

# KAIYO Cruise Report KY14-09

# Transport and change processes of subtropical mode water and its effects on biogeochemical cycle

Kuroshio Extension region

19 June 2014 – 1 July 2014

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

# Contents

# 1. Cruise Information

- 1.1 Cruise ID
- 1.2 Name of vessel
- 1.3 Title of the cruise
- 1.4 Title of the proposal
- 1.5 Cruise period
- 1.6 Ports of call
- 1.7 Research area
- 1.8 Research map

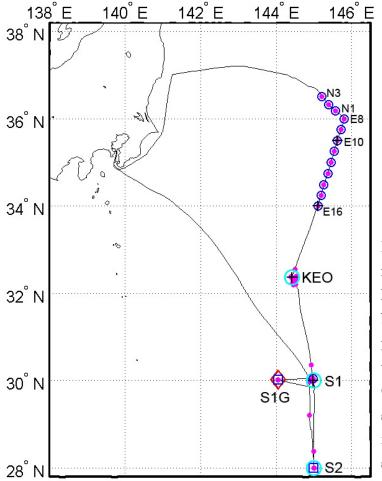
#### 2. Researchers

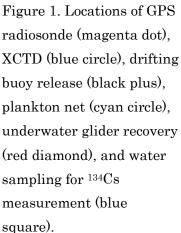
- 2.1 Chief scientist
- 2.2 Representative of the science party
- 2.3 Science party
- 2.4 Observation technicians

#### 3. Observation

- 3.1 Background and purpose
- 3.2 Observations and activities
- 3.3 List of observation instruments
- 3.4 Observation results
- 3.5 Cruise log
- 3.6 Research information
- 3.7 About data
- 4. Notice on using

### Acknowledgements


#### Appendix


Details of the Sediment-trap (BGC) mooring POPPS mooring Plankton net observations

- 1. Cruise Information
  - 1.1 Cruise ID: KY14-09
  - 1.2 Name of vessel: KAIYO
  - 1.3 Title of the cruise: Transport and change processes of subtropical mode water and its effects on biogeochemical cycle
  - 1.4 Title of the proposal: Transport and change processes of subtropical mode water and its effects on biogeochemical cycle
  - 1.5 Cruise period: 19 June 1 July 2014
  - 1.6 Ports of call: From / To: Wharf at Yokosuka Works, Sumitomo Heavy Industries

1.7 Research area: Kuroshio Extension Region

1.8 Research map:





### 2. Researchers

2.1 Chief scientist: Yoshimi Kawai

Ocean Circulation Research Group Research and Development Center for Global Change (RCGC) Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

# 2.2 Representative of the science party:

Yoshimi Kawai RCGC/JAMSTEC

### 2.3 Science party:

| 1 0                  |                                                   |
|----------------------|---------------------------------------------------|
| Yoshimi Kawai        | RCGC/JAMSTEC                                      |
| Tetsuichi Fujiki     | RCGC/JAMSTEC                                      |
| Makio Honda          | Department of Environmental Geochemical Cycle     |
|                      | Research (DEGCR)/JAMSTEC                          |
| Kazuhiko Matsumoto   | DEGCR/JAMSTEC                                     |
| Katsunori Kimoto     | RCGC/JAMSTEC                                      |
| Ryu-ichiro Inoue     | RCGC/JAMSTEC                                      |
| Kyoko Taniguchi      | RCGC/JAMSTEC                                      |
| Haruka Takagi        | RCGC/JAMSTEC / Waseda University                  |
| Kotaro Murata        | Prefecture University of Kumamoto                 |
| Shin-ichiro Fukuyama | Prefecture University of Kumamoto                 |
| Satoru Okajima       | University of Tokyo                               |
| Yuya Ishimura        | Hokkaido University                               |
| Yuko Yamada          | Hokkaido University                               |
| Tetsuro Ino          | Tsurumi-Seiki Co., Ltd.                           |
| Hailong Yang         | Tsurumi-Seiki Co., Ltd.                           |
| Keith Ronnholm       | University of Washington, Joint Institute for the |
|                      | Study of the Atmosphere and Ocean (JISAO)         |
| David K. Zimmerman   | University of Washington, JISAO                   |
|                      |                                                   |
| Meghan F. Cronin     | Pacific Marine Environmental Laboratory (PMEL)/   |
|                      | National Oceanic and Atmospheric Administration   |
|                      | (NOAA) (not on board)                             |
| Masahide Wakita      | Mutsu Institute for Oceanography (MIO)/           |
|                      | JAMSTEC (not on board)                            |
| Yuichiro Kumamoto    | RCGC/JAMSTEC (not on board)                       |
|                      |                                                   |

| Hisashi Nakamura | University of Tokyo (not on board)               |
|------------------|--------------------------------------------------|
| Daizhou Zhang    | Prefecture University of Kumamoto (not on board) |
| Shoshiro Minobe  | Hokkaido University (not on board)               |

2.4 Observation technicians:

| Isao Kozono        | Nippon Marine Enterprises Ltd. (NME) |
|--------------------|--------------------------------------|
| Tomoyuki Takamori  | Marine Works Japan Ltd. (MWJ)        |
| Tomohide Noguchi   | MWJ                                  |
| Takatoshi Kiyokawa | MWJ                                  |
| Hiroki Ushiromura  | MWJ                                  |
| Masanori Enoki     | MWJ                                  |
| Fuyuki Shibata     | MWJ                                  |

- 3. Observation
  - 3.1 Background and purpose

The main purpose of this cruise was to investigate transport and change processes of subtropical mode water (STMW) and its effects on biogeochemical cycle.

STMW, which has vertically homogeneous properties, is formed south of the Kuroshio Extension. STMW moves southward and permeates the permanent thermocline. The formation of STMW is affected by winter weather conditions. Hence, the subtropical ocean circulation in the North Pacific reflects the climate change through the formation and transport of STMW. Furthermore, STWM is important for the ocean material circulation. It has a role of absorbing and transport CO<sub>2</sub> into the ocean interior. STMW also contributes to the primary production in the subtropics, where is oligotrophic in summer, by supplying nutrients upward. Recent studies have revealed that the spatial distribution of STMW is more complicated than expected before. It is indispensable to clarify the formation, transport, and change processes of STMW and the roles of STMW for the climate change and the material circulation. For these studies, we deployed and recovered surface buoys, biogeochemical moorings, and a sea glider in this cruise. CTD observations, water and plankton samplings were also conducted.

Another purpose of the cruise was the validation of new satellite data (AMSR2) and GPS-derived precipitable water.

#### 3.2 Observations and activities

- Atmospheric sounding using GPS radiosonde Vertical profiles of air temperature, relative humidity, and wind velocity were observed 40 times in total (including 3 failures) at 19 positions with GPS radiosondes (Figure 1).
- Oceanographic survey using XCTD Vertical profiles of water temperature and salinity up to 1000-m depth were observed at 13 positions (Figure 1).
- 3) Underway marine meteorological measurements on the vessel We observed shortwave and longwave radiations, air temperature, relative humidity, wind speed, wind direction, atmospheric pressure, rain rate, concentration of aerosol particles, and precipitable water throughout the cruise.
- Underway oceanic measurements on the vessel Surface temperature and current velocity were observed throughout the cruise.
- 5) Sampling of aerosol particles in the lowest atmosphere Aerosol particles in the air were sampled with pumps and filters throughout the cruise.
- 6) Recovery of underwater glider

An underwater glider (SeaGlider), which can measure temperature, salinity, dissolved oxygen, and pressure, was deployed at 31°58.38'N, 143°56.27'E on 27 February 2014 in the cruise of R/V Hakuho-maru (KH-14-1). We recovered it about 50 nm west of the S1 site on 21 June 2014. (This recovery position is referred to as "S1G" hereafter)

7) Recovery and deployment of sediment-trap (BGC) mooring

The sediment-trap mooring was deployed at the S1 site on 16 July 2013 in the cruise of R/V Mirai (MR13-04) in order to collect settling particle continually. We recovered it on 22 June 2014. The mooring was simplified and deployed at the KEO site on 27 June 2014. Details are described in Appendix 1.

8) Recovery of POPPS mooring

POPPS was deployed at the S1 site on 16 July 2013 in the cruise of R/V Mirai (MR13-04) for measuring the vertical profiles of phytoplankton fluorescence, irradiance, temperature, salinity and dissolved oxygen. We recovered it on 21 June 2014. See also Appendix 2.

9) Recovery and deployment of KEO buoys, deployment of drifting buoys (PMEL/NOAA)

KEO buoy has anemometers, thermometers for air temperature, hygrometers, longwave and shortwave radiometers,  $pCO_2$  sensors, rain gauges, barometers, current meters, a pH sensor, Optode, CTs (water temperature and salinity) and CTDs (water temperature, salinity, and pressure). We deployed the KEO buoy (KEO12) on 25 June 2014. The KEO buoy (KEO11) was recovered on 26 June 2014.

We also deployed the Surface Velocity Program (SVP) drifters at the S1 and KEO sites, 34°00'N, and 35°30'N.

10) CTD and Water sampling at S1, S1G, S2, and KEO sites

We casted a CTD and Niskin bottles to 800 m depth at the S1G and S2 sites for the measurement of <sup>134</sup>Cs originated from Fukushima Daiichi Nuclear Power Station. CTD and water sampling casts were done to the bottom at the S1 site, and to 2000 m depth at the KEO site, for biogeochemical research. For 0-m water sampling, a bucket was used.

We also sampled water at 5m depth with a Niskin bottle at the KEO site just after the deployment and before the recovery of the buoys.

11) Plankton net (VMPS) at S1, S2, and KEO sites

Plankton tow sampling had performed by using the Vertical Multiple Plankton Sampler (VMPS) to collect microzooplankton from the S1, S2, and KEO sites. VMPS has 50cm x 50cm square aperture and four plankton nets can be set on the frame. CTD and conductivity sensor with fluorometer are equipped on the flame and observed data be monitored in real time on the shipboard console. Details are described in Appendix 3.

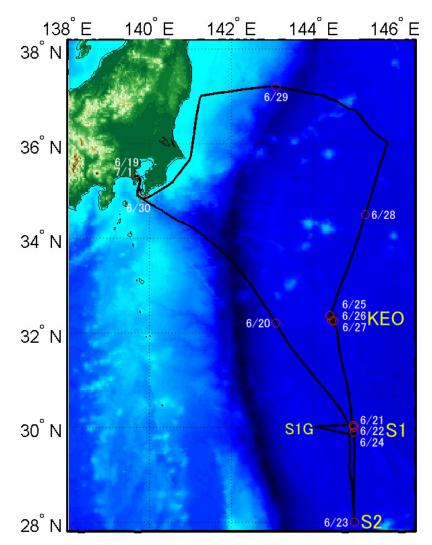



Figure 2. Cruise track with ship position at 0:00 UT (circle) on each day.

3.3 List of observation instruments

| XCTD                     | XCTD-1 (Tsurumi-Seiki Co., Ltd.)             |
|--------------------------|----------------------------------------------|
| GPS Radiosonde           | RS-11G (sensor), RD-08AC (receiver) (Meisei) |
| Thermometer/hygrometer   | CVS-HMP-45A (Climatec)                       |
| Shortwave radiometer     | CM-21, CMP-21 (Kipp&Zonen)                   |
| Longwave radiometer      | CG-4, CGR-4 (Kipp&Zonen)                     |
| Weather multi-sensor     | WXT520 (Vaisala)                             |
| GPS receiver             | Trimble NetR9 (Nicon-Trimble)                |
|                          | (for precipitable water measurement)         |
| Optical particle counter | KC-01E (Rion)                                |
| Aerosol particle sampler | Cascade Impactors (PIXE International Corp.) |
|                          | PUMP FOR AIR MAS-01 (AS ONE Corp.)           |
|                          | HV-525PM (Shibata)                           |

| Portable light sensor     | LI-1400 (LI-COR)                          |
|---------------------------|-------------------------------------------|
| Flow cytometer            | ec800 (Sony)                              |
| Imaging particle analyzer | FlowCAM (Fluid Imaging)                   |
| CTD                       | SBE03-04/F, SBE04-04/0, SBE9plus, SBE43   |
|                           | (Sea-Bird Electronics, Inc.)              |
| Nutrient analyzer         | QuAAtro 2-HR (BLTEC)                      |
| PAR sensor                | (Satlantic Inc.)                          |
| Fluorometer               | (Seapoint Sensors, Inc.)                  |
| Automatic photometric tit | rator DOT-01X (Kimoto Electric Co., Ltd.) |
| Plankton net              | VMPS3000 (Tsurumi-Seiki Co., Ltd.)        |
|                           |                                           |

| KEO buoy      | PMEL/NOAA             |
|---------------|-----------------------|
| Drifting buoy | SVP drifter (DBI.LLC) |

Underwater glider

SeaGlider (iRobot)

| POPPS                       | JAMSTEC       |                                |
|-----------------------------|---------------|--------------------------------|
| Fast repetition rate fluore | meter Diving  | g Flash (Kimoto Electric)      |
| Scalar irradiance sensor    | QSP-2         | 200 (Biospherical Instruments) |
| CTD sensor                  | MCTE          | ) (Falmouth Scientific)        |
| Dissolved oxygen sensor     | Compa         | act Optode (Alec Electronics)  |
| Remote automatic water s    | sampler (RAS) | (McLane Research Laboratories) |

Acoustic Doppler current profiler Workhorse Long Ranger (Teledyne RD Instruments)

Sediment-trap (BGC) mooring JAMSTEC

| Locator       | Smart Cat ARGOS PIT (SEIMAC)      |
|---------------|-----------------------------------|
| Sediment trap | SMD26S-6000 (Nichiyu Giken Kogyo) |
|               | Mark 7-21 (McLane)                |
| Strobe        | NOVATECH Xenon flasher            |
| Depth sensor  | DFFI-D50HG (JFE)                  |
| CTD           | SBE 37-SM MicroCAT (SeaBird)      |
| DO sensor     | Rinko I (JFE)                     |
| Thermometer   | MDS Mk V/T (JFE)                  |

#### 3.4 Observation results

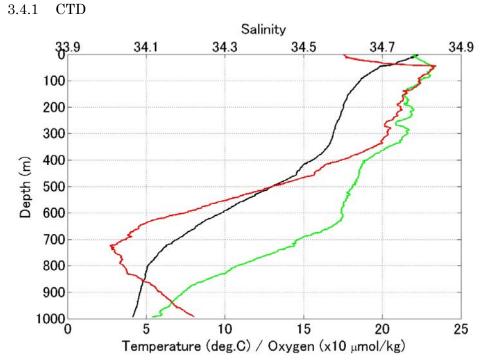



Figure 3. Vertical profiles (down cast) of in situ temperature (°C, black), dissolved oxygen ( $\times 10 \ \mu$ mol/kg, green), and salinity (psu, red) at the S1G site on 21 June 2014. Note that these data are not corrected.

