# R/V Mirai Cruise Report MR01-K01 (Leg 1 – 2)

February 14 – March 23, 2001 Tropical Ocean Climate Study (TOCS)

> Edited by Kentaro Ando Toru Nakamura

Japan Marine Science and Technology Center (JAMSTEC)

# **MR01-K01 TRITON/TOCS CRUISE**

# Feb. 14 – Mar. 23, 2001

# Sekinehama – Hachinohe – Guam – Yokosuka



### Contents

- 1. Cruise name and code
- 2. Introduction and observation summary
- 2.1 Introduction
- 2.2 Overview
- 2.3 Observation summary
- 3. Period, ports of call, cruise log and cruise track
- 3.1 Period
- 3.2 Ports of call
- 3.3 Cruise log
- 3.4 Cruise track
- 4. Chief scientist
- 5. Participants list
- 5.1 R/V MIRAI scientist and Technical staff
- 5.2 R/V MIRAI Crew members
- 6. General Observation
- 6.1 Meteorological measurement
  - 6.1.1 Surface meteorological observation
- 6.1.2 Ceilometer
- 6.2 CTD/XCTD
  - 6.2.1 CTD
  - 6.2.2 XCTD
- 6.2.3 Salinity measurement of sampled seawater for validation of CTD salinity data
- 6.3 Continuous monitoring of surface water
- 6.3.1 Continuous monitoring of surface water
- 6.3.2 Nutrients monitoring in sea water
- 6.4 Shipboard ADCP
- 6.5 Underway geophysics
- 6.5.1 Sea surface gravity
- 6.5.2 Surface three component magnetometer
- 6.5.3 Multi-narrow beam echo sounding system
- 7. Special Observation
- 7.1 TRITON mooring
- 7.1.1 TRITON mooring operation
- 7.1.2 Inter-comparison between shipboard CTD and TRITON transmitted data
- 7.2 ARGO float
- 7.2.1 ARGO float launching
- 7.2.2 ARGO sensor test
- 7.3 Lidar observation
- 7.4 Aerosol measurement
- 7.5 Atmospheric and oceanic CO2 measurements
- 7.6 ADCP subsurface mooring
- 7.7 Ocean Lidar
- 8. Ship Operations during General and Special Observation
- 8.1 Ship's movement at engine stopped
- 8.2 Ship's Handling for Deployment TRITON buoys and ADCP mooring system
- 8.3 Ship's Handling for Recovery TRITON buoys and ADCP mooring system

## 1. Cruise name and Code

Cruise name: Tropical Ocean Climate Study Cruise Code: MR01-K01 Under taking institute: Japan Marine Science and Technology Center (JAMSTEC) 2-15, Natsushima, Yokosuka, 237, Japan

Ship: R/V Mirai

Captain: Masaharu Akamine

#### 2. Introduction and observation summary

#### 2.1. Introduction

The purpose of this cruise is to observe physical oceanographic conditions in the western tropical Pacific Ocean for better understanding of air-sea interaction affecting on the ENSO (El Nino/Southern Oscillation) phenomena and its related global climate change. The surface layer in the western tropical Pacific Ocean is characterized by high sea surface temperature area, which plays major role in driving global atmospheric circulation. Especially, El Nino occurs when warm water migrates eastward, and causes short-term climate changes in the world dramatically. For example, the western Pacific area has very small rainfall when the "El Nino" occurred, as in 1997-98. This atmospheric and oceanic system is so complicated and interacted each other, and we still do not have enough knowledge about it. This climate system has the long time scale. To investigate the mechanism, we need precise and detailed data for the long period continuously. Therefore, ocean and atmosphere observing mooring array is effective to obtain such data set. The major mission of this cruise is to deploy TRITON buoys developed by JAMSTEC for the long term measurements of ocean and atmosphere in the western tropical Pacific Ocean.

The other purposes of this cruise are,

1) CO2 measurements in the boundary layer by Meteorological Research Institute of Japan,

2) Lidar backscatter measurements of lower atmosphere by National Institute of Environment of Japan, Tohoku Institute of Technology and CRI,

3) ARGO floats launching, and evaluation experiment of ARGO sensors by free-rising profiler,

4) Surface meteorological measurement, underway geophysical measurements, and

5) Validation experiment for ocean lidar system. These measurements and experiments are also made successfully during this cruise.

#### 2.2. Overview

| TRITON buoys deployment:                         | 8 sites                  |
|--------------------------------------------------|--------------------------|
| TRITON buoys recovery:                           | 6 sites                  |
| TRITON buoy repair:                              | 2 sites                  |
| ADCP subsurface buoy deployment:                 | 1 site                   |
| ADCP subsurface buoy recovery:                   | 1site                    |
| CTD (Salinity, Temperature, Depth):              | 14 casts down to 1000m   |
| XCTD (Salinity, Temperature, Depth):             | 43 times down to 1000m   |
| Surface meteorology:                             | continuous               |
| ADCP measurements:                               | continuous               |
| Surface temperature, salinity measurements by it | ntake method: continuous |

Other specially designed observations have been carried out successfully. All observations are described in details in this report.

#### 2.3. Observation summary

This MR01-K01 cruise has been carried out after the historical 1997-1998 El Nino and followed 1998-2000 La Nina events. The vertical section of temperature along the 156E line by CTD and XCTD showed that the sea surface temperature (SST) was more than 29 degree-C in almost casts, and the depth of 20 degree-C was around 200 meters and deep between 5 N and 5 S. Compared with the same vertical section in MR00-K02, SST became little bit higher than in March 2000, especially between 2 N and 2S, suggesting the oceanic condition returned (or is returning) to the normal condition after the La Nina. Actually, the equatorial upwelling during this cruise suggested by temperature contour showed weaker upwelling than in MR00-K02. The vertical section of salinity showed the surface strong meridional front down to 100 meters between 2N and 5N, changing the salinity from 35.4 at 2N to 34.5 at 5N. On the equator, the strong meridional front was found, too. Compared with the same vertical section in MR00-K02, the surface salinity showed from 35.3 at 2N to 34.2 at 5N. The comparison of salinity section in two cruises showed large changes which cannot be found in the temperature section, and maybe showing clearer signal of inter-annual phenomena in this area.

#### 3. Period, ports of call, cruise log and cruise track

3.1. Periods

February 14, 2001 - March 23, 2001

3.2. Ports of call

Sekinehama, Japan (February 14, 2001) Hachinohe, Japan (February 15, 2001) Guam, USA (March 17-18, 2001) Yokosuka, Japan (March 23, 2001) 3.3. Cruise Log February 14 (Wed.) 14:00 Departure from Sekine-hama (Japan) 14:30-15:00 Boat drill 15:00-16:00 Instruction for safety life on Mirai 16:45-17:00 Konpira-San ceremony February 15 (Th.) 08:00 Arrival at Hachinohe (Japan) Immigration 13:30 Departure from Hachinohe 15:00-16:00 Meeting for this cruise 18:00 all continuous observations start February 16 (Fri.) 00:26 XCTD01 (38-19.96N, 143-03.39E) 01:52 XCTD02 (38-00.00N, 143-12.30E) 03:52 XCTD03 (37-39.97N, 143-23.55E) 05:43 XCTD04 (37-21.56N, 143-34.59E) 06:03 Float01 (37-20.13N, 143-35.25E) 07:47 XCTD05 (36-59.89N, 143-43.98E) 09:09 XCTD06 (36-41.68N, 143-51.19E) 09:23-09:43 CTD01 (36-39.84N, 143-52.19E) 10:48 Float02 (36-40.14N, 143-55.32E) 12:36 XCTD07 (36-18.40N, 144-04.66E) 13:57 XCTD08 (36-00.91N, 144-12.18E) 14:05 Float03 (35-59.81N, 144-13.36E) 15:38 XCTD09 (35-40.35N, 144-22.45E) 17:02 XCTD10 (35-20.82N, 144-31.75E) 17:09 Float04 (35-19.92N, 144-32.22E)

18:35 XCTD11 (34-59.89N, 144-41.15E)

3-1

19:50 XCTD12 (34-40.74N, 144-49.09E)
20:02 Float05 (34-38.81N, 144-49.84E)
21:15 XCTD13 (34-19.99N, 144-56.96E)
22:29 XCTD14 (33-59.96N, 144-59.72E)
22:38 Float06 (33-58.21N, 145-00.05E)
22:55 XCTD15 (33-39.99N, 145-10.22E)
February 17 (Sat.)

01:34 XCTD16 (33-20.97N, 145-27.55E) 01:43 Float07 (33-20.09N, 145-28.62E) 03:18 XCTD17 (33-00.01N, 145-38.14E) 04:42 XCTD18 (32-40.90N, 145-47.00E) 04:50 Float08 (32-39.83N, 145-47.56E) 06:17 XCTD19 (32-19.71N, 145-55.95E) 07:40 XCTD20 (32-01.08N, 146-04.96E) 07:48 Float09 (31-59.82N, 146-05.49E) 09:58 XCTD21 (31-30.05N, 146-18.29E) 12:03 XCTD22 (31-01.55N, 146-30.99E) 12:12 CTD02 (31-00.28N, 146-31.82E) 14:13 Float10 (31-00.28N, 146-30.09E) 16:38 XCTD23 (30-29.94N, 146-44.72E) 18:48 XCTD24 (30-01.01N, 146-58.22E) 18:54 Float11 (30-00.26N, 146-58.62E) 21:08 XCTD25 (29-30.00N, 147-11.75E) 23:07 XCTD26 (29-01.90N, 147-24.34E) 23:27-01:09 CTD03 (29-00.33N, 147-25.15E) February 18 (Sun.) 01:14 Float12 (28-59.77N, 147-25.61E) 03:25 XCTD27 (28-30.01N, 147-38.18E)

03:25 XCTD27 (28-30.01N, 147-38.18E) 05:33 XCTD28 (28-00.01N, 147-51.34E) 05:39 Float13 (27-59.29N, 147-51.84E) 07:39 XCTD29 (27-31.56N, 148-04.87E) 07:50 CTD04 (27-30.10N, 148-05.12E) 11:40 XCTD30 (27-00.32N, 148-16.98E) 13:47 XCTD31 (26-30.01N, 148-30.38E) 15:53 XCTD32 (26-00.14N, 148-43.12E) February 19 (Mon.)-21(Wed.)

Cruising towards 8N156E

February 22 (Th.) 08:55-13:13 Deployment of the 8N156E TRITON buoy 13:53-14:30 CTD05 (8-01.18N, 155-58.75E) February 23 (Fri.) 07:56-11:50 Recovery of the 8N156E TRTION buoy (old buoy) 16:03 XCTD33 (6-59.99N, 155-59.53E) 20:02 XCTD34 (5-59.82N, 156-01.90E) February 24 (Sat.) 08:52-17:22 Deployment of the 5N156E TRITON buoy 17:54-18:31 CTD06 (4-59.51N, 156-01.05E) February 25 (Sun.) 07:51-11:21 Recovery of the 5N156E TRITON buoy (old buoy) 15:22 XCTD35 (3-59.97N, 156-00.27E) 19:18 XCTD36 (2-59.71N, 155-55.88E) February 26 (Mon.) 08:49-12:06 Deployment of the 2N156E TRITON buoy 13:26-14:02 CTD07 (2-03.27N, 156-01.07E) 15:07-15:43 CTD08 (1-57.59N, 155-51.98E) 15:48-16:10 Measurement of the anchor position of the old 2N156E TRITON buoy 16:20-17:06 Calibration of the three component magnetometer February 27 (Tue.) 07:55-10:45 Recovery of the 2N156E TRITON buoy (old) 12:58-14:13 Acoustic releaser test (1-25.29N, 155-55.09E) 14:36-14:54 ARGO sensor free-rising profile test (1-22.68N, 155-58.00E) 16:42 XCTD37 (0-59.71N, 155-58.91E) February 28 (Wed.) 07:58-09:18 Recovery of the ADCP mooring at 0N156E 10:05-11:27 ARGO sensor free-rising profile test (0-01.13N, 156-12.82E) 13:02-14:21 Deployment of the ADCP mooring at 0N156E March 1 (Th.) Day off March 2 (Fri.) 08:51-12:04 Deployment of the 0N156E TRITON buoy 13:37-14:11 CTD09 (0-00.10N, 155-57.30E) 15:00 Measurement of the anchor position of the 0N156E TRITON buoy March 3 (Sat.)

07:51-10:27 Recovery of the 0N156E TRITON buoy (old)

14:20 XCTD38 (1-00.07S, 155-53.03E)

March 4 (Sun.)

07:58-09:37 ARGO sensor free-rising profile test (1-30.19S, 155-55.64E)

10:12-11:33 Acoustic releaser test (1-30.07S, 155-53.95E)

13:27-15:08 ARGO sensor free-rising profile test (1-30.09S, 155-55.67E)

March 5 (Mon.)

08:53-11:21 Deployment of the 2S156E TRITON buoy

13:24-14:02 CTD10 (2-00.22S, 155-57.11E)

March 6 (Tue.)

07:49-10:06 Recovery of the 2S156E TRITON buoy

14:37 XCTD39 (3-00.01S, 155-58.68E)

18:38 XCTD40 (4-00.16S, 156-00.04E)

March 7 (Wed.)

08:53-10:55 Deployment of the 5S156E TRITON buoy

11:22-11:56 CTD11 (5-00.06S, 156-01.35E)

13:40-15:18 ARGO sensor free-rising profile test (5-00.04S, 156-24.11E)

March 8 (Th.)

07:52-10:01 Recovery of the 5S156E TRITON buoy (old)

13:04-14:38 ARGO sensor free-rising profile test (4-57.10S, 156-24.02E)

March 9 (Fri.)

08:32-11:30 ARGO sensor free-rising profile test (4-56.95S, 156-24.01E)

11:30-12:12 Calibration of the three components magnetron

March 10 (Sat.)

Cruising to the 2N156E TRITON buoy position.

March 11 (Sun.)

07:58-08:51 Replacement of the antenna on the 2N156E TRITON buoy

13:52-14:50 Replacement of the transmitter system on the 2N156E TRITON buoy March 12 (Mon.)

Cruising to the 0N147E TRITON position

March 13 (Tue.)

07:55-09:15 Replacement of the wind sensor on the 0N147E TRITON

09:49-11:27 CTD12 (0-05.76N, 147-01.14E)

14:00-16:33 Releasers test at the planned depth

18:11 XCTD41 (1-00.03N, 147-12.18E)

March 14 (Wed.)

09:21-12:20 Deployment of the 2N147E TRITON

13:27-14:06 CTD13 (2-06.95N, 146-56.15E)

17:35 XCTD42 (3-00.02N, 146-58.36E)

21:27 XCTD43 (4-00.02N, 147-00.17E)

March 15 (Th.)

08:51-11:56 Deployment of the 5N147E TRITON

13:22-14:02 CTD14 (4-58.50N, 146-59.64E)

March 16 (Fri.)

Cruising to Guam

March 17 (Sat.)

09:00 Arrival to Guam

March 18 (Sun.)

09:00 Departure from Guam

11:30- Start Ocean-lidar system

13:00-13:18 Ocean particle and backscatter measurement profiler (100m) March 19 (Mon.)

13:01-13:13 Ocean particle and backscatter measurement profiler (100m) March 20 (Tue.)

13:01-13:15 Ocean particle and backscatter measurement profiler (100m) March 21 (Wed.)

13:00-13:13 Ocean particle and backscatter measurement profiler (100m) March 22 (Th.)

09:56-10:10 Ocean particle and backscatter measurement profiler (100m) March 23 (Fri.)

09:00 Arrival to Yokosuka-shinko, and unloading all instruments and gears

# 3.4 Cruise Track



MR01-K01 Curise Track



FLOAT & CTD & XCTD



TRITON & ADCP



CTD & XCTD

## 4. Chief scientist

Kentaro Ando Researcher Ocean Research Department

Japan Marine Science and Technology Center

2-15, Natsushima, Yokosuka, Kanagawa, Japan

# 5 Participants List

# 5.1 R/V MIRAI scientist and Technical staff

| Name              | Institute             | On board            |
|-------------------|-----------------------|---------------------|
| Kentaro Ando      | JAMSTEC               | Sekinehama-Yokosuka |
| Toru Nakamura     | JAMSTEC               | Sekinehama-Yokosuka |
| Takeshi Kawano    | JAMSTEC               | Guam- Yokosuka      |
| Kasis Inape       | NWS/PNG               | Sekinehama-Guam     |
| Motoki Miyazaki   | FORSGC                | Sekinehama-Yokosuka |
| Koichi Goto       | KANSO                 | Sekinehama-Yokosuka |
| Osamu Takahashi   | Tohoku Inst. of Tech. | Sekinehama-Yokosuka |
| Fumitaka Yoshiura | GODI                  | Sekinehama-Yokosuka |
| Wataru Tokunaga   | GODI                  | Sekinehama-Yokosuka |
| Hirokatsu Uno     | MWJ                   | Sekinehama-Guam     |
| Takeo Matsumoto   | MWJ                   | Sekinehama-Yokosuka |
| Asako Inoue       | MWJ                   | Sekinehama-Guam     |
| Hiroshi Matsunaga | MWJ                   | Sekinehama-Guam     |
| Miki Yoshiike     | MWJ                   | Sekinehama-Yokosuka |
| Kenichiro Sato    | MWJ                   | Sekinehama-Yokosuka |
| Taeko Ohama       | MWJ                   | Sekinehama-Guam     |
| Kaori Akizawa     | MWJ                   | Sekinehama-Guam     |
| Kei Suminaga      | MWJ                   | Sekinehama-Guam     |
| Shigehiko Ohara   | MWJ                   | Sekinehama-Guam     |
| Masato Muranaka   | MWJ                   | Sekinehama-Guam     |
| Ai Yasuda         | MWJ                   | Guam- Yokosuka      |
| Keisuke Wataki    | MWJ                   | Guam- Yokosuka      |

Japan Marine Science and Technology Center(JAMSTEC) 2-15, Natsushima-cho, Yokosuka 237-0061, JAPAN TEL : +81-468-66-3811 FAX : +81-468-65-3202

National Weather Service/PNG P.O.Box 1240, Boroko, Papua New Guinea

Frontier Observational Research System for Global Change(FORSGC) 2-15, Natsushima-cho, Yokosuka 237-0061, JAPAN

Kansai Environmental Engineering Center Co., LTD (KANSO) 1-3-5, Azuchimachi, Chuo-ku, Osaka 541-0052, JAPAN

Tohoku Institute of Technology

35-1, Yagiyamakasumicho, Taihaku-ku, Sendai 982-0831, JAPAN

Global Ocean Development Inc.(GODI) 3-65, Oppamahigashi-cho, Yokosuka 237-0063, JAPAN

Marine Works Japan Ltd.(MWJ) 1-1-7, Mutsuura, Kanazawa-ku, Yokohama 236-0031, JAPAN

## 5.2. R/V MIRAI Crew member

| Master         | Masaharu Akamine    |
|----------------|---------------------|
| Chief Officer  | Yukio Dowaki        |
| 1st Officer    | Hiroki Maruyama     |
| 2nd Officer    | Haruhiko Inoue      |
| 3rd Officer    | Takeshi Isohi       |
| Chief Engineer | Akiteru Ono         |
| 1st Engineer   | Nobuya Araki        |
| 2nd Engineer   | Koji Masuno         |
| 3rd Engineer   | Katsumi Bansho      |
| C.R.Officer    | Shuji Nakabayashi   |
| 2nd.R.Officer  | Keiichirou Shishido |
| Boatswain      | Tadao Suzuki        |
| Able Seaman    | Kenetsu Ishikawa    |
| Able Seaman    | Hisashi Naruo       |
| Able Seaman    | Yasuyuki Yamamoto   |
| Able Seaman    | Seiichiro Kawata    |
| Able Seaman    | Hisao Oguni         |
| Able Seaman    | Yuji Inoue          |
| Able Seaman    | Masaru Suzuki       |
| Able Seaman    | Yosuke Kuwahara     |
| Able Seaman    | Kazuyoshi Kudo      |
| Able Seaman    | Tsuyoshi Sato       |
| Able Seaman    | Tsuyoshi Monzawa    |
| No.1 Oiler     | Sadanori Honda      |
| Oiler          | Sunao Araki         |
| Oiler          | Yoshihiro Sugimoto  |
| Oiler          | Takashi Miyazaki    |
| Oiler          | Toshio Matsuo       |
| Oiler          | Daisuke Taniguchi   |
| Chief Steward  | Yasuaki Koga        |
| Cook           | Hatsuji Hiraishi    |
| Cook           | Hitoshi Ota         |
| Cook           | Wataru Sasaki       |
| Cook           | Kozo Uemura         |

#### 6.1 Meteorological measurement

#### 6.1.1 Surface meteorological observation

(1) Personnel

Fumitaka Yoshiura (GODI): Operation Leader Wataru Tokunaga (GODI): Operator

#### (2) Objectives

The surface meteorological parameters are observed as a basic dataset of the meteorology. These parameters bring us the information about temporal variation of the meteorological condition surrounding the ship.

#### (3) Methods

The surface meteorological parameters were observed throughout MR01-K01 cruise from the departure of Sekinehama, Japan on 14 February 2001 to the arrival of Yokosuka, Japan on 23 March 2001.

This cruise, we used 2 systems for the surface meteorological observation.

1. Mirai meteorological observation system

2. Shipboard Oceanographic and Atmospheric Radiation (SOAR) system

The measured parameters of each system are listed in Table 6.1.1-1, 6.1.1-2, 6.1.1-3 and 6.1.1-4.

#### (3-1) Mirai meteorological observation system

Instruments and archived parameters of Mirai meteorological observation system are listed in the table below. Data was collected and processed by KOAC-7800 weather data processor made by Koshin Denki, Japan. The data set has 6-second averaged every 6-second record and 10-minute averaged every 10-minute record.

Table 6.1.1-1 Instrument and their installation locations

of Mirai meteorological observation system

| Sensors Type M          |           | Manufacturer                     | location (altitude from surface) |  |  |
|-------------------------|-----------|----------------------------------|----------------------------------|--|--|
| Anemometer              | KE-500    | Koshin Denki, Japan              | foremast (24m)                   |  |  |
| Thermometer             | FT        | Koshin Denki, Japan              | compass deck (21m)               |  |  |
| Dewpoint meter          | DW-1      | Koshin Denki, Japan              | compass deck (21m)               |  |  |
| Barometer F451          |           | Yokogawa, Japan                  | captain deck (13m)               |  |  |
|                         |           | Weather station room (tubing out |                                  |  |  |
| Rain gauge              | 50202     | R. M. Young, USA                 | compass deck (21m)               |  |  |
| Optical Rain gauge      | ORG-115DR | ScTi, USA                        | compass deck (21m)               |  |  |
| Radiometer (short wave) | MS-801    | Eiko Seiki, Japan                | radar mast (28m)                 |  |  |

6.1.1-1

|                        | Tal    | ble 6.1.1-1 (continued) |                  |
|------------------------|--------|-------------------------|------------------|
| Radiometer (long wave) | MS-200 | Eiko Seiki, Japan       | radar mast (28m) |
| Wave height meter      | MW-2   | Tsurumi-seiki, Japan    | Bow              |

|    | Parameter                             | Units  | Remarks                           |
|----|---------------------------------------|--------|-----------------------------------|
| 1  | Latitude                              | Degree |                                   |
| 2  | Longitude                             | Degree |                                   |
| 3  | Ship's speed                          | Knot   | Mirai log                         |
| 4  | Ship's heading                        | Degree | Mirai gyro                        |
| 5  | Relative wind speed                   | m/s    | 6 sec. / 10 min. average          |
| 6  | Relative wind direction               | Degree | 6 sec. / 10 min. average          |
| 7  | True wind speed                       | m/s    | 6 sec. / 10 min. average          |
| 8  | True wind direction                   | Degree | 6 sec. / 10 min. average          |
| 9  | Barometric pressure                   | HPa    | 6 sec. / 10 min. average          |
|    |                                       |        | Adjusted to the sea surface level |
| 10 | Air temperature (starboard side)      | deg-C  | 6 sec. / 10 min. average          |
| 11 | Air temperature (port side)           | deg-C  | 6 sec. / 10 min. average          |
| 12 | Dewpoint temperature (starboard side) | deg-C  | 6 sec. / 10 min. average          |
| 13 | Dewpoint temperature (port side)      | deg-C  | 6 sec. / 10 min. average          |
| 14 | Relative humidity (starboard side)    | %      | 6 sec. / 10 min. average          |
| 15 | Relative humidity (port side)         | %      | 6 sec. / 10 min. average          |
| 16 | Rain rate (optical rain gauge)        | mm/hr  | 1 hr / 12 hr accumulated          |
| 17 | Rain rate (capacitive rain gauge)     | mm/hr  | 1 hr / 12 hr accumulated          |
| 18 | Down welling shotwave radiometer      |        | Momentary / 12 hr accumulated     |
| 19 | Down welling infra-red radiometer     |        | Momentary / 12 hr accumulated     |
| 20 | Sea surface temperature               | deg-C  | Under the water line -5 m         |
| 21 | Significant wave height (fore)        | М      | 3 hourly                          |
| 22 | Significant wave height (aft)         | М      | 3 hourly                          |
| 23 | Significant wave period (fore)        | Second | 3 hourly                          |
| 24 | Significant wave period (aft)         | Second | 3 hourly                          |

Table 6.1.1-2 Parameter of Mirai meteorological observation system

(3-2) Shipboard Oceanographic and Atmospheric Radiation (SOAR) system

SOAR system, designed by BNL (Brookhaven National Laboratory, USA), is consisted of 3 parts.

- 1. Portable Radiation Package (PRP) designed by BNL short and long wave down welling radiation.
- 2. Zeno meteorological system designed by BNL wind, Tair/RH, pressure and rainfall measurement.
- 3. Scientific Computer System (SCS) designed by NOAA (National Oceanographic and Atmospheric Administration, USA) centralized data acquisition and logging of all data sets.

SCS recorded PRP data every 6.5 seconds and Zeno meteorological data every 10 seconds. Instruments and their location are listed in Table 6.1.1-3. The archived parameters are in Table 6.1.1-4.

6.1.1 - 2

| Sensor                  | Туре          | Manufacturer              | location (altitude from surface) |
|-------------------------|---------------|---------------------------|----------------------------------|
| Anemometer              | 05106         | R. M. Young, USA          | foremast (24m)                   |
| Tair/RH                 | HMP45A        | R. M. Young, USA          | foremast (24m)                   |
|                         | With 43408 Gi | ll aspirated radiation sh | nield (R. M. Young)              |
| Barometer               | 61201         | R. M. Young, USA          | foremast (24m)                   |
|                         | With 61002 Gi | ll pressure port (R. M.   | Young)                           |
| Rain gauge              | 50202         | R. M. Young, USA          | foremast (24m)                   |
| Optical rain gauge      | ORG-115DA     | ScTi, USA                 | foremast (24m)                   |
| Radiometer (short wave) | PSP           | Eppley labs, USA          | foremast (24m)                   |
| Radiometer (long wave)  | PIR           | Eppley labs, USA          | foremast (24m)                   |
| Fast rotating           |               |                           |                                  |
| Shadowband radiometer   |               | Yankee, USA               | foremast (24m)                   |

Table 6.1.1-3 Instruments installation locations of SOAR system

#### Table 6.1.1-4 Parameters of SOAR system

|    | Parameters                            | units   | Remarks        |
|----|---------------------------------------|---------|----------------|
| 1  | Latitude                              | degree  |                |
| 2  | Longitude                             | degree  |                |
| 3  | Sog                                   | knot    |                |
| 4  | Cog                                   | degree  |                |
| 5  | Relative wind speed                   | m/s     |                |
| 6  | Relative wind direction               | degree  |                |
| 7  | Barometric pressure                   | hPa     |                |
| 8  | Air temperature                       | deg-C   |                |
| 9  | Relative humidity                     | %       |                |
| 10 | Rain rate (optical rain gauge)        | mm/hr   |                |
| 11 | Precipitation (capacitive rain gauge) | mm      | Reset at 50 mm |
| 12 | Down welling shortwave radiation      | $W/m^2$ |                |
| 13 | Down welling infra-red radiation      | $W/m^2$ |                |
| 14 | Defuse irradiation                    | $W/m^2$ |                |

#### (4) Preliminary results

Wind (converted to U, V component), Air temperature, Relative Humidity, Rainfall and surface pressure observed during the cruise from SOAR system via navigation system are shown in Fig.6.1.1-1. Table of 3-hourly summary data from Mirai meteorological observation system is Table 6.1.1-5.

#### (5) Data archives

These raw data obtained in this cruise will be submitted to the Data Management Office (DMO) in JAMSTEC just after the cruise.

Remarks concerning about data quality are as follows;

- 1. Radiometers for upwelling radiation measurement of Mirai meteorological observation system were not installed during this cruise.
- 2. PRP stopped from 2301 to 2325 UTC 28 February caused by software trouble.

