R/V Mirai Cruise Report MR00-K07 Leg-3/4

November 22 - December 20, 2000

Japan Marine Science and Technology Center (JAMSTEC)

Cruise Report for MR00-K07 Leg-3/4

[Contents]

1. Introduction

2. Cruise Summary

3. List of Instruments

4. Cruise Track and Log

- 4.1 Cruise track
- 4.2 Cruise log

5. Participants List

6. Summary of Observations

- 6.1 Surface meteorological parameters
- 6.2 Radiosonde observation
- 6.3 Doppler radar observation
- 6.4 Mie scattering Lidar observation
- 6.5 Ceilometer observation
- 6.6 Aerosol and radiation measurement
- 6.7 Turbulent flux measurement
- 6.8 CTD measurement
- 6.9 Shipboard ADCP observation
- 6.10 Sea surface water monitoring
- 6.11 Underway geophysical observations

Appendix

- A. Data policies on R/V Mirai
- B. GMS full disk images
- C. Atmospheric profiles (emagrams) on radiosonde observations
- D. Daily sky images from Total Sky Imager
- E. Oceanic profiles on CTD observations
- F. BPPT training report
- G. Obtained data / sample inventory information

1. Introduction

As well known, the atmosphere and the ocean influence each other and it is called air-sea interaction. Especially, such an interaction is most active over the tropical western Pacific Ocean due to the existence of the warmest sea surface temperature region. El Nino / Southern Oscillation (ENSO) is one of the well-known phenomena of results of air-sea interaction. As a result of active air-sea interaction, deep atmospheric convections often develop over this area and produce much precipitation. In turn, this precipitation also affects the ocean surface structure by providing fresh water onto the ocean surface and accompanying wind. The main target of this cruise is to observe these convections and environmental conditions.

When clouds develop, water vapor, that are supplied from ocean surface, condense into cloud droplet and release huge heat to the outside. Such a transfer of heat energy from the ocean to the atmosphere is very important because this release of heat by cumulus drives the entire global climate and is often called heat engine of the earth. Each cloud has a scale of order about a couple of kilometers up to several 10 kilometers. However, in this area, they are often organized into larger scale cloud mass, we call them as "cloud cluster" or "mesoscale convective system". And sometimes, it organized into over 1000 km. In the past studies, it is reported that 90% of the precipitation amount in this area are produced by these organized cloud systems. So, more exactly to say, our target is these organized cloud systems.

Besides, there is an another very important factor to study the convection. Usually, easterly trade winds prevail over the equatorial region and are balanced by zonal gradient of ocean surface pressure. This creates the warmest sea surface temperature region in the tropical western Pacific and then produce much organized cloud systems over this region. However, once this balance is broken, warm water shifts eastward and then cloud area also moves to the east. Namely, this is El Nino event. At present, it is thought that the strong westerly wind burst that seems to relate to cloud clusters can break this balance, but we don't know why this burst occurs and their real influence onto the phenomena.

For these purposes, the latter part of MR00-K07 cruise as leg-3 was dedicated to conduct a stationary observation at (2N, 138E), where TRITON buoy has been deployed during the former leg of this MR00-K07 cruise. Various observation including C-band Doppler radar, radiosonde, ceilometer, surface meteorological station, CTD, ADCP, and so on were carried out to survey atmospheric and oceanic conditions for achieving more knowledge about air-sea interaction and the mechanism of convections. In addition to this main mission, other continuous observations such as LIDAR observation by National Institute for Environmental Studies and Sky radiometer observation by Hokkaido University were conducted and they provide useful aerosol information.

This cruise report summarizes these observation items and preliminary results are also included. Brief cruise summary can be found in section 2. Some basic information of measurement systems, cruise track, and onboard personnel are stated in sections 3-5, respectively. Details of each observation are described in section 6. Some other useful information is also attached in the Appendix.

2. Cruise Summary

2.1 Ship

Name	R/V MIRAI
L×B×D	128.6 m × 19.0 m × 13.2 m
Gross Tonnage	8,672 tons
Call sign	JNSR
Mother Port	Mutsu, Aomori Pref.

2.2 Cruise Code

MR00-K07 (Leg-3 and 4)

2.3 Project Name

The Study of Air-Sea Interaction in the Tropics

2.4 Undertaking Institute

Japan Marine Science and Technology Center (JAMSTEC) 2-15, Natsushima, Yokosuka 237-0061, JAPAN

2.5 Chief Scientist

Kunio Yoneyama (Ocean Observation and Research Department / JAMSTEC)

2.6 Periods and Ports of call

November 22, 2000	Jakarta, Indonesia
December 13-14, 2000	Koror, Republic of Palau
December 20, 2000	Yokosuka, Kanagawa, Japan

2.7 Observation Summary

C-band Doppler radar	continuously (10minutes interval volume scan)
Radiosonde	115 times (every 3 hours during Nov. 28 - Dec.11)
Ceilometer	continuously (every 1 minutes)
Total Sky Imager	continuously (every 5 minutes)
Surface Meteorology	continuously
	(every 6 seconds for Mirai Weather Station)
	(every 10 seconds for SOAR system)
CTD	96 times (down to 500m, except 1000m at 0000Z)
	(every 3 hours during Nov. 29 - Dec. 11)
ADCP	continuously (every 5 minutes)
Sea Surface Water Monitoring	continuously (every 1 minute)
LIDAR	continuously (every 10 seconds)
Turbulent Measurement	continuously
Sky Radiometer	continuously
Optical Particle Counter	continuously
Gravity and magnetic force	continuously
Sea bottom depth	continuously

* Every continuous observation was conducted from 27(or 28) November to 19 December, 2000 except during port at Koror, Palau.

2.8 Overview

The most outstanding feature during the stationary observation at (2N, 138E) was the fact that the westerly wind burst (WWB) whose speed at surface over 15m/sec was observed over one week. The two-week period that we conducted a stationary observation(or we call it IOP for Intensive Observation Period) can be classified into two regimes ; during the WWB(first week) and after the WWB (second week).

From the cloud images from Geostationary Meteorological Satellite of Japan Meteorological Agency, it is evident that convectively active phase of MJO(Madden-Julian Oscillation or equatorial intraseasonal oscillation), where many deep clouds develop, passed over the observational area before and around the day when we arrived at site. WWB blow into this convective region existed in the east.

In the first week of IOP (during WWB), well-organized clouds were often observed (see Figs.6.3-2 and 6.3-3 of Doppler radar observation) and thermocline became shallow (Fig.6.8.1-1 of CTD results), while diurnal variation became dominant in the second week of IOP (Fig.6.10-2, result of Sea surface monitoring) due to probably few clouds area (Fig.6.3-1).

As we could get various data during/just after WWB, the response of atmosphere and ocean to the WWB will be studied and revealed by our future active research and analysis.

2.9 Acknowledgment

We'd like to express our special thanks to Captain T. Hashimoto and his crew for the skillful ship operation and support to the observation. In spite of the fact that monotonous task was imposed to them, they were patient and understood the purpose of research. Able technical staff of Global Ocean Development Inc. and Marine Works Japan Ltd. provided highly assured data.

3. List of Instruments

3.1 Surface Meteorological Parameters

(a) JAMSTEC / Mirai Met System Anemometer: KE-500, Koshin Denki Thermometer: FT, Koshin Denki Dewpoint Meter DW-1, Koshin Denki Barometer: F-451, Yokogawa Co. Rain Gauge: 50202, R.M. Young Optical Rain Gauge: ORG-115DR, SCTI Shortwave Radiometer: MS-801, Eiko Seiki Longwave Radiometer: MS-200, Eiko Seiki Wave Height Meter: MW-2, Tsurumi-seiki (b) JAMSTEC / SOAR system Anemometer: 05106, R. M. Young Thermometer / Hygrometer: HMP45A, Vaisala (with 43408 Gill aspirated radiation shield, R.M.Young) Barometer: 61201, R. M. Young Rain Gauge: 50202, R. M. Young Optical Rain Gauge: ORG-115DA, ScTi Sea Surface Skin Tempreature Sensor: SST-100, Brookhaven National Lab. Shortwave Radiometer: PSP, Eppley Labs. Longwave Radiometer: PIR, Eppley Labs. Fast Rotating Shadowband Radiometer: Yankee Engineering Systems Shortwave Radiometer (upwelling radiation): MS-801, Eiko Seiki Longwave Radiometer (upwelling radiation): MS-202, Eiko Seiki (c) JAMSTEC / Total Sky Imager System Total Sky Imager: Yankee Engineering System

3.2 Radiosonde Observation

(a) JAMSTECGPS radiosonde: RS-80-G, VaisalaReceiver: DigiCORA MW11, Vaisala

3.3 Doppler Radar Observation

(a) JAMSTEC

C-band Doppler Radar: RC-52B, Mitsubishi Electric Co. Signal Processor: RVP-6, Sigmet Antenna Controller: RCP-02, Sigmet Control and Processing Software: IRIS/Open, Sigmet Inertial Navigation Unit: DRUH, Honeywell

3.4 Lidar Observation

(a) NIES and Tohoku Institute of Technology Compact Mie Scattering Lidar

3.5 Ceilometer Observation

(b) JAMSTEC Ceilometer: CT-25K, Vaisala

3.6 Aerosol and Radiation Measurement

(a) ILTS, Hokkaido Univ.

Sky Radiometer: POM-01MKII, PREDE Particle Soot / Absorption Photometer: Radiance Research Integrating Nephelometer: M903, Radiance Research Optical Particle Counter: KC-01C, RION

3.7 Surface Turbulent Flux Measurement system

(a) FORSGC

Supersonic Thermoanemometer: DA-600, Kaijo Co. Infrared Hygrometer: AH-300, Kaijo Co. Inclinometer: MD-900-T, Appied Geomechanics Accelerometer: OA700-020, Applied Signal Inc. Rate Gyros: QRS11-0050-100, Sytron Donner Data Logging System: Labview, National Intsruments Co. Infrared Radiation Thermometer: THI-700, TASCO Data Logging System: CR-23X, Campbell Scientific Co.

3.8 CTD

(a) JAMSTEC

CTD 9plus, Sea-Bird

Temperature Sensor. SBE3-04F, Sea-Bird Electronics, Inc. Conductivity Sensor. SBE4-04/0, Sea-Bird Electronics, Inc. Oxygen Sensor. SBE13-04-B, Sea-Bird Electronics, Inc. Deck Unit:SBE 11plus, Sea-Bird Electronics, Inc. Altimeter sensor: PSA-9000, Datasonics Inc. Carousel water sampler: SBE32, Sea-Bird Electronics, Inc. Guildline Autosal salinometer:model 8400B Software: SEASOFT ver. 4.232, Sea-Bird Electronics, Inc.

3.9 Current Profiling

(a) JAMSTEC Broad-Band ADCP: VM-75, RD Instrument.

3.10 Sea Surface Water Monitoring

(a) JAMSTEC

Thermosalinograph: SBE-21, Sea-Bird Electronics, Inc. Dissolved Oxygen Sensor: 2127,Oubisufair Laboratories Fluorometer: 10-AU-005, Turner Designs Particle Size Sensor: P-05, Nippon Kaiyo Ltd. Guildline Autosal Salinometer: model 8400B Titrator: Metrohm Model 716 DMS Titrino / 10 ml of titration vessel Pt Electrode/ 6.0403.100, Metrohm Software: Data acquisition and endpoint evaluation / METRODATA / 606113 .000, Metrohm

3.11 Underway geophysics

(a) JAMSTEC

Onboard Gravity Meter: S-116, LaCoste-Romberg Three-Axes Fluxgate Magnetometer: Tierra Tecnica Multi-Narrow beam echo sounding system: SeaBeam 2100, SeaBeam Inc.