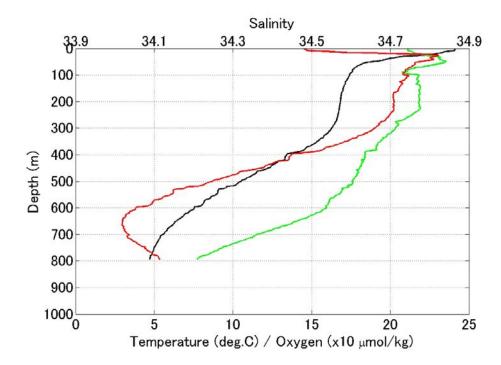



Figure 4. Same as Figure 3, but at the S2 site on 23 June 2014.

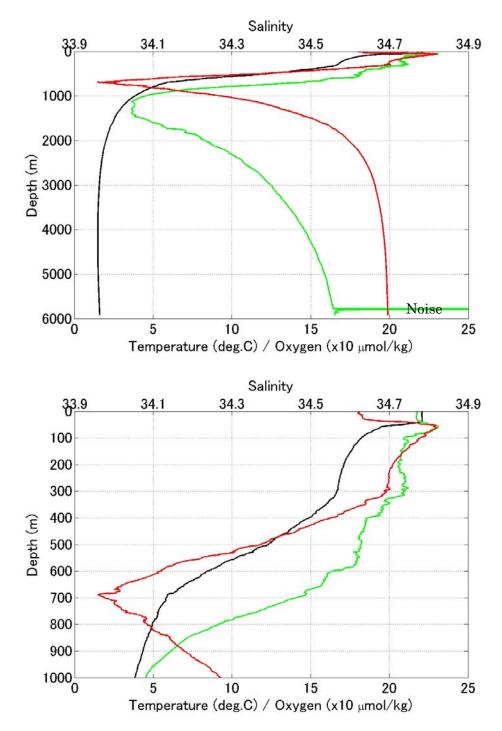



Figure 5. Same as Figure 3, but at the S1 site on 24 June 2014. The lower panel is an enlarged drawing up to 1000 m depth.

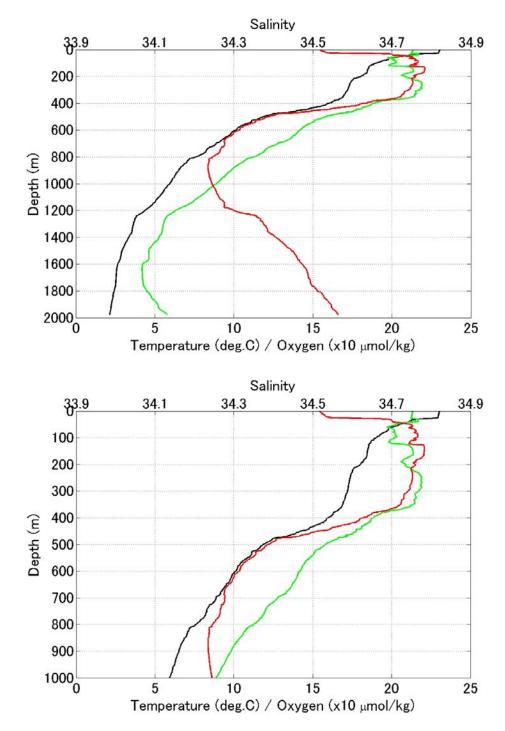



Figure 6. Same as Figure 3, but at the KEO site on 27 June 2014. The lower panel is an enlarged drawing up to 1000 m depth.

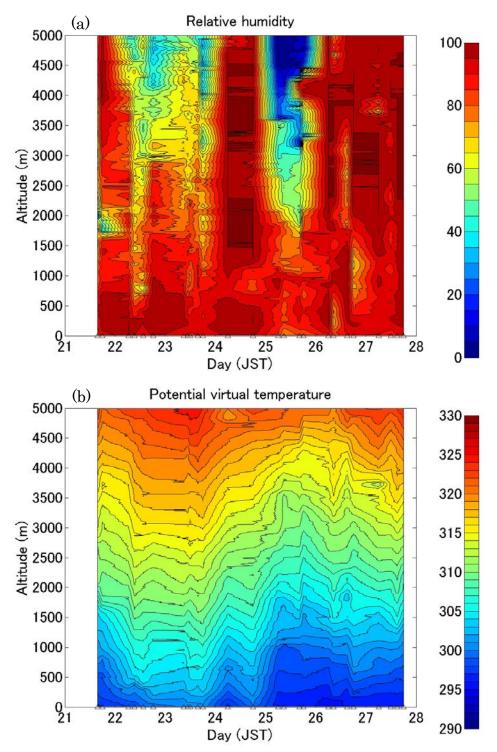
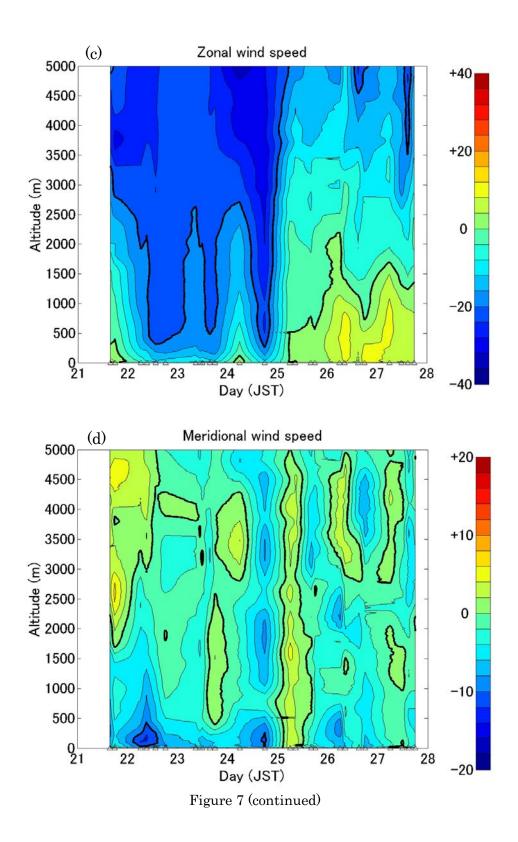




Figure 7. Relative humidity (%, a), potential virtual temperature (K, b), zonal wind speed (m/s, westward is positive, c), meridional wind speed (m/s, southward is positive, d), SST (°C, e), and water vapor accumulated up to 16000 m height (kg/m<sup>3</sup>, f) observed with the GPS radiosondes from 15:39 on 21 June to 18:01 on 27 June 2014 (JST).



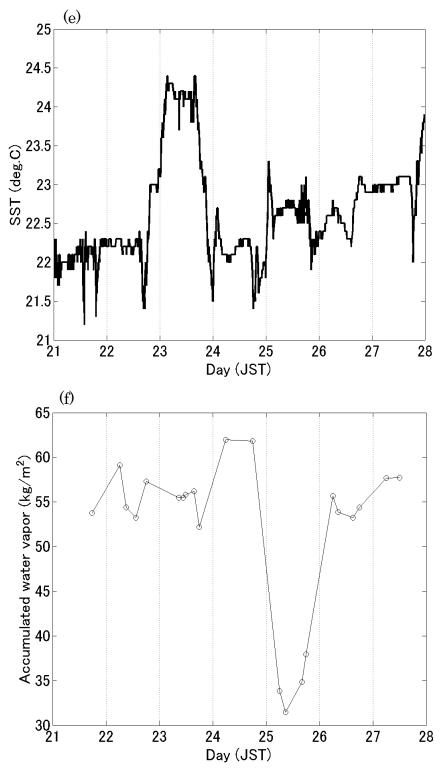



Figure 7 (continued)

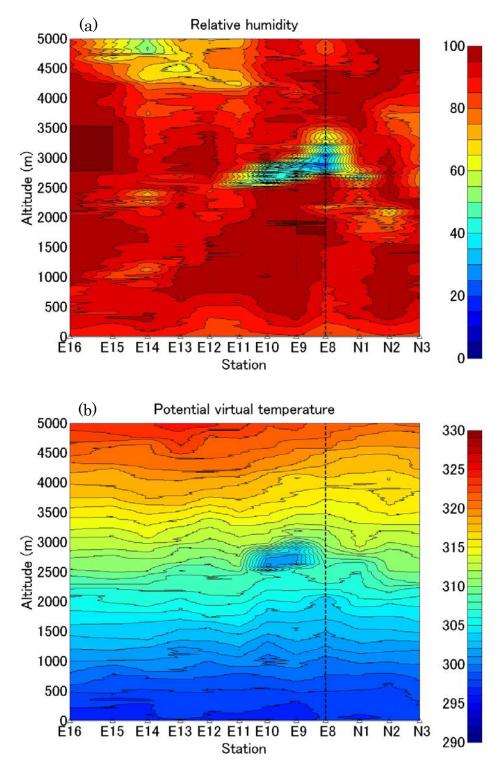
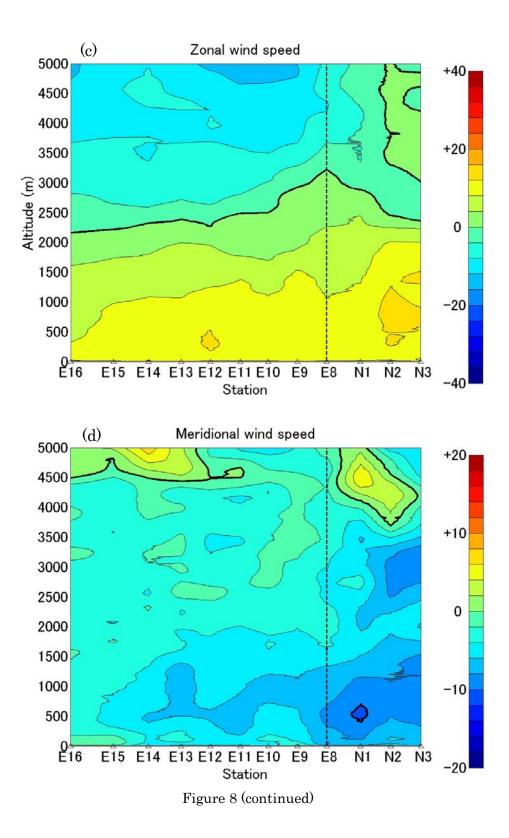




Figure 8. Same as Figure 7, but from 05:01 to 22:30 on 28 June 2014 (JST).