#### 6.1.1 - 3



6.1.1-4



Fig.6.1.1-1 Time series of measured parameter by SOAR system

 $6.1.1 \cdot 5$ 

2/25

2/26

2/27

2/28

2/24

2/23

2/22

1005

2/21

Fig.6.1.1-1 (continued)



6.1.1-6

Fig.6.1.1-1 (continued)



6.1.1-7

Fig.6.1.1-1 (continued)



6.1.1-8

Fig.6.1.1-1 (continued)



6.1.1 - 9

Table 6.1.1-5

|      |       |      |       | Postion |           | Weather | Р      | Т            | RH        | WD        | WS       | R      | Wv.Ht.     | Wv.Pd. |
|------|-------|------|-------|---------|-----------|---------|--------|--------------|-----------|-----------|----------|--------|------------|--------|
| UTC  | 5     | SMT  |       | Lat.    | Lon.      |         | (hPa)  | (deg-C)      | (%)       | (deg)     | (m/s)    | (mm/h) | (m)        | (sec)  |
|      | 18:00 | 2/14 | 3:00  | 41-21 N | 141-14 E  | -       | 1012.7 | -5.8         | 60        | 285       | 6.3      | 0      | 0.2        | 6.5    |
|      | 21:00 |      | 6:00  | 41-21 N | 141-14 E  | -       | 1012.0 | -5.5         | 61        | 279       | 6.6      | 0      | 0.2        | 6.3    |
| 2/14 | 0:00  |      | 9:00  | 41-21 N | 141-14 E  | -       | 1012.3 | -3.3         | 53        | 284       | 6.6      | 0      | 0.2        | 6.4    |
|      | 3:00  |      | 12:00 | 41-21 N | 141-14 E  | bc      | 1012.0 | -3.1         | 62        | 306       | 8.2      | 0.6    | 0.3        | 6.0    |
|      | 6:00  |      | 15:00 | 41-29 N | 141-21 E  | s       | 1012.1 | -4.4         | 64        | 298       | 11.6     | 0.5    | 0.9        | 4.0    |
|      | 9:00  |      | 18:00 | 41-18 N | 142-04 E  | o/s     | 1013.4 | -3.2         | 74        | 282       | 11       | 0      | 2.2        | 22.9   |
|      | 12:00 |      | 21:00 | 40-58 N | 142-32 E  | 0       | 1014.1 | -2.7         | 59        | 312       | 12.7     | 0      | 1.6        | 5.6    |
|      | 15:00 | 2/15 | 0:00  | 40-58 N | 142-32 E  | с       | 1015.6 | -3.3         | 72        | 315       | 10.5     | 0      | 1.5        | 5.5    |
|      | 18:00 |      | 3:00  | 41-01 N | 142-30 E  | 0       | 1015.4 | -4.5         | 84        | 324       | 11.5     | 3.8    | 1.5        | 5.8    |
|      | 21:00 |      | 6:00  | 40-43 N | 141-49 E  | с       | 1016.6 | -3.9         | 62        | 256       | 8.4      | 0.1    | 1.2        | 9.4    |
| 2/15 | 0:00  |      | 9:00  | 40-33 N | 141-30 E  | -       | 1017.6 | -3.5         | 64        | 228       | 6.3      | 0      | 0.2        | 5.4    |
|      | 3:00  |      | 12:00 | 40-33 N | 141-30 E  | bc      | 1016.8 | 0.8          | 38        | 269       | 8        | 0      | 0.2        | 5.2    |
|      | 6:00  |      | 15:00 | 40-34 N | 141-47 E  | с       | 1017.4 | -1.0         | 60        | 292       | 11.8     | 0      | 1.3        | 19.4   |
|      | 9:00  |      | 18:00 | 39-52 N | 142-16 E  | bc      | 1018.5 | 0.6          | 42        | 301       | 8.1      | 0      | 1.5        | 21.5   |
|      | 12:00 |      | 21:00 | 39-08 N | 142-40 E  | bc      | 1018.7 | 0.1          | 46        | 253       | 9.1      | 0      | 1.0        | 8.2    |
|      | 15:00 | 2/16 | 0:00  | 38-25 N | 143-01 E  | с       | 1018.5 | 2.0          | 49        | 242       | 5.7      | 0      | 1.0        | 10.9   |
|      | 18:00 |      | 3:00  | 37-47 N | 143-17 E  | bc      | 1014.9 | 4.5          | 49        | 170       | 6.5      | 0      | 1.1        | 11.7   |
|      | 21:00 |      | 6:00  | 37-20 N | 143-35 E  | с       | 1012.9 | 8.5          | 43        | 181       | 11.3     | 0      | 1.2        | 8.1    |
| 2/16 | 0:00  |      | 9:00  | 36-43 N | 143-50 E  | q       | 1011.5 | 7.4          | 79        | 201       | 11       | 4.9    | 1.5        | 4.0    |
|      | 3:00  |      | 12:00 | 36-25 N | 144-01 E  | 0       | 1007.6 | 9.8          | 65        | 233       | 15.3     | 2.6    | 2.1        | 5.6    |
|      | 6:00  |      | 15:00 | 35-48 N | 144-18 E  | 0       | 1005.6 | 10.2         | 82        | 245       | 9.3      | 0.3    | 3.3        | 8.9    |
|      | 9:00  |      | 18:00 | 35-08 N | 144-37 E  | o/r     | 1008.8 | 8.1          | 82        | 316       | 16.4     | 1.3    | 3.3        | 9.8    |
|      | 12:00 |      | 21:00 | 34-24 N | 144-55 E  | r       | 1011.6 | 8.1          | 74        | 343       | 16.8     | 0.7    | 4.0        | 13.3   |
|      | 15:00 | 2/17 | 0:00  | 33-39 N | 145-10 E  | r       | 1014.5 | 7.5          | 77        | 321       | 15.8     | 0.2    | 5.0        | 16.0   |
|      | 18.00 |      | 3.00  | 33-03 N | 145-36 E  | 0       | 1016.4 | 8.2          | 74        | 334       | 17.1     | 0.1    | 6.0        | 19.3   |
|      | 21:00 |      | 6:00  | 32-23 N | 145-54 E  | c       | 1019.4 | 10.9         | 55        | 328       | 15.2     | 0.1    | 5.5        | 17.5   |
| 2/17 | 0.00  |      | 9.00  | 31-43 N | 146-12 E  | c       | 1021.4 | 11.7         | 50        | 333       | 13.8     | 0      | 5.5        | 18.2   |
|      | 3.00  |      | 12.00 | 31-01 N | 146-30 E  | bc      | 1021.6 | 12.2         | 54        | 337       | 11.7     | 0      | 6.2        | 19.9   |
|      | 6.00  |      | 15.00 | 30-52 N | 146-33 E  | bc      | 1021.6 | 12.5         | 45        | 346       | 7.7      | 0      | 6.1        | 18.3   |
|      | 9.00  |      | 18.00 | 30-11 N | 146-53 E  | bc      | 1023 5 | 12.4         | 51        | 353       | 7        | 0      | 5.8        | 18.0   |
|      | 12.00 |      | 21.00 | 29-31 N | 147-11 E  | c c     | 1020.0 | 12.1         | 48        | 30        | . 7      | 0      | 5.4        | 19.0   |
|      | 15:00 | 2/18 | 0.00  | 29-00 N | 147-25 E  | bc      | 1023.4 | 13.8         | 46        | 46        | 48       | 0      | 3.7        | 10.5   |
|      | 18.00 | 2,10 | 3.00  | 28-35 N | 147-35 E  | bc      | 1021.8 | 14.3         | 47        | 51        | 2.6      | 0      | 4 9        | 18.3   |
|      | 21.00 |      | 6.00  | 27-55 N | 147-54 E  | 0       | 1021.0 | 15.3         | 46        | 59        | 4.9      | 0      | 4 4        | 15.7   |
| 2/18 | 0.00  |      | 9.00  | 27-29 N | 148-05 E  | 0       | 1022.8 | 16.1         | 51        | 57        | 5.3      | 0      | 3.5        | 10.7   |
| 2,10 | 3.00  |      | 12.00 | 26-55 N | 148-18 F  | c<br>c  | 1019.9 | 17.3         | 56        | 59        | 4 9      | 0      | 4.2        | 16.5   |
|      | 6.00  |      | 15.00 | 26-12 N | 148-37 F  | c c     | 1017.8 | 19.0         | 56        | 88        | 83       | 0      | 3.1        | 18.1   |
|      | 9.00  |      | 18.00 | 25-30 N | 148-55 E  | c       | 1017.6 | 19.7         | 60        | 84        | 7.8      | 0      | 4 7        | 19.2   |
|      | 12.00 |      | 21.00 | 24-48 N | 149-14 F  | c c     | 1017.5 | 21.2         | 63        | 104       | 5.1      | 0      | 5.1        | 20.0   |
|      | 15:00 | 2/19 | 0.00  | 24-05 N | 149-32 E  | bc      | 1016.0 | 21.2         | 66        | 111       | 6.2      | 0      | 4.0        | 18.6   |
|      | 18.00 | 2010 | 3.00  | 23-23 N | 149-49 F  | bc      | 1014.6 | 22.5         | 73        | 94        | 5.9      | 0      | 4.5        | 19.4   |
|      | 21.00 |      | 6.00  | 20-20 N | 150-06 F  | bc      | 1015.5 | 23.1         | 68        | 90        | 33       | 0      | 4.1        | 19.5   |
| 2/19 | 0.00  |      | 9.00  | 22-00 N | 150-24 F  | be      | 1016.4 | 23.6         | 78        | 80        | 6.4      | 0      | 4.0        | 19.3   |
| 2/10 | 3.00  |      | 12.00 | 21-16 N | 150-42 F  | bc      | 1013.6 | 25.5         | 73        | 21        | 77       | 0      | 3.5        | 16.6   |
|      | 6.00  |      | 15.00 | 20-32 N | 150-50 F  | 6       | 1011.0 | 25.5         | 75        | 40        | י.י<br>9 | 0      | 2.5        | 17.0   |
|      | 9.00  |      | 18.00 | 19-49 N | 151-17 F  | 0       | 1012 4 | 25.0         | , J<br>83 | -10<br>25 | 83       | 0<br>N | 3.3<br>3.0 | 16.0   |
|      | 12.00 |      | 21.00 | 19-08 N | 151-35 F  | bc      | 1012.4 | 20.0<br>26 D | 77        | 46        | 8.9      | 0      | 3.0        | 18.9   |
|      | 15.00 | 2/20 | 0.00  | 18-26 N | 151-53 E  | bc      | 1011.0 | 20.0         | 77        | 9F<br>83  | 0.2      | 0      | 3.3<br>3.0 | 16.0   |
|      | 18.00 | 2120 | 3.00  | 17-44 N | 152-11 F  | bc      | 1010.5 | 20.9<br>26 D | 79        | 68        | 9.5      | 0      | 3.0        | 17.6   |
|      | 10.00 |      | 0.00  | 11 1111 | 10% 11 12 | DC      | 1010.3 | 20.0         | 16        | 00        | 5.5      | 0      | 5.5        | 11.0   |

 $6.1.1 \cdot 10$ 

|      |       |      |       | Postion |          | Weather | Р      | Т       | RH  | WD    | WS    | R      | Wv.Ht. | Wv.Pd. |
|------|-------|------|-------|---------|----------|---------|--------|---------|-----|-------|-------|--------|--------|--------|
| UTC  | 5     | SMT  |       | Lat.    | Lon.     |         | (hPa)  | (deg-C) | (%) | (deg) | (m/s) | (mm/h) | (m)    | (sec)  |
|      | 21:00 |      | 6:00  | 17-01 N | 152-27 E | bc      | 1011.5 | 26.5    | 74  | 61    | 9.4   | 0.5    | 3.1    | 16.4   |
| 2/20 | 0:00  |      | 9:00  | 16-19 N | 152-43 E | bc      | 1012.4 | 27.1    | 70  | 71    | 8.5   | 0      | 3.1    | 17.6   |
|      | 3:00  |      | 12:00 | 15-38 N | 153-00 E | bc      | 1009.7 | 27.3    | 72  | 65    | 9.3   | 0      | 4.1    | 18.2   |
|      | 6:00  |      | 15:00 | 14-57 N | 153-16 E | bc      | 1008.5 | 27.3    | 76  | 68    | 9.7   | 0      | 3.3    | 15.1   |
|      | 9:00  |      | 18:00 | 14-15 N | 153-31 E | bc      | 1010.0 | 27.1    | 76  | 67    | 10    | 0      | 3.6    | 17.5   |
|      | 12:00 |      | 21:00 | 13-33 N | 153-47 E | bc      | 1010.5 | 26.9    | 81  | 70    | 10.4  | 0      | 3.9    | 18.1   |
|      | 15:00 | 2/21 | 0:00  | 12-51 N | 154-03 E | bc      | 1009.5 | 27.0    | 79  | 78    | 8.8   | 0      | 3.9    | 18.1   |
|      | 18:00 |      | 3:00  | 12-09 N | 154-20 E | bc/p    | 1008.8 | 27.0    | 81  | 90    | 9.1   | 0.3    | 3.9    | 18.1   |
|      | 21:00 |      | 6:00  | 11-27 N | 154-37 E | bc      | 1010.4 | 27.1    | 78  | 94    | 7.4   | 0      | 3.9    | 18.1   |
| 2/21 | 0:00  |      | 9:00  | 10-44 N | 154-53 E | bc      | 1010.7 | 27.6    | 74  | 82    | 9.1   | 0      | 3.9    | 18.1   |
|      | 3:00  |      | 12:00 | 10-02 N | 155-09 E | bc      | 1008.3 | 27.9    | 75  | 80    | 9.9   | 0      | 3.9    | 18.1   |
|      | 6:00  |      | 15:00 | 09-20 N | 155-26 E | bc      | 1007.2 | 27.9    | 76  | 63    | 9.7   | 0      | 2.8    | 17.9   |
|      | 9:00  |      | 18:00 | 08-37 N | 155-43 E | bc      | 1009.4 | 27.8    | 75  | 84    | 10.8  | 0      | 2.0    | 13.0   |
|      | 12:00 |      | 21:00 | 08-00 N | 155-55 E | bc      | 1011.3 | 26.4    | 78  | 129   | 9.5   | 0.1    | 2.1    | 9.9    |
|      | 15:00 | 2/22 | 0:00  | 08-00 N | 155-53 E | c/p     | 1009.3 | 24.6    | 86  | 117   | 5.4   | 1.1    | 2.1    | 10.1   |
|      | 18:00 |      | 3:00  | 08-00 N | 155-53 E | bc      | 1008.6 | 27.1    | 77  | 66    | 5.9   | 0      | 2.0    | 10.3   |
|      | 21:00 |      | 6:00  | 08-02 N | 155-57 E | bc      | 1010.0 | 27.1    | 81  | 58    | 7.3   | 0      | 1.8    | 8.9    |
| 2/22 | 0:00  |      | 9:00  | 08-02 N | 155-57 E | 0       | 1011.1 | 26.0    | 83  | 71    | 9.8   | 0      | 2.0    | 9.2    |
|      | 3:00  |      | 12:00 | 07-59 N | 155-59 E | r       | 1008.6 | 24.4    | 92  | 42    | 5.3   | 10.1   | 1.9    | 9.7    |
|      | 6:00  |      | 15:00 | 08-00 N | 155-56 E | 0       | 1007.8 | 26.2    | 85  | 51    | 5.8   | 0.1    | 2.0    | 9.2    |
|      | 9:00  |      | 18:00 | 07-59 N | 155-53 E | 0       | 1009.7 | 26.2    | 82  | 55    | 5.6   | 0      | 1.8    | 9.1    |
|      | 12:00 |      | 21:00 | 07-58 N | 155-51 E | 0       | 1010.1 | 26.4    | 85  | 42    | 6.7   | 0      | 1.6    | 8.4    |
|      | 15:00 | 2/23 | 1:00  | 07-58 N | 155-49 E | r       | 1008.7 | 24.3    | 92  | 112   | 10    | 6.6    | 1.7    | 8.5    |
|      | 18:00 |      | 4:00  | 08-01 N | 155-53 E | r       | 1008.5 | 24.1    | 93  | 128   | 11.7  | 14.3   | 1.6    | 9.0    |
|      | 21:00 |      | 7:00  | 08-01 N | 155-56 E | r       | 1010.2 | 25.1    | 86  | 112   | 9.6   | 1      | 1.8    | 8.0    |
| 2/23 | 0:00  |      | 10:00 | 08-01 N | 155-55 E | r       | 1010.9 | 25.6    | 86  | 131   | 6     | 0.1    | 1.7    | 8.5    |
|      | 3:00  |      | 13:00 | 07-46 N | 155-56 E | 0       | 1008.4 | 26.0    | 82  | 109   | 7.4   | 0      | 2.1    | 13.3   |
|      | 6:00  |      | 16:00 | 07-00 N | 155-59 E | 0       | 1008.0 | 25.9    | 85  | 101   | 3.4   | 0.1    | 1.8    | 12.7   |
|      | 9:00  |      | 19:00 | 06-15 N | 156-01 E | 0       | 1009.2 | 26.2    | 83  | 73    | 3.6   | 1.2    | 1.8    | 12.8   |
|      | 12:00 |      | 22:00 | 05-30 N | 156-03 E | с       | 1009.9 | 27.7    | 78  | 71    | 6.8   | 0      | 1.9    | 12.6   |
|      | 15:00 | 2/24 | 1:00  | 05-00 N | 156-05 E | 0       | 1007.9 | 25.3    | 89  | 127   | 3.7   | 2      | 1.6    | 8.1    |
|      | 18:00 |      | 4:00  | 04-59 N | 156-05 E | bc      | 1006.9 | 26.8    | 82  | 78    | 3.7   | 0      | 1.5    | 7.8    |
|      | 21:00 |      | 7:00  | 04-57 N | 156-04 E | bc      | 1008.4 | 27.4    | 77  | 76    | 6.3   | 0      | 1.7    | 8.3    |
| 2/24 | 0:00  |      | 10:00 | 05-02 N | 155-59 E | bc      | 1009.1 | 28.6    | 75  | 85    | 5.7   | 0      | 1.4    | 8.0    |
|      | 3:00  |      | 13:00 | 05-03 N | 156-00 E | bc      | 1006.9 | 28.0    | 73  | 69    | 6.8   | 0      | 1.4    | 7.5    |
|      | 6:00  |      | 16:00 | 05-01 N | 155-57 E | bc      | 1005.8 | 28.1    | 77  | 71    | 5.7   | 0      | 1.8    | 8.0    |
|      | 9:00  |      | 19:00 | 04-59 N | 156-01 E | bc      | 1008.3 | 28.1    | 79  | 68    | 5.7   | 0      | 1.4    | 7.9    |
|      | 12:00 |      | 22:00 | 04-59 N | 156-01 E | bc      | 1009.8 | 28.4    | 75  | 65    | 6.7   | 0      | 1.5    | 8.3    |
|      | 15:00 | 2/25 | 1:00  | 04-59 N | 156-00 E | r       | 1008.8 | 26.2    | 87  | 84    | 11.2  | 0.2    | 1.7    | 8.9    |
|      | 18:00 |      | 4:00  | 04-56 N | 156-05 E | 0       | 1008.3 | 26.6    | 77  | 77    | 8.8   | 0      | 1.8    | 7.2    |
|      | 21:00 |      | 7:00  | 04-57 N | 156-04 E | 0       | 1010.0 | 26.5    | 76  | 38    | 9.2   | 0      | 2.0    | 9.7    |
| 2/25 | 0:00  |      | 10:00 | 04-59 N | 156-05 E | c       | 1010.3 | 27.6    | 75  | 58    | 8.6   | 0      | 2.0    | 9.1    |
|      | 3:00  |      | 13:00 | 04-36 N | 156-04 E | bc      | 1007.5 | 28.5    | 74  | 55    | 7.7   | 0      | 2.1    | 15.4   |
|      | 6:00  |      | 16:00 | 03-50 N | 155-59 E | bc      | 1006.7 | 28.4    | 77  | 61    | 7.6   | 0      | 2.1    | 17.5   |
|      | 9:00  |      | 19:00 | 03-04 N | 155-56 E | bc      | 1008.6 | 28.2    | 79  | 67    | 8.2   | 0      | 2.4    | 17.4   |
|      | 12:00 |      | 22:00 | 02-19 N | 155-52 E | с       | 1009.8 | 28.0    | 80  | 68    | 7.8   | 0      | 2.2    | 19.0   |
|      | 15:00 | 2/26 | 1:00  | 01-56 N | 155-48 E | bc/p    | 1008.0 | 28.2    | 77  | 61    | 9     | 0      | 1.6    | 9.6    |
|      | 18:00 |      | 4:00  | 01-56 N | 155-47 E | bc/p    | 1007.1 | 28.1    | 76  | 60    | 8     | 0      | 1.6    | 8.9    |
|      | 21:00 |      | 7:00  | 01-58 N | 155-51 E | bc/p    | 1009.3 | 28.3    | 79  | 66    | 6.4   | 0      | 1.7    | 8.7    |
|      |       |      |       |         |          | 1       |        |         |     |       |       |        |        |        |

 $6.1.1 \cdot 11$ 

|      |       |      |       | Postion |          | Weather | Р      | Т       | RH  | WD    | WS    | R        | Wv.Ht. | Wv.Pd. |
|------|-------|------|-------|---------|----------|---------|--------|---------|-----|-------|-------|----------|--------|--------|
| UTC  | 5     | SMT  |       | Lat.    | Lon.     |         | (hPa)  | (deg-C) | (%) | (deg) | (m/s) | (mm/h)   | (m)    | (sec)  |
| 2/26 | 0:00  |      | 10:00 | 02-01 N | 155-58 E | bc/p    | 1010.5 | 28.5    | 75  | 87    | 6.2   | 0        | 1.5    | 8.7    |
|      | 3:00  |      | 13:00 | 02-03 N | 156-01 E | bc/p    | 1007.7 | 28.5    | 76  | 89    | 5     | 0        | 1.7    | 8.3    |
|      | 6:00  |      | 16:00 | 01-57 N | 155-51 E | bc      | 1007.6 | 29.1    | 74  | 105   | 4     | 0        | 1.4    | 8.7    |
|      | 9:00  |      | 19:00 | 01-56 N | 155-50 E | с       | 1010.0 | 28.6    | 76  | 109   | 4.6   | 0        | 1.2    | 8.9    |
|      | 12:00 |      | 22:00 | 01-57 N | 155-48 E | bc      | 1011.0 | 28.4    | 75  | 127   | 5     | 0        | 1.4    | 8.6    |
|      | 15:00 | 2/27 | 1:00  | 01-59 N | 155-46 E | r       | 1009.2 | 27.5    | 81  | 149   | 2.3   | 0.1      | 1.2    | 8.1    |
|      | 18:00 |      | 4:00  | 02-01 N | 155-45 E | bc      | 1009.1 | 26.3    | 80  | 160   | 4.8   | 0        | 1.4    | 8.0    |
|      | 21:00 |      | 7:00  | 01-56 N | 155-50 E | bc      | 1010.3 | 26.9    | 82  | 79    | 8.9   | 0        | 1.4    | 8.9    |
| 2/27 | 0:00  |      | 10:00 | 01-55 N | 155-50 E | bc      | 1010.8 | 27.7    | 79  | 35    | 5.1   | 0        | 1.1    | 8.2    |
|      | 3:00  |      | 13:00 | 01-25 N | 155-55 E | bc      | 1008.9 | 28.3    | 74  | 29    | 3.1   | 0        | 1.1    | 10.5   |
|      | 6:00  |      | 16:00 | 01-10 N | 155-57 E | bc      | 1008.8 | 28.8    | 72  | 16    | 1.8   | 0        | 1.4    | 13.1   |
|      | 9:00  |      | 19:00 | 00-25 N | 156-04 E | bc      | 1010.4 | 28.7    | 72  | 18    | 4.8   | 0        | 1.3    | 14.6   |
|      | 12:00 |      | 22:00 | 00-01 N | 156-07 E | bc      | 1011.1 | 28.7    | 75  | 23    | 6.3   | 0        | 1.0    | 8.6    |
|      | 15:00 | 2/28 | 1:00  | 00-04 N | 156-10 E | bc      | 1009.7 | 28.5    | 75  | 23    | 5.9   | 0        | 1.0    | 8.0    |
|      | 18:00 |      | 4:00  | 00-08 N | 156-12 E | bc      | 1009.3 | 28.3    | 75  | 33    | 4.8   | 0        | 0.9    | 8.1    |
|      | 21:00 |      | 7:00  | 00-00 N | 156-08 E | 0       | 1010.9 | 28.4    | 76  | 69    | 5.2   | 0        | 1.0    | 7.9    |
| 2/28 | 0:00  |      | 10:00 | 00-01 N | 156-12 E | 0       | 1011.5 | 28.7    | 76  | 90    | 3.3   | 0        | 1.2    | 10.1   |
|      | 3:00  |      | 13:00 | 00-00 S | 156-05 E | с       | 1008.6 | 28.7    | 75  | 48    | 4.7   | 0        | 1.2    | 8.9    |
|      | 6:00  |      | 16:00 | 00-00 S | 155-51 E | с       | 1008.2 | 28.8    | 72  | 40    | 5.8   | 0        | 1.4    | 13.9   |
|      | 9:00  |      | 19:00 | 00-01 N | 156-02 E | bc      | 1010.3 | 28.6    | 77  | 43    | 6.5   | 0        | 1.1    | 7.8    |
|      | 12:00 | 3/1  | 22:00 | 00-02 N | 156-04 E | bc      | 1011.7 | 28.8    | 75  | 51    | 5.6   | 0        | 1.0    | 8.1    |
|      | 15:00 |      | 1:00  | 00-02 N | 156-07 E | bc      | 1010.1 | 28.8    | 76  | 58    | 5.4   | 0        | 1.0    | 7.3    |
|      | 18:00 |      | 4:00  | 00-04 N | 156-10 E | bc      | 1009.2 | 28.6    | 74  | 52    | 6.2   | 0        | 0.9    | 8.7    |
|      | 21:00 |      | 7:00  | 00-05 N | 156-12 E | bc      | 1010.5 | 28.8    | 77  | 58    | 6.1   | 0        | 0.9    | 7.8    |
| 3/1  | 0:00  |      | 10:00 | 00-05 N | 156-11 E | bc      | 1010.9 | 28.7    | 75  | 74    | 6     | 0        | 1.1    | 7.5    |
|      | 3:00  |      | 13:00 | 00-03 N | 156-10 E | bc      | 1008.4 | 28.6    | 76  | 58    | 6.3   | 0        | 0.9    | 7.7    |
|      | 6:00  |      | 16:00 | 00-04 N | 156-11 E | bc      | 1007.9 | 29.0    | 75  | 69    | 5.1   | 0        | 0.8    | 7.2    |
|      | 9:00  |      | 19:00 | 00-04 N | 156-11 E | bc      | 1009.6 | 28.5    | 78  | 71    | 6.6   | 0        | 1.1    | 7.7    |
|      | 12:00 |      | 22:00 | 00-01 S | 155-53 E | bc      | 1011.0 | 28.6    | 77  | 63    | 6.4   | 0        | 1.5    | 12.1   |
|      | 15:00 | 3/2  | 1:00  | 00-01 S | 155-51 E | bc      | 1009.1 | 28.4    | 80  | 69    | 6.2   | 0        | 1.0    | 7.3    |
|      | 18:00 |      | 4:00  | 00-04 S | 155-52 E | bc      | 1007.7 | 28.2    | 80  | 63    | 5.8   | 0        | 1.3    | 7.1    |
|      | 21:00 |      | 7:00  | 00-01 S | 155-52 E | bc      | 1008.8 | 28.6    | 76  | 66    | 6.7   | 0        | 1.4    | 9.8    |
| 3/2  | 0:00  |      | 10:00 | 00-01 S | 156-00 E | bc      | 1009.4 | 28.8    | 78  | 66    | 5     | 0        | 1.2    | 8.1    |
|      | 3:00  |      | 13:00 | 00-00 N | 156-01 E | bc      | 1007.4 | 28.9    | 75  | 68    | 3.5   | 0        | 1.3    | 8.8    |
|      | 6:00  |      | 16:00 | 00-01 S | 155-50 E | bc      | 1007.0 | 29.1    | 74  | 57    | 4.5   | 0        | 1.3    | 8.5    |
|      | 9:00  |      | 19:00 | 00-01 S | 155-51 E | b       | 1009.1 | 28.9    | 73  | 69    | 4.3   | 0        | 1.4    | 9.0    |
|      | 12:00 |      | 22:00 | 00-01 S | 155-48 E | b       | 1010.2 | 28.7    | 78  | 81    | 4.4   | 0        | 1.6    | 10.6   |
|      | 15:00 | 3/3  | 1:00  | 00-01 S | 155-45 E | b       | 1008.2 | 28.5    | 80  | 67    | 3.9   | 0        | 1.6    | 9.5    |
|      | 18:00 |      | 4:00  | 00-01 S | 155-43 E | b       | 1007.3 | 28.4    | 77  | 93    | 4.2   | 0        | 1.7    | 10.0   |
|      | 21:00 |      | 7:00  | 00-00 S | 155-49 E | bc      | 1008.9 | 28.9    | 75  | 71    | 4.4   | 0        | 1.4    | 9.2    |
| 3/3  | 0:00  |      | 10:00 | 00-01 S | 155-49 E | bc      | 1009.6 | 29.1    | 73  | 66    | 3.4   | 0        | 1.4    | 10.7   |
|      | 3:00  |      | 13:00 | 00-39 S | 155-51 E | bc      | 1007.6 | 29.6    | 70  | 32    | 3.2   | 0        | 1.4    | 19.1   |
|      | 6:00  |      | 16:00 | 01-25 S | 155-55 E | bc      | 1006.8 | 29.2    | 69  | 49    | 0.8   | 0        | 1.9    | 20.1   |
|      | 9.00  |      | 19.00 | 01-32 S | 155-53 E | bc      | 1008 7 | 29.1    | 74  | 28    | 19    | 0        | 1.5    | 10.2   |
|      | 12.00 |      | 22.00 | 01-35 S | 155-50 F | p       | 1010.4 | 26.2    | 82  | 301   | 15.8  | 8<br>0 0 | 1.3    | 10.1   |
|      | 15:00 | 3/4  | 1:00  | 01-28 S | 155-56 E | Р<br>0  | 1007.9 | 27.7    | 76  | 323   | 10.6  | 0.0      | 1.7    | 8.0    |
|      | 18.00 | 0,1  | 4.00  | 00-01 S | 155-49 F | r       | 1009.6 | 29.1    | 73  | 66    | 3.4   | n        | 1.4    | 10.7   |
|      | 21.00 |      | 7.00  | 00-39 S | 155-51 F |         | 1007.6 | 29.6    | 70  | 32    | 3.9   | n<br>D   | 1.4    | 19.1   |
| 3/4  | 0:00  |      | 10:00 | 01-30 S | 155-54 E | 0       | 1008.1 | 28.2    | 73  | 51    | 0.8   | 0        | 2.0    | 7.9    |

