Onboard Preliminary Report of R/V Kairei cruise KR03-13

Southern Mariana Trough 2003.11.16 (Guam) - 2003.12.8 (Yokosuka)

1. 概要

- 2. 航走観測(地形・地磁気・重力)
- 3. 地質(ドレッジ)
- 4. 熱水プルームの物理・化学・微生物特性
- 5. 人工電流源を用いた電磁気探査

1. Outline of KR03-13 cruise

The KR03-13 cruise of R/V Kairei has been conducted to accomplish following two projects approved by the Japan Marine Science and Technology Center.

(1) Opening processes of Mariana Trough

We conduct a geophysical mapping including bathymetry, magnetic and gravity anomalies using a multi-narrow-beam echo-sounder, on-board three-component magnetometer, towed proton magnetometer, and a gravity meter in an unsurveyed area remained in the Mariana Trough between 13°40'N and 16°30'N (Area A) (Fig.1-1). We aim to clarify ridge segmentation, spreading rates and directions and their temporal and spatial variations, and changes of crustal thickness. Furthermore, we examine problems such as relation of magma budget and distance between backarc spreading center and the volcanic front, asymmetry of backarc spreading, and connection of backarc spreading processes with motions of surrounding plates.

(2) Magmatim and hydrothermal activity in the southern Mariana Trough

The purpose of this study is to understand distribution and nature of hydrothermal activity in the southern part of the Mariana Trough (Area B), and its relation with magmatism. We plan to carry out following research items.

1) Collecting volcanic rocks from arc volcanoes and backarc spreading center by dredge.

2) Exploring resistivity structure of the crust of a backarc spreading segment by the magnetometric resistivity method using controlled electric current sources in order to image hydrothermal circulation under the seafloor.

3) Profiling of water column by towing an instrument package including CTD, turbidity sensor and other chemical and physical sensors to detect thermal anomalies and particulate matter suspended in the plumes, and water sampling.

The KR03-13 cruise left Apra port, Guam, on 16 Nov. 2003, and arrived at JAMSTEC pier in Yokosuka on 8 Dec. 2003 (total 23 days). Members of onboard scientific team are listed in Table 1-1. Shipboard log of the cruise is presented in Table 1-2. The research was intermitted for two days due to a typhoon, but we could conduct most research items planned.

1. 概要

1-1. 航海の目的

「かいれい」単独航海 KR03-13 航海は、2件の平成 15 年度深海調査研究プロ ポーザル採択課題「マリアナトラフの拡大過程」(代表者山崎俊嗣)、「南部マリ アナ海域における島弧・背弧マグマ活動と海底熱水活動の関連性」(代表者益田 晴恵)を実施するために行われた。以下にそれぞれのプロポーザルの概要を述 べる。

(1) マリアナトラフの拡大過程(課題1)

マリアナトラフの中に残された未調査域である北緯13度40分~16度30分の 範囲(以下、A海域と呼ぶ)(Fig. 1-1)の精密地形・地磁気・重力マッピング を行い、今までのデータと統合してトラフ全体の拡大過程、例えば拡大軸のセ グメンテーション、拡大速度・方向およびその時間的・空間的変化,地殻の厚 さ等を明らかにする。さらに、背弧拡大軸-火山弧の距離とマグマ供給量の関係、 背弧拡大の非対称性、前弧テクトニクスとの関係、周囲のプレート運動との関 連等の諸問題の解明を目指す。

(2)南部マリアナ海域における島弧・背弧マグマ活動と海底熱水活動の関 連性(課題2)

南部マリアナ海域(以下、B海域と呼ぶ)を対象として、島弧・背弧マグマ 活動、及び、海底熱水活動の様式・分布を明らかにする。1) 背弧拡大軸にお けるマグマ活動の特徴と変遷を追跡するため、ドッレジまたは、ロックコアに よる地質試料採取、2) 現在のマグマ活動を冷却している熱水循環系の規模を 推定するために、人工電流源を用いた電磁気探査(MMR 法)、及び、3) 熱水活 動規模を定量的に評価する手法として、CTD-RMS 装置と係留系を利用した熱水プ ルーム探査の3つの手法を組み合わせて行うことで、マグマ活動と熱水活動の 関連性を探る。

1-2 航海の概要及び経過

2003年11月16日10:00にグアム島アプラ港を出港し、2003年12月8日08:00 に海洋科学技術センター岸壁に入港するまでの、計23日間の航海である。乗船 研究チームは Table 1-1 の 20 名である。Table 1-2 に調査経過を示す。11 月 16 日〜11 月 22 日は B海域で係留系設置、CTD-RMS システムによる"Tow-yo"調査、 ドレッジ、電磁気探査のための OBEM 設置と通電などを行った。接近する台風を 避けて北上し、11 月 23 日には A 海域で航走観測を行うことができたが、24,25 日の2日間はテニアン島付近に避泊を余儀なくされた。台風通過後、26〜28 日 朝まで A 海域で航走観測をしつつ B海域の天候回復を待ち、28 日夜に B海域に 戻って、12 月 1 日朝まで CTD tow-yo 調査と MMR 法通電を行った。12 月 1 日に 係留系と OBEM を回収して北上し、12 月 2 〜 4 日に A 海域にて航走観測を行った。 台風通過後は海況にも恵まれ、当初の調査計画の殆どを達成することができた。 同軸ケーブルウインチのスリップリングに不具合が生じたが船上で応急修理さ れ、調査への影響を最小限に食い止めることができた。

1-3 謝辞

「かいれい」の斉藤房夫船長以下乗組員の皆様には、調査全般に渡って多大 なご協力をいただいた。特に、B海域における調査は、夜間にも細かい操船や ウインチ操作を伴うハードスケジュールであった。本航海の直前に同じ海域で 行われた「よこすか」YK03-09 航海の首席研究員の内海真生博士には、新たに発 見されたブラックスモーカーをはじめとする情報を提供していただくとともに、 A海域の航走観測の一部を実施していただいた。木村直人氏、馬場和美氏をはじ めとする海洋科学技術センターの方々には、本航海に関する種々の調整をして いただいた。マリンワークの富樫尚孝氏、宗輝氏にはウインチ試験のお手伝い をいただいた。東北大学の藤本博巳教授にはリングレーザージャイロを、海洋 科学技術センターの仲二郎博士にはドレッジを貸していただいた。これらの 方々に感謝します。

本航海の調査研究うち課題2に係わる部分は、科学技術振興調整費総合研究 課題「海底熱水系における生物・地質相互作用の解明に関する国際共同研究」(通 称アーキアン・パーク計画)の一環として行われた。また、本調査の一部には 科学研究費補助金(基盤研究(A)(2))No.14253003)を使用した.

Mariana Trough KR03-13 Study Area

Area A: Opening processes of Mariana Trough (Geophysical mapping) Area B: Study on magmatism and hydrothermal activity (CTD-RMS, MMR, Dredge)

euge)

	氏名	Name	所属	職名
山崎	俊嗣 ^{「*1」} 「*2」	Toshitsugu Yamazaki	產業技術総合研究所海洋資源環境研究部門	研究グループ長
益田	晴恵「*2」	Harue Masuda	大阪市立大学大学院理学研究科	助教授
伊藤	美穂	Miho Ito	大阪市立大学大学院理学研究科	大学院生
高見	興克	Okikatsu Takami	東北大学大学院理学研究科	大学院生
島仰	申和	Nobukazu Seama	神戸大学内海域環境教育研究センター	助教授
多田	訓子	Noriko Tada	神戸大学大学院自然科学研究科	大学院生
岩本	久則	Hisanori Iwamoto	神戸大学大学院自然科学研究科	大学院生
北田	数也	Kazuya Kitada	神戸大学大学院自然科学研究科	大学院生
松野	哲男	Tetsuo Matsuno	神戸大学大学院自然科学研究科	大学院生
石橋	純一郎	Junichiro Ishibashi	九州大学大学院理学研究院	助教授
土井	崇史	Takashi Doi	東京大学海洋研究所	大学院生
砂村	倫成	Michinari Sunamura	東京大学大学院理学系研究科	助手
斉藤	将史	Masashi Saito	東京大学理学部	大学生
平良	直人	Naoto Taira	琉球大学大学院理工学研究科	大学院生
前田	義明	Yoshiaki Maeda	(株)セレス 環境調査部	主任研究員(課長)
小池	祐一	Yuichi Koike	(株)セレス 環境調査部	担当研究員(副長)
松浦	由孝	Yutaka Matsuura	マリンワークジャパン	観測技術員
佐藤	悠介	Yusuke Sato	マリンワークジャパン	観測技術員
上野	珠民	Tamami Ueno	マリンワークジャパン	観測技術員
田中	仁氏	Hitoshi Tanaka	日本海洋事業(株)	観測技術員

<u>Table 1-1 KR03-13航海乗船研究チームリスト</u>

「*1 首席研究者」

「*2 課題代表研究者」

Table 1-2. Log of KR03-13 cruise

Date	Time (Local=GMT+10)	ltem	Site & Line No.
11.16	10:00	Depart Apra port, Guam YBT	
	15:00-15:35	Deploy mooring system	
	16:30-16:45	Positioning mooring system	
	18:00	Deploy CTD-RMS system	T-01
11. 17	07:40	Retrieve CTD-RMS system	
	08:45-11:45	Dredge	DB-01
	12:55-15:50	Dredge	DB-02
11 10	17.30	Deploy CID-RMS system	1-02
11.10	00.30	Dredge	DB-03
	11:15-14:10	Dredge	DB-04
	14:45-17:35	Dredge	DB-05
	18:00	Deploy proton magnetometer	
	18:54-19:17	"Figure-8" turn	
		Geophysical survey	Line B1, B2
11. 19	06:30	Retrieve proton magnetometer	
	08:31	Deploy UBEM	St. 6
	11.02	Doploy OBEM	S+ Б
	11.03	Deploy OBEM	SL = S $S+ \Lambda$
	12:36	Deploy OBEM	St 2
	13:04	Deploy OBEM	St. 3
	13:36	Deploy OBEM	St. 1
	14:24-15:03	positioning transponder (YK03-09 site)	
	15:24-16:30	positioning OBEMs	
	16:45-17:30	CID-RMS system test	T 02 (mitted by the data)
	18:00-18:54	Deploy & Retrieve CID-RMS system	I-U3 (quited by trouble)
11 20	19.10 08.15-11.50	Dredge	DR-06
11.20	12:30-15:40	Dredge	DB-07
	17:15	Deploy electrode of MMR	(quited by trouble in slip-ring of No. 1 wintch)
11.21	06:35	Retrieve electrode of MMR	(
	08:05-11:23	Dredge	DB-08
	12:40-15:37	Dredge	DB-09
44.00	17:40	Deploy electrode of MMR	MMR_site 1,2,3,4,5,6,7,line1
11.22	12:18	Retrieve electrode of MMR	
	12.40	Transit to A region (accord from turbeer)	line T1
11 23		Geophysical survey	Line $A13 A14$
11.24	06:25	Retrieve proton magnetometer	
		Near Tinian Is. (escaped from typhoon)	
11.25		Near Tinian Is. (escaped from typhoon)	
11.26	08:03	Deploy proton magnetometer	

	09:54	XBT	
		Geophysical survey	Line A7.A8
11.27		Geophysical survey	Line A5.A6
11.28		Geophysical survey	Line A4
	07:52-08:11	"Figure-8" turn	
		Transit to B region	Line T2
	15:50	Retrieve proton magnetometer	
	16:22	XBT	
	16:25-16:36	CTD-RMS system test	
	17:18-17:33	Deploy & Retrieve CTD-RMS system	
	17:57	Deploy CTD-RMS system	T-04
11.29	06:20	Retrieve CTD-RMS system	
	08:20	Deploy electrode of MMR	MMR_site 8,9,10, line2,3,4,5
11.30	14:35	Retrieve electrode of MMR	
	17:30	Deploy CTD-RMS system	T–05
12.1	06:05	Retrieve CTD-RMS system	
	08:25-09:08	Retrieve mooring system	
	11:09	Retrieve OBEM	St. 3
	11:51	Retrieve OBEM	St. 4
	12:50	Retrieve OBEM	St. 2
	13:22	Retrieve OBEM	St. 5
	13:52	Retrieve OBEM	St. 6
	14:20	Retrieve OBEM	St. 1
	14:50	Deploy proton magnetometer	
		Transit to A region	Line T3
	20:07	XBT	
		Geophysical survey	Line AO
12.2		Geophysical survey	Line T4, A1, A2, A3
12.3		Geophysical survey	Line T5, A9, A10, A11, A12
12. 4		Geophysical survey	Line 16, A15, 17, A16, A17
	11:25-11:43	"Figure-8" turn	
12. 5		Iransit to Yokosuka	Line T8
	16:01-16:23	"Figure-8" turn	
10.0	16:33	Retrieve proton magnetometer	
12.6		Iransit to Yokosuka	
12. /		Iransit to Yokosuka	
12.8	08:00 (JST)	Arrive at JAMSIEC, Yokosuka	

2. Geophysical Survey (Bathymetry, Magnetics, and Gravity)

(Toshitsugu Yamazaki, Nobukazu Seama, Hisanori Iwamoto, and Kazuya Kitada)

Geophysical survey including bathymetry, magnetic and gravity anomalies has been conducted mainly between 14°N and 16°30'N in the Mariana Trough during the KR03-13 cruise. This area remained unsurveyed, but this is a key area for understanding opening processes of the Mariana Trough. It is because this area is in a transition zone between the central part of the Mariana Trough north of 16°30'N and the southern part south of 14°N, which have contrasting spreading features. The southern part shows characteristic structure of fast spreading ridges like the East Pacific Rise, and spreading started at about 3 Ma. The spreading is in ESE-WNW direction with a half-spreading rate of about 3.5 cm/year at present. On the other hand, the central part has typical structure of slow spreading ridges like the Mid-Atlantic Ridge, and spreading started at about 6 Ma. The spreading is in E-W direction with a half-spreading rate of about 2 cm/year at present.

Total six days were spent for geophysical survey in the Area A during the cruise. Survey lines are at 6 mile intervals (Table 2-1, Fig. 2-1). Ship speed was 13 knots when sea condition was good, but it was reduced to about 7 knots in rough sea condition. A SeaBeam 2112 multi-narrow-beam echo-sounder was used for bathymetry. Sound velocity correction was applied using XBT data obtained at four sites. For magnetic anomaly measurements, towed proton magnetometer and onboard three-component magnetometers (a Tierra technica SFG-1214 system equipped with R/V Kairei, and a Kobe Univ. STCM system with a ring-laser gyro) were used. To remove the effect of ship's magnetization for onboard three-component measurements, the "figure-8" turn was performed four times (Table 2-2). A shipboard gravity meter (BODENSEEWERK KSS31) was used for gravity measurement.

Topographic maps of the survey area are shown in Figs. 2-2 and 2-3. Merged with available data, topography of entire Mariana Trough south of 17°N is presented in Fig. 2-4. Ridge axes occur along 144°45'E between 15°40'N and 16°N, and along 144°30'E between 15°N and 15°30'N. In further south, ridge axes step westward as short segments. Strike of ridge axes is in N-S direction. Topographic fabric in the western part of the trough changes southward from NNW-SSE to N-S. Vertical component anomalies of the magnetic vector measurement are shown in Fig.

2-5. Anomalies corresponding to the Brunhes (<0.78 Ma) and Gauss (2.6 - 3.6 Ma) Chrons are recognized as positive anomaly zones (e.g., at about 143°50'E and 144°30'E on a survey line along 15°N), and the former coincides with the location of spreading center inferred from topography. The average half-spreading rate during the last 3 m.y. is estimated to be about 2.5 cm/year from the distance between the anomalies corresponding to the Gauss and Brunhes Chrons. Seafloor spreading started at 4 to 5 Ma. Free-air gravity anomalies along ship tracks are presented in Fig. 2-6.

1. 航走観測(地形・地磁気・重力)
(山崎俊嗣、島伸和、岩本久則、北田数也)

2.1 研究の背景及び目的

マリアナトラフは活動的背弧海盆の典型として,70年代始めより注目されてきた.DSDP の掘削を含む70年代~80年代初めの研究の多くは、トラフの幅が最も広い北緯18度付近 を対象に行われた.80年代には地質調査所やハワイ大学等による調査研究がトラフ北部や 前弧域で行われた.しかし、マリアナトラフ全体の拡大過程の詳細は不明のままであった.

我々のグループは 90 年代後半より,JAMSTEC の調査船「よこすか」及び「かいれい」を 用いて,精密地形・地磁気三成分・重力の系統的なマッピングを開始した.主に「しんか い 6500」「かいこう」の潜航調査等を主目的とする航海の夜間を利用したが,マッピング を主目的とした単独航海も実施された.これらの計 8 回の航海(Y96-13, KR97-11, KR98-12, YK99-11, KR00-03, YK00-13, YK01-11, KR02-01) と 92 年の白鳳丸航海,及び補足的に 92, 93 年の「よこすか/しんかい 6500」航海の潜航事前調査データを加えて,北緯 16 度 30 分以北と北緯 14 度以南のトラフ内全体がカバーされた.米国の研究グループも最近,マリ アナトラフ南部,特に火山弧及び前弧域のマッピングを行っているが,それ以外の場所に おいては拡大軸付近の狭い範囲をカバーしているにすぎない.面積の小さな背弧海盆の拡 大系は一般に不安定で,頻繁に拡大速度や方向が変化すると考えられるため,拡大軸付近 だけのマッピングで背弧拡大の全体像を理解することは不可能である.

我々のグループによるこれまでの研究により、マリアナトラフの拡大過程について以下 の特徴が明らかとなった.

(1) 北緯 16~18 度付近は,約6 Ma に海底拡大を開始した.拡大速度(片側,以下同じ) は 20mm/年程度と遅い.

(2) 北緯 16 度以北では,拡大開始時の拡大軸の走向は北北西-南南東であった.つまり, トラフ北部では西マリアナ海嶺の走向にほぼ平行であるのに対し,南へ行くに従い西マリ アナ海嶺とは斜行するようになる.トラフ中部及び北部では,現在の拡大軸の走向は南北 に近い.

(3) 北緯 14 度以南のトラフ南部では,海底拡大は 3 Ma 頃開始し,拡大速度は 35mm/年程 度と中部・北部よりやや速い.中軸谷が存在せず,地形的には東太平洋海膨型の速い拡大 の特徴を持つ.