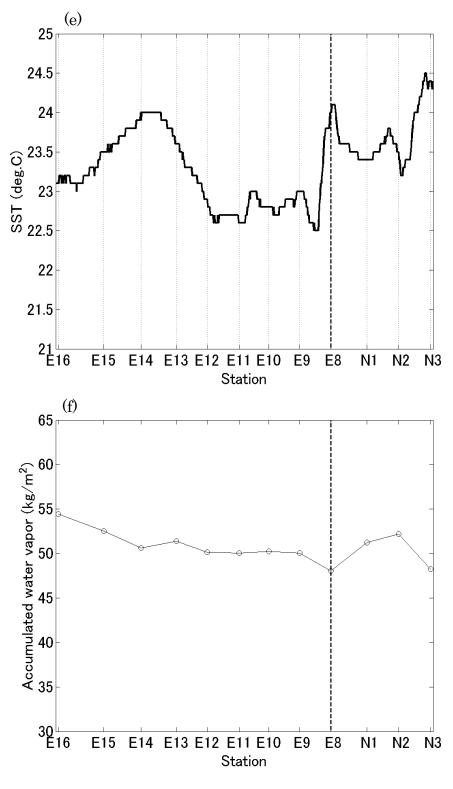



Figure 8 (continued)

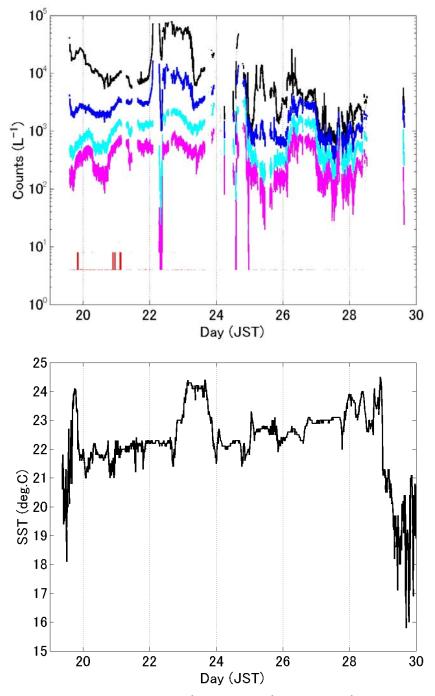



Figure 9. Counts of aerosol particles (upper panel), and SST (°C, lower panel). Black, blue, cyan, pink, and red lines represent  $0.3-0.5 \mu m$ ,  $0.5-1 \mu m$ ,  $1-2 \mu m$ ,  $2-5 \mu m$ , and more than 5  $\mu m$  of particle size, respectively. Data with the "High Concentration" error are not shown. We also eliminated the data when the angle between the ship heading and the wind direction exceeded ±90°, that is, the wind blew from the stern.

# 3.4.4 XCTD

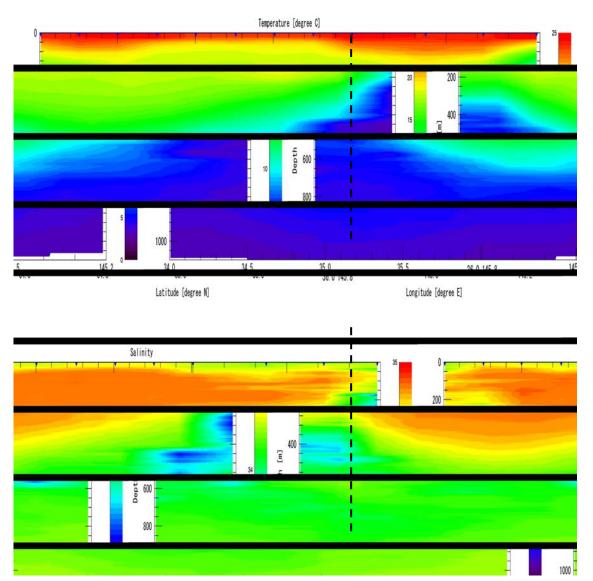



Figure 10. In situ temperature (°C, upper panel) and salinity (psu, lower panel) from 05:01 (E16) to 22:30 (N3) on 28 June 2014 (JST).

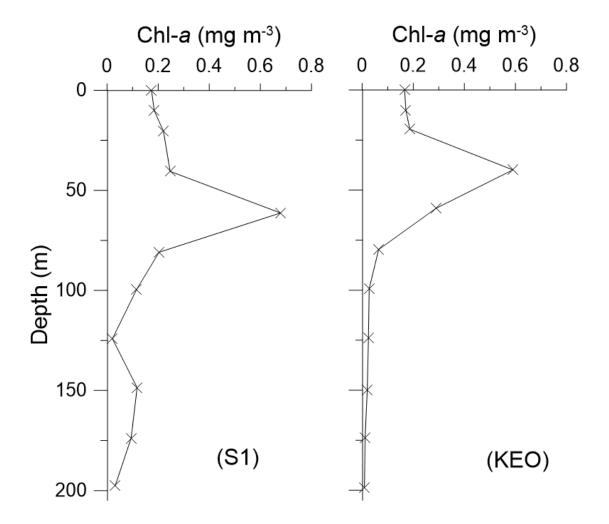



Figure 11. Vertical profiles of chlorophyll a at stations S1 and KEO. The concentrations of chlorophyll a were measured by Turner Design fluorometer (10-AU-005) on land, which was calibrated with the pure chlorophyll a (Sigma-Aldrich Co.).

#### 3.4.6 Preliminary results of sediment trap

During deployment for about 320 days between middle July 2013 and late May 2014, sediment traps deployed at 200 m, 500 m and 4810 m worked perfectly following initialized time schedule. In order to know sample volume quantitatively, heights of collected sample in the collecting cups were measured with scale onboard and each volume was estimated roughly (Figure 12).

#### 1) 200 m sediment trap

Sample in collecting cup looked larger than 1 mm such as shrimp, fish and jelly fish. Generally sample > 1 mm are eliminated from analysis as swimmer. Total mass flux in volume (thereinafter TMF) increased gradually from July 2013 to April / May 2014 (Figure 12a). Figure 12a also shows variability of 200 m sediment trap during deployment. Although water depth of 200 m sediment trap was usually about 200 m, water depth was deepened temporally, especially during August 2013 and late March 2014 (by  $220 \sim 230$  m).

#### 2) 500 m sediment trap

Collected sample looked smaller than 1 mm. TMF was small between late September 2013 and early March 2014 and increased in May / April 2014 (Figure 12b). On the surface, seasonal variability in TMF at 500 m did not synchronize with that at 200 m.

#### 3) 4810 m sediment trap

Collected sample at 4810 m was similar to that at 500 m, its size was smaller than 1 mm. Seasonal variability in TMF looked to synchronize with that at 500 m: small increase during July and September, decrease in winter and large increase between March and May 2014 (Figure 12c).

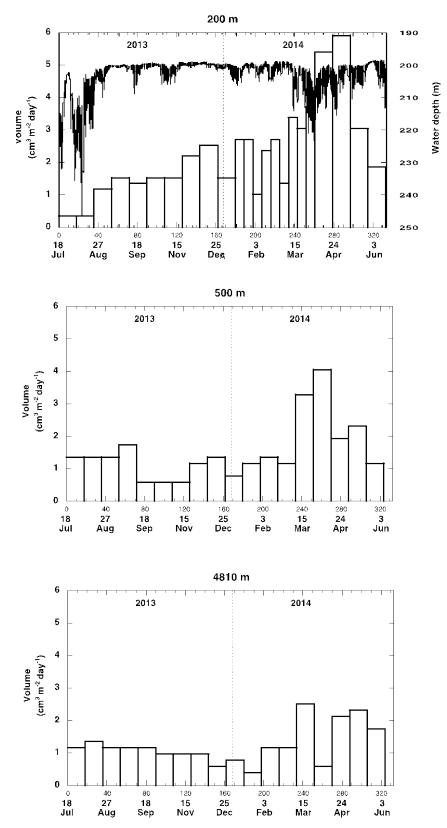



Figure 12. Total mass flux in volume at (a) 200 m, (b) 500 m and (c) 4810 m of S1.

# 3.4.7 Preliminary results of Remote Automatic water Sampler (RAS) on the POPPS mooring

#### 1) Pressure, temperature and salinity at RAS

Pressure, temperature and salinity by SBE-37 SM (Sea-birds) were observed every hour attached on Winch and RAS on POPPS mooring system. Winch and RAS were located at ~225 db and ~250 db, respectively (Figure 13a). The seasonal variation of temperature and salinity were small (Figure 13b and 13c). However, both winch and RAS were sometimes deepened by approximately 40 db. It was noteworthy that both winch and RAS were deepened in summer 2013. It is suspected that strong current or eddy took place and mooring system might be largely forced to be tilted.

#### 2) Chemical analysis of RAS sample

RAS on 250m worked following schedule (Table 1) and will obtain most of samples of dissolved inorganic carbon, CH<sub>4</sub>, N<sub>2</sub>O, total alkalinity, nutrients (Phosphate, Nitrate + Nitrite, Silicate), <sup>15</sup>NO<sub>3</sub><sup>-</sup> and salinity. CH<sub>4</sub>, N<sub>2</sub>O, and <sup>15</sup>NO<sub>3</sub><sup>-</sup> will be measured by JAMSTEC or Tokai University. These properties were obtained from 10 liter Niskin bottles mounted on the CTD/Carousel Water Sampling System for calibration on RAS samples at station S1 in this cruise. Some RAS sample volume after collecting (#3, #16, #18, #19 and #43) were quite small. These samples leaked with holes and might be not able to measure these properties. Salinity of RAS seawater samples will be measured by salinometer (Model 8400B "AUTOSAL" Guildline Instruments). Salinity of RAS samples should be lower than ambient seawater, because RAS samples were diluted with 20% saturated HgCl<sub>2</sub> solution. Salinity measured by salinometer will be slightly lower than that observed by SBE-37 sensor (CTD). RAS samples (~500ml) were diluted with 2.5 ml of 20% saturated HgCl<sub>2</sub> solution for preservative. For chemical properties, the dilutions of RAS samples by HgCl<sub>2</sub> must be corrected by a ratio of salinity by SBE-37 to that by salinometer

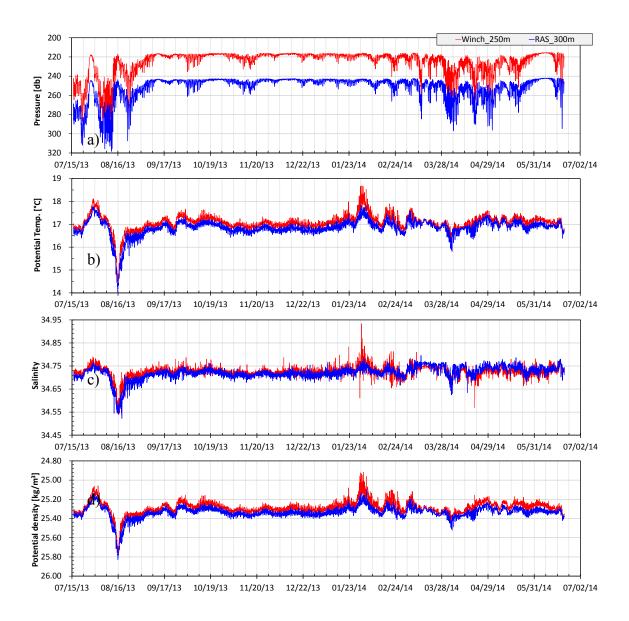



Figure 13. Pressure (a), potential temperature (b), Salinity (c) and potential density at the Winch and RAS during the deployment.

# Table 1. Sampling schedule of RAS in 250m on the POPPS mooring at station S1.

| RAS No. | Date                     | RAS 250m   |                                                                                | 7                      |
|---------|--------------------------|------------|--------------------------------------------------------------------------------|------------------------|
| KAS NO. | Interval 8               | days       | Memo                                                                           |                        |
| #       | mm/dd/yyyy               | Time (JST) |                                                                                |                        |
| 1       | 07/17/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | Interval 40 minutes    |
| 2       | 07/17/2013               | 7:40:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | for duplicate sampling |
| 3       | 07/25/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 4       | 08/02/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | _                      |
| 5       | 08/10/2013               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 6       | 08/18/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 7       | 08/26/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 8       | 09/03/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 9       | 09/11/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 10      | 09/19/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 11      | 09/27/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 12      | 10/05/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 13      | 10/13/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 14      | 10/21/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | ]                      |
| 15      | 10/29/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | ]                      |
| 16      | 11/06/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 17      | 11/14/2013               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          |                        |
| 18      | 11/22/2013               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 19      | 11/30/2013               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 20      | 12/08/2013               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 21      | 12/16/2013               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 22      | 12/24/2013               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 23      | 01/01/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 24      | 01/09/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 25      | 01/17/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 26      | 01/25/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 27      | 02/02/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 28      | 02/10/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 20      | 02/18/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 30      | 02/26/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 31      | 03/06/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 32      | 03/14/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 33      |                          |            |                                                                                | _                      |
| 34      | 03/22/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 35      | 03/30/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 35      | 04/07/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml<br>20% Saturated HgCl <sub>2</sub> 2.5ml | -                      |
| 30      | 04/15/2014<br>04/23/2014 |            |                                                                                | -                      |
|         |                          |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 38      | 05/01/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 39      | 05/09/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 40      | 05/17/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 41      | 05/25/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 42      | 06/02/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 43      | 06/10/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | 4                      |
| 44      | 06/18/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | 4                      |
| 45      | 06/26/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | 4                      |
| 46      | 07/04/2014               |            | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | -                      |
| 47      | 07/12/2014               | 7:00:00    | 20% Saturated HgCl <sub>2</sub> 2.5ml                                          | Interval 40 minutes    |