3.13 Miscellaneous

(a) JAMSTEC

Navigation System: SAINS19, Sena Co. GMS Receiving System: Nippon Hakuyo HRPT Receiving System: Terascan Observation Data Acquisition System: SCS (Scientific Computer System), NOAA

4. Cruise track and log

4.1 Cruise track

4.2 Cruise Log

Date	LST	UTC	Event	Lat.(deg.)	Lon. (deg.)
22-Nov	12:00	05:00	Cloudy / Rainy Depart Jakarta		
23-Nov	,		Cloudy		
24-Nov	7		Cloudy		
25-Nov	,		Cloudy		
26-Nov	,		Fine		
27-Nov	,		Fine		
_, 110,	09:00	00:00	Start data logging of continuous observation instruments		
	14:40	05:40	Test launch of radiosonde (tethered)		
	20:30	11:30	RS(radiosonde observation) - 001	2.33 N	133.99 E
	23:31	14:31	RS-002	2.26 N	134.78 E
28-Nov	,		Fine		
20-1100	02.29	17.29	RS-003	219 N	135.58 F
	02.29 05.29	20.29	RS-004	2.17 N	136.36 E
	03.29 08.40	20.29 23.40	RS-005	2.14 N	130.30 E
	11.29	02.29	RS-006	2.07 N	137.88 E
	12.30	03.30	Arrive observation point (2N_138E)	2.02 11	157.00 L
	13:08	04:08	Deployment of albedo boom		
			(start of "SeaSnake" SSST monitoring and shortwave/longway	ι.	
	13:40	04:40	start circular movement around (2N, 138E)		
	14:30	05:30	RS-007	1.92 N	138.19 E
	17:29	08:29	RS-008	2.07 N	138.04 E
	20:29	11:29	RS-009	1.92 N	138.13 E
	20:32	11:32	CTD (CTD casting) - 001 (500m)	1.92 N	138.13 E
	20:36	11:36	Surface sea water sampling (bucket)		
	23:30	14:30	RS-010	2.08 N	138.03 E
	23:34	14:34	CTD-002 (500m)	2.08 N	138.03 E
	23:38	14:38	Surface sea water sampling (bucket)		
29-Nov	r		Cloudy / Rainy		
2, 1101	02:30	17:30	RS-011	1.92 N	138.18 E
	02:33	17:33	CTD-003 (500m)	1.92 N	138.19 E
	02:37	17:37	Surface sea water sampling (bucket)		
	05:30	20:30	RS-012	2.00 N	138.03 E
	05:34	20:34	CTD-004 (500m)	2.00 N	138.03 E
	05:37	20:37	Surface sea water sampling (bucket)		
	08:29	23:29	RS-013	1.99 N	138.19 E
	08:34	23:34	CTD-005 (1000m with water sampling)	1.99 N	138.19 E
	08:38	23:38	Surface sea water sampling (bucket)		
	11:29	02:29	RS-014	1.92 N	138.02 E
	11:32	02:32	CTD-006 (500m)	1.92 N	138.02 E
	11:35	02:35	Surface sea water sampling (bucket)		
	14:29	05:29	RS-015	2.08 N	138.15 E
	14:32	05:32	CTD-007 (500m)	2.08 N	138.15 E
	14:37	05:37	Surface sea water sampling (bucket)		
	17:29	08:29	CTD-008 (500m)	1.92 N	138.08 E
	17:35	08:35	Surface sea water sampling (bucket)		100.00 =
	17:55	08:55	KS-016	1.92 N	138.08 E
	20:30	11:30	RS-017	2.08 N	138.10 E

	20:32	11:32	CTD-009 (500m)	2.08	Ν	138.10	Е
	20:35	11:35	Surface sea water sampling (bucket)				
	23:29	14:29	RS-018	1.91	Ν	138.09	Е
	23:33	14:33	CTD-010 (500m)	1.91	Ν	138.09	Е
	23:37	14:37	Surface sea water sampling (bucket)				
30-Nov	,		Cloudy / Rainy				
	02:29	17:29	RS-019	2.09	Ν	138.07	Е
	02:33	17:33	CTD-011 (500m)	2.09	Ν	138.07	Е
	02:36	17:36	Surface sea water sampling (bucket)				
	05:29	20:29	RS-020	1.98	Ν	138.14	Е
	05:33	20:33	CTD-012 (500m)	1.92	Ν	138.14	Е
	05:37	20:37	Surface sea water sampling (bucket)				
	08:29	23:29	RS-021	2.07	Ν	138.03	Е
	08:34	23:34	CTD-013 (1000m with water sampling)	2.06	Ν	138.03	Е
	08:37	23:37	Surface sea water sampling (bucket)				
	11:32	02:32	CTD-014 (500m)	2.00	Ν	138.20	Е
	11:38	02:38	Surface sea water sampling (bucket)				
	12:00	03:00	RS-022	2.00	Ν	138.20	Е
	14:29	05:29	RS-023	1.94	Ν	138.03	Е
	14:32	05:32	CTD-015 (500m)	1.94	Ν	138.03	Е
	14:35	05:35	Surface sea water sampling (bucket)				
	17:29	08:29	RS-024	2.08	Ν	138.19	Е
	17:33	08:33	CTD-016 (500m)	2.08	Ν	138.19	Е
	17:36	08:36	Surface sea water sampling (bucket)				
	20:29	11:29	RS-025	1.91	Ν	138.03	Е
	20:33	11:33	CTD-017 (500m)	1.91	Ν	138.03	Е
	20:36	11:36	Surface sea water sampling (bucket)				
	23:38	14:38	CTD-018 (500m)	2.08	Ν	138.12	Е
	23:44	14:44	Surface sea water sampling (bucket)				
1-Dec	;		Fine / Cloudy				
	00:09	15:09	RS-026	2.06	Ν	138.13	Е
	02:29	17:29	RS-027	1.91	Ν	138.10	Е
	02:33	17:33	CTD-019 (500m)	1.91	Ν	138.10	Е
	02:37	17:37	Surface sea water sampling (bucket)				
	05:36	20:36	RS-028	2.09	Ν	138.03	Е
	05:39	20:39	CTD-020 (500m)	2.08	Ν	138.02	Е
	05:45	20:45	Surface sea water sampling (bucket)				
	08:29	23:29	RS-029	1.95	Ν	138.19	Е
	08:32	23:32	CTD-021 (1000m with water sampling)	1.95	Ν	138.19	Е
	08:37	23:37	Surface sea water sampling (bucket)				
	11:29	02:29	RS-030	1.98	Ν	138.02	E
	11:33	02:33	CTD-022 (500m)	1.98	Ν	138.02	E
	11:36	02:36	Surface sea water sampling (bucket)				
	14:29	05:29	RS-031	1.96	Ν	138.19	E
	14:32	05:32	CTD-023 (500m)	1.95	Ν	138.19	E
	14:36	05:36	Surface sea water sampling (bucket)				_
	17:29	08:29	RS-032	2.01	N	138.02	E
	17:33	08:33	CTD-024 (500m)	2.00	Ν	138.02	E
	17:37	08:37	Surface sea water sampling (bucket)	• • •			_
	20:30	11:30	RS-033	2.02	N	138.19	E
	20:33	11:33	C1D-025 (500m)	2.02	Ν	138.19	E
	20:36	11:36	Surface sea water sampling (bucket)	1.05	NT	120.00	г
	23:30	14:30	KS-U34 CTD 02((500)	1.95	IN N	138.02	E
	23:33	14:55	CID-020 (JUUIII)	1.94	IN	158.02	E
	25:58	14:38	Surface sea water sampling (bucket)				

2-Dec

Fine / Cloudy

	02:29	17:29	RS-035	2.08	Ν	138.19	Е
	02:32	17:32	CTD-027 (500m)	2.08	Ν	138.18	Е
	02:36	17:36	Surface sea water sampling (bucket)				
	05:29	20:29	RS-036	1.92	Ν	138.02	Е
	05:32	20:32	CTD-028 (500m)	1.92	Ν	138.02	Е
	05:37	20:37	Surface sea water sampling (bucket)				
	08:29	23:29	RS-037	2.08	Ν	138.13	Е
	08:33	23:33	CTD-029 (1000m with water sampling)	2.08	Ν	138.13	Е
	08:37	23:37	Surface sea water sampling (bucket)				
	11:32	02:32	CTD-030 (500m)	2.00	Ν	138.02	Е
	11:35	02:35	Surface sea water sampling (bucket)				
	11:59	02:59	RS-038	2.01	Ν	138.02	Е
	14:29	05:29	RS-039	2.03	N	138.20	Е
	14:32	05:32	CTD-031 (500m)	2.03	N	138.20	Ē
	14.36	05.36	Surface sea water sampling (bucket)	2.05	1,	100.20	-
	17.29	08.29	RS-040	1 94	Ν	138.02	E
	17.32	08.32	CTD-0.32 (500m)	1.93	N	138.02	E
	17.36	08.36	Surface sea water sampling (bucket)	1.75	1,	150.02	Ľ
	20.29	11.29	RS-041	2 09	N	138 17	F
	20.27 20.32	11.22	$CTD_{-0.33}(500m)$	2.09	N	138.17	F
	20.32	11.32	Surface sea water sampling (bucket)	2.00	1	150.17	L
	20.37	14.20	PS 0/2	1 03	N	138.02	F
	23.29	14.29	CTD 0.24 (500m)	1.93	N	138.02	E
	23.32	14.32	Surface see water sempling (bucket)	1.95	11	136.02	Б
	25.50	14.30	Surface sea water sampling (bucket)				
3-Dec			Cloudy				
5 Dee	02.31	17.31	$CTD_{-0.035}(500m)$	2.08	N	138 16	F
	02.31 02.35	17.31	Surface sea water sampling (bucket)	2.00	11	150.10	Г
	02.55 02.54	17.53	BS-0/3	2.08	N	138 16	F
	02.34	20.29	RS-043	2.00	N	138.10	F
	05.29	20.29	CTD 0.36 (500m)	1.91	N	138.01	E
	05.32	20.32	Surface see water sampling (bucket)	1.91	19	130.01	Б
	03.33	20.35	DS 015	2.08	N	138 13	Б
	08.29	23.23	CTD 027 (1000m with water compling)	2.08	N	120.12	E
	08:52	23:32	CTD-057 (1000iii with water sampling)	2.08	IN	156.15	Е
	11.10	25:50	Surface sea water sampling (bucket)	2.00	N	120.00	Б
	11:19	02:19	K_{3} -040 CTD 028 (500m)	2.00	IN NI	130.02	E
	11:22	02:22	CTD-038 (S00m)	2.00	IN	138.02	Е
	11:20	02:26	Surface sea water sampling (bucket)	2 00	NT	120 10	Б
	14:30	05:30	RS-047	2.00	IN N	138.18	E
	14:32	05:32	C1D-039 (500m)	2.00	N	138.18	E
	14:36	05:36	Surface sea water sampling (bucket)	1.00	ЪT	120.02	г
	17:29	08:29	RS-048	1.99	N	138.02	E
	17:32	08:32	CTD-040 (500m)	1.99	Ν	138.02	E
	17:36	08:36	Surface sea water sampling (bucket)	• • • •		100.10	-
	20:29	11:29	RS-049	2.01	N	138.18	E
	20:31	11:31	CTD-041 (500m)	2.01	Ν	138.18	Е
	20:36	11:36	Surface sea water sampling (bucket)				_
	23:30	14:30	RS-050	1.99	Ν	138.02	Е
	23:32	14:32	Surface sea water sampling (bucket)				
4 D.							
4-Dec	02.22	17.00	Cloudy / Kalliy				
	02:22	17:22	Surface sea water sampling (bucket)	1.07	NT	120.10	Б
	02:29	17:29		1.97	IN	138.19	E
	05:20	20:20	Surrace sea water sampling (bucket)	2.04	ът	120.02	r
	05:39	20:39	K5-U52	2.04	N	138.02	E
	08:19	23:19	KS-053	1.92	N	138.20	E
	08:24	23:24	CTD-042 (1000m with water sampling)	1.92	N	138.20	E
	08:28	23:28	Surface sea water sampling (bucket)				
	11:11	02:11	Surface sea water sampling (bucket)				

11:19	02:19	RS-054	1.97	Ν	138.03	Е
14:29	05:29	RS-055	1.91	Ν	138.20	Е
14:36	05:36	CTD-043 (500m)	1.91	N	138.21	Е
14.39	05.39	Surface sea water sampling (bucket)	101		100.21	-
17.21	03.37 08.21	Surface sea water sampling (bucket)				
17.21	08.20	PS 056	1 08	N	138.03	F
20.20	11.20	DS 057	1.96	N	130.05	E
20.29	11.29	CTD 044 (500m)	1.90	IN N	120.17	E
20.32	11.32	CID-044 (300111) Surface accurates compling (hughet)	1.90	IN	136.19	Е
20:30	11:50	Surface sea water sampling (bucket)	2.00	NT	120.02	Б
23:29	14:29	KS-038	2.00	IN N	138.02	E
23:34	14:34	C1D-045 (500m)	2.00	IN	138.03	E
23:38	14:38	Surface sea water sampling (bucket)				
5-Dec		Cloudy				
02.32	17.32	CTD-046 (500m)	2.00	N	138 19	F
02:32	17.32	Surface sea water sampling (bucket)	2:00	1	150.17	Ľ
02:59	17.50	PS 050	2.00	N	138 10	F
02.39	20.20	RS-039	2.00	N	120.17	E
05.29	20.29	$CTD_{0.017}(500m)$	1.93	IN NI	130.02	E
05:32	20:32	CID-047 (500m)	1.95	IN	138.03	Е
05:36	20:36	Surface sea water sampling (bucket)	2 00		120.10	-
08:19	23:19	RS-061	2.09	N	138.18	E
08:22	23:22	CTD-048 (1000m with water sampling)	2.09	Ν	138.18	E
08:26	23:26	Surface sea water sampling (bucket)				
11:21	02:21	CTD-049 (500m)	1.91	Ν	138.07	E
11:25	02:25	Surface sea water sampling (bucket)				
12:10	03:10	RS-062	1.94	Ν	138.04	Е
14:29	05:29	RS-063	2.09	Ν	138.15	Е
14:31	05:31	CTD-050 (500m)	2.09	Ν	138.16	Е
14:35	05:35	Surface sea water sampling (bucket)				
17:29	08:29	RS-064	1.92	Ν	138.03	Е
17:32	08:32	CTD-051 (500m)	1.91	Ν	138.04	Е
17:35	08:35	Surface sea water sampling (bucket)				
20:29	11:29	RS-065	2.08	Ν	138.19	Е
20:32	11.32	CTD-0.52 (500m)	2.07	N	138 19	Ē
20:32	11.32	Surface sea water sampling (bucket)	2.07	1,	100.17	2
20:30	14.32	CTD-053 (500m)	1 92	N	138.02	F
23.32	14.32	Surface sea water campling (bucket)	1.72	11	150.02	Ľ
23.50	14.35 14.50	RS-066	1.92	N	138.02	Е
20100	1 110 0				100102	-
6-Dec		Cloudy / Fine				
02:29	17:29	RS-067	2.09	Ν	138.11	Е
02:32	17:32	CTD-054 (500m)	2.08	Ν	138.11	Е
02:35	17:35	Surface sea water sampling (bucket)				
05:29	20:29	RS-068	1.92	Ν	138.08	Е
05:33	20:33	CTD-055 (500m)	1.92	Ν	138.10	Е
05:36	20:36	Surface sea water sampling (bucket)				
08:19	23:19	RS-069	1.98	Ν	138.13	Е
08:22	23:22	CTD-056 (1000m with water sampling)	1.98	N	138.13	Е
08:26	23.26	Surface sea water sampling (bucket)	100		100110	-
08:36	23.26	Checking out TRITON buoy	1 99	N	138 12	E
11.20	02.20	$CTD_{-}057 (500m)$	2.06	N	138.02	F
11.20	02.20	Surface see water sampling (bucket)	2.00	14	130.02	L
11.23	02.25	DS 070	2.06	N	120.00	Б
11:49	02:49	NS-070 DS 071	2.00	1N N	130.02	E
14:29	05:29	$N_{3}-V/1$	1.90	IN N	120.19	E F
14:31	05:31		1.96	IN	138.19	E
14:36	05:36	Surface sea water sampling (bucket)	• • · ·		100.05	-
17:29	08:29	RS-0/2	2.01	N	138.02	E
17:31	08:31	CTD-059 (500m)	2.00	N	138.02	E
17:35	08:35	Surface sea water sampling (bucket)				

