One vertical and two horizontal components, Natural frequency: 4.5Hz, Sensitivity:0.8V/inch/s (OPEN)] & Hydrophone |  |  |  |  |  |
| Recorder                                   | SPM2, Nippon Marine Enterprises, Ltd.                                                                                                        |  |  |  |  |  |
| Recording System                           | Sampling continuously (Timer control is possible for start time)                                                                             |  |  |  |  |  |
| Sampling Rate                              | 24 bit, 250Hz                                                                                                                                |  |  |  |  |  |
| Power                                      | Lithium-Ion Rechargeable Battery                                                                                                             |  |  |  |  |  |
| Acoustic Communication<br>& Release System | Electric corrosion method                                                                                                                    |  |  |  |  |  |
| Attached Parts                             | Weight, Flash light, Radio beacon                                                                                                            |  |  |  |  |  |
| Pressure Resistant<br>Container            | 445 mm ceramic sphere                                                                                                                        |  |  |  |  |  |

Table 2 Specifications of OBS of Type U.



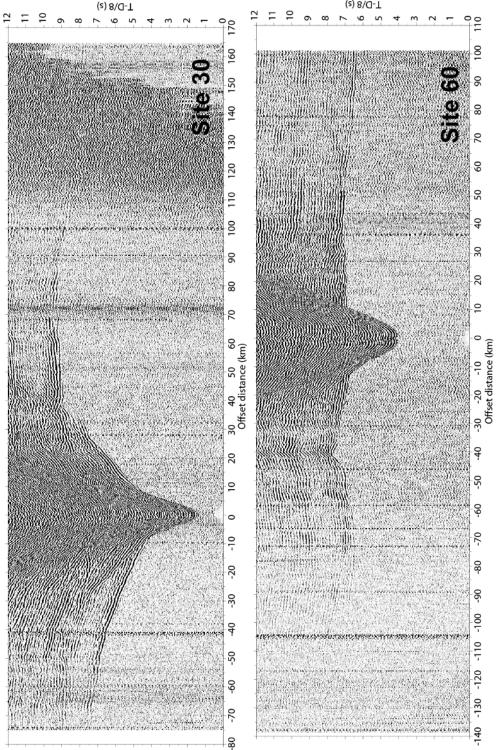



Fig. 7 Examples of record sections for OBSs on the vertical component (Site 30 [upper] and 60 [lower]).

# 3) Recovery of OBSs for earthquake observation

24 OBSs (Sites JKT01A–JKT24A) for earthquake observation, which were deployed around the outer slopes of the Kuril Trench off southeastern Hokkaido during the YK22-07 cruise in April 2022, were recovered (Table 5). Two types of OBSs, Type "K" and Type "U," were used depending on the depth of the water in which they were deployed as with the seismic survey along the line KT093 (Fig. 5; Tables 1 and 2).





#### 4) Observation of seafloor crustal movements

We conducted positioning observations at the submarine crustal deformation observation stations located around the Japan Trench using a crustal deformation sensor (ship's bottom transducer) and a GPS antenna mounted on the R/V *KAIMEI*. The observations were conducted at the central fixed point, and moving observations (approximately 4.0 knots) were performed on the circumference with a diameter equal to the water depth below the observation point. One XCTD observation was performed at each observation point. The observation points considered during this cruise were G24 (off the Iwate Prefecture) and G18 (off the Ibaraki Prefecture) (Fig 7).

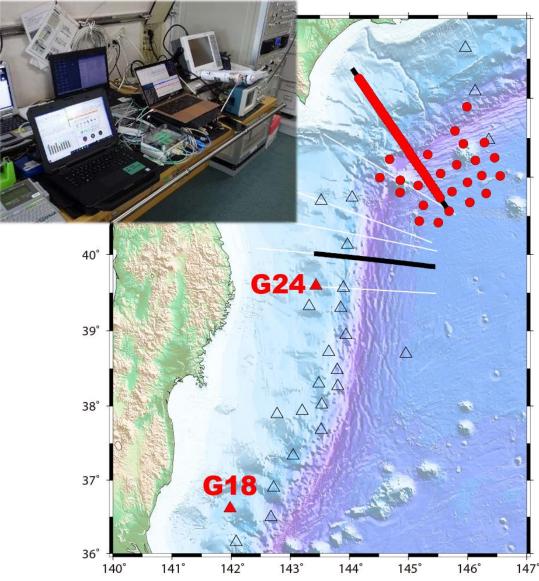



Fig. 7 Location map of seafloor crustal movement observation points (red squares). The photo on the top left is a seafloor crustal movement observation system installed in Laboratory No. 1 during this cruise.