6.1.1 - 12

|      |       |      |       | Postion  |          | Weather | Р      | Т       | RH  | WD    | WS    | R      | Wv.Ht. | Wv.Pd.     |
|------|-------|------|-------|----------|----------|---------|--------|---------|-----|-------|-------|--------|--------|------------|
| UTC  | 5     | SMT  |       | Lat.     | Lon.     |         | (hPa)  | (deg-C) | (%) | (deg) | (m/s) | (mm/h) | (m)    | (sec)      |
|      | 3:00  |      | 13:00 | 01-29 S  | 155-56 E | 0       | 1005.9 | 28.9    | 68  | 301   | 5.6   | 0      | 2.1    | 8.3        |
|      | 6:00  |      | 16:00 | 01-40 S  | 155-56 E | 0       | 1005.3 | 28.7    | 72  | 350   | 4.7   | 0      | 2.7    | 18.9       |
|      | 9:00  |      | 19:00 | 02-00 S  | 155-57 E | с       | 1008.1 | 28.8    | 70  | 350   | 1.9   | 0      | 1.8    | 8.5        |
|      | 12:00 |      | 22:00 | 02-02 S  | 155-53 E | с       | 1009.2 | 28.6    | 80  | 11    | 5     | 0      | 1.6    | 8.3        |
|      | 15:00 | 3/5  | 1:00  | 02-03 S  | 155-49 E | 0       | 1008.0 | 28.3    | 76  | 314   | 2.2   | 0      | 1.6    | 9.0        |
|      | 18:00 |      | 4:00  | 02-01 S  | 155-56 E | bc      | 1006.5 | 28.1    | 79  | 357   | 2     | 0      | 1.5    | 8.8        |
|      | 21:00 |      | 7:00  | 02-00 S  | 155-52 E | bc      | 1007.9 | 28.8    | 75  | 22    | 3.7   | 0      | 1.3    | 8.7        |
| 3/5  | 0:00  |      | 10:00 | 02-01 S  | 155-56 E | bc      | 1008.8 | 28.9    | 72  | 36    | 5.8   | 0      | 1.7    | 8.8        |
|      | 3:00  |      | 13:00 | 02-00 S  | 155-56 E | bc      | 1006.1 | 28.9    | 71  | 54    | 4.2   | 0      | 1.6    | 8.9        |
|      | 6:00  |      | 16:00 | 01-58 S  | 155-54 E | bc      | 1005.6 | 30.5    | 65  | 68    | 3.5   | 0      | 1.3    | 9.5        |
|      | 9:00  |      | 19:00 | 01-59 S  | 155-56 E | с       | 1008.2 | 28.9    | 75  | 100   | 6     | 0      | 1.4    | 9.3        |
|      | 12:00 |      | 22:00 | 01-57 S  | 155-54 E | с       | 1009.3 | 29.3    | 74  | 100   | 5.7   | 0      | 1.3    | 8.6        |
|      | 15:00 | 3/6  | 1:00  | 01-56 S  | 155-52 E | r       | 1008.0 | 24.0    | 92  | 204   | 7.3   | 31.2   | 1.6    | 9.4        |
|      | 18:00 |      | 4:00  | 01-57 S  | 155-55 E | 0       | 1008.0 | 24.7    | 91  | 15    | 2.6   | 0.2    | 1.4    | 8.3        |
|      | 21:00 |      | 7:00  | 01-56 S  | 155-53 E | r       | 1008.4 | 25.1    | 88  | 100   | 6.3   | 0.5    | 1.2    | 9.0        |
| 3/6  | 0:00  |      | 10:00 | 01-56 S  | 155-55 E | 0       | 1009.4 | 27.4    | 82  | 187   | 4.9   | 0      | 1.6    | 8.4        |
|      | 3:00  |      | 13:00 | 02-36 S  | 155-57 E | 0       | 1006.7 | 27.5    | 82  | 86    | 5.6   | 0      | 2.0    | 16.8       |
|      | 6:00  |      | 16:00 | 03-20 S  | 155-59 E | 0       | 1006.1 | 28.0    | 80  | 71    | 3.4   | 0      | 1.8    | 17.0       |
|      | 9:00  |      | 19:00 | 04-05 S  | 156-00 E | 0       | 1008.2 | 29.2    | 71  | 11    | 1     | 0      | 1.6    | 15.4       |
|      | 12:00 |      | 22:00 | 04-51 S  | 156-01 E | с       | 1008.9 | 29.0    | 72  | 34    | 1.4   | 0      | 1.3    | 17.2       |
|      | 15:00 | 3/7  | 1:00  | 05-01 S  | 156-04 E | bc      | 1006.6 | 28.0    | 82  | 310   | 0.9   | 0      | 1.5    | 8.6        |
|      | 18:00 |      | 4:00  | 04-57 S  | 156-05 E | с       | 1006.0 | 28.8    | 73  | 326   | 3.1   | 0      | 1.2    | 9.2        |
|      | 21:00 |      | 7:00  | 04-58 S  | 156-02 E | с       | 1007.7 | 29.2    | 73  | 326   | 1.5   | 0      | 1.4    | 8.7        |
| 3/7  | 0:00  |      | 10:00 | 05-02 S  | 156-01 E | bc      | 1008.6 | 29.1    | 74  | 6     | 1.8   | 0      | 1.5    | 8.0        |
|      | 3:00  |      | 13:00 | 04-59 S  | 156-15 E | bc      | 1006.7 | 29.5    | 71  | 7     | 2.6   | 0      | 1.4    | 8.1        |
|      | 6:00  |      | 16:00 | 04-59 S  | 156-17 E | с       | 1005.7 | 28.6    | 76  | 324   | 3.7   | 0      | 1.5    | 12.3       |
|      | 9:00  |      | 19:00 | 04-57 S  | 156-02 E | 0       | 1008.2 | 27.5    | 81  | 329   | 4.2   | 0      | 1.2    | 9.8        |
|      | 12:00 |      | 22:00 | 04-54 S  | 156-03 E | 0       | 1009.2 | 28.1    | 75  | 76    | 1.6   | 0      | 1.2    | 10.0       |
|      | 15:00 | 3/8  | 1:00  | 04-52 S  | 156-05 E | с       | 1007.5 | 28.0    | 75  | 356   | 3.5   | 0      | 1.2    | 10.1       |
|      | 18:00 |      | 4:00  | 04-55 S  | 156-01 E | с       | 1006.5 | 28.1    | 78  | 15    | 3.7   | 0      | 1.1    | 10.3       |
|      | 21:00 |      | 7:00  | 04-56 S  | 156-01 E | 0       | 1008.5 | 28.5    | 78  | 24    | 3.7   | 0      | 1.6    | 12.9       |
| 3/8  | 0:00  |      | 10:00 | 04-57 S  | 155-59 E | o/p     | 1009.5 | 27.4    | 83  | 36    | 4.3   | 3.1    | 1.3    | 10.5       |
|      | 3:00  |      | 13:00 | 04-57 S  | 156-24 E | bc      | 1006.6 | 28.8    | 79  | 313   | 2.3   | 0      | 1.3    | 10.9       |
|      | 6:00  |      | 16:00 | 04-55 S  | 156-24 E | bc      | 1005.7 | 30.4    | 66  | 342   | 3.1   | 0      | 1.1    | 10.7       |
|      | 9:00  |      | 19:00 | 04-52 S  | 156-24 E | 0       | 1008.5 | 25.9    | 86  | 27    | 4.2   | 0.3    | 1.1    | 10.1       |
|      | 12:00 |      | 22:00 | 04-48 S  | 156-25 E | 0       | 1009.5 | 27.7    | 81  | 71    | 4.4   | 0      | 1.2    | 10.3       |
|      | 15:00 | 3/9  | 1:00  | 04-57 S  | 156-23 E | bc      | 1008.0 | 28.2    | 79  | 79    | 3.8   | 0      | 1.4    | 10.1       |
|      | 18:00 |      | 4:00  | 04-55 S  | 156-25 E | bc      | 1007.0 | 28.7    | 78  | 69    | 6.3   | 0      | 1.1    | 10.1       |
|      | 21:00 |      | 7:00  | 04-53 S  | 156-26 E | bc      | 1009.0 | 29.4    | 72  | 54    | 5     | 0      | 1.2    | 9.9        |
| 3/9  | 0:00  |      | 10:00 | 04-56 S  | 156-23 E | bc      | 1009.9 | 29.6    | 71  | 50    | 5.4   | 0      | 1.2    | 9.9        |
|      | 3:00  |      | 13:00 | 04-49 S  | 156-12 E | bc      | 1007.8 | 29.7    | 72  | 38    | 4     | 0      | 1.2    | 10.9       |
|      | 6:00  |      | 16:00 | 04-25 S  | 155-31 E | bc      | 1007.0 | 28.9    | 75  | 0     | 2.8   | 0      | 1.4    | 12.1       |
|      | 9:00  |      | 19:00 | 04-01 S  | 154-50 E | r       | 1009.3 | 28.6    | 78  | 282   | 5     | 0.1    | 1.4    | 12.7       |
|      | 12.00 |      | 22.00 | 03-28 S  | 154-58 E | c       | 1011 1 | 28.9    | 77  | 47    | 1.5   | 0      | 1.2    | 7.0        |
|      | 15.00 | 3/10 | 1.00  | 02-41 S  | 155-07 F | r       | 1009.3 | 27 1    | 81  | 22    | 3.9   | n      | 1.2    | 8.4        |
|      | 18.00 | 0/10 | 4.00  | 01-56 S  | 155-15 F | 0       | 1008.6 | 27.8    | 83  | 236   | 3.9   | 0.1    | 1.1    | 8.1        |
|      | 21.00 |      | 7.00  | 01-10 5  | 155-94 F | bc      | 1010.0 | 28.0    | 74  | 51    | 9.1   | 0.1    | 1.5    | 8.1<br>8.0 |
| 3/10 | 0.00  |      | 10.00 | 00-24 \$ | 155-33 F | bc      | 1010.9 | 29.1    | 73  | 63    | 3.8   | 0      | 1.4    | 9.0        |
| 5/10 | 3:00  |      | 13:00 | 00-21 N  | 155-42 E | c       | 1008.8 | 28.1    | 76  | 55    | 5.7   | n      | 1.3    | 8.2        |

6.1.1-13

| Table | 6.1. | 1-5 | (continued) |
|-------|------|-----|-------------|
|-------|------|-----|-------------|

|      |       |      |       | Postion |          | Weather | Р      | Т            | RH  | WD       | WS       | R      | Wv.Ht.     | Wv.Pd.     |
|------|-------|------|-------|---------|----------|---------|--------|--------------|-----|----------|----------|--------|------------|------------|
| UTC  | 5     | SMT  |       | Lat.    | Lon.     |         | (hPa)  | (deg-C)      | (%) | (deg)    | (m/s)    | (mm/h) | (m)        | (sec)      |
|      | 6:00  |      | 16:00 | 01-08 N | 155-51 E | bc      | 1007.4 | 27.8         | 77  | 48       | 6.1      | 0      | 1.5        | 8.6        |
|      | 9:00  |      | 19:00 | 01-54 N | 156-00 E | bc      | 1009.9 | 28.2         | 75  | 68       | 3.4      | 0      | 1.3        | 8.2        |
|      | 12:00 |      | 22:00 | 02-03 N | 156-00 E | bc      | 1010.7 | 27.8         | 78  | 65       | 3.1      | 0      | 1.3        | 10.8       |
|      | 15:00 | 3/11 | 1:00  | 02-04 N | 156-00 E | с       | 1008.8 | 27.4         | 79  | 87       | 3.7      | 0.6    | 1.4        | 10.5       |
|      | 18:00 |      | 4:00  | 02-07 N | 156-00 E | 0       | 1007.9 | 27.5         | 81  | 57       | 1        | 0      | 1.4        | 10.0       |
|      | 21:00 |      | 7:00  | 02-06 N | 156-01 E | r       | 1009.4 | 25.5         | 82  | 88       | 5.9      | 6.6    | 1.5        | 10.7       |
| 3/11 | 0:00  |      | 10:00 | 02-02 N | 156-01 E | 0       | 1010.2 | 27.4         | 80  | 53       | 3.2      | 0.2    | 1.4        | 10.4       |
|      | 3:00  |      | 13:00 | 02-03 N | 155-59 E | 0       | 1007.5 | 27.6         | 82  | 115      | 4        | 0      | 1.6        | 9.4        |
|      | 6:00  |      | 16:00 | 02-02 N | 156-00 E | с       | 1006.3 | 28.0         | 79  | 90       | 5        | 0      | 1.6        | 8.9        |
|      | 9:00  |      | 19:00 | 02-02 N | 155-57 E | p/o     | 1008.7 | 28.6         | 76  | 73       | 5.2      | 0      | 1.7        | 8.7        |
|      | 12:00 |      | 22:00 | 01-52 N | 155-12 E | с       | 1009.7 | 27.5         | 81  | 66       | 7.4      | 0.2    | 2.6        | 19.3       |
|      | 15:00 | 3/12 | 1:00  | 01-42 N | 154-28 E | bc      | 1007.7 | 28.1         | 77  | 73       | 7        | 0      | 2.4        | 18.1       |
|      | 18:00 |      | 4:00  | 01-32 N | 153-42 E | bc      | 1007.2 | 27.1         | 79  | 33       | 5.2      | 0      | 1.9        | 18.1       |
|      | 21:00 |      | 7:00  | 01-21 N | 152-55 E | с       | 1008.3 | 27.7         | 81  | 84       | 4.4      | 0      | 1.8        | 18.1       |
| 3/12 | 0:00  |      | 10:00 | 01-12 N | 152-08 E | bc/p    | 1009.5 | 28.8         | 74  | 83       | 4.4      | 0.1    | 2.2        | 19.1       |
|      | 3:00  |      | 13:00 | 01-02 N | 151-21 E | bc      | 1007.2 | 28.0         | 81  | 156      | 4.8      | 0      | 2.1        | 18.6       |
|      | 6:00  |      | 16:00 | 00-50 N | 150-34 E | bc      | 1005.9 | 28.4         | 76  | 117      | 1.8      | 0      | 1.4        | 14.7       |
|      | 9:00  |      | 19:00 | 00-40 N | 149-47 E | с       | 1007.9 | 28.2         | 76  | 25       | 1.9      | 0      | 1.5        | 15.7       |
|      | 12:00 |      | 22:00 | 00-30 N | 149-01 E | bc      | 1009.1 | 27.5         | 81  | 349      | 3.3      | 0      | 1.9        | 17.2       |
|      | 15:00 | 3/13 | 1:00  | 00-19 N | 148-15 E | bc      | 1008.0 | 27.7         | 80  | 4        | 3.6      | 0      | 1.7        | 15.3       |
|      | 18:00 |      | 4:00  | 00-09 N | 147-31 E | bc      | 1006.9 | 27.8         | 78  | 18       | 3.3      | 0.4    | 1.6        | 15.1       |
|      | 21:00 |      | 7:00  | 00-04 N | 146-59 E | с       | 1008.8 | 27.8         | 78  | 315      | 2        | 0      | 1.6        | 9.8        |
| 3/13 | 0:00  |      | 10:00 | 00-05 N | 147-00 E | с       | 1010.7 | 28.5         | 76  | 285      | 1.3      | 0      | 1.8        | 8.0        |
|      | 3:00  |      | 13:00 | 00-25 N | 147-10 E | bc      | 1008.7 | 28.8         | 73  | 287      | 1.6      | 0      | 1.7        | 7.8        |
|      | 6:00  |      | 16:00 | 00-37 N | 147-17 E | bc      | 1007.6 | 30.5         | 67  | 286      | 2.6      | 0      | 1.5        | 9.2        |
|      | 9:00  |      | 19:00 | 01-11 N | 147-09 E | с       | 1009.3 | 29.2         | 69  | 77       | 0.9      | 0      | 1.6        | 7.4        |
|      | 12:00 |      | 22:00 | 01-57 N | 146-58 E | с       | 1010.6 | 28.7         | 75  | 92       | 2.5      | 0      | 1.5        | 7.9        |
|      | 15:00 | 3/14 | 1:00  | 02-05 N | 146-55 E | с       | 1009.9 | 28.6         | 76  | 101      | 3.1      | 0      | 1.3        | 9.6        |
|      | 18:00 |      | 4:00  | 02-07 N | 146-54 E | с       | 1008.9 | 28.6         | 74  | 53       | 1.4      | 0      | 1.2        | 8.8        |
|      | 21:00 |      | 7:00  | 02-08 N | 146-53 E | с       | 1009.8 | 28.6         | 74  | 107      | 1.4      | 0      | 1.3        | 9.6        |
| 3/14 | 0:00  |      | 10:00 | 02-05 N | 146-54 E | r       | 1011.8 | 25.6         | 80  | 86       | 5.1      | 4.1    | 1.5        | 8.3        |
|      | 3:00  |      | 13:00 | 02-06 N | 146-56 E | r       | 1010.4 | 25.8         | 88  | 9        | 8.3      | 2      | 1.3        | 9.1        |
|      | 6:00  |      | 16:00 | 02-35 N | 146-57 E | 0       | 1009.1 | 27.0         | 85  | 52       | 4.2      | 0.3    | 1.4        | 8.5        |
|      | 9:00  |      | 19:00 | 03-21 N | 146-59 E | 0       | 1010.0 | 27.0         | 85  | 61       | 5.5      | 0      | 1.3        | 8.3        |
|      | 12:00 |      | 22:00 | 04-08 N | 147-00 E | с       | 1011.4 | 28.8         | 75  | 74       | 9.5      | 0      | 1.5        | 7.0        |
|      | 15:00 | 3/15 | 1:00  | 04-54 N | 147-01 E | 0       | 1010.2 | 28.3         | 77  | 76       | 8.6      | 0      | 1.4        | 6.5        |
|      | 18:00 |      | 4:00  | 04-57 N | 146-59 E | r       | 1009.4 | 26.4         | 89  | 81       | 7.2      | 1.3    | 1.4        | 7.6        |
|      | 21:00 |      | 7:00  | 04-56 N | 146-56 E | r       | 1009.9 | 26.7         | 87  | 68       | 10.6     | 0      | 1.6        | 7.0        |
| 3/15 | 0:00  |      | 10:00 | 04-58 N | 146-59 E | 0       | 1010.7 | 27.5         | 81  | 74       | 6.4      | 0      | 1.8        | 6.8        |
|      | 3:00  |      | 13:00 | 04-58 N | 146-59 E | 0       | 1008.1 | 28.8         | 75  | 55       | 8.7      | 0      | 1.5        | 7.1        |
|      | 6:00  |      | 16:00 | 05-18 N | 146-56 E | 0       | 1006.4 | 28.8         | 69  | 63       | 10       | 0      | 1.9        | 8.2        |
|      | 9.00  |      | 19.00 | 05-53 N | 146-53 E | c<br>C  | 1008.0 | 28.6         | 72  | 74       | 9.6      | 0      | 1.0        | 8.7        |
|      | 12:00 |      | 22.00 | 06-27 N | 146-48 E | bc      | 1009.4 | 28.3         | 78  | 80       | 10.9     | 0      | 1.6        | 8.0        |
|      | 15:00 | 3/16 | 1.00  | 07-02 N | 146-44 E | bc      | 1008.1 | 28.4         | 76  | 86       | 9.4      | 0      | 1.0        | 83         |
|      | 18.00 | 5/10 | 4.00  | 07-02 N | 146 25 E | be      | 1007.0 | 20.4         | 70  | 72       | 10.9     | 0      | 1.5        | 0.0        |
|      | 21.00 |      | 7.00  | 07-30 N | 146-94 E | be      | 1007.9 | 20.2         | 79  | 13       | 11.0     | 0 1    | 1.0        | 0.C<br>A & |
| 2/16 | 0.00  |      | 10.00 | 08-42 M | 140-24 E | be      | 1010 # | 20.2<br>90 P | 12  | 02<br>02 | 0.7      | 0.1    | 1.J<br>9 1 | 0.0        |
| 3/10 | 3.00  |      | 12.00 | 00-43 N | 145.50 E | be      | 1010.3 | 20.0<br>90.9 | 75  | 79       | J.1<br>0 | 0      | ۵.1<br>۹ ۵ | 0.2        |
|      | 6.00  |      | 16.00 | 10-04 N | 145-43 E | be      | 1008.3 | 20.3<br>98.9 | 75  | 73<br>69 | 0<br>Q 2 | 0      | 2.U<br>9.2 | 10.0       |
|      | 0.00  |      | 10.00 | 10-0410 | 170-40 E | JU      | 1007.3 | 20.2         | 13  | 00       | 0.5      | 0      | 6.0        | 10.0       |

 $6.1.1 \cdot 14$ 

Table 6.1.1-5 (continued)

|     |       |      |       | Postion |          | Weather | Р       | Т    | RH    | WD    | WS     | R   | Wv.Ht. | Wv.Pd. |
|-----|-------|------|-------|---------|----------|---------|---------|------|-------|-------|--------|-----|--------|--------|
| UTC | SMT   |      | Lat.  | Lon.    |          | (hPa)   | (deg-C) | (%)  | (deg) | (m/s) | (mm/h) | (m) | (sec)  |        |
|     | 9:00  |      | 19:00 | 10-46 N | 145-26 E | с       | 1008.7  | 27.7 | 79    | 63    | 8.8    | 0   | 2.3    | 10.9   |
|     | 12:00 |      | 22:00 | 11-30 N | 145-08 E | bc      | 1010.4  | 27.6 | 79    | 65    | 8      | 0   | 2.2    | 10.6   |
|     | 15:00 | 3/17 | 1:00  | 12-14 N | 144-51 E | с       | 1009.9  | 26.8 | 86    | 101   | 7.5    | 0.8 | 2.3    | 10.3   |
|     | 18:00 |      | 4:00  | 12-57 N | 144-33 E | с       | 1009.0  | 26.1 | 88    | 90    | 11.9   | 0   | 2.2    | 9.7    |

| 3/18 |       |      |       |         |          |      |        |      |    |     |      |     |     |      |
|------|-------|------|-------|---------|----------|------|--------|------|----|-----|------|-----|-----|------|
|      | 3:00  |      | 13:00 | 14-17 N | 144-24 E | bc   | 1011.6 | 27.7 | 75 | 82  | 9.3  | 0   | 2.0 | 10.0 |
|      | 6:00  |      | 16:00 | 14-56 N | 144-14 E | p/bc | 1010.8 | 26.0 | 82 | 70  | 6.9  | 0.9 | 2.1 | 12.7 |
|      | 9:00  |      | 19:00 | 15-38 N | 144-06 E | bc   | 1012.4 | 27.3 | 79 | 82  | 9.4  | 0   | 1.7 | 9.6  |
|      | 12:00 |      | 22:00 | 16-28 N | 143-56 E | bc/p | 1013.8 | 27.2 | 77 | 93  | 8.4  | 0   | 1.8 | 10.9 |
|      | 15:00 | 3/19 | 0:00  | 17-15 N | 143-47 E | bc   | 1013.9 | 26.7 | 75 | 112 | 5.7  | 0   | 1.8 | 11.4 |
|      | 18:00 |      | 3:00  | 18-01 N | 143-37 E | bc   | 1013.5 | 26.4 | 74 | 118 | 2.3  | 0   | 1.6 | 11.1 |
|      | 21:00 |      | 6:00  | 18-47 N | 143-28 E | bc   | 1014.5 | 26.2 | 76 | 152 | 4    | 0   | 1.7 | 14.2 |
| 3/19 | 0:00  |      | 9:00  | 19-31 N | 143-18 E | с    | 1015.3 | 26.6 | 79 | 184 | 4.6  | 0   | 1.4 | 13.3 |
|      | 3:00  |      | 12:00 | 20-12 N | 143-09 E | с    | 1013.3 | 26.3 | 77 | 219 | 5.5  | 0   | 1.8 | 14.1 |
|      | 6:00  |      | 15:00 | 20-50 N | 143-05 E | bc   | 1012.3 | 25.1 | 81 | 37  | 3.1  | 0.1 | 1.3 | 13.3 |
|      | 9:00  |      | 18:00 | 21-32 N | 142-52 E | bc   | 1013.3 | 24.6 | 79 | 36  | 1.8  | 0   | 1.2 | 12.6 |
|      | 12:00 |      | 21:00 | 22-17 N | 142-42 E | bc   | 1014.9 | 24.6 | 77 | 16  | 2.5  | 0   | 1.3 | 14.3 |
|      | 15:00 | 3/20 | 0:00  | 23-01 N | 142-32 E | 0    | 1014.4 | 23.7 | 82 | 34  | 4.5  | 0   | 1.5 | 13.9 |
|      | 18:00 |      | 3:00  | 23-45 N | 142-21 E | bc   | 1013.8 | 23.0 | 73 | 323 | 4.1  | 0   | 1.5 | 9.9  |
|      | 21:00 |      | 6:00  | 24-31 N | 142-11 E | 0    | 1014.3 | 22.3 | 77 | 41  | 1.1  | 0   | 1.9 | 7.5  |
| 3/20 | 0:00  |      | 9:00  | 25-14 N | 142-02 E | 0    | 1015.3 | 21.0 | 66 | 354 | 3.9  | 0   | 1.8 | 9.1  |
|      | 3:00  |      | 12:00 | 25-59 N | 141-50 E | с    | 1014.0 | 20.4 | 62 | 330 | 3.5  | 0   | 1.7 | 7.8  |
|      | 6:00  |      | 15:00 | 26-30 N | 141-43 E | 0    | 1012.0 | 19.6 | 63 | 352 | 2.4  | 0   | 1.6 | 8.0  |
|      | 9:00  |      | 18:00 | 27-06 N | 141-35 E | 0    | 1012.0 | 19.3 | 66 | 107 | 2.1  | 0   | 1.4 | 7.2  |
|      | 12:00 |      | 21:00 | 27-43 N | 141-26 E | 0    | 1013.4 | 19.1 | 67 | 217 | 1.3  | 0   | 1.3 | 8.4  |
|      | 15:00 | 3/21 | 0:00  | 28-19 N | 141-17 E | bc   | 1011.5 | 19.1 | 74 | 207 | 7    | 0   | 1.2 | 9.5  |
|      | 18:00 |      | 3:00  | 28-54 N | 141-11 E | 0    | 1008.5 | 19.0 | 81 | 204 | 9.2  | 0   | 1.4 | 11.6 |
|      | 21:00 |      | 6:00  | 29-27 N | 141-03 E | r    | 1007.8 | 18.4 | 89 | 204 | 8    | 0.9 | 1.1 | 12.1 |
| 3/21 | 0:00  |      | 9:00  | 30-01 N | 140-54 E | r    | 1008.4 | 17.6 | 91 | 250 | 4.7  | 0.7 | 1.3 | 9.3  |
|      | 3:00  |      | 12:00 | 30-28 N | 140-48 E | r    | 1006.5 | 16.6 | 92 | 359 | 1.6  | 1.4 | 1.3 | 8.7  |
|      | 6:00  |      | 15:00 | 31-03 N | 140-39 E | r    | 1004.7 | 17.0 | 89 | 58  | 4.7  | 1.3 | 1.2 | 9.3  |
|      | 9:00  |      | 18:00 | 31-40 N | 140-32 E | r    | 1006.2 | 18.0 | 72 | 320 | 3.6  | 0   | 1.1 | 9.4  |
|      | 12:00 |      | 21:00 | 32-17 N | 140-24 E | с    | 1007.3 | 18.4 | 58 | 343 | 6.2  | 0   | 1.1 | 9.8  |
|      | 15:00 | 3/22 | 0:00  | 32-55 N | 140-15 E | bc   | 1007.4 | 17.1 | 65 | 3   | 4.7  | 0   | 1.1 | 8.8  |
|      | 18:00 |      | 3:00  | 33-31 N | 140-08 E | bc   | 1006.6 | 16.8 | 68 | 86  | 11.6 | 0   | 1.1 | 7.4  |
|      | 21:00 |      | 6:00  | 34-04 N | 140-01 E | bc   | 1009.0 | 15.9 | 64 | 87  | 13.3 | 0   | 2.1 | 8.2  |
| 3/22 | 0:00  |      | 9:00  | 34-25 N | 139-58 E | bc   | 1010.8 | 16.1 | 56 | 102 | 9.5  | 0   | 1.8 | 6.7  |

 $6.1.1 \cdot 15$ 

## 6.1.2 Ceilometer Observation

#### (1) Personnel

Fumitaka Yoshiura (GODI): Operation Leader Wataru Tokunaga (GODI): Operator

### (2) Objectives

The information of the cloud base height and the liquid water amount around cloud base is important to understand the processes on formation the cloud. As one of the methods to measure them, the ceilometer observation was carried out.

#### (3) Parameters

- (3-1) Cloud base height [m]
- (3-2) Backscatter profile, sensitivity and range normalized at 30 m resolution

## (4) Methods

We measured cloud base height and backscatter profiles using CT-25K ceilometer (Vaisara, Finland) throughout MR01-K01 cruise from the departure of Sekinehama, Japan on 14 February 2001 to the arrival of Yokosuka, Japan on 23 March 2001.

Major parameters for the measurement configuration are as follows;

| Laser source:               | Indium Gallium Arsenide (InGaAs) Diode Laser |
|-----------------------------|----------------------------------------------|
| Transmitting wavelength:    | 905 +/- 5 nm at 25 deg-C                     |
| Transmitting average power: | 8.9 mW                                       |
| Repetition rate:            | 5.57 kHz                                     |
| Detector:                   | Silicon Avalanche Photodiode (APD)           |
| Responsively at 905 nm:     | 65 A/W                                       |
| Measurement range:          | 0 ~ 7.5 km                                   |
| Resolution:                 | 50 ft. in full range                         |
| Sampling rate:              | 60 sec.                                      |

#### (5) Preliminary results

The time series of the detected cloud base height along 156E is shown in Fig. 6.1.2-1. The upper panel, for 22 to 28 February. The lower panel, for 1 to 7 March. C1 is the lowest cloud base height, C2 is the second lowest cloud base height, C3 is the highest cloud base height. The results will be public after the analyses in the future.

## (6) Data archives

Ceilometer data obtained in this cruise will be submitted to the DMO (Data Management Office), in JAMSTEC and will be available via "R/V Mirai Data Web Page" in JAMSTEC home page.



Fig. 6.1.2-1 Cloud base height along 156E
## 6.2.1 CTD

## CTD Observation

#### (1) Personal

| Hirokatsu Uno     | (MWJ):Operation Leader |
|-------------------|------------------------|
| Kenichiro Sato    | (MWJ):Technical Staff  |
| Hiroshi Matsunaga | (MWJ):Technical Staff  |
| Asako Inoue       | (MWJ):Technical Staff  |
| Miki Yoshiike     | (MWJ):Technical Staff  |

#### (2) Objectives

Investigation of the oceanic structure.

## (3) Methods

We observed vertical profile of temparature and salinity by CTD/Carousel (Conductivity Temperature Depth profiler/Carousel Water Sampler).12litters Niskin Bottoles were used for sampling seawater. The senser attached on CTD were temperature sensor S/N 031464, conductivity sensor S/N 041202, pressure sensor S/N 09P21746-0575. The Temperature sensor S/N 031207 and Conductivity sensor S/N 040960 were added newly on CTD after C12 cast. Salinity was calculated by measured data of pressure, conductivity and temperature. The CTD/Carousel was deployed from starboard on working deck.

The CTD raw data was acquired in real time by using the SEASAVE utility from SEASOFT software (ver.4.232) provided by SBE and stored on the hard disk of an IBM personal computer. Water samplings were made during up-cast by sending a fire command from the computer. We sampled seawater at 2000m,1500m,1000m until C04 cast, and at 1000m from C05 cast for calibration of salinity data. In total, 14 castings were carried out (see Table. 6.2.1).

The CTD raw data was processed using SEASOFT (ver.4.232). Data processing and used utilities of SEASOFT were as follows:

| DATCNV:   | Converts the binary raw data to output on physical units.                  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------|--|--|--|--|--|
|           | This utility selects the CTD data when bottles closed to output on another |  |  |  |  |  |
|           | fire.                                                                      |  |  |  |  |  |
| SECTION:  | Remove the unnecessary data.                                               |  |  |  |  |  |
| WILDEDIT: | Obtain an accurate estimate of the true standard deviation of the data.    |  |  |  |  |  |
|           | Std deviation for pass 1:2                                                 |  |  |  |  |  |
|           | Std deviation for pass 2:10                                                |  |  |  |  |  |
|           | Point per block: 100                                                       |  |  |  |  |  |
|           |                                                                            |  |  |  |  |  |

| BINAVG: | Calculates the averaged in every 1 db.                           |
|---------|------------------------------------------------------------------|
| ROSSUM: | Edits the data of water sampled to output a summary fire.        |
| SPLIT:  | Splits the data made in CNVfiles into upcast and downcast files. |

Specifications of the sensers are listed below.

Under water unit:

CTD 9plus (S/N 09P21746-0575, Sea-Bird Electronics, Inc.). Calibrated Data: 27.Oct.2000

Temperature Senser:

SBE3-04/F (S/N 031464, Sea-Bird Electronics, Inc.).

Calibrated Data: 08.Jan.2001

SBE3-04/F (S/N 031207, Sea-Bird Electronics, Inc.).

Calibrated Date: 18.Nov.2000

Conductivity Senser:

SBE4-04/0 (S/N 041202, Sea-Bird Electronics, Inc.).

Calibrated Data: 12.Jan.2001

SBE4-04/0 (S/N 040960, Sea-Bird Electronics, Inc.).

Calibrated Data: 21.Nov.2000

Deck unit: SBE11 (S/N 11P8010-0308, Sea-Bird Electronics, Inc.).

Carousel water sampler: SBE32 (S/N 3222295-0171, Sea-Bird Electronics, Inc.).

## (4) Preliminary result

Vertical profiles at each CTD cast are attached Fig. 6.2.1-1,2.

(5) Trouble

The pump was replaced with S/N 050984 from S/N 050985 at C12 cast due to the trouble of reak.

## (6) Data archive

All raw and processed CTD data files were copied onto magnetic optical disks (MO) and will be submitted to JAMSTEC Data Management Office (DMO).