(4) 北部マリアナトラフにおいては,リフフティング/海底拡大の境界は北緯22度付近

にある. 北緯 20~22 度では約4 Ma に拡大を開始した. 最北端のセグメントは中軸谷を持たずセグメントが長い等マグマ供給量が大きいことを示すが,一方北緯 20~21 度のセグメントでは大水深の顕著な中軸谷が発達し,低速・非マグマ性拡大の特徴を示す.

これらの結果,いままでに提案されたマリアナトラフ拡大のモデルは成り立たないこと が明らかとなった.日本海やラウ海盆拡大のテクトニクスからの類推により、マリアナト ラフの南端に横ずれ断層を考え、そこから拡大が始まり北へ伝播していくとするモデルが 提案された。しかし、マリアナトラフにおいては中央部の年代が最も古く,南部や北部は 遅れて拡大が始まったため、このモデルは成り立たない。マリアナトラフはその形状から 放射状にマリアナ海嶺が張りだすような拡大が想定されやすいが,そのモデルは上記(2) のように初期の拡大方向は西マリアナ海嶺の走向の緯度による違いに対応しない.より詳 細なデータに基づく精密なモデルの構築が今求められている.

本研究は、データの空白域として残った北緯 14 度~16 度 30 分の範囲の精密地形・地球 物理マッピングを行い、マリアナトフラフ拡大の全体像を明らかにすることを目的とする. マリアナトフラフ南部と中部の境界にあたるこの海域は、上述の今までの研究より、性質 の異なるセグメントの境界部にあたり、マリアナトラフ拡大過程解明の鍵となる構造的に 興味深い場所であることが判明した.例えば、3 Ma に拡大開始した南部と 6 Ma に拡大開始 した中部の時間のずれがこの海域で解消されている.拡大方向も中部では ENE-WSW から E-W であるが、南部では ESE-WNW から SE-NW であり、この海域で変化しているはずである.

2.2 観測および結果

A 海域において、11 月 23, 26, 27, 12 月 2 ~ 4 日の計6 日間航走観測を行った。また、 B海域については、ウインチのトラブルにより CTD の観測ができなかった時に(夜間 2 日)、 補備的な航走観測を行った。測線リストを Table 2-1 に、測線図を Fig. 2-1 に示す。A海 域においては、6 マイル間隔の東西測線を基本とした。船速は海況が良かった 12 月 2~4 日は 13 ノットとした。台風接近で海況の悪かった 11 月 23 日、26 日はうねりに向かう方 向の測線では7 ノット程度まで減速したが、それでもマルチナロービームのデータの質は 良くなかったため、測線間に若干の空白が生じている。なお、A 海域のうち北緯 13 度 50 分~14 度 40 分の範囲については、「よこすか」YK03-09 航海において航走観測が行われた。 これについては Appendix 2-1 に収録した。

(1) 地形

「かいれい」装備のマルチナロービーム音響測深システム SeaBeam 2112 を用いた。本シ

ステムにより、水深の約3倍の幅の地形マッピングが可能である。音速補正のためXBTを 4回行った。A海域とB海域の測線をあわせた地形図をFig. 2-2に、A海域のみの地形図 をFig. 2-3に示す。また、今までに得られているデータと結合させた、マリアナトラフ中 南部全体の地形図(暫定版)をFig. 2-4に示す。

北緯 16 度付近では、海底拡大軸は東経 144 度 45 分線付近に位置する。15 度 40 分付近 には顕著なセグメント境界があり、その南(15 度~15 度 30 分)では西にずれて 144 度 30 分付近に位置する。さらに南では、南に行くにつれ拡大軸は細かく西にステップしていき、 14 度 40 分付近では 144 度 10 分付近となる。現在の拡大軸の走向は、ほぼ南北である。

トラフ西部では、セグメント境界と考えられる谷が北東-南西に伸びている(例えば、15 度、143度10分から15度35分、144度付近にかけて)が、トラフ中央部では、東西に近 くなる。また、トラフ西部における細かい地形のファブリックは、北の方では北北西-南南 東走向であるが、南にいくにつれて南北となる。これらの特徴は、マリアナトラフの拡大 方向の変化や、拡大セグメントの消長を記録するものであり、トラフの拡大過程の復元に 重要な情報となるため、今後詳しく解析を行う。

SeaBeam 2112 のデータからは海底反射強度イメージも得られる。これについては陸上で データ処理を行う。

(2) 地磁気異常

「かいれい」装備のプロトン磁力計(川崎地質 PRT010)、「かいれい」装備の船上三成分 磁力計システム(Tierra Tecnica SFG-1214)及び、神戸大学船上三成分磁力計システムを 用いた。神戸大学のシステムは姿勢計測にリングレーザージャイロを用いており、より高 精度な測定が可能である(詳細は Appendix 2-2)。プロトン磁力計は船尾から約 300m曳航 した。三成分測定における船体磁気補正のため、「8の字」航走を4回実施した(Table 2-2)。

地磁気鉛直成分異常を Fig. 2-5 に示す(神戸大システムによる測定結果)。地形から推定される海底拡大軸に沿って、正の異常が観測され、ブルン期(過去 78 万年)に対応する と考えられる。また、西方に見られるもう一つの顕著な正異常ゾーン(例えば 15 度、143 度 50 分付近)は、ガウス正磁極期(2.6~3.6Ma)に対応すると考えられる。これらの異常 ゾーンは一見 NNE-SSW 走向を持つように見えるが、地形から推定される拡大方向は東西で あることから、細かくセグメントに分かれて、南へ行くに従い西へステップしていると推 定される。ガウスとブルンに対応する異常の距離から、北緯 15~16 度付近における過去約 300 万年間の平均的な片側拡大速度は、2.5 cm/年程度である。また、海底拡大開始は 4~5Ma と推定される。今後さらに詳しく海底年代の決定を行っていく。

(3) 重力

「かいれい」装備の船上重力計 BODENSEEWERK KSS31 を用いた。陸上の重力値との結合はグ アム・アプラ港H岸壁と、海洋科学技術センター岸壁で行った。Fig. 2-6 に、測線に沿っ たフリーエア重力異常を示す。なお、これはドリフト補正を行う前の暫定値である。良好 にデータが取得できていることがわかる。今後、マントルブーゲー異常等の計算を行い、 拡大軸のセグメント内やセグメント間の地殻の厚さの変化などを求めていく計画である。

Line Number	mber Start Point		End Point				Direction		
	Date(UTC)	Time(UTC)	Latitude	Longitude	Date(UTC)	Time(UTC)	Latitude	Longitude	
A-0	2003/12/1	11:41	14°21'N	144°40'E	2003/12/1	18:24	14°21'N	143°10'E	270°
A-1	2003/12/1	20:39	14°42'N	143°35'E	2003/12/2	1:39	14°42'N	144°42'E	90°
A-2	2003/12/2	2:07	14°48'N	144°42'E	2003/12/2	7:42	14°48'N	143°26'E	270°
A-3	2003/12/2	8:12	14°54'N	143°26'E	2003/12/2	14:57	14°54'N	145°00'E	90°
A-4	2003/11/27	14:05	15°00'N	144°50'E	2003/11/27	21:50	15°00'N	143°22'E	270°
A-5	2003/11/27	5:07	15°06'N	143°22'E	2003/11/27	13:30	15°06'N	144°50'E	90°
A-6	2003/11/26	21:38	15°12'N	144°50'E	2003/11/27	4:30	15°12'N	143°22'E	270°
A-7	2003/11/26	9:33	15°18'N	143°16'E	2003/11/26	21:01	15°18'N	144°50'E	90°
A-8	2003/11/26	0:15	15°24'N	145°15'E	2003/11/26	9:01	15°24'N	143°16'E	270°
A-9	2003/12/2	17:31	15°30'N	145°14'E	2003/12/3	1:38	15°30'N	143°26'E	270°
A-10	2003/12/3	2:08	15°36'N	143°26'E	2003/12/3	7:30	15°36'N	144°38'E	90°
A-11	2003/12/3	8:01	15°42'N	144°38'E	2003/12/3	13:04	15°42'N	143°30'E	270°
A-12	2003/12/3	13:34	15°48'N	143°30'E	2003/12/3	18:48	15°48'N	144°58'E	90°
A-13	2003/11/23	2:17	15°54'N	143°38'E	2003/11/23	15:22	15°54'N	145°16'E	90°
A-14	2003/11/22	17:43	16°00'N	145°17'E	2003/11/23	1:40	16°00'N	143°38'E	270°
A-15	2003/12/3	21:22	16°06'N	144°58'E	2003/12/4	1:21	16°06'N	144°03'E	270°
A-16	2003/12/4	3:01	16°12'N	144°20'E	2003/12/4	5:54	16°12'N	145°00'E	90°
A-17	2003/12/4	6:24	16°18'N	145°00'E	2003/12/4	8:15	16°18'N	144°34'E	270°
B-1	2003/11/18	9:37	12°55'N	143°34.5'E	2003/11/18	13:25	12°33.5'N	144°14'E	120°
B-2	2003/11/18	13:52	12°29'N	144°11.5'E	2003/11/18	19:32	13°04.5'N	143°10'E	300°
B-3	2003/11/19	9:18	12°55'N	143°35'E	2003/11/19	13:21	13°32'N	143°04'E	320°
B-4	2003/11/19	13:21	13°32'N	143°04'E	2003/11/19	14:58	13°42'N	142°47'E	300°
B-5	2003/11/19	15:29	13°37.5'N	142°44'E	2003/11/19	16:47	13°29.5'N	142°57.5'E	120°
B-6	2003/11/19	17:21	13°26'N	142°52'E	2003/11/19	20:56	12°40'N	143°22.2'E	145°
T-1	2003/11/22	2:36	12°59.8'N	143°39.5'E	2003/11/22	17:30	16°00'N	145°17'E	30°
T-2	2003/11/27	22:14	15°00'N	143°22'E	2003/11/28	4:39	13°18.7'N	143°33'E	175°
T-3	2003/12/1	5:04	12°59.8'N	143°38.3'E	2003/12/1	11:41	14°21'N	144°40'E	35°
T-4	2003/12/1	18:24	14°21'N	143°10'E	2003/12/1	20:39	14°42'N	143°35'E	50°
T-5	2003/12/2	14:57	14°54'N	145°00'E	2003/12/2	17:31	15°30'N	145°14'E	20°
T-6	2003/12/3	18:48	15°48'N	144°58'E	2003/12/3	21:22	16°06'N	144°58'E	0°
T-7	2003/12/4	1:43	16°06'N	144°03'E	2003/12/4	3:01	16°12'N	144°20'E	70°
T-8	2003/12/4	8:15	16°18'N	144°34'E	2003/12/5	6:23	21°34'N	143°00'E	345°

Table 2-1. List of survey lines during KR03-13 cruise.

		<u> </u>	2		
No.	Date(UTC)	Start Time(UTC)	End Time(UTC)	Latitude	Longitude
1	2003/11/18	8:54	9:17	12°57.99'N	143°32.64'E
2	2003/11/27	21:52	22:11	14°58.86'N	143°21.15'E
3	2003/12/4	1:25	1:43	16°06.24'N	144°02.90'E
4	2003/12/5	6:01	6:23	21°33.75'N	143°00.00'E

Table 2-2. Summary of "figure-8" turns by Kobe Univ. type STCM

Coordinates of B and H matrix calculated

B(1,*)	B(2,*)	B(3,*)	H(*)
1.13821	0.00074	0.02261	-5885.8
0.02764	-1.34933	0.01075	-9199.3
0.00372	0.01035	0.83436	-3126.5

Figure 2-1. KR03-13 Surface Survey Line

Figure 2-2. KR03-13 Bathymetric map of Mariana Trough

Figure 2-3. Bathymetric map of Area A (KR03-13)

Figure ##. Bathymetric map for Mariana Trough

Figure 2-5. Vertical component of vector magnetic anomaly obtained by Kobe type STCM. Positive anomalies are shaded.

Figure 2-6. Free-air gravity anomaly along ship tracks. Positive anomalies are shaded.

Chapter 3. Geology (Dredge)

Harue MASUDA Miho ITO Okikatsu TAKAMI

1 Introduction

The main purpose of dredges during this cruise was the sampling of fresh volcanic rocks from the axial ridge of the spreading southern Mariana Trough to characterize the geochemistry of the active source magma in relation to the hydrothermal activities in this area. Also, hydrothermal sediments and hydrothermally altered rocks were expected to be obtained for detecting the precursor and/or presence of microbiology in the hydrothermal systems of this area. We tried dredges two times on the off-axis seamounts, one of where active black smoker was discovered in this October, and seven times on the summit area of the two spreading ridge segments, which can be separated into northern and southern segments at about 13°06'N (Figure 3-1). As results, we obtained huge amounts of fresh pillow lavas having quenched glass rim and some hydrothermal alteration products. In the next section, the obtained samples are briefly described.

2 Dredge site and recovered samples

The dredged sites are shown in Figure 3-1, and the all samples obtained by the dredges are listed in Tables 3-1 ~ 3-11. The photos of samples are in Appendix 3-1. Geological background and obtained samples are briefly described below.

D-1 The targeted area was the summit of the northern seamount of a pair of off-axis seamounts. At the summit of this seamont, the active hydrothermal black smokers were found. Dredge line was planned to start from the northwestern slope to western part of the summit.

Dredged samples were mainly composed of fresh pillow lava, which have fresh quenched glass rim thinly coated by manganese oxide. Also, much amount of hydrothermal products were obtained; sulfide blocks and hydrothermally altered volcanic rocks. The sulfide blocks were obviously originated from dead black smoker chimneys. Based on the optical observation, pyrite is the most abundant mineral. Other sulfide mineral(s), such as calcopyrite, galena and spharelite and so on, would be included as minor component(s). The occurrence of abundant pyrite would indicate more oxic condition of hydrothermal solution than the black smoker fluids observed at the usual mid oceanic ridges, where in general calcopyrite is the major phase as well as pyrite. Many cobble to pebble-size hydrothermally altered rocks, which have rounded shape, were also recovered. The original rocks are altered to white clay minerals, which occasionally substituted to whole blocks.

D-2 The site is located at the summit of the off-axis seamount south from the seamount where D-1 was dredged. The dredge line was started from the slope to the crest of western part of this seamount. The obtained samples are only glassy pillow lava, which have thick and fresh quenched glass rim. Vesicularity of the rock are obviously low among the volcanic rocks obtained during this cruise. Since the sampling depth is not deeper than those of the other sites, the volatile concentration and/or viscosity are the lower among the sampled rocks. Pelagic clay containing autochthonous volcanic glass and iron oxyhydoroxide was also recovered, indicating that sediment particles were tend to stay there probably because of deep sea current or topography.

D-3 The dredged site is located on the crest of an axial ridge of the southern segment. The obtained samples were fresh pillow, which are vesicular and have quenched glass rim thinly coated by manganese oxide. Low temperature hydrothermal sediments are also recovered from this site. Most of them are fragments of manganese oxide, however, large white smoker blocks are also included. It is hard to say whether hydrothermal activity is occurring at the present or not.

D-4 The dredged site is located on the crest of an axial ridge of the southern segment. The obtained samples are monotonously pillow lava preserving fresh quenched glass rim. The rocks are vesicular, and seem to enrich in volatiles. Occasionally, brown to reddish stain of iron oxyhydroxide, which would be originated from hydrothermal activity occurred at the same timing as the eruption, coated on the surface and fractures of the lava blocks.

D-5 The dredged site is located on the crest of an axial ridge of the southern segment. The location is exactly the west of the off-axis seamount dredged D-1. The obtained samples are monotonously pillow lava preserving fresh quenched glass rim. The rocks are vesicular, and seem to enrich in volatiles.

D-6 The dredged site is the crest of the southernmost area of the axial ridge of the southern segment. The samples are vesicular pillow lava preserving fresh quenched glass rim, thinly coated by manganese oxide.

D-7 The dredged site is located on the crest area of an axial ridge of the southern segment, west of the TOTO caldera. The samples obtained were vesicular pillow lava. A half of the rocks heavier than 0.5 kg have fresh quenched glass rim, while the remainings do not have fresh glass, suggesting of at least two different ages of eruption. The rocks without glass, were recovered from the bottom of the dredge, thus those were from the lower part of the crest and probably older than those having fresh glass surface.

D-8 The targeted line was from the slope to summit of the southern part of the axial ridge of the northern segment. Most of the obtained samples were pillow lava blocks without fresh glass surface. However, smaller amount of the pillow lava blocks having fresh quenched glass rim are also obtained from the upper part of the dredge, indicating that those were from the last part of the dredged line. Probably, the fresh volcanic can be obtained only from the summit area of this ridge segment.

D-9 The dredge site was flat area on the top of axial ridge in the northern segment. Fresh pillow lava could not be obtained, since the targeted area was old hydrothermal mound, where huge amount of fragments of dead white smoker and manganese chimneys were recovered. The largest block was 4kg white smoker chimney comprising white silica mineral (amorphous silica and/or quartz) and iron oxyhydroxide. Brownish pelagic clays and white carbonaceous ooze are also obtained, indicating that the local volcanism has not occurred for a long time. Hydrothermal activity could be younger than the volcanism, however, it does not seem to be active at the present.

3 Future plan of shore-based study

The rock samples were cut and separated on board for the shore-based analyses. Major and minor chemical compositions are routinely analyzed by XRF and ICP-AES for characterizing the magmatism of the spreading ridge. Stable isotopes of hydrogen, carbon and sulfur are measured to estimate the origin and circulating system of volatiles concerning the magmatism. Some isotopes (Sr, B, and so on) are also planned to be analyzed to discuss on the origin of source materials of magma. These procedures will be carried out under collaboration among OCU, Tohoku University and University of Hawaii.

Pelagic sediments, carbonaceous ooze, and hydrothermal products such as chimney blocks, hydrothermally altered rocks and the rocks including hydrothermal precipitates filled in the fractures among fresh pillow lava were frozen just after the sampling. Those samples will be used for estimating the organic-related activity of the hydrothermal systems and ambient circumstance of the studied area. The plans are described in detail as the followings.

Analysis of amino acids procedures

Sediment samples, which are kept in a freezer for analysis of amino acids, are listed in Table 3-10.

In the laboratory, the sample is freezed dried under vacuum. The dried sample is ground using a mortar and pestle to fine powder. Approximately 100mg sample is hydrolyzed with 3ml 6 N HCl in a sealed glass ampoule under argon gas atmosphere for 22 hours at 110°C. After cooling to room temperature, the hydrolyzed sample is filtered through PTFE membrane filter (0.45 μ m) and evaporated to remove HCl under vacuum at 40°C. The residue is dissolved in 500 μ l diluant buffer solution (pH 2.20). 10 μ l of sample is injected in a liquid chromatograph amino acid analyzer to determine the association of amino acids and those concentrations. The analysis will be done under collaboration between OCU and GSJ.