# 5) Bathymetric, magnetic, and XCTD/XBT surveys

Bathymetric and magnetic data were continuously recorded during the survey. The bathymetric survey on R/V *KAIMEI* used a multi-narrow beam echo sounder (EM122 [Deep water type], Kongsberg) (Fig. 8). The magnetic survey used a three-component magnetometer (SFG-2015, Tiera Technica Corporation). In addition, XCTD surveys were conducted when the MCS system was not towed and seafloor crustal movement observations were performed.

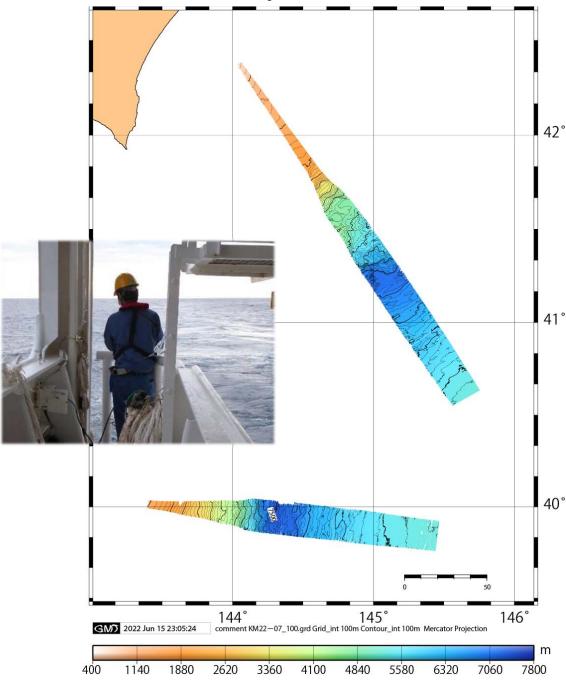



Fig. 8 Map of the result of the bathymetric survey during this cruise. The photo on the middle left is a scene of the XCTD observation at the stern.

# (3) Cruise log: Table 3

| Date      |     | Remarks                                                          |
|-----------|-----|------------------------------------------------------------------|
| 5/26/2022 | Thu | Departure from Yokosuka port (JAMSTEC wharf). Wait on            |
|           |     | weather off Yokosuka.                                            |
| 5/27/2022 | Fri | Transit to the survey area.                                      |
| 5/28/2022 | Sat | Transit to the survey area. Seafloor geodetic observation (G24). |
| 5/29/2022 | Sun | Seafloor geodetic observation (G24). OBS retrieval (JKT02A, 01A, |
| <u> </u>  | M   | 03A).                                                            |
| 5/30/2022 | Mon | OBS retrieval (JKT04A, 05A, 06A, 07A, 08A, 09A, 15A, 20A).       |
| 5/31/2022 | Tue | OBS retrieval (JKT14A, 19A, 24A, 23A, 22A, 21A, 16A).            |
| 6/1/2022  | Wed | OBS retrieval (JKT17A, 18A, 13A, 10A, 11A, 12A).                 |
| 6/2/2022  | Thu | Airgun system deployment. Airgun shooting (KT093 [SE to NW],     |
|           |     | 200 m shot interval).                                            |
| 6/3/2022  | Fri | Airgun shooting (KT093 [SE to NW], 200 m shot interval). Airgun  |
|           |     | system retrieval.                                                |
| 6/4/2022  | Sat | OBS retrieval (Site1-26).                                        |
| 6/5/2022  | Sun | OBS retrieval (Site27-37). Transit to the waiting area.          |
| 6/6/2022  | Mon | Transit to the waiting area. ADCP survey through the Eastern     |
|           |     | Tsugaru Strait. Wait on weather in Hakodate Bay.                 |
| 6/7/2022  | Tue | Wait on weather in Hakodate Bay. Transit to the survey area.     |
|           |     | ADCP survey through the Eastern Tsugaru Strait.                  |
| 6/8/2022  | Wed | Transit to the survey area. OBS retrieval (Site38-51).           |
| 6/9/2022  | Thu | OBS retrieval (Site52-67).                                       |
| 6/10/2022 | Fri | OBS retrieval (Site68-77).                                       |
| 6/11/2022 | Sat | OBS retrieval (Site78). MCS system deployment, MCS survey        |
|           |     | (KJ2204 [E to W], 50 m shot interval).                           |
| 6/12/2022 | Sun | MCS survey (KJ2204). MCS system retrieval. Transit to the        |
|           |     | waiting area.                                                    |
| 6/13/2022 | Mon | Wait on weather in Ishinomaki Bay.                               |
| 6/14/2022 | Tue | Transit to the survey area. Seafloor geodetic observation (G18). |
| 6/15/2022 | Wed | Seafloor geodetic observation (G18). Transit to Yokosuka port.   |
| 6/16/2022 | Thu | Transit to Yokosuka port.                                        |
| 6/17/2022 | Fri | Arrival at Yokosuka port (JAMSTEC wharf). End of KM22-07         |
|           |     | cruise.                                                          |