3.5 Cruise log

| D       | ,     | Time        | <b>a</b>      |                                                    |
|---------|-------|-------------|---------------|----------------------------------------------------|
| Date    | (JST) | (UTC)       | Site          | Event                                              |
|         |       |             |               | Japan Standard Time is (UTC+9h)                    |
| 19 Jun. | 09:00 | 00:00       |               | Depart from Sumitomo Wharf for S1                  |
| 21 Jun. | 06:03 | 21:03 (-1d) | $\mathbf{S1}$ | Send a release code (POPPS)                        |
|         | 06:22 | 21:22 (-1d) | $\mathbf{S1}$ | Launch the first radiosonde                        |
|         | 07:19 | 21:55 (-1d) | $\mathbf{S1}$ | Start POPPS mooring recovery                       |
|         | 11:08 | 02:08       | $\mathbf{S1}$ | Finish recovery                                    |
|         | 15:06 | 06:06       | S1G           | Find the sea glider                                |
|         | 15:19 | 06:19       | S1G           | Start sea glider recovery                          |
|         | 15.26 | 06:26       | S1G           | Finish recovery                                    |
|         | 15:50 | 06:50       | S1G           | CTD and water sampling for $^{134}$ Cs (1000m)     |
|         | 17:11 | 08:11       | S1G           | CTD and water sampling for ${ m ^{134}Cs}$ (200m)  |
| 22 Jun. | 07:10 | 22:10 (-1d) | $\mathbf{S1}$ | Plankton net (1000m)                               |
|         | 08:31 | 23:31 (-1d) | $\mathbf{S1}$ | Plankton net (200m)                                |
|         | 08:52 | 23:52 (-1d) | $\mathbf{S1}$ | XCTD for plankton net                              |
|         | 09:32 | 00:32       | $\mathbf{S1}$ | Send a release code (Sediment-trap mooring)        |
|         | 10:07 | 01:07       | $\mathbf{S1}$ | Start sediment-trap mooring recovery               |
|         | 13.25 | 04:25       | $\mathbf{S1}$ | Finish recovery, depart for S2                     |
| 23 Jun. | 08:58 | 23.58       | S2            | CTD and water sampling for ${ m ^{134}Cs}$ (1000m) |
|         | 10:10 | 01:10       | S2            | CTD and water sampling for ${}^{134}Cs$ (200m)     |
|         | 13:33 | 04:33       | S2            | Plankton net (1000m)                               |
|         | 14:33 | 05:33       | S2            | Plankton net (300m)                                |
|         | 15:05 | 06:05       | S2            | Plankton net (300m)                                |
| 24 Jun. | 06:03 | 21:03 (-1d) | $\mathbf{S1}$ | CTD and water sampling (bottom)                    |
|         | 10:10 | 01:10       | $\mathbf{S1}$ | CTD and water sampling (2000m)                     |
|         | 13:00 | 04:00       | $\mathbf{S1}$ | CTD and water sampling (300m)                      |
|         | 15:03 | 06:03       | $\mathbf{S1}$ | Plankton net (300m)                                |
|         | 15:38 | 06:38       | $\mathbf{S1}$ | Plankton net (300m)                                |
|         | 16:02 | 07:02       | $\mathbf{S1}$ | Deploy drifting buoys, depart for KEO              |
| 25 Jun. | 09:00 | 00:00       | KEO           | Start KEO buoy (KEO12) deployment                  |
|         | 14.29 | 05:29       | KEO           | Anchor release                                     |
|         | 15:09 | 06:09       | KEO           | Start triangulation                                |
|         | 16:49 | 07:49       | KEO           | Water sampling with a Niskin bottle                |
|         | 17:39 | 08:39       | KEO           | Finish triangulation                               |

|         |       | 1           |     |                                                 |
|---------|-------|-------------|-----|-------------------------------------------------|
| 26 Jun. | 08:19 | 23:19 (-1d) | KEO | Bucket water sampling                           |
|         | 08:20 | 23:20 (-1d) | KEO | Water sampling with a Niskin bottle             |
|         | 08:38 | 23:38 (-1d) | KEO | Send a release code (KEO11)                     |
|         | 09:22 | 00:22       | KEO | Start KEO buoy (KEO11) recovery                 |
|         | 14:16 | 05:16       | KEO | Finish recovery                                 |
| 27 Jun. | 08:26 | 23:26 (-1d) | KEO | Start sediment-trap mooring deployment          |
|         | 09:40 | 00:40       | KEO | Anchor release                                  |
|         | 10:42 | 01:42       | KEO | Send a sleep command                            |
|         | 10:49 | 01:49       | KEO | CTD and water sampling (2000m)                  |
|         | 13:26 | 04:26       | KEO | CTD and water sampling (300m)                   |
|         | 15:05 | 06:05       | KEO | Plankton net (300m)                             |
|         | 15:40 | 06:40       | KEO | Plankton net (300m)                             |
|         | 16:13 | 07:13       | KEO | Plankton net calibration                        |
|         | 16:50 | 07:50       | KEO | Deploy drifting buoys, depart for JKEO          |
| 28 Jun. | 05:01 | 20:01 (-1d) | E16 | Start cross-front radiosonde and XCTD           |
|         |       |             |     | observations                                    |
|         | 05:15 | 20:15 (-1d) | E16 | Deploy drifting buoys                           |
|         | 15:06 | 06:06       | E10 | Deploy drifting buoys                           |
|         | 18:00 | 09:00       | E8  | Quit going to JKEO and head to 37°20'N,         |
|         |       |             |     | 144°00'E                                        |
|         | 23:00 | 14:00       | N3  | Decide to quit all the rest of observations due |
|         |       |             |     | to the weather condition                        |
| 30 Jun. | 11:00 | 02:00       |     | Off Tateyama                                    |
| 1 Jul.  | 08:30 | 23:30 (-1d) |     | Arrive at Sumitomo Wharf                        |

| 3.6 Research inform |
|---------------------|
|---------------------|

|    |             |                        |           | [          | I                            | [                          |                         |
|----|-------------|------------------------|-----------|------------|------------------------------|----------------------------|-------------------------|
|    | Stati<br>on | Date and<br>time (JST) | Latitude  | Longitude  | Mooring/<br>Serial<br>Number | Operation                  | Memo                    |
| 1  | S1          | 2014/06/21<br>06:03    | 29°56.11' | 144°58.63' | POPPS                        | Release code               |                         |
| 2  | S1          | 2014/06/21<br>06:22    | 29°55.84' | 144°58.66' | 201689                       | Sonde 1                    | Failure<br>(data error) |
| 3  | S1          | 2014/06/21<br>07:19    | 29°55.81' | 144°58.64' | POPPS                        | Start<br>recovery          | Top buoy<br>disappeared |
| 4  | S1          | 2014/06/21<br>11:07    | 29°51.37' | 144°58.76' | 339954                       | Sonde 2                    | Failure<br>(data error) |
| 5  | S1          | 2014/06/21<br>11:08    | 29°51.42' | 144°58.80' | POPPS                        | End acoustic releasers     |                         |
| 6  | S1G         | 2014/06/21<br>15:19    | 30°01.12' | 144°03.77' | SeaGlider                    | Start<br>recovery          |                         |
| 7  | S1G         | 2014/06/21<br>15:26    | 30°01.09' | 144°03.06' | SeaGlider                    | Finish<br>recovery         |                         |
| 8  | S1G         | 2014/06/21<br>15:39    | 30°01.18' | 144°03.24' | 339960                       | Sonde 3                    |                         |
| 9  | S1G         | 2014/06/21<br>15:50    | 30°01.12' | 144°03.16' | Cs cast<br>S1-1              | Start CTD<br>(1000m cast)  | For <sup>134</sup> Cs   |
| 10 | S1G         | 2014/06/21<br>16:26    | 30°01.10' | 144°03.16' | -                            | Bucket<br>sampling         | For<br>nutrients        |
| 11 | S1G         | 2014/06/21<br>16:45    | 30°01.10' | 144°03.18' | Cs cast<br>S1-1              | Finish CTD                 |                         |
| 12 | S1G         | 2014/06/21<br>17:11    | 30°01.10' | 144°03.17' | Cs cast<br>S1-2              | Start CTD<br>(200m cast)   | For <sup>134</sup> Cs   |
| 13 | S1G         | 2014/06/21<br>17:29    | 30°01.09' | 144°03.18' | Cs cast<br>S1-2              | Finish CTD                 |                         |
| 14 | S1G         | 2014/06/21<br>17:51    | 30°01.14' | 144°02.69' | 339961                       | Sonde 4                    |                         |
| 15 | S1          | 2014/06/22<br>06:17    | 30°04.06' | 144°57.74' | 339962                       | Sonde 5                    |                         |
| 16 | S1          | 2014/06/22<br>07:10    | 30°03.88' | 144°58.11' | S1-cast 1                    | Start VMPS<br>(1000m cast) |                         |

| 17 | S1 | 2014/06/22<br>08:01 | 30°03.88'  | 144°58.11'  | S1-cast 1                    | Finish<br>VMPS            |                        |
|----|----|---------------------|------------|-------------|------------------------------|---------------------------|------------------------|
| 18 | S1 | 2014/06/22<br>08:31 | 30°03.00'  | 144°58.61'  | S1-cast 2                    | Start VMPS<br>(200m cast) |                        |
| 19 | S1 | 2014/06/22<br>08:48 | 30°02.72'  | 144°58.67'  | S1-cast 2                    | Finish<br>VMPS            |                        |
| 20 | S1 | 2014/06/22<br>08:52 | 30°02.707' | 144°58.668' | 12057526                     | XCTD 1                    |                        |
| 21 | S1 | 2014/06/22<br>09:09 | 30°02.76'  | 144°58.61'  | 339963                       | Sonde 6                   |                        |
| 22 | S1 | 2014/06/22<br>09:32 | 30°04.03'  | 144°58.01'  | Sediment-<br>trap            | Release code              |                        |
| 23 | S1 | 2014/06/22<br>10:07 | 30°03.32'  | 144°57.53'  | Sediment-<br>trap            | Start<br>recovery         | Without<br>boat        |
| 24 | S1 | 2014/06/22<br>13:22 | 29°58.86'  | 144°53.65'  | 339955                       | Sonde 7                   |                        |
| 25 | S1 | 2014/06/22<br>13:25 | 29°58.82'  | 144°53.61   | Sediment-<br>trap            | End acoustic<br>releasers |                        |
| 26 | S1 | 2014/06/22<br>17:58 | -          | -           | 339956                       | Sonde 8                   | Failure<br>(touch sea) |
| 27 | S1 | 2014/06/22<br>18:10 | 29°12.62'  | 144°52.10'  | 339957                       | Sonde 8                   | Retry                  |
| 28 | S2 | 2014/06/23<br>08:45 | 28°00.12'  | 145°00.03'  | 339958                       | Sonde 9                   |                        |
| 29 | S2 | 2014/06/23<br>08:58 | 28°00.13'  | 145°00.08'  | Cs cast<br>S2 <sup>-</sup> 1 | Start CTD<br>(800m cast)  | For <sup>134</sup> Cs  |
| 30 | S2 | 2014/06/23<br>09:43 | 27°59.98'  | 145°00.09'  | Cs cast<br>S2 <sup>-</sup> 1 | Finish CTD                |                        |
| 31 | S2 | 2014/06/23<br>10:10 | 28°00.03'  | 145°00.22'  | Cs cast<br>S2-2              | Start CTD<br>(200m cast)  | For <sup>134</sup> Cs  |
| 32 | S2 | 2014/06/23<br>10:34 | 28°00.04'  | 145°00.13'  | Cs cast<br>S2-2              | Finish CTD                |                        |
| 33 | S2 | 2014/06/23<br>10:44 | 28°00.06'  | 145°00.28'  | 339959                       | Sonde 10                  |                        |
| 34 | S2 | 2014/06/23<br>11:49 | 28°00.06'  | 145°00.28'  | 339949                       | Sonde 11                  |                        |

|     |            | 2014/06/23 |           |             |           | Start VMPS   |        |
|-----|------------|------------|-----------|-------------|-----------|--------------|--------|
| 35  | S2         | 13:33      | 28°00.01' | 145°00.01'  | S2-cast 1 | (1000m cast) |        |
|     |            | 2014/06/23 |           |             |           | Finish       |        |
| 36  | S2         | 14:11      | 28°00.02' | 144°59.97'  | S2-cast 1 | VMPS         |        |
|     |            | 2014/06/23 |           |             |           | Start VMPS   |        |
| 37  | S2         | 14:33      | 28°00.02' | 145°00.00'  | S2-cast 2 | (300m cast)  |        |
|     | <i></i>    | 2014/06/23 |           |             |           | Finish       |        |
| 38  | S2         | 14:47      | 28°00.00' | 144°59.98'  | S2-cast 2 | VMPS         |        |
|     | <i></i>    | 2014/06/23 |           |             |           | Start VMPS   |        |
| 39  | S2         | 15:05      | 27°59.99' | 145°00.00'  | S2-cast 3 | (300m cast)  |        |
|     |            | 2014/06/23 |           |             |           | Finish       |        |
| 40  | S2         | 15:24      | 28°00.00' | 144°59.94'  | S2-cast 3 | VMPS         |        |
|     |            | 2014/06/23 |           |             |           |              |        |
| 41  | S2         | 15:32      | 28°00.11' | 144°59.89'  | 339950    | Sonde 12     |        |
|     |            | 2014/06/24 |           |             |           |              |        |
| 42  | -          | 17:55      | 28°23.17' | 144°59.38'  | 339951    | Sonde 13     |        |
|     | ~          | 2014/06/24 |           |             |           |              |        |
| 43  | S1         | 05:51      | 29°59.79' | 144°59.95'  | 339952    | Sonde 14     |        |
|     |            | 2014/08/24 |           |             |           | Start CTD    |        |
| 44  | S1         | 2014/06/24 | 29°59.80' | 144°59.81'  | Routine   | (Bottom      |        |
|     |            | 06:03      |           |             | cast S1-3 | cast)        |        |
| 4.5 | <b>C1</b>  | 2014/06/24 | 20200 1 4 | 144950.00'  |           | Water        | Dulut  |
| 45  | S1         | 07:50      | 30°00.14' | 144°59.89'  | -         | sampling     | Bucket |
| 40  | Q1         | 2014/06/24 | 20200 21' | 144950.01'  | Routine   | Einish OTD   |        |
| 46  | S1         | 09:08      | 30°00.31' | 144°59.91'  | cast S1-3 | Finish CTD   |        |
| 47  | <b>C</b> 1 | 2014/06/24 | 20200 01' | 144950 71'  | Routine   | Start CTD    |        |
| 47  | S1         | 10:10      | 30°00.01' | 144°59.71'  | cast S1-4 | (2000m cast) |        |
| 10  | Q1         | 2014/06/24 | 20000 192 | 144950 792  | Routine   | Finish COD   |        |
| 48  | S1         | 11:29      | 30°00.13' | 144°59.72'  | cast S1-4 | Finish CTD   |        |
| 40  | <b>C</b> 1 | 2014/06/24 | 20250 012 | 1 45900 002 | Routine   | Start CTD    |        |
| 49  | S1         | 13:00      | 29°59.91' | 145°00.09'  | cast S1-5 | (300m cast)  |        |
| 50  | S1         | 2014/06/24 |           | 145900.002  | Routine   | Finiak OTD   |        |
| 50  | 51         | 13:39      | 30°00.06' | 145°00.08'  | cast S1-5 | Finish CTD   |        |
| 51  | Q1         | 2014/06/24 | 20000 192 | 145900 102  | Sleepet 2 | Start VMPS   |        |
| 51  | S1         | 15:03      | 30°00.12' | 145°00.16'  | S1-cast 3 | (300m cast)  |        |
| 52  | S1         | 2014/06/24 | 29°59.89' | 144°59.95'  | S1-cast 3 | Finish       |        |