Detection of microbiological precursor

Hydrothermal sediments and hydrothermally altered rocks were dredged in this cruise. First, petrographical study will be done on those samples that contain sulfide minerals at Tohoku University. Thin section of those samples are optically observed by a polarizing microscope and analyzed of chemical composition using an EPMA, quantification analysis will be done not only for typical metal elements such as Cu, Zn and Pb but also precious metal elements such as Au. Especially, if the abundance of essential elements for organic activity (Mo, B, P) is determined, we can estimate whether hydrothermal activity in this research area can support microbial life or not. Second, sulfur isotope ratios will be analyzed for sulfide minerals (and sulfate minerals). Some samples are expected to contain biogenetic sulfide minerals. Generally, the crystal forms of biogenetic sulfide minerals are different from those of inorganic ones and they have the lower values in sulfur isotopic composition than those of inorganic ones. Thus, the sulfur isotopic compositions will explain the character and the origin of sulfide minerals. Table 3-1 List of samples dredged at site DB01 in KR03-13

Dredge site No. DB-01 17-Nov-03 Off axis seamount (near Pika site) Start poin 12° 55.2264'N, 143° 38.8788'E End point 12° 54.9578'N, 143° 39.3399'E

2003/11/16 23:51 2003/11/17 0:41

Sample No.	Туре	Scale (cm)	Weight (kg)	Remarks	Distributi
R-001	Rock	35x30x24	18.9	Pillow lava with fresh glass rim and red	
R-002	Rock	32x27x19	8	Pillow lava with fresh glass rim and Mn	OCU, TU
R-003	Rock	20x19x19	7	Pillow lava with fresh glass rim and Mn	OCU. TU
R-004	Rock	20x17x15	5	Pillow lava with fresh glass rim and Mn	OCU. TU
R-005				Pillow lava with fresh glass rim coated by	,
	Rock	23x18x15		Fe-rich mud	OCU. TU
R-006	noon	LOXIOXIO		Pillow lava with fresh glass rim coated by	OCU TU
11 000	Rock	23x18x11	4	Mn oxide	UT
R-007	Rock	18x16x15	3 5	Pillow lava with fresh glass rim coated by	
R-008	Rock	18x15x10	3	Pillow lava with fresh glass rim coated by	
R-009	Rock	11x9x8	1	Pillow lava with fresh glass rim coated by	
R-010	Rock	10x9x8	1	Pillow lava with fresh glass rim coated by	
R-011	Rock	22x24x19	10	Pillow lava with fresh flass rim coated by	
R-012	Hydrotherma		10	Sulfide block mainly composed of pyrite	000, 10
	l sediment	18x13x12	6	(hlack smoker chimney)	OCII TII
R-013	Rock	20v13v13	3	Pillow lava with fresh glass rim coated by	
R-014	NOON	$17 \times 16 \times 15$	3 5	Pillow lava coated by Fe and Mn ovides	
R-015		21x24x12	<u> </u>	Pillow lava with fres glass thinly coated	
R-016		14x11x14	3	Pillow lava with fresh glass	
R-017		18x11x9	2	Pillow lava coated by Fe and Mn oxides	
R-018	Hydrotherma			Sulfide block mainly composed of pyrite	
	l sediment	15v15v12	5	(black smoker chimney)	UT KII
R_010	Hydrotherma	10/10/12	5	Sulfide block mainly composed of pyrite	01, KU
N 013	l sediment	13v10 5v8	25	(black smoker chimpey)	OCU TU
R-020	Rock	16v11v0	2.5	Pillow lava	
R-020	Rock	13v10v6	1.0	hydrothermally altered nillow lava	
R-021	Rock	12v10v9	15	Pillow lava with fresh glass	
R-022	NOOK	12/10/0	1.0	hydrothermally altered nillow lava coated	000, 10
11 020	Rock	12x10x6	0.8	white hydrothermal alteration clay minerals	OCII TII
R-024	NOON	12,10,0	0.0	hydrothermally altered nillow lava coated	000, 10
11 021	Rock	9x8x7	1	white hydrothermal alteration clay minerals	OCII TII
R-025	Rook	UNUX1		hydrothermally altered pillow lava coated	000, 10
11 020	Rock	12x8x8	1	white hydrothermal alteration clay minerals	OCII TII
R-026	noon	TEXOXO		hydrothermally altered pillow lava coated	
11 020	Rock	13 5x7x3	05	white hydrothermal alteration clay minerals	OCU TU
R-027	noon	10. 0////0	0.0	hydrothermally altered pillow lava coated	
11 027	Rock	11 5x8x4	1	white hydrothermal alteration clay minerals	OCII TII
R-028	noon			hydrothermally altered pillow lava coated	
11 020	Rock	9x8x5 5	05	white hydrothermal alteration clay minerals	OCU TU
R-029				hydrothermally altered pillow lava coated	
	Rock	9x7x5	0.5	white hydrothermal alteration clay minerals	OCU. TU
R-030	Hydrotherma			Sulfide block mainly composed of pyrite	
	l sediment	7. 5x7. 5x5. 5	1	(black smoker chimnev)	OCU. TU
R-031	Hvdrotherma			Sulfide block mainly composed of pyrite	,
	l sediment	9x3. 5x5	0.5	(black smoker chimney)	OCU. TU
R-032	Hvdrotherma			Sulfide block mainly composed of pyrite	,
	l sediment	5x4. 5x3	0.3	(black smoker chimney)	OCU, TU
R-033	Rocks		2.5	Pillow lava fragments	OCU, TU
R-034				5	TU, OCU,
					UT (1
				hydrothermally altered pillow lava	fragment
	Rocks		2	fragments	each)

Table 3-2 List of samples dredged at site DBO3 in KR03-13

Dredge site No. DB-02 17-Nov-03 Off axis seamount (southern peak) Start point12° 53.7161'N, 143° 38.6660'E 2003/11/17 4:03 End point 12° 53.7322'N, 143° 39.0774'E 2003/11/17 4:50

Sample No.	Туре	Scale (cm)	Weight (kg)	Remarks		
R-001	Rock	34x24x16	8	Pillow lava with fresh glass rin	OCU,	TU
R-002	Rock	20x15x12	3	Pillow lava	OCU,	TU
R-003				Pillow lava with fresh glass		
	Rock	20x12x10	2.5	rim coated by Mn oxide	OCU,	TU
R-004				Pillow lava with fresh glass		
	Rock	20x13x9	2	rim coated by Mn oxide	OCU,	TU
R-005				Pillow lava with fresh glass		
	Rock	14x12x8	2.5	rim coated by Mn oxide	OCU,	TU
R-006				Pillow lava with fresh glass		
	Rock	14x13x10	1.5	rim coated by Mn oxide	OCU.	TU
R-007				Pillow lava with fresh glass		
	Rock	13x13x7	1	rim coated by Mn oxide	OCU,	TU
R-008				Pillow lava with fresh glass		
	Rock	11x11x9	1	rim coated by Mn oxide	OCU,	TU
R-009				Pillow lava with fresh glass		
	Rock	11x8x8	1	rim coated by Mn oxide	OCU,	TU
R-010				Pillow lava with fresh glass	, í	
	Rock	15x9x4	0.5	rim coated by Mn oxide	OCU,	TU
R-011	Rock	10x7x8	1	Fresh glass	OCU,	TU
R-012	Rock	9x8x6	0.5	Pillow lava with fresh glass	OCU,	TU
R-013	Rock	9x7x5	0.5	Pillow lava with fresh glass	OCU,	TU
R-014	Rock	8x6x6	0.5	Pillow lava with fresh glass	OCU,	TU
R-015	Rock	8x7x6	0.5	Pillow lava with fresh glass	OCU,	TU
R-016	Rock	18x13x11	2	Pillow lava with fresh glass	OCU,	TU
R-017	Rock	22x15x9	1.8	Pillow lava with fresh glass	OCU,	TU
R-018	Rock	9x9x9	1	Pillow lava with fresh glass	OCU,	TU
R-019	Rock	9x8x7	0.5	Pillow lava with fresh glass	OCU,	TU
R-020	Rock	10x6x5	0.5	Pillow lava with fresh glass	OCU,	TU
R-021	Rock	10x8x4	0.5	Pillow lava with fresh glass	OCU,	TU
R-022	Rock	9x7x5.5	0.3	Pillow lava with fresh glass	OCU,	TU
R-023	Rock	11x10x4.5	0.3	Pillow lava with fresh glass	OCU,	TU
R-024	Rock		7	Rock fragments	Í	
R-025				Rock fragments with brownish	Ì	
	Rock		10	sediments (not washed)		
S-001				Deep sea sediment including		
	Sediment		1	brownish clays and glass		

Table 3-3 List of samples dredged at site DBO3 in KR03-13

Dredge site No. DB-03 18-Nov-03 Ridge axis Start point12° 59.2417'N, 143° 37.6643'E End point 12° 59.4497'N, 143° 38.0019'E

2003/11/17 23:06 2003/11/17 23:41

Sample No.	Туре	Scale (cm)	Weight (kg)	Remarks		
R-001	Rock	25x12x12	2.6	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-002	Rock	21x17x9	1.5	Quenched glass crust of pillow lava	OCU,	TU
R-003	Rock	17x13x11	1.5	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-004	Rock	16x13x11	1.5	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-005	Rock	11x9x9	0.5	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-006	Rock	11x10x4	0.5	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-007	Rock	17x11.5x3	0.5	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-008	Rock	13x11x5	0.5	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-009	Rock	12x10x7	0.5	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-010	Rock	11. 5x8x6	0.3	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-011	Rock	11. 5x10x5	0.3	Pillow lava with fresh glass coated by Mn	OCU,	TU
R-012	Rock	11. 5x7x4. 5	0.3	Quenched glass crust of pillow lava	OCU,	TU
R-013	Rock	11. 5x7x4	0.2	Quenched glass crust of pillow lava	OCU,	TU
R-014	Rock		1	Rock fragments mainly composed of pillow	OCU,	TU
R-015	al			Silica and Fe-oxide block (white smoker		
	sediment	24x19x14	2.5	chimney)	OCU,	TU
R-016a	al			Silica and Fe-oxide block (white smoker		
	sediment	20. 5x12x9	1	chimney)	OCU,	TU
R-16b	al			Silica and Fe-oxide block (white smoker		
	sediment	10. 5x8x8	0.5	chimney)	OCU,	TU
R-017	al					
	sediment	13x10. 5x9.	0.5	Fe-Mn chimney	OCU,	TU
R-018	al			Silica and Fe-oxide block (white smoker		
	sediment	12x8x5.5	0.3	chimney)	OCU,	TU
R-019	al					
	sediment		1	Fragments of silica and Fe-oxide blocks	OCU,	TU
R-020	al			Hydrothermal seciments mainly composed of		
	sediment			Mn-oxide		
R-021	al			Hydrothermal seciments mainly composed of		
	sediment			Mn-oxide		
R-022	al			Hydrothermal seciments mainly composed of		
	sediment			Mn-oxide		
R-023	al			Hydrothermal seciments mainly composed of		
	sediment			Mn-oxide		

Table 3-4 List of samples dredged at site DBO4 in KR03-13

Dredge site No. DB-04 18-Nov-03 Ridge axis Start point12° 56.4314'N, 143° 36.4851'E End point 12° 56.7527'N, 143° 36.8621'E

Sample No.	Туре	Scale (cm)	Weight (kg)	Remarks		
R-001	Rock	29x23x19	8	vesicular pillow lava with fresh gla	OCU,	TU
R-002	Rock	24x15x12	3.5	vesicular pillow lava with fresh gla	0CU	
R-003				vesicular pillow lava with fresh		
	Rock	19x17x16	2.5	glass rim with grey stain on the	OCU,	TU
R-004				vesicular pillow lava with fresh		
	Rock	15x12x9	1	glass rim with grey stain on the	OCU,	TU
R-005				vesicular pillow lava with fresh		
	Rock	13x12x7	1	glass rim with Fe stain	OCU,	TU
R-006				vesicular pillow lava with fresh		
	Rock	12x12x8	1	glass rim with brown to grey stain	OCU,	TU
R-007				vesicular pillow lava with fresh		
	Rock	13x11x10	1	glass rim with brown to grey stain	OCU,	TU
R-008				vesicular pillow lava with fresh		
	Rock	13x11x8	0.5	glass rim and thin brownish stain	OCU,	TU
R-009				vesicular pillow lava with fresh		
	Rock	12x8x7	0.5	glass rim and thin brownish stain	OCU,	TU
R-010				vesicular pillow lava with fresh		
	Rock	10x9x5	0.5	glass rim and thin brownish stain	OCU,	TU
R-011				vesicular pillow lava with fresh		
	Rock	10x9x7	0.3	glass rim and thin brownish stain	OCU,	TU
R-012				vesicular pillow lava with fresh		
	Rock	10x9x7	0.3	glass rim and thin brownish stain	OCU,	TU
R-013	Rock	11. 9x9	0.3	vesicular pillow lava with fresh	OCU,	TU
R-014	Rock	9x8x5	0. 2	vesicular pillow lava with fresh	OCU,	TU
R-015				vesicular pillow lava with fresh		
	Rock	8x7x5	0. 2	glass rim with grey stain	OCU,	TU
R-016	Rock	9x8x5	0. 2	vesicular pillow lava with fresh	OCU,	TU
R-017	Rock	8x7x4	0. 2	vesicular pillow lava with fresh	OCU,	TU
R-018	Rock	10x7x5	0.2	vesicular pillow lava with fresh	OCU,	TU
R-019	Rock	9x8x3	0.2	vesicular pillow lava with fresh		
R-020	Rock			Pebble to Cobble size fragments		
R-021	Rock			Small fragments		

Table 3-5 List of samples dredged at site DB05 in KR03-13

Dredge site No. DB-05 18-Nov-03 Ridge axis Start point12° 55.1564'N, 143° 36.0310'E End point 12° 55.6545'N, 143° 36.4295'E

2003/11/18 5:49 2003/11/18 6:38

Sample No.	Туре	Scale (cm)	Weight (kg	Remarks	
R-001	Rock	26x26x17	3.5	vesicular pillow lava with fresh glaO(CU, TU
R-002	Rock	26x17x15	5	vesicular pillow lava with fresh glaO(CU, TU
R-003	Rock	22x9x12	2.5	vesicular pillow lava with fresh glaOC	CU, TU
R-004	Rock	16x12x11	1.5	vesicular pillow lava with fresh glaO(CU, TU
R-005	Rock	15x11x7	1	vesicular pillow lava with fresh glaO(CU, TU
R-006	Rock	12x10x8	1	vesicular pillow lava with fresh glaOC	CU, TU
R-007	Rock	13x9x9	1	vesicular pillow lava with fresh glaOC	CU, TU
R-008	Rock	18x8x8	0.5	vesicular pillow lava with fresh glaO(CU, TU
R-009	Rock	11x10x4	0.5	vesicular pillow lava with fresh glaOC	CU, TU
R-010	Rock	10x8x4	0.3	vesicular pillow lava with fresh glaO(CU, TU
R-011	Rock	9x7x5	0. 2	vesicular pillow lava with fresh glaO(CU, TU
R-012	Rock			Pebble to Cobble size fragments	
R-013	Rock			Smaller size fragments	

Table 3-6 List of samples dredged at site DBO6 in KR03-13

Dredge site No. DB-06 20-Nov-03 Southernmost area of the ridge axis Start point12°41.0048'N, 143°23.0058'E End point 12°41.2544'N, 143°23.4481'E

2003/11/19 23:48 2003/11/20 0:22

Sample No.	Туре	Scale (cm)	Weight (kg)	Remarks	
R-001				vesicular pillow lava with fresh glass	
	Rock	30x22x13	5	rim thinly ocated by Mn oxide	OCU, TU
R-002				vesicular pillow lava with fresh glass	OCU, TU,
	Rock	26x20x9	4	rim thinly ocated by Mn oxide	KU
R-003				vesicular pillow lava with fresh glass	
	Rock	22x19x16	4	rim thinly ocated by Mn oxide	OCU TU
R-004	Noon	ZZXTOXTO		vesicular nillow lava with fresh glass	000, 10
1 004	Rock	$21 \times 15 \times 12$	2	rim thinly ocated by Mn oxide	OCU TU
P_005	NOON	21/10/12	Z	vesicular nillow lava with fresh glass	000, 10
N-003	Pook	17,12,0	0	rim thinly costed by Mn oxide	
D 006	NUCK	1721320	Z	vesionler nillew love with freeh gloss	000, 10
K-000	Deals	14,10,10	1 5	vesicular pillow lava with fresh glass	
D 007	ROCK	14X10X10	1. 0	rim chiniy ocaled by whitoxide	000, 10
R-007		14.0.0		vesicular pillow lava with tresh glass	
D	ROCK	14x8x8		rim thinly ocated by Mn oxide	UCU, TU
R-008	_			vesicular pillow lava with fresh glass	
	Rock	14x8x8	1	rim thinly ocated by Mn oxide	OCU, IU
R-009				vesicular pillow lava with fresh glass	
	Rock	11x8x7	1	rim thinly ocated by Mn oxide	OCU, TU
R-010				vesicular pillow lava with fresh glass	
	Rock	11x9x7	1	rim thinly ocated by Mn oxide	OCU, TU
R-011				vesicular pillow lava with fresh glass	
	Rock	10x10x7	1	rim thinly ocated by Mn oxide	OCU, TU
R-012				vesicular pillow lava with fresh glass	
	Rock	10x7x7	1	rim thinly ocated by Mn oxide	OCU. TU
R-013				vesicular pillow lava with fresh glass	,
	Rock	10x8x7	0.7	rim thinly ocated by Mn oxide	OCU. TU
R-014				vesicular pillow lava with fresh glass	
	Rock	11x8x6	0.6	rim thinly ocated by Mn oxide	OCU TU
R-015	NOON	TTXOXO	0.0	vesicular nillow lava with fresh glass	000, 10
	Rock	10x8x7	05	rim thinly ocated by Mn oxide	OCU TU
P_016	NOON	10/0/1	0.0	vesionlar pillow lava with fresh glass	000, 10
N-010	Pook	0,40,46	0.5	rim thinly costed by Mn oxide	
D 017	NUCK	97070	0. 5	vesionler nillew love with freeh gloss	000, 10
K-017	Deals	0.46.46	0.5	vesicular pillow lava with fresh glass	
D 010	ROCK	9X0X0	0.5	rim thinly ocaled by white first share	000, 10
R-018		0 7 7	<u>о</u> г	vesicular pillow lava with tresh glass	
D 010	Rock	9x/x/	0.5	rim thinly ocated by Mn oxide	0CU, IU
R-019				vesicular pillow lava with fresh glass	
	Rock	18x15x10	1.8	rim thinly ocated by Mn oxide	OCU, TU
R-020				vesicular pillow lava with fresh glass	
	Rock	14x10x7	1.2	rim thinly ocated by Mn oxide	OCU, TU
R-021				vesicular pillow lava with fresh glass	
	Rock	12x8x7	0.8	rim thinly ocated by Mn oxide	OCU, TU
R-022				vesicular pillow lava with fresh glass	
	Rock	10x7x5	0.5	rim thinly ocated by Mn oxide	OCU, TU
R-023	Rock	1	4	Rock fragments (~ cobble)	
R-024	Rock		6	Rock fragments (<pebble)< td=""><td></td></pebble)<>	