Table 3 Cruise log of KM22-07.

# (5) Seismic line list: Table 4

| LINE   | DATE       | TIME     | F.S.P.<br>F.G.S.P. | VESSEL F      | Depth          | LENGTH<br>FGSP - | DIRECTION   |       |
|--------|------------|----------|--------------------|---------------|----------------|------------------|-------------|-------|
| NAME   | (UTC)      | (UTC)    | L.G.S.P.           |               | İ              | (m)              | <u>LGSP</u> | (°)   |
|        |            |          | L.S.P.             | Lat.          | Lon.           |                  | (km)        |       |
|        | 06/02/2022 | 02:56:00 | 2200               | 40_35.41110'N | 145_39.45270'E | 5315             |             | 327.3 |
| KT093  | 06/02/2022 | 02:56:00 | 2200               | 40_35.41110'N | 145_39.45270'E | 5315             | 239.8       |       |
| (OBS)  | 06/03/2022 | 06:25:54 | 1001               | 42_22.60806'N | 144_02.70354'E | 755              | 239.0       |       |
|        | 06/03/2022 | 06:25:54 | 1001               | 42_22.60806'N | 144_02.70354'E | 755              |             |       |
|        | 06/11/2022 | 06:17:02 | 6216               | 39_50.40474'N | 145_26.93310'E | 5296             |             |       |
| KJ2204 | 06/11/2022 | 06:17:02 | 6216               | 39_50.40474'N | 145_26.93310'E | 5296             | 176.2       | 277.9 |
| (MCS)  | 06/12/2022 | 04:00:25 | 2693               | 40_00.79680'N | 143_24.03372'E | 1490             |             | 211.9 |
|        | 06/12/2022 | 04:00:25 | 2693               | 40_00.79680'N | 143_24.03372'E | 1490             |             |       |

Table 4 List of seismic survey lines.