	20:29	11:29	RS-073	2.00	Ν	138.19	Е
	20:30	11:30	CTD-060 (500m)	1.99	Ν	138.19	Е
	20:33	11:33	Surface sea water sampling (bucket)				
	23:29	14:29	RS-074	2.01	Ν	138.02	Е
	23:32	14:32	CTD-061 (500m)	2.00	Ν	138.02	Е
	23:37	14:37	Surface sea water sampling (bucket)				
7-Dec	•		Fine				
	02:29	17:29	RS-075	1.99	Ν	138.18	Е
	02:33	17:33	CTD-062 (500m)	1.99	N	138.18	Ē
	02:36	17:36	Surface sea water sampling (bucket)	,		100110	-
	05:30	20:30	RS-076	1.99	Ν	138.03	Е
	05:33	20:33	CTD-063 (500m)	1.99	Ν	138.03	Е
	05:37	20:37	Surface sea water sampling (bucket)				
	08:19	23:19	RS-077	2.01	Ν	138.19	Е
	08:22	23:22	CTD-064 (1000m with water sampling)	2.01	Ν	138.19	Е
	08:26	23:26	Surface sea water sampling (bucket)				
	11:19	02:19	RS-078	2.04	Ν	138.03	Е
	11:22	02:22	CTD-065 (500m)	2.03	Ν	138.04	Е
	11:26	02:26	Surface sea water sampling (bucket)				
	14:29	05:29	RS-079	1.93	Ν	138.09	Е
	14:33	05:33	CTD-066 (500m)	1.93	Ν	138.09	Е
	14:36	05:36	Surface sea water sampling (bucket)				
	17:29	08:29	RS-080	2.04	Ν	138.02	Е
	17:33	08:33	CTD-067 (500m)	2.08	Ν	138.15	Е
	17:36	08:36	Surface sea water sampling (bucket)				
	20:29	11:29	RS-081	1.94	Ν	138.03	Ε
	20:33	11:33	CTD-068 (500m)	1.94	Ν	138.03	Е
	20:37	11:37	Surface sea water sampling (bucket)				
	23:29	14:29	RS-082	2.04	Ν	138.19	E
	23:33	14:33	CTD-069 (500m)	2.04	Ν	138.19	E
	23:36	14:36	Surface sea water sampling (bucket)				
8-Dec	;		Fine				
	02:29	17:29	RS-083	1.97	Ν	138.02	Е
	02:32	17:32	CTD-070 (500m)	1.97	Ν	138.02	Ε
	02:35	17:35	Surface sea water sampling (bucket)				
	05:29	20:29	RS-084	2.05	Ν	138.19	E
	05:32	20:32	CTD-071 (500m)	2.05	Ν	138.19	E
	05:36	20:36	Surface sea water sampling (bucket)	1.05		100.00	-
	08:19	23:19	RS-085	1.95	N	138.02	E
	08:19	23:19	CTD-0/2 (1000m with water sampling)	1.95	Ν	138.02	Е
	08:23	23:23	Surface sea water sampling (bucket)	2.00	ЪT	120 10	г
	11:19	02:19	KS-086	2.08	N	138.18	E
	11:19	02:19	CID-0/3 (500m)	2.08	IN	138.18	E
	11:23	02:23	Surface sea water sampling (bucket)	1.00	NT	120.00	Б
	14:51	05:31	CID-074 (300III)	1.99	IN	158.02	Е
	14:30	05:30	Surface sea water sampling (bucket)	1.00	N	128.02	Б
	14.47	03.47	CTD 075 (500m)	1.33	N	138.02	E
	17.33	08.33	Surface see water compling (bucket)	2.04	19	136.19	Е
	17.37	08.37	RS 088	2.04	N	138 10	F
	20.20	11.20	DS 080	2.04	N	138.19	E
	20.29	11.29	CTD-076 (500m)	1.93	1N N	138.03	F
	20.33	11.35	Surface sea water sampling (bucket)	1.95	ΤN	130.03	Ц
	23.30	14.20	RS-090	2.06	N	138 10	F
	23.27	14.27	CTD-077 (500m)	2.00	N	138 19	F
	23:36	14:36	Surface sea water sampling (bucket)	2.00	.,	120.17	-
	0						

9-Dec		Fine				
02:29	17:29	RS-091	1.95	Ν	138.02	E
02:32	17:32	CTD-078 (500m)	1.95	Ν	138.02	E
02:36	17:36	Surface sea water sampling (bucket)				
05:29	20:29	RS-092	2.08	Ν	138.18	E
05:30	20:30	CTD-079 (500m)	2.08	N	138.18	Ē
05.33	20.33	Surface sea water sampling (bucket)	2.00	1	100110	_
08.19	20.33	RS-093	1 92	N	138.02	F
08.19	23.10	CTD 080 (1000m with water sampling)	1.92	N	138.02	F
08.13	23.19	Surface see water sampling (bucket)	1.92	19	130.02	Ľ
11.10	0 23.23	DS 004	2.08	N	120 15	Б
11.19	02.19	$CTD_{0.00} = 0.000000000000000000000000000000$	2.08	IN NI	120.15	
11:23	02:25	CID-081 (300III)	2.08	IN	136.13	С
11:27	02:27	Surface sea water sampling (bucket)	1.02	NT	120.04	г
14:29	05:29	RS-095	1.92	IN N	138.04	E
14:30	05:30	C1D-082 (500m)	1.92	N	138.04	E
14:33	05:33	Surface sea water sampling (bucket)	• • • •			-
17:29	08:29	RS-096	2.09	Ν	138.19	E
17:32	08:32	CTD-083 (500m)	2.09	Ν	138.19	E
17:35	08:35	Surface sea water sampling (bucket)				
20:29	11:29	RS-097	1.92	Ν	138.03	E
20:30) 11:30	CTD-084 (500m)	2.91	Ν	138.03	E
20:34	11:34	Surface sea water sampling (bucket)				
23:29	14:29	RS-098	2.09	Ν	138.20	Е
23:30	14:30	CTD-085 (500m)	2.09	Ν	138.20	Е
23:34	14:34	Surface sea water sampling (bucket)				
10-Dec		Fine				
02:29	17:29	RS-099	1.92	Ν	138.02	E
02:31	17:31	CTD-086 (500m)	1.92	N	138.02	E
02:35	17:35	Surface sea water sampling (bucket)	102	1	100102	_
05.29	20.29	RS-100	2.09	Ν	138 17	E
05.29	20.29	$CTD_{-}087 (500m)$	2.09	N	138.17	F
05:34	20.27	Surface sea water sampling (bucket)	2.07	14	150.17	L
09.10	20.34	DS 101	1.02	N	128.02	Б
08.19	23.19	CTD 088 (1000m with water compline)	1.92	IN NI	130.02	
08.19	23.19	CID-008 (1000iii with water sampling)	1.92	IN	136.02	L
11.10	23.23	DS 102	2.00	NT	120.00	Б
11:19	02:19	KS-102	2.09	IN NI	120.02	
11:19	02:19	CTD-089 (300III)	2.09	IN	136.13	Е
11:23	02:23	Surface sea water sampling (bucket)	1.07	ЪT	120.02	г
14:29	05:29	RS-103	1.97	N	138.02	E
14:29	05:29	C1D-090 (500m)	1.88	N	138.02	E
14:33	05:33	Surface sea water sampling (bucket)	• • • •			-
17:29	08:29	RS-104	2.04	N	138.20	E
17:31	08:31	CTD-091 (500m)	2.04	Ν	138.20	E
17:35	08:35	Surface sea water sampling (bucket)				
20:29	11:29	RS-105	1.96	Ν	138.02	E
20:31	11:31	CTD-092 (500m)	1.96	Ν	138.02	E
20:36	5 11:36	Surface sea water sampling (bucket)				
23:29	14:29	RS-106	2.04	Ν	138.19	E
23:32	14:32	CTD-093 (500m)	2.04	Ν	138.19	E
23:35	14:35	Surface sea water sampling (bucket)				
		·				
11-Dec		Fine				
02:29	17:29	RS-107	1.98	Ν	138.03	Е
02:31	17:31	CTD-094 (500m)	1.98	Ν	138.02	E
02:35	17:35	Surface sea water sampling (bucket)				
05:29	20:29	RS-108	2.02	Ν	138.19	E
05:32	20:32	CTD-095 (500m)	2.02	Ν	138.19	E
05:36	20:36	Surface sea water sampling (bucket)				

	08:19 08:21	23:19 23:21	RS-109 CTD-096 (1000m with water sampling)	1.97 1.97	N N	138.02 138.02	E E
	08:24 11:19	23:24 02:19	Surface sea water sampling (bucket) RS-110	2.39	N	137.72	E
	14:29 17:29	05:29 08:29	RS-111 RS-112	2.97 3.42	N N N	137.27 136.92	E E
10 D.	20:29	11:29	KS-113	3.89	N	136.47	E
12-Dec	08:20	23:20	RS-114	6.09	N	134.52	E
	20:29	09:00 11:29	RS-115	7.49	N	133.61	E
13-Dec	06:00 10:00	21:00 01:00	Cloudy / Rainy Stop Doppler radar observation Arrive Koror				
14-Dec	09:45 13:00	00:45 04:00	Cloudy / Rainy Depart Koror Resume surface sea water monitoring				
15-Dec	;		Cloudy				
16-Dec	;		Cloudy				
17-Dec	;		Cloudy				
18-Dec	;		Cloudy				
19-Dec	09:00	00:00	Cloudy Finish all observations				
20-Dec	08:00	23:00	Fine Arive Yokosuka				

5. Participants List

Name	Affiliation	On board	e-mail
Yoneyama, Kunio	JAMSTEC	Jakarta -Yokosuka	
Katsumata, Masaki	JAMSTEC	Singapore - Yokosuka	
Moriwaki, Kaichi	JAMSTEC	Jakarta - Yokosuka	
Shibayama, Ken-ichi	JAMSTEC	Jakarta - Yokosuka	
Kubota, Hisayuki	FORSGC	Jakarta - Koror	
Matsui, Ichiro	NIES	Jakarta - Yokosuka	
Hanyu, Masaki	GODI	Jakarta - Yokosuka	
Kouzuma, Kiyotake	GODI	Jakarta - Koror	
Sueyoshi, Soichiro	GODI	Jakarta - Yokosuka	
Uno, Hirokatsu	MWJ	Jakarta - Koror	
Inoue, Asako	MWJ	Jakarta - Koror	
Kitada, Mikio	MWJ	Jakarta - Koror	
Seike, Takayoshi	MWJ	Jakarta - Yokosuka	
Akizawa, Kaori	MWJ	Jakarta - Yokosuka	
Eko Triarso	BPPT	Jakarta - Koror	
Endro Soeyanto	BPPT	Jakarta - Koror	
Sunar Widiyanto	Indonesian Navy	Sekinehama - Koror	

5.1 On Board Scientists / Engineer / Technical Staff / Observer

Japan Marine Science and Technology Center (JAMSTEC) Natsushima-cho 2-15, Yokosuka 237-0061 JAPAN TEL: +81-468-66-3811 FAX: +81-468-65-3202

Frontier Observational Research System for Global Change (FORSGC) Sumitomo Hamamatsu-cho bld. 4F, Hamamatsu-cho 1-18-16, Minato-ward, Tokyo 105-0013 JAPAN

National Institute of Environmental Studies (NIES) 16-2, Onogawa, Tsukuba, Ibaraki 305-0053 JAPAN

Global Ocean Development Inc. (GODI) 3-65, Oppamahigashi-cho, Yokosuka 237-0063 JAPAN

Marine Works Japan Ltd. (MWJ) 1-1-7, Mutsuura, Kanazawa-ward, Yokohama 236-0031 JAPAN

Agency for Assessment and Application of Technology (BPPT) Jl. M.H. Thamrin No.8, Jakarta Pusat 10340 INDONESIA

5.2 Ship Crew

Master Chief Officer 1st Officer 2nd Officer 3rd Officer Chief Engineer 1st Engineer 2nd Engineer **3rd Engineer** Chief Radio Officer 2nd Radio Officer Boatswain Able Seaman No.1 Oiler Oiler Oiler Oiler Oiler Oiler Chief Steward Steward Steward Steward Steward

Hashimoto, Takaaki Dowaki, Yukio Shibata, Yuji Inoue, Haruhiko Isohi, Takeshi Watanabe, Yoichiro Ikeda, Minoru Narumi, Hiroaki Kajiyama, Katsunori Shishido, Kaiichirou Morioka, Naoto Suzuki, Tadao Naruo, Hisashi Kinoshita, Hirokazu Kawata, Seiichiro Horita, Kazunori Oguni, Hisao Inoue, Yuji Suzuki, Masaru Sato, Tsuyoshi Monzaka, Tsuyoshi Okada, Masashige Komata, Shuji Honda, Sadanori Yoshikawa, Toshimi Horiuchi, Yukitoshi Inoue, Fumio Miyazaki, Takashi Taniguchi, Daisuke Koga, Yasuaki Kurita, Yasutaka Akita, Takayuki Ota, Hitoshi Hamabe, Tatsuya

6. Summary of Observations

6.1 Surface meteorological parameters

(1) Personnel

Kunio Yoneyama (JAMSTEC): Principal Investigator Masaki Katsumata (JAMSTEC) Masaki Hanyu (GODI): Operation Leader Kiyotake Kouzuma (GODI) Souichiro Sueyoshi (GODI)

(2) Objective

The surface meteorological parameters are observed as a basic dataset of the meteorology. These parameters bring us the information about temporal variation of the meteorological condition surrounding the ship.