Table 3-7 List of samples dredged at site DB07 in KR03-13

Dredge site No. DB-07 20-Nov-03 Southernmost area of the ridge axis Start point12° 46.1821'N, 143° 29.5020'E End point 12° 46.5733'N, 143° 30.2113'E

2003/11/20 3:37 2003/11/20 4:29

Sample No.	Туре	Scale (cm)	Weight (kg)Remarks	
R-001	Rock	31x25x17	11 Pillow lava coated with Mn oxide, no glass	
R-002	Rock	25x17x16	8 Pillow lava coated with Mn oxide, no glass	
R-003	Rock	23x19x17	6.5 Pillow lava coated with Mn oxide, no glass	
R-004	Rock	22x19x17	6.5 Pillow lava coated with Mn oxide, no glass	
R-005	Rock	22x19x16	5 Pillow lava coated with Mn oxide, no glass	
R-006	Rock	22x19x15	4.5 Pillow lava coated with Mn oxide, no glass	OCU, TU
R-007	Rock	22x15x14	5.5 Pillow lava coated with Mn oxide, no glass	OCU, TU
R-008	Rock	20x19x14	4.5 Pillow lava coated with Mn oxide, no glass	OCU, TU
R-009	Rock	19x13x13	<u>3 Pillow lava coated with Mn oxide, no glass</u>	OCU, TU
R-010	Rock	18x14x12	2.5 Pillow lava coated with Mn oxide, no glass	<u>OCU, TU</u>
R-011	Rock	22x14x11	<u>3 Pillow lava coated with Mn oxide, no glass</u>	
R-012	ROCK	21X14X11	ZIPILIOW LAVA COATED WITH MIN OXIDE, NO glass	
R-013	ROCK	16x11x10	I.5 Pillow lava coated with Mn oxide, no glass	
R-014 D 015	ROCK	10X14X10	1.5 PILLOW Lava coated with Mn oxide, no glass	
R-010 D 016	RUCK	13X11X/	1. IPTITOW Tava coaled with Mn oxide, no glass	
R-010 P-017	Rock	10x0x/	1 Pillow lava coated with Mn exide no glass	
R-018	Rock	12x10x9	0.8 Pillow lava coated with Mn oxide, no glass	
R_020	Rock	10v8v7	0.5 Pillow lava coated with Mn oxide, no glass	
R-020	NOON	10/0//	Pillow lava with fresh glass rim thinly	000, 10
11 021	Rock	22x17x11	3 coated by Mn oxide	OCU TU
R-022	noon	LEXIVATI	Pillow lava with fresh glass rim thinly	000, 10
	Rock	18x12x11	1.9 coated by Mn oxide	OCU. TU
R-023			Pillow lava with fresh glass rim thinly	,
	Rock	17x15x12	2 coated by Mn oxide	OCU, TU
R-024			Pillow lava with fresh glass rim thinly	
	Rock	19x11x9	1.5 coated by Mn oxide	OCU, TU
R-025			Pillow lava with fresh glass rim thinly	
	Rock	16x13x10	1.8 coated by Mn oxide	OCU, TU
R-026	. .	15 10 10	Pillow lava with tresh glass rim thinly	
D 007	Rock	15x12x10	1.5 coated by Mn oxide	OCU, IU
R-027	Pook	16,11,7	Pillow lava with fresh glass rim thinly	
P_029	RUCK	1021127	Dillow lave with fresh glass rim thinly	000, 10
N-020	Rock	$12 \times 10 \times 10$	1 coated by Mn ovide	OCU TU
R-029	NOON	12/10/10	Pillow Java with fresh glass rim thinly	000, 10
N 025	Rock	13x10x8	licoated by Mn oxide	OCII TII
R-030	noon	TOXTOXO	Pillow lava with fresh glass rim thinly	000, 10
	Rock	13x8x6	1 coated by Mn oxide	OCU. TU
R-031			Pillow lava with fresh glass rim thinly	
	Rock	13x7x6	0.8 coated by Mn oxide	OCU, TU
R-032			Pillow lava with fresh glass rim thinly	
	Rock	10x8x7	0.7 coated by Mn oxide	OCU, TU
R-033			Pillow lava with fresh glass rim thinly	
	Rock	12x8x6	0.7 coated by Mn oxide	OCU, TU
R-034	. .		Pillow lava with fresh glass rim thinly	
D. 005	Rock	11x/x6	0.5 coated by Mn oxide	OCU, IU
R-035	Deals	10	Pillow lava with tresh glass rim thinly	
P 026	ROCK	10X0X5	U. SICOATED BY MN OXIDE	
R-030 P-027	NUCK		Dillow love with freeh glass	
N=037	Rock	8x5x1	0 Slooated by Mn ovide	
R-038	Rock	0,0,0,4	1 Fragments of guenched glass	000, 10
R-039	Rock		8 Rock fragments (~cobble)	1
R-040	Rock		9.5 Rock fragments (<pre>cobble</pre>	ł

Table 3-8 List of samples dredged at site DBO8 in KRO3-13

Dredge site No. DB-08 21-Nov-03 Northern segment area of the ridge axis Start point 13° 10. 4850' N. 143° 41. 9850' E 2003/11/20 23:08 End point 13° 10. 8712' N. 143° 42. 8422' E 2003/11/21 0:18

Sample No.	Type	Scale (cm)	Weight (kg)	Remarks	Distribution
R-001	Rock	55x26x24	45	Lava block	
R-002	Rock	32x22x22	10	Pillow lava with fresh glass rim thinly coated by Mn and Fe oxides	TU/OCU
R-003	Rock	30x19x16	11.5	Lava block	
R-004	Rock	30x23x15	6.5	Lava block	
R-005	Rock	29x26x10	/	Lava block	
R-006	Rock	25x19x18	8	Lava block	l
R-007	Rock	22x20x17	1	Lava block	l
R-008	Rock	24x1/x13	0	Lava block	
R-009	ROCK	21X18X14	3		
R-010	ROCK	19X13X14	4. 0 7. 5	Lava block	i
R-UII	ROCK	39810811	1.5		
R-012 P-013	Ruck	22820813		Lava block	
R-013 P_014	Pook	23X11X11 24v20v14	5	Lava block	
R-014 P_015	Pook	24X2UX14 20v17v14	5	Lava block	l
P_016	Pock	10v12v14	3	Lava block	l
R_017	Rock	16x13x12		Lava block	
R-018	Rock	16x13x16	3.5	lava block	
R-019	Rock	17x14x10	3	lava block	
R-020	Rock	18x12x9	2.5	Lava block	
R-021	Rock	15x12x11	2.5	Lava block	OCU. TU
R-022	Rock	15x13x7	1.5	Lava block	oc.,
R-023	Rock	15x14x11	2	Lava block	
R-024	Rock	13x11x9	2	Lava block	
R-025	Rock	13x11x9	2	Lava block	
R-026	Rock	15x12x10	2	Lava block	OCU, TU
R-027	Rock	16x11x9	2	Lava block	
R-028	Rock	19x10x12	2	Lava block	OCU, TU
R-029	Rock	14x14x10	2	Lava block	
R-030	Rock	15x12x9	2	Lava block	
R-031	Rock	14x12x11	2	Lava block	- NI - TU
R-032	Rock	14x11x11	2	Lava block	OCU, IU
R-033	Rock	15x9x9	4	Lava block	
R-034	Rock	16x10x10	1 5	Lava block	
R-035	ROCK	1/XIUXIU	1.0		
R-U36	ROCK	13X12X8	1.0 1.5	Lava block	0CU, IU
R-U31	ROCK	1000010	1.0		
R-030	RUCK	1229210	1. J		
R-039 P_0/0	Pook	122020	1 2	Lava block	
R-040 P_0/1	Pock	12×10×6	1.4		l
R-041 P-042	Pock	12 52828	1.5	Lava block	l
R-043	Rock	12: 07070 12:10x8	1.5	Lava block	
R-044	Rock	134948	1.5	Lava block	
R-045	Rock	11x10.5x9	1.5	Lava block	
R-046	Rock	16x11x9	1.5	Lava block	
R-047	Rock	13x10x11	1.8	Lava block	
R-048	Rock	12x10x8	1.5	Lava block	
R-049	Rock	14x9x9	1.2	Lava block	
R-050	Rock	12x10x9	1.5	Lava bl <u>ock</u>	
R-051	Rock	11x10x7	1.2	Lava block	
R-052	Rock	10x9x6	1	Lava block	
R-053	Rock	13x9x8	1.2	Lava block	
R-054	Rock	11x8x7	1	Lava block	
R-055	Rock	12x9x7	1	Lava block	
R-056	Rock	13x8x10	1	Lava block	
R-057	Rock	10x7x6	1	Lava block	
R-058	Rock	11x8x6		Lava block	
R-059	Rock	11x9x0		Lava block	l
R-060	Rock	11x/x5		Lava block	l
R-061	ROCK	9x6x3	U. /	Lava block	i
R-062	ROCK	13X4X4	U. 0	Lava block	i
R-003	ROCK	21210210	4	Pillow lava with fresh glass rim thinly coated by wn oxide	
R-004	RUCK	20X1/X0		Pillow lava with fresh glass rim thinly coated by whi uside	
R-000 P_066	Pock	18X14X13	<u>ु</u>	Pillow lava with fresh glass rim thinly coated by Mn oxide	
R-000	Pock	21x10x11 22v1/1y0	3	Pillow lava with fresh glass rim thinly coated by Mn oxide	TU/000/10
R-000 P-060	Pock	16v19v9	2 5	Pillow lava with fresh glass rim thinly coated by Mn oxide	TU/000/10
R_070	Rock	16x12x10	2. 0	Pillow lava with freeh glass rim thinly coated by Mn oxide	TII/OCII/KU
R-071	Rock	16x11x7	2	Pillow leva with fresh glass rim thinly coated by Mn oxide	TII/OCU/KU
R-072	Rock	17x10x8	1.8	Pillow lava with fresh glass rim thinly coated by Mn oxide	TII/OCU/KU
R-073	Rock	9x8x6	1	Pillow lava with fresh glass rim thinly coated by Mn oxide	TU/OCU/KU
R-074	Rock	10x8x7	1	Pillow lava with fresh glass rim thinly coated by Mn oxide	TU/OCU/KU
R-075	Rock	9x7x6	1	Pillow lava with fresh glass rim thinly coated by Mn oxide	TÚ/OCU/KU
R-076	Rock	12x7x5	1	Pillow lava with fresh glass rim thinly coated by Mn oxide	TU/OCU/KU
R-077	Rock	10x7x6	1	Pillow lava with fresh glass rim thinly coated by Mn oxide	TU/OCU/KU
R-078	Rock	9x7x4	0.8	Pillow lava with fresh glass rim thinly coated by Mn oxide	TU/OCU/KU
R-079	Rock	T		Rock fragments (~ф10cm)	
R-080	Rock		10	Rock fragments (<pebble)< td=""><td></td></pebble)<>	
R-081	Rock		5	Fragments of rock including quenched glass	
Table 3-9 List of samples dredged at site DBO9 in KR03-13

Dredge site No. DB-09 21-Nov-03 Northern segment area of the ridge axis Start point 13° 20.6350'N, 143° 45.2108'E 2003/11/21 3:49 End point 13° 21.1747'N, 143° 45.3960'E 2003/11/21 4:33

Sample No.	Туре	Scale (cm)	Weight	Remarks	
R-001	Rock	25x20x14	4	Chimney block (weathered black smoker chimeny?)	TU
R-002	al				
	sediment	14x12x8	1	Mn Chimney	OCU, TU
R-003	al				
	sediment	15x11x5	1.3	Mn Chimney	OCU, TU
R-004	al				
	sediment	13x9x6	0.5	Mn and chimney	OCU, TU
R-005	al				
	sediment	13x12x7	0.5	Mn and Fe chimney	OCU, TU
R-006	al				
	sediment	13x9x6	0.3	Mn Chimney	OCU, TU
R-007	al				
	sediment	13x10x4	0.3	Mn Chimney	OCU, TU
R-008	al				
	sediment	13x8x7	0.5	Mn and Fe chimney	OCU, TU
R-009	al				
	sediment	10x7x6	0. 2	Mn Chimney	OCU, TU
R-010	al				
	sediment	10x9x5	0. 2	Mn Chimney	OCU, TU
R-011	Rock	10x7x6	0. 1	Pumice	OCU, TU
R-012	al				
	sediment			Chimney fragments (Mn>Fe)	OCU, TU
S-001			23(includi		
			ng 002		
	Sediments		and 003)		OCU, TU
S-002	Sediments			Pelagic clays	OCU, TU
S-003	Sediments			Calcareous ooze	OCU, TU
S-004			18(includi		
	Sediments		ng 004)	Pelagic clays	
S-005	Sediments			Pelagic clays	
S-006			20(includi		
	Sediments		ng 007)	Pelagic clays	
S-007	Sediments			Mn chimney fragments	OCU, TU

Table 3-10 List of samples taken for amino acid analysis

Dredge site No. (sa	Туре
D-01 (R-034)	Hydrothermal sediment
D-02 (S-001)	Hydrothermal sediment
D-03 (R-015)	Sediment
D-04 (R-020)	Rock
D-06 (R-024)	Rock
D-09 (S-002)	Sediment
D-09 (S-003)	Sediment

Frozen samples (Osaka City University)

Table 3-11 List of samples taken for microbiological examination Frozen samples (Tohoku University)

Dredge site No.	(sample N	Туре
D-01 (R-034)		Hydrothermal sediment
D-02 (S-001)		Hydrothermal sediment
D-03 (R-015)		Sediment
D-03 (R-019)		Hydrothermal sediment
D-04 (R-020)		Rock
D-06 (R-024)		Rock
D-08 (R-089)		Rock
D-09 (R-012)		Mn Chimney fragments

4. Geochemical, physical, and microbiological study of hydrothermal plumes

Submarine hydrothermal activity exerts an important control on the chemical composition of seawater, marine sediments and the crust, and also on microbiological activities in such environment. Investigation of hydrothermal plumes among water columns would provide important clues to discuss these affects to the ocean.

Since previous submersible studies identified two active hydrothermal fields, one at the backarc ridge axis 12°57.2'N, 143°37.2'E and the other at a seamount 12°55.1'N, 143°39.0'E, we planned the survey region covering them. During the cruise we conducted 5 CTD tow-yo surveys (Table 4-2, Fig. 4-5), collecting 24 samples for chemical and microbiological analyses (Table 4-3). We also deployed a mooring system with two 3D-acoustic current meters for 14 days (Table 4-1, Fig. 4-1).

The CTD tow-yo surveys located hydrothermal plumes by anomalies of potential temperature (Fig. 4-7) and of pH (Fig. 4-8). (Unfortunately, the transmissometer did not work well). The profiles seem to indicate two hydrothermal plumes (one at depth 2700-2750m and the other at depth 2800-2850m) originate from distinct sources. We did not find sign of plumes along the backarc ridge axis between 13°0'N and 13°10'N. Onboard analysis revealed chemical anomaly in manganese of the plume samples, which showed good correlation with the temperature anomaly (Fig. 4-9). The record of current meters showed that east-west direction current is dominant at 2440m depth while rather low current velocity (0.15cm/sec. in average) at 2780m depth. We also noticed significant perturbation caused by a typhoon (which attacked this region during 11/23-11/27) at 2440m depth.