(6) OBS position list: Table 5

| Site |    | Lat.   | I   | ₋on.   | Depth<br>(m) | Туре | Site | •  | Lat.   |     | Lon.   |      | Туре |
|------|----|--------|-----|--------|--------------|------|------|----|--------|-----|--------|------|------|
| 1    | 42 | 15.315 | 144 | 9.457  | 1119         | K    | 31   | 41 | 48.184 | 144 | 34.381 | 2362 | K    |
| 2    | 42 | 14.438 | 144 | 10.312 | 1150         | K    | 32   | 41 | 47.308 | 144 | 35.194 | 2417 | K    |
| 3    | 42 | 13.550 | 144 | 11.161 | 1184         | K    | 33   | 41 | 46.467 | 144 | 35.965 | 2516 | K    |
| 4    | 42 | 12.646 | 144 | 12.011 | 1189         | K    | 34   | 41 | 45.572 | 144 | 36.814 | 2752 | K    |
| 5    | 42 | 11.919 | 144 | 12.825 | 1234         | K    | 35   | 41 | 44.702 | 144 | 37.642 | 3100 | K    |
| 6    | 42 | 10.862 | 144 | 13.579 | 1280         | K    | 36   | 41 | 43.808 | 144 | 38.426 | 3215 | K    |
| 7    | 42 | 9.938  | 144 | 14.468 | 1225         | K    | 37   | 41 | 43.009 | 144 | 38.963 | 3303 | K    |
| 8    | 42 | 9.118  | 144 | 15.312 | 1258         | K    | 38   | 41 | 41.120 | 144 | 41.034 | 3737 | K    |
| 9    | 42 | 8.222  | 144 | 16.116 | 1286         | K    | 39   | 41 | 40.246 | 144 | 41.652 | 4038 | K    |
| 10   | 42 | 7.323  | 144 | 16.934 | 1320         | K    | 40   | 41 | 39.361 | 144 | 42.403 | 4428 | K    |
| 11   | 42 | 6.401  | 144 | 17.728 | 1345         | K    | 41   | 41 | 38.555 | 144 | 43.137 | 4633 | K    |
| 12   | 42 | 5.516  | 144 | 18.536 | 1369         | K    | 42   | 41 | 37.639 | 144 | 43.955 | 4706 | K    |
| 13   | 42 | 4.662  | 144 | 19.492 | 1412         | K    | 43   | 41 | 36.765 | 144 | 44.714 | 4746 | K    |
| 14   | 42 | 3.739  | 144 | 20.080 | 1447         | K    | 44   | 41 | 35.927 | 144 | 45.526 | 4749 | K    |
| 15   | 42 | 2.853  | 144 | 21.023 | 1497         | K    | 45   | 41 | 35.071 | 144 | 46.327 | 4697 | K    |
| 16   | 42 | 1.948  | 144 | 21.811 | 1532         | K    | 46   | 41 | 34.155 | 144 | 47.137 | 4755 | K    |
| 17   | 42 | 0.710  | 144 | 22.966 | 1575         | K    | 47   | 41 | 33.321 | 144 | 47.939 | 4870 | K    |
| 18   | 41 | 59.837 | 144 | 23.789 | 1611         | K    | 48   | 41 | 32.427 | 144 | 48.700 | 4928 | K    |
| 19   | 41 | 58.936 | 144 | 24.608 | 1654         | K    | 49   | 41 | 30.557 | 144 | 50.485 | 4980 | K    |
| 20   | 41 | 58.058 | 144 | 25.412 | 1676         | K    | 50   | 41 | 29.730 | 144 | 51.243 | 4983 | K    |
| 21   | 41 | 57.149 | 144 | 26.216 | 1729         | K    | 51   | 41 | 28.943 | 144 | 52.196 | 5204 | K    |
| 22   | 41 | 56.279 | 144 | 27.046 | 1782         | K    | 52   | 41 | 28.045 | 144 | 52.874 | 5214 | K    |
| 23   | 41 | 55.384 | 144 | 27.871 | 1828         | K    | 53   | 41 | 27.134 | 144 | 53.711 | 5292 | K    |
| 24   | 41 | 54.461 | 144 | 28.692 | 1858         | K    | 54   | 41 | 26.214 | 144 | 54.522 | 5447 | K    |
| 25   | 41 | 53.589 | 144 | 29.518 | 1881         | K    | 55   | 41 | 25.313 | 144 | 55.329 | 5499 | K    |
| 26   | 41 | 52.704 | 144 | 30.320 | 1928         | K    | 56   | 41 | 24.365 | 144 | 56.065 | 5540 | K    |
| 27   | 41 | 51.776 | 144 | 31.121 | 1976         | K    | 57   | 41 | 23.459 | 144 | 56.909 | 5645 | K    |
| 28   | 41 | 50.886 | 144 | 31.949 | 1994         | K    | 58   | 41 | 22.551 | 144 | 57.711 | 5937 | U    |
| 29   | 41 | 49.993 | 144 | 32.761 | 2065         | K    | 59   | 41 | 21.639 | 144 | 58.529 | 6060 | U    |
| 30   | 41 | 49.101 | 144 | 33.608 | 2181         | K    | 60   | 41 | 20.755 | 144 | 59.350 | 6276 | U    |

Table 5 List of OBS positions. The coordinate values were estimated from the super short base line (SSBL) positioning system during YK22-07 cruise.