## Table 6.2.1 CTD cast table

| Cast<br>No. | File Name | Lat.     | [N,S] | Long.     | [E] | Date          | Start<br>Time | End<br>Time | Max.<br>Press. [db] | Max.<br>Wire Out | Depth<br>[m] | Remarks |
|-------------|-----------|----------|-------|-----------|-----|---------------|---------------|-------------|---------------------|------------------|--------------|---------|
| C01         | C01S01    | 36-39.84 | Ν     | 143-52.22 | Е   | 2001/02/16    | 00:23         | 01:42       | 2000.629            | 2162             | 6094.0       |         |
| C02         | C02S01    | 31-00.28 | Ν     | 146-31.84 | Е   | 2001/02/17    | 03:19         | 05:05       | 2001.940            | 2003             | 6203.0       |         |
| C03         | C03S01    | 29-00.30 | Ν     | 147-25.05 | Е   | 2001/02/17    | 14:21         | 16:08       | 2005.446            | 1991             | 6143.0       |         |
| C04         | C04S01    | 27-30.10 | Ν     | 148-05.12 | Е   | 2001/02/17-18 | 22:49         | 00:31       | 2003.299            | 2025             | 5812.0       |         |
| C05         | C05S01    | 08-01.18 | Ν     | 155-58.74 | Е   | 2001/02/22    | 03:55         | 04:28       | 1000.515            |                  | 4856.0       |         |
| C06         | C06S01    | 04-59.49 | Ν     | 156-01.05 | Е   | 2001/02/24    | 07:57         | 08:31       | 1001.041            |                  | 3599.0       |         |
| C07         | C07S01    | 02-03.28 | Ν     | 156-01.07 | Е   | 2001/02/26    | 03:27         | 03:59       | 1000.749            | 1005             | 2578.0       |         |
| C08         | C08S01    | 01-58.00 | Ν     | 155-51.98 | Е   | 2001/02/26    | 05:10         | 05:42       | 1000.380            | 1008             | 2558.0       |         |
| C09         | C09S01    | 00-00.10 | Ν     | 155-57.30 | Е   | 2001/03/02    | 03:36         | 04:11       | 1002.318            | 1012             | 1939.0       |         |
| C10         | C10S01    | 02-00.21 | S     | 155-57.06 | Е   | 2001/03/05    | 03:27         | 04:02       | 1002.318            | 1015             | 1749.0       |         |
| C11         | C11S01    | 05-00.04 | S     | 156-01.34 | Е   | 2001/03/07    | 01:25         | 01:54       | 1001.188            | 1013             | 1502.0       |         |
| C12         | C12S02    | 00-05.76 | Ν     | 147-01.15 | Е   | 2001/3/13     | 00:49         | 01:27       | 1001.000            | 997              | 4450.0       |         |
| C13         | C13S01    | 02-06.97 | Ν     | 146-56.14 | Е   | 2001/3/14     | 03:30         | 04:07       | 1001.000            | 1006             | 4451.0       |         |
| C14         | C14S01    | 04-58.50 | Ν     | 146-59.63 | Е   | 2001/3/15     | 03:25         | 04:00       | 1001.000            | 1008             | 4248.0       |         |









## 6.2.2 XCTD

## (1) Personnel

Fumitaka Yoshiura (GODI): Operation Leader Wataru Tokunaga (GODI): Operator Kasis Inape (PNG NWS): Operator Keiichiro Shishido (R/V Mirai Crew): Operator

- (2) Objectives Investigation of oceanic structure.
- (3) Parameters

Accoding to the manufacturer's information, the range and accuracy of parameters measured by the XCTD (eXpendable Conductivity, Temperature & Depth profiler) are as follows;

| Parameter    | Range       | Accuracy       |
|--------------|-------------|----------------|
| Conductivity | 0~60 mS     | +/- 0.03 mS/cm |
| Temperature  | -2~35 deg-C | +/- 0.02 deg-C |
| Depth        | 0~1000 m    |                |

(4) Methods

We observed the vertical profiles of the sea water temperature and salinity measured by the XCTD-1 manufactured by Tsurumi-Seiki Co.. The signal was converted by MK-100, Tsurumi-Seiki Co. and was recorded by WinXCTD software (Ver.1.03) made by Tsurumi-Seiki Co.. We dropped 44 probes (X01-X43) by using automatic launcher.

Table 6.2.2-1 shows the summary of XCTD observation log.

| Station | Date      | Time     | Lat.      | Lon.       | SST    | SSS    | MMD  | WD   | Probe S/N |
|---------|-----------|----------|-----------|------------|--------|--------|------|------|-----------|
| X01     | 2001/2/15 | 15:25:44 | 38-19.96N | 143-03.38E | 11.332 | 34.328 | 1037 | 1887 | 00092764  |
| X02     | 2001/2/15 | 16:52:22 | 38-00.00N | 143-12.30E | 6.883  | 33.808 | 1038 | 2625 | 00092766  |
| X03     | 2001/2/15 | 18:51:34 | 37-39.97N | 143-23.65E | 10.745 | 34.307 | 1037 | 4823 | 00092765  |
| X04     | 2001/2/15 | 20:47:34 | 37-21.55N | 143-34.58E | 14.188 | 34.604 | 1037 | 7301 | 00092768  |
| X05     | 2001/2/15 | 22:46:38 | 36-59.88N | 143-43.97E | 19.151 | 34.708 | 1037 | 6971 | 00092763  |
| X06     | 2001/2/16 | 0:09:07  | 36-41.68N | 143-51.18E | 19.312 | 34.722 | 1037 | 6208 | 00092769  |
| X07_1   | 2001/2/16 | 3:26:40  | 36-19.81N | 144-04.05E | 17.544 | 34.741 | 727  | 5152 | 00092770  |
| X07_2   | 2001/2/16 | 3:35:33  | 36-18.39N | 144-04.65E | 17.557 | 34.738 | 1037 | 4905 | 00092767  |
| X08     | 2001/2/16 | 4:56:51  | 36-00.91N | 144-12.78E | 17.706 | 34.734 | 1038 | 5714 | 00113311  |
| X09     | 2001/2/16 | 6:38:26  | 35-40.35N | 144-22.45E | 18.021 | 34.740 | 1037 | 4491 | 00092760  |
| X10     | 2001/2/16 | 8:02:27  | 35-20.82N | 144-31.75E | 17.681 | 34.734 | 1038 | 5707 | 00092762  |

| X11 | 2001/2/16 | 9:35:07  | 34-59.88N | 144-41.15E | 17.592 | 34.734 | 1036 | 5791 | 00092759 |
|-----|-----------|----------|-----------|------------|--------|--------|------|------|----------|
| X12 | 2001/2/16 | 10:50:37 | 34-40.74N | 144-49.08E | 17.552 | 34.741 | 1036 | 5788 | 00092761 |
| X13 | 2001/2/16 | 12:15:15 | 34-19.98N | 144-56.96E | 17.588 | 34.744 | 1038 | 5803 | 00113312 |
| X14 | 2001/2/16 | 13:28:39 | 33-59.95N | 144-59.72E | 17.629 | 34.713 | 1038 | 5778 | 00113310 |
| X15 | 2001/2/16 | 14:55:15 | 33-39.99N | 145-10.22E | 13.680 | 34.485 | 1037 | 5801 | 00113313 |
| X16 | 2001/2/16 | 16:33:44 | 33-20.96N | 145-27.55E | 15.930 | 34.621 | 1037 | 5669 | 00092633 |
| X17 | 2001/2/16 | 18:17:51 | 33-00.01N | 145-38.14E | 18.069 | 34.734 | 1038 | 5804 | 00092629 |
| X18 | 2001/2/16 | 19:41:34 | 32-40.89N | 145-47.00E | 19.373 | 34.719 | 1037 | 5943 | 00092632 |
| X19 | 2001/2/16 | 21:16:54 | 32-19.71N | 145-55.95E | 18.682 | 34.753 | 1037 | 6023 | 00092631 |
| X20 | 2001/2/16 | 22:40:11 | 32-01.08N | 146-04.96E | 19.130 | 34.765 | 1038 | 6128 | 00092628 |
| X21 | 2001/2/17 | 0:58:28  | 31-30.04N | 146-18.28E | 18.750 | 34.753 | 1037 | 6054 | 00092681 |
| X22 | 2001/2/17 | 3:02:45  | 31-01.54N | 146-30.99E | 18.370 | 34.758 | 1037 | 6172 | 00092624 |
| X23 | 2001/2/17 | 7:38:16  | 30-29.94N | 146-44.72E | 18.440 | 34.735 | 1038 | 6219 | 00092627 |
| X24 | 2001/2/17 | 9:47:54  | 30-01.00N | 146-58.22E | 18.723 | 34.760 | 1037 | 6246 | 00092626 |
| X25 | 2001/2/17 | 12:07:40 | 29-30.00N | 147-11.75E | 19.091 | 34.786 | 1037 | 6234 | 00092669 |
| X26 | 2001/2/17 | 14:06:53 | 29-01.90N | 147-24.33E | 18.635 | 34.763 | 1037 | 6148 | 00092683 |
| X27 | 2001/2/17 | 18:25:20 | 28-30.00N | 147-38.18E | 20.113 | 34.854 | 1037 | 6084 | 00092625 |
| X28 | 2001/2/17 | 20:32:53 | 28-00.01N | 147-51.34E | 20.377 | 34.851 | 1038 | 5698 | 00092630 |
| X29 | 2001/2/17 | 22:39:08 | 27-31.56N | 148-04.87E | 20.459 | 34.869 | 1037 | 5828 | 00092622 |
| X30 | 2001/2/18 | 2:39:32  | 27-00.31N | 148-16.97E | 20.526 | 34.900 | 1037 | 5654 | 00092623 |
| X31 | 2001/2/18 | 4:47:02  | 26-30.01N | 148-30.38E | 22.791 | 35.009 | 1037 | 6164 | 00092656 |
| X32 | 2001/2/18 | 6:52:32  | 26-00.13N | 148-43.12E | 23.688 | 35.210 | 1037 | 6321 | 00092658 |
| X33 | 2001/2/23 | 6:02:34  | 06-59.99N | 155-59.52E | 28.321 | 34.184 | 1037 | 4439 | 00092654 |
| X34 | 2001/2/23 | 10:02:41 | 05-59.81N | 156-01.89E | 28.637 | 33.917 | 1037 | 4065 | 00092653 |
| X35 | 2001/2/25 | 5:22:23  | 03-59.97N | 156-00.26E | 29.245 | 34.760 | 1037 | 3475 | 00092651 |
| X36 | 2001/2/25 | 9:17:44  | 02-59.71N | 155-55.87E | 29.127 | 35.234 | 1037 | 2820 | 00092652 |
| X37 | 2001/2/27 | 6:41:30  | 00-59.71N | 155-58.91E | 29.503 | 35.346 | 1037 | 2271 | 00092648 |
| X38 | 2001/3/3  | 4:19:32  | 01-00.07S | 155-53.03E | 30.313 | 35.364 | 1041 | 2109 | 00092649 |
| X39 | 2001/3/6  | 4:37:10  | 03-00.00S | 155-58.68E | 29.513 | 34.902 | 1038 | 1812 | 00092708 |
| X40 | 2001/3/6  | 8:38:01  | 04-00.15S | 156-00.03E | 30.124 | 34.951 | 1043 | 1780 | 00092650 |
| X41 | 2001/3/13 | 8:10:50  | 01-00.03N | 147-12.17E | 30.305 | 34.775 | 1026 | 4543 | 00092707 |
| X42 | 2001/3/14 | 7:34:57  | 03-00.02N | 146-58.36E | 29.695 | 34.898 | 1037 | 4455 | 00092706 |
| X43 | 2001/3/14 | 11:26:45 | 04-00.02N | 147-00.17E | 29.616 | 34.724 | 1036 | 4697 | 00092703 |

Acroyms in Table 6.2.2-1 are as follow;

- SST: Sea Surface Temperature [deg-C] mesured by Continuous Sea Surface Monitoring System.
- SSS: Sea Surface Salinity [PSU] measured by Continuous Sea Surface Monitoring System.
- MMD: Maximum Measured Depth [m]
- WD: Water Depth [m]
- (5) Preliminary results

Verivcal sections are shown in the following figures combined with CTD data. Fig. 6.2.2-1 and Fig. 6.2.2-2 are temperature and salinity plots along ship's track from 38-20N to 26-00N, Fig. 6.2.2-3 and Fig. 6.2.2-4 are along 156E, Fig. 6.2.2-5 and Fig. 6.2.2-6 are along 147E respectivity.

## (6) Data archives

XCTD data obtained in this cruise will be submitted to the DMO (Data Management Office), in JAMSTEC and will be available via "R/V Mirai Data Web Page" in JAMSTEC home page.



Fig. 6.2.2-1 Temperature along ship's track from 38-20N to 26-00N



Fig. 6.2.2-2 Salinity along ship's track from 38-20N to 26-00N



Fig. 6.2.2-3 Temperature along 156E



Fig. 6.2.2-4 Salinity along 156E



Fig. 6.2.2-5 Temperature along 147E



Fig. 6.2.2-6 Salinity along 147E

#### 6.2.3 Salinity measurement of sampled seawater for validation of CTD salinity data

(1) Personnel

Hirokatsu UNO (MWJ): Operation Leader Kaori AKIZAWA (MWJ) Miki YOSHIIKE (MWJ)

#### (2) Objective

To check the quality of CTD

#### (3) Parameter

Salinity of sampled seawater

#### (4) Method

Seawater samples were collected 12-litter Niskin Bottle. Sampling layer at St.C01, C02, C03, C04 are 2,000 db, 1,500 db, and 1,000 db, and the other stations are sampled at only 1,000 db. The bottles in which the salinity was sampled stored were 250ml Phoenix brown glass bottles with screw caps. Each bottle was rinsed three times and filled with sample water. Salinity samples were stored in the same laboratory as the salinity measurement was made.

The salinity measurements were carried out using the laboratory salinometer (Model 8400B AUTOSAL S/N 62823; Guildline Instruments Ltd.), which was modified with Ocean Scientific International peristaltic-type sample intake pump. The instrument was operated in the "AUTOSAL Room" of R/V Mirai with a bath temperature 24 deg-C. A double conductivity ratio was defined as a median of 31 readings of the salinometer. Data collection was started after 15 data readings and it took about 10 seconds by a PC. We obtained two conductivity reading for each sample, and averaged values were used to calculate salinity. The salinometer was standardized with IAPSO Standard Seawater batch P137 whose conductivity ratio is 0.99995 (salinity 34.998). Sub-standard was used to check the drift of the AUTOSAL and measured in every 8 sampled.

## (5) Results

Measurement data of all samples were shown in Table 6.2.3-1 and Table 6.2.3-2. Salinity comparison between CTD data and AUTOSAL data sampled ware shown in Table 6.2-2, Fig.6.2.3-3, Fig.6.2.3-1 and Fig.6.2.3-2.

#### (6) Data archive

The data of sample will be submitted to the Data Management Office (DMO) in JAMSTEC

together with the MO disk of CTD data in this cruise.

| St. | Niskin No. | Date             | Depth<br>(m)     | CTD-Sal.<br>(PSU)  | Bottle No. | AUTOSAL<br>(PSU)   | Difference<br>(PSU) | Ex. Bad Sample<br>(PSU) | Remarks            |
|-----|------------|------------------|------------------|--------------------|------------|--------------------|---------------------|-------------------------|--------------------|
| C01 | 1          | 15 Feb. 2001     | 1997.48          | 34,5767            | 1          | 34,5729            | 0.0038              | 0.0038                  |                    |
| 001 | 1          | 15 1 00. 2001    | 1997.48          | 34 5767            | 2          | 34 5726            | 0.0041              | 0.0041                  |                    |
|     | 3          |                  | 1994.24          | 34,5763            | 3          | 34.5728            | 0.0035              | 0.0035                  |                    |
|     | 3          |                  | 1994.24          | 34,5763            | 4          | 34.5726            | 0.0037              | 0.0037                  |                    |
|     | 5          |                  | 1500.85          | 34.4920            | 5          | 34.4884            | 0.0036              | 0.0036                  |                    |
|     | 5          |                  | 1500.85          | 34.4920            | 6          | 34.4886            | 0.0034              | 0.0034                  |                    |
|     | 3<br>7     |                  | 1502.20          | 34 4924            | 0<br>7     | 34 4887            | 0.0037              | 0.0037                  |                    |
|     | 7          |                  | 1502.20          | 34.4924            | 8          | 34.4886            | 0.0038              | 0.0038                  |                    |
|     | 9          |                  | 1000.74          | 34.2605            | 9          | 34,3003            | 0.0398              | 010020                  |                    |
|     | 9          |                  | 1000.74          | 34.2605            | 10         | 34.3005            | 0.0400              |                         |                    |
|     | 11         |                  | 1000.41          | 34.2600            | 11         | 34.2572            | 0.0028              | 0.0028                  |                    |
|     | 11         |                  | 1000.41          | 34.2600            | 12         | 34.2577            | 0.0023              | 0.0023                  |                    |
| C02 | 1          | 17 Feb. 2001     | 1998.55          | 34.5965            | 25         | 34.5926            | 0.0039              | 0.0039                  |                    |
|     | 1          |                  | 1998.55          | 34.5965            | 14         | 34.5924            | 0.0041              | 0.0041                  |                    |
|     | 3          |                  | 1997.07          | 34.5958            | 15         | 34.5925            | 0.0033              | 0.0033                  |                    |
|     | 3          |                  | 1997.07          | 34.5958            | 16         | 34.5930            | 0.0028              | 0.0028                  |                    |
|     | 5          |                  | 1499.72          | 34.4943            | 17         | 34.4914            | 0.0029              | 0.0029                  |                    |
|     | 5          |                  | 1499.72          | 34.4943            | 18         | 34.4902            | 0.0041              | 0.0041                  |                    |
|     | 7          |                  | 1500.51          | 34.4951            | 19         | 34.4905            | 0.0046              | 0.0046                  | Niskin Bottle Leak |
|     | 7          |                  | 1500.51          | 34.4951            | 20         | 34.4899            | 0.0052              | 0.0052                  | Niskin Bottle Leak |
|     | 9          |                  | 1000.94          | 34.2487            | 21         | 34.3092            | 0.0605              |                         |                    |
|     | 9          |                  | 1000.94          | 34.2487            | 22         | 34.3088            | 0.0601              |                         |                    |
|     | 11         |                  | 1002.68          | 34.2497            | 23         | 34.2456            | 0.0041              | 0.0041                  |                    |
|     | 11         |                  | 1002.68          | 34.2497            | 24         | 34.2455            | 0.0042              | 0.0042                  |                    |
| C03 | 1          | 17 Feb. 2001     | 2002.62          | 34.5969            | 26         | 34.5947            | 0.0022              | 0.0022                  |                    |
|     | 1          |                  | 2002.62          | 34.5969            | 27         | 34.5938            | 0.0031              | 0.0031                  |                    |
|     | 5          |                  | 1498.75          | 34.4956            | 28         | 34.4921            | 0.0035              | 0.0035                  |                    |
|     | 5          |                  | 1498.75          | 34.4956            | 29         | 34.4940            | 0.0016              | 0.0016                  |                    |
|     | 9          |                  | 1000.08          | 34.2542            | 30         | 34.2513            | 0.0029              | 0.0029                  |                    |
|     | 9          |                  | 1000.08          | 34.2542            | 31         | 34.2508            | 0.0034              | 0.0034                  |                    |
| C04 | 1          | 18 Feb. 2001     | 1999.67          | 34.5998            | 32         | 34.5973            | 0.0025              | 0.0025                  |                    |
|     | 1          |                  | 1999.67          | 34.5998            | 33         | 34.5963            | 0.0035              | 0.0035                  |                    |
|     | 5          |                  | 1499.06          | 34.5034            | 34         | 34.4997            | 0.0037              | 0.0037                  |                    |
|     | 5          |                  | 1499.06          | 34.5034            | 35         | 34.4991            | 0.0043              | 0.0043                  |                    |
|     | 9          |                  | 999.85           | 34.2588            | 36         | 34.2552            | 0.0036              | 0.0036                  |                    |
|     | 9          |                  | 999.85           | 34.2588            | 37         | 34.2552            | 0.0036              | 0.0036                  |                    |
| C05 | 1          | 22 Feb. 2001     | 1000.00          | 34.5546            | 1          | 34.5522            | 0.0025              | 0.0025                  |                    |
|     | 1          |                  | 1000.00          | 34.5546            | 2          | 34.5522            | 0.0025              | 0.0025                  |                    |
|     | 7          |                  | 999.50           | 34.5545            | 3          | 34.5521            | 0.0025              | 0.0025                  |                    |
|     | 7          |                  | 999.50           | 34.5545            | 4          | 34.5525            | 0.0020              | 0.0020                  |                    |
| C06 | 7          | 24 Feb. 2001     | 1000.18          | 34.5581            | 5          | 34.5553            | 0.0028              | 0.0028                  |                    |
|     | 1          | A ( T. ). A ( ). | 1000.18          | 34.5581            | 6          | 34.5553            | 0.0028              | 0.0028                  |                    |
| C07 | 1          | 26 Feb. 2001     | 1000.10          | 34.5579            | /          | 34.5557            | 0.0022              | 0.0022                  |                    |
|     | 1          |                  | 1000.10          | 34.5579            | 8          | 54.5558<br>24.5554 | 0.0021              | 0.0021                  |                    |
|     | 7          |                  | 1000.06          | 54.5579<br>24.5570 | 9<br>10    | 54.5554<br>24.5552 | 0.0025              | 0.0025                  |                    |
| C00 | / 1        | 26 Eak 2001      | 000.00           | 24.33/9            | 10         | 34.3332            | 0.0027              | 0.0027                  |                    |
| 008 | 1          | 20 red. 2001     | 777.14<br>000 11 | 34.3333<br>24.5555 | 11         | 54.5554<br>24.5524 | 0.0021              | 0.0021                  |                    |
|     | 1 7        |                  | 999.14<br>000 15 | 34.3333<br>31 5556 | 12<br>14   | 24.2224<br>21 5521 | 0.0021              | 0.0021                  |                    |
|     | ו<br>ד     |                  | 777.13<br>000 15 | 34.3330<br>24.5556 | 14         | 34.3331<br>24.5545 | 0.0025              | 0.0023                  |                    |
|     | /          |                  | 777.13           | 34.3330            | 15         | 34.3343            | 0.0011              | 0.0011                  |                    |

Table6.2.3-1 Salinity comparison between CTD and AUTOSAL

| St.      | Niskin No. | Date         | Depth   | CTD-Sal. | Bottle No. | AUTOSAL    | Difference  | Ex. Bad Sample | Remarks            |
|----------|------------|--------------|---------|----------|------------|------------|-------------|----------------|--------------------|
| <u> </u> | 1          |              | (11)    | (PSU)    | 1.0        | (PSU)      | (PSU)       | (PSU)          |                    |
| C09      | 1          | 02 Mar. 2001 | 1000.79 | 34.5546  | 16         | 34.5527    | 0.0019      | 0.0019         |                    |
|          | 1          |              | 1000.79 | 34.5546  | 17         | 34.5531    | 0.0015      | 0.0015         |                    |
|          | 7          |              | 1000.77 | 34.5546  | 18         | 34.5519    | 0.0027      | 0.0027         | Niskin Bottle Leak |
|          | 7          |              | 1000.77 | 34.5546  | 19         | 34.5520    | 0.0027      | 0.0027         | Niskin Bottle Leak |
| C10      | 1          | 05 Mar. 2001 | 998.75  | 34.5514  | 20         | 34.5482    | 0.0032      | 0.0032         | Niskin Bottle Leak |
|          | 1          |              | 998.75  | 34.5514  | 21         | 34.5487    | 0.0027      | 0.0027         | Niskin Bottle Leak |
|          | 7          |              | 998.32  | 34.5514  | 22         | 34.5485    | 0.0029      | 0.0029         | Niskin Bottle Leak |
|          | 7          |              | 998.32  | 34.5514  | 23         | 34.5491    | 0.0023      | 0.0023         | Niskin Bottle Leak |
| C11      | 1          | 07 Mar. 2001 | 1000.27 | 34.5313  | 24         | 34.5292    | 0.0021      | 0.0021         |                    |
|          | 1          |              | 1000.27 | 34.5313  | 25         | 34.5286    | 0.0027      | 0.0027         |                    |
|          | 7          |              | 1001.02 | 34.5315  | 26         | 34.5295    | 0.0020      | 0.0020         |                    |
|          | 7          |              | 1001.02 | 34.5315  | 27         | 34.5304    | 0.0011      | 0.0011         |                    |
| C12      | 1          | 13 Mar. 2001 | 1000.37 | 34.5538  | 1          | 34.549     | 0.0050      | 0.0050         |                    |
|          | 1          |              | 1000.37 | 34.5538  | 2          | 34.549     | 0.0044      | 0.0044         |                    |
|          | 7          |              | 1000.83 | 34.5538  | 3          | 34.549     | 0.0044      | 0.0044         |                    |
|          | 7          |              | 1000.83 | 34.5538  | 4          | 34.550     | 0.0041      | 0.0041         |                    |
| C13      | 1          | 14 Mar. 2001 | 1000.35 | 34.5537  | 5          | 34.549     | 0.0048      | 0.0048         |                    |
|          | 1          |              | 1000.35 | 34.5537  | 6          | 34.550     | 0.0032      | 0.0032         |                    |
|          | 7          |              | 1000.17 | 34.5535  | 7          | 34.550     | 0.0032      | 0.0032         |                    |
|          | 7          |              | 1000.17 | 34.5535  | 8          | 34.549     | 0.0047      | 0.0047         |                    |
| C14      | 1          | 15 Mar. 2001 | 1000.71 | 34.5563  | 9          | 34.551     | 0.0051      | 0.0051         |                    |
|          | 1          |              | 1000.71 | 34.5563  | 10         | 34.552     | 0.0047      | 0.0047         |                    |
|          | 7          |              | 1000.24 | 34.5561  | 11         | 34.552     | 0.0041      | 0.0041         |                    |
|          | 7          |              | 1000.24 | 34.5561  | 12         | 34.551     | 0.0050      | 0.0050         |                    |
|          |            |              |         |          |            | Avg.       | 0.0057      | 0.0032         |                    |
|          |            |              |         |          |            | Std Dev.   | 0.0110      | 0.0010         |                    |
|          |            |              |         |          | Note       | The chedox | y line show | the Ex Se      | mplag              |

Note: The shadow line show the Ex. Samples.

| St  | Niskin No  | Date | Depth   | CTD-Sal. | Bottle No   | AUTOSAL | Difference |
|-----|------------|------|---------|----------|-------------|---------|------------|
| 51. | TUBRII TUB | Dute | (m)     | (PSU)    | Bottle 110. | (PSU)   | (PSU)      |
| C01 | 1          |      | 1997.48 | 34.5767  | 1           | 34.5729 | 0.0003     |
|     | 1          |      | 1997.48 | 34.5767  | 2           | 34.5726 | 0.0005     |
|     | 3          |      | 1994.24 | 34.5763  | 3           | 34.5728 | 0.0002     |
|     | 3          |      | 1994.24 | 34.5763  | 4           | 34.5726 | 0.0002     |
|     | 5          |      | 1500.85 | 34.4920  | 5           | 34.4884 | 0.0002     |
|     | 5          |      | 1500.85 | 34.4920  | 6           | 34.4886 | 0.0002     |
|     | 7          |      | 1502.20 | 34.4924  | 7           | 34.4887 | 0.0001     |
|     | 7          |      | 1502.20 | 34.4924  | 8           | 34.4886 | 0.0001     |
|     | 9          |      | 1000.74 | 34.2605  | 9           | 34.3003 | 0.0002     |
|     | 9          |      | 1000.74 | 34.2605  | 10          | 34.3005 | 0.0002     |
|     | 11         |      | 1000.41 | 34.2600  | 11          | 34.2572 | 0.0006     |
|     | 11         |      | 1000.41 | 34.2600  | 12          | 34.2577 | 0.0006     |
| C02 | 1          |      | 1998.55 | 34.5965  | 25          | 34.5926 | 0.0002     |
|     | 1          |      | 1998.55 | 34.5965  | 14          | 34.5924 | 0.0002     |
|     | 3          |      | 1997.07 | 34.5958  | 15          | 34.5925 | 0.0005     |
|     | 3          |      | 1997.07 | 34.5958  | 16          | 34.5930 | 0.0005     |
|     | 5          |      | 1499.72 | 34.4943  | 17          | 34.4914 | 0.0010     |
|     | 5          |      | 1499.72 | 34.4943  | 18          | 34.4902 | 0.0012     |
|     | 7          |      | 1500.51 | 34.4951  | 19          | 34.4905 | 0.000 6    |
|     | 7          |      | 1500.51 | 34.4951  | 20          | 34.4899 | 0.0006     |
|     | 9          |      | 1000.94 | 34.2487  | 21          | 34.3092 |            |
|     | 9          |      | 1000.94 | 34.2487  | 22          | 34.3088 | 0.0005     |
|     | 11         |      | 1002.68 | 34.2497  | 23          | 34.2456 |            |
|     | 11         |      | 1002.68 | 34.2497  | 24          | 34.2455 | 0.0001     |
| C03 | 1          |      | 2002.62 | 34.5969  | 26          | 34.5947 |            |
|     | 1          |      | 2002.62 | 34.5969  | 27          | 34.5938 | 0.0009     |
|     | 5          |      | 1498.75 | 34.4956  | 28          | 34.4921 |            |
|     | 5          |      | 1498.75 | 34.4956  | 29          | 34.4940 | 0.0020     |
|     | 9          |      | 1000.08 | 34.2542  | 30          | 34.2513 |            |
|     | 9          |      | 1000.08 | 34.2542  | 31          | 34.2508 | 0.0005     |
| C04 | 1          |      | 1999.67 | 34.5998  | 32          | 34.5973 |            |
|     | 1          |      | 1999.67 | 34.5998  | 33          | 34.5963 | 0.0010     |
|     | 5          |      | 1499.06 | 34.5034  | 34          | 34.4997 |            |
|     | 5          |      | 1499.06 | 34.5034  | 35          | 34,4991 | 0.0006     |
|     | 9          |      | 999.85  | 34.2588  | 36          | 34.2552 |            |
|     | 9          |      | 999.85  | 34.2588  | 37          | 34.2552 | 0.0000     |
| C05 | 1          |      | 1000.00 | 34,5546  | 1           | 34.5522 |            |
| 000 | 1          |      | 1000.00 | 34.5546  | 2           | 34.5522 | 0.0000     |
|     | 7          |      | 999 50  | 34 5545  | 3           | 34 5521 |            |
|     | 7          |      | 999 50  | 34 5545  | 4           | 34 5525 | 0.0005     |
| C06 | 7          |      | 1000.18 | 34 5581  | 5           | 34 5553 |            |
| 000 | 7          |      | 1000.18 | 34 5581  | 6           | 34 5553 | 0.0000     |
| C07 | 1          |      | 1000.10 | 34 5579  | 7           | 34 5557 |            |
| 007 | 1          |      | 1000.10 | 34 5579  | 8           | 34 5558 | 0.0001     |
|     | 7          |      | 1000.10 | 34 5579  | 9           | 34.5550 |            |
|     | ,<br>7     |      | 1000.00 | 34 5579  | 10          | 34 5557 | 0.0002     |
| C08 | ,<br>1     |      | 999 14  | 34 5555  | 11          | 34 5534 |            |
| 200 | -<br>1     |      | 999 14  | 34 5555  | 12          | 34 5534 | 0.0000     |
|     | 7          |      | 999 15  | 34 5556  | 14          | 34 5531 |            |
|     | ,<br>7     |      | 999.15  | 34.5556  | 15          | 34.5545 | 0.0014     |
|     | -          |      |         |          | -           |         |            |

Table6.2.3-2 Salinity comparison each replicate samples

| St  | Niskin No     | Date         | Depth   | CTD-Sal. | Bottle No   | AUTOSAL  | Difference |
|-----|---------------|--------------|---------|----------|-------------|----------|------------|
| 51. | TAISKIII 140. | Dute         | (m)     | (PSU)    | Bottle 110. | (PSU)    | (PSU)      |
| C09 | 1             |              | 1000.79 | 34.5546  | 16          | 34.5527  | 0.0004     |
|     | 1             |              | 1000.79 | 34.5546  | 17          | 34.5531  | 0.0004     |
|     | 7             |              | 1000.77 | 34.5546  | 18          | 34.5519  | 0.0001     |
|     | 7             |              | 1000.77 | 34.5546  | 19          | 34.5520  | 0.0001     |
| C10 | 1             |              | 998.75  | 34.5514  | 20          | 34.5482  | 0.0005     |
|     | 1             |              | 998.75  | 34.5514  | 21          | 34.5487  | 0.0005     |
|     | 7             |              | 998.32  | 34.5514  | 22          | 34.5485  | 0.0006     |
|     | 7             |              | 998.32  | 34.5514  | 23          | 34.5491  | 0.0000     |
| C11 | 1             |              | 1000.27 | 34.5313  | 24          | 34.5292  | 0.0006     |
|     | 1             |              | 1000.27 | 34.5313  | 25          | 34.5286  | 0.0000     |
|     | 7             |              | 1001.02 | 34.5315  | 26          | 34.5295  | 0.0010     |
|     | 7             |              | 1001.02 | 34.5315  | 27          | 34.5304  | 0.0010     |
| C12 | 1             | 13 Mar. 2001 | 1000.37 | 34.5538  | 1           | 34.549   | 0.0006     |
|     | 1             |              | 1000.37 | 34.5538  | 2           | 34.549   | 0.0006     |
|     | 7             |              | 1000.83 | 34.5538  | 3           | 34.549   | 0.0002     |
|     | 7             |              | 1000.83 | 34.5538  | 4           | 34.550   | 0.0003     |
| C13 | 1             | 14 Mar. 2001 | 1000.35 | 34.5537  | 5           | 34.549   | 0.0016     |
|     | 1             |              | 1000.35 | 34.5537  | 6           | 34.550   | 0.0016     |
|     | 7             |              | 1000.17 | 34.5535  | 7           | 34.550   | 0.0015     |
|     | 7             |              | 1000.17 | 34.5535  | 8           | 34.549   | 0.0015     |
| C14 | 1             | 15 Mar. 2001 | 1000.71 | 34.5563  | 9           | 34.551   | 0.0004     |
|     | 1             |              | 1000.71 | 34.5563  | 10          | 34.552   | 0.0004     |
|     | 7             |              | 1000.24 | 34.5561  | 11          | 34.552   | 0.0010     |
|     | 7             |              | 1000.24 | 34.5561  | 12          | 34.551   | 0.0010     |
|     |               |              |         |          |             | Avg.     | 0.0005     |
|     |               |              |         |          |             | Std Dev. | 0.0005     |

| St  | Niekin No     | Pressure |         | Salinity (PSU) | )          | Rottla No |
|-----|---------------|----------|---------|----------------|------------|-----------|
| 51. | INISKIII INO. | (db)     | CTD     | AUTOSAL        | Difference | Doule No. |
| C01 | 11            | 1000.41  | 34.2600 | 34.2577        | 0.0023     | 12        |
| C02 | 11            | 1002.68  | 34.2497 | 34.2456        | 0.0041     | 23        |
| C03 | 9             | 1000.08  | 34.2542 | 34.2513        | 0.0029     | 30        |
| C04 | 9             | 999.85   | 34.2588 | 34.2552        | 0.0036     | 36        |
| C05 | 7             | 999.50   | 34.5545 | 34.5525        | 0.0020     | 4         |
| C06 | 7             | 1000.18  | 34.5581 | 34.5553        | 0.0028     | 5         |
| C07 | 1             | 1000.10  | 34.5579 | 34.5558        | 0.0021     | 8         |
| C08 | 7             | 999.15   | 34.5556 | 34.5545        | 0.0011     | 15        |
| C09 | 1             | 1000.79  | 34.5546 | 34.5531        | 0.0015     | 17        |
| C10 | 7             | 998.32   | 34.5514 | 34.5491        | 0.0023     | 23        |
| C11 | 7             | 1001.02  | 34.5315 | 34.5304        | 0.0011     | 27        |
| C12 | 7             | 1000.83  | 34.5538 | 34.5497        | 0.0041     | 4         |
| C13 | 1             | 1000.35  | 34.5537 | 34.5505        | 0.0032     | 6         |
| C14 | 7             | 1000.24  | 34.5561 | 34.5521        | 0.0041     | 11        |
|     |               |          |         | Avg.           | 0.0027     |           |
|     |               |          |         | Std Dev.       | 0.0011     |           |

Table6.2.3-3 Salinity comparison between CTD data and AUTOSAL data sampled at 1,000m





#### 6.3 Continuous monitoring of surface seawater

#### 6.3.1 Continuous monitoring of surface seawater

(1) Personnel name and affiliation

| Taeko OHAMA    | (MWJ) Leg.1 |
|----------------|-------------|
| Kaori AKIZAWA  | (MWJ)       |
| Keisuke WATAKI | (MWJ) Leg.2 |

#### (2) Objective

To monitor continuously the physical, chemical and biological characteristics of near-sea surface water.