For future studies, analyses of some chemical indicators such as helium isotope, methane, carbon dioxide, amino acids will be conducted to characterize chemical signature of the hydrothermal plumes. Furthermore, molecular and cellular based microbial population analyses will be conducted to reveal ecology of microbes in the hydrothermal plumes such as viability, community structures, niches, and to discuss relationship between microbiological activities and chemical evolution of hydrothermal plumes. 4. 熱水プルームの物理・化学・微生物特性の研究

石橋	純一郎	九州大学大学院理学研究院
土井	崇史	東京大学海洋研究所
砂村	倫成	東京大学大学院理学系研究科
斉藤	将史	東京大学理学部
平良	直人	琉球大学大学院理工学研究科
益田	晴恵	大阪市立大学大学院理学研究科
伊藤	美穂	大阪市立大学大学院理学研究科
前田	義明	(株)セレス 環境調査部
小池	祐一	(株)セレス 環境調査部

4-1. はじめに

熱水プルームは、海底から放出された熱水が海水と混合して形成する水塊で、周囲の海水 と比べて化学的あるいは物理的に異常な性質を持つ。熱水は海底下でのマグマによる加熱に 伴なう周囲の岩石との化学反応よって海水から化学進化したものであり、海底面から噴出した 後もその密度が小さいために海水中を上昇する。この上昇過程で周囲の海水によって希釈さ れていくため、低密度水が占める浅部に上昇するに従って次第に上昇速度を失っていく。や がてある深度で上昇移流を停止して渦拡散と海水の移流に従って水平方向に広がっていっ たのが熱水プルームである。熱水プルームの分布は、海水に比較して熱水中に濃集した化学 成分の高濃度異常(メタン・鉄・マンガン等の高濃度異常)、またはそのような化学成分の濃集 に起因する二次的な異常(微生物の濃集、濁度異常等)、あるいは熱水に特徴的な物理化学 的性質等の異常(温度異常・pH/Eh 異常)として観測される。

熱水プルームの規模・分布を把握しその組成の詳細を検討することで、その放出源である海 底熱水系の規模・分布や熱水噴出が海洋へ与える化学的・微生物学的インパクトなど、潜水 調査船などを用いた個別の熱水噴出口の調査では把握出来ないマクロな情報が得られる。ま た熱水プルームの広がりや時間変動の評価から深層水の各種物理学的性質を解析する指標 としても活用出来る可能性もある。本航海では、研究課題「南部マリアナ海域における島弧・ 背弧マグマ活動と海底熱水活動の関連性」の三本柱の一つとして、熱水プルームの物理・化 学・微生物特性の研究から熱水活動の規模を定量的に評価する試みが計画された。

4-2. 研究手法の解説

(1) CTD-CMS によるプルームモニタリング

本システムは CTD を始めとするセンサー類および 19 個の採水筒とこれを制御する装置 (Carousel Multi Sampling system)をフレームに取り付け、これを海水中で上下させて海水の 物理・化学的性質の鉛直分布を調べるものである。熱水プルームに由来する濁度・温度異常 をリアルタイムでモニタリングしてその分布を明らかにするとともに、採取された試料の熱水指 標物質や微生物活動の解析から熱水プルームの性質の変動をあきらかにすることを目的とす る。

(a) CTD センサーパッケージ

CTD センサーは、Sea-Bird 社製 CTD システム 911plus を用いた。各センサーのスペックは 以下のとおりである。

伝導度センサー: 確度(検定時)=0.0003S/m, 分解能=0.00004 S/m

温度センサー: 確度(検定時)=0.001 ℃, 分解能=0.0002 ℃

圧力センサー: 確度(検定時)=0.015%, 分解能=0.001%

透過度計(transmissometer)Seatech 社製のもの(光路長 25cm)を用いた。熱水プルームに は熱水由来物質から形成される懸濁態物質が多く含まれ、透過度が低くなる。

パッケージに取り付けた CTD センサーによる計測値はオンラインで接続された他のセンサー のデータとともに、ケーブルを通じて船上に送られモニターされると同時にコンピュータに保存 される。熱水プルームには熱水由来物質から形成される懸濁態物質が多く含まれることから、 その検出に透過度および濁度異常は極めて有効な指標となる。ただし懸濁態物質の増加は 他の要因によるものもあり得るので、熱水プルームの定量的な評価を行う上ではポテンシャル 水温と塩分の関係から温度異常を検出することも重要である。

(b) 採水装置と採水筒

採水筒は、General Oceanics 社製ニスキン採水器モデル 1010X シリーズ(容量 12L)と一般 的なニスキン採水器(容量 19L)を用いた。1010X シリーズは、従来筒の内側にあった蓋を閉じ るためのばねを筒の外部に取り付けた新型(通称Xニスキン)であり、このステンレス製のばね から微量金属元素が試料に溶け出すことによる試料のコンタミネーションがないようになってい る。一般的なニスキン採水器においては、筒内のばねをシラシックチューブと交換してコンタミ ネーションの可能性を低くしている。筒内部のテフロンコーティングなどの処理は、今回は特に 行ってはいない。

採水装置は、Sea-Bird 社製カルーセル採水ユニット SBE32 を用いた。この装置の作動原理 は、あらかじめテグスを引っ掛けてあったトリガを電磁石の切断により開放することで、採水筒 の蓋がばねの力で閉まって採水が行われるというものである。電磁石の操作は船上局からの 信号によりほぼ遅延なく行われる。今回使用したカルーセルユニットは24本まで試料採取が 可能なものであるが、実際には採水筒は19本搭載した。

(c) pH センサ

同じフレームに pH センサを随時とりつけて pH のオフライン連続観測を合わせて行なった。 この pH センサは、pH 電極部、データロガー、耐圧容器、水中ケーブルからなっており、pH 感 応膜に半導体素子であるイオン感応性電界効果型トランジスタ(ISFET; Ion Sensitive Field Effect Transistor)、参照電極に固体ペレット状の塩化物イオン選択性電極(Cl-ISE; Chloride Ion Sensitive Electrode)を用いている。このセンサによるpH 計測は、一般のガラス電極同様に 電位差を利用したものであるが、ガラス電極法に比べて、高精度(0.01~0.005pH)で応答時間 (0.1 秒程度)や初期安定時間(数秒程度)が短い上にセンサ自体を小型化しても電極抵抗の増 大がなく安定して計測できるという利点を持っている。さらに半導体および固体ペレットを使用 しているため高圧下においても特別の工夫をする必要がないという特徴を持っている。

観測直前にセンサは AMP (2-aminopyridine: pH=6.7866)および TRIS (2-amino-2-hydroxymethil-1,3-propanediol: pH=8.0893)でキャリブレーションした後、CTD のフレームに 取りつけ、現場海域の pH を計測した。さらに揚収後、再度標準溶液による補正を行い、補正 後の pH を真の pH とした。

(2)係留系による深層流観測

熱水プルームの拡散状況を推定することを目的として、2台の三次元超音波流速計を熱水 プルームが広がると想定される層に設置して深層流を観測した。図4-1に係留系構成図を示 し、以下にその概略を述べる。

(a) 超音波流速計(3D-ACM)

三次元超音波流速計(3 Dimension - Acoustic Current Meter)は超音波ドップラー・フェイ ズ・シフトを利用して、4 対の超音波送受波機を用いて三次元方向の流速測定を行う機器であ る。本調査では米国 FALMOUTH SCIENTIFIC, INC.製「3D-ACM」を用いた。この流速計は、 流速、流向、傾斜に対して広範囲で高精度、高分解能を有している。各測定項目の仕様は、 流速においては、測定範囲 0~±300cm/sec,精度±1cm/sec,分解能 0.1cm/sec,応答速 度 0.1s で、方位においては、測定範囲 0~360°,精度±1.0°,分解能 0.1°,応答速度 0.1s で、傾斜角においては、測定範囲±20°,精度±0.2°,分解能 0.01°,応答速度 0.1s である。また水温では、測定範囲=2~35℃,精度±0.05℃,分解能 0.01℃,応答速度 5s であ る。また耐圧は 7000m、測定間隔 1 分で約 2 ヶ月間の測定が可能である。

(b) 係留系の構成

2台の流速計を中心として海底から約 640m 立ち上げた係留系を構成した(図 4-1)。本年2 月に実施された TN153 航海においてプリューム移流層が 2800m 層と 2500m 層に存在してい ることが明らかにされていることに基づき、流速測定層がこの深度になるように係留系長を調整 した。係留系の構成は、重錘(空中重量 250kg)に ϕ 12mm のクレモナロープ 20mを連結し、切 離装置本体(日油技研社製 MODEL_D)を取り付け、 ϕ 12mm のクレモナロープ 20mおよび 2 連のベントスブイを1セグメントとして、その上、計測機器、ロープ、流速計および 2 連、3 連の ベントスブイが連なっている4つのセグメントから構成されている。第 1 層の流速計は、海底か らロープ長で 284m(水深 2765m)、第 2 層目の流速計は海底からロープ長で 596m(水深 2444m)に各々の層に設置した。なお、安全対策として、2 セグメントに切離装置を 2 台(日油 技研工業社製MODEL_Cおよび沖電気のトランスポンダー)を連結して、万が一に場合に備える安全対策を施した。

(3)採取試料の化学分析

採取した試料は研究者に分配され、各種の化学分析に供された。様々な成分の熱水プルーム中の分布を調べることで、熱水活動に由来する熱水指標物質がプルーム中でどのような反応過程によって減少していくのか、その過程に微生物活動がどのように関与していくのかといった課題に対する考察をめざす。

陸上施設における化学分析の実施および結果の解析において、下島公紀(電力中央研究 所環境科学部)、蒲生俊敬(東京大学海洋研究所)、岡村慶(京都大学化学研究所)、角皆潤 (北海道大学大学院理学系研究科)、大森保(琉球大学理学部)、山中寿朗(九州大学大学 院比較社会文化研究院)、ジョン=ラプトン(米国海洋大気局/太平洋環境科学研究所)、との 共同研究が計画されている(敬称略)。

(a) pH

(小池・下島)

Seawater samples were collected in 100mL polyethylene bottles with inner caps from Niskin Sampler. The sample bottles were capped after an overflow of about 100mL seawater. All samples were stored at room temperature after sampling and analyzed within a few hours. Samples were transferred into a closed and jacketed glass measurement cell with a volume of \sim 30mL. The cell temperature was maintained at a constant temperature of 20°C \pm 0.1°C. The electric potential and temperature of the sample were measured for 15 minutes with an Ag/AgCl combined electrode (Radiometer Analytical A/S, GK2401C) and a temperature sensor (Radiometer Analytical A/S, T901) connected to a high precision pH meter (Radiometer Analytical A/S, model PHM93). Tris and 2–Aminopyridine buffers were employed to calibrate pH electrode. Calibrations were made at the beginning and the end of set of measurement for every station.

(b) 溶存二酸化炭素濃度

(小池・下島)

The TCO_2 concentration in sea water samples was determined by using the coulometric titration system (UIC Inc., Carbon Coulometer model 5011). Samples for TCO_2 analysis were drawn from the Niskin sampler into 125mL glass vial bottles after an overflow of about 100mL of the seawater. The samples ware immediately poisoned with 50 μ l of 50% saturated HgCl₂ in order to restrict biological alternation prior to sealing the bottles. All samples were stored at room temperature after sampling. The analysis of TCO_2 will be carried out on land laboratory.

(c) 栄養塩成分 (石橋・土井・山中)

窒素・リン・珪素は海洋中で生物活動と深い関わりを持つために、その分布が不均一となる 栄養塩元素として知られている。これら生物必須元素が低温熱水地帯直上の底層水や熱水 プルーム内にどの程度含まれているかを示すことは、地下生物圏の規模の定量的な評価を裏付ける上での重要なデータとなる。また、これらの生物活動にかかわる栄養塩元素の異常な欠 乏や増加が見られる可能性も期待される。本航海では、主に熱水活動の影響の少ない深層 水中の栄養塩成分の濃度を知ることを目的として、先に行われたしんかい 6500 などの潜水調 査により採取された試料の分析と比較する。

試料は分取後数時間のうちに0.45uMのディスクフィルタを用いてろ過し冷蔵保存した。採取 したその日のうちに船上でモリブデンブルー比色法によるモノケイ酸の分析を行なった。ケイ 酸濃度は表層と深層で大きく異なるので、ここから採水筒が投入・揚収時など表層付近でアク シデントで作動していないことを確認できる。またいくつかの試料については高速液体クロマト グラフを用いた硝酸イオンの分析を行った。残った試料の一部は冷凍保存され、実験室で解 凍した後に比色分析法によりリン酸イオン、硝酸イオンの分析を行う予定である。

(d) マンガン (土井・岡村・蒲生)

熱水は、海底下での玄武岩との反応によりマンガン、鉄、銅などの重金属を通常の海水の数 万倍の濃度まで溶かし込んでいる。鉄や銅などが硫化物を形成してすぐに沈殿してしまうのに 対して、マンガンはその硫化物の溶解度が大きく沈殿しにくい。その結果マンガンは溶存態の ままプルームと共に広範囲に拡散するので、熱水活動のよいトレーサーとなる。

海水試料は、酸洗浄した 125mL 低密度ポリエチレン製容器に採取し、船上において電解濃縮法とルミノールー過酸化水素系化学発光法を組み合わせたマンガン自動分析計(Nakayama et al., 1989)を用いてマンガン濃度を測定した。まず、酢酸-酢酸アンモニウム緩衝溶液により pH5 に調整した海水試料を電解カラムに通しマンガンを濃縮した。その後、過酸化水素水を含む pH4 酢酸-酢酸アンモニウム緩衝溶液でマンガンを溶離し、アンモニア水及びトリエチレンテトラミンを含むルミノール溶液と混合した後、その発光強度を測定した。

分析精度および検出限界については、3.6nMのマンガンを含む海水を5回測定したときの 相対標準偏差が3.2%であり、検出限界(3s)が0.14nMであった。

(e) メタン・硫化水素 (平良・石橋・大森・角皆)

海洋では一般に生物活動による消費が優るためメタン濃度は極めて低く、表層海水で 2nmolkg⁻¹前後、深層海水で0.5nmolkg⁻¹以下である。しかしながら熱水中には、熱源であるマ グマ中の揮発性成分から取り込まれたメタンが高い濃度で含まれているため、熱水プルーム 中のメタン濃度は深層海水の数倍から10⁴倍もある。本航海では、堆積物の少ない南部マリア ナ海域において、マグマからの揮発性成分が主に寄与していると考えられる熱水プルームの 存在やその規模をメタン濃度から推定することを目的としている。

海水試料 120 ml または 35 ml をガラスヴァイアル瓶中に気泡が入らないように分取し、殺菌 (飽和塩化水銀溶液 0.2ml を添加)した上でセプタム栓とアルミシールで密栓し冷蔵(5℃)して 保存した。ヘッドスペース法またはヘリウムガスでパージすることによって海水試料からガス成 分を追い出しメタンを捕集濃縮する方法(Ishibashi et al. 1997)に従い、陸上にてFID 検出器ガ スクロマトグラフでのメタンの定量を行う。分析精度および検出限界については、ヘッドスペー ス法の場合は相対標準偏差が±10%、検出限界が0.8nmolkg⁻¹であり、捕集濃縮法の場合は 相対標準偏差が±5%であり、検出限界が0.3nmolkg⁻¹である。

なお船上では FPD 検出器ガスクロマトグラフを用いた溶存硫化水素分析の試みも合わせて 行なわれた。

(f) ヘリウム

(石橋・ラプトン)

海水中に溶存するヘリウムの同位体比(³He/⁴He 比)はマントルからマグマ活動を通じて海洋 へ供給される成分の指標物質として用いられる。マントル中のヘリウム同位体比は大気ヘリウ ムに比べて 3/4 比がほぼ1桁高いので、熱水活動に由来する熱水プルームではマグマから供 給されたヘリウムの混入により、周囲の海水(大気平衡の値に近い同位体比を持つ)より高い 3/4 比を示す。さらに希ガスであるヘリウムはいかなる化学反応や微生物活動と全く無関係な 「保存成分」である。これを利用して、海底から噴出する熱水のヘリウム同位体比・濃度と比較 することで、熱水プルームにおける熱水/海水希釈比を正確に見積もることができる。

ヘリウム同位体比測定用の試料は、採水器より銅管に移しこれを封じて持ち帰る。これはヘリ ウム原子が小さいためにガラス壁などをかなり容易に透過するためである。試料の分析は共同 研究者である NOAA/PMEL(米国海洋大気局/太平洋環境科学研究所)の J. Lutopn のもと で行なわれる。海水より真空抽出し精製した後に高分解能質量分析計により測定される。 (g) アミノ酸 (伊藤・益田)

Recently accumulating studies demonstrate the abundant biosphere in the submarine hydrothermal systems, at where thermophillic bacteria were occasionally discovered. Because of the presence of abundant reducing chemical compounds to produce high energy for supporting life, the submarine hydrothermal systems are ones of the candidate places where the origin of life occurred. The amount of the organic compounds around the hydrothermal vent must be one of the keys to estimate the scale of the biosphere and probability of the starting life. We observed the distribution of amino acids necessary for the living body around the hydrothermal systems.

10ml seawater sample was stored in glass ampoule at sub zero temperature for analysis of acid hydrolysable amino acids.

In the laboratory, 2ml seawater sample is hydrolyzed with 2ml 11 N HCl in a sealed glass ampoule under argon gas atmosphere for 22 hours at 110°C. After cooling to room temperature, the hydrolyzed sample is evaporated to remove HCl under vacuum at 40°C. The residue is dissolved in 500 μ l diluant buffer solution (pH 2.20). 10 μ l of sample is injected in a liquid chromatograph amino acid analyzer to determine the association of amino acids and those concentrations.

(4) 微生物解析

(砂村倫成、斉藤将史;陸上共同研究者:丸山明彦(産総研)、浦辺徹郎(東京大学))

深海熱水噴出域では、海底において噴出した高温および低温の熱水は、温度や化学成分 に起因する密度差から、深海海水中を上昇し、周囲の海水と密度が等しくなった深度におい て水平方向に拡がり、熱水プルームを形成する。熱水プルーム中には、噴出熱水に起因する メタン、還元型イオウ成分、還元型金属イオン(マンガン、鉄など)が周辺の海水に比べ数倍~ 数十倍もの濃度で含まれる。また、熱水プルーム中では、蛍光顕微鏡を用いた微生物細胞の 直接検鏡法による観察や微生物細胞数測定を通じ、周辺海水に比べ2-3倍の微生物細胞密 度が観察されている。

微生物は生育エネルギーを得るために、その種類毎に多様な代謝様式を有しており、一部 の微生物は、熱水プルーム中に含まれるメタンや硫化水素、還元型金属元素などをエネルギ ー源として生育が可能である。実際に熱水プルーム中からは、硫黄酸化微生物が培養されて おり、マンガンを蓄積する微生物の存在が確認されている。しかしながら、環境中に棲息する 微生物の多くは(99%以上)、通常の分離・培養手法により検出できないことが明らかになって おり、熱水プルーム中で増加している微生物の主組成やその役割については、いまだにほと んど明らかになっていない。一方、近年の分子生物学的手法の発展に伴い、分離・培養を経 ることなく環境中微生物群集組成を明らかにできる方法が確立されつつある。これらの方法を 用いることで、最近我々は水曜海山熱水噴出域における微生物群集組成を明らかすることに 成功し(Sunamura et. al Appl. Environ. Microbiol. in press)、その地球化学的意義の推定を行 っている。マリアナ背弧拡大軸における熱水噴出域付近では、水曜海山と異なり、カルデラ構 造が発達していないため、熱水プルームの水平的広がりは水曜海山より大きいと考えられる。 また、拡大軸における熱水の化学成分は、島弧型である水曜海山熱水とは異なることが予想 され、その微生物組成も異なっていることが推測される。本航海では、マリアナ背弧拡大軸付 近での熱水活動に伴う熱水プルーム中の微生物組成を、定性・定量的な分子生物学的手法 を用いて明らかにし、熱水プルームの化学進化に伴う微生物群集構造の変化過程を明らかに することを目的とする。

方法

本研究航海では、微生物群集構造の変遷を明らかにするために、a.)微生物全群集の測定、 b.)微生物生細胞数の測定、c.)微生物群集組成の定性的測定、d.)微生物群集組成の定量的 測定を行う。同時に、e.)微生物細胞などに蓄積されている、懸濁態粒子中の鉱物組成解析を 行う。CTD-RMS により得られた海水試料を、それぞれ a.)および d.)に用いるため 100mL 容プ ラスチック容器に2本、b.)に用いるため 50ml 容プラスチックチューブ1本、および c.)に用いる ため 10 もしくは 20L 容プラスチックコンテナに 5~20L 分取した。

a.) 微生物全群集の測定、d.) 微生物群集組成の定量的測定

100mL 容プラスチック容器に2本採取した海水試料は、直ちに38%ホルマリンを10ml 添加することで、微生物細胞の固定を行う。固定した試料は、一晩冷蔵庫で保存し、微生物細胞内に