| Site |    | Lat.   | l   | ₋on.   | Depth<br>(m) | Туре | Site   | Lat. |        | Lat. Lor |        | Depth<br>(m) | Туре |
|------|----|--------|-----|--------|--------------|------|--------|------|--------|----------|--------|--------------|------|
| 61   | 41 | 19.865 | 145 | 0.131  | 6178         | U    | JKT01A | 41   | 13.905 | 144      | 40.507 | 5731         | K    |
| 62   | 41 | 18.949 | 145 | 0.870  | 6489         | U    | JKT02A | 40   | 59.810 | 144      | 30.777 | 5662         | K    |
| 63   | 41 | 17.819 | 145 | 1.658  | 6975         | U    | JKT03A | 40   | 57.645 | 144      | 51.724 | 4523         | K    |
| 64   | 41 | 17.063 | 145 | 2.302  | 6886         | U    | JKT04A | 40   | 48.204 | 144      | 51.390 | 5748         | K    |
| 65   | 41 | 16.306 | 145 | 3.190  | 7011         | U    | JKT05A | 40   | 53.589 | 145      | 9.619  | 5923         | K    |
| 66   | 41 | 15.411 | 145 | 4.054  | 7186         | U    | JKT06A | 40   | 38.418 | 145      | 14.981 | 5795         | K    |
| 67   | 41 | 13.440 | 145 | 5.734  | 7180         | U    | JKT07A | 40   | 26.043 | 145      | 10.943 | 5746         | K    |
| 68   | 41 | 10.790 | 145 | 8.263  | 7094         | U    | JKT08A | 40   | 25.081 | 145      | 30.022 | 5380         | K    |
| 69   | 41 | 8.130  | 145 | 10.694 | 6874         | U    | JKT09A | 40   | 33.730 | 145      | 41.066 | 5277         | K    |
| 70   | 41 | 5.552  | 145 | 13.324 | 6720         | U    | JKT10A | 41   | 17.417 | 145      | 19.337 | 7052         | U    |
| 71   | 41 | 2.817  | 145 | 15.574 | 6533         | U    | JKT11A | 41   | 2.832  | 145      | 32.466 | 5935         | K    |
| 72   | 41 | 0.140  | 145 | 17.864 | 6356         | U    | JKT12A | 40   | 48.975 | 145      | 44.190 | 5411         | K    |
| 73   | 40 | 57.420 | 145 | 20.082 | 6142         | U    | JKT13A | 41   | 9.636  | 145      | 48.810 | 5832         | K    |
| 74   | 40 | 55.024 | 145 | 22.314 | 6099         | U    | JKT14A | 40   | 56.057 | 145      | 59.892 | 5317         | K    |
| 75   | 40 | 52.254 | 145 | 24.898 | 5925         | K    | JKT15A | 40   | 40.583 | 146      | 2.039  | 5223         | K    |
| 76   | 40 | 49.533 | 145 | 27.208 | 5787         | K    | JKT16A | 41   | 35.497 | 145      | 47.083 | 7286         | U    |
| 77   | 40 | 46.910 | 145 | 29.538 | 5653         | K    | JKT17A | 41   | 25.639 | 145      | 55.491 | 5917         | K    |
| 78   | 40 | 44.116 | 145 | 31.802 | 5557         | K    | JKT18A | 41   | 12.888 | 146      | 7.841  | 5476         | K    |
|      |    |        |     |        |              |      | JKT19A | 41   | 1.304  | 146      | 14.217 | 5355         | K    |
|      |    |        |     |        |              |      | JKT20A | 40   | 47.681 | 146      | 18.773 | 5212         | K    |
|      |    |        |     |        |              |      | JKT21A | 41   | 53.966 | 145      | 59.291 | 5827         | K    |
|      |    |        |     |        |              |      | JKT22A | 41   | 26.672 | 146      | 16.848 | 5723         | K    |
|      |    |        |     |        |              |      | JKT23A | 41   | 15.078 | 146      | 27.225 | 5464         | K    |
|      |    |        |     |        |              |      | JKT24A | 41   | 1.092  | 146      | 32.926 | 5293         | K    |

Table 5 (Continued) List of OBS positions. The coordinate values were estimated from the SSBL positioning system during YK22-07 cruise.

## 4. Notice on using:

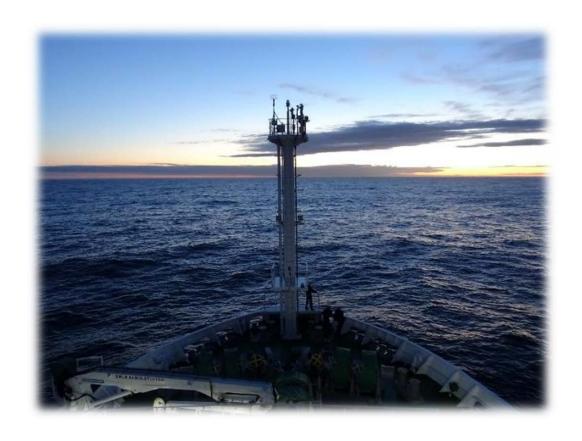
This cruise report is a preliminary documentation as of the end of cruise.