(3) Methods

The surface meteorological parameters were observed throughout MR00-K07 cruise from the departure of Jakarta on 22 November 2000 to the arrival of Yokosuka on 20 December 2000.

- This cruise, we used 3 systems for the surface meteorological observation.
 - 1. Mirai meteorological observation system
 - 2. Shipboard Oceanographic and Atmospheric Radiation (SOAR) system
 - 3. Total Sky Imager (TSI)

(3-1) Mirai meteorological observation system

Instruments of Mirai met system are listed in Table 6.1-1 and measured parameters are listed in Table 6.1-2. Data was collected and processed by KOAC-7800 weather data processor made by Koshin Denki, Japan. The data set has 6-second averaged every 6-second record and 10-minute averaged every 10-minute record.

Table 6.1-1: Instruments and their installation locations of Mirai met system

Sensors	Туре	manufacturer	location (altitude from surface)
Anemometer	KE-500	Koshin Denki, Japan	foremast (24m)
Thermometer	FT	Koshin Denki, Japan	compass deck (21m)
dewpoint meter	DW-1	Koshin Denki, Japan	compass deck (21m)
Barometer	F451	Yokogawa, Japan	weather observation room
			captain deck (13m)
rain gauge	50202	R. M. Young, USA	compass deck (19m)
optical rain gauge	ORG-115DR	SCTI, USA	compass deck (19m)
radiometer (short wave)	MS-801	Eiko Seiki, Japan	radar mast (28m)
radiometer (long wave)	MS-200	Eiko Seiki, Japan	radar mast (28m)
wave height meter	MW-2	Tsurumi-seiki, Japan	Bow

	Parameters	units	remarks
1	Latitude	degree	
2	Longitude	degree	
3	Ship's speed	knot	Mirai log
4	Ship's heading	degree	Mirai gyro
5	relative wind speed	m/s	6 sec. / 10 min. averaged
6	relative wind direction	degree	6 sec. / 10 min. averaged
7	True wind speed	m/s	6 sec. / 10 min. averaged
8	True wind direction	degree	6 sec. / 10 min. averaged
9	barometric pressure	hPa	adjusted to the sea surface level
			6 sec. / 10 min. averaged
10	air temperature (starboard side)	degC	6 sec. / 10 min. averaged
11	air temperature (port side)	degC	6 sec. / 10 min. averaged
12	dewpoint temperature (stbd side)	degC	6 sec. / 10 min. averaged
13	dewpoint temperature (port side)	degC	6 sec. / 10 min. averaged
14	relative humidity (starboard side)	%	6 sec. / 10 min. averaged
15	relative humidity (port side)	%	6 sec. / 10 min. averaged
16	Rain rate (optical rain gauge)	mm/hr	6 sec. / 10 min. averaged
17	Rain rate (capacitive rain gauge)	mm/hr	6 sec. / 10 min. averaged
18	down welling shortwave radiometer	W/m^2	6 sec. / 10 min. averaged
19	down welling infra-red radiometer	W/m^2	6 sec. / 10 min. averaged
20	sea surface temperature	degC	-5m
21	significant wave height (fore)	m	3 hourly
22	significant wave height (aft)	m	3 hourly
23	significant wave period (fore)	second	3 hourly
24	significant wave period (aft)	second	3 hourly

Table 6.1-2: Parameters of Mirai meteorological observation system

(3-2) Shipboard Oceanographic and Atmospheric Radiation (SOAR) system

SOAR system, designed by BNL (Brookhaven National Laboratory, USA), is consisted of 3 parts.

- 1. Portable Radiation Package (PRP) designed by BNL short and long wave down welling radiation
- 2. Zeno meteorological system designed by BNL wind, Tair/RH, pressure and rainfall measurement
- 3. Scientific Computer System (SCS) designed by NOAA (National Oceanographic and Atmospheric Administration, USA) centralized data acquisition and logging of all data sets

In adding to the original components, the short wave and long wave upwelling radiation were measured.

SCS recorded PRP data every 6.5 seconds, Zeno met data every 10 seconds and upwelling radiation data every 6 seconds.

Instruments and their locations are listed in Table 6.1-3 and measured parameters are listed in Table 6.1-4

Sensors	type	manufacturer	location (altitude from surface)
Zeno/Met			
anemometer	05106	R. M. Young, USA	foremast (24m)
T/RH	HMP45A	Vaisala, USA	foremast (23m)
	with 43408 G	ill aspirated radiation s	hield (R. M. Young)
Barometer	61201	R. M. Young, USA	foremast (23m)
	with 61002 G	ill pressure port (R. M.	Young)
rain gauge	50202	R. M. Young, USA	foremast (24m)
optical rain gauge	ORG-115DA	ScTi, USA	foremast (24m)
sea surface temperature	SST-100	BNL, USA	bow, 5m extention (-1cm)
PRP			
radiometer (short wave)	PSP	Eppley labs, USA	foremast (24m)
radiometer (long wave)	PIR	Eppley labs, USA	foremast (24m)
fast ratating shadowband ra	diometer	Yankee, USA	foremast (24m)
Upwelling radiation			
radiometer (short wave)	MS-801	Eiko Seiki, Japan	bow, 8m extention (6m), 7.01mV/kW^2
radiometer (long wave)	MS-202	Eiko Seiki, Japan	bow, 8m extention (6m), $3.39mV/kW^{2}$

Table 6.1-3: Instrument installation locations of SOAR system

Table 0.1-4. I arameters of SOTAC System	Table 6.1-4:	Parameters	of SOAR	System
--	--------------	------------	---------	--------

	parameters	units	remarks
1	latitude	degree	
2	longitude	degree	
3	Sog	knot	
4	Cog	degree	
5	relative wind speed	m/s	
6	relative wind direction	degree	
7	barometric pressure	hPa	
8	air temperature	degC	
9	relative humidity	%	
10	sea surface temperature	degC	-1cm, Seasnake
11	Rain rate (optical rain gauge)	mm/hr	
12	precipitation (capacitive rain gauge)	mm	reset at 50mm
13	down welling shortwave radiation	W/m^2	
14	down welling infra-red radiation	W/m^2	
15	defuse irradiation	W/m^2	
16	upwelling short wave radiation	W/m^2	
17	upwelling infra-red radiation	W/m^2	

(3-3) Total Sky Imager (TSI)

The Total Sky Imager (TSI) was installed at the top deck midship, altitude of 17m from sea level. TSI was developed jointly by Penn State University, BNL and Yankee Environmental Systems, Inc. and manufactured by YES Inc. TSI recorded every 5 minutes from dawn to sunset. Measured parameters are listed in Table 6.1-5.

Table 6.1-5: Parameters of TSI system

	parameters	units
1	opaque cloud cover	%
2	Thin cloud cover	%

(4) Preliminary results

The daytime cloud cover ratio obtained from TSI during the Intensive Observation Period (IOP), from 28th November to 11th December is shown in Figure 6.1-1. Wind (converted to U, V component), Tair/SSST, RH/precipitation, solar radiation and pressure observed during from SOAR system during IOP are shown in Figure 6.1-2. In the figures, accumulated precipitation data from SOAR capacitive rain gauge was converted to the precipitation amount in every minute and obvious noises were eliminated but not calibrated. Other figures are showing uncorrected data.

(5) Data archives

These raw data will be submitted to the Data Management Office (DMO) in JAMSTEC just after the cruise.

Remarks concerning about data quality are as follows;

- 1. SSST sensor of SOAR system was deployed from 0405UTC November 28th and recovered at 0001UTC December 11th.
- 2. Upwelling radiation measurement was conducted from 0405UTC November 28th to 0001UTC December 11th.
- 3. The timestamp of Mirai Navigation system was unchanged from 063559UTC to 073457UTC December 3rd due to the bad receiving condition of No.2 GPS satellite receiver.

Fig 6.1-1: Daytime cloud cover ratio from TSI.

Fig 6.1-1: (Continued)

Figure 6.1-2: Time series of measured parameter by SOAR system.

Figure 6.1-2 (continued)

6.2 Radiosonde observation

(1) Personnel

Kunio Yoneyama	(JAMSTEC)	Principal Investigator
Kiyotake Kouzuma	(GODI)	
Souichiro Sueyoshi	(GODI)	
Hisayuki Kubota	(FORSGC)	
Masaki Katsumata	(JAMSTEC)	
Kenichi Shibayama	(JAMSTEC)	
Kaichi Moriwaki	(JAMSTEC)	

(2) Objective

Atmospheric soundings (vertical profile of temperature, humidity, and wind speed/direction)

(3) Method

Atmospheric sounding by radiosonde was carried out around 2N,138E every three hours (00, 03, 06, 09, 12, 15, 18, 21 UTC) during 1200UTC, November 28 and 1200 UTC, December 11. In total, 115 radiosondes were launched during the whole cruise. The system consists of Main processor (Vaisala DigiCORA MW11), Balloon Launcher (Vaisala ASAP), GPS antenna (GA20), UHF telemetry antenna (RB21), PC (Toshiba Dynabook 430CDT), and GPS radiosonde (RS80-15GH). Before launching, temperature and humidity were calibrated using Humidity calibrator (Digilog Instruments VAPORPAK H-31) whose humidity was set at 70% constant.

(4) Preliminary results

The log file of radiosonde launching is listed in Table 6.2-1.

Time-height cross section of potential temperature, mixing ratio, zonal, and meridional wind components are shown in Fig.6.2-1, respectively. Profiles of temperature and dew point temperature are plotted on the thermodynamic chart (EMAGRAM) with wind profiles and attached in the Appendix. It is apparent that westerly wind burst prevailed over this area during the first half of observation period (until December 5). Moist conditions slightly weakened after the burst quit.

(5) Data Archive

All data were sent to the world meteorological community by GTS through Japan Meteorological Agency, immediately after the each observation. Raw data is stored as ASCII format every 2 seconds during ascent. Data near the surface, where temperature and humidity are affected by ship body warming/cooling, are corrected and all data are converted onto every 5hPa from 1000hPa through 100hPa. Both (raw 2 seconds interval and corrected 5 hPa interval data) are archived and available from K.Yoneyama of JAMSTEC.