ホルマリンを十分に浸透させる。固定試料中に含まれる微生物細胞は、船上にて、減圧ポン プを用いて、poly-L-lysineコートした孔径 0.2µm のポリカーボネート性フィルター(PLL-filter) 上に濾過濃縮する(Maruyama and Sunamura, Appl. Environ. Microbiol. 2000)。一連の処理に よって、冷凍保存したフィルター試料上の微生物細胞中に含まれる DNA や RNA などの核酸 は一年以上安定に保存することができる。フィルター試料は、乾燥後冷凍(-80°C)で陸上実 験室に持ち帰り、DNA 染色および DNA プローブを用いた染色により、微生物細胞を染色し蛍 光顕微鏡下で細胞数の計数を試みる。

b.) 微生物生細胞数の測定

50mL プラスチックチューブで採取した試料中に含まれる微生物細胞は、適宜、すみやかに前述の PLL-filter 上に減圧濾過濃縮する。これらの試料に細胞内のエステラーゼ活性を調べる (Tsuji et. al, Appl. Environ. Microbiol. 1995) CFDA-AM もしくは細胞膜の透過性を調べる Live&Dead cell stainの試薬を加え、一定時間反応させた後、余剰の試薬を10%ホルマリン入り 濾過海水を用いて洗浄、固定する。細胞染色を行ったフィルター試料は、-80°C にて冷凍で 実験室に持ち帰り、蛍光顕微鏡下で生細胞数の計数を試みる。

c.) 微生物群集組成の定性的測定

10Lもしくは 20L 容のプラスチックコンテナに採取した海水試料に含まれる懸濁態粒子は、適 宜、ペリスタポンプ(Millipore, XX800000)およびフィルターユニットを用いて、孔径 0.2µm、直 径 142mm のニトロセルロースフィルター上に濾過濃縮する。濾過濃縮の過程で、船上におけ る微生物の混入を防ぐため、濾過は完全閉鎖系で行い、フィルターユニットおよびチューブは あらかじめミリQ水を用いて十分洗浄を行っている。また、濾過量の測定は、ろ液体積の測定 を通じて行った。濾過後のフィルターはドラフト内でピンセットを用いてできるだけ無菌的に回 収し、滅菌済みビニール袋内に封入後-80°Cにて冷凍保存する。これらの試料は陸上実験 室に持ち帰り、SSU rRNA 遺伝子や各種機能遺伝子を標的とした微生物群集組成の解析およ び SSU rRNA を標的としたドットハイブリダイゼーションによる微生物群集構造の解析を目的と して、フィルター上に濃縮された懸濁態粒子から、核酸の抽出を試みる。

e.)懸濁態粒子中の鉱物組成解析

本研究では、熱水プルーム中に含まれる懸濁態粒子の鉱物組成および硫黄同位体比の変遷 を明らかにするために、海水試料を濾過したうえで、EPMA による鉱物組成の分析、電子顕微 鏡による観察、Mass spectrometer による硫黄同位体比の測定を行う。CTD-RMS により得られ た海水試料 1000mLを、船上にて、減圧ポンプを用いて、孔径 0.2 µ m のポリカーボネイト性フ ィルター上に濾過濃縮する。フィルター試料は、自然酸化および微生物による酸化を防ぐ目 的で、空気を抜いた状態でパッキングし、冷凍で陸上実験室に持ち帰る。

電子顕微鏡による観察は、フィルターと懸濁態粒子を分離せずに行う。しかし、EPMA による 分析は、試料がフィルターにのっている状態では不可能であり、さらに鉱物表面を研磨する必 要があるため、フィルター上の粒子を樹脂に埋めこみ、それを研磨し、分析を行う予定である。 また、十分な懸濁態粒子が得られた場合、硫黄同位体比に関しては、sulfte, sulfide を分離し た上で、それぞれの硫黄同位体比の測定を行う予定である。

4-3. 実施した研究と船上で得られた成果

(1)係留系による深層流観測

2台の流速計は、第1層(S/N 1374)が2765m(海底よりの高度284m)、第2層(S/N 1731A) が2444m(海底よりの高度596m)にそれぞれ設置された。測定は2003年11月16日14時 00分から開始、測定間隔は30秒間隔で設定された。設定時間とデータ取得期間においては、 同じコンピューターで行い、機器内部時刻はローカル標準時(LST:UTC+10時間)とした。作業 風景を図4-2に示す。

係留系の投入は、ローカル標準時(LST)で2003年11月16日14時55分にTOPのブイを 投入し、第2ブイ投入14時58分、第3ブイ投入15時07分、第4ブイ投入15時11分、第5 ブイ投入15時17分、そして、重錘を投入したのが15時31分から開始し、投入完了は、同11 月17日13時26分であった。重錘の着底確認は13時47分であった。

位置決定手法は3点法を用いた。観測船「かいれい」の船底に取り付けてあるトランスジュー サーによって、投入予定地点を中心に約0.5 マイル離れた3地点で直線距離を測定し、それ ぞれの直線距離から交点を求めて最終的な係留系の位置を算出した。決定された位置は、北 緯12°54.9579N、東経143°36.8718E、水深3040mであった。

係留系の回収は、2003年12月1日7時10分に切離コマンドを送信した。送信後浮上速度計算 のため測距を行い、1分間に80mの浮上速度を計測して浮上時間(トップブイは2400m付近であ るから2400m/(80m/分)=30分)を7時40分と見積もった。実際の海面浮上確認は7時45分で あり、切離してから約35分で浮上したことになる。当初の計算では浮上時間は約50分と計算され たため、使用機材等の浮力の再確認が必要である。なお係留系の浮上状況について、4つのブイ が海面に浮かんでいたものの5番目の2連ブイが海面には浮上していなかった。この浮力調整(ブ イの個数等)に今後の検討が必要であった。

観測により得られた期間中の流速・流向および水温の平均値等を表4-1に示し、各層における流速および流向の時系列変化を図4-3に示した。海底(水深 3040m)上 600mに係留した流速計(観測層 2440m)の平均流速は 1.52cm/sec で流向は 95.4 ° であり、最大流速は 15cm/sec を超える流れが観測された。一方、海底(水深 3040m)上 260mに係留した流速計(観測層 2780m)の平均流速は 0.15cm/sec で流向は 10 ° であり、最大流速は 4cm/sec を超える流れが観測された。

係留観測中11/23-11/27にかけて速度の遅い大型の台風が海域直上を通過したが、その この台風の影響が水深2440m、2780m層にまで影響を及ぼしていることが明らかになった。特 に図4-4に示した進行ベクトル図において、台風接近・通過時に、2780m層で進行ベクトル の向きが変わっているのが顕著である。台風が接近する前までは、上層と下層の進行方向の 流向が約180度異なっていたものが、台風接近通過によって上層に引きずられるように向きを 変えたことがわかる。なぜこのような現象を引き起こされたのかは、今後の検討課題である。台 風通過によってこの海域が定常状態とは異なった流動場になった可能性があり、本調査で得 られたデータの解析、特に目的とする熱水プリュームの移動を評価する上で、その影響を何ら かの方法で取り除くことが望ましい。

3D-ACM 流速計に附属した水温センサーによる水温計測の結果は、海底(水深 3040m)上 600mに係留した流速計の平均水温(観測層 2440m)が 1.76℃±0.32℃であり、海底(水深 3040m)上 260mに係留した流速計の平均水温(観測層 2780m)が 1.47℃±0.01℃であった。

得られた流速データを基に、近隣地点との潮位変動・海底地形との関係から、詳細にこの係 留地点での流動変動を把握するとともに、CTD 等から得られたデータ(温度異常)との係わり 合い、また、各層の流速・流向結果からこの海域における上層と下層で流向が異なる深層流 速境界層の詳細検討を行う予定である。また熱水プリュームの拡散・移動についても流速変動 と合わせて、今後検討する予定である。

(2) CTD-CMS によるプルームモニタリング

CTD 観測は水中局を上下させながら 1kt 程度の船速で曳航する Tow-yo 観測の手法で実施された。この手法は広域にわたるプルーム観測に有効な手法である。表4-2にまとめたように T01-T05 の5測線を実施したが、航海の前半ではウィンチケーブルのトラブルなどにより度々中断を余儀なくされた。水深 2400m 以深の有効なデータが得られている区間の CTD の航跡を図4-5に示す。この航跡は CTD-CMS フレームの上方約 5m にトランスポンダーX6800をとりつけて、「かいれい」の測位システムを用いて追尾したものである。

航海を通じて透過度計が不調であったために、温度異常をもとにしてプルームの分布を明ら かにすることにした。図4-6に測線 T05 で得られたポテンシャル温度と密度(sigma-θ)のデ ータをプロットしたものを示す。一般の深層水では両者の間には一次関係が成り立っているが、 熱水プルームの水塊はこの関係からずれた温度異常を示すことがわかっており、この図でもそ れが見られている。本航海では周囲の深層海水として測線 T05 の 32874-33924sec のデータ を用い、[T-anomaly] = [Pot-T] - (-7.69249 * [sigma-theta] + 214.868)の関係式を導いた。 本クルーズレポートで報告されている温度異常値はこれに基づいて計算したものであるが、こ の係数は航海中に仮に決めたものであり今後すべてのデータを見直して計算しなおす可能 性もある。

Tow-yo 測線に沿ってこの温度異常の分布を示したのが図4-7である。温度異常の絶対値 は最大 0.02℃と比較的小さいものであったが、熱水プルームの分布がはっきりと示されている。 しんかい 6500 潜航調査などで明らかにされている2つの熱水活動地帯を横切る測線 T04 では 二層の熱水プルームが観測された。海山鞍部に位置する Pika Site に由来すると考えられる 2800-2850m を中心とする熱水プルームと背弧軸頂部に位置する熱水活動地帯に由来すると 考えられる 2700-2750m を中心とする熱水プルームである。後者は背弧軸を縦走する T05 でも 観測された。しかし 13°N 以北ではこのプルームは希薄になっており、現在の熱水活動地帯 の分布が限られた範囲にしかないことが示唆された。CTD-CMS フレームに搭載された pH センサーによっても、図4-8に示されるように熱水プルームが分布する水塊で周囲の海水より低い pH が観測されている。

(3)採取試料の化学分析

CTD-CMS によるプルームモニタリングの際、顕著なプルームが見られた点を中心に試料採 取を行なった。採取時刻とその位置はオペレーションログ(表4-2)に記されているとおりであ る。図4-5に採取点もプロットされている。採取した試料は船上揚収後2時間以内に分配され、 おのおのの研究項目に則した処理が行なわれた。試料分配は表4-3のように行なわれた。 採水筒の作動不良などのため、採取した試料は計48個にとどまった。

いくつかの化学成分については船上分析が行なわれた。船上分析の結果を表4-4にまとめた。図4-9は有力な熱水指標物質であるマンガンの濃度異常と温度異常の関係を調べるためにプロットしたものである。多くの試料が $Mn/\Delta T = 10 \mu mol/deg$ の傾きを持つ直線に沿って分布していることがわかる。このことは熱水プルームを形成する源となっている熱水活動の化学的性質がほぼ均質であることを示唆している。

(4)表面海水の採水と濃縮

本航海の航走期間を利用して、船に備え付けの海水ポンプを利用して表面海水の採水と濃縮処理を行った。これは海水中に溶存する希土類元素の同位体比測定のための試料濃縮法ならびに化学分析法の検討に用いられる。

希土類元素の同位体比は、その起源についての情報を保持し水塊のトレーサーとして有用 である。これまでにネオジム同位体については多くの研究が行われてきたが、セリウムの同位 体については測定が困難であるために報告例は少ない。しかし、セリウムはネオジムよりも数 倍短い平均滞留時間を持つことから、よりローカルな影響を反映した分布を示すことが予想さ れ、水塊の移動に関してより詳細な議論を可能にするトレーサーとして期待できる。

今回用いた試料濃縮にはポリプロピレン製のフィルター表面をマンガン酸化物でコーティン グした MnO₂ fiber を用いた。海水試料が MnO₂ fiber を通過する際に、セリウムやネオジムを含 む粒子吸着性の高い元素は MnO₂ fiber 上へ吸着除去される。海水試料は船内の実験海水を 用い、流速 5 L/min で 7000 L の表面海水を採取した。採取した試料は東京大学海洋研究所 に持ち帰り、両元素の分離精製を行う計画である。MnO₂ fiber は 10 % 塩酸+ 3 % 過酸化水 素溶液 1000 mL によってマンガンと吸着成分を溶離する。溶離液をHDEHP/heptane によって 溶媒抽出した後、イオン交換カラムによって精製を行う。その後、α-ヒドロキシイン酪酸を溶離 剤とした陽イオン交換を行うことでセリウムとネオジムの分離を行う。両元素はそれぞれレニウ ムフィラメントに塗布し、表面電離型質量分析計によって同位体比を測定する。

	Observed	Observed N-S compone		E-W component		Vector		Temperature		Data Period
Current meter S/N	Depth(m)	Average	RMS	Average	RMS	mean	flow	mean	T sd	
		(cm/sec)	(cm^2/s)	(cm/sec)	(cm^2/s)	(cm/sec)	(deg)	(°C)	(°C)	Data Length
S/N 1733A 3D-ACM	2396 2444m (ローブ長水深からの推	-0.1442	4.4680	1.5129	4.9166	1.5198	95.4448	1.7670	0.0316	2003/11/16 16:30~
S/N 1384A 3D-ACM	2708 2756m (ロープ長水深からの推 宇)	0.1460	1.2430	0.0260	1.5506	0.1480	10.0300	1.4720	0.0096	(11.2 days)

Table 4-1 The Basic characteristics of flow

Table 4-2 (a)Operation Log of Tow-yo T04-1

Dete	Site No	Time(UTC)	Trans	oonder	Donth (m)	Pomork
Date	Site No.	Time(010)	Latitude(N)	Longitude(E)	Deptil (III)	Remark
		6:47:16				Start of data recording
		8:01	12_52.73	143_37.75		Deploy on surface
		19:52	12_54.9550	143_38.9147	2555	Bottle No.1 (No good for sampling)
		19:58	12_54.9408	143_38.9923	2750	Bottle No.2 (No good for sampling)
		20:01	12_54.7356	143_38.8730	2700	Bottle No.3 (No good for sampling)
		20:04	12_54.9740	143_38.9832	2650	Bottle No.4 (No good for sampling)
		20:06	12_54.9713	143_38.9712	2600	Bottle No.5 (No good for sampling)
		20:08	12_54.9824	143_38.9874	2575	Bottle No.6 (No good for sampling)
		20:10	12_54.9939	143_39.0023	2550	Bottle No.7 (No good for sampling)
		20:12	12_54.9835	143_39.0059	2525	Bottle No.8 (No good for sampling)
		20:14	12_55.0074	143_39.0015	2500	Bottle No.9 (No good for sampling)
		20:16	12_55.0146	143_38.9863	2450	Bottle No.10 (No good for sampling)
		20:20	12_55.0220	143_38.9984	2400	Bottle No.11 (No good for sampling)
2003/11/16	T-01	20:23	12_55.0179	143_38.9209	2350	Bottle No.12 (No good for sampling)
		20:26	12_55.0184	143_38.9966	2300	Bottle No.13 (No good for sampling)
		20:30	12_55.0180	143_38.9743	2250	Bottle No.14 (No good for sampling)
		20:33	12_55.0170	143_38.9557	2200	Bottle No.15
		20:35	12_55.0026	143_38.9747	2150	Bottle No.16
		20:38	12_55.0059	143_38.9809	2100	Bottle No.17
		20:41	12_55.0085	143_38.9874	2050	Bottle No.18
		20:45	12_55.0383	143_38.9135	2080	Bottle No.19
		20:56	12_55.0163	143_38.9492	1500	Bottle No.20
		21:07	12_54.8405	143_38.9415	1000	Bottle No.21
		21:22	12_55.0303	143_38.9829	500	Bottle No.22
		21:40	12_55.07	143_39.12		Recovery on deck

Table 4-2 (b) Operation Log of Tow-yo T02

Date	Site No	Time(LITC)	Trans	oonder	Depth (m)	Remark	
Date Site No.		Time(010)	Latitude(N)	Longitude(E)	Deptil (III)	Kennark	
2003/11/17	T02	7:18:40 7:29 12:08 16:10:59 17:13 17:15 17:19	12_52.84 12_55 12_57.15 12_57.1963 12_57.1978	143_32.74 143_35 143_37.17 143_37.1784 143_37.1808	2820 2770	Start of data recording (T-02) Deploy on surface CTD Trouble Start of data recording (T-02-2) Bottle No.1 Bottle No.2 CTD Trouble	
		17:18 17:43:59 18:03 20:23	12_57.20 12_57.54	143_37.21 143_37.71	2884	Start of data recording (T-02-3) CTD Trouble Recovery on Deck	

Table 4-2 (c)Operation Log of Tow-yo T03

Date	Site No.	Time(LITC)	Trans	ponder	Donth	Remark	
		11116(010)	Latitude(N)	Longitude(E))		
		7:49:29				Start of data recording	
2003/11/18	T03	7:58	12_55.03	143_34.93		Deploy on Surface	
2003/11/10		8:27	12_55.047	143_34.993		CTD Trouble	
		8:54	12_55.04	143_35.13		Recovery on Deck	

Table 4-2 (d) Operation Log of Tow-yo T04-1

Date	Site Ne	Time(UTC)	Trans	ponder	Depth	Remark	
	Site NO.	Time(010)	Latitude(N)	Longitude(E)	Depth		
		5:52:12				Start of data recording	
		6:26	12_58.60	143_36.67		Deploy on Surface	
2003/11/28	T04	6:28	12_58.6004	143_36.6589		Bottle No.10	
		6:30	12_58.5940	143_36.6561		Bottle No.20	
		6:35	12_56.63	143_36.72		Recovery on Deck	