#### (3) Methods

The *Continuous Sea Surface Water Monitoring System* (Nippon Kaiyo co., Ltd.) is located in the "*sea surface monitoring laboratory*" on R/V Mirai. It can automatically measure temperature, salinity, dissolved oxygen, fluorescence and particle size of plankton in the near-surface water every 1-minute. Measured data are saved every one-minute together with time and the position of ship, and displayed in the data management PC machine. This system is connected to shipboard LAN-system and provides the acquired data for p-CO<sub>2</sub> measurement system, etc.

The uncontaminated seawater intake is 4.5m below the sea surface. Near-surface water was continuously pumped up about 200 L/min. from the intake to the laboratory and then flowed into *the Continuous Sea Surface Water Monitoring System* and p-CO<sub>2</sub> measurement system etc. through a steel pipe. The flow rate of surface water for this system was 12L/min, which controlled by some valves and passed through some sensors except with fluorometer (about 0.3 L/min.) through vinyl-chloride pipes.

*The Continuous Sea Surface Water Monitoring System* has six kinds of sensors, which TSG comprises of two SBE sensor modules. Sea surface temperature is measured by a ship bottom oceanographic thermometer situated on the suction side of the uncontaminated seawater supply in the forward hold. Specification and calibration date of the each sensor in this system of listed below.

#### a-1) Temperature and salinity sensors

| SEACAT THERMOS     | ALINOGRAPH                         |                          |  |  |  |
|--------------------|------------------------------------|--------------------------|--|--|--|
| Model:             | SBE-21, SEA-BIRD ELECTRONICS, INC. |                          |  |  |  |
| Serial number:     | 2118859-2641                       |                          |  |  |  |
| Measurement range: | Temperature -5 to +35 deg-C,       | Salinity 0 to 6.5 S/m    |  |  |  |
| Accuracy:          | Temperature 0.01 deg-C/6month,     | Salinity 0.001 S/m/month |  |  |  |
| Resolution:        | Temperature 0.001 deg-C,           | Salinity 0.0001 S/m      |  |  |  |
| Calibration date:  | 09-Jan-01.                         |                          |  |  |  |

# 6.3.1-1

a-2) Ship bottom oceanographic thermometer (mounted at the back of the pump for surface water)

| Model:             | SBE 3S-A, SEA-BIRD ELECTRONICS, INC. |
|--------------------|--------------------------------------|
| Serial number:     | 032067                               |
| Measurement range: | -5 to +35 deg-C                      |
| Initial Accuracy:  | 0.001 deg-C per year typical         |
| Stability:         | 0.002 deg-C per year typical         |
| Calibration date:  | 23-Aug00.                            |

## b) Dissolved oxygen sensor

| Model:             | 2127, Oubisufair Laboratories Japan INC. |
|--------------------|------------------------------------------|
| Serial number:     | 31757                                    |
| Measurement range: | 0 to 14 ppm                              |
| Accuracy:          | ± 1% at 5 deg-C of correction range      |
| Stability:         | 1% per month                             |
| Calibration date:  | 15-Feb-01.                               |

## c) Fluorometer

| Model:           | 10-AU-005, TURNER DESIGNS       |
|------------------|---------------------------------|
| Detection limit: | 5 ppt or less for chlorophyll a |
| Stability:       | 0.5% per month of full scale    |

## d) Particle size sensor

| Model:             | P-05, Nippon Kaiyo LTD. |
|--------------------|-------------------------|
| Serial number:     | P5024                   |
| Accuracy:          | ± 10% of range          |
| Measurement range: | 0.02681mm to 6.666mm    |
| Reproducibility:   | ± 5%                    |
| Stability:         | 5% per week             |

## e) Flowmeter

| Model:             | EMARG2W, Aichi Watch Electronics LTD. |
|--------------------|---------------------------------------|
| Serial number:     | 8672                                  |
| Measurement range: | 0 to 30 L/min                         |
| Accuracy:          | ±1%                                   |
| Stability:         | ±1% per day                           |

The monitoring periods (UTC) during this cruise are listed below.

Leg.1 15-Feb.-01. to 16-Mar.-01. (From Hachinohe to Guam)

Leg.2 18-Mar.-01. to 22-Mar.-01. (From Guam to Yokosuka)

#### (4) Preliminary Result

## (4-1) Salinity sensor

We sampled one (leg 1) and three (leg 2) times every day for salinity sensor calibration. All salinity samples were collected from the course of the system while on station or from regions with weak horizontal gradients. All samples were analyzed on the Guildline 8400B.

The results were shown in Table 6.3.1-1., Figure 6.3.1-1.

#### (4-2) Dissolved Oxygen (D.O.) sensor

D.O. sensor of this system was calibrated before this cruise. To estimate of accuracy of the sensor, we collected the samples from the course of the system and analyzed by Winkler method. The standardization and pure water blank determination have been performed before the sample titration.

The results were shown in Table 6.3.1-2., Figure 6.3.1-2. Precision of the sensor was different from the concentration and each calibration.

#### (5) Result

Preliminary data 10 minutes from Hachinohe to Yokosuka. These data were compared with five part of Hachinohe to long.156E, long.156E, long.156E to 147E, long.147E to Guam, Guam to Yokosuka ( shown in Fig. 6.3.1-3, Fig. 6.3.1-4, Fig. 6.3.1-5, Fig. 6.3.1-6, Fig. 6.3.1-7 ). All salinity and dissolved oxygen data were not corrected.

#### (6) Other remarks

Equation was to obtain values of temperature (IPTS-68) converted into ITS-90 as follows.  $T_{90}=0.99976\,*\,T_{68}$ 

## (7) Data archive

Format of raw data files was ASCII, calibration values of salinity and temperature (IPTS-68, ITS-90) were Microsoft excel files and ASCII format files, were stored on a magnetic optical disk (M.O.disk). All the data will be submitted to the DMO at JAMSTEC.

| Leg. No. | Sampling Date and Time |       | Sampling   | Sampling Position |           | Sctd    | Ssal    | Sctd-Ssal |
|----------|------------------------|-------|------------|-------------------|-----------|---------|---------|-----------|
|          | (UTC)                  |       | latitude   | longitude         | (IPTS-68) | (PSS78) | (PSS78) | (PSS78)   |
| 1        | 2/15/01                | 11:53 | 39-10.441N | 142-39.609E       | 5.9001    | 33.5434 | 33.5457 | -0.0023   |
| 1        | 2/16/01                | 12:54 | 34-09.434N | 144-57.601E       | 17.7210   | 34.7501 | 34.7454 | 0.0047    |
| 1        | 2/17/01                | 11:14 | 29-42.569N | 147-06.886E       | 18.7856   | 34.7483 | 34.7451 | 0.0032    |
| 1        | 2/18/01                | 11:18 | 24-57.706N | 149-10.193E       | 24.1996   | 35.1956 | 35.1867 | 0.0089    |
| 1        | 2/20/01                | 11:41 | 13-38.275N | 153-46.010E       | 27.3763   | 34.3575 | 34.3537 | 0.0038    |
| 1        | 2/21/01                | 11:29 | 08-01.435N | 155-55.469E       | 28.2576   | 34.2987 | 34.2934 | 0.0053    |
| 1        | 2/22/01                | 10:14 | 07-59.227N | 155-52.874E       | 28.2041   | 34.2756 | 34.2722 | 0.0034    |
| 1        | 2/23/01                | 10:07 | 05-58.990N | 156-01.955E       | 28.6366   | 33.8853 | 33.8896 | -0.0043   |
| 1        | 2/24/01                | 10:54 | 04-59.620N | 156-01.084E       | 29.1305   | 34.4329 | 34.4278 | 0.0051    |
| 1        | 2/25/01                | 10:25 | 02-43.522N | 155-54.551E       | 29.1034   | 35.3128 | 35.3156 | -0.0028   |
| 1        | 2/26/01                | 9:20  | 01-56.721N | 155-50.454E       | 29.2373   | 35.3854 | 35.3788 | 0.0066    |
| 1        | 2/27/01                | 11:15 | 00-00.341N | 156-07.651E       | 29.4359   | 35.2201 | 35.2154 | 0.0047    |
| 1        | 2/28/01                | 10:19 | 00-01.590N | 156-03.689E       | 29.3550   | 35.0750 | 35.0692 | 0.0058    |
| 1        | 3/1/01                 | 10:06 | 00-04.302N | 156-08.977E       | 29.4192   | 35.1145 | 35.1117 | 0.0028    |
| 1        | 3/2/01                 | 8:28  | 00-01.219S | 155-51.442E       | 29.8294   | 35.1318 | 35.1262 | 0.0056    |
| 1        | 3/3/01                 | 10:33 | 01-34.093S | 155-52.070E       | 29.9602   | 35.2247 | 35.2209 | 0.0038    |
| 1        | 3/5/01                 | 10:25 | 01-58.859S | 155-55.367E       | 29.8116   | 35.2633 | 35.2612 | 0.0021    |
| 1        | 3/6/01                 | 10:40 | 04-30.694S | 156-00.697E       | 30.3364   | 34.9186 | 34.9270 | -0.0084   |
| 1        | 3/7/01                 | 10:32 | 04-56.396S | 156-03.041E       | 30.1066   | 34.7044 | 34.7013 | 0.0031    |
| 1        | 3/8/01                 | 10:12 | 04-50.970S | 156-24.897E       | 30.1117   | 34.6033 | 34.5991 | 0.0042    |
| 1        | 3/9/01                 | 10:51 | 03-42.468S | 154-47.247E       | 30.6900   | 34.9887 | 34.9995 | -0.0108   |
| 1        | 3/10/01                | 10:15 | 02-03.111N | 156-00.414E       | 29.1324   | 35.3135 | 34.6359 | 0.6776    |
| 1        | 3/11/01                | 22:45 | 01-16.009N | 152-27.638E       | 29.6882   | 35.1867 | 35.0431 | 0.1436    |
| 1        | 3/12/01                | 9:18  | 00-39.680N | 149-43.104E       | 29.9805   | 34.8983 | 34.7664 | 0.1319    |
| 1        | 3/14/01                | 12:47 | 04-20.450N | 147-00.640E       | 29.7496   | 34.8161 | 34.8130 | 0.0031    |
| 2        | 3/18/01                | 04:11 | 14-29.925N | 144-21.311E       | 27.908    | 34.7692 | 34.7676 | 0.0100    |
| 2        | 3/18/01                | 12:05 | 16-30.279N | 143-56.656E       | 27.8032   | 34.8753 | 34.8705 | 0.0092    |
| 2        | 3/18/01                | 20:08 | 18-34.457N | 143-30.721E       | 27.1285   | 34.9207 | 34.9160 | -0.0009   |
| 2        | 3/19/01                | 04:06 | 20-28.251N | 143-07.101E       | 25.1747   | 35.0103 | 35.0059 | -0.0024   |
| 2        | 3/19/01                | 12:06 | 22-19.206N | 142-42.198E       | 24.9262   | 35.0419 | 35.0356 | 0.0125    |
| 2        | 3/19/01                | 20:06 | 24-18.021N | 142-14.698E       | 24.0478   | 35.0114 | 35.0121 | 0.0098    |
| 2        | 3/20/01                | 04:07 | 26-12.595N | 141-47.340E       | 22.1656   | 34.9220 | 34.9122 | -0.0007   |
| 2        | 3/20/01                | 11:59 | 27-43.640N | 141-26.085E       | 20.9064   | 34.8823 | 34.8698 | 0.0063    |
| 2        | 3/20/01                | 20:07 | 29-18.820N | 141-05.710E       | 19.0979   | 34.7723 | 34.7747 | 0.0044    |
| 2        | 3/21/01                | 04:03 | 30-46.228N | 140-43.192E       | 19.5024   | 34.7045 | 34.7054 | 0.0047    |
| 2        | 3/21/01                | 12:02 | 32-18.074N | 140-24.573E       | 20.2905   | 34.7644 | 34.7552 | 0.0048    |
| 2        | 3/21/01                | 20:07 | 33-54.881N | 140-03.690E       | 17.1478   | 34.7009 | 34.6909 | 0.0016    |

Table 6.3-1 Comparison of salinity between salinity sensor of Sea Surface Monitoring System and samples analyzed by Autosal salinometer.

| Leg. No. | Sampling Dat | e and Time | Samplin    | g Positon   | Salinity | Γ of SBE21 <sup>3</sup> | of IPTS-90 | D.O. sensor | Winkler | difference |
|----------|--------------|------------|------------|-------------|----------|-------------------------|------------|-------------|---------|------------|
|          | (UT          | C)         | Latitude   | Longitude   | (PSU)    | (deg-C)                 | (deg-C)    | (ml/l)      | (ml/l)  |            |
| 1        | 2/16/01      | 12:54      | 34-09.137N | 144-57.586E | 34.748   | 17.723                  | 17.719     | 5.919       | 5.330   | 0.589      |
| 1        | 2/16/01      | 12:57      | 34-08.271N | 144-57.572E | 34.748   | 17.720                  | 17.716     | 5.899       | 5.179   | 0.720      |
| 1        | 2/18/01      | 11:21      | 24-57.456N | 149-10.312E | 35.191   | 24.182                  | 24.176     | 5.708       | 4.771   | 0.937      |
| 1        | 2/18/01      | 11:24      | 24-56.774N | 149-10.653E | 35.189   | 24.151                  | 24.145     | 5.696       | 4.770   | 0.926      |
| 1        | 2/20/01      | 11:45      | 13-37.360N | 153-46.360E | 34.356   | 27.387                  | 27.380     | 5.385       | 4.530   | 0.855      |
| 1        | 2/20/01      | 11:49      | 13-36.440N | 153-46.716E | 34.358   | 27.401                  | 27.394     | 5.387       | 4.552   | 0.835      |
| 1        | 2/23/01      | 10:11      | 05-58.179N | 156-02.011E | 33.691   | 28.481                  | 28.474     | 5.258       | 4.490   | 0.768      |
| 1        | 2/23/01      | 10:13      | 05-57.689N | 156-02.043E | 33.610   | 28.428                  | 28.421     | 5.258       | 4.495   | 0.763      |
| 1        | 2/25/01      | 10:29      | 02-42.541N | 155-54.460E | 35.323   | 29.109                  | 29.102     | 5.098       | 4.382   | 0.716      |
| 1        | 2/25/01      | 10:32      | 02-41.806N | 155-54.387E | 35.320   | 29.106                  | 29.099     | 5.101       | 4.358   | 0.743      |
| 1        | 2/28/01      | 10:23      | 00-01.622N | 156-03.721E | 35.075   | 29.351                  | 29.344     | 5.178       | 4.453   | 0.725      |
| 1        | 2/28/01      | 10:26      | 00-01.632N | 156-03.727E | 35.076   | 29.350                  | 29.343     | 5.177       | 4.450   | 0.727      |
| 1        | 3/3/01       | 23:39      | 01-30.093S | 155-54.475E | 35.189   | 29.599                  | 29.592     | 5.145       | 4.442   | 0.703      |
| 1        | 3/3/01       | 23:41      | 01-30.091S | 155-54.445E | 35.191   | 29.599                  | 29.592     | 5.141       | 4.439   | 0.702      |
| 1        | 3/3/01       | 23:45      | 01-30.086S | 155-54.412E | 35.192   | 29.603                  | 29.596     | 5.144       | 4.423   | 0.721      |
| 1        | 3/6/01       | 10:43      | 04-31.450S | 156-00.701E | 34.929   | 30.488                  | 30.481     | 5.119       | 4.397   | 0.722      |
| 1        | 3/6/01       | 10:46      | 04-32.216S | 156-00.704E | 34.940   | 30.495                  | 30.488     | 5.111       | 4.408   | 0.703      |
| 1        | 3/9/01       | 10:54      | 03-42.262S | 154-47.409E | 34.992   | 30.743                  | 30.736     | 5.107       | 4.384   | 0.723      |
| 1        | 3/11/01      | 22:47      | 01-15.959N | 152-27.372E | 35.187   | 29.693                  | 29.686     | 5.091       | 4.411   | 0.680      |
| 1        | 3/11/01      | 22:49      | 01-15.858N | 152-26.838E | 35.191   | 29.704                  | 29.697     | 5.089       | 4.439   | 0.650      |

Table 6.3-2 Comparison of D.O. values between D.O. sensor of Sea Surface Monitoring System and water samples from the system using Winkler method.

\* : This data shows Temperature of IPTS-68.

| Leg. No. | Sampling Date a | and Time | Samplin    | g Positon   | Fluorescence | extraction Vol. | concentraion of |
|----------|-----------------|----------|------------|-------------|--------------|-----------------|-----------------|
| e        | (UTC)           |          | Latitude   | Longitude   |              | (ml)            | chl a (µg/l)    |
| 1        | 2/16/01         | 12:49    | 34-10.916N | 144-57.812E | 108.000      | 7               | 0.240           |
| 1        | 2/17/01         | 11:17    | 29-41.835N | 147-07.166E | 114.520      | 7               | 0.224           |
| 1        | 2/18/01         | 11:25    | 24-56.183N | 149-10.952E | 89.602       | 7               | 0.067           |
| 1        | 2/20/01         | 11:42    | 13-37.821N | 153-46.185E | 71.038       | 7               | 0.027           |
| 1        | 2/22/01         | 10:15    | 07-59.221N | 155-52.859E | 72.616       | 7               | 0.045           |
| 1        | 2/23/01         | 10:08    | 05-58.990N | 156-01.955E | 70.556       | 7               | 0.060           |
| 1        | 2/24/01         | 10:55    | 04-59.636N | 156-01.087E | 69.735       | 7               | 0.065           |
| 1        | 2/25/01         | 10:24    | 02-43.773N | 155-54.573E | 94.734       | 7               | 0.272           |
| 1        | 2/26/01         | 9:21     | 01-56.718N | 155-50.457E | 86.795       | 7               | 0.169           |
| 1        | 2/27/01         | 11:16    | 00-00.360N | 156-07.651E | 88.657       | 7               | 0.175           |
| 1        | 2/28/01         | 10:20    | 00-01.604N | 156-03.707E | 84.102       | 7               | 0.192           |
| 1        | 3/2/01          | 8:30     | 00-01.223S | 155-51.408E | 70.370       | 7               | 0.122           |
| 1        | 3/3/01          | 10:32    | 01-34.080S | 155-52.087E | 76.112       | 7               | 0.121           |
| 1        | 3/5/01          | 10:28    | 01-58.833S | 155-55.341E | 71.893       | 7               | 0.082           |
| 1        | 3/6/01          | 10:41    | 04-30.940S | 156-00.697E | 64.820       | 7               | 0.080           |
| 1        | 3/7/01          | 10:31    | 04-56.411S | 156-03.040E | 64.194       | 7               | 0.139           |
| 1        | 3/10/01         | 10:17    | 02-03.108N | 156-00.410E | 83.369       | 7               | 0.144           |
| 1        | 3/11/01         | 22:43    | 01-16.110N | 152-28.175E | 64.649       | 7               | 0.119           |
| 1        | 3/12/01         | 9:17     | 00-39.740N | 149-43.365E | 61.409       | 7               | 0.056           |
| 2        | 3/18/01         | 4:13     | 14-30.451N | 144-21.218E | 59.841       | 7               | 0.033           |
| 2        | 3/18/01         | 8:10     | 15-30.005N | 144-07.818E | 60.020       | 7               | 0.049           |
| 2        | 3/18/01         | 12:04    | 16-30.019N | 143-56.709E | 60.648       | 7               | 0.092           |
| 2        | 3/18/01         | 16:00    | 17-30.516N | 143-43.650E | 60.693       | 7               | 0.070           |
| 2        | 3/18/01         | 20:07    | 18-34.199N | 143-30.771E | 63.641       | 7               | 0.061           |
| 2        | 3/18/01         | 23:59    | 19-31.821N | 143-18.079E | 64.162       | 7               | 0.052           |
| 2        | 3/19/01         | 4:04     | 20-28.270N | 143-07.111E | 63.725       | 7               | 0.064           |
| 2        | 3/19/01         | 8:02     | 21-18.966N | 142-57.183E | 66.624       | 7               | 0.051           |
| 2        | 3/19/01         | 11:59    | 22-17.524N | 142-42.546E | 68.923       | 7               | 0.052           |
| 2        | 3/19/01         | 16:00    | 23-16.087N | 142-28.841E | 67.493       | 7               | 0.055           |
| 2        | 3/19/01         | 20:06    | 24-17.761N | 142-14.751E | 67.858       | 7               | 0.098           |
| 2        | 3/19/01         | 23:59    | 25-14.354N | 142-02.219E | 73.811       | 7               | 0.092           |
| 2        | 3/20/01         | 4:06     | 26-12.598N | 141-47.343E | 77.263       | 7               | 0.188           |
| 2        | 3/20/01         | 8:02     | 26-55.212N | 141-38.459E | 78.312       | 7               | 0.084           |
| 2        | 3/20/01         | 11:59    | 27-43.640N | 141-26.085E | 90.809       | 7               | 0.159           |
| 2        | 3/20/01         | 15:59    | 28-30.882N | 141-15.349E | 94.119       | 7               | 0.209           |
| 2        | 3/20/01         | 20:06    | 29-18.636N | 141-05.755E | 98.296       | 7               | 0.461           |
| 2        | 3/20/01         | 23:59    | 30-01.033N | 140-54.868E | 101.287      | 7               | 0.490           |
| 2        | 3/21/01         | 4:02     | 30-46.230N | 140-43.212E | 103.029      | 7               | 0.687           |
| 2        | 3/21/01         | 8:02     | 31-28.234N | 140-34.896E | 101.636      | 7               | 0.438           |
| 2        | 3/21/01         | 12:01    | 32-17.856N | 140-24.623E | 104.603      | 7               | 0.345           |
| 2        | 3/21/01         | 16:03    | 33-07.808N | 140-13.414E | 105.495      | 7               | 0.670           |
| 2        | 3/21/01         | 20:06    | 33-54.700N | 140-03.734E | 110.138      | 7               | 0.555           |
| 2        | 3/21/01         | 23:59    | 34-25.919N | 139-58.199E | 101.453      | 7               | 0.544           |

Table Results of fluorescence and chl.a concentraion for the sea surface samples.



Fig.6.3-1 Correlation with D.O. sensor-Winkler method.



Fig.6.3-2 Correlation with Autosal salinometer-SBE21.

#### 6.3.2. Nutrients monitoring in sea water (Leg. 2)

(1) Personnel

Kenichiro Sato (MWJ)

(2) Objectives

The distribution of nutrients of sea surface water is important to investigate the primary production.

(3) Parameters

• Nitrate

• Nitrite

Silicate

• Phosphate

(4) Methods

The nutrients monitoring system was performed on BRAN+LUEBBE continuous monitoring system Model TRAACS 800 (4 channels). It was located at the surface seawater laboratory for monitoring in R/V Mirai. The seawater of 4.5 m depth under sea surface was continuously pumped up to the laboratory inner R/V Mirai. The seawater was poured in 5 L of polyethylene beaker through a faucet of the laboratory. The seawater was introduced direct to monitoring system with narrow tube continuously. The methods are as follows.

Nitrate + Nitrite: Nitrate in the seawater was reduced to nitrite by reduction tube (Cd-Cu tube) and the nitrite reduced was determined by the nitrite method described to next, but the flow cell used in nitrate analysis was 3 cm length type. Nitrite initially present in the seawater was corrected after measuring.

Nitrite: Nitrite was determined by diazotizing with sulfanilamide by coupling with N-1-naphthyl-ethylendiamine (NED) to form a colored azo compound, and by being measured the absorbance of 550 nm using 3 cm length flow cell in the system.

Phosphate: Phosphate was determined by complexing with molybdate, by reducing with ascorbic acid to form a colored complex, and by being measured the absorbance of 800 nm using 5

cm length flow cell in the system.

Silicate: Silicate was determined by complexing with molybdate, by reducing with ascorbic acid to form a colored complex, and by being measured the absorbance of 800 nm using 3 cm length flow cell in the system.

#### (5) Preliminary results

The nutrients monitoring was operated during the period of Sekinehama to Honolulu. Monitoring data was obtained every 1 minute. Preliminary data of every 10 minutes were shown in Fig. 6.3.2. We didn't make a recalculation for this data by TRAACS 800 (4 channels) method.

(6) Data archive

All data will be archive at JAMSTEC Data Management Office.



0.30 0.20 0.10 0.0

15

20



25

Latitude

35



Fig. 6.3.2. Temporal variations of sea surface Nitrate+Nitrite, Nitrite, Silicate and Phosphate.

#### 6.4 Shipboard ADCP

(1) Personnel

Kentaro Ando (JAMSTEC): Principal Investigator Fumitaka Yoshiura (GODI): Operation Leader Wataru Tokunaga (GODI): Operator

#### (2) Parameters

- (2-1) N-S (North-South) and E-W (East-West) velocity components each depth cell [cm/s]
- (2-2) Echo intensity of each depth cell [dB]

#### (3) Methods

We measured current profiles by VM-75 (RD Instruments, Inc. U.S.A.) shipboard ADCP (Acoustic Doppler Current Profiler) throughout MR01-K01 cruise from the departure of Sekinehama, Japan on 14 February 2001 to the arrival of Yokosuka, Japan on 23 March 2001.

Major parameters for the measurement configuration are as follows;

| Frequency:                 | 75 kHz        |
|----------------------------|---------------|
| Average:                   | every 300 sec |
| Depth cell length:         | 1600 cm       |
| No. of depth cells:        | 40            |
| First cell depth position: | 30.9 m        |
| Last cell depth position:  | 654.9 m       |
| Ping per ADCP raw data:    | 16            |

#### (4) Preliminary results

Hourly current vectors of an hour running mean averaged data are plotted. Fig.6.4-1, -2 and -3 are shown form Sekinehama to Guam. Fig.6.4-4 is shown from Guam to Yokosuka.

#### (5) Remarks

ADCP logging stopped from 0523 to 0926 UTC 18 February because logging PC was freezing.

#### (6) Data archives

ADCP data obtained in this cruise will be submitted to the DMO (Data Management Office), in JAMSTEC and will be available via "R/V Mirai Data Web Page" in JAMSTEC home page.

6.4-1



 $Fig. 6.4-1 \quad \text{An hour averaged current vectors for every hour along the ship track at 31m depth}$ 



Fig.6.4-2 An hour averaged current vectors for every hour along the ship track at 31m depth

6.4-2



Fig.6.4-3 An hour averaged current vectors for every hour along the ship track at 31m depth



Fig.6.4-4 An hour averaged current vectors for every hour along the ship track at 31m depth

6.4-3

#### 6.5 Underway geophysics

#### 6.5.1 Sea surface gravity

#### (1) Personnel

Fumitaka Yoshiura (GODI): Operation Leader Wataru Tokunaga (GODI): Operator

#### (2) Objectives

To obtain the continuous gravity data for contribution of geophysical investigation. To perform the above item, sea surface gravity is measured relative variation of gravity values throughout the cruise.

#### (3) Parameters

Gravity [mgal]

#### (4) Methods

We measured relative gravity values by LaCoste-Romberg onboard gravity meter S-116 throughout MR01-K01 cruise from the departure of Sekinehama, Japan on 14 February 2001 to arrival of Yokosuka, Japan on 23 March 2001.

To obtain absolute gravity value, we usually measure relative value by portable gravity meter (Scintrex gravity meter CG-3M) at comparable points, Sekinehama gravity base and Yokosuka reference points, already known absolute gravity values. Moreover, measured values are corrected based on the bathymetry and ship movement. Consequently, the corrected gravity data should involve the information of crustal and upper mantle structures how they compensate the discrepancy from isostatic balance.

#### (5) Preliminary results

The absolute gravity values calculated in comparison with absolute values of reference point at Sekinehama Port and Yokosuka Port are shown in Table 6.5.1-1.

#### (6) Data archives

Gravity data obtained in this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be archived there.

 $6.5.1 \cdot 1$ 

#### 6.5.2 Surface three component magnetometer

(1) Personnel

Fumitaka Yoshiura (GODI): Operation Leader Wataru Tokunaga (GODI): Operator

(2) Objectives

In order to continuously obtain the geomagnetic field vectors on the sea surface, a three component magnetometer is very useful equipment. The magnetic force on the sea is affected by induction of magnetized body beneath the subbottom in addition to the earth dipole magnetic field. The magnetic measurement on the sea is, therefore, one of utilities for geophysical reconstruction of crustal structure and so on. The geomagnetic field can be divided into three components, i.e., two horizontal (x & y) and one vertical (z) moments. Three-component observation instead of total force includes much information of magnetic structure of magnetized bodies.

(3) Parameters

| Three component magnetic force            | [nT]        |
|-------------------------------------------|-------------|
| Ship's attitude (Picht, Roll and Heading) | [1/100 deg] |

(4) Methods

The sensor is a three axes fluxgate magnetometer on the top of foremast and sampling period is 8 Hz. The timing of sampling is controlled by the 1pps standard clock of GPS signal. Every one second data set which consists of 310 bytes; navigation information, 8 Hz three component of magnetic forces and vertical reference unit (VRU) data were recorded in the external hard disk. The data set is simultaneously fed to the R/V Mirai network server through ethernet LAN system.