This report is not necessarily corrected even if there is any inaccurate description (i.e. taxonomic classifications). This report is subject to be revised without notice. Some data on this report may be raw or unprocessed. If you are going to use or refer the data on this report, it is recommended to ask the Chief Scientist for latest status.

Users of information on this report are requested to submit Publication Report to JAMSTEC.

http://www.godac.jamstec.go.jp/darwin/explain/1/e#report

E-mail: submit-rv-cruise@jamstec.go.jp


## **Acknowledgement:**

We thank the captain, Mr. Rikita Yoshida, and the crew of the R/V *KAIMEI*, and the marine technician team (Nippon Marine Enterprises, Ltd.) for their efforts in obtaining the MCS data and other geophysical data. We are grateful to participants of "Research Institute for Marine Geodynamics" (IMG) and "Institute for Marine-Earth Exploration and Engineering" (MarE3) in JAMSTEC for their great support in this cruise. We used "The Generic Mapping Tools" by Wessel and Smith (1991) to construct the figures. Topographic data used GEBCO Bathymetric Compilation Group (2019).

#### References:

- Asakawa, K., T. Hyakudome, M. Yoshida, N. Okubo, M. Ito and I. Terada, 2012: Ceramic Pressure-Tight Housings for Ocean-Bottom Seismometers Applicable to 11-km Water Depth, IEEE J. of Oceanic Eng. Vol. 37, No. 4, 756-763.
- Baba, T., N. Chikasada, Y. Nakamura, G. Fujie, K. Obana, S. Miura, and S. Kodaira, 2020: Deep investigations of outer rise tsunami characteristics using well mapped normal faults along the Japan Trench. Journal of Geophysical Research: Solid Earth, 125, e2020JB020060. doi:10.1029/2020JB020060
- Earthquake Research Committee, 2017: Long-term evaluation of earthquakes along the Kuril trench, the third edition (in Japanese), https://www.jishin.go.jp/main/chousa/kaikou\_pdf/chishima3.pdf (2021-7-30).
- Fujie, G., Kodaira, S., Kaiho, Y., Yamamoto, Y., Takahashi, T., Miura S. and Yamada, T., 2018: Controlling factor of incoming plate hydration at the north-western Pacific margin, Nature Communications, 9, 3844, doi:10.1038/s41467-018-06320-z.
- GEBCO Bathymetric Compilation Group, 2019: The GEBCO\_2019 Grid—A continuous terrain model of the global oceans and land.UK: British Oceanographic Data Centre, National Oceanography Centre, NERC.
- Ito, A., G. Fujie, T. Tsuru, S. Kodaira, A. Nakanishi, and Y. Kaneda, 2004: Fault plane

- geometry in the source region of the 1994 Sanriku-oki earthquake. Earth Planet. Sci. Lett. 223, 163–175.
- Kanazawa, T., and H. Shiobara, 1994: Newly developed ocean bottom seismometer, Japan Earth and Planetary Science Joint Meeting, 2, 240, 1994 (in Japanese).
- National Research Institute for Earth Science and Disaster Resilience, 2019: NIED Snet. https://doi.org/10.17598/nied.0007.
- Nishikawa, T., T. Matsuzawa, K. Ohta, N. Uchida, T. Nishimura, S. Ide, 2019: The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science 365:808–813 DOI: 10.1126/science.aax5618.
- Shinohara, M., K. Suyehiro, S. Matsuda, and K. Ozawa, 1993: Digital recording ocean bottom seismometer using portable digital audio tape recorder, J. Japan Soc. Marine Surveys Technol., 5, 21–31, (in Japanese with English abstract).
- Tanaka, S., T. Matsuzawa, Y. Asano, 2019: Shallow low-frequency tremor in the northern Japan Trench subduction zone, Geophys Res Lett, 46:5217–5224, doi:10.1029/2019GL082817.
- Uehira, K., A. Nishizawa, and Y. Asano, 2021: Hypocenter distribution off the eastern coast of Aomori Prefecture obtained by S-net data, Report of CCEP, 155-157 (in Japanese).
- Wessel, P., and W. H. F. Smith, 1991, Free software helps map and display data, Eos Trans. AGU, 72, 441.