Table 4-2 (e)Operation Log of Tow-yo T04-3

Dete	Site No	Time(UTC)	Trans	oonder	Donth (m)	Pomork
Date	Site No.	Time(010)	Latitude(N)	Longitude(E)	Deptil (III)	Remark
		7:48:33				Start of data recording
		7:57	12_53.93	143_39.84	3186	Deploy on surface
		12:21	12_55.0726	143_39.0472	2790	Bottle No.1 (No good for sampling)
		12:24	12_55.0453	143_39.0685	2750	Bottle No.2
		12:31	12_55.0768	143_39.0860	2698	Bottle No.3
		12:34	12_55.0891	143_39.0553	2649	Bottle No.4
		12:37	12_55.0819	143_39.0928	2600	Bottle No.5
		12:41	12_55.0852	143_39.1001	2503	Bottle No.6
		12:48	12_55.0879	143_39.0953	2297	Bottle No.9 (No good for sampling)
		13:40	12_55.2948	143_38.8321	2875	Bottle No.10
		14:55	12_56.1095	143_38.1995	2800	Bottle No.11
		15:01	12_56.2521	143_38.0619	2600	Bottle No.12
		15:05	12_56.3493	143_38.2254	2447	Bottle No.13
2003/11/28	T04	16:34	12_57.1602	143_37.4018	2805	Bottle No.14 (No good for sampling)
		16:37	12_57.2007	143_37.3188	2750	Bottle No.15
		16:40	12_57.2149	143_37.3262	2700	Bottle No.16
		16:42	12_57.2453	143_37.2963	2650	Bottle No.17
		16:44	12_57.2560	143_37.3036	2600	Bottle No.18
		16:48	12_57.3907	143_37.3198	2450	Bottle No.19
		16:52	12_57.2575	143_37.2323	2300	Bottle No.20
		19:22	12_58.7613	143_36.0087	2800	Bottle No.21
		19:26	12_58.8020	143_35.9805	2650	Bottle No.22
		19:30	12_58.8307	143_35.9390	2500	Bottle No.23
		19:35	12_58.8551	143_35.9437	2350	Bottle No.24
		20:21	12_59.01	143_36.09		Recovery on deck

Table 4-2 (f)Operation Log of Tow-yo T05

Dete	Site No	Time(UTC)	Trans	oonder	Donth (m)	Pomork
Date	Site No.	lo. Time(UTC) Latii 7:21:57 7:27 12 8:57 12.5 9:01 12.5 9:45 12.5 9:47 12.5 10:05 12.5 10:10 12.5 10:35 12.5 10:38 12.5 11:45 12.5 12:29 12.5 13:07 12.5	Latitude(N)	Longitude(E)	Deptil (III)	Remark
		7:21:57				Start of data recording
		7:27	12_55.69	143_36.73		Deploy on surface
		8:57	12_55.9724	143_36.8317	2704	Bottle No.1 (No good for sampling)
		9:01	12_56.0196	143_36.8470	2797	Bottle No.2
		9:45	12_56.5021	143_37.0062	2694	Bottle No.3
		9:47	12_56.5486	143_37.0246	2759	Bottle No.4
		10:05	12_56.7849	143_37.0947	2594	Bottle No.5
		10:10	12_56.8207	143_37.1015	2759	Bottle No.6
		10:35	12_57.1063	143_37.1871	2761	Bottle No.8 (No good for sampling)
		10:38	12_57.1412	143_37.2008	2756	Bottle No.10
		11:45	12_58.0717	143_37.4541	2754	Bottle No.11
		12:29	12_58.7407	143_37.6173	2760	Bottle No.12 (No good for sampling)
		13:07	12_59.3570	143_37.7813	2770	Bottle No.13
2003/11/30	T05	14:10	13_00.2758	143_38.1195	2770	Bottle No.14 (No good for sampling)
		14:51	13_00.7296	143_38.5700	2760	Bottle No.15
		15:35	13_01.2355	143_39.0471	2760	Bottle No.16
		17:27	13_02.6854	143_40.2197	2760	Bottle No.17
		18:59	13_03.9434	143_40.9006	2764	Bottle No.18
		19:36	13_04.5232	143_40.8102	1000	Bottle No.19
		19:46	13_04.5546	143_40.7957	500	Bottle No.20
		19:52	13_04.5721	143_40.7793	200	Bottle No.21
		19:55	13_04.5799	143_40.7748	100	Bottle No.22
		19:58	13_04.5822	143_40.7725	20	Bottle No.23
		20:00	_	—	5	Bottle No.24
		20:05	12_04.61	143_40.93		Recovery on deck

<u></u>	0	Kyushu L	J. Kyushu U.	U. Ryukyus	Ceres	Ceres	ORI	U. Tokyo	U. Tokyo	o Osaka C.U
Station	Sample	He	Nutrients	methane	рН	TCO2	Mn	Microbes	DNA	Amino acio
T01	I 15	_	100mL	380mL	200mL	_	_	300mL	7L	_
	16	-	100mL	380mL	200mL	-	-	300mL	7L	_
	17	-	100mL	380mL	200mL	-	-	300mL	7L	10mL
	18	-	100mL	380mL	200mL	-	-	300mL	7L	_
	19	-	100mL	380mL	200mL	-	-	300mL	7L	-
	20	-	100mL	380mL	200mL	-	-	300mL	7L	-
	21	-	100mL	380mL	200mL	-	-	300mL	7L	_
	22	-	100mL	380mL	200mL	-	-	300mL	7L	-
T02	2 1	-	100mL	380mL	200mL	-	125mL	300mL	_	10mL
	2	-	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
T04	4 0	-	100mL	380mL	-	-	-	-	-	-
	2	200mL	100mL	380mL	200mL	250mL	125mL	300mL	/L 71	
	3	200mL	100mL	380mL	200mL	250mL	125mL	300mL	/∟ 7I	
	4	200mL	100mL	200mL	200mL	250mL	125mL	200mL	7∟ 71	10mL
	5	200mL	100mL	380mL	200mL	250mL	125mL	300mL	7L 7I	10mL
	10	200mL	100mL	380mL	200mL	250mL	125mL	300mL	7	10mL
	10	200mL	100mL	380ml	200mL	250mL	125mL	300mL	71	10mL
	12	200mL	100mL	380ml	200ml	250mL	125ml	300ml	71	10mL
	13	200mL	100mL	380ml	200ml	250mL	125ml	300ml	71	10mL
	15	-	100mL	380ml	200ml	250ml	125ml	300ml	71	10mL
	16	200ml	100mL	380mL	200mL	250mL	125mL	300mL	71	10mL
	17	-	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	18	200mL	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	19	_	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	20	-	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	21	-	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	22	-	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	23	-	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	24	-	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
TOS	5 2	200mL	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
	3	200mL	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
	4	200mL	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
	5	200mL	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
	6	200mL	100mL	380mL	200mL	_	125mL	300mL	7L	10mL
	10	200mL	100mL	380mL	200mL	_	125mL	300mL	7L	10mL
	11	200mL	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
	13	200mL	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
	15	200mL	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
	16	200mL	100mL	380mL	200mL	-	125mL	300mL	7L	10mL
	17	200mL	100mL	380mL	200mL	_	125mL	300mL	7L	10mL
	18	200mL	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	19	-	100mL	380mL	200mL	250mL	125mL	300mL	7L	10mL
	20	-	100mL	380mL	200mL	250mL	_	300mL	7L	_
	21	_	100mL	380mL	200mL	250mL	_	300mL	7L	_
	22	_	100mL	380mL	200mL	250mL	-	300mL	7L	_
	23	_	100mL	380mL	200mL	250mL	_	300mL	7L	_
	24	200ml	100mL	380mL	200mL	250mL	-	300mL	7L	_
	24	LOONL		000mL	LOOME	LOONE		000mL	/ 🗆	

Table 4-3List of water sample distribution

		CTD					Analysis	S		
Station	Sample	depth (m)	Т (С)	S	Pot-T	Sigma-th	рН	SiO2 (mM)	Mn (nM)	NO3 (uM)
T01	15	2108.6	1 083	34 637	1 828	27 605	7 5/6	0 1/7	na	37.0
	16	2150.0	2 009	34 635	1.020	27.691	7.508	0.147	n.a.	36.8
	17	2098.6	2.000	34 632	1 897	27 685	7 513	0.145	n a	37.1
	18	2030.0	2.040	34 630	1 940	27 680	7.510	0.143	n a	37.0
	19	1999.0	2 153	34 627	2 013	27.672	7 496	0.145	n a	36.8
	20	1499 7	3 000	34 584	2 891	27 563	7 446	0.140	n a	37.8
	21	998.0	4 580	34 538	4 4 9 9	27.366	7 478	0.082	n a	36.2
	22	500.3	6.963	34.411	6.915	26.967	7.576	0.037	n.a.	27.2
T02	2 1	2819.1	1.652	34.665	1.445	27.746	7.572	0.150	109	36.2
	2	2769.2	1.666	34.664	1.465	27.743	7.547	0.148	94	35.6
T04	+ 0	13.0	28.946	34.210	28.943	21.492	n.a.	0.001	n.a.	n.a
	2	2751.3	1.681	34.662	1.480	27.740	7.537	0.150	39	n.a
	3	2700.6	1.699	34.660	1.503	27.738	7.530	0.149	64	n.a
	4	2651.4	1.708	34.660	1.517	27.736	7.530	0.149	69	n.a
	5	2600.7	1.716	34.658	1.529	27.734	7.527	0.148	44	n.a
	6	2501.1	1.744	34.655	1.566	27.729	7.522	0.148	14	n.a
	10	2876.9	1.707	34.663	1.494	27.740	7.517	0.149	105	n.a
	11	2798.7	1.687	34.663	1.482	27.741	7.523	0.149	69	n.a
	12	2600.8	1.715	34.659	1.528	27.734	7.518	0.150	46	n.a
	13	2447.6	1.740	34.655	1.567	27.729	7.518	0.150	17	n.a
	15	#	1.697	34.662	1.496	27.739	7.817	0.030	2	n.a
	16	2699.3	1.694	34.662	1.498	27.739	7.517	0.148	12	n.a
	17	2650.5	1.694	34.661	1.503	27.738	7.519	0.149	86	n.a
	18	2600.2	1.692	34.661	1.505	27.738	7.519	0.148	78	n.a
	19	2449.7	1.760	34.654	1.586	27.726	7.515	0.148	22	n.a
	20	2300.5	1.864	34.646	1.702	27.711	7.504	0.146	6	n.a
	21	2800.1	1.651	34.665	1.446	27.745	7.500	0.148	24	n.a
	22	2648.5	1.679	34.662	1.488	27.740	7.502	0.148	98	n.a
	23	2497.5	1.727	34.656	1.549	27.731	7.510	0.149	31	n.a
	24	2350.7	1.795	34.650	1.629	27.720	7.514	0.149	8	n.a
Τ05	5 2	2797.5	1.697	34.662	1.492	27.740	7.531	0.153	99	n.a
	3	2690.5	1.695	34.662	1.500	27.739	7.538	0.148	59	n.a
	4	2757.9	1.697	34.663	1.495	27.740	7.532	0.148	150	n.a
	5	2596.4	1.694	34.660	1.508	27.737	7.534	0.149	42	n.a
	6	2758.7	1.692	34.663	1.490	27.741	7.535	0.150	142	n.a
	10	2752.8	1.672	34.663	1.471	27.742	7.530	0.149	82	n.a
	11	2753.2	1.686	34.662	1.485	27.740	7.532	0.149	33	n.a
	13	2770.3	1.638	34.666	1.437	27.746	7.532	0.149	13	n.a
	15	2758.8	1.649	34.664	1.449	27.745	7.538	0.148	12	n.a
	16	2760.5	1.676	34.662	1.474	27.741	7.536	0.149	11	n.a
	17	2760.0	1.656	34.663	1.455	27.743	7.540	0.150	8	n.a
	18	2/67.7	1.658	34.663	1.457	27.743	1.537	0.151	11	36.3
	19	1001.2	4.266	34.543	4.187	27.403	1.476	0.098	<0.5*	36.1
	20	500.5	6.945	34.423	6.898	26.978	7.485	0.059	n.a.	33.7
	21	199.8	15.738	34.622	15.706	25.524	7.817	0.006	n.a.	11.2
	22	98.4	26.584	35.021	26.561	22.8/5	8.084	0.001	n.a.	N.D.
	23	47.8	28.680	34.306	28.669	21.655	8.126	0.001	n.a.	N.D.
	24	5.7	28.750	34.262	28.749	21.596	8.124	0.001	n.a.	N.D.

Preliminary results of onboard analysis Table 4-4

n.a.= not analyzed # T04-15 did not work when it was triggered at deep * The exact value was not determined onboard due to absence of Mn-free seawater

Design of mooring system in MARIANA [KAIREI] 2003

Total Length		フラッシャ	- •n			
-	639	m	6		Single BENTHOS buoy(17in)	-24.70
					Bouy Frame	1.74
			Ř	20	SUS of 16mm Shackle	0.39
			ê	20	ø zommi Neutral Rope SUS Swivel	1.13
				1	8 BENTHOS buoy(17in) Bouy Frame	-74.10 12.18
			Ð	20	SUS Swivel ¢12mm Nylon Rope •	1.13 0.50
底上▪	No.2 596.0	Depth 2444.0	Ť	1	SUS ¢ 16mm Shackle FSI-3DACM (current,T)	0.39 10.44
Temperatu Pressure(D	ire)epth)		₽ I I	200	SUS φ 16mm Shackle φ 12mm Nylon Rope •	0.39 3.20
			ě		SUS Swivel	1.13
				50	φ12mm Nylon Rope ▪ SUS Swivel	0.95 1.13
			₽	50	φ12mm Nylon Rope • SUS Swivel	0.95 1.13
				1	2 BENTHOS buoy(17in) Bouy Frame	-49.40 9.57
			₿		SUS Swivel	1.13
			ĺ	10	φ12mm Nylon Rope •	3.20
底上▪	No.1 284.0	Depth 2756 0	Ì	1	SUS ¢ 16mm Shackle FSI-3DACM (current,T)	0.39 10.44
item		2/00.0	× ▽ ∘		SUS ϕ 16mm Shackle	0.39
Temperata				100	φ12mm Nylon Rope ▪ SUS Swivel	0.95 1.13
				1	3 BENTHOS buoy(17in) Bouy Frame	-74.10 12.18
			ě		SUS Swivel	1.13
			Î	20	# 12mm Nylon Rone =	1 70
			÷	20	SUS ø 16mm Shackle	0.39
			A	1	JAMSTEC借用トラポン・	15.31
			Ų		SUS ϕ 16mm Shackle	0.39
			÷	100	¢ 12mm Nylon Rone ■	0.80
			÷	100	SUS ϕ 16mm Shackle	0.39
			Ê	1	切離装置(日油) Model L C	27.00
				20	SUS ø 16mm Shackle ø 12mm Nylon Rope	0.39 0.80
					SUS Swivel	1.13
				1	2 BENTHOS buoy(17in)	-49.40
					Bouy Frame	9.57
			₿		SUS Swivel	1.13
			↓ 20 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	20	¢12mm Nylon Rope ▪	0.80
					SUS ¢ 16mm Shackle 切離装置(日油) Model L D	27.00
					SUS & 16mm Sheckle	0.39
				20	φ 12mm Nylon Rope =	0.80
					SUS ϕ 16mm Shackle	0.39
						017 50
			Bottom 3040	0.5	Anchor	217.50
					fixation force Surfacing force	111.69 -107.39
		m/202	2400	m/min	Case of 3040mDepth Top Bouy 3040-640=2400m (minuta)	
Fall sp	peed	0.77		46.2	51.90	
op sp	eeu	0.70		40.5	02.90	

Fig. 4-1 Scheme of the 3D-ACM mooring system

(a) Instruments (Left: 3D-ACM, Right: releaser)

(b) Deployment

(c) Recovery

Fig.4-2 Deckwork for Mooring system deployment and recovery

Fig.4-3 Time series variation of current velocity and direction, and of temperature (upper: at 2440m depth, lower: at 2780m depth)

Fig.4-4 Progressive vector diagram for velocity variation from 11/16 16:30 to 11/28 07:26. Open circles are marked every 0:00 a.m.

FIg.4-5 CTD tracks during Tow-yo survey and water sampling points

FIg.4-6 Relationship between potentail temperature and sigma-theta

Fig. 4-7 Temperature anomaly observed during T04 and T05

Fig. 4-8 pH anomaly observed during T04 and T05

Chemical anomaly vs T-anomaly

FIg.4-9 Relationship between chemical anomaly and temperature anomaly

5. MMR experiment

Nobukazu Seama, Noriko Tada, Tetsuo Matsuno, Hisanori Iwamoto, Kazuya Kitada (Kobe University), Hitoshi Tanaka (Nippon Marine Enterprises), Yutaka Matsuura, Yusuke Sato, Tamami Ueno (Marine Works Japan), Tada-nori Goto (JAMSTEC), and Masashi Shimoizumi (Kyushu Polytechnic College)

We conducted a magnetometric resistivity (MMR) experiment around a hydrothermal vent site (12°57.15'N, 143°37.20'E, 2855 m depth; Fryer et al., 2003; Utsumi et al., 2003; we refer to it as Fryer Site hereafter) in the spreading center of the southern Mariana Trough. The MMR method, which is so-called the MOSES (Magnetometric Off-Shore Electrical Sounding) method (Edward et al., 1981), is useful to estimate electrical conductivity structure of a shallow part of the oceanic crust. The MMR method is a magnetic technique and involves two components; a source and receivers. The source is an electric current between two electrodes; one is just under the sea surface (surface electrode) and the other is near the seafloor (bottom electrode). The receivers are ocean bottom electro-magnetometers (OBEMs), which measure three components of magnetic field variation and three components of electric field variation. A MMR system, which we used for this experiment, have been newly developed by Kobe University and JAMSTEC as a joint research and had been tested at the Alice Springs Field (18°12.9'N, 144°42.5'E) in the central Mariana Trough during Kairei KR02-14 cruise in 2002 (Seama et al., 2003).

We deployed 6 OBEMs, as the MMR receivers, around the Fryer Site within 600 m in distance. The OBEMs were launched from the deck, and then sank to seafloor by self-weight. They drifted away from the position we originally planned on the way to seafloor due to oceanic currents. The positions of the OBEMs on the ocean bottom are estimated by acoustic ranging. All the OBEMs measure three components of magnetic field variation, three components of electric field variation, two components of instrument tilt, and temperature with the sampling interval of 1 second. They have pipes for attaching five Filloux-type silver-silver chloride electrodes (Filloux, 1987). Each OBEM has two pressure-resistant glass spheres; one contains fluxgate type magnetometers, voltmeters, and tilt meters, and the other contains the battery and a transponder unit. The clock of the OBEM was set to the GPS clock before the deployment, and was compared again after the recovery. The comparison indicates the time accuracy of the OBEMs during the experiment was kept within 3 seconds.