#### (5) Preliminary results

During MR01-K01 cruise, the magnetic force is continuously measured from the departure of Sekinehama, Japan on 14 February 2001 to arrival of Yokosuka, Japan on 23 March 2001. Data obtained on the sea will be analyzed in near future. The procedure of quality control is mainly to eliminate the effect of ship's magnetized vector condition.

(6) Data archives

Magnetic force data obtained in this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be archived there.

 $6.5.2 \cdot 1$ 

#### 6.5.3 Multi-narrow beam echo sounding system

(1) Personnel

Fumitaka Yoshiura (GODI): Operation Leader Wataru Tokunaga (GODI): Operator

#### (2) Objectives

- (2-1) To obtain the bathymetry data for the contribution of geophysical investigation.
- (2-2) To obtain the bathymetry data for the sea water sampling during the cruise.

#### (3) Methods

R/V Mirai has installed a multi narrow beam echo sounding system manufactured by SeaBeam Inc., SeaBeam 2100 system. This system utilized bathymetry mapping. The newest one can measure more than 120 degrees wider swath and available all depth of the world ocean floor.

We surveyed from Sekinehama, Japan on 14 February 2001 to Yokosuka, Japan on 23 March 2001.

### (4) Preliminary results

The results will be public after the analyses in future.

#### (5) Remarks

Bathymetry data logging stopped from 1402 UTC 12 February to 0111 UTC 13 February because of surveying system trouble.

#### (6) Data archives

Bathymetry data obtained in this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be archived there.

6.5.3 - 1

#### 7 Special Observation

#### 7.1 TRITON moorings

7.1.1 TRITON Mooring Operation

(1) Personnel

| Kentaro Ando      | (JAMSTEC): Principal Investigator (on board Leg1, 2) |
|-------------------|------------------------------------------------------|
| Toru Nakamura     | (JAMSTEC): Engineer (on board Leg1, 2)               |
| Hirokatsu Uno     | (MWJ): Technical staff                               |
| Takeo Matsumoto   | (MWJ): Technical staff                               |
| Shigehiko Ohara   | (MWJ): Technical staff                               |
| Hiroshi Matsunaga | (MWJ): Technical staff                               |
| Asako Inoue       | (MWJ): Technical staff                               |
| Muranaka          | (MWJ): Technical staff                               |
| Kenichiro Sato    | (MWJ): Technical staff                               |
| Kaori Akizawa     | (MWJ): Technical staff                               |
| Taeko Ohama       | (MWJ): Technical staff                               |
| Yoshiike          | (MWJ): Technical staff                               |

#### (2) Objectives

The large-scale air-sea interaction over the warmest sea surface temperature region in the western tropical Pacific Ocean called warm pool affects the global atmosphere and causes El Nino phenomena. The formation mechanism of the warm pool and the air-sea interaction over the warm pool have not been well understood. Long term data sets of temperature, salinity, currents, so on have been required at fixed locations. In particular, the oceanic change due to the surface winds over the western tropical Pacific is important to study the relation with El Nino and rain fall over the ocean is also important parameter to study El Nino and Asia-Australian Monsoon. The TRITON program aims to obtain the basic data to improve the predictions of El Nino and variations of Asia-Australian Monsoon system.

TRITON buoy array is integrated with the existing TAO(Tropical Atmosphere Ocean) array, which is presently operated by the Pacific Marine Environmental Laboratory/National Oceanic and Atmospheric Administration of the United States. TRITON is a component of international research program of CLIVAR (Climate Variability and Predictability), which is a major component of World Climate Research Program sponsored by the World Meteorological Organization, the International Council of Scientific Unions, and the Intergovernmental Oceanographic Commission of UNESCO. TRITON will also contribute to the development of GOOS (Global Ocean Observing System) and GCOS (Global Climate Observing System).

The six TRITON buoys have been successfully recovered during this R/V Mirai cruise (MR01-K01), deployed eight TRITON buoys, and repaired two TRITON buoys.

#### (3) Measured parameters

| Meteorological parameters: | wind speed, direction, atmospheric pressure, air temperature, relative |
|----------------------------|------------------------------------------------------------------------|
|                            | humidity, radiation, precipitation.                                    |
| Oceanic parameters:        | water temperature and conductivity at 1.5m, 25m, 50m, 75m, 100m,       |
|                            | 125m, 150m, 200m, 300m, 500m 750m, depth at 300m and 750m,             |
|                            | currents at 10m.                                                       |

(4) Instrument

7.1.1.-1
| 1) CTD and CT                    |                                              |
|----------------------------------|----------------------------------------------|
| SBE-37 IM MicroCAT               |                                              |
| A/D cycles to average :          | 4                                            |
| Sampling interval :              | 600sec                                       |
| Measurement range Tem            | perature : $-5 \sim +35$                     |
| Measurement range Cond           | fuctivity : $0 \sim +7$                      |
| Measurement range Press          | sure : $0 \sim \text{full scale range}$      |
| 2) CRN(Current meter)            |                                              |
| SonTek Argonaut ADCM             |                                              |
| Sensor frequency :               | 1500kHz                                      |
| Sampling interval :              | 1200sec                                      |
| Average interval :               | 120sec                                       |
| 3) Meteorological sensors        |                                              |
| Precipitation                    |                                              |
| SCTI ORG-115DX                   |                                              |
| Atmospheric pressure             |                                              |
| PARPSCIENTIFIC. Inc. DI          | GIQUARTZ FLOATING BAROMETER 6000SERIES       |
| Relative humidity/air temperatur | e, Shortwave radiation, Wind speed/direction |
| Woods Hole Institution ASI       | MET                                          |
| Sampling interval :              | 60sec                                        |
| Data analysis :                  | 600sec averaged                              |
|                                  |                                              |
| (5) Locations of TRITON Buoys    |                                              |
| 1) TRITON buoys deployed         |                                              |
| Nominal location                 | 8N, 156E                                     |
| ID number at JAMSTEC             | 01004                                        |
| Number on surface float          | T22                                          |
| ARGOS PTT number                 | 20392                                        |
| ARGOS backup PTT number          | 24231                                        |
| Deployed date                    | 22 Feb. 2001                                 |
| Exact location                   | 07 59.41 N, 156 00.47 E                      |
| Depth                            | 4847 m                                       |
|                                  |                                              |
| Nominal location                 | 5N, 156E                                     |
| ID number at JAMSTEC             | 02004                                        |
| Number on surface float          | 123                                          |
| ARGOS PIT number                 | 20417                                        |
| ARGOS backup PIT number          | 24232                                        |
| Deployed date                    | 24 Feb. 2001                                 |
| Exact location                   | 05 01.33 N, 155 58.25 E                      |
| Depth                            | 3608 m                                       |
| Nominal location                 | 2N. 156E                                     |
| ID number at IAMSTEC             | 03005                                        |
| Number on surface float          | T26                                          |
| ARGOS PTT number                 | 20439*                                       |
|                                  | 20107                                        |

| ARGOS backup PTT number | 24235                   |  |
|-------------------------|-------------------------|--|
| Deployed date           | 26 Feb. 2001            |  |
| Exact location          | 02 02.32N, 156 01.14 E  |  |
| Depth                   | 2577 m                  |  |
|                         |                         |  |
| Nominal location        | EQ, 156E                |  |
| ID number at JAMSTEC    | 04005                   |  |
| Number on surface float | T27                     |  |
| ARGOS PTT number        | 20451                   |  |
| ARGOS backup PTT number | 24236                   |  |
| Deployed date           | 02 Mar. 2001            |  |
| Exact location          | 00 01.08N, 156 02.56E   |  |
| Depth                   | 1953 m                  |  |
| Nominal location        | 28 156F                 |  |
| ID number at IAMSTEC    | 05003                   |  |
| Number on surface float | T28                     |  |
| APGOS PTT number        | 20380                   |  |
| ARGOS FITT number       | 20380                   |  |
| Deployed data           | 24237<br>05 Mar 2001    |  |
| Exact location          | 02 01 028 155 57 25 E   |  |
| Dapth                   | 1755 m                  |  |
| Depui                   | 1755 III                |  |
| Nominal location        | 5S, 156E                |  |
| ID number at JAMSTEC    | 06003                   |  |
| Number on surface float | T10                     |  |
| ARGOS PTT number        | 3780                    |  |
| ARGOS backup PTT number | 24239                   |  |
| Deployed date           | 07 Mar. 2001            |  |
| Exact location          | 05 01.95S, 156 01.53E   |  |
| Depth                   | 1520 m                  |  |
|                         |                         |  |
| Nominal location        | 2N, 147E                |  |
| ID number at JAMSTEC    | 08002                   |  |
| Number on surface float | T12                     |  |
| ARGOS PTT number        | 09794                   |  |
| ARGOS backup PTT number | 24229                   |  |
| Deployed date           | 14 Mar. 2001            |  |
| Exact location          | 02 06.04 N, 146 56.94 E |  |
| Depth                   | 4495 m                  |  |
| Nominal location        | 5N, 147E                |  |
| ID number at JAMSTEC    | 07003                   |  |
| Number on surface float | T11                     |  |
| ARGOS PTT number        | 03781                   |  |
| ARGOS backup PTT number | 24240                   |  |
|                         |                         |  |

|      | Deployed date           | 15 Mar. 2001         |         |
|------|-------------------------|----------------------|---------|
|      | Exact location          | 04 58.70N, 147       | 01.03 E |
|      | Depth                   | 4287 m               |         |
|      |                         |                      |         |
| 2) T | RITON recovered         |                      |         |
|      | Nominal location        | 8N, 156E             |         |
|      | ID number at JAMSTEC    | 01003                |         |
|      | Number on surface float | T14                  |         |
|      | ARGOS PTT number        | 07962                |         |
|      | ARGOS backup PTT number | 20299                |         |
|      | Deployed date           | 14 Mar. 2000         |         |
|      | Recovered date          | 23 Mar. 2001         |         |
|      | Exact location          | 08 01.10N, 155       | 56.73 E |
|      | Depth                   | 4834 m               |         |
|      | 1                       |                      |         |
|      | Nominal location        | 5N, 156E             |         |
|      | ID number at JAMSTEC    | 02003                |         |
|      | Number on surface float | T15                  |         |
|      | ARGOS PTT number        | 09770                |         |
|      | ARGOS backup PTT number | 20594                |         |
|      | Deployed date           | 12 Mar 2000          |         |
|      | Recovered date          | 25 Feb. 2001         |         |
|      | Exact location          | 04 57 87 N 156       | 04 55 E |
|      | Denth                   | 3596 m               | 04.55 L |
|      | Deptil                  | 5570 III             |         |
|      | Nominal location        | 2N. 156E             |         |
|      | ID number at IAMSTEC    | 03004                |         |
|      | Number on surface float | T18                  |         |
|      | ARGOS PTT number        | 09792                |         |
|      | ARGOS backup PTT number | 20298                |         |
|      | Deployed date           | 10 Mar. 2000         |         |
|      | Recovered date          | 27 Mar. 2000         |         |
|      | Exact location          | 01 57 12N 155        | 50 28 E |
|      | Depth                   | 01 57.121N, 155      | 39.20 L |
|      | Depui                   | 2504 m               |         |
|      | Nominal location        | FO 156F              |         |
|      | ID number at IAMSTEC    | 04004                |         |
|      | Number on surface float | T10                  |         |
|      | APGOS PTT number        | 20374                |         |
|      | AROOS FIT humber        | 20374                |         |
|      | Deployed date           | 20017<br>07 Mar 2000 |         |
|      | Deployed date           | 07 Mar. 2000         |         |
|      | Event location          | 05 Mar. 2001         | 56645   |
|      | Exact location          | 00 01.19N, 155       | 30.64 E |
|      | Deptn                   | 1950 m               |         |
|      | N 11 /                  | 00 15CE              |         |
|      | Nominal location        | 28, 156E             |         |

|      | ID number at JAMSTEC    | 05002          |         |  |
|------|-------------------------|----------------|---------|--|
|      | Number on surface float | T20            |         |  |
|      | ARGOS PTT number        | 20458          |         |  |
|      | ARGOS backup PTT number | 20878          |         |  |
|      | Deployed date           | 06 Mar. 2000   |         |  |
|      | Recovered date          | 06 Mar. 2001   |         |  |
|      | Exact location          | 01 59.16S, 156 | 01.46 E |  |
|      | Depth                   | 1758 m         |         |  |
|      | Nominal location        | 5S, 156E       |         |  |
|      | ID number at JAMSTEC    | 06002          |         |  |
|      | Number on surface float | T21            |         |  |
|      | ARGOS PTT number        | 20384          |         |  |
|      | ARGOS backup PTT number | 20595          |         |  |
|      | Deployed date           | 03 Mar. 2000   |         |  |
|      | Recovered date          | 08 Mar. 2001   |         |  |
|      | Exact location          | 04 58.00S, 156 | 00.97E  |  |
|      | Depth                   | 1507           |         |  |
| 3) T | RITON repaired          |                |         |  |
| 0,1  | Nominal location        | 2N. 156E       |         |  |
|      | ID number at JAMSTEC    | 03005          |         |  |
|      | Number on surface float | T26            |         |  |
|      | ARGOS PTT number        | 07960          |         |  |
|      | ARGOS backup PTT number | 24235          |         |  |
|      | Deployed date           | 11 Mar. 2001   |         |  |
|      | Exact location          | 02 02.32N, 156 | 01.14 E |  |
|      | Depth                   | 2577 m         |         |  |
|      | Nominal location        | EO 147E        |         |  |
|      | ID number at IAMSTEC    | 09003          |         |  |
|      | Number on surface float | T13            |         |  |
|      | ARGOS PTT number        | 20434          |         |  |
|      | ARGOS backup PTT number | 24230          |         |  |
|      | Deployed date           | 28 Oct. 2000   |         |  |
|      | Repaired date           | 13 Mar. 2001   |         |  |
|      | Exact location          | 00 03.72 N 147 | 00.71 F |  |
|      | Depth                   | 4468 m         | E       |  |
|      | · r                     |                |         |  |

\*: Dates are UTC and represent anchor drop times for deployments and release time for recoveries, respectively.

# (6) Details of deployed and repaired

We had deployed eight TRITON buoys and repaired two TRITON buoys, described them details in the list.

Deployed and Repaired TRITON buoys

| Observation No. | Location. | Details.                                               |
|-----------------|-----------|--------------------------------------------------------|
| 01004           | 8N 156E   | Deploy at full spec.                                   |
| 02004           | 5N 156E   | Deploy at full spec.                                   |
| 03005           | 2N 156E   | Deploy at full spec.                                   |
| 04005           | EQ 156E   | Deploy at full spec.                                   |
| 05003           | 2S 156E   | Deploy at full spec.                                   |
| 06003           | 5S 156E   | Deploy at full spec.                                   |
| 03005           | 2N 156E   | Changed system for communication system and antenna    |
| 09003           | EQ 147E   | Changed a sensor for measure wind speed and direction. |
| 08002           | 2N 147E   | Deploy at full spec.                                   |
| 07003           | 5N 147E   | Deploy at full spec.                                   |

# (7) Data archive

Those hourly averaged data transmitted through ARGOS satellite data transmission system in near real time. The real time data are provided to meteorological organizations via Global Telecommunication System and utilized for daily weather forecast. The data will be also distributed world wide through Internet from JAMSTEC and PMEL home pages. All data will be archived at JAMSTEC Mutsu Branch.

TRITON Homepage: http://www.jamstec.go.jp/jamstec/triton

#### 7.1.2 Intercomparison between shipboard CTD and TRITON data

(1) Personnel

| Kentaro Ando     | (JAMSTEC)           |
|------------------|---------------------|
| Takeo Matsumoto  | (MWJ)               |
| Tetsuya Nagahama | (MWJ): not on board |

(2) Objectives

TRITON CTD data validation.

(3) Measured parameters

TemperatureConductivityPressure

(4) Methods

TRITON buoy underwater sensors are equipped along wire cable of buoy below sea surface. We used the same CTD system with general CTD observation (See section 6.2.1) by R/V MIRAI for this intercomparision. We conducted 1 CTD cast at each TRITON buoy site. The cast was performed immediately after the deployment and before recovery. R/V MIRAI was kept the distance from the TRITON buoy within 1 nm.

TRITON buoy data was sampled every 1 hour except and transmitted to the ship. We compared CTD observation by R/V MIRAI data with TRITON buoy data using the 1 hour averaged value.

As our temperature sensors are expected to be more stable than conductivity sensors, conductivity data and salinity data are the same selected at the temperature data. Then, we calculated difference of salinity and conductivity between MIRAI CTD and TRITON buoy for each deployment and recovery.

## (5) Results

Most of temperature, conductivity and salinity data from TRITON buoy showed good agreement with CTD cast data. See the attached figures (fig.7.1.2-1).

To estimate time drift of conductivity sensors on TRITON buoy, the data from deployed buoy and recovered buoy at the same location were analysed. The estimation's of time-drift were calculated as recovered buoy data minus deployed buoy data. The salinity change for 1 year are -0.0700 from 0.1400 psu, conductivity are -0.052 from 0.025 S/m for all depths. Below 300db, salinity change for 1 year are -0.0212 from 0.0113 psu, conductivity are -0.003 from 0.002 S/m (See the attached figures fig 7.1.2-2 and table table.7.1.2-1). The average of salinity differences was 0.0023 with standard deviation of 0.0097 psu, and the average of conductivity differences was 0.000 with standard deviation of 0.001 S/m.

# (6) Data archive

All of raw and processed CTD data files were copied into 3.5 inch magnetic optical disks and submitted to JAMSTEC Data Management Office. All original data will be stored at JAMSTEC Mutsu brunch. (See section 6.2.1)

7.1.2-1

|             |          | MIRAI CTD DATA - TRITON CT DATA |              |               |              | volume o                    | f a change   |
|-------------|----------|---------------------------------|--------------|---------------|--------------|-----------------------------|--------------|
|             |          | Deploy                          | DATA         | Recovery DATA |              | Recovery DATA - Deploy DATA |              |
| Observation | Pressure | Conductivity                    | Salinity     | Conductivity  | Salinity     | Conductivity                | Salinity     |
| No.         | (db)     | (S/m)                           | (PSS 78:psu) | (S/m)         | (PSS 78:psu) | (S/m)                       | (PSS 78:psu) |
| 01003       | 300      | 0.000                           | 0.0027       | 0.000         | 0.0065       | 0.000                       | 0.0037       |
| 03004       | 300      | 0.000                           | -0.0025      | 0.001         | 0.0034       | 0.001                       | 0.0059       |
| 04004       | 300      | -0.002                          | 0.0068       | -0.002        | 0.0080       | 0.000                       | 0.0012       |
| 01003       | 500      | 0.000                           | -0.0017      | 0.000         | 0.0032       | 0.001                       | 0.0050       |
| 03004       | 500      | 0.002                           | 0.0155       | -0.001        | -0.0058      | -0.003                      | -0.0212      |
| 04004       | 500      | 0.000                           | 0.0004       | 0.000         | -0.0014      | 0.000                       | -0.0018      |
| 01003       | 750      | 0.000                           | -0.0062      | 0.000         | 0.0051       | 0.000                       | 0.0113       |
| 03004       | 750      | 0.000                           | -0.0075      | 0.002         | 0.0029       | 0.002                       | 0.0104       |
| 04004       | 750      | 0.000                           | -0.0009      | 0.000         | 0.0052       | 0.000                       | 0.0061       |
|             | Average  | 0.000                           | 0.0007       | 0.000         | 0.0030       | 0.000                       | 0.0023       |
| -           | Stdev.   | 0.001                           | 0.0070       | 0.001         | 0.0042       | 0.001                       | 0.0097       |

# Table 7.1.2-1 Difference between MIRAI CTD DATA and TRITON DATA



fig. 7.1.2-1 T-S Diagrams(continued) (g)Observation No.09003 EQ 147E (h)Observation No.08002 2N 147E (i)Observation No.07003 5N 147E



fig. 7.1.2-2 :Volume of a change for 1year (recovery sensor - deployment sensor) (a)all sensors (b)CTD sensor about 300db,CT sensors about 500db,CTD sensors about 750db

#### 7.2 ARGO Float

#### 7.2.1 ARGO Float (profiling float) deployment

#### (1) Personnel

| Naoto Iwasaka     | (FORSGC): Principa | l Investigator (not on board) |
|-------------------|--------------------|-------------------------------|
| Motoki Miyazaki   | (FORSGC)           |                               |
| Kentaro Ando      | (JAMSTEC)          |                               |
| Asako Inoue       | (MWJ)              |                               |
| Fumitaka Yoshiura | (GODI)             |                               |
| Wataru Tokunaga   | (GODI)             |                               |
| Kenji Izawa       | (JAMSTEC)          | not on board                  |
| Yasushi Takatsuki | (JAMSTEC)          | not on board                  |
| Taiyo Kobayashi   | (FORSGC)           | not on board                  |
| Eitaro Oka        | (FORSGC)           | not on board                  |
| Yasuko Ichikawa   | (FORSGC)           | not on board                  |

# (2) Objectives

The objective of deployment is to clarify the temporal and spatial variability of the North Pacific Subtropical Mode Water (NPSTMW).

The NPSTMW, characterized by a thermostad of around 18°C, is formed by wintertime deep convection just in the south of the Kuroshio and the Kuroshio extension region, and spreads away from its formation region by lateral advection. However, these studies only used the climatological data, and detailed analysis was needed.

The profiling floats deployed in this cruise and measure vertical profiles of temperature and salinity automatically in every ten days. The data from the floats will enable us to understand the formation and advection processes of the NPSTMW with time scales much smaller than the past studies.

(3) Parameters

· vertical profiles of water temperature, salinity, and pressure

(4) Methods

All the observations were made between 37°N and 28°N on the track from Hachinohe to the deployment point of TRITON mooring at 8°N, 156°E in Leg 1 (see Session. 3.4).

1) Profiling float deployment

The floats are designed to drift at specified depth (called "parking depth") for specified period, and then change their buoyancy by increasing volume and rise up to the sea surface. During their ascent, they measure temperature, salinity, and pressure. The floats remain at the sea surface for about 10 hours, transmit their positions and the CTD data to ARGOS satellites, and then return to the parking depth by decreasing its volume. Each of the ascent and descent takes about 5-6 hours. The statuses of the deployed floats are shown in Table 7.2.2.1. It should be noted that the periods for which the floats are actually at the parking depth or the sea surface are less than those specified by the periods for descent and ascent, respectively.

## 2) CTD observation

4 CTD cast down to a depth of 2000 m was made just before the deployment of floats for calibration of the float sensor (Session. 6.2.1).

#### 3) XCTD observation

XCTD observations to a depth of about 1000 m were made at 32 stations between 38°20'N and 26°N with intervals of 20 (station 1-20) and 30 (station 21-32) latitude minutes in order to observe distributions of salinity and temperature around the float-deployment point, and a meridional distribution of the NPSTMW (Session. 6.2.2).

#### (5) Preliminary result

1) Sea conditions around the deployment point of floats

Distributions of temperature and salinity measured with the XCTD are shown in Figs. 7.2.1-1 and 7.2.1-2, respectively.

The main thermocline between  $7^{\circ}$ C and  $16^{\circ}$ C lies at depths of about 200-700 db. The thermocline shallows greatly to the south at  $34-35^{\circ}$ N and deepens greatly to the south at  $32-33.5^{\circ}$ N and  $36-37^{\circ}$ N, respectively. The main halocline between 34.2 and 34.7 shows almost the same spatial change as the thermocline.

In a surface layer, a mixed layer is developed to about 200-400db. This layer has the temperature of 17-19°C and the salinity of about 34.7 psu. The maximum and minimum salinity is found at the top and bottom of the thermocline, respectively. Salinity exceeds 34.7 at depths between 50 db and 250 db throughout the section. Salinity reaches the minimum less than 34.2 at depths of 600-950 db, except around 33-34°N and the north of 37°N where the minimum lies at shallower depths of 200-400 db. Several low salinity cores spread around 34°N, corresponding to the strong westward current. The water in the salinity maximum and the minimum originates in the North Pacific Tropical Water and the North Pacific Intermediate Water, respectively.

The distributions of temperature and salinity suggest that the westward and eastward currents at  $36-38^{\circ}$ N and  $33.5-36^{\circ}$ N are a part of an anti-cyclonic mesoscale eddy. Six profiling floats that were deployed at the north of  $34^{\circ}$ N moved in an anti-cyclonic way with a radius of about 200 km. Their movements are maybe related to this anti-cyclonic eddy.

### 2) Observation with profiling float

The vertical profiles of temperature and salinity from the 13 floats during their ascent and are floats location map shown in Fig. 7.2.1-3 to 7.2.1-15, 7.2.1-16, respectively.

## (6) Data archive

All data acquired through the ARGOS system is stored and analyzed at FORSGC. The real-time data are provided to meteorological organizations via Global Telecommunication System (GTS) and utilized for analysis and forecasts of sea conditions.



Fig 7.2.1-1 Distribution of temperature (°C) measured with the XCTD.

7.2<del>-</del>3



Fig 7.2.1-2 Same as Fig. 7.2.1-1 but for salinity.

Table 7.2.1-1 Float Status and Deployment status

| Float Type | ;            | A         | APEX manufactured by Webb Research Ltd.                   |                                                 |                      |  |  |
|------------|--------------|-----------|-----------------------------------------------------------|-------------------------------------------------|----------------------|--|--|
| CTD sense  | or           | SE        | SBE41 manufactured by Sea-Bird Electronics Inc.           |                                                 |                      |  |  |
| Cycle      |              | 10        | 10 days (Parking Depth: 213 hours, Sea Surface: 27 hours) |                                                 |                      |  |  |
| ARGOS ta   | ransmit inte | rval 44   |                                                           |                                                 |                      |  |  |
| Target Par | king Pressu  | re 20     | 00 dbar                                                   |                                                 |                      |  |  |
| Sampling   | layers       | 63        | (Bottom pressure, 2000                                    | ,1900, 1800, 1700, 1600                         | , 1500, 1400, 1300,  |  |  |
|            |              | 12        | 50, 1200, 1150, 1100, 10                                  | 050, 1000, 980, 960, 940,                       | 920, 900, 880, 860,  |  |  |
|            |              | 84        | 0, 820, 800, 780, 760, 7                                  | 40, 720, 700, 680, 660,                         | 640, 620, 600, 580,  |  |  |
|            |              | 56        | 0, 540, 520, 500, 480, 4                                  | 60, 440, 420, 400, 380, 180, 160, 140, 120, 100 | 360, 340, 320, 300,  |  |  |
|            |              | 28<br>[d] | (0, 200, 240, 220, 200, 200)                              | 180, 160, 140, 120, 100                         | 0, 80, 60, 40, 20, 0 |  |  |
|            |              | Įu        | Jai j)                                                    |                                                 |                      |  |  |
| WMO        | Float        | ARGOS     | Reset Date and                                            | Deployed Date and                               | Deployed             |  |  |
| ID         | S/N          | PTT ID    | Time (UTC)                                                | Time (UTC)                                      | Position             |  |  |
| 29042      | 222          | 06496     | 19:30, February 15                                        | 21:02, February 15                              | 37-20.13N,           |  |  |
|            |              |           |                                                           |                                                 | 143-35.25E           |  |  |
| 29043      | 219          | 06495     | 23:40 February 15                                         | 01:50 February 16                               | 36-40 14N            |  |  |
| 27043      | 217          | 00475     | 25.40, 1 cortairy 15                                      | 01.50, 1 coldary 10                             | 142 55 22E           |  |  |
| 20044      | 22.4         | 06400     | 02.05 E1 16                                               | 05.05.01 16                                     | 145-55.52E           |  |  |
| 29044      | 224          | 06498     | 03:05, February 16                                        | 05:05, February 16                              | 35-59.81N,           |  |  |
|            |              |           |                                                           |                                                 | 144-13.36E           |  |  |
| 29045      | 223          | 06497     | 06:07, February 16                                        | 08:09, February 16                              | 35-19.92N,           |  |  |
|            |              |           |                                                           |                                                 | 144-32.22E           |  |  |
| 29046      | 226          | 06500     | 09:06, February 16                                        | 11:04, February 16                              | 34-38.81N,           |  |  |
|            |              |           |                                                           |                                                 | 144-49.84E           |  |  |
| 29047      | 225          | 06499     | 12:03, February 16                                        | 13:37, February 16                              | 33-58.21N,           |  |  |
|            |              |           |                                                           |                                                 | 145-00.05E           |  |  |
| 29048      | 229          | 06503     | 14:21, February 16                                        | 16:40, February 16                              | 33-20.09N,           |  |  |
|            |              |           |                                                           |                                                 | 145-28.62E           |  |  |
| 29049      | 228          | 06502     | 17:30, February 16                                        | 19:50, February 16                              | 32-39.83N,           |  |  |
|            |              |           |                                                           |                                                 | 145-47.56E           |  |  |
| 29050      | 230          | 06504     | 21:08, February 16                                        | 22:46, February 16                              | 31-59.82N,           |  |  |
|            |              |           |                                                           |                                                 | 146-05.49E           |  |  |
| 29051      | 231          | 06505     | 02:40, February 17                                        | 05:13, February 17                              | 31-00.28N,           |  |  |
|            |              |           |                                                           |                                                 | 146-30.09E           |  |  |
| 29052      | 232          | 06506     | 07:27, February 17                                        | 09:54, February 17                              | 30-00.26N,           |  |  |
|            |              |           |                                                           |                                                 | 146-58.62E           |  |  |
| 29053      | 233          | 06507     | 13:45, February 17                                        | 16:14, February 17                              | 28-59.77N,           |  |  |
|            |              |           |                                                           |                                                 | 147-25.61E           |  |  |
| 29054      | 236          | 06510     | 18:42, February 17                                        | 20:39, February 17                              | 27-59.29N,           |  |  |
|            |              |           |                                                           |                                                 | 147-51.84E           |  |  |

As of 10 Mar. 2001



\* :Most Recent Location of Float.

Fig.7.2.1-14 Float location and track.

#### 7.2.2 ARGO sensor test

(1) Personnel

| Motoki Miyazaki   | (FORSGC): Principal Investigator |
|-------------------|----------------------------------|
| Kentaro Ando      | (JAMSTEC)                        |
| Asako Inoue       | (MWJ)                            |
| Fumitaka Yoshiura | (GODI)                           |
| Wataru Tokunaga   | (GODI)                           |
| Kenji Izawa       | (JAMSTEC) not on board           |
| Yasushi Takatsuki | (JAMSTEC) not on board           |

#### (2) Objectives

In the international Argo programs, 3000 Argo floats having a CTP sensor are now planned to deploy in the world ocean in international coordination. The goal of this program is to provide high accuracy temperature (within accuracy of 0.005 degC) and salinity (within accuracy of 0.01 PSS-78) data to improve the forecast ability of world climate change. However, conductivity sensor is not stabled compared to temperature sensor. Therefore, we need to evaluate the accuracy and stability of conductivity sensor designed for Argo floats. During this cruise, we performed two kinds of experiments to estimate accuracy during profiling. The second one is "mooring test" to estimate time drift of each sensor. Details will be de described in the next session.

#### (3) Methods

#### 1) Profiling test

The sensors to be tested are SBE41CP, EXCELL CTD, TSK-CTD (prototype model). They are designed for Argo floats. SBE41CP is manufactured by Sea-Bird Electronics, Inc. EXCELL CTD is manufactured by Falmouth Scientific, Inc. (hereafter EXCELL), and TSK-CTD is manufactured by Tsurumi-Seiki Co., LTD. The conductivity sensor of SBE41CP is conductive type. EXCELL and TSK-CTD are inductive type. The CTD sensors used as reference are SBE9/17plus system with SBE3 and 4 with pump, manufactured by Sea-Bird Electronics, Inc. These sensors are mounted on special "profiling system", which is designed for free-rising profiling to surface by self-buoyancy along kevler rope (Photos7.2-2-1, 2).