|    |      | 15:19      |           |              |           | VMPS          |           |
|----|------|------------|-----------|--------------|-----------|---------------|-----------|
| •0 |      | 2014/06/24 | 20000.011 | 1 4 5000 00' |           | Start VMPS    |           |
| 53 | S1   | 15:38      | 30°00.21' | 145°00.00'   | S1-cast 4 | (300m cast)   |           |
| 54 | S1   | 2014/06/24 | 29°59.98' | 144°59.64'   | S1-cast 4 | Finish        |           |
| 94 | 51   | 15:54      | 29 09.98  | 144 09.04    | 51-cast 4 | VMPS          |           |
|    |      | 2014/06/24 |           |              | 114578    | Deploy        |           |
| 55 | S1   | 16:02      | 30°00.41' | 144°59.08'   | 116149    | drifting      |           |
|    |      | 10.02      |           |              | 116150    | buoys         |           |
| 56 | -    | 2014/06/24 | 30°22.12' | 144°55.59'   | 339953    | Sonde 15      |           |
| 00 |      | 17:52      | 50 22.12  | 111 00.00    | 000000    | Solide 15     |           |
| 57 | KEO  | 2014/06/25 | 32°12.10  | 144°27.18'   | 339945    | Sonde 16      |           |
| 01 | milo | 06:05      | 02 12.10  | 111 21.10    | 000010    | Solide 10     |           |
| 58 | KEO  | 2014/06/25 | 32°14.41' | 144°26.29'   | 339946    | Sonde 17      |           |
| 00 | 1110 | 08:42      | 02 11.11  | 111 20.20    | 000010    |               |           |
| 59 | KEO  | 2014/06/25 | 32°15.14' | 144°26.69'   | KEO12     | Start         |           |
| 00 |      | 09:00      | 02 10.11  | 111 20.00    |           | deployment    |           |
| 60 | KEO  | 2014/06/25 | 32°23.37' | 144°32.29'   | KEO12     | Anchor        |           |
|    |      | 14:29      |           |              |           | release       |           |
| 61 | KEO  | 2014/06/25 | 32°23.07' | 144°30.64'   | KEO12     | Triangulation |           |
| _  | _    | 15:23      |           |              | -         | 1             |           |
| 62 | KEO  | 2014/06/25 | 32°23.61' | 144°32.59'   | KEO12     | Triangulation | (data     |
|    |      | 15:54      |           |              |           | 2             | strange)  |
| 63 | KEO  | 2014/06/25 | 32°22.32' | 144°32.57'   | 339947    | Sonde 18      |           |
|    |      | 16:09      |           |              |           |               |           |
| 64 | KEO  | 2014/06/25 | 32°22.08' | 144°32.44'   | KEO12     | Triangulation |           |
|    |      | 16:18      |           |              |           | 3             |           |
| 65 | KEO  | 2014/06/25 | 32°21.28' | 144°30.37'   | KEO12     | Water         | 5m depth, |
|    |      | 16:49      |           |              |           | sampling      | Niskin    |
| 66 | KEO  | 2014/06/25 | 32°21.30' | 144°30.36'   | KEO12     | Triangulation |           |
|    |      | 16:53      |           |              |           | 4             |           |
| 67 | KEO  | 2014/06/25 | 32°23.97' | 144°32.04'   | KEO12     | Triangulation |           |
|    |      | 17:33      |           |              |           | 5             |           |
| 68 | KEO  | 2014/06/25 | 32°23.80' | 144°32.12'   | 339948    | Sonde 19      |           |
|    |      | 18:00      |           |              |           |               |           |
| 69 | KEO  | 2014/06/26 | 32°12.80' | 144°30.73'   | 339934    | Sonde 20      |           |
|    |      | 05:59      |           |              |           |               |           |

| 70 | KEO | 2014/06/26<br>08:19 | 32°14.93' | 144°30.15' | -                     | Water<br>sampling         | Bucket              |
|----|-----|---------------------|-----------|------------|-----------------------|---------------------------|---------------------|
| 71 | KEO | 2014/06/26<br>08:20 | 32°14.93' | 144°30.13' | KEO11                 | Water<br>sampling         | 5m depth,<br>Niskin |
| 72 | KEO | 2014/06/26<br>08:28 | 32°14.85' | 144°30.07' | 339939                | Sonde 21                  |                     |
| 73 | KEO | 2014/06/26<br>08:38 | 32°14.86' | 144°29.83' | KEO11                 | Release code              |                     |
| 74 | KEO | 2014/06/26<br>09:22 | 32°14.72' | 144°30.18' | KEO11                 | Start<br>recovery         |                     |
| 75 | KEO | 2014/06/26<br>14:16 | 32°14.65' | 144°32.20' | KEO11                 | End acoustic releasers    |                     |
| 76 | KEO | 2014/06/26<br>15:00 | 32°17.12' | 144°31.81' | 339940                | Sonde 22                  |                     |
| 77 | KEO | 2014/06/26<br>18:00 | 32°19.38' | 144°26.40' | 339941                | Sonde 23                  |                     |
| 78 | KEO | 2014/06/27<br>05:59 | 32°22.95' | 144°22.93' | 339936                | Sonde 24                  |                     |
| 79 | KEO | 2014/06/27<br>08:26 | 32°22.68' | 144°23.44' | Sediment<br>trap      | Start<br>deployment       |                     |
| 80 | KEO | 2014/06/27<br>09:40 | 32°21.96' | 144°25.11' | Sediment<br>trap      | Anchor<br>release         |                     |
| 81 | KEO | 2014/06/27<br>10:18 | 32°21.84' | 144°25.13' | Sediment<br>trap      | Anchor<br>landing         |                     |
| 82 | KEO | 2014/06/27<br>10:42 | 32°21.83' | 144°25.05' | Sediment<br>trap      | Send sleep<br>command     |                     |
| 83 | KEO | 2014/06/27<br>10:49 | 32°21.86' | 144°25.02' | Routine<br>cast KEO-1 | Start CTD<br>(2000m cast) |                     |
| 84 | KEO | 2014/06/27<br>11:55 | 32°22.12' | 144°25.19' | 339937                | Sonde 25                  |                     |
| 85 | KEO | 2014/06/27<br>12:12 | 32°22.16' | 144°25.22' | Routine<br>cast KEO-1 | Finish CTD                |                     |
| 86 | KEO | 2014/06/27<br>13:26 | 32°21.97' | 144°24.96' | Routine<br>cast KEO-2 | Start CTD<br>(300m cast)  |                     |
| 87 | KEO | 2014/06/27<br>13:56 | 32°22.02' | 144°25.01' | Routine<br>cast KEO-2 | Finish CTD                |                     |

|      |            |            |               |                | 1        |                     |           |
|------|------------|------------|---------------|----------------|----------|---------------------|-----------|
| 88   | KEO        | 2014/06/27 | 32°21.92'     | 144°24.73'     | 339938   | Sonde 26            |           |
|      |            | 14:53      |               |                |          |                     |           |
| 89   | KEO        | 2014/06/27 | 32°21.93'     | 144°24.77'     | KEO-cast | Start VMPS          |           |
|      |            | 15:05      |               |                | 1        | (300m cast)         |           |
| 90   | KEO        | 2014/06/27 | 32°21.93'     | 144°24.84'     | KEO-cast | Finish              |           |
| 90   | KEU        | 15:25      | 52 21.95      | 144 24.04      | 1        | VMPS                |           |
| 91   | KEO        | 2014/06/27 | 32°21.95'     | 144°24.89'     | KEO-cast | Start VMPS          |           |
| 91   | KEU        | 15:40      | 52 21.90      | 144 24.09      | 2        | (300m cast)         |           |
| 92   | KEO        | 2014/06/27 | 32°21.98'     | 1 4 499 4 0 4' | KEO-cast | Finish              |           |
| 92   | KEU        | 16:00      | 32-21.98      | 144°24.94'     | 2        | VMPS                |           |
|      | HE O       | 2014/06/27 |               |                |          | Start VMPS          | 5 times,  |
| 93   | KEO        | 16:13      | 32°22.01'     | 144°24.95'     | -        | calibration         | 100m dep. |
|      | WD0        | 2014/06/27 |               |                |          | Finish              |           |
| 94   | KEO        | 16:43      | 32°22.04'     | 144°25.13'     | -        | calibration         |           |
|      |            |            |               |                | 116153   | Deploy              |           |
| 95   | KEO        | 2014/06/27 | 32°22.32'     | 144°25.25'     | 116156   | drifting            |           |
|      |            | 16:50      |               |                | 116158   | buoys               |           |
|      |            | 2014/06/27 |               |                | 339943   |                     |           |
| 96   | -          | 18:01      | 32°33.26'     | 144°29.72'     |          | Sonde 27            |           |
|      |            | 2014/06/28 |               |                |          |                     |           |
| 97   | E16        | 05:01      | 34°00.01'     | 145°06.01'     | 339964   | Sonde 28            |           |
|      | T.c.       | 2014/06/28 |               |                |          | Mamp .              |           |
| 98   | E16        | 05:07      | 34°00.405'    | 145°06.160'    | 12057523 | XCTD 2              |           |
|      |            |            |               |                |          | Deploy              |           |
| 99   | E16        | 2014/06/28 | 34°00.98'     | 145°06.37'     | 116154   | drifting            |           |
|      |            | 05:15      |               |                | 116155   | buoys               |           |
|      |            | 2014/06/28 |               |                |          |                     |           |
| 100  | E15        | 07:07      | 34°14.96'     | 145°10.99'     | 339969   | Sonde 29            |           |
| 105  | <b>D</b>   | 2014/06/28 | 0.401 7 0.001 |                | 100      | NOTE A              |           |
| 101  | E15        | 07:14      | 34°15.302'    | 145°11.095'    | 12057525 | XCTD 3              |           |
|      | De l       | 2014/06/28 | 0.4000 5.1    |                |          | <b>a</b> 1 <b>a</b> |           |
| 102  | E14        | 08:54      | 34°29.61'     | 145°15.86'     | 339970   | Sonde 30            |           |
| 100  | <b>D1</b>  | 2014/06/28 | 0.4000.0003   |                | 100-550  | NOTE A              |           |
| 103  | E14        | 08:59      | 34°29.983'    | 145°15.990'    | 12057524 | XCTD 4              |           |
| 10.4 | <b>F10</b> | 2014/06/28 | 94090 012     | 1 4501 5 0.02  | 220070   | Q 1. 91             |           |
| 104  | E13        | 10:33      | 34°29.61'     | 145°15.86'     | 339970   | Sonde 31            |           |
|      | 1          | 1          | 1             | 1              | 1        | 1                   | 1         |