The MMR source of the electric current was supplied at 10 source sites and along 5 survey lines around the Fryer Site. The waveform of the electric current is rectangular with its amplitude of 16 amperes and its period of 16 seconds, which was supplied by an onboard power unit. At the source sites, we supplied an electric current between the surface and bottom electrodes for about 30 minutes. Along the survey lines, the electric current was continuously supplied, while the "Kairei" shifted with her speed of 0.5 knot. The surface and bottom electrodes are kept at 7 meters from the sea surface and at 20 meters height above the sea floor, respectively. A pinger unit, which was fixed to the winch wire at 3 m above the bottom electrode, helps us to keep a constant electrode height from the ocean bottom through control of the winch wire length.

Acoustic positioning for the bottom electrode is also performed during the electric current supply. Two kinds of acoustic positioning methods were used to estimate the position of the bottom electrode. The first way is to use the "Kairei" super short base line (SSBL) system with a transponder or

the acoustic unit (so called "fish") that were fixed to the winch wire at 15 m and 100 m above the bottom electrode, respectively. The scatter of positions by the SSBL system suggests its accuracy of 100 m. The other way is to use the long base line method with the fish. The fish measured its depth, its altitude, and slant ranges to the ship and also to each OBEM with accuracy of nearly 1 m. An onboard acoustic unit communicates with the fish acoustically and controls it.

All the data from the MMR experiment will be used to estimate electrical conductivity structure of a shallow part of the oceanic crust around the Fryer Site. Since the electrical conductivity of the crust depends primarily on seawater within the crust (amount, spatial distribution, temperature, and salinity), the results of electrical conductivity structure will lead us to understand overall features of the hydrothermal system of the Fryer Site.

5.人工電流源を用いた電磁気探査

乗船研究者: 島 伸和、多田訓子、松野哲男、岩本久則、北田数也 (神戸大学) 研究支援員: 田中仁氏 (日海事) 松浦由孝、佐藤悠介、上野珠民 (マリンワークジャパン) 共同研究者: 後藤 忠徳 (海洋科学技術センター)、下泉政志 (九州職業能力開発大学校)

熱水活動が確認されている南マリアナトラフ拡大軸の海嶺セグメント(12度 57分)を対象にして、人工電流源を用いた電磁気探査を行なった.得られた探査データを解析することにより、この海嶺セグメントの地殻上部の電気伝導度構造から、現在のマグマ活動を冷却している熱水循環系の規模を推定する.

5 - 1 . はじめに

熱水循環はマグマ活動の熱源を冷却するために起こっており、その結果として海底熱水活動が 存在していると考えられてきた.海嶺セグメントレベルの大きさで、熱水循環系の規模を把握す ることは、マグマ活動と海底熱水活動の関連を明らかにするための鍵である.一方、地殻上部の 電気伝導度は地殻の空隙率と空隙を充填する海水の温度が主なパラメータであるため、電気伝導 度構造探査は、熱水循環系のイメージングに適している.我々は、地殻上部の電気伝導度構造を 推定するために、人工電流源を用いた電磁気探査システムを開発してきており、システム全体の 実海域での試験は、KR02-14「かいれい」航海で行なっている(Seama et al., 2003).この新し いシステムを用いて海底熱水循環系のイメージングをすることで、その規模を推定することが本 研究の目的である.

5 - 2 . 探查手法 - MMR 法 (Magneto-Metoric Resistivity Method) -

本研究で使用した人工電流源を用いた電磁気探査には、MMR 法(Magneto-Metoric Resistivity Method)と呼ばれる手法を使っている.この探査手法の概要は、Fig.5-1のとおりであり、探査 システムは Fig.5-2に示している.MMR 法は、送信部、受信部、位置決め部の3つの部分から構 成されている.送信部は、コントロール装置によって発生させた電流を海面側電極と海底側電極 の間に流す.受信部は、人工電流が地殻中を流れることによって生じる変動磁場、変動電場を観 測する.位置決め部は GPS によって母船の位置を決め、音響測距によって OBEM と下部電極の位 置を求める.電気伝導度構造は、観測した変動磁場の大きさと、OBEM から海底側電極までの距 離の関係を使って推定する.この手法の探査深度は、OBEM と海底側電極の距離を変化させるこ とによって調節することができる.距離が遠くなるほど深い部分の電気伝導度構造の情報を含ん でいるからである.

5-3.探査の概要

人工電流源を用いた電磁気探査を Fig.5-3 で示した海域で行なった.この探査では、(a)信 号の受信部となる海底電位差磁力計(OBEM)の設置、(b)海底電位差磁力計の位置決め、(c) 人工電流源の通電、(d)海底電位差磁力計の回収、の手順で行なう.また、通電の前後、およ び通電中には、(e)ウインチケーブルの抵抗値のモニターも行なった.

(a) 海底電位差磁力計の設置

信号の受信部となる OBEM を 6 台設置した.OBEM は、磁場 3 成分、電場 3 成分、傾斜 2 成分を 1 秒ごとに測定することができる.磁場センサーはフラックスゲート磁力計である.電場の測定 には、銀 塩化銀の電極を 5 本使用する.OBEM の時計は、投入前に GPS 時計に合わせ、回収後 に GPS 時計と比較することで補正する.OBEM にはトランスポンダーを搭載しており、母船や移 動体との音響測距が可能である.それぞれの OBEM の音響コードを Table 5-1 に示す.

(b)海底電位差磁力計の位置決め

OBEM の位置決めを行なった.OBEM の海底での位置は、投入地点の周囲 3 点以上で音響測距を 行ない決定する.その際、本航海の海域の平均音速 1495m/sを使った.本航海では、「かいれい」 の 3 点キャリプレーションソフトとモンテカルロ法の 2 つの手法から求めた.投入地点・時間、 海底での位置については、Fig.5-3、Table 5-2、Table 5-3 に示す.

YK03-09「よこすか」航海で海底に設置したトランスポンダーの位置決めも、OBEM と同様の手 法で行った(Table 5-4).

(c) 人工電流源の通電

信号の送信は、2つの電極を海底から約20mの高度と海面から約7mの深さにそれぞれ保ち ながら、その電極間に4秒毎に正/負の切り替えを繰り返しながら電流を流すことで行なう.通 電中、母船は定点保持(約30分、通電サイト)又は微速で移動する(通電探査ライン).通電 電流の振幅は約16Aである.11月21日~22日、29日~30日(UTC)の計4日間、10地点の 通電サイトと5測線の通電探査ラインで通電を行った(Fig.5-1, Table 5-5).通電サイトでは 母船を定点保持した状態で30分間電流を流した.通電探査ラインでは、電極を船速0.5 knot で曳航しながら電流を流した.通電の間、海底側電極の高度を約20mに保つために、海底側電 極付近に取り付けたピンガーの高度を常時モニターし(Fig.5-4)、ウインチのケーブル長をかえ ることで海底電極の高さを調節した.また、通電中の海底側電極の位置を正確に知るために、海 底側電極のケーブルに設置した移動体もしくはトランスポンダーの位置を「かいれい」のSBL システムによって決定した(Fig.5-5)移動体の位置決めの時には、移動体の高度(音響による)、 深度(圧力計による)、および移動体といくつかの海底電位差磁力計(3台以下)との測距も行 なった.

(d) 海底電位差磁力計の回収

通電終了後、6 台の OBEM をすべて回収した.船上から音響によって錘を切り離すコマンドを 送信する.その後、「かいれい」の SSBL システムと神戸大学の音響装置によって OBEM の離底を 確認し、海面上に浮上するまで SSBL システムで OBEM の位置を追跡した.コマンドを送信した時 刻、OBEM の離底時刻、海面に浮上した時刻、浮上速度を Table 5-6 に示す.なお、海面からデ ッキに揚収するとき、サイト 1の OBEM (unt8)の電極用のパイプが1本折れた (Fig.5-6).

(e) ウインチケーブルの抵抗値のモニター

ウインチケーブルの絶縁体の耐久温度が 75 であるので、通電によるウインチケーブル導体 の温度がこれを上回る事がないようにする必要がある.我々は、安全性を向上させるために、ケ ーブル導体の温度変化に伴う抵抗値の変化を検出するケーブル温度モニター法を提案している.
この手法を確立することを目的として、通電の前後には、ケーブル導体の抵抗値の直接測定を、 通電中には、通電している電流値のモニターを行なった.このデータを蓄積し、ケーブル温度モ ニター法の確立に役立てる.

5-4.得られたデータ

本実験では、次のデータが得られた.通電した電流の値と波形、海底側電極の電圧・電流値、 SSBL によって求めたトランスポンダーと移動体の位置、母船の位置、移動体での測定データ、 OBEM での観測データ、気温と表層水温である.移動体では、移動体と母船やそれぞれの OBEM と の距離、移動体の深度・高度を測定した.OBEM では、磁場 3 成分、電場 3 成分、傾斜 2 成分、 温度を 1 秒間隔で観測した.6 台の OBEM が観測した期間を Table 5-7 に示す.

5-5.期待される成果

人工電流源を用いた電磁気探査の結果から、海嶺セグメントの地殻上部の電気伝導度構造が得 られ、熱水循環系の規模や対流セルのパターンが明らかになることが期待できる.さらにこの結 果は、熱水循環系によるマグマ活動の冷却効率など、熱フラックスに直接関係する物理量の定量 化を進めることにつながる.また、循環セルのパターンを拡大方向と軸方向で比較することによ り、熱水循環系の循環セルに異方性が存在する可能性も検証することができる.

人工電流源を用いた電磁気探査により熱水循環系をイメージングする全く新しい研究手法を 確立することで、海底熱水系の様々な研究の発展につながることが期待される.例えば、熱水循 環系の規模や循環セルの大きさ・パターンが明確になることで、熱水循環のモデル化に対する重 要な制約条件となる.これはより正確な数値シミュレーションを可能にして、熱水循環系の理解 がより定量的なものとなる.また、熱水循環系の規模や循環セルの大きさ・パターンは、熱水系 のテクトニック的な環境が異なればそれぞれ異なっていることが予想され、本研究と同じ手法で イメージングしたデータを蓄積することで、熱水循環系の形態を支配する要因の解明にも道が開 ける.

Fig.5-1

A schematic of the magnetometric resistivity (MMR) Method. The MMR method involves two components; a source and receivers. The source is an electric current between two electrodes; one is just under the sea surface (surface electrode) and the other is near the seafloor (bottom electrode). The receivers are ocean bottom electro-magnetometers (OBEMs), which measure three components of magnetic field variation and three components of electric field variation. Changes in distance between the source and the receivers (top and bottom figures; only one receiver is shown) allow us to estimate electrical conductivity structure of a shallow part of the oceanic crust.

Fig.5-2 MMR system used by R/V "Kairei" during KR03-13 cruise.

-3300 -3260 -3220 -3180 -3140 -3100 -3060 -3020 -2980 -2940 -2900 -2860 -2820 -2780 -2740 -2700 m

Fig.5-3

Location map of the MMR experiment on bathymetric feature. 6 OBEM positions (triangles), 10 source sites (crosses), and 5 survey lines (solid lines) are shown with each label. Each OBEM site has three different positions; deployment position from "Kairei" (white), and two observation positions on the ocean bottom, which are determined by triangulation method (black) and the least-square method (blue). Three hydrothermal sites (red circles) were reported (Fryer et al., 2003; Utsumi et al., 2003) and the middle one is the Fryer Site that is our main target of the MMR experiment.

Fig.5-4

An example of onboard monitoring acoustic waveform from a pinger unit, which is fixed to the winch wire at 3 m above the bottom electrode and outputs the acoustic wave every second. Two peaks are recognized in the monitor; a left peak and a right peak indicate the direct wave and the reflected wave, respectively. Time difference between the two peaks is used for estimation of pinger unit altitude, because it corresponds to the two way travel time between the pinger and ocean bottom.

Positions of the transponder (red dots) and the fish (blue dots) during the MMR experiment shown on a bathymetric map. Each position was determined by the "Kairei" SSBL system.

Fig.5-6

Pictures of the unit8 OBEM recovery (top) and of the broken electrode pipe (bottom). The electrode pipe was broken during its recovery.

Table 5-1 OBEM information

			Call	Reply
Site	Unit	Code	Frequency	Frequency
			(kHz)	(kHz)
1	8	8A-2	12.121	14.000
2	5	5A-2	15.385	14.000
3	11	2B-2	14.286	14.000
4	6	6A-3	12.738	14.500
5	7	7A-1	11.834	15.000
6	9	9A-3	12.500	14.500

Table 5-2 OBEM deployment position

Site	De	ployment Positio		
	Latitude	Longitude	Depth (m)	Time (UTC)
1	12-57.4206N	143-37.1418E	2880	2003/11/19 03:36:27
2	12-57.1988N	143-36.9715E	2868	2003/11/19 02:36:26
3	12-57.3614N	143-37.0006E	2864	2003/11/19 03:04:50
4	12-57.1145N	143-37.1200E	2864	2003/11/19 01:33:35
5	12-57.1682N	143-37.2464E	2869	2003/11/19 01:03:11
6	12-57.3538N	143-37.3314E	2856	2003/11/18 22:31:40

Table 5-3 OBEM observation position

	Triangulation method			Monte Carlo method		
Site	Latitude	Longitude	Depth	Latitude	Longitude	Depth
			(m)			(m)
1	12-57.3918N	143-37.0779E	2880	12-57.4147N	143-37.0935E	2858
2	12-57.1849N	143-36.9543E	2868	12-57.1988N	143-36.9269E	2862
3	12-57.3411N	143-36.9534E	2864	12-57.3480N	143-36.9415E	2858
4	12-57.1077N	143-37.0697E	2864	12-57.0983N	143-37.0660E	2845
5	12-57.1328N	143-37.2006E	2869	12-57.1347N	143-37.2089E	2850
6	12-57.2570N	143-37.3828E	2856	12-57.2795N	143-37.3727E	2855

Table 5-4 Position of a transponder that was settled during YK03-09 cruise

	Triangulation method			Monte Carlo method		
	Latitude	Longitude	Depth (m)	Latitude	Longitude	Depth (m)
Transponder	12-55.1306N	143-39.0399E	2800	12-55.1347N	143-39.0372E	2804

Table 5-5MMR source sites and survey lines

Site or Line	Location	Start Time (UTC)	End Time (UTC)
MMD site1	19 56 9NI 149 90 1E	2002/11/21 00.42.00	2003/11/21
WIWIR_SITE1	12-30.31N 143-38.1E	2003/11/21 09:43:09	11:43:45
MMD site?	19 56 9NI 149 96 9E	9009/11/91 15.19.14	2003/11/21
MMR_Sitez	12-30.21 143-30.3E	2003/11/21 15:12:14	15:43:30
MMD site?	19 56 9NI 149 96 4E	2002/11/21 16.26.17	2003/11/21
wiwik_sites	12-30.31N 143-30.4E	2003/11/21 10.20.17	16:56:33
MMR_site4	12-56.4N 143-36.5E	2003/11/21 17:29:34	-
MMD line1	12-56.4N 143-36.5E		
wivik_iiiiei	12-57.9N 143-37.9E	-	-
MMR_site5	12-57.9N 143-37.9E	-	-
MMR_sit6	12-58.0N 143-38.0E	-	-
MMD aita7	12-58.1N 143-38.1E		2003/11/22
MMR_Site7		-	01:07:23
MMR_site10	12-56.4N 143-38.0E	2003/11/29 00:03:06	-
MMD line?	12-56.4N 143-38.0E		
wiwik_iiiiez	12-58.0N 143-36.3E	-	-
MMR_site9	12-58.0N 143-36.3E	-	-
MMD aita9	19 59 1NI 149 26 9E		2003/11/29
MIMR_SILE8	12-38.11N 143-30.2E	-	07:17:22
MMD line?	12-56.7N 143-36.4E	2002/11/20 00.20.56	2003/11/29
MMR_line3	12-58.0N 143-37.6E	2003/11/29 09:30:56	13:37:15
MMR_line4	12-57.8N 143-36.3E	2002/11/20 10:41.55	2003/11/29
	12-56.4N 143-37.8E	2003/11/29 10:41:55	21:26:53
MMD limet	12-56.6N 143-38.0E	2002/11/20 22:00:45	2003/11/30
wiivir_iiileo	12-58.0N 143-36.5E	2003/11/29 23:00:43	03:31:25

At the source sites, we supplied an electric current between the surface and bottom electrodes for about 30 minutes. Along the survey lines, the electric current was continuously supplied, while the "Kairei" shifted with her speed of 0.5 knot.

Table 5-6 OBEM recovery

Site	Time of sending a release command (UTC)	Take off Time (UTC)	Surface Time (UTC)	On deck Time (UTC)	Rising Velocity (m/min)
1	2003/12/01 02:44:25	2003/12/01 02:56:28	2003/12/01 04:12:00	2003/12/01 04:20:00	38
2	2003/12/01 01:14:30	2003/12/01 01:25:48	2003/12/01 02:41:50	2003/12/01 02:50:00	38
3	2003/11/30 23:35:00	-	2003/12/01 01:00:50	2003/12/01 01:09:00	38
4	2003/12/01 00:14:30	2003/12/01 00:26:04	2003/12/01 01:42:00	2003/12/01 01:51:00	38
5	2003/12/01 01:45:15	2003/12/01 01:57:48	2003/12/01 03:14:30	2003/12/01 03:22:00	38
6	2003/12/01 02:14:45	2003/12/01 02:28:44	2003/12/01 03:45:05	2003/12/01 03:52:00	38

Table 5-7OBEM data status

Site	Start Time (UTC)	End Time (UTC)	Time lag of OBEM clock	
	Start Time (01C)	End Time (OTC)	compared to UTC	
1	2003/11/19 07:04:24	2003/11/26 00:11:03	1 second delay	
2	2003/11/19 07:04:24	2003/11/25 19:57:43	3 seconds delay	
3	2003/11/26 16:44:42	2003/12/01 01:05:31	1 second delay	
4	2003/11/18 09:07:17	2003/11/25 00:33:56	0 second delay	
5	2003/11/18 22:43:12	2003/11/20 13:12:05	9 coorde delev	
	2003/11/23 15:34:56	2003/11/25 05:25:42	2 seconds delay	
6	2003/11/19 07:04:24	2003/11/25 22:58:13	2 seconds delay	