The Argo float is expected to profile with the rising speed of 10-15 cm/sec, therefore we tried to adjust the weight of weight of the profiling system to keep the ascending speed to 10-15 cm/sec. At first, we verified the Cd of our profiling system by the tank test on land before the cruise (fig.7.2.2-1). Generally, Cd can be estimated by:

$$Buoyancy = \frac{1}{2} \mathbf{r} C dAv^{2}$$
  
*A* as projective area of profiling frame  
as water density  
*v* as ascending speed

Here, *A* is calculated from design drawings. Cd was estimated as 0.93. At station 001, ascending speed was about 30cm/sec, so at station 002 to 006 we added 5.5kg weight to adjust to 15cm/sec. At station 007, sensor position was changed and added one SBE41CP, so we

remove 1.9kg to compensate added sensor and cable weight. Under about 350m and upper from 200m ascending speed was about 15-20cm/sec. But at 350-200m, ascending speed was unstable probably due to the inclination of cable.

The locations of experiment are listed in Table 7.2-2-1 and the specification and serial number of the sensors are listed in Table 7.2-2-2. The data of SBE41CP, EXCELL and TSK-CTD are recorded into internal RAM and the data of SBE9plus are recorded into SBE17plusV2 SEARAM. All data are downloaded after each cast via serial interface.

# 2) Mooring

The sensors to be tested are EXCELL-CTD, TSK-CTD, and SBE37SM. SBE37 is used in TRITON moorings and used for reference sensor. The specification and serial number of the sensors are listed in Table 7.2-2-3. They are installed along ADCP moorings at 00°-156°E (See details in Session 7.6) on the frame (Photo7-2-2-3) at the depth of about 1800m.

# (4) Preliminary result

Vertical profile by SBE9plus and CTP data of difference between SBE41CP (S/N53) and SBE9plus at station 007 are shown in Fig. 7.2.2-2 as example. Except the thermocline depth (350-200m), most part of temperature and salinity are within 0.005 degC and 0.01 psu, respectively. In the thermocline, temperature and salinity exceeded 0.4 degC and 0.04 psu, respectively. However, we don't remove noise yet, for example friction between frame and rope etc. The pressure difference between SBE41CP (S/N53) and SBE9plus was within +/- 2 dbar.

#### (5) Data archive

CTD data obtained during this cruise will be submitted to the DMO (Data Management Office), JAMSTEC within 1 year after cruise.



Photo. 7.2.2-1. Appearance of profiling frame and sensors



Photo.7.2.2-2. Appearance of target and reference sensors



Photo. 7.2.2-3 mooring frame

7.2<del>-</del>10

Table 7.2.2-1. Station List

| Station | Date and Time (UTC)       | Position   | Depth | CTD sensors         | Trim weight |
|---------|---------------------------|------------|-------|---------------------|-------------|
| 001     | Feb.27 05:06 - 05:38      | Eq., 156E  | 60    | SBE41CP (S/N54)     | 19 kg       |
|         |                           |            |       | EXCELL (S/N1324)    |             |
|         |                           |            |       | TSK-CTD             |             |
| 002     | Feb.28 00:07 - 01:26      | Eq., 156E  | 100   | SBE41CP (S/N54)     | 24.5 kg     |
|         |                           |            |       | EXCELL (S/N1324)    |             |
|         |                           |            |       | TSK-CTD             |             |
| 003     | Mar.3 21:59 - 23:37       | 1.5S, 156E | 300   | SBE41CP (S/N54)     | 24.5 kg     |
|         |                           |            |       | EXCELL (S/N1324)    |             |
|         |                           |            |       | TSK-CTD             |             |
| 004     | Mar.4 13:28 - 05:08       | 1.5S, 156E | 400   | SBE41CP (S/N54)     | 24.5 kg     |
|         |                           |            |       | EXCELL (S/N1324)    |             |
|         |                           |            |       | TSK-CTD             |             |
| 005     | Mar.7 03:40 - 05:18       | 5S, 156E   | 500   | SBE41CP (S/N54)     | 24.5 kg     |
|         |                           |            |       | EXCELL (S/N1324)    |             |
|         |                           |            |       | TSK-CTD             |             |
| 006     | Mar.803:04-04:38          | 5S, 156E   | 500   | SBE41CP (S/N53)     | 24.5 kg     |
|         |                           |            |       | EXCELL (S/N1405)    |             |
|         |                           |            |       | TSK-CTD             |             |
| 007     | Mar.8 22:32 - Mar.9 01:30 | 5S, 156E   | 1000  | SBE41CP (S/N53, 54) | 22.8 kg     |
|         |                           |            |       | EXCELL (S/N1324)    |             |
|         |                           |            |       | TSK-CTD             |             |



Fig. 7.2.2-1

7.2-12



Fig.7.2.2-2 (upper) Vertical profiles of temperature and salinity by reference sensor at station 007 (lower) Vertical profile of ascending rate

 $7.2 \cdot 13$ 



Fig.7.2.2-3 Vertical profiles of temperature, salinity and pressure difference between SBE41CP (S/N53) and SBE9plus at station 007

7.2<del>-</del>14

# Table 7.2.2-2. The spec and serial number of the sensors

# Target sensor

|            | Conductivity sensor | S/N            | Sampling rate                 |
|------------|---------------------|----------------|-------------------------------|
| SBE41CP    | Electrode           | 53,54          | 1.289 seconds                 |
| EXCELL-CTD | Inductive           | 1324,1405,1406 | 2.8 frames/second (profiling) |
|            |                     |                | 1800 seconds (mooring)        |
| TSK-CTD    | Inductive           |                | 2 seconds (profiling)         |
|            |                     |                | 1800 seconds (mooring)        |

# Reference sensor

 SBE9plus (Sea-Bird Electronics, Inc.) used for profiling test

 S/N 240

 Pressure:
 Paroscientific Digiquarts sensor (S/N 43435)

 Temperature:
 SBE3 [Thermister] (S/N 1207, calibrated at Nov. 18, 2000)

 Conductivity:
 SBE4 [conductivity cell] (S/N 0960, calibrated at Nov. 21, 2000)

Data sampling rate: 24 frames/second

|              | Range         | Resolution     | Precision        |
|--------------|---------------|----------------|------------------|
| Temperature  | -2 - 32 degC  | < 0.0002 degC  | <+/- 0.0015 degC |
| Conductivity | 0 - 70  mS/cm | < 0.0004 mS/cm | <+/- 0.003 mS/cm |
| Pressure     | 0 – 6500 dbar | < 0.06 dbar    | < +/- 1 dbar     |

SBE37SM (Sea-Bird Electronics, Inc.) used for mooring test

S/N 1593

Conductivity:Electrode conductivity sensorData sampling rate1800 seconds

|              | Range                | Resolution     | Precision        |
|--------------|----------------------|----------------|------------------|
| Temperature  | -5 – 35 degC         | < 0.0001 degC  | <+/- 0.002 degC  |
| Conductivity | $0-70\mathrm{mS/cm}$ | < 0.0001 mS/cm | <+/- 0.003 mS/cm |
| Pressure     | 0 – 3500 dbar        | < 0.07 dbar    | <+/- 0.35 dbar   |

#### 7.3 Lidar observation

 Personnel (\* indicates on board personnel) Ichiro Matsui (NIES) Atsushi Shimizu (NIES) Nobuo Sugimoto (NIES) Osamu Takahashi (TIT)\* Kazuhiro Asai (TIT)

## (2) Objectives

Shipborne Mie scattering lidar observation of aerosols and clouds have been started using R/V Mirai. The purposes of the observation are to obtain global distribution and optical characteristics of aerosols and clouds which are used in the climatological study and in the study on the data reduction algorithms and data methods for space borne lidars.

### (3) Method

The lidar employs a compact flashlamp pumped second-harmonics Nd:YAG laser. Mie scattering at 1064 nm and 532 nm, and depolarization ratio at 532 nm were recorded. System parameters are as follows;

Laser: Big Sky Laser CFR-200 Output power: 532 nm 50 mJ/Pulse, 1064 nm 100 mJ/pulse Repetition rate: 10 Hz Beam div.: 0.5 mrad Receiver: Schmidt cassegrainian Diameter: 280 mm Field of view: 1 mrad Detector: PMT (532 nm) , APD (1064 nm) Data collection: LeCroy LC574AL Measurement range: 0-24 km Range resolution: 6 m Sampling rate: 10 sec

## (5) Preliminary results

Figure 7.3-1 shows a temporal variation of vertical profile. The range-corrected lidar signal at 532 nm is indicated with a color scale. Diurnal variation of boundary layer is not significant as seen in Fig 7.3-1. Low clouds are frequently observed at the top of the planetary boundary layer. Cirrus clouds are also frequently observed in an altitude range of 12 to 17 km.

(6) Data archive

All data will be archived at NIES and TIT, and submitted to JAMSTEC DMO.

<sup>7.3-1</sup> 



Fig.7.3-1 Temporal variation of range-corrected lidar signal at 532 nm

7.3-2

7.4. Studies on behaviors and climate influence of atmospheric aerosols over the tropical region of the Western Pacific Ocean

| Name of research cruise: | Observ  | ational research over | r the | Tropical Western | Pacific Ocean |
|--------------------------|---------|-----------------------|-------|------------------|---------------|
| Observational duration:  | From    | 14 February 2001      | to    | 22 March 2001    | ( 37 days )   |
| Area of ocean:           | Tropica | al zone of the Wester | n Pa  | cific            |               |
| Objective theme:         |         |                       |       |                  |               |

Investigation of horizontal distribution on the concentration and size distribution and optical properties of atmospheric aerosols at the surface and optical thickness of columnar aerosol over the ocean.

#### Objects:

To clear and solve the problems of horizontal distribution and optical properties of aerosols, some observations were carried out over the northern and tropical region of the Pacific Ocean. Furthermore, collections of the data for calibration and validation to the remote sensing data were performed simultaneously

#### Summery:

To obtain the data for calibration and validation between remote sensing and surface measurements over the ocean, a series of simultaneous observations has been carried out about optical properties like as scattering and absorption coefficients and radiative properties as optical properties of atmospheric aerosols, the concentration and size distribution of surface aerosols over the tropical and subtropical region of the Western Pacific Ocean for 37days from 14 February 2001 to 22 March 2001. In addition of that, a sky radiometer was examined for to a fully automated ship-borne instrument and improved to the practical usage on same board.

#### (1) Personnel

On board scientists

Tatsuo Endoh (Institute of Low Temperature Science, Hokkaido University) Associate Professor Kentaro Ando( JAMSTEC) Chief Research Scientist

Co-workers not on board

Tamio Takamura (Center of environmental remote sensing science, Chiba University) Professor Sachio Ohta (Engineering environmental resource laboratory, Graduate school of engineering, Hokkaido University) Professor

Teruyuki Nakajima (Center of climate system research, University of Tokyo) Professor

(2) Objects/Introduction

# 7.4.1

One of the most important objects is the collection of calibration and validation data from the surface (Nakajima et al.1996, 1997 and 1999). It may be considered for the observation over the widely opening of the huge ocean to be desired ideally because of horizontal homogeneity. Furthermore, the back ground values of aerosol concentration are easily obtained over there (Ohta et al.1996, Miura et al. 1997 and Takahashi et al. 1996) and vertical profile of aerosol concentration are obtained by means of extrapolation up to the scale height. It is desired to compare the integrated value of these profile of aerosol concentration with optical thickness observed by the optical and radiative measurement (Hayasaka et al. 1998, Takamura et al.1994). Facing this object, the optical and radiative forcing for global warming.

#### (3) Measuring parameters

Atmospheric optical thickness, Ångström coefficient of wave length efficiencies,

Direct irradiating intensity of solar, and forward up to back scattering intensity with scattering angles of 2-140degree and seven different wave lengths

GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of sun. Horizon sensor provides rolling and pitching angles.

Concentration and size distribution of atmospheric aerosol.

#### (4) Methods

The instruments used in this work are shown as following in Table-7-4-1.

Sky Radiometer was measuring irradiating intensities of solar radiation through seven different filters with the scanning angle of 2-140 degree. These data will provide finally optical thickness, Ångström exponent and size distribution of atmospheric aerosols with a kind of retrieval method.

Optical Particle Counter was measuring the size of large aerosol particle and counting the number concentration with laser light scattering method and providing the size distribution in 0.3,0.5,1.0,2.0 and 5.0 micron of diameter with real time series display graphically.

## (5) Results

Information of data and sample obtained are summarized in Table-7-4-2. The sky radiometer has been going well owing to more calm and silent condition and circumstances about shivering problems provided by the R/V Mirai whose engines are supported by well defined cushions. Therefore, measured values will be expected to be considerably stable and provide good calculated parameters in higher quality. However, some noise waves were found to interfere the 16,13 and 12channel marine bands of VHF from sky radiometer. Fortunately the origin and source were identified by using a VHF wide band receiver and the interference waves were kept by fairly separating from two VHF antennae and decreased to recovery of 100%.

Aerosols size distribution of number concentration have been measured by the Particle Counter and data obtained are displayed in real time by a kind of time series *in situ* with 5stages of size range of 0.3, 0.5, 1.0, 2.0, and 5.0 micron in diameter.

# (6)Data archive

This aerosol data by the Particle Counter will be able to be archived soon and anytime. However, the data of other kind of aerosol measurements are not archived so soon and developed, examined, arranged and finally provided as available data after a certain duration. All data will archived at ILTS (Endoh), Hokkaido University, CCSR(Nakajima), University of Tokyo and CeRES(Takamura), Chiba University after the quality check and submitted to JAMSTEC within 3-year.

#### References

Takamura, T., et al., 1994: Tropospheric aerosol optical properties derived from lidar, sun photometer and optical particle counter measurements. Applied Optics, Vol. 33, No. 30,7132-7140.

Hayasaka, T., T. Takamura, et al., 1998: Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter. Applied Optics, 37(1998), No 6, 961-970.

Nakajima, T., T. Endoh and others(7 parsons) 1999: Early phase analysis of OCTS radiance data for aerosol remote sensing., IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, 1575-1585.

Nakajima, T., et al., 1997: The current status of the ADEOS- /GLI mission. Advanced and Next-generation Satellites , eds. H. Fujisada, G. Calamai, M. N. Sweeting, SPIE 2957, 183-190.

Nakajima, T., and A. Higurashi, 1996: AVHRR remote sensing of aerosol optical properties in the Persian Gulf region, the summer 1991. J. Geophys. Res., 102, 16935-16946.

Ohta, S., et al., 1997: Variation of atmospheric turbidity in the area around Japan. Journal of Global Environment Engineering, Vol.3, 9-21.

Ohta, S., et al., 1996: Chemical and optical properties of lower tropospheric aerosols measured at Mt. Lemmon in Arizona, Journal of Global Environment Engineering,

Vol.2,67-78.

Takahashi, T., T. Endoh, et al., 1996: Influence of the growth mechanism of snow particles on their chemical composition. Atmospheric Environment, Vol.30, No. 10/11, 1683-1692.

Miura, K., S. Nakae, et al.,: Optical properties of aerosol particles over the Western Pacific Ocean, Proc. Int. Sym. Remote Sensing, 275-280, 1997.

# Data inventory

Table-7-4-1. Information of obtained data inventory ( Method )

| Item, No.d                   | lata Name               | Instrument                      | Site position                                                 |
|------------------------------|-------------------------|---------------------------------|---------------------------------------------------------------|
| Optical thicl<br>Ångström ex | kness Endoh<br>kponent. | Sky Radiometer(Prede,POM-01MK2) | roof of stabilizer                                            |
| Aerosol Size<br>tribution    | e dis- Endoh            | Particle Counter(Rion,KC-01C)   | compass deck(inlet)<br>& environmental<br>research laboratory |

Table-7-4-2 Data and Sample inventory

| Data/Sample                           | rate               | site            | object                    | name  | state         | remarks         |
|---------------------------------------|--------------------|-----------------|---------------------------|-------|---------------|-----------------|
| Sun & Sky                             | 1/5min             | roof of         | optical thickness         | Endoh | land analysis | 2/14'01-3/22'01 |
| Light                                 | (fine&<br>daytime) | stabilizer      | Ångström expt.            |       |               |                 |
| Size distri-<br>bution of<br>aerosols | 1/2.5min           | compass<br>deck | concentration of aerosols | Endoh | on board      | 2/14'01-3/22'01 |

#### 7.5 Atmospheric and oceanic CO<sub>2</sub> measurements

<u>Participants</u>
 Hisayuki Y. Inoue and Masao Ishii
 Geochemical Research Department,
 Meteorological Research Institute (MRI)

## Koichi Goto

Kansai Environmental Engineering Center Co. LTD.

#### 2. Objectives

Carbon dioxide (CO<sub>2</sub>), known as a major greenhouse gas, has been increasing in the atmosphere as a result of the anthropogenic emission. Its current concentration is approximately 30% higher than that in the pre-industrial era (280ppm). In order to predict the future atmospheric  $CO_2$  variation due to anthropogenic emission and the potential alteration of the carbon cycle as a result of the climate change, it is necessary to understand the processes which are controlling the fluxes among the global carbon reservoirs, the atmosphere, the terrestrial biosphere and the ocean, as well as to estimate the present  $CO_2$  inventory among these reservoirs.

The eastern and the central equatorial Pacific is now known to act as a significant source of the  $CO_2$  to the atmosphere due primarily to the equatorial upwelling. The western equatorial Pacific, where warm water prevails in the surface layer, also occasionally exhibits a large  $CO_2$  emission from the sea to the atmosphere. Flux of  $CO_2$  from the equatorial Pacific has been reported to show a significant interannual variability that is associated with the ENSO event. However, the temporal and spatial variation in the whole  $CO_2$  system in seawater enough to elucidate its controlling mechanism has not been well documented.

In this cruise, we made concurrent underway measurements of  $CO_2$  concentration in the atmosphere and in surface seawater and total inorganic carbon (TCO<sub>2</sub>) in surface seawater. The purpose of these observations is to describe the oceanic  $CO_2$  system in the western equatorial Pacific and to clarify the controlling factors that are responsible for its variation in space and time as well as to investigate the air-sea  $CO_2$  flux in this region.

7.5-1

#### 3. Parameters

- (1) CO<sub>2</sub> concentration ( CO<sub>2</sub>) in marine boundary air and in the air equilibrated with surface seawater.
- (2) Total inorganic carbon (TCO<sub>2</sub>) in surface seawater.

#### 4. Methods

(1)Underway measurements of CO<sub>2</sub> concentration in marine boundary air and in the air equilibrated with surface seawater :

We made measurements of the  $CO_2$  concentration (mole fraction of  $CO_2$  in air;  $CO_2$ ) in marine boundary air twice every 1.5 hour and that in air equilibrated with the great excess of surface seawater four times every 1.5 hour during the whole cruise using the automated  $CO_2$  measuring system (Nippon ANS Co.). Marine boundary air was taken continuously from the foremast. Seawater was taken continuously from the bottom of ship located ca.5m below the sea level and introduced into the MRI-shower-type equilibrator.

Non-dispersive infrared (NDIR) gas analyzer (BINOS 4) was used as a detector. It was calibrated with four  $CO_2$  reference gases (300, 350, 407, 446 ppm in air, Nippon Sanso Co.) once every 1.5 hour. Concentration of  $CO_2$  will be published on the basis of the WMO X85 mole fraction scale after this cruise. Corrections for the temperature-rise from the bottom of ship to the equilibrator and the drift of  $CO_2$  concentration in reference gases are also to be made. Partial pressure of  $CO_2$  will be calculated from  $CO_2$  by taking the water vapor pressure and the atmospheric pressure into account.

(2) Underway measurements of total inorganic carbon (TCO<sub>2</sub>) in surface seawater :

We made underway measurement of  $TCO_2$  in surface seawater using the automated  $TCO_2$  analyzer(Nippon ANS Co.) equipped with carbon coulometer 5012 (UIC Co.). Seawater was taken continuously from the bottom of ship and a portion of the seawater (~ 22cm<sup>3</sup>) was introduced into the water-jacketed pipette of the analyzer twice every 1.5 hours for analysis. We also analyzed  $TCO_2$  in reference Seawaters prepared in MRI that is traceable to the CRM provided by Dr. A. Dickson in Scripps Institution of Oceanography. The analysis of the reference seawater was made at least once during the each run of the coulometric cathode- and anode-solution.

#### 5. Results

Data analysis will be made soon.

## 6. Data archive

The original data will be archived at Geochemical Research Department, Meteorological Research Institute. Data will be also submitted to Data Management Office at JAMSTEC within 3 years.

7.5-2

#### 7.6 ADCP subsurface mooring

### (1)Personnel

| Kentaro Ando      | (JAMSTEC): Principal Investigator |
|-------------------|-----------------------------------|
| Toru Nakamura     | (JAMSTEC): Scientist              |
| Hirokatsu Uno     | (MWJ): Operation leader           |
| Takeo Matsumoto   | (MWJ): Technical staff            |
| Hiroshi Matsunaga | (MWJ): Technical staff            |
| Asako Inoue       | (MWJ): Technical staff            |
| Miki Yoshiike     | (MWJ): Technical staff            |
| Shigehiko Ohara   | (MWJ): Technical staff            |
| Masato Muranaka   | (MWJ): Technical staff            |
| Kei Suminaga      | (MWJ): Technical staff            |
| Kenichiro Sato    | (MWJ): Technical staff            |
| Kaori Akiwaza     | (MWJ): Technical staff            |
| Taeko Ohama       | (MWJ): Technical staff            |

#### (2) Objectives

The purpose is to observe surface and subsurface current variation to understand physical processes in the western equatorial Pacific Ocean from 138E to 165E. The surface and subsurface currents variations are measured by using several ADCP current moorings along the equator. To maintain the current meters array, in this cruise (MR01-K01), we recovered one subsurface ADCP mooring at  $00^{\circ}$  -156° E and deployed one ADCP moorings at the same place.

#### (3) Parameters

- Current profiles
- · Echo intensity
- · Pressure, Temperature and Conductivity

# (4) Methods

Two instruments are mounted at the top float of the mooring. These are ADCP(Acoustic Doppler Current Profiler) to observe subsurface currents from surface to about 300m depth, and CTD to observe pressure, temperature and salinity at the top of the mooring. Three different types of CTs designed for ARGO float are also installed on mooring line at around 1,800m depth for the validation experiment of ARGO sensors (See details in section 7.2.2). Details of the instruments and their parameters are as follows:

# 1) ADCP

| (a) Self-Contained Broadband ADCP 150 kHz (RD Instruments) |
|------------------------------------------------------------|
| Distance to first bin : 8 m                                |
| Pings per ensemble : 12 for Serial Number 1154             |
| 16 for Serial Number 1678                                  |
| Time per ping : 2.00 seconds                               |
| Bin length : 8.00 m                                        |
| Sampling Interval : 3600 seconds                           |
| Recovered ADCP                                             |
| • Serial Number : 1154 (Mooring No.991108-00156E)          |
| Deployed ADCP                                              |
| • Serial Number : 1678(Mooring No.010228-00156E)           |

# 2) CTD

(a)SBE-16 (Sea Bird Electronics Inc.)

Sampling Interval : 1800 seconds

Recovered CTD

• Serial Number : 1285 (Mooring No.991108-00156E)

Deployed CTD

• Serial Number : 1274 (Mooring No.010228-00156E)

## 3) Other instrument

(a)Acoustic Releaser (BENTHOS,Inc.)

Recovered Acoustic Releaser

- Serial Number :908 (Mooring No.991108-00156E)
- Serial Number :685 (Mooring No.991108-00156E)

Deployed Acoustic Releaser

- Serial Number :954 (Mooring No.010228-00156E)
- Serial Number :663 (Mooring No.010228-00156E)

(b) CTs for ARGO sensor validation experiment (See details in section 7.2.2)

• SBE-37(Sea Bird Electronics Inc.)

• FSI EXCELL(Falmouth Scientific Inc.)

• Tsurumi-Seiki Co.,LTD.

## (5) Deployment

The ADCP mooring was deployed at  $00^{\circ}$  -156° E. The ADCP mooring deployed at  $00^{\circ}$  -156

 $^{\circ}~$  E was planned to make the ADCP buoy placed at about 300m depth . After we dropped

anchor, we monitored depth of the acoustic releaser (Fig.7-6-1). The position of the mooring was shown below.

Result of calibration

• Mooring No.010228-00156E

Date: 28 Feb. 2001 Lat: 00-00.16N Long: 156-07.93E Depth: 1950m

## (6) Recovery

We recovered one ADCP mooring which was deployed in Nov.1999 (MR99-K06) on 28 Feb. 2001.We found that Transponder fastened to chain (3.0m) under the ADCP buoy lost. After the recovery, we uploaded ADCP and CTD data into a computer, then raw data were converted into ASCII code. Results were shown in the figures on following pages. Fig.7-6-2 shows CTD pressure, temperature and salinity data. Fig.7-6-3, Fig.7-6-4, Fig.7-6-5 and Fig.7-6-6 show the velocity data (eastward and northward component ) at 50 m (bin21), 100 m (bin15) ,150 m(bin10) and 200m(bin4) depths.

# (7) Data archive

The velocity data will be reconstructed using CTD depth data. The all data will be archived by the member of TOCS project at JAMSTEC after the quality check.

All data will be submitted to DMO at JAMSTEC within 3 years after each recovery.





Fig.7-6-1 Acoustic Releaser Depth Monitor (A.R.:Acoustic Releaser)








Fig.7-6-3 Time series of 50m depth/bin=21 of eastward and northward from 8 Nov.1999 to 27 Feb.2001



















#### 7.7 Ocean Lidar

Takeshi Kawano JAMSTEC, Ocean Research Department Ai Yasuda, MWJ Keisuke Wataki, MWJ

#### 1.Objectives

The LIDAR, laser radar, has been developed to detect a horizontal distribution of phytoplankton and a vertical distribution of suspended matters. In order to check the performance of the system and get the required parameters for the system, continuous measurements were made from Guam to Yokosuka.

#### 2.Method

## (1) Ocean Lidar

The LIDAR operates a Nd.YAG laser, which emits a green pulse laser in 532 nm through KDP crystal as the second harmonic of Nd.YAG. Detectors in this system detects the laser excited fluorescence from phytoplankton in the surface layer and the light scattered by particles from the depth of about 50 meters. A density of chlorophyll-a is estimated through the empirical equation, obtained by a least square method. A vertical distribution of phytoplankton will be estimated from the logarithm decrement of signal as a function of particles.

#### (2) Sea truth data

In order to compare the data from Ocean Lidar system, we made an observation as follows.

#### - Photosynthetic parameters

We made an P-I curve measurement in every 8 hours using a surface seawater. The bottles were spiked with 0.2 mmoles/mL of  $NaH^{13}CO_3$  solution, and incubated for 3 hours at temperature-controlled bath in a laboratory. The light intensity was shown in table 1. Samples were filtered immediately after the incubation and the filters were kept to freeze till analyse of this cruise. After that, filters were dried on the oven of 45 degree C.

| Bottle No. | Light Intensity ( uE/cm <sup>2</sup> /sec ) |
|------------|---------------------------------------------|
| 1          | 1100                                        |
| 2          | 500                                         |
| 3          | 250                                         |
| 4          | 145                                         |
| 5          | 70                                          |
| 6          | 28                                          |
| 7          | 22                                          |
| 8          | 12                                          |

Table. 1 Light Intensity of P-I measurements

# - Attenuation Coefficient

In order to measure the attenuation coefficients, we made a cast down to 100m of Hi-Star at 5 station. The casts were carried out at 1300LT from March  $18^{th}$  to  $21^{st}$ , and 1000LT on March  $22^{nd}$ .

# - FRRF

In order to measure the photochemical quenching, we made a continuous measurement of FRRF, Fast Repetition Rate Fluorometer.

# - PAR

In order to measure the photosynthetical available radiation, we made a continuous measurement using a PUV by Biospherical Instruments during the cruise.

All the data and samples will be analyzed after the cruise.

#### 8 Ship Operations during General and Special Observation

#### 8.1 Ship's movement at engine stopped

# (1) Personnel

Captain Masaharu Akamine, Master of R/V " MIRAI " And Ship's Crew

## (2) Objectives

It is very important to find an influence of an external force such as a wind and a current for handling the ship in the engine stopped and the low speed required while ship is engaged in the development/recovery of the mooring buoy and CTD operation, etc.

It is easy to find the quantity of the current force by a Doppler sonar device but it is difficult to find directly the quantity of influence on ship's body by the wind force owing to a characteristic of the ship in a fluid.

Accordingly, a approximate formula is given to study of a relation between the ship's movement and the wind force by making ship drift actually.

A measurement is carried out to meet the needs of the approximate formula.

- (3) Observation parameters
  - · The ship's position, course, speed

· Directions of the wind and the current, velocities of the wind and the current

#### (4) Methods

(4.1) Measurement of the actual ship-movement

A measurement of the ship-movement in stopped engine condition was done in real-time by the radio navigation device. The measurement includes a direction and a velocity of the ship-movement under external forces each second for 4 hours in case of the wind blowing to her starboard-side and for 1 hour in case of the wind blowing to her port-side.

Fig 8.1-1 and Fig 8.1-2 show an example of the ship's movement under engine stopped.

(4.2) Measurement of the wind and the current

The direction and the speed of the wind were measured by KOAC-7800 weather data processor and sensors assembled by Koshin Denki.

The direction and the speed of the current were continuously measured by a Doppler sonar installed at the bottom of the ship that FURUNO Electric Co., Ltd. Japan produced.

The vector resultant force was calculated by the wind/the current data according to the following vector diagram. In case the current was found, the component of its force was excluded from the resultant force of the ship.



#### (4.3) Drifting coefficient

In case the ship receives the wind by the state that stopped the engine, the ship has leeway by her speed that the wind pressure and the resistance of water balanced each other out. Assuming that the ship drifts to the lee side while receiving constant wind her right side, a following formula is given.

$$1/2 \cdot a \cdot Cya \cdot Va^2 \cdot B = 1/2 \cdot w \cdot Cyw \cdot Vw^2 \cdot L \cdot d$$

$$v_{w} = \sqrt{\frac{\mathbf{r} \ a}{\mathbf{r} \ w}} \sqrt{\frac{Cya}{Cyw}} \cdot \sqrt{\frac{B}{L \cdot d}} \cdot v_{a} = \mathbf{k} \cdot \sqrt{\frac{B}{L \cdot d}} \cdot v_{a}$$

where,

, a: density of air (0.124kgsec<sup>2</sup>/m<sup>4</sup>) Cya: wind resistance

Va: Velocity of wind

B: lateral surface of projection (m<sup>2</sup>)

w: density of water  $(104.5 \text{kgsec}^2/\text{m}^4)$ 

Cyw: fluid resistance

Vw: velocity of water

L: length between perpendiculars (m)

d: draught of ship (m)

k: drifting coefficient

## (5) Results

The measurements on the quantity of the ship drifted to the wind force are shown in Fig 8.1-3,

Fig 8.1-4, Fig8.1-5 and Fig8.1-6 and the conclusion is shown as follows.

(5.1) In case of the wind blowing to her starboard-side

Propellers were clutched out and the current was nil.

The measurement was done using data in the state that the ship was stable from 2230 UTC 28<sup>th</sup> Feb.2001 to 0130 UTC 1<sup>st</sup> Mar. 2001.



The ship drifted at the angle of 150 degrees from the direction of the wind.

The angles between the direction of the wind and the ship's longitudinal center line were 118 degrees.

(5.2) In case of the wind blowing to her port-side

Propellers were clutched out and the current of <299> 1.05 knots were excluded.

The measurement was done utilizing in the state that the ship was stable from 0155 UTC  $5^{\text{th}}$  Mar.2001 to 0240 UTC  $5^{\text{th}}$  Mar. 2001.



The ship drifted at the angle of 150 degrees from the direction of the wind. The angles between the wind direction/ the ship's longitudinal center line were 108 degrees.

## (5.3) Drift coefficient

A drift coefficient is found by substituting figures in (5.2) for the approximate formula as shown in (4.3).