Table 6.2.1 Radiosonde launch log,

							States	Surface				
Cloud	Cloud	Altitude	Max	WS	WD	RH	Temp	Pres	lon	lat	Time (UTC)	No
Туре	Amount	(m)	(hPa)	(m/s)	(deg)	(%)	(degC)	(hPa)	(degN)	(degE)	YYMMDDHH	
-	0	20849	47.1	10.5	260	75	29.1	1003.7	2.32	133.86	00112712	1
Sc,Cu	3	20937	46.5	11.5	265	78	29.2	1003.6	2.26	134.69	00112715	2
-	4	23784	29.0	10.7	259	78	29.2	1002.0	2.19	135.51	00112718	3
Cu,Cb,Sc	4	24502	25.8	11.9	262	75	29.5	1001.7	2.14	136.28	00112721	4
Cu,St,As,Cb	4	25162	23.4	12.0	274	80	29.1	1003.4	2.08	137.12	00112800	5
Cb,Cu,Sc,As	4	24558	25.7	9.5	267	73	30.4	1002.6	2.02	137.83	00112803	6
Cb,Cu,Sc,As	6	24012	27.9	13.8	269	74	30.0	1000.2	1.94	138.19	00112806	7
Ci,Cu,Cb	3	21208	44.1	9.9	280	77	29.5	1001.3	2.03	138.02	00112809	8
-	-	21484	42.3	8.2	267	77	28.9	1003.1	1.92	138.13	00112812	9
-	9	20758	47.9	10.5	273	79	29.5	1002.8	2.06	138.02	00112815	10
-	9	19857	55.5	10.7	277	77	29.0	1001.5	1.92	138.18	00112818	11
As,Cu,Sc	10	24024	28.1	14.7	294	75	29.2	1002.3	2.00	138.02	00112821	12
Cb,Sc,St,Ac,Cs	10	23562	30.3	10.7	307	79	28.5	1004.4	1.99	138.19	00112900	13
St,Cu	10	23363	31.3	8.0	273	74	29.1	1004.4	1.91	138.02	00112903	14
St,Cu,Ac,Sc	9	23710	29.4	5.4	289	77	29.4	1002.4	2.08	138.14	00112906	15
Cb,Cu,As	7	20978	46.0	6.3	301	76	29.3	1002.8	1.92	138.08	00112909	16
-	-	22974	33.3	5.3	304	78	29.4	1004.7	2.08	138.10	00112912	17
-	4	21667	41.2	5.4	297	75	29.3	1004.5	1.91	138.08	00112915	18
-	4	23282	31.7	4.5	296	81	28.8	1003.1	2.08	138.07	00112918	19
Cu,Sc,As,Ci	8	23971	28.3	6.1	327	80	28.9	1003.9	1.91	138.14	00112921	20
As,St,Cs,Cu,Cb	8	23888	28.7	5.8	327	79	28.3	1005.3	2.04	138.02	00113000	21
Ac.As,Sc,Cu	6	22603	35.3	7.9	343	76	28.4	1003.8	2.00	138.20	00113003	22
Ac,Cu,As	5	23809	28.8	6.2	352	79	28.1	1002.5	1.94	138.02	00113006	23
As,Ci	3	23214	31.8	6.6	335	76	28.7	1003.3	2.08	138.19	00113009	24
-	-	22366	36.8	5.9	350	79	28.9	1005.0	1.91	138.03	00113012	25
-	10	17291	88.2	15.2	319	92	26.1	1005.2	2.08	138.10	00113015	26
-	3	22976	33.2	11.5	299	79	27.4	1003.1	1.91	138.10	00113018	27
Ac,As,Sc	8	24079	27.7	11.3	301	84	27.2	1004.5	2.08	138.02	00113021	28
As,St,As	6	24092	27.9	11.1	317	79	29.0	1005.3	1.97	138.19	00120100	29
Cu,As,Sc	3	23980	28.2	11.0	318	74	29.3	1004.1	1.96	138.02	00120103	30
Cu,As,St	2	21761	40.7	10.0	321	77	29.4	1002.1	1.95	138.19	00120106	31
Cu,Cb,Ci	2	19859	56.0	8.4	311	76	29.3	1002.9	2.00	138.02	00120109	32
-	-	22096	38.6	6.9	303	79	29.1	1004.5	2.04	138.19	00120112	33
-	6	21107	45.3	6.9	322	82	28.7	1004.7	1.92	138.02	00120115	34
-	1	21276	44.0	7.5	309	80	28.8	1002.8	2.08	138.18	00120118	35
Cc,Cu,Cb,Ci	8	20891	47.0	8.0	302	78	29.4	1003.6	1.91	138.03	00120121	36
Cb,St,As,Cu,Cs	4	24338	26.6	9.2	308	78	29.5	1005.4	2.08	138.11	00120200	37
Cu,As,Ac	6	24064	27.7	8.0	292	80	29.4	1003.5	2.00	138.02	00120203	38
Cb,Ci,As,Ac	8	21404	43.0	7.8	308	74	28.8	1002.3	2.03	138.20	00120206	39
Cu,Cb	3	19861	55.9	8.5	299	78	29.4	1002.8	1.94	138.02	00120209	40
-	-	22001	39.0	8.1	283	77	29.5	1004.1	2.08	138.16	00120212	41

Sc	8	20614	49.2	8.5	278	78	29.0	1003.7	1.93	138.02	00120215	42
-	3	18909	65.8	9.3	278	81	28.9	1001.2	2.08	138.16	00120218	43
Cb,Sc,Cc	10	21102	45.2	7.3	254	84	28.0	1002.6	1.91	138.03	00120221	44
Cb,As,Cu,Cs,St	6	23099	32.7	7.5	280	81	28.6	1004.6	2.08	138.11	00120300	45
Cb,As,Cu	8	22208	37.7	8.4	275	72	29.2	1002.5	1.98	138.02	00120303	46
Cb,Cu,Ac,As	7	23171	32.0	8.0	272	80	29.1	1000.3	2.00	138.18	00120306	47
Cu,Cb,Ci,As	4	20112	53.6	8.8	267	78	29.2	1001.5	1.99	138.02	00120309	48
-	-	19918	55.5	8.2	255	77	29.4	1003.1	2.01	138.18	00120312	49
-	4	21083	45.6	8.0	251	73	29.3	1003.0	1.96	138.02	00120315	50
-	3	20860	47.1	11.7	270	73	28.3	1000.6	1.98	138.19	00120318	51
Cu,As,Sc	9	20970	46.3	10.7	260	77	28.7	1001.8	2.04	138.02	00120321	52
Cs,St,As	10	23721	29.6	10.8	265	83	28.0	1003.6	1.95	138.19	00120400	53
Cb,As,Cu,Sc	8	23973	28.6	12.2	239	79	29.3	1003.0	1.96	138.02	00120403	54
Ns,Cu,Sc	10	3805	3276.8	12.0	281	86	26.8	1001.0	1.92	138.19	00120406	55
Cu,Cb,As	9	18727	68.3	9.8	273	81	27.8	1002.9	1.98	138.02	00120409	56
-	-	19017	64.9	9.6	254	81	27.5	1004.3	1.96	138.19	00120412	57
As,Sc,Cu	8	22591	35.5	11.1	265	75	28.9	1004.0	1.98	138.02	00120415	58
-	10	19383	60.6	10.6	289	76	28.9	1002.8	2.01	138.19	00120418	59
Sc,Cu,As,Ac	9	22602	35.5	5.7	293	82	28.4	1003.6	1.92	138.02	00120421	60
As,Ns,Cs,Cu	10	21955	39.8	12.5	292	87	26.9	1006.0	2.08	138.16	00120500	61
Ns	10	5441	526.9	6.6	289	76	28.2	1003.7	1.92	138.05	00120503	62
Ns,As,Cu	10	21691	41.4	8.4	273	77	28.7	1001.8	2.08	138.16	00120506	63
St,As,Cc	8	21011	46.1	7.4	253	76	29.3	1002.9	1.91	138.03	00120509	64
-	-	20408	51.1	4.5	260	76	29.5	1005.6	2.08	138.17	00120512	65
-	-	19463	59.7	4.2	228	80	28.5	1005.5	1.92	138.02	00120515	66
-	10	21277	43.9	2.8	263	81	29.0	1004.0	2.09	138.12	00120518	67
As,Sc,Cu	10	22247	37.4	4.0	262	77	28.6	1005.5	1.92	138.10	00120521	68
Cu,St,Cs,Cb	9	23898	28.7	0.1	251	80	29.6	1007.8	1.98	138.13	00120600	69
Cu,Ac,As	7	24278	26.9	3.2	213	74	30.2	1005.4	2.06	138.02	00120603	70
As,Ac	5	23845	28.7	3.8	252	74	30.1	1002.8	1.96	138.19	00120606	71
Ac,As,St	3	21376	43.2	1.5	252	75	29.7	1003.3	2.01	138.02	00120609	72
-	-	2835	726.8	1.1	208	73	30.0	1006.1	2.01	138.19	00120612	73
As,Ac,Sc	5	22591	35.5	0.9	339	70	29.8	1005.9	1.98	138.02	00120615	74
-	2	21685	41.1	1.0	332	71	28.9	1004.7	1.99	138.18	00120618	75
Ac,As,Sc,Cu	5	20857	47.4	2.4	351	76	29.0	1005.8	1.99	138.02	00120621	76
Ci,Cu,St	2	21874	39.8	3.5	20	74	29.6	1008.1	2.03	138.19	00120700	77
Sc,Ac,As,Cu	3	23100	32.4	2.7	23	72	29.8	1006.6	2.02	138.02	00120703	78
Cu,As	2	23582	30.0	2.1	344	71	30.0	1003.9	1.92	138.10	00120706	79
Cu,Ci	1	12195	208.3	2.6	35	69	29.7	1004.5	2.08	138.15	00120709	80
-	-	21986	39.1	4.0	27	73	29.5	1006.7	1.94	138.02	00120712	81
Cu,Sc	2	21773	40.5	2.5	33	75	29.3	1005.6	2.07	138.19	00120715	82
- -	3	20223	52.5	1.9	19	74	29.3	1004.3	1.97	138.02	00120718	83
Cs,Sc,Cu	3	22846	33.8	1.7	332	72	28.8	1005.2	2.05	138.19	00120721	84
Cu.St.Cs	1	23387	31.1	0.9	320	73	29.5	1007.1	1.92	138.02	00120800	85
As,Cu,Ac	4	24596	25.5	1.5	297	72	29.7	1005.8	2.08	138.15	00120803	86
As,Cu	2	22437	36.2	3.6	348	62	31.9	1002.9	1.99	138.02	00120806	87
-												

Cu,As	2	19800	56.3	3.5	343	71	29.4	1004.3	2.04	138.20	00120809	88
-	-	21969	39.1	0.4	66	72	29.5	1006.2	1.95	138.02	00120812	89
Sc,Cu	4	21949	39.3	1.5	350	68	29.5	1006.1	2.07	138.19	00120815	90
Sc,As	2	21728	40.5	1.8	18	72	29.1	1005.0	1.94	138.02	00120818	91
Sc,Ac,Cs	3	22857	33.7	1.8	277	70	28.6	1005.4	2.08	138.18	00120821	92
Ac,St,As	7	21043	45.8	0.1	150	73	29.3	1007.6	1.91	138.03	00120900	93
As,Cu	7	23290	31.4	1.3	40	69	29.8	1006.5	2.08	138.10	00120903	94
As,Cu	6	23831	28.7	1.6	344	70	29.7	1004.2	1.92	138.06	00120906	95
Cu,Cb,Ci	4	20623	49.0	4.4	353	68	29.5	1005.8	2.09	138.18	00120909	96
-	-	20619	49.0	2.7	336	69	29.9	1007.0	1.91	138.03	00120912	97
Ac,Sc	5	21626	41.3	2.3	4	68	29.5	1006.7	2.08	138.19	00120915	98
Ac,St	3	20475	50.1	2.1	343	70	29.3	1005.7	1.92	138.02	00120918	99
Cu,Cc,Cs,Cb	5	22282	37.2	0.2	183	71	28.8	1007.6	2.08	138.17	00120921	100
Cs,Cu,St,As	2	21889	39.5	1.1	303	72	29.8	1009.1	1.91	138.03	00121000	101
Cu,Sc,As	2	24897	24.2	0.8	298	69	29.8	1007.5	2.08	138.13	00121003	102
Cu,As	2	23435	30.5	4.0	341	69	29.7	1004.5	1.94	138.02	00121006	103
St,Ci	2	21522	41.9	7.8	0	68	29.7	1005.0	2.04	138.19	00121009	104
Cu,As	1	20191	52.7	2.6	5	68	29.8	1008.1	1.94	138.02	00121012	105
Cu,Ac,As	7	19619	58.1	1.9	10	73	29.3	1007.9	2.05	138.19	00121015	106
Ac,As	2	21594	41.4	3.2	9	74	29.1	1005.8	1.97	138.03	00121018	107
Cu,Ci	6	22689	34.5	2.6	13	77	28.7	1006.4	2.02	138.19	00121021	108
As,Cu,St,Cs	4	23681	29.6	1.9	29	71	29.0	1008.5	1.96	138.02	00121100	109
Cb,Cu,Sc,As,Ac	5	20869	46.8	4.5	30	71	29.7	1006.5	2.38	137.72	00121103	110
Cb,Cu	7	24367	26.2	6.5	33	81	28.6	1004.8	2.92	137.30	00121106	111
As,Ci,Cu,Cb	5	20152	52.8	4.9	22	73	29.3	1005.7	3.41	136.89	00121109	112
Ac,Cu	5	21077	45.2	5.9	33	76	29.1	1007.2	3.85	136.47	00121112	113
Cu,Cb,Cs,As	6	23321	31.2	4.0	36	74	29.3	1007.1	6.04	134.54	00121200	114
-	-	20305	51.6	8.7	65	82	27.9	1005.3	7.47	133.61	00121212	115

Fig. 6.2-1: Time-height cross sections of (a) equivalent potential temperature (K), (b) mixing ratio (g/kg), (c) zonal wind component (m/s), and (d) meridional wind component (m/s), respectively. Contour intervals are (a) 4 K, (b) 2 g/kg, (c) 5 m/s, and (d) 5 m/s.

6.3 Doppler radar observation

(1) Personnel

Masaki Katsumata (JAMSTEC): Principal Investigator Masaki Hanyu (GODI): Operation Leader Kunio Yoneyama (JAMSTEC) Hisayuki Kubota (FORSGC) Kaichi Moriwaki (JAMSTEC) Ken-ichi Shibayama (JAMSTEC) Souichiro Sueyoshi (GODI) Kiyotake Kouzuma (GODI)

(2) Objective

The Doppler radar is operated to obtain spatial and temporal distribution of rainfall amount, and structure of precipitating cloud systems. The objective of this observation is to investigate the life cycle of precipitating systems associated with the interseasonal oscillation.

(3) Methods

The hardware specification of this shipboard Doppler radar (RC-52B, manufactured by Mitsubishi Electric Co. Ltd., Japan) are;

Frequency:	5290 MHz
Beam Width:	better than 1.5 degrees
Output Power:	250 kW (Peak Power)
Signal Processor:	RVP-6 (Sigmet Inc., U.S.A.)
Inertial Navigation Unit:	DRUH (Honeywell Inc., U.S.A.)
Application Software:	IRIS/Open (Sigmet Inc., U.S.A.)