| 105 | E13 | 2014/06/28<br>10:37 | 34°45.266' | 145°22.099' | 12057527         | XCTD 5                      |            |
|-----|-----|---------------------|------------|-------------|------------------|-----------------------------|------------|
| 106 | E12 | 2014/06/28<br>12:01 | 34°59.74'  | 145°26.94'  | 339971           | Sonde 32                    |            |
| 107 | E12 | 2014/06/28<br>12:05 | 35°00.174' | 145°27.046' | 12057528         | XCTD 6                      |            |
| 108 | E11 | 2014/06/28<br>13:30 | 35°15.18'  | 145°32.07'  | 339972           | Sonde 33                    |            |
| 109 | E11 | 2014/06/28<br>13:34 | 35°15.580' | 145°32.204' | 12057529         | XCTD 7                      |            |
| 110 | E10 | 2014/06/28<br>14:54 | 35°30.14'  | 145°37.04'  | 339973           | Sonde 34                    |            |
| 111 | E10 | 2014/06/28<br>14:58 | 35°30.589' | 145°37.227' | 12057530         | XCTD 8                      |            |
| 112 | E10 | 2014/06/18<br>15:06 | 35°31.71'  | 145°37.68'  | 116151<br>116152 | Deploy<br>drifting<br>buoys |            |
| 113 | E9  | 2014/06/28<br>16:21 | 35°45.21'  | 145°43.10'  | 339967           | Sonde 35                    |            |
| 114 | E9  | 2014/06/28<br>16:25 | 35°45.491' | 145°43.227' | 12057531         | XCTD 9                      |            |
| 115 | E8  | 2014/06/28<br>17:48 | 36°00.14'  | 145°48.07'  | 339968           | Sonde 36                    |            |
| 116 | E8  | 2014/06/28<br>17:52 | 36°00.493' | 145°48.181' | 12057532         | XCTD 10                     |            |
| 117 | N1  | 2014/06/28<br>19:30 | 36°10.31'  | 145°34.25'  | 339966           | Sonde 37                    |            |
| 118 | N1  | 2014/06/28<br>19:36 | 36°10.641' | 145°33.805' | 12057536         | XCTD 11                     |            |
| 119 | N2  | 2014/06/28<br>21:00 | 36°16.53'  | 145°22.78'  | 340014           | Sonde 38                    |            |
| 120 | N2  | 2014/06/28<br>21:04 | 36°19.95'  | 145°22.50'  | 12057533         | XCTD 12                     |            |
| 121 | N3  | 2014/06/28<br>22:30 | 36°30.121' | 145°12.499' | 340021           | Sonde 39                    |            |
| 122 | N3  | 2014/06/28          | 36°30.509' | 145°12.296' | 12057534         | XCTD 13                     | Stopped at |

|     |    | 22:34      |            |             |          |         | 674m        |
|-----|----|------------|------------|-------------|----------|---------|-------------|
| 123 | N3 | 2014/06/28 | 36°31.179' | 145°12.039' | 10057595 | XCTD 13 | Retry       |
| 123 | N3 | 22:42      | 30-31.179  | 145-12.039  | 12057535 | AUID 13 | End of Obs. |

## 3.7 About data

Some of the data obtained in this cruise may be corrected after the cruise.

### 4. Notice on using

This cruise report is a preliminary documentation as of the end of the cruise.

This report may not be corrected even if changes on contents (i.e. taxonomic classifications) may be found after its publication. This report may also be changed without notice. Data on this cruise report may be raw or unprocessed. If you are going to use or refer to the data written on this report, please ask the Chief Scientist for latest information.

Users of data or results on this cruise report are requested to submit their results to the Data Management Group of JAMSTEC.

### Acknowledgements

We would like to express our sincere thanks to Captain Ukekura and his crew for their skillful operation.

### Appendix 1 Details of the Sediment-trap (BGC) mooring

Makio HONDA (JAMSTEC) Tetsuichi FUJIKI (JAMSTEC) Tomoyuki TAKAMORI (MWJ) Katatoshi KIYOKAWA (MWJ)

### 1. Recovery and deployment

The BGC mooring system was designed for biogeochemistry at Station S-1 and KEO in the Western Subtropical Gyre. We recovered BGC mooring at Station S-1 which were deployed during MR13-04 cruise and deployed modified BGC mooring at new time-series station KEO. It took approximately 4 hours for recovery and took only less than 1 hour and half for deployment. After sinker was dropped, we positioned the mooring systems by measuring the slant ranges between research vessel and the acoustic releaser. The position of the mooring was finally determined as follow:

|                | Recovery                       | Deployment                     |
|----------------|--------------------------------|--------------------------------|
| Station & type | S-1 BGC                        | KEO BGC                        |
| Mooring Number | S1BGC130717                    | KEOBGC140627                   |
| Working Date   | Jun. $22^{\text{th}} 2014$     | Jun. 27 <sup>th</sup> 2014     |
| Latitude       | $30^{\circ}$ 03.86 N           | $32^{\circ}$ 22.04 N           |
| Longitude      | $144^{^\circ}57.80~\mathrm{E}$ | $144^{^\circ}25.11~\mathrm{E}$ |
| Sea Beam Depth | 5,927 m                        | 5,779 m                        |

Table A1. Mooring positions for respective mooring systems

The recovered BGC mooring consists of a advance buoy with 30m pick up rope, a 64" syntactic top float with 3,000 lbs (1,360 kg) buoyancy, instruments, wire and nylon ropes, glass floats (Benthos 17" glass ball), dual releasers (Edgetech) and sinker of 4,660 lbs (2,116 kg). Two ARGOS compact mooring locators and one submersible recovery strobe were mounted on the top float. The BGC mooring consisted of 3 Sediment Traps installed on the 200 m, 500 m and 5,000m.

The deployed BGC mooring at KEO consists of top float, wire / nylon ropes, glass floats (Benthos 17" glass ball), dual releasers (Edgetech), sinker of 4,660 lbs (2,116 kg) and one time-series sediment trap (McLane Mark7-21) located at about 4900 m. An ARGOS compact mooring locator and one submersible recovery strobe were mounted on the top

float. Serial numbers for instruments are as follows:

|                      | Recover           | Deployment   |
|----------------------|-------------------|--------------|
| Station and type     | S-1 BGC           | KEO BGC      |
| Station and type     |                   |              |
| Mooring Number       | S1BGC130717       | KEOBGC140627 |
| Top Buoy(150m)       | $025162 \cdot 01$ |              |
| ARGOS                | A10-057 / A10-058 |              |
| ARGOS ID             | 126530 / 126529   |              |
| Strobe               | A10-056           |              |
| Sediment Trap(200m)  |                   |              |
| Nichiyu              | ST98080           |              |
| JFE Depth sensor     | 082U009           |              |
| Back Scattero meter  | 891               |              |
| Sediment Trap(500m)  |                   |              |
| Mark7-21             | 62-665            |              |
| Sediment Trap(4810m) |                   |              |
| Mark7-21             | 10236-01          |              |
| Sediment Trap(4950m) |                   |              |
| Mark7-21             |                   | 12401-01     |
| Releaser             | 27815             | 27805        |
| Releaser             | 28386             | 34040        |
| SBE-37               | 2730              |              |
| AREC DO sensor       | 052               |              |

| Table A2. Serial numbers of instruments |
|-----------------------------------------|
|-----------------------------------------|

| Mooring Number  | S1BGC1307      | 17     |                   |        |            |  |
|-----------------|----------------|--------|-------------------|--------|------------|--|
| Project         | Time-Serie     | es     | Depth             | 5,920. | 0 <b>m</b> |  |
| Area            | North Paci:    | fic    | Planned Depth     | 5,915. | 0 m        |  |
| Station         | S1 BGC         |        | Length 5,752      |        | 3 m        |  |
| Target Position | 30°03.8656     | Ν      | Depth of Buoy     | 150    | m          |  |
| Target Position | 144°58.0275    | Е      | Period            | 1      | year       |  |
|                 | ACOUC          | TIC RE | LEASERS           |        |            |  |
| Туре            | Edgetech       | L      | Edgetech          | ı      |            |  |
| Serial Number   | 27815          |        | 28386             |        |            |  |
| Receive F.      | 11.0           | kHz    | 11.0              | kHz    |            |  |
| Transmit F.     | 14.0           | kHz    | 14.0              | kHz    |            |  |
| RELEASE C.      | 344657         |        | 354501            |        |            |  |
| Enable C.       | 361035         |        | 376513            |        |            |  |
| Disable C.      | 361073         |        | 376530            |        |            |  |
| Battery         | 2 years        |        | 2 years           |        |            |  |
| Release Test    | OK             |        | OK                |        |            |  |
|                 |                | RECOVE | RY                |        |            |  |
| Recorder        | Takamori Tomo  | oyuki  | Work Distance     | -      | Nmile      |  |
| Ship            | R/V KAIYO      | C      | Send Enable C.    | 0      | :30        |  |
| Cruise No.      | KY14-09        |        | Slant Renge       | 6008   | m          |  |
| Date            | 2014/6/22      | 2      | Send Release C.   |        | 0:33       |  |
| Weather         | F              |        | Discovery Buoy    |        | :36        |  |
| Wave Hight      | _              | m      | Dec. of Ten Pulay | -      | Ν          |  |
| Seabeam Depth   | 5 <b>,</b> 927 | m      | Pos. of Top Buoy  |        | Е          |  |
| Ship Heading    | -              |        | Pos. of Start     | -      | Ν          |  |
| Ship Ave.Speed  | _              | knot   | FUS. OF SLAFL     | -      | Е          |  |
| Wind            | <sw> 10.0</sw> | m/s    | Pos. of Finish    | -      | Ν          |  |
| Current         | _              | knot   | FOS. OF FINISN    | _      | Е          |  |

# Table A3. Recovery BGC Mooring Record at S-1

| Mooring Number  | KEOBGC1406        | 27     |                     |        |            |  |
|-----------------|-------------------|--------|---------------------|--------|------------|--|
| Project         | Time-Serie        | es     | Depth               | 5,779. | .1 m       |  |
| Area            | North Pacis       | fic    | Planned Depth 5600. |        | 0 <b>m</b> |  |
| Station         | KEO BGC           |        | Length              | 900    | m          |  |
| Tourst Desition | 32°15.16          | Ν      | Depth of Buoy       | 4700   | m          |  |
| Target Position | 144°34.20         | Е      | Period              | 1      | year       |  |
|                 | ACOUC             | TIC RE | LEASERS             |        |            |  |
| Туре            | L                 |        |                     |        |            |  |
| Serial Number   | 27805             |        | 34040               |        |            |  |
| Receive F.      | 11.0              | kHz    | 11.0                | kHz    |            |  |
| Transmit F.     | 14.0              | kHz    | 14.0                | kHz    |            |  |
| RELEASE C.      | 344611            |        | 233770              |        |            |  |
| Enable C.       | 360631            |        | 221130              |        |            |  |
| Disable C.      | 360677            |        | 221155              |        |            |  |
| Battery         | 2 years           |        | 2 years             |        |            |  |
| Release Test    | OK                |        | OK                  |        |            |  |
|                 | DI                | EPLOYM | ENT                 |        |            |  |
| Recorder        | Tomoyuki Taka     | amori  | Start               | 1.5    | Nmile      |  |
| Ship            | R/V KAIYO         | C      | Overshoot           | -      | m          |  |
| Cruise No.      | KY14-09           |        | Let go Top Buoy     | 23     | 3:28       |  |
| Date            | 2014/6/2          | 7      | Let go Anchor       |        | 0:41       |  |
| Weather         | R                 |        | Sink Top Buoy       |        | -          |  |
| Wave Hight      | -                 | m      | Pos. of Start       | 32°22  | .67 N      |  |
| Seabeam Depth   | 5,779             | m      | Pos. of Start       | 144°22 | .48 E      |  |
| Ship Heading    | <100>             |        | Pos. of Drop. Anc.  | 32°21  | .96 N      |  |
| Ship Ave.Speed  | 1.5               | knot   | F US. UI Drop. Anc. | 144°25 |            |  |
| Wind            | <east> 7.0</east> | m/s    | Pos. of Mooring     | 32°22  | .04 N      |  |
| Current         | <182> 0.5         | Knot   | FUS. OF WOOTINg     | 144°25 | .11 E      |  |