The above- mentioned figures in (5.2) are adopted because of the current being nil.

$$Vw = k \cdot \sqrt{\frac{B}{L \cdot d}} \cdot Va$$

Where, Vw = 0.78 knots, B = 1713 cm<sup>2</sup>, d = 6.00 m, Va = 5.87 m/s

0.78 knots = k · 
$$\sqrt{\frac{1713 m_2}{116 m x 6 m}}$$
 · 5.87 x 3600/1852 knots

Drift coefficient k = 0.0436

A report of Dr. Akira Iwai, "SOSENRON" issued in 1977, shows the drift coefficient is 0.041 if the approximate formula in (4.3) for k is resolved as Cya/Cyw has generally the value of 1.40. The drift coefficient of the ship is bigger than one of the general ship because the projection surface of the ship is large as compared with the general ship.

According to investigation of this time, the result shows that the ship takes afterward movement due to a reversed thrust in case propellers clutched out. We have to consider this matter if engine stopped.

#### (5.4) Drift angle

As for the drift angle, it was the proper result that the ship did not drifts to the right opposite direction of the wind blowing and that it had one constant angle due to a difference of power to act on the hull.

So it is necessary to adjust an angle of maximum 30 degrees from the right opposite direction where the wind blows to in case the vector calculation in (4.2) is done.

# (6) Data archive

All data will be archived on board.

# (7) Remarks

In this time, a standard for the ship drifting was found through the actual measurement. The standard is not quite finished yet.

It is necessary to collect data through the ship takes an active part in her research works after this in order to bring it close to realty more.

# Fig 8.2-1 Ship's Movement at engine stopped

# Tracking

(In case of the wind blowing to the ship's starboard side) 2200 UTC 28<sup>th</sup> Feb.2001 ~ 0200 UTC 1<sup>st</sup> Mar.2001 00-06.14N, 156-12.36E ~ 00-04.04N, 156-10.37E Wave height: 1.4m Weather: bc



# Fig 8.2-2 Ship's Movement at engine stopped

# Tracking

(In case of the wind blowing to the ship's port side) 0140 UTC 5<sup>th</sup> Mar.2001 ~ 0240 UTC 5<sup>st</sup> Mar.2001 02-00.73N, 156-56.88E ~ 02-01.00N, 156-55.70E Wave height: 1.8m Weather: bc











8.1-9

## 8.2 Ship's Handling for Deployment TRITON buoys and ADCP mooring system

(1) Personnel

Captain Masaharu Akamine, Master of R/V " MIRAI " And Ship's Crew

(2) Objectives

It is necessary for a ship's maneuvering to find a necessary distance for deploying a TRITON buoy/an ADCP mooring systems in order to make her move to a site in required depth. An approximation and a standard are led as a parameter by a course of a ship, a speed, working

hours and a distance between position of a sinker dropped and that of the sinker arrived at the bottom of the sea with a purpose in order to investigate the necessary distance.

## (3) Observation parameters

- · Ship's position, course, speed
- · Directions of the wind and the current, velocities of the wind and the current
- · Vectors of the wind and the current, the resultant force
- Working hours
- · Position of sinker

# (4) Methods

(4.1) Measurement of the actual ship-movement

Measurement of the ship-movement at engine stopped was executed by a set-drift before the deployment TRITON buoy in order to make in advance a comparison between reality and expectation. A direction and a velocity of the ship-movement in the external force influence was measured by a radio navigation device "Sains" assembled by Sena Co., Ltd. Japan and a Doppler sonar "DS-30" assembled by FURUNO Electric Co., Ltd. Japan.

A report as indicated in 8.1 shows an example of the ship's movement at engine stopped.

(4.2) Measurement of the wind and the current

The wind direction and speed were measured by KOAC-7800 weather data processor and sensors assembled by Koshin Denki.

8.2-1

The current direction and speed were continuously measured by a Doppler sonar "DS-30" installed at the bottom of the ship.

The vector resultant force was calculated by the wind and the current data in real-time according to the following vector diagram. The wind was transformed into the vector of the drift using an approximate formula given by some hydrodynamic tests. An example is shown in the report 8.1



#### (4.3) Ship's speed

According to the results measured in MR00-K02, the ship's speed was set up so as to keep her speed on  $2 \sim 3$  knots at ship's through-the-water during the nylon ropes being let out and to keep her speed on  $1 \sim 2$  knots at ship's through-the-water during the cable being paid out and the recovery buoys/releasers/sinker being connected in order to avoid the occurrence of their kink accident and to maintain a safety of the works. An average speed through all work around 2 knots at ship's through-the-water became one aim.

#### (4.4) Ship's course

The ship's course was expected by the vector calculation of the wind-drift and the current as indicated in (4.2), making reference to the data of the set-drift carried out before the deploying operation of the TRITON buoys/the ADCP mooring systems.

If there is a great difference between the direction of the wind and that of the current, the selection of her course shall be attached importance to a bigger one of the vector value and shall be in need of the direction of depth contour in the bathymetric map.

(4.4) Working hours for the deployment TRITON buoy/ADCP mooring systems

The time that the ship needed for each work was investigated taking data in MR00-K02 into account.

#### (4.5) Decision of position of sinker

The position of the sinker was fixed with a radio navigation device, an acoustic navigation device and the ship's radars.

The radio navigation device: "Sains" assembled by Sena Co., Ltd. Japan.

The acoustic navigation device: "SSBL processor (13kHz)" assembled by Oki Denki.

The ship's radar: "JMA9000 X band" and "JMA 9000 S band " assembled by JRC Ltd.

"MM950 X & S band" assembled by Consilium Selesmar, Italy.

#### (5) Results

#### (5.1) Ship's speed

The results are shown in Table 8.2-1 and 8.2-2.

By the results of this time, the average speed of the deploy buoy works was around 2 knot at ship's through-the-water with all the buoy works from TRITON buoy No.1 to No.8.

#### (5.2) Ship's course

The results are shown in Table 8.2-2.

The ship's course was adjusted so that the ship could cope with the external force influence to change variously, leading the wire cable and the nylon ropes right astern.

By the results of this time, about the course of the ship, a big difference is not recognized between expectation and the reality.

#### (5.3) Working hours

The results are shown in Table 8.2-1.

Except time paying out the nylon ropes, the times that the ship needed for each work show to be fixed nearly.

When show the average time that spent on each work, the results are as follows.

The time that spent in connecting recovery buoys,

releasers and a sinker

Total 1 hour 26 minutes

14 minutes

Length of total nylon ropes divided by Y is the time that spent in paying out nylon ropes

Y = 0.6472 x Length of total nylon ropes + 1503 (by recurrence type to lead from the results shown in Fig. 8.2-1)

(5.4) Sinker's position

The difference between position of **the sinker dropped** and that of **the sinker arrived at the sea bottom** were shown in Table 8.2-3. In the result, the distance between two points was about 15 % of depth of the water. An approximate formula is given with these past records in

8.2-3

Table 8.2-3. This different distance was added to the necessary distance for the deployment of TRITON buoy in order to bring the sinker up on the site in the required depth.

Table 8.2-3 was shown that the direction from position of **the sinker dropped** to that of **the sinker arrived at the sea bottom** was nearly the same course as the ship was finally towing the sinker in all cases.

In case of the ADCP mooring system, position of the sinker was fixed at a point that the sinker had been dropped because weight of the sinker for the whole system was heavy as compared with the TRITON buoy.

(5.5) Distance for Deployment TRITON buoy

All of the ship's movement for the deploying operation of the buoy was in existence within required limits of each operation as stated above.

An approximate formula for the distance of the deployment TRITON buoy is derived from the actual data indicated in Table 8.2-1, Table 8.2-3 and Fig. 8.2-1.

It is shown as follows:

$$D = (U1 - Vw) x k1 + (U2 - Vw) x L / k2 + S$$

# Where,

- D: Distance of the deployment TRITON buoy, not included distance for towing the sinker. (Unit: mile)
- U1: The average speed in the ship's through-the-water while the cable being paid out, the recovery buoys and the releasers being set, and the sinker being stood by except the sinker being towed. (Unit: knot)

 $1\sim 2$  knots is given by the past records as indicated in (4.3).

U2: The average speed in the ship's through-the-water while the nylon ropes being paid out. (Unit: knot)

 $2 \sim 3$  knots is given by the past records as indicated in (4.3).

Vw: The average quantity of the current influences a forward movement of the ship. (Unit: knot)

The value is calculated by a formula to multiple a cosine of an angle A in the current's speed.

Where, A= the angle that the ship's course line intersects the direction line of the current.

- L: Length of all the nylon ropes except that of the nylon ropes between the recovery buoys. (Unit: meter)
- k1: All the working hours for the cable being paid out, the recovery buoys and the releasers being set, and the sinker being stood by except the sinker being towed. (Unit: hour)(k1=1hour and 26 minutes is transformed to 1.43 by the decimal system. This value is

given from the past records in Table 8.2-1)

k2: The average length of the nylon ropes paid out per hour. (Unit: meter)

 $(k_2=0.6472 \text{ x length of all nylon ropes} + 1503$ . This value is given by a regression through the data shown in Fig. 8.2-1)

S: The distance between position of the sinker dropped and that of the sinker arrived at the bottom of the sea. (Unit: meter)

(The distance between two points=0.1089 x the required depth + 127.3)

This value is given by the approximate formula as indicated in Table 8.2-3.

(6) Data archive

All data will be archived on board.

(7) Remarks

As for it beginning to have been led an approximation and a standard by the results, there is big significance. But this is not a complete thing. We will want to get rid of expectation and difference with the reality by accumulating the results.

8.2-5

| Table 8.2-1 | SUMMARY OF WORKING TIME FOR DEPLOYMENT TRITON BUOY AND |
|-------------|--------------------------------------------------------|
|             | ADCP MOORING SYSTEM DURING MR01-K01                    |

|    | RITON No.           | 8              | 7       | 6       | 5       | 4      | 3       | 2       | 1       |         |
|----|---------------------|----------------|---------|---------|---------|--------|---------|---------|---------|---------|
| Lo | cation              | <u>2N,147E</u> | 5N,147E | 5S,156E | 2S,156E | 0,156E | 2N,156E | 5N,156E | 8N,156E |         |
| Wo | orks Date           | e 14-Mar       | 15-Mar  | 7-Mar   | 5-Mar   | 2-Mar  | 26-Feb  | 24-Feb  | 22-Feb  |         |
| Co | om'ced              | 9:21           | 8:51    | 8:53    | 8:53    | 8:51   | 8:49    | 13:20   | 9:35    |         |
| Bu | loy into sea        | 9:30           | 9:00    | 9:02    | 9:02    | 9:02   | 9:00    | 13:24   | 9:35    |         |
| Se | t 250m Sensor       | 9:46           | 9:22    | 9:18    | 9:17    | 10:05  | 9:54    | 13:50   | 9:56    |         |
| Se | t 300m Sensor       | 9:48           | 9:25    | 9:21    | 9:21    | 10:11  | 9:57    | 13:53   | 9:59    |         |
| Se | t 500m Sensor       | 9:56           | 9:32    | 9:26    | 9:30    | 10:22  | 10:07   | 13:59   | 10:07   |         |
| Se | t 750m Sensor       | 10:08          | 9:41    | 9:35    | 9:40    | 10:29  | 10:17   | 14:09   | 10:20   |         |
| Pa | y out Nylon Rope    | 10:34          | 10:08   | 9:51    | 9:58    | 11:00  | 10:44   | 14:38   | 10:45   |         |
| Se | t Recovery Buoy     | 10:50          | 10:24   | 10:04   | 10:13   | 11:22  | 11:17   | 14:56   | 11:01   |         |
| Se | t Recovery Buoy     | 10:59          | 10:31   | 10:13   | 10:23   | 11:32  | 11:27   | 15:02   | 11:08   |         |
| Pa | y out Nylon Rope    | 11:00          | 10:32   | 10:14   | 10:24   | 11:35  | 11:28   | 15:03   | 11:09   |         |
| Se | t Releaser          | 11:37          | 11:12   | 10:19   | 10:27   | 11:42  | 11:33   | 15:33   | 11:49   |         |
| S/ | B sinker            | 11:42          | 11:15   | 10:23   | 10:32   | 11:43  | 11:44   | 15:35   | 11:53   |         |
| Le | t go sinker         | 11:43          | 11:26   | 10:35   | 10:46   | 11:44  | 11:46   | 15:50   | 12:09   | Average |
| Η  | for cable           | 1:13           | 1:17    | 0:58    | 1:05    | 1:24   | 1:18    | 1:18    | 1:10    | 1:12    |
| 0  | for ropes           | 0:53           | 0:56    | 0:18    | 0:18    | 0:29   | 0:38    | 0:48    | 0:56    | 0:39    |
| u  | for releaser        | 0:15           | 0:11    | 0:14    | 0:16    | 0:14   | 0:22    | 0:09    | 0:12    | 0:14    |
| r  | for sinker in tow   | 0:01           | 0:11    | 0:12    | 0:14    | 0:01   | 0:02    | 0:15    | 0:16    | 0:09    |
| To | tal                 | 2:22           | 2:35    | 1:42    | 1:53    | 2:08   | 2:20    | 2:30    | 2:34    | 2:15    |
| Le | ngth of all ropes(m | 3435           | 3205    | 455     | 699     | 956    | 1551    | 2501    | 3170    | 1,997   |
| Le | ngth of ropes(m/h   | 3,889          | 3,434   | 1,517   | 2,330   | 1,978  | 2,449   | 3,126   | 3,396   | 3,033   |
| D  | for cable (mile)    | 1.13           | 1.24    | 1.81    | 1       | 3.78   | 1.54    | 1.49    | 1.75    | 2.29    |
| 1  | for ropes (mile)    | 1.72           | 1.53    | 0.54    | 0.47    | 0.93   | 1.2     | 1.2     | 2.46    | 1.68    |
| s  | for releaser (mile) | 0.27           | 0.27    | 0.37    | 0.32    | 0.38   | 0.43    | 0.12    | 0.17    | 0.39    |
| t  | for sinker (mile)   | 0.01           | 0.2     | 0.43    | 0.29    | 0.01   | 0.02    | 0.55    | 0.65    | 0.36    |
| To | tal (mile)          | 3.13           | 3.24    | 3.15    | 2.08    | 5.1    | 3.19    | 3.36    | 5.03    | 4.71    |
| S  | for cable (knot)    | 0.9            | 1.0     | 1.9     | 0.9     | 2.7    | 1.2     | 1.1     | 1.5     | 1.87    |
| p  | for ropes (knot)    | 1.9            | 1.6     | 1.8     | 1.6     | 1.9    | 1.9     | 1.5     | 2.6     | 2.5     |
| ee | for releaser(knot)  | 1.1            | 1.5     | 1.6     | 1.2     | 1.6    | 1.2     | 0.8     | 0.9     | 1.6     |
| d  | for sinker (knot)   | 0.6            | 1.1     | 2.1     | 1.2     | 0.6    | 0.6     | 2.2     | 2.4     | 2.4     |
| Δ  | erage speed (knot)  | 1.3            | 1.3     | 1.9     | 1.1     | 2.4    | 1.4     | 1.3     | 2.0     | 2.1     |

| ADCP   |
|--------|
| 0,156E |
| 28-Feb |
| 13.02  |
| 13:04  |
| 0:00   |
| 0.00   |
| 0.00   |
| 0.00   |
| 0:00   |
| 13:15  |
| 13:42  |
| 0:00   |
| 13:47  |
| 13:47  |
| 13:48  |
| 13:54  |
| 0:13   |
| 0:27   |
| 0:06   |
| 0:06   |
| 0:52   |
| 1229   |
| 2.731  |
| 0.43   |
| 1.31   |
| 0.14   |
| 0.17   |
| 2.05   |
| 2.00   |
| 2.0    |
| 2.9    |
| 1.4    |
| 1.7    |
| Z.4    |

# Fig. 8.2-1 SUMMARY OF WORKING TIME FOR DEPLOYMENT TRITON BUOY ON MR01-K01



The time spent in each work except the work for paying out the nylon ropes is nearly fixed as shown in the following chart.

As for the work for the nylon ropes, a following regression formula is derived from the relation between the lenghth of all the nylon ropes and that of the nylon ropes paid out per hour.



length of the nylon ropes sent out/hour = 0.6472 x length of all the nylon ropes + 1503 (unit: meter)

# Table 8.2-2SUMMARY OF SHIP'S HANDLING FOR DEPLOYING TRITON BUOY<br/>DURING MR01-K01

|     |          |        | C    | Course | e     |      | Speed | 1     | De   | ploy o | dist  | W       | 'ind     | Cu      | rrent    | Veo     | ctor  |       |        | Required      | Working |
|-----|----------|--------|------|--------|-------|------|-------|-------|------|--------|-------|---------|----------|---------|----------|---------|-------|-------|--------|---------------|---------|
| No. | Location | Date   | Exp. | Act.   | Diff. | Exp. | Act.  | Diff. | Exp. | Act.   | Diff. | Direct. | Velocity | Direct. | Velocity | Direct. | speed | C.Co. | C.C.F. | Depth(Actual) | hours   |
| 1   | 8N,156E  | 22-Feb | 125  | 125    | 0     | 1.8  | 1.9   | -0.1  | 4.2  | 4.4    | -0.1  | 85      | 10       | 315     | 0.2      | 4       | 1.5   | 108   | -0.2   | 4850(4847)    | 2:18    |
| 2   | 5N,156E  | 24-Feb | 225  | 225    | 0     | 1.1  | 1.2   | -0.2  | 2.4  | 2.8    | -0.4  | 60      | 6        | 85      | 1.2      | 46      | 0.5   | 294   | -0.9   | 3600(3608)    | 2:15    |
| 3   | 2N,156E  | 26-Feb | 70   | 70     | 0     | 1.7  | 1.1   | 0.6   | 3.4  | 3.2    | 0.2   | 80      | 7        | 270     | 0.3      | 4       | 1.2   | 78    | -0.3   | 2575(2577)    | 2:55    |
| 4   | 0,156E   | 2-Mar  | 45   | 45     | 0     | 1.8  | 1.7   | 0.0   | 4.7  | 5      | -0.3  | 75      | 5        | 170     | 0.4      | -25     | 0.9   | 35    | -0.2   | 1950(1953)    | 2:52    |
| 5   | 2S,156E  | 5-Mar  | 80   | 82     | -2    | 1.1  | 1.0   | 0.1   | 1.7  | 1.7    | 0.0   | 40      | 6.5      | 295     | 1.1      | 31      | 1.7   | 91    | -0.9   | 1750(1755)    | 1:39    |
| 6   | 5S,156E  | 7-Mar  | 350  | 352    | -2    | 1.8  | 1.7   | 0.1   | 2.7  | 2.6    | 0.1   | 340     | 1.5      | 100     | 0.5      | -48     | 0.6   | 297   | -0.2   | 1510(1520)    | 1:30    |
| 7   | 5N,147E  | 15-Mar | 90   | 92     | -2    | 1.6  | 1.3   | 0.3   | 3.7  | 3      | 0.7   | 70      | 8.0      | 285     | 0.4      | 9       | 1.0   | 90    | -0.4   | 4275(4287)    | 2:24    |
| 8   | 2N,147E  | 14-Mar | 90   | 90     | 0     | 1.4  | 1.3   | 0.1   | 3.3  | 3.1    | 0.2   | 300     | 1.3      | 300     | 0.7      | -18     | 0.6   | 117   | -0.6   | 4490(4495)    | 2:21    |
|     | Ur       | nit    | deg. | deg.   | deg.  | knot | knot  | knot  | mile | mile   | mile  | deg.    | m/s      | deg.    | Knot     | deg.    | knot  | deg.  | knot   | meter         | Hours   |

Remarks: Vector means the resultant force of the wind-drift and the current. Exp.=Expectation, Act.=Actual, Diff.=difference, The working hours means the

actual hours for all the work except the work for towing the sinker, Dist.=Distance, Direct.=Direction, C.CO=Calculation Course, deg.=degree.

C.C.F.=Component of current force. The course is shown on the course made good basis and the speed is on her over the grand basis.

As for TRITON #3, the working hours include extra times of 37 minutes for checking sensors which is installed right below of the buoy.

As for TRITON #4, the working hours include additional time for 45 minutes to install fairings to the cable and 1.5 miles are added to deploy distance.

As for TRITON #7, the deploy distance shortened than expection as the mooring point was changed on the way.

An approximation for finding the value of the necessary distance for deploying the TRITON buoy

Length of all the nylon ropes ? (unit:meter)

3170 Speed is

Speed is given by the" C.C.F "value in the above table?



Neccesary distance for deploying a buoy (unit:mile)

4.2 Estimated average log speed for deploying a bouy (unit:knot)

1.8

The above mentioned value in square brackets is one for location 8N,156E as an example.

8.2-8

Table 8.2-3DIFFERENCES BETWEEN A POSITION OF THE SINKER<br/>DROPPED AND THAT OF THE SINKER ARRIVED AT<br/>THE BED OF THE SEA DURING MR01-K01

| Buoy No. | posi          | tion       | Depth   | Distance | Direction | Ratio to |
|----------|---------------|------------|---------|----------|-----------|----------|
|          | Let go sinker | (meter)    | (meter) | (degree) | depth     |          |
| 8        | 2-06.05N      | 2-06.04N   | 4495    | 537      | 268       | 12%      |
|          | 146-57.23E    | 146-56.94E |         |          | <090>     |          |
| 7        | 4-58.75N      | 4-58.70N   | 4287    | 574      | 261       | 13%      |
|          | 147-01.34E    | 147-01.03E |         |          | <080>     |          |
| 6        | 5-01.80S      | 5-01.95S   | 1520    | 315      | 153       | 21%      |
|          | 156-01.45E    | 156-01.53E |         |          | <340>     |          |
| 5        | 2-01.01S      | 2-01.02S   | 1755    | 278      | 266       | 16%      |
|          | 155-57.40E    | 155-57.25E |         |          | <090>     |          |
| 4        | 0-01.20N      | 0-01.08N   | 1953    | 333      | 227       | 17%      |
|          | 156-02.69E    | 156-02.56E |         |          | < 045 >   |          |
| 3        | 2-02.35N      | 2-02.32N   | 2577    | 296      | 260       | 11%      |
|          | 156-01.30E    | 156-01.14E |         |          | < 070 >   |          |
| 2        | 5-01.16N      | 5-01.33N   | 3608    | 667      | 54        | 18%      |
|          | 155-57.96E    | 155-58.25E |         |          | < 225 >   |          |
| 1        | 7-59.21N      | 7-59.41N   | 4847    | 667      | 304       | 14%      |
|          | 156-00.77E    | 156-00.47E |         |          | < 130 >   |          |
| ADCP     | 0-00.49N      | 0-00.17N   | 1952    | 74       | 240       | 4%       |
|          | 156-07.97E    | 156-07.93E |         |          | < 070 >   |          |
|          | < > final     | course     |         |          |           |          |

According to the following chart, a regression formula is derived from a relation between a position of the sinker dropped and that of the sinker arrived at the sea bottom.

X = the required depth, Y = the necessary distance when the sinker is dropped.



The above mentioned graphic chart includes data at a previous voyage of MR00-K02.

#### 8.3 Ship's Handling for Recovery TRITON buoy / ADCP mooring systems

(1) Personnel

Captain Masaharu Akamine, Master of R/V " MIRAI " And Ship's Crew

(2) Objectives

To find how to make a ship approach a TRITON buoy and an ADCP float drifting on the sea after their mooring lines were release from a sinker at the bottom of the sea and to obtain data on working hours for the recovery of the TRITON buoy/the ADCP mooring systems in order to be helpful to us in doing a next work.

#### (3) Observation parameters

- · Ship's position, course, speed
- · Directions of the wind and the current, velocities of the wind and the current

#### (4) Methods

(4.1) Measurement of the actual ship-movement

Measurement of the ship-movement at coming close to the buoy and float was carried out in a radio navigation device assembled by Sena Co., Ltd. Japan.

(4.2) Measurement of the wind and the current

The wind direction and speed were measured by KOAC-7800 weather data processor and sensors assembled by Koshin Denki.

The current direction and speed were continuously measured by a Doppler sonar installed at the bottom of the ship. The Doppler sonar is assembled by FURUNO Electric Co., Ltd.

# (5) Results

(5.1) How to approach the buoy/the float

The results are illustrated in Fig.8.3-1 ~ Fig.8.3-7 and the following matters are pointed out.

(a) The mooring system drifted according to a big power between the wind and the flow after the recovery-buoys and the ADCP float that are one part of a system surfaced on the sea. When power of the wind or the flow is small, the mooring system floats in a group as well not to establish a course. In this case, the ship tows it in the wind or

upstream after having connected a handling rope which sent from the ship to the TRITON buoy or the ADCP float which there is first of the mooring system to prevent from getting entangled in buoys, floats, mooring ropes each other. An example is shown in Fig.8.3-6.

- (b) The ship was handled so as to take her position in the lee side or the down stream to the mooring system according to a basic manner. In this time, it was comparatively easy to handle the ship because the course of the current was the same as the direction of the wind each case. If there is nothing of a great difference between the wind and the current, the ship shall be in need of the direction of a handling small buoy connected with the TRITON buoy or the ADCP float. Namely the ship shall approach it at right angles as much as possible to the direction that a handling small buoy flows.
- (5.2) Working hours for recovery the buoy/ADCP mooring systems

The result is shown in Table 8.3-1 and the following matters are pointed out.

- (a) The time consumed on each work in recovery of all the TRITON buoys was nearly constant except the working time for the recovery of the nylon ropes that have different lengths.
- (b) As for the time when the recovery buoys surface on the sea, there was not a big difference all.
- (c) A lot of fishing line got entangled in the wire cables of TRITON buoy No.1, No.2, No.3, and No.6.
- (d) The working time of the boat was controlled by the timing that a release signal is sent from the acoustic navigation device installed in the bottom of the ship.
- (e) In case of the recovery of the ADCP mooring system, the working boat was lowered after surfacing of glass balls had been confirmed.
- (f) The ship recovered most TRITON buoy mooring systems while receiving wind aback. This was much better than others, judging from the ship's handling.

# (6) Data archive

All data will be archived on board.

(7) Remarks

The results are very much beneficial when we work in future. The results will be accumulated in this sense.







# Fig.8.3-2 FIGURE OF RECOVERY BUOY Triton buoy number: 2 (5N, 156E) Date: 25<sup>th</sup> Feb.2001 Wind: <045> 8.0 m/s, Current: <045> 0.8 knot Swell: NE, Wave height: 2.3 m, Weather: bc



8.3-4

Fig.8.3-3 FIGURE OF RECOVERY BUOY Triton buoy number: 3 (2N, 156E) Date: 27<sup>th</sup> Feb.2001 Wind: <075> 2.4 m/s, Current: <260> 0.4 knot Swell: ENE, Wave height: 1.4 m, Weather: bc







8.3-6

Fig.8.3-5 FIGURE OF RECOVERY BUOY Triton buoy number: 5 (2S, 156E) Date: 6<sup>th</sup> Mar.2001 Wind: <180> 5.0 m/s, Current: <290> 1.1 knot Swell: ENE, Wave height: 1.8 m, Weather: o & r









# Fig.8.3-7 FIGURE OF RECOVERY ADCP Location: 0, 156E Date: 28<sup>th</sup> Feb.2001 Wind: <080> 4.0 m/s, Current: <010> 0.1 knot Swell: ENE, Wave height: 1.3 m, Weather: bc



# Table 8.3-1 RECOVERY OF TRITON BUOY/ADCP DURING VOYAGE MR01-K01

| TRITON NUMBER                   | 1            | 2            | 3            | 4       | 5        | 6            |         |
|---------------------------------|--------------|--------------|--------------|---------|----------|--------------|---------|
| Location                        | 8N, 156E     | 5N, 156E     | 2N, 156E     | 0, 156E | 2S, 156E | 5S, 156E     |         |
| Date                            | 23-Feb       | 25-Feb       | 27-Feb       | 3-Mar   | 3-Mar    | 8-Mar        |         |
| Length of buoy system(m)        | 4850         | 3600         | 2575         | 1950    | 1750     | 1510         |         |
| Com'ced work                    | 7:55         | 7:59         | 7:55         | 7:51    | 7:52     | 7:55         |         |
| Sent working-boat               | 7:57         | 8:04         | 7:58         | 8:01    | 7:54     | 7:56         |         |
| Released from sinker            | 8:33         | 8:32         | 8:13         | 8:18    | 8:09     | 8:08         |         |
| Recovery buoy surfaced          | 8:46         | 8:43         | 8:33         | 8:31    | 8:19     | 8:17         |         |
| Sling rope connected with buoy  | / 9:00       | 8:53         | 8:49         | 8:41    | 8:29     | 8:27         |         |
| Picked up the boat              | 9:06         | 8:56         | 8:52         | 8:45    | 8:35     | 8:33         |         |
| Winded up buoy                  | 9:23         | 9:09         | 9:05         | 8:56    | 8:45     | 8:43         |         |
| Recovery of cable               | 9:30         | 9:15         | 9:12         | 9:02    | 8:50     | 8:48         |         |
| Recovery of rope                | 10:28        | 10:17        | 9:56         | 9:47    | 9:30     | 9:29         |         |
| Recovery of releaser            | 11:48        | 11:19        | 10:44        | 10:25   | 10:05    | 10:00        |         |
| Finished the work               | 11:50        | 11:21        | 10:45        | 10:27   | 10:06    | 10:01        |         |
| Total working hours             | 3:55         | 3:22         | 2:50         | 2:36    | 2:14     | 2:06         |         |
| Time consumed                   |              |              |              |         |          |              | Average |
| * in rising of recovery buoy    | 0:13         | 0:11         | 0:20         | 0:13    | 0:10     | 0:09         | 0:12    |
| in working of boat (included *) | 1:11         | 0:57         | 0:57         | 0:54    | 0:43     | 0:38         | 0:53    |
| in recovery of TRITON buoy      | 0:24         | 0:19         | 0:20         | 0:17    | 0:15     | 0:15         | 0:18    |
| in recovery of cable            | 0:58         | 1:02         | 0:44         | 0:45    | 0:40     | 0:41         | 0:48    |
| in recovery of ropes            | 1:22         | 1:04         | 0:49         | 0:40    | 0:36     | 0:32         | 0:50    |
| Total working hours             | 3:55         | 3:22         | 2:50         | 2:36    | 2:14     | 2:06         | 2:50    |
| Remarks                         | Fishing line | Fishing line | Fishing line |         |          | Fishing line |         |

| ADCP    |
|---------|
| 0, 156E |
| 28-Feb  |
| 1639    |
| 7:55    |
| 8:21    |
| 8:00    |
| 8:16    |
| 8:26    |
| 8:31    |
| 8:36    |
| 8:40    |
| 8:44    |
| 9:15    |
| 9:18    |
| 1:23    |
|         |

| 0:16 |
|------|
| 0:36 |
| 0:05 |
| 0:08 |
| 0:34 |
| 1:23 |

| ADCP |
|------|
| 345  |
| 320  |
| 80   |
| 4    |
| 9    |
| 0.1  |
| ENE  |
| 1.3  |

| TRITON NUMBER            | 1   | 2   | 3   | 4   | 5   | 6   |
|--------------------------|-----|-----|-----|-----|-----|-----|
| Approaching course (deg) | 95  | 45  | 75  | 50  | 100 | 320 |
| Course of recovery (deg) | 330 | 85  | 230 | 260 | 0   | 270 |
| Wind direction (deg)     | 100 | 45  | 75  | 60  | 180 | 10  |
| Wind velocity (m/s)      | 10  | 8   | 2.4 | 5   | 5   | 3.6 |
| Current direction (deg)  | 25  | 45  | 260 | 265 | 290 | 140 |
| Current velocity (knot)  | 0.3 | 0.8 | 0.4 | 0.8 | 1.1 | 0.3 |
| Swell direction          | ENE | NE  | ENE | ENE | ENE | ENE |
| Wave height (m)          | 2.2 | 2.3 | 1.4 | 1.7 | 1.8 | 1.7 |