The hardware is calibrated by checking (1) frequency, (2) mean power output, (3) pulse repetition frequency (PRF) for once a day, and (4) transmitting pulse width and (5) receiver linearity at the beginning and the end of the intensive (stationary) observation period.

The observation is performed continuously from 27 November 12 December 2000. During the observation, the programmed "tasks" are repeated every 10 minutes. One cycle consists of one "volume scan" (consists of PPIs for 21 elevations) with Doppler-mode (160-km range for reflectivity and Doppler velocity), one-elevation "Surveillance" PPI with Intensity-mode (300-km range for reflectivity). In the interval of the cycles, RHI (Range Height Indicator) scans were operated to obtain detailed vertical cross sections with Doppler-mode. The parameters for the above three tasks are listed in Table 6.3-1.

	Surveillance PPI	Volume Scan	RHI			
Pulse Width	2 [us]	0.5	[us]			
Scan Speed	18 [de	g./sec.]	Automatically determined			
PRF	260 [Hz]	900 / 7	20 [Hz]			
Sweep Integration		32 samples				
Ray Spacing	about 1	.0 [deg.]	0.2 [deg.]			
Bin Spacing	250 [m]	250 [m] 125				
Elevations	0.5	0.5, 1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.1, 11.3, 12.8, 14.6, 16.6, 18.9, 21.6, 25.0, 29.0, 34.0, 40.0	0.0 to 85.0			
Azimuths	Full	Circle	Optional			
Range	340 [km]	160 [km]				
Software Filters	No filter	Dual-PRF velo	Dual-PRF velocity unfolding			
Gain Control	Fixed					

Table 6.3-1: Parameters for each task.

(4) Preliminary Results

As in other data, the radar data also shows drastic change of the atmospheric state on December 6: Fig. 6.3-1 shows the time series of radar echo area and estimated averaged rainfall within the domain of surveillance PPI. Before Decemter 6, several organized mesoscale convective systems, could be seen, as shown in Figs. 6.3-2 and 6.3-3. After December 6, in contrast, the radar echo was "vanished" with the change of surface wind from strong westerly to calm easterly. The detailed analyses are the future work.

(5) Data Archive

The inventory information of the Doppler radar data obtained during this cruise will be submitted to JAMSTEC DMO (Data Management Office). The original data will be archived at Ocean Research Department of JAMSTEC.

Fig. 6.3-1: Time series of the (a) ratio of the radar echo area within 200-km range and (b) averaged rainfall rate for 200-km range, derived from surveillance PPI, for the IOP. The solid and dashed line indicates the value for over 15dBZ area and over 40dBZ area, respectively.

Fig. 6.3-2: Radar reflectivity field which obtained by surveillance (intensity-mode) PPI at 15UTC on Nov.30, 2000.

Fig. 6.3-3: Radar reflectivity field which obtained by surveillance (intensity-mode) PPI at 00UTC on Dec.5, 2000.

6.4 Mie scattering lidar observation

(1) Personnel (* indicates on board personnel) Ichiro Matsui (NIES)* Atsushi Shimizu (NIES) Nobuo Sugimoto (NIES) Osamu Takahashi (TIT) Kazuhiro Asai (TIT)

(2) Objectives

Shipborne Mie scattering lidar observation of aerosols and clouds have been started using R/V Mirai. The purposes of the observation are to obtain global distribution and optical characteristics of aerosols and clouds which are used in the climatological study and in the study on the data reduction algorithms and data methods for space borne lidars.

(3) Method

The lidar employs a compact flashlamp pumped second-harmonics Nd:YAG laser. Mie scattering at 1064 nm and 532 nm, and depolarization ratio at 532 nm were recorded. System parameters are as follows;

Laser: Big Sky Laser CFR-200
Output power: 532 nm 50 mJ/Pulse, 1064 nm 100 mJ/pulse
Repetition rate: 10 Hz
Beam div.: 0.5 mrad
Receiver: Schmidt cassegrainian
Diameter: 280 mm
Field of view: 1 mrad
Detector: PMT (532 nm) , APD (1064 nm)
Data collection: LeCroy LC574AL
Measurement range: 0-24 km
Range resolution: 6 m
Sampling rate: 10 sec

(5) Preliminary results

Figure 6.4-1 shows a temporal variation of vertical profile. The range-corrected lidar signal at 532 nm is indicated with a color scale. Diurnal variation of boundary layer is not significant as seen in Fig.6.4-1. Low clouds are frequently observed at the top of the planetary boundary layer. Cirrus clouds are also frequently observed in an altitude range of 12 to 17 km.

(6) Data archive

All data will be archived at NIES and TIT, and submitted to JAMSTEC DMO.

Fig.6.4-1 Temporal variation of range-corrected lidar signal at 532 nm.

6.5 Ceilometrer observation

(1) Personnel

Masaki Katsumata (JAMSTEC): Principal Investigator Masaki Hanyu (GODI): Operation Leader Kunio Yoneyama (JAMSTEC) Hisayuki Kubota (FORSGC) Ichiro Matsui (NIES) Souichiro Sueyoshi (GODI) Kiyotake Kouzuma (GODI)

(2) Objectives

The information of the cloud base height and the liquid water amount around cloud base is important to understand the processes on the formation of the cloud. As few method to measure them, the ceilometer observation was carried out.

(3) Methods

We measured cloud base height and backscatter profiles using CT-25K ceilometer (Vaisala, Finland) from November 27 to the end of the cruise, December 19.

Major parameters for the measurement configuration are as follows;					
Laser source:	Indium Gallium Arsenide (InGaAs) Diode				
Transmitting wave length:	905 +-5 nm at 25 deg-C				
Transmitting average powe	r:8.9 mW				
Repetition rate:	5.57 kHz				
Detector:	Silicon avalanche photodiode (APD)				
Responsibility at 905 nm:	65 A/W				
Measurement range:	0 - 7.5 km				
Resolution:	50 ft in full range				
Sampling rate:	60 sec.				

On the archived dataset, cloud base height and backscatter profile are recorded with the resolution of 30 m (100 ft.).

(4) Preliminary results

The time series of the detected cloud base height during IOP is shown in Fig.6.5-1. In the upper panel, for Nov. 28 to Dec. 05, the height varies so widely, and we can see the continuous change of the cloud base from lower one to higher one. This continuous change reflects the passage of the well-developed (with high cloud top height) and inclined cloud. The lower panel, on the other hand, for Dec.05 to Dec.11, most of the detected cloud base are at lower than 1000 m. This indicates that the most of the detected clouds were low cumulus or stratus, with low cloud top. This drastic change corresponds to the end of the "westerly burst", observed in surface meteorological parameters (see Section 6.1) or radiosonde observations (see Section 6.2). The more detailed analyses are in future work.

(5) Data archive

Ceilometer data obtained during this cruise will be submitted to the DMO (Data Management Office) of JAMSTEC, and will be under their control.

Figure 6.5-1: Cloud base height during IOP

6.6 Aerosol and radiation measurement

(1) Personnel On board scientist:

Ichiro Matsui (NIES) Kunio Yoneyama (JAMSTEC)

Co-workers not on board Tatsuo Endoh (ILTS, Hokkaido University): Principle Investigator Tamio Takamura (CEReS, Chiba University) Sachio Ohta (Engineering environmental resource laboratory, Graduate school of engineering, Hokkaido University) Teruyuki Nakajima (CCSR, University of Tokyo)

(2) Objectives

One of the most important objects is the collection of calibration and validation data from the surface (Nakajima et al.1996, 1997 and 1999). It may be considered for the observation over the widely opening of the huge ocean to be desired ideally because of horizontal homogeneity. Furthermore, the back ground values of aerosol concentration are easily obtained over there (Ohta et al.1996, Miura et al. 1997 and Takahashi et al. 1996) and vertical profile of aerosol concentration are obtained by means of extrapolation up to the scale height. It is desired to compare the integrated value of these profile of aerosol concentration with optical thickness observed by the optical and radiative measurement (Hayasaka et al. 1998, Takamura et al.1994). Facing this object, the optical and radiative observations were carried out by the Sky Radiometer providing more precise radiation data as the radiative forcing for global warming.

(3) Methods

The instruments used in this work are shown as following in Table 6.6-1.

Sky Radiometer was measuring irradiating intensities of solar radiation through seven different filters with the scanning angle of 2-140 degree. These data will provide finally optical thickness, angstrom exponent and size distribution of atmospheric aerosols with a kind of retrieval method.

Optical Particle Counter was measuring the size of large aerosol particle and counting the number concentration with laser light scattering method and providing the size distribution in 0.3,0.5,1.0,2.0 and 5.0 micron of diameter with real time series display graphically.

(4) Preliminary Results

Information of data and sample obtained are summarized in Table 6.6-2. The sky radiometer has been going well owing to more calm and silent condition and circumstances about shivering problems provided by the R/V Mirai whose engines are supported by well defined cushions. Therefore, measured values will be expected to be considerably stable and provide good calculated parameters in higher quality. However, some noise waves were found to interfere the 16,13 and 12channel marine bands of VHF from sky radiometer. Fortunately the origin and source were identified by using a VHF wide band receiver and the interference waves were kept by fairly separating from two VHF antennae and decreased to recovery of 100%.

Aerosols size distribution of number concentration have been measured by the Particle Counter and data obtained are displayed in real time by a kind of time series *in situ* with 5stages of size range of 0.3, 0.5, 1.0, 2.0, and 5.0 micron in diameter.

(5) Data Archive

This aerosol data by the Particle Counter will be able to be archived soon and anytime. However, the data of other kind of aerosol measurements are not archived so soon and developed, examined, arranged and finally provided as available data after a certain duration. All data will archived at ILTS (Endoh), Hokkaido University, CCSR (Nakajima), University of Tokyo and CeRES(Takamura), Chiba University after the quality check and submitted to JAMSTEC within 3-year.

(6) References

Takamura, T., et al., 1994: Tropospheric aerosol optical properties derived from lidar, sun photometer and optical particle counter measurements. Applied Optics, Vol. 33, No. 30,7132-7140. Hayasaka, T., T. Takamura, et al., 1998: Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter. Applied Optics, 37(1998), No 6, 961-970.

Nakajima, T., T. Endoh and others(7 parsons) 1999: Early phase analysis of OCTS radiance data for aerosol remote sensing., IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, 1575-1585.

Nakajima, T., et al., 1997: The current status of the ADEOS- /GLI mission. Advanced and Next-generation Satellites , eds. H. Fujisada, G. Calamai, M. N. Sweeting, SPIE 2957, 183-190.

Nakajima, T., and A. Higurashi, 1996: AVHRR remote sensing of aerosol optical properties in the Persian Gulf region, the summer 1991. J. Geophys. Res., 102, 16935-16946.

Ohta, S., et al., 1997: Variation of atmospheric turbidity in the area around Japan. Journal of Global Environment Engineering, Vol.3, 9-21.

Ohta, S., et al., 1996: Chemical and optical properties of lower tropspheric aerosols measured at Mt. Lemmon in Arizona, Journal of Global Environment Engineering, Vol.2,67-78.

Takahashi, T., T. Endoh, et al., 1996: Influence of the growth mechanism of snow particles on their chemical composition. Atmospheric Environment, Vol.30, No. 10/11, 1683-1692.

Miura, K., S. Nakae, et al.,: Optical properties of aerosol particles over the Western Pacific Ocean, Proc. Int. Sym. Remote Sensing, 275-280, 1997.

Tuble 0.0 1 miormation of obtained data myomory (method)						
Item	Instrument	Position				
Optical thickness	Sky Radiometer (Prede, POM-01MK2)	Deck above Anti-rolling system				
Angstrom Expt.						
Aerosol size distribution	Particle Counter (Rion, KC-01C)	Compass deck				

Table 6.6-1	Information of	f obtained	data	inventory	(Method)
-------------	----------------	------------	------	-----------	----------

Data / Sample	Rate	Site	Object	Period
Sun & Sky Light	1/5 min.	Deck above Anti-	optical thickness	Nov.28 – Dec.19
		rolling system	Angstrom expt.	
Size distribution	1/2.5 min.	Compass deck	concentration of	Nov.28 – Dec.19
of aerosols			aerosols	

Table 6.6-2Data and Sample inventory

6.7 Surface Turbulent Flux Measurement

(1) Personnel

Hisayuki Kubota (Frontier Observational Research System for Global Change): Principal Investigator Hiroshi Ishida (Maritime University of Kobe / Frontier Observational Research System for Global Change) Osamu Tsukamoto (Okayama University) Kunio Yoneyama (JAMSTEC) Masaki Katsumata (JAMSTEC)

(2) Objectives

For the understanding of air-sea interaction, accurate measurements of surface heat and fresh water budgets are necessary as well as the momentum exchange through the sea surface. The surface turbulent fluxes of momentum, sensible heat and latent heat (water vapor) were measured with the eddy correlation method. These flux measurement data are combined with radiation and CTD measurements to lead the surface energy budget.

(3) Methods

A new flux measurement system was supplied by Frontier Observational Research System for Global Change. It consists of a turbulence measurement system (Kaijo Co.,Ltd) and a ship motion measurement system(Kanto Aircraft Instrument Co.,Ltd). A three dimensional sonic anemometer-thermometer (Kaijo, DA-600) and an infrared hygrometer (Kaijo, AH-300) were mounted on the top of the foremast. These turbulence instruments output signals of turbulent fluctuations of three components of wind velocity, air temperature and specific humidity. The anemometer measures relative wind velocities effected by the ship motion. The motions were measured with the motion sensors, such as an inclinometer (Applied Geomechanics, MD-900-T), accelerometers (Applied Signal Inc.,QA700-020) and rate gyros (Systron Donner, QRS11-0050-100). Fig. 6.7-1 shows the installation.