# Table A4. Deployment BGC Mooring Record at KEO

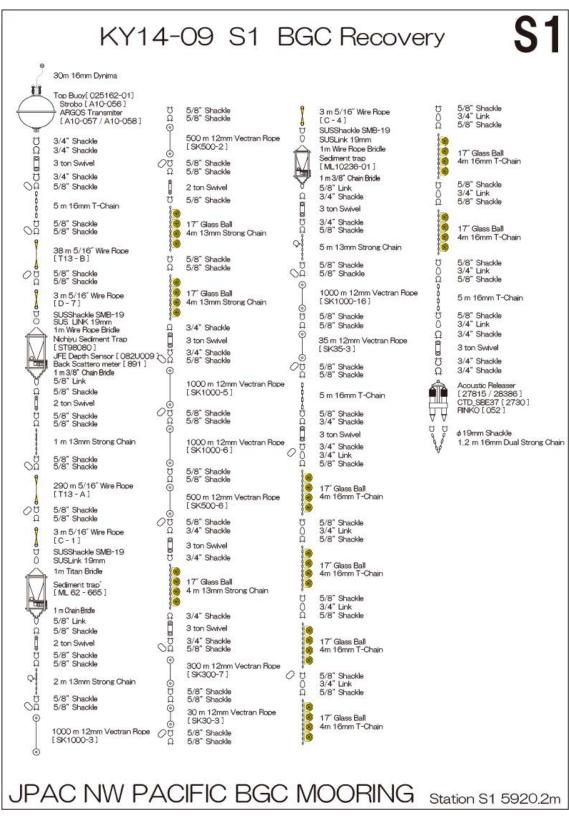



Figure A1. Recovery BGC Mooring Figure at S-1

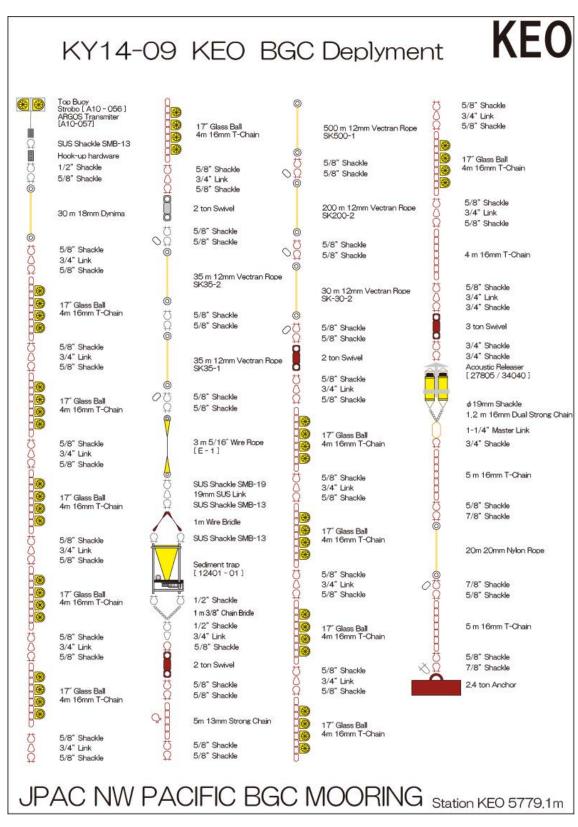



Figure A2. Deployment BGC Mooring Figure at KEO

|          | Description                                              | S/N | Joint  | Item<br>Length<br>(m) | Item<br>Weight<br>(kg) | Mooring<br>Length<br>(m) | Mooring<br>Weight<br>(kg) | Above<br>Bottom<br>(m) | Mooring<br>Depth<br>(m) |
|----------|----------------------------------------------------------|-----|--------|-----------------------|------------------------|--------------------------|---------------------------|------------------------|-------------------------|
| 1        | Top buoy                                                 |     |        | 1.50                  | -35.00                 |                          | -35.00                    | 979.79                 | 4799.21                 |
|          | 1/2SUS SH - 1/2SH(Special Item) - 5/8SH(side Link)       |     |        | 0.20                  | 2.00                   | 1.70                     | -33.00                    | 978.29                 | 4800.71                 |
|          | 30 Meters Dynima                                         |     |        | 30.00                 | 0.00                   | 31.70                    | -33.00                    | 978.09                 | 4800.91                 |
|          | 5/8SH-3/4Li-5/8SH                                        |     | н      | 0.23                  | 2.00                   | 31.93                    | -31.00                    | 948.09                 | 4830.91                 |
|          | 4–17inch Glassballs on 16mm T–Chain                      |     |        | 4.00                  | -79.36                 | 35.93                    | -110.36                   | 947.86                 | 4831.14                 |
|          | 5/8SH-3/4SLi-5/8SH                                       |     | н      | 0.23                  | 2.00                   | 36.16                    | -108.36                   | 943.86                 | 4835.14                 |
|          | 4-17inch Glassballs on 16mm T-Chain                      |     |        | 4.00                  | -79.36                 | 40.16                    | -187.72                   | 943.63                 | 4835.3                  |
|          | 5/8SH-3/4SLi-5/8SH                                       |     | н      | 0.23                  | 2.00                   | 40.39                    | -185.72                   | 939.63                 | 4839.3                  |
|          | 4-17inch Glassballs on 16mm T-Chain                      |     |        | 4.00                  | -79.36                 | 44.39                    | -265.08                   | 939.40                 | 4839.6                  |
|          | 5/8SH-3/4Li-5/8SH                                        |     | н      | 0.23                  | 2.00                   | 44.62                    | -263.08                   | 935.40                 | 4843.6                  |
|          | 4-17inch Glassballs on 16mm T-Chain                      |     |        | 4.00                  | -79.36                 | 48.62                    | -342.44                   | 935.17                 | 4843.8                  |
|          | 5/8SH-3/4Li-5/8SH                                        |     | н      | 0.23                  | 2.00                   | 48.85                    | -340.44                   | 931.17                 | 4847.8                  |
|          | 4–17inch Glassballs on 16mm T–Chain                      |     |        | 4.00                  | -79.36                 | 52.85                    | -419.80                   | 930.94                 | 4848.0                  |
|          | 5/8SH-3/4Li-5/8SH                                        |     | н      | 0.23                  | 2.00                   | 53.08                    | -417.80                   | 926.94                 | 4852.0                  |
|          | 4-17inch Glassballs on 16mm T-Chain                      |     |        | 4.00                  | -79.36                 | 57.08                    | -497.16                   | 926.71                 | 4852.2                  |
|          | 5/8SH-3/4Li-5/8SH                                        |     | н      | 0.23                  | 2.00                   | 57.31                    | -495.16                   | 922.71                 | 4856.2                  |
|          | 2-TON Miller Swivel                                      |     |        | 0.16                  | 3.17                   | 57.47                    | -491.99                   | 922.48                 | 4856.5                  |
|          | 5/8SH - 5/8SH(Side Link)                                 |     | D      | 0.12                  | 1.40                   | 57.59                    | -490.59                   | 922.32                 | 4856.6                  |
|          | 50 Meters 12mm Vectran Rope                              |     |        | 50.00                 | 1.75                   | 107.59                   | -488.84                   | 922.20                 | 4856.8                  |
|          | 5/8SH - 5/8SH(Side Link)                                 |     | D      | 0.12                  | 1.40                   | 107.71                   | -487.44                   | 872.20                 | 4906.8                  |
|          | 3 Meters 5/16inch Wire Coated                            |     |        | 3.00                  | 0.64                   | 110.71                   | -486.80                   | 872.08                 | 4906.9                  |
|          | 5/8SS SH × 3                                             |     |        | 0.06                  | 0.70                   | 110.77                   | -486.10                   | 869.08                 | 4909.9                  |
| 53       | Sediment Trap                                            |     | Y      | 3.80                  | 55.70                  | 114.57                   | -430.40                   | 869.02                 | 4909.9                  |
| 64       | 3/4Li - 5/8SH                                            |     | G      | 0.13                  | 1.80                   | 114.70                   | -428.60                   | 865.22                 | 4913.7                  |
| 55       | 2-TON Miller Swivel                                      |     | 23     | 0.16                  | 3.17                   | 114.86                   | -425.43                   | 865.09                 | 4913.9                  |
| 56       | 5/8SH - 5/8SH(Side Link)                                 |     | E      | 0.12                  | 1.50                   | 114.98                   | -423.93                   | 864.92                 | 4914.0                  |
| 57       | 5.0 Meters 13mm Strong-Chain                             |     | 1      | 5.00                  | 12.85                  | 119.98                   | -411.08                   | 864.81                 | 4914.1                  |
| 58       | 5/8SH - 5/8SH(Side Link)                                 |     | D      | 0.12                  | 1.40                   | 120.10                   | -409.68                   | 859.81                 | 4919.1                  |
|          | 300 Meters 12mm Vectran Rope                             |     |        | 300.00                | 10.50                  | 420.10                   | -399.18                   | 859.69                 | 4919.3                  |
| - 0      | 5/8SH - 5/8SH(Side Link)                                 |     | D      | 0.12                  | 1.40                   | 420.22                   | -397.78                   | 559.69                 | 5219.3                  |
| 59       | 500 Meters 12mm Vectran Rope                             |     |        | 500.00                | 17.50                  | 920.22                   | -380.28                   | 559.57                 | 5219.4                  |
| 50       | 5/8SH - 5/8SH(Side Link)                                 |     | D      | 0.12                  | 1.40                   | 920.34                   | -378.88                   | 59.57                  | 5719.4                  |
|          | 2-TON Miller Swivel                                      |     |        | 0.16                  | 3.17                   | 920.50                   | -375.71                   | 59.45                  | 5719.5                  |
| 54       | 5/8SH-3/4Li-5/8SH                                        |     | н      | 0.23                  | 2.00                   | 920.73                   | -373.71                   | 59.29                  | 5719.7                  |
| 65       | 4-17inch Glassballs on 16mm T-Chain                      |     |        | 4.00                  | -79.36                 | 924.73                   | -453.07                   | 59.06                  | 5719.9                  |
| 66       | 5/8SH-3/4Li-5/8SH                                        |     | н      | 0.23                  | 2.00                   | 924.96                   | -451.07                   | 55.06                  | 5723.9                  |
| 57       | 4-17inch Glassballs on 16mm T-Chain                      |     |        | 4.00                  | -79.36                 | 928.96                   | -530.43                   | 54.83                  | 5724.1                  |
| 8        | 5/8SH-3/4Li-5/8SH<br>4–17inch Glassballs on 16mm T–Chain |     | н      | 0.23                  | 2.00                   | 929.19                   | -528.43                   | 50.83                  | 5728.1                  |
| 59<br>70 | 5/8SH-3/4Li-5/8SH                                        |     |        | 4.00                  | -79.36                 | 933.19                   | -607.79<br>-605.79        | 50.60                  | 5728.4                  |
| 70       |                                                          |     | н      | 0.23                  | 2.00                   | 933.42                   |                           | 46.60                  | 5732.4                  |
| 71       | 4-17inch Glassballs on 16mm T-Chain                      |     |        | 4.00                  | -79.36                 | 937.42                   | -685.15                   | 46.37                  | 5732.6                  |
| 72<br>73 | 5/8SH-3/4Li-5/8SH<br>4–17inch Glassballs on 16mm T–Chain |     | н      | 0.23<br>4.00          | 2.00<br>-79.36         | 937.65                   | -683.15<br>-762.51        | 42.37<br>42.14         | 5736.6<br>5736.8        |
| 14       |                                                          |     |        |                       |                        | 941.65                   |                           |                        |                         |
| 15       | 5/8SH-3/4Li-5/8SH<br>4 Meters 16mm T-Chain               |     | н      | 0.23<br>4.00          | 2.00                   | 941.88                   | -760.51<br>-738.27        | 38.14<br>37.91         | 5740.8                  |
| 78       | 5/8SH-3/4Li-5/8SH                                        |     | D      | 0.12                  | 22.24<br>1.40          | 945.88                   | -736.87                   | 33.91                  | 5741.0                  |
| 19       | 3-TON Miller Swivel                                      |     | D      | 0.12                  | 3.20                   | 946.00<br>946.16         | -733.67                   | 33.79                  | 5745.0<br>5745.2        |
| 30       | 3/4SH - 3/4SH                                            |     | 1      |                       |                        |                          |                           | 33.63                  | 5745.3                  |
| 31       | J/45H - 3/45H<br>Dual EGG Acoustic Releases              |     | I<br>L | 0.14                  | 2.20<br>66.04          | 946.30<br>948.25         | -731.47<br>-665.43        | 33.63                  | 5745.5                  |
| 32       | 5/8SH -3/4SH                                             |     | G      | 0.13                  | 1.80                   | 948.25                   | -663.63                   | 33.49                  | 5745.5                  |
| 33       | 5 Meters 16mm T-Chain                                    |     | u      | 5.00                  | 27.80                  | 948.38                   | -635.83                   | 31.54                  | 5747.5                  |
| 34<br>34 | 5/8SH - 7/8SH                                            |     |        | 0.15                  | 27.80                  | 953.38                   | -633.38                   |                        | 5752.5                  |
| 5        | 20 Meters 1inch Nylon                                    |     | J      | 20.00                 | 5.96                   | 953.53                   | -627.42                   | 26.41<br>26.26         | 5752.5                  |
|          | 5/8SH - 7/8SH                                            |     | J      | 0.15                  | 2.45                   |                          | -624.97                   | 6.26                   |                         |
| 36<br>37 |                                                          |     | 5      |                       |                        | 973.68                   |                           |                        | 5772.7<br>5772.8        |
|          | 5 Meters 16mm T-Chain<br>Hardware                        |     |        | 5.00                  | 27.80                  | 978.68                   | -597.17                   | 6.11                   |                         |
| 88<br>89 | 2.116 Ton Anchor                                         |     | J      | 0.15<br>0.96          | 2.45<br>2116.46        | 978.83<br>979.79         | -594.72<br>1521.74        | 1.11<br>0.96           | 5777.8<br>5778.0        |
|          |                                                          |     |        |                       |                        |                          |                           |                        |                         |

# Table A5. Calculation sheet of length and weight of KEO mooring $% \mathcal{A}$

### 2. Instruments

On KEO mooring systems, the following instruments are installed.

(1) ARGOS CML (Compact Mooring Locator)

The Compact Mooring Locator is a subsurface mooring locator based on SEIMAC's Smart Cat ARGOS PTT (Platform Terminal Transmitter) technology. Using CML, we can know when our mooring has come to the surface and its position. The CML employs a pressure sensor at the bottom. When the CML is turned ON, the transmission is started immediately every 90 seconds and then when the pressure sensor works ON by approximately 10 dbar, the transmission is stopped. When the top buoy with the CML comes to the surface, the pressure sensor will work OFF and the transmission will be started. Smart Cat transmissions will be initiated at this time, allowing us to locate our mooring. Depending on how long the CML has been moored, it will transmit for up to 120 days on a 90 second repetition period. Battery life, however, is affected by how long the CML has been moored prior to activation. A longer pre-activation mooring will mean less activation life.

Principle specification is as follows:

(Specification)

Smart Cat PTT Transmitter: Operating Temp.:+35 [deg] to -5 [deg] Standby Current:80 microamps Smart Cat Freq.: 401.650 MHz Battery Supply: 7-Cell alkaline D-Cells +10.5VDC nom., 10 Amp Hr Ratings: Hull 6061-T6 Aluminum Max Depth: 1,000 m Length: 22 inches Diameter: 3.4 inches Upper flange: 5.60 inches Dome: Acrylic Buoyancy: -2.5 (negative) approx. Weight 12 pounds approx.

### (2) Submersible Recovery Strobe

The NOVATECH Xenon Flasher is intended to aid in the marking or recovery of oceanographic instruments, manned vehicles, remotely operated vehicles, buoys or structures. Due to the occulting (firing closely spaced bursts of light) nature of this design,

it is much more visible than conventional marker strobes, particularly in poor sea conditions.

(Specification)

| Repetition Rate: | Adjustable from 2 bursts per second to 1 burst every 3 seconds. |
|------------------|-----------------------------------------------------------------|
| Burst Length:    | Adjustable from 1 to 5 flashes per burst. 100 ms between        |
| f                | flashes nominal.                                                |
| Battery Type:    | C-cell alkaline batteries.                                      |
| Life:            | Dependent on repetition rate and burst length. 150 hours with a |
| (                | one flash burst every 2 seconds.                                |
| Construction:    | Awl-grip painted, Hard coat anodized 6061 T-6 aluminum          |
| ]                | nousing.                                                        |
| Max. Depth:      | 7,300m                                                          |
| Daylight-off:    | User selected, standard                                         |
| Pressure Switch: | On at surface, auto off when submerged below 10m.               |
| Weight in Air:   | 4 pounds                                                        |
| Weight in Water: | 2 poundsOutside                                                 |
| Diameter:        | 1.7 inches nominal                                              |
| Length:          | 21-1/2 inches nominal                                           |

### 3. Sampling schedule

After retrieving sample / data, replacement of new battery, preservative (seawater based 10% buffered formalin) and initialization of schedule (Table A6), sediment trap mooring system at KEO was deployed with following sampling schedule.

| Table A6. | Sampling | schedule |
|-----------|----------|----------|
|-----------|----------|----------|

| KEO 4810m | ST Schedule |
|-----------|-------------|

| samp | ling interval (days) |
|------|----------------------|
| p    |                      |
| S/N  | Open day and time    |
| 1    | 2014/7/1 0:00        |
| 2    | 2014/7/19 0:00       |
| 3    | 2014/8/6 0:00        |
| 4    | 2014/8/24 0:00       |
| 5    | 2014/9/11 0:00       |
| 6    | 2014/9/29 0:00       |
| 7    | 2014/10/17 0:00      |
| 8    | 2014/11/4 0:00       |
| 9    | 2014/11/22 0:00      |
| 10   | 2014/12/10 0:00      |
| 11   | 2014/12/28 0:00      |
| 12   | 2015/1/15 0:00       |
| 13   | 2015/2/2 0:00        |
| 14   | 2015/2/20 0:00       |
| 15   | 2015/3/10 0:00       |
| 16   | 2015/3/28 0:00       |
| 17   | 2015/4/15 0:00       |
| 18   | 2015/5/3 0:00        |
| 19   | 2015/5/21 0:00       |
| 20   | 2015/6/8 0:00        |
| 21   | 2015/6/26 0:00       |
| 22   | 2015/7/14 0:00       |

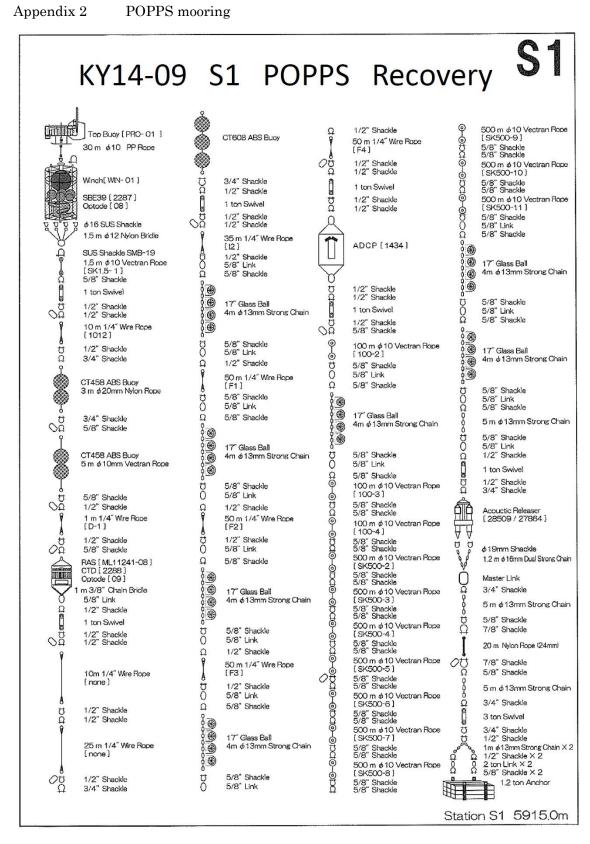



Figure A3. Detailed design of the POPPS mooring recovered at station S1 in KY14-09.

Appendix 3 Plankton net (VMPS) observations

Katsunori Kimoto (JAMSTEC) Tetsuichi Fujiki (JAMSTEC) Haruka Takagi (Waseda Univ./JAMSTEC)

### 1. Sampling for biological research for calcareous zooplankton

Calcareous zooplankton, Plankton tow sampling had performed by using the Vertical Multiple Plankton Sampler (VMPS, The Tsurumi Seiki Co., LTD., Yokohama, JAPAN) to collect microzooplankton from the Sta. S1, S2, and KEO. VMPS has 50cm x 50cm square aperture and four plankton nets can be set on the frame (Fig.A4). CTD (Sea-bird Electronics, Inc., WA, USA) and conductivity sensor with fluorometer (Wet lab, OR, USA) are equipped on the flame and observed data be monitored in real time on the shipboard console.

Towing of plankton net was carried out during hoisting up of winch. Closing of net was sent a close command from the console. Towing depths are listed in table 1. Collected samples were treated following method; 1) Living and healthy planktic foraminifers which had photosymbiotic algae were hand picked from the seawater by the pasteur pipette and incubated at 20°C temperature in the incubator. 2) Remnant materials were fixed by the 99.5 % ethanol and stored in the refrigerator for further research onshore laboratory.

On the ship, incubated planktic foraminifers were measured photosynthesis of symbiont algae by using the Fast Repetition Rate Fluorometry (FRRF) and recorded changes of photosynthetic activities in timeseries.

### 2. Preliminary result on shipboard faunal analysis

Species identifications were performed under stereomicroscope during the cruise. Mostry planktic foraminifer species at Sta. S1, S2 and KEO consist of subtropical species. Dominant species are: *Neogloboquadrina dutertrei, Globigerinita glutinata, Globigerinoides ruber, Globigerinoides sacculifer, Globigerinella siphonifera, Globorotalia truncatulinoides, and Streptochilus globulosus.* Minor species are: *Globigerinoides tenellus, Globigerinoides conglobatus, Globigerina rubescens, Orbulina universa,* and *Hastigerina pelagica.* 

#### 3. Future study of calcareous zooplankton

Planktic foraminifers and other calcareous plankton (e.g. Pteropods, Ostracods

etc.) will be analyzed shell morphology, and density for estimating influences by global ocean acidification. Molecular phylogenetic analysis will be conducted for identification of individual specimens of planktic foraminifers and its photosymbiotic algae.

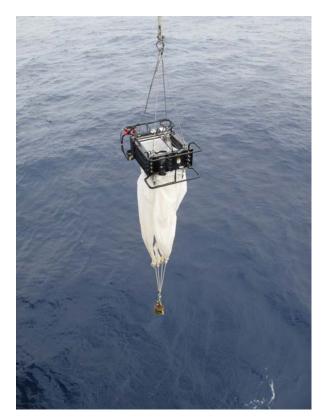



Figure A4. The overview of VMPS.

| Station     | Latitude |       |   | Longitude |       |   | sampling depth(m) | date (y:m:d:t) |   |    |       |     |
|-------------|----------|-------|---|-----------|-------|---|-------------------|----------------|---|----|-------|-----|
| Station S1  | 30       | 3.76  | N | 144       | 58.23 | E | 1000-700          | 2014           | 6 | 22 | 7:10  | JST |
|             | 30       | 3.44  | N | 144       | 58.23 | E | 700-500           | 2014           | 6 | 22 | 7:45  | JST |
|             | 30       | 3.36  | N | 144       | 58.24 | E | 500-300           | 2014           | 6 | 22 | 7:50  | JST |
|             | 30       | 3.26  | N | 144       | 58.25 | E | 300-200           | 2014           | 6 | 22 | 7:56  | JST |
|             | 30       | 2.97  | N | 144       | 58.62 | E | 200-100           | 2014           | 6 | 22 | 8:31  | JST |
|             | 30       | 2.83  | N | 144       | 58.64 | E | 100-50            | 2014           | 6 | 22 | 8:45  | JST |
|             | 30       | 2.78  | N | 144       | 58.65 | E | 50-20             | 2014           | 6 | 22 | 8:46  | JST |
|             | 30       | 2.78  | N | 144       | 58.65 | E | 20-0              | 2014           | 6 | 22 | 8:47  | JST |
| Station S2  | 28       | 0.00  | N | 145       | 0.00  | E | 1000-700          | 2014           | 6 | 23 | 13:33 | JST |
|             | 28       | 00.01 | N | 144       | 59.97 | E | 700-500           | 2014           | 6 | 23 | 13:59 | JST |
|             | 28       | 00.01 | N | 144       | 59.98 | E | 500-300           | 2014           | 6 | 23 | 14:03 | JST |
|             | 28       | 00.02 | N | 144       | 59.98 | E | 300-200           | 2014           | 6 | 23 | 14:08 | JST |
|             | 28       | 00.02 | N | 144       | 59.98 | E | 300-200           | 2014           | 6 | 23 | 14:33 | JST |
|             | 28       | 00.01 | N | 144       | 59.98 | E | 200-100           | 2014           | 6 | 23 | 14:42 | JST |
|             | 28       | 00.05 | N | 144       | 59.98 | E | 100-50            | 2014           | 6 | 23 | 14:45 | JST |
|             | 28       | 00.05 | N | 144       | 59.98 | E | 50-0              | 2014           | 6 | 23 | 14:46 | JST |
|             | 27       | 59.99 | N | 144       | 59.96 | E | 300-200           | 2014           | 6 | 23 | 15:05 | JST |
|             | 27       | 59.99 | N | 144       | 59.99 | E | 200-100           | 2014           | 6 | 23 | 15:19 | JST |
|             | 27       | 59.99 | N | 144       | 59.99 | E | 100-50            | 2014           | 6 | 23 | 15:21 | JST |
|             | 27       | 59.99 | N | 144       | 59.99 | E | 50-0              | 2014           | 6 | 23 | 15:22 | JST |
| Station S1  | 30       | 00.12 | Ν | 145       | 00.16 | E | 300-200           | 2014           | 6 | 24 | 15:03 | JST |
|             | 29       | 59.93 | N | 145       | 00.00 | E | 200-100           | 2014           | 6 | 24 | 15:14 | JST |
|             | 29       | 59.93 | N | 145       | 00.00 | E | 100-50            | 2014           | 6 | 24 | 15:17 | JST |
|             | 29       | 59.93 | N | 145       | 00.00 | E | 50-0              | 2014           | 6 | 24 | 15:18 | JST |
|             | 30       | 00.20 | N | 144       | 59.99 | E | 300-200           | 2014           | 6 | 24 | 15:38 | JST |
|             | 30       | 00.05 | N | 144       | 59.75 | E | 200-100           | 2014           | 6 | 24 | 15:48 | JST |
|             | 30       | 00.05 | N | 144       | 59.75 | E | 100-50            | 2014           | 6 | 24 | 15:51 | JST |
|             | 30       | 00.05 | N | 144       | 59.75 | E | 50-0              | 2014           | 6 | 24 | 15:52 | JST |
| Station KEO | 32       | 22.00 | N | 144       | 25.0  | E | 300-200           | 2014           | 6 | 27 | 15:05 | JST |
|             | 32       | 21.94 | N | 144       | 24.81 | E | 200-100           | 2014           | 6 | 27 | 15:17 | JST |
|             | 32       | 21.94 | N | 144       | 24.81 | Е | 100-50            | 2014           | 6 | 27 | 15:20 | JST |
|             | 32       | 21.93 | N | 144       | 24.83 | E | 50-0              | 2014           | 6 | 27 | 15:21 | JST |
|             | 32       | 21.94 | N | 144       | 24.89 | E | 300-200           | 2014           | 6 | 27 | 15:40 | JST |
|             | 32       | 21.94 | N | 144       | 24.89 | E | 200-100           | 2014           | 6 | 27 | 15:52 | JST |
|             | 32       | 21.97 | N | 144       | 24.92 | E | 100-50            | 2014           | 6 | 27 | 15:54 | JST |
|             | 32       | 21.97 | N | 144       | 24.92 | E | 50-0              | 2014           | 6 | 27 | 15:55 | JST |

Table A7. Samploing log of plankton towing by VMPS during KY14-09 cruise.