During the cruise in 1999 (MR00-K03), the international field experiment Nauru99, high frequency noise was found out in the motion signals when the R/V Mirai stayed at the point or cruised at speed of dead slow ahead. It was also found that bow and/or astern thrusters induced mechanical vibrations on the ship including the foremast. Therefore, in this cruise the lowpass filter was set in the flux measuring system to cutoff this high frequency noise.

These signals were sampled at 10 Hz with a PC based data logging system (Labview, National Instruments Co., Ltd). The turbulent fluxes of momentum, sensible heat and latent heat (water vapor) are calculated with the eddy correlation method including the ship motion correction. These complicated data will be processed after the cruise.

Sea surface temperature was continuously measured with a infrared radiation thermometer (TASCO THI-700) at the bow of the ship during the period of IOP. 1 minute mean values were recorded with a data logging system (CR-23X, Campbell Scientific Co.,Ltd).

(4) Results

The continuous measurements of turbulent fluctuations were carried out from November 27 to December 19. Favorable wind conditions are selected and analyzed later.

(5) Data archives

The raw data of turbulent fluctuation time series were archived in MO disks. All raw data are submitted to JAMSTEC DMO. The processed data of turbulent fluxes will be archived in Okayama University and open to public after the data processing and quality check.

Fig.6.7-1: Installation at the top of the foremast

6.8 CTD Measurements

6.8.1 CTD Observation

(1) Personnel

Kunio Yoneyama (JAMSTEC): Principal Investigator Hirokatsu Uno (MWJ): Operation Leader Asako Inoue (MWJ) Mikio Kitada (MWJ) Kaori Akizawa (MWJ) Takayoshi Seike (MWJ) Endro Soeaynto (BPPT) Eko Triarso (BPPT)

(2) Objectives

Investigation of the oceanic structure and its time variation by measuring vertical profiles of temperature and salinity.

(3) Methods

We observed vertical profile of temperature and salinity by CTD / Carousel (Conductivity Temperature Depth profiler / Carousel Multi Water Sampler). The sensors attached on CTD were temperature sensor, conductivity sensor, pressure sensor, and altimeter. Salinity was calculated by measurement values of pressure, conductivity and temperature. The CTD / Carousel was deployed from starboard on working deck. Descending rate and ascending rate were kept 1.2 m/sec respectively. Sea surface temperature (SST) measurement was done in each time, too.

The CTD raw data was acquired by SBE and stored on the hard disk of an IBM personal computer. Water samplings were made acquired in real time by using the SEASAVE utility from SEASOFT software (ver.4.232) provided during up-cast by sending a fire command from the computer. Every day we sampled water on 00:00 (UTC) at 1000 m to calibrate salinity data.

CTD measurements at stationary station (2N, 138E) have been carried out. CTD casting was conducted every 3hours (02:30, 05:30, 08:30, 11:30, 14:30, 17:30, 20:30, 23:30, UTC). Measurement depth was 1,000 m at 23:30, other cast measurement depth was 500 m. In total, 96 castings were carried out (see Table 6.8.1-1).

The CTD raw data was processed using SEASOFT (ver.4.232). Data processing procedures and used utilities of SEASOFT were as follows:

DATCNV: Converts the binary raw data to output on physical units.

Output parameters are scan number, depth, pressure, temperature, salinity, sigma-theta, potential-temperature, descent rate, conductivity. Simultaneously, this utility selects the CTD data when bottles closed to output on another file.

SECTION: Remove the unnecessary data.

WILDEDIT: Obtain an accurate estimate of the true standard deviation of the data.

Std deviations for Pass 1: 2

Std deviations for Pass 2: 10

Points per block: 100

BINAVG: Calculates the averaged data in every 1 db.

ROSSUM: Edits the data of water sampled to output a summary file.
SPLIT: Splits the data made in .CNV files into up-cast and down-cast files.
Specifications of the sensors are listed below.
Under water unit: SBE 9plus (S/N 09P9833-0575, Sea-Bird Electronics, Inc.) Calibrated Date: 27.Oct.1999
Temperature Sensor: SBE3-04/F (S/N 031359, Sea-Bird Electronics, Inc) Calibrated Date: 22.Aug.2000
Conductivity Sensor: SBE4-04/0 (S/N 041088, Sea-Bird Electronics, Inc) Calibrated Date: 22.Aug.2000
Altimeter sensor: PSA-9000 (S/N 396, Datasonics, Inc) Deck unit: SBE11plus (S/N 11P8010-0308, Sea-Bird Electronics, Inc.)
Carousel water sampler: SBE32 (S/N 329833-0026, Sea-Bird Electronics, Inc.)

(4) Preliminary Results

Vertical profiles at each CTD cast are attached in the following APPENDEX. Time variations of the vertical profile of temperature, salinity, and density (sigma-theta) are shown in Figs. 6.8.1-1 to 6.8.1-3. The state of a change in time of the SST is shown in Fig 6.8.1-4,5.

Note that in these figures, the correction of salinity data by sampled water is not applied.

(5) Data Archive

All raw and processed CTD data files were copied onto magnetic optical disks (MO) and submitted to JASTEC Data Management Office (DMO) and will be under their control.

Table 6.8.1-1 CTD cast table

Cast No.	File Name	Lat. [N]	Lon.[E]	Date	Start Time	End Time	Max. Press. [db]	Max. Wire Out [m]	SST [deg-C]	Depth [m]	Water Sampling
001	K7S001	01-55.40	138-07.82	2000/11/28	11:35	11:50	501.084	511	29.8	4241	
002	K7S002	02-04.57	138-01.76	2000/11/28	14:36	14:57	500.67	513	29.8	4334	
003	K7S003	01-55.14	138-11.07	2000/11/28	17:32	17:54	500.534	504	29.8	4349	
004	K7S004	02-00.10	138-01.70	2000/11/28	20:34	20:54	501.674	504	29.7	4261	
005	K7S005	01-59.15	138-11.51	2000/11/28	23:38	00:16	1002.769	1012	29.7	4259	
006	K7S006	01-54.86	138-01.39	2000/11/29	02:35	02:54	502.235	511	29.7	4688	
007	K7S007	02-04.94	138-08.95	2000/11/29	05:32	05:57	500.711	506	29.7	4250	
008	K7S008	01-55.04	138-04.59	2000/11/29	08:29	08:52	501.249	496	29.7	4575	
009	K7S009	02-04.69	138-06.29	2000/11/29	11:34	11:51	502.734	509	29.6	4219	
010	K7S010	01-54.75	138-05.17	2000/11/29	14:36	14:52	501.973	504	29.7	4563	
011	K7S011	02-05.31	138-04.38	2000/11/29	17:32	17:56	501.615	504	29.6	4278	
012	K7S012	01-54.98	138-08.67	2000/11/29	20:33	20:55	501.040	499	29.6	4252	
013	K7S013	02-03.89	138-01.62	2000/11/29	23:36	00:14	1002.325	1023	29.6	4332	
014	K7S014	01-59.90	138-11.73	2000/11/30	02:35	02:53	501.250	501	29.7	4209	
015	K7S015	01-56.33	138-01.64	2000/11/30	05:32	05:51	501.520	497	29.7	4586	
016	K7S016	02-04.93	138-11.52	2000/11/30	08:32	08:52	501.572	504	29.6	4496	
017	K7S017	01-54.79	138-01.68	2000/11/30	11:35	11:53	500.686	505	29.6	4692	
018	K7S018	02-04.62	138-07.19	2000/11/30	14:40	14:58	502.505	514	29.4	4212	
019	K7S019	01-54.68	138-05.98	2000/11/30	17:32	17:55	503.367	507	29.4	4562	
020	K7S020	02-04.87	138-01.37	2000/11/30	20:39	21:00	502.420	505	29.5	4322	
021	K7S021	01-57.12	138-11.26	2000/11/30	23:35	00:11	1003.773	1003	29.5	4350	
022	K7S022	01-58.80	138-01.46	2000/12/01	02:36	02:52	500.765	506	29.6	4410	
023	K7S023	01-57.31	138-11.52	2000/12/01	05:32	05:55	500.971	498	29.6	4349	
024	K7S024	02-00.33	138-01.32	2000/12/01	08:32	08:52	501.114	505	29.5	4265	
025	K7S025	02-01.25	138-11.18	2000/12/01	11:35	11:52	501.797	506	29.5	4153	
026	K7S026	01-56.65	138-01.40	2000/12/01	14:36	14:52	501.277	506	29.4	4555	
027	K7S027	02-04.99	138-11.15	2000/12/01	17:32	17:52	501.098	507	29.4	4416	
028	K7S028	01-55.09	138-01.11	2000/12/01	20:32	20:53	500.371	514	29.5	4681	
029	K7S029	02-04.92	138-07.75	2000/12/01	23:36	00:09	100.986	1016	29.5	4173	
030	K7S030	02-00.39	138-01.39	2000/12/02	02:34	02:50	501.527	503	29.6	4271	
031	K7S031	02-01.89	138-12.12	2000/12/02	05:31	05:52	501.369	498	29.6	4316	
032	K7S032	01-56.24	138-01.31	2000/12/02	08:32	08:51	502.039	510	29.6	4594	
033	K7S033	02-05.05	138-10.09	2000/12/02	11:35	11:52	500.774	508	29.4	4299	
034	K7S034	01-55.64	138-01.24	2000/12/02	14:35	14:51	505.766	507	29.5	4632	
035	K7S035	02-04.79	138-09.65	2000/12/02	17:30	17:52	502.155	513	29.5	4281	
036	K7S036	01-54.47	138-00.88	2000/12/02	20:31	20:51	500.724	503	29.5	4698	
037	K7S037	02-05.98	138-07.89	2000/12/02	23:35	00:08	1001.174	1005	29.5	4157	
038	K7S038	02-00.03	138-00.98	2000/12/03	02:24	02:42	500.987	507	29.6	4301	
039	K7S039	01-59.89	138-10.64	2000/12/03	05:32	05:52	501.415	503	29.6	4088	
040	K7S040	01-59.58	138-01.30	2000/12/03	08:32	08:52	500.707	512	29.6	4334	

041	K7S041	02-00.78	138-10.95	2000/12/03	11:34	11:51	500.969	507	29.5	4136
042	K7S042	01-55.02	138-11.92	2000/12/03	23:24	00:05	1000.906	1020	29.4	4369
043	K7S043	01-54.72	138-12.31	2000/12/04	05:36	05:55	502.146	499	29.4	4383
044	K7S044	01-57.76	138-11.55	2000/12/04	11:32	11:55	501.588	507	29.4	4350
045	K7S045	02-00.04	138-01.57	2000/12/04	14:36	14:55	501.219	504	29.4	4256
046	K7S046	02-00.40	138-11.29	2000/12/04	17:34	17:50	500.285	505	29.4	4147
047	K7S047	01-55.75	138-01.50	2000/12/04	20:35	20:51	501.234	507	29.4	4617
048	K7S048	02-05.11	138-11.12	2000/12/04	23:24	23:59	1004.573	1008	29.4	4419
049	K7S049	01-54.97	138-04.40	2000/12/05	02:24	02:40	501.421	504	29.4	4587
050	K7S050	02-05.29	138-09.74	2000/12/05	05:31	05:53	502.203	504	29.5	4299
051	K7S051	01-54.93	138-02.01	2000/12/05	08:31	08:52	501.661	517	29.5	4658
052	K7S052	02-04.49	138-11.22	2000/12/05	11:32	11:53	501.295	506	29.5	4348
053	K7S053	01-55.56	138-00.96	2000/12/05	14:31	14:53	501.278	504	29.5	4642
054	K7S054	02-05.15	138-06.57	2000/12/05	17:34	17:50	500.926	512	29.5	4166
055	K7S055	01-55.06	138-05.67	2000/12/05	20:35	20:51	501.198	507	29.4	4541
056	K7S056	01-59.97	138-07.56	2000/12/05	23:25	23:59	1000.973	1012	29.5	4326
057	K7S057	02-03.72	138-01.01	2000/12/06	02:22	02:39	501.975	507	29.6	4324
058	K7S058	01-57.66	138-11.11	2000/12/06	05:31	05:52	501.416	505	29.7	4325
059	K7S059	02-00.31	138-01.13	2000/12/06	08:31	08:54	500.098	508	30.0	4259
060	K7S060	01-59.80	138-11.19	2000/12/06	11:30	11:52	501.77	507	29.7	4130
061	K7S061	02-00.34	138-01.22	2000/12/06	14:32	14:53	501.88	501	29.7	4268
062	K7S062	01-59.45	138-10.93	2000/12/06	17:35	17:52	501.727	502	29.6	4212
063	K7S063	01-59.59	138-01.66	2000/12/06	20:36	20:53	501.918	498	29.6	4327
064	K7S064	02-00.61	138-11.70	2000/12/6	23:25	23:59	1005.746	1007	29.7	4188
065	K7S065	02-02.05	138-02.13	2000/12/07	02:25	02:44	500.763	498	29.9	4229
066	K7S066	01-55.69	138-05.69	2000/12/07	05:33	05:51	502.371	498	29.7	4510
067	K7S067	02-05.07	138-09.32	2000/12/07	08:32	08:52	501.987	500	30.2	4265
068	K7S068	01-56.66	138-01.76	2000/12/07	11:32	11:54	501.49	499	30.1	4533
069	K7S069	02-02.53	138-11.52	2000/12/07	14:33	14:54	502	502	29.9	4298
070	K7S070	01-58.27	138-01.48	2000/12/07	17:34	17:53	501.214	499	29.8	4415
071	K7S071	02-02.77	138-11.44	2000/12/07	20:34	20:51	501.105	501	29.8	4279
072	K7S072	01-56.84	138-01.02	2000/12/7	23:22	23:54	1001.737	1009	29.8	4568
073	K7S073	02-04.97	138-10.99	2000/12/08	02:22	02:37	501.341	499	29.9	4386
074	K7S074	01-59.39	138-01.33	2000/12/08	05:32	05:52	502.02	499	30.5	4340
075	K7S075	02-02.21	138-11.72	2000/12/08	08:33	08:55	502	499	30.1	4318
076	K7S076	01-56.74	138-01.64	2000/12/08	11:33	11:55	501.466	499	30.2	4520
077	K7S077	02-03.63	138-11.43	2000/12/08	14:32	14:54	501.118	504	29.9	4266
078	K7S078	01-56.84	138-01.43	2000/12/08	17:35	17:51	500.485	506	29.9	4512
079	K7S079	02-04.87	138-11.07	2000/12/08	20:32	20:47	501.613	500	29.8	4396
080	K7S080	01-54.99	138-00.91	2000/12/8	23:22	23:55	1003.246	1010	29.9	4687
081	K7S081	02-04.91	138-08.72	2000/12/09	02:25	02:41	501.324	498	29.9	4213
082	K7S082	01-54.94	138-02.30	2000/12/09	05:30	05:52	501.221	499	30.3	4651
083	K7S083	02-05.33	138-11.30	2000/12/09	08:32	08:54	501.638	498	30.0	4510
084	K7S084	01-54.90	138-01.66	2000/12/09	11:30	11:49	501.462	501	30.0	4678
085	K7S085	02-05.18	138-11.79	2000/12/09	14:30	14:50	501.397	500	29.8	4544

086	K7S086	01-55.36	138-01.16	2000/12/09	17:34	17:51	501.122	500	29.8	4654	
087	K7S087	02-05.22	138-10.09	2000/12/09	20:33	20:50	501.162	498	29.8	4308	
088	K7S088	01-55.28	138-01.01	2000/12/09	22:22	22:56	1001.662	997	29.9	4654	
089	K7S089	02-05.25	138-09.30	2000/12/10	02:22	02:41	501.183	498	29.7	4264	
090	K7S090	01-57.95	138-01.10	2000/12/10	05:29	05:48	501.756	498	30.0	4391	
091	K7S091	02-02.19	138-11.78	2000/12/10	08:32	08:50	502.27	501	30.0	4330	
092	K7S092	01-57.59	138-01.47	2000/12/10	11:31	11:52	501.529	498	29.9	4420	
093	K7S093	02-02.31	138-11.36	2000/12/10	14:31	14:53	502.233	499	29.8	4288	
094	K7S094	01-58.61	138-01.48	2000/12/10	17:34	17:50	501.244	509	29.8	4417	
095	K7S095	02-01.28	138-11.55	2000/12/10	20:35	20:50	501.374	502	29.7	4186	
096	K7S096	01-58.10	138-01.24	2000/12/10	23:24	23:57	1000.664	1001	29.8	4415	

Fig 6.8.1-1: Temporal variations of the vertical profile of temperature

Fig 6.8.1-2: Temporal variations of the vertical profile of salinity

Fig 6.8.1-3: Temporal variations of the vertical profile of density (sigma-theta)

Fig. 6.8-4: Temporal variation of the sea surface temperature obtained from bucket water sampling.

Sea Surface Temperature [deg-C]

Fig. 6.8-5: Same as Fig. 6.8-4, but for each local time.

6.8.2 Salinity Measurements of Sampled Water

(1) Personal

Hirokatsu Uno (MWJ): Operation Leader Asako Inoue (MWJ)

(2) Objectives

Calibration of the salinity data obtained by CTD.

(3) Methods

Salinity was measured by a Guildline Autosal salinometer model 8400B, which was modified by addition of an Ocean Science International peristalitic-type sample intake pump. A double conductivity ratio was defined as median of 31 times readings of the salinometer. Data collection started after 5 seconds and it took about 10 seconds to collect 31 reading by a personal computer.

Water sampling was done at CTD cast (00UTC) of the stationary station in 2N, 138E. The water sampling stratum was all 1000 m.

The salinometer was operated in the air-conditioned ship's laboratory at bath temperature of 24°C. Room temperature varied from approximately 23.5°C to 23.7°C.

1. Salinity Sample Bottles

The bottles in which the salinity samples are collected and stored are 250 ml brown glass bottles with screw caps.

2. Salinity Sample Collection and Temperature Equilibration

Each bottle was rinsed three times with sample water and was filled to the shoulder of the bottle. Its cap was also thoroughly rinsed. Salinity samples were stored more than 24 hours in same laboratory were the salinity measurement was made.

3. Standardization

Autosal model 8400B was standardized before and after sequence of measurements by use of IAPSO Standard Seawater batch P137 (conductivity ratios were 0.99990).

4. Sub-Standard Seawater

We also used sub-standard seawater which was deep-sea water filtered by pore

Size of 0.45 micrometer and stored in a 20 liter cubical made of polyethylene and stirred for at least 24 hours before measuring. It was measured every 8 samples in older to check the drift.

(4) Preliminary results

The preliminary results are shown in Table 6.8.2. Standard deviation of difference of salinity for sample water taken from Niskin bottles is 0.0011.

(5) Data archive

The data of sample measured and worksheets of calculation of salinity concentration were stored on floppy disks. All data will be submitted to JAMSTEC Data Management Office (DMO) and under its control.

Cast	File Name	Depth(m)	Sal.(psu)				Avg.	CTD Sal	Difference
5	K7S005	1000	34.5502	34.5506	34.5504	34.5508	34.5505	34.5514	0.0009
13	K7S013	1000	34.5510	34.5510			34.5510	34.5508	-0.0002
21	K7S021	1000	34.5520	34.5518	34.5518		34.5518	34.5520	0.0002
29	K7S029	1000	34.5527	34.5529	34.5531	34.5533	34.5530	34.5535	0.0005
37	K7S037	1000	34.5527	34.5531	34.5529	34.5533	34.5530	34.5545	0.0015
42	K7S042	1000	34.5517	34.5514	34.5517		34.5516	34.5523	0.0007
48	K7S048	1000	34.5531	34.5533	34.5498	34.5498	34.5515	34.5548	0.0033
56	K7S056	1000	34.5525	34.5522	34.5498	34.5498	34.5511	34.5529	0.0018
64	K7S064	1000	34.5500	34.5500			34.5500	34.5507	0.0007
72	K7S072	1000	34.5512	34.5514	34.5510		34.5512	34.5535	0.0023
80	K7S080	1000	34.5494	34.5492	34.5496		34.5494	34.5510	0.0016
88	K7S088	1000	34.5490	34.5490	34.5486		34.5489	34.5509	0.0020
96	K7S096	1000	34.5453	34.5453	34.5451		34.5452	34.5483	0.0031
								Avg.=	0.0014
								Std=	0.0011

Table 6.8.2-1: Difference of salinity data between CTD and sampled water

6.9 Shipboard ADCP observation

(1) Personnel

Masaki Hanyu (GODI): Operation Leader Kiyotake Kouzuma (GODI) Souichiro Sueyoshi (GODI)

(2) Objectives

The ocean current profiles are measured for the use of large fields of oceanography, as the basic dataset.

(3) Methods

We measured current profiles by VM-75 (RD Instruments Inc., U.S.A.) shipboard ADCP (Acoustic Doppler Current Profiler) from 27 November 2000 to 20 December 2000. The N-S (North-South) and E-W (East-West) velocity components of each depth cell [cm/s], and echo intensity of each depth cell [dB] are measured.

Major parameters for the measurement configuration are as follows:

Frequency:	75 kHz
Average:	every 300 sec
Depth cell length:	1600cm
Number of depth cells:	40
First depth cell position:	30.9m
Last depth cell position:	654.9m
ADCP ensemble time:	32.4 sec
Ping per ADCP raw data:	16

(4) Preliminary Results

Fig.6.9-1, 2 shows time series of current velocity component profile during the IOP. Fig.6.9-3 shows time series of current velocity vector profile during the IOP.

(5) Data Archive

ADCP data obtained in this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be under their control.

(6) Remarks

ADCP frequently stopped from the start of the leg to 7 December because of trouble on deck unit cooling fan. We used Navigation-track data to convert from RAW data to RDI-ASCII data.

Fig. 6.9-1 Time-depth current velocity component (E-W) during the IOP

Fig.6.9-2 Time-depth current velocity component (N-S) during the IOP

Fig.6.9-3 Time-depth current velocity vectors during the IOP

6.10 Sea surface water monitoring

(1) Personnel

Takayoshi SEIKE (Marine Works Japan LTD)

(2) Objectives

In order to measure sea surface temperature, salinity, dissolved oxygen and fluorescence along the ship's track with integrated monitoring system of surface seawater.

(3) Methods

This system can measure temperature, salinity, dissolved oxygen, fluorescence and particle size of surface water continuously on real time. It set in the sea surface monitoring laboratory on this ship. Sea surface water is pumped up to the laboratory and flowed through a vinyl-chloride pipe. The flow rate is controlled by several valves.

This system is connected to shipboard LAN-system. Measured data is stored in a hard disk of computer every one minute.

The measured duration is from 27 November to 20 December, 2000. The flow rate is measured with two flow meters and each values were checked everyday.

Specifications of the sensors were listed below.

a) Temperature and Salinity sensor SEACAT THERMOSALINOGRAPH Model: SBE-21, SEA-BIRD ELECTRONICS, INC. Serial number: 2113117-2175 (Temperature sensor is first, Salinity is second) Measurement range: -5 to +35 , 0 to 6.5 S m⁻¹ Accuracy: 0.01 6month⁻¹, 0.001 S m⁻¹ month⁻¹ Resolution: 0.001 , 0.0001 S m⁻¹

b) Dissolved Oxygen sensor

Model: 2127, Oubisufair Laboratories Japan INC. Serial number: 31757 Measurement range: 0 to 14 ppm Accuracy: $\pm 1\%$ at 5 of correction range Stability: 1% month⁻¹

c) Fluorometer

Model: 10-AU-005, TURNER DESIGNS Serial number: 5562 FRXX Detection limit: 5 ppt or less for chlorophyl a Stability: 0.5% month⁻¹ of full scale

d) Particle Size sensor
 Model: P-05, Nippon Kaiyo LTD.
 Serial number: P5024
 Measurement range: 0.02681 mmt to 6.666 mm

```
Accuracy: ± 10% of range

Reproducibility: ± 5%

Stability: 5% week<sup>1</sup>

e) Flow meter

Model: EMARG2W, Aichi Watch Electronics LTD.

Serial number: 8672

Measurement range: 0 to 30 l min<sup>-1</sup>

Accuracy: ± 1%

Stability: ± 1% day<sup>-1</sup>
```

(4) Preliminary results

Preliminary data of salinity, temperature, fluorescence and dissolved oxygen at sea surface between 28 Nov. and 11 Dec. [UTC] are shown in Figs. 6.10-1 to 6.10-4. They show the respective trend of salinity, temperature, fluorescence and dissolved oxygen distributions on the ship's track every ten minutes (average). Fig. 6.10-1 is the figure of salinity. Fig. 6.10-2 is the figure of temperature (RMT). Fig. 6.10-3 is the figure of fluorescence. Fig. 6.10-4 is the figure of dissolved oxygen.

(5) Data archive

The data were stored on a magnetic optical disk, which will be kept in Ocean Research Department, JAMSTEC.

(6) Remarks

The instruments are in maintenance for the following two periods.

- <1> Dec.01, 17:36 18:53
- <2> Dec.08, 19:37 21:11

Fig. 6.10-1: Temporal variation of the salinity.

Fig. 6.10-2: Temporal variation of the temperature.

Fig. 6.10-3: Temporal variation of the fluorescence.

Fig. 6.10-4: Temporal variation of the dissolved oxygen.

6.11 Underway geophysical observation

(1) Personnel

Masaki Hanyu (GODI): Operation Leader Kiyotake Kouzuma (GODI) Souichiro Sueyoshi (GODI)

(2) Objectives

The spatial and temporal variation of the parameters at / below the sea bottom --- gravity, magnetic force and sea bottom depth --- are basic data for the many fields of geophysics. However, the chance to measure these parameters is rare. The observation in this cruise is carried out to accumulate these data to fill the basic dataset of the geophysics.

(3) Methods

Bathymetry data was obtained by using SeaBeam2112.004 (SeaBeam, Inc., USA) 12kHz multinarrow beam echo sounding system. The sea surface gravity was obtained by S-116 (LaCoste-Romberg, U.S.A.) onboard gravity meter. The surface magnetic force was obtained by three-axis fluxgate magnetometer (Tierra Tecnica, Japan) at 8 Hz sampling rate.

All of these observations were carried out from 28 November 2000 to 19 December 2000, in the open seas, Japanese EEZ and Japanese territorial seas.

(4) Preliminary results

The results will be public after the analyses in future.

(5) Data archives

The dataset obtained in this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be archived there.