R/V Mirai Cruise Report MR02-K04 (Leg 1 and Leg 2)

June 25 – August 22, 2002 Tropical Ocean Climate Study (TOCS)

> Edited by Yoshifumi Kuroda Hideaki Hase

Japan Marine Science and Technology Center (JAMSTEC)

Leg 1

Contents

- 1. Cruise name and code
- 2. Introduction and observation summary
- 2.1 Introduction
- 2.2 Overview
- 2.3 Observation summary
- 3. Period, ports of call, cruise log and cruise track
- 3.1 Period
- 3.2 Ports of call
- 3.3 Cruise log
- 3.4 Cruise track
- 4. Chief scientist
- 5. Participants list
 - 5.1 R/V MIRAI scientist and technical staff
- 5.2 R/V MIRAI crew member
- 6. General observation
 - 6.1 Meteorological measurement
 - 6.1.1 Surface meteorological observation
 - 6.1.2 Ceilometer
 - 6.2 CTD/XCTD
 - 6.2.1 CTD
 - 6.2.2 XCTD
 - 6.3 Validation of CTD cast data
 - 6.3.1 Salinity measurement of sampled seawater
 - 6.3.2 Dissolved oxygen analysis
 - 6.4 Continuous monitoring of surface seawater
 - 6.4.1 EPCS
 - 6.5 Shipboard ADCP
 - 6.6 Underway geophysics
 - 6.6.1 Sea surface gravity
 - 6.6.2 Surface three-component magnetometer
 - 6.6.3 Multi-narrow beam echo sounding system
- 7. Special observations
- 7.1 TRITON mooring
 - 7.1.1 TRITON mooring operation
 - 7.1.2 Inter-comparison between shipboard CTD and TRITON transmitted data
- 7.2 ADCP subsurface mooring
- 7.3 Aerosol measurement
- 7.4 ARGO float (profiling float)
- 7.5 Lidar observation
- 7.6 Doppler radar observation
- 7.7 Rawinsonde observation
- 7.8 Observation of rainfall drop size distribution

1. Cruise name and code

Tropical Ocean Climate Study MR02-K04 (Leg 1 and Leg 2) Ship: R/V MIRAI Captain: Takaaki Hashimoto

2. Introduction and observation summary

2.1. Introduction

This cruise has two major purposes. One is to observe physical oceanographic conditions in the western tropical Pacific Ocean for better understanding of air-sea interaction affecting on the ENSO (El Nino/Southern Oscillation) phenomena and its related climate change. The surface layer in the western tropical Pacific Ocean is characterized by high sea surface temperature, which plays major role in driving global atmospheric circulation. El Nino occurs when warm water migrates eastward, and causes short-term climate changes in the world dramatically. For example, the western Pacific area has very little rainfall when the "El Nino" occurred, as in 1997-98. This atmospheric and oceanic system is so complicated, and we still do not have enough knowledge about it.

The other purpose is to observe hydrographic conditions and its variability in the eastern tropical Indian Ocean associated with Asian Monsoon and Dipole Mode variability. Asian Monsoon may play an important role as a trigger of El Nino in the Pacific Ocean. Also the Indian Ocean has basin-scale interannual variability independent to ENSO mentioned as Dipole Mode variability. This climate system has various time scales. To investigate the mechanism, we need precise and detailed data for long period. Therefore, ocean and atmosphere observing mooring array is effective to obtain such data set. The major mission of this cruise is to deploy TRITON buoys developed at JAMSTEC for the long term measurements of ocean and atmosphere in the western tropical Pacific Ocean and the eastern Indian Ocean. We also deployed ADCP subsurface buoys in the Pacific and the Indian Oceans during this cruise.

The other purposes of this cruise are,

- 1) Currents, temperature and salinity measurement using a subsurface ADCP mooring and ARGO floats by Frontier Observational Research System for Global Change (FORSGC).
- 2) Optical measurement of properties of atmospheric aerosols by particle counter and sky radiometer by Hokkaido University.
- 3) Lidar backscatter measurements of lower atmosphere by National Institute for Environmental Studies (NIES) of Japan.

These measurements are also made successfully during this cruise.

2.2. Overview
2.2.1 Ship
R/V Mirai
Captain Takaaki Hashimoto
Total 34 crew members during Leg 1
Total 35 crew members during Leg 2
2.2.2 Cruise code
MR02-K04
2.2.3 Project name
Tropical Ocean Climate Study
2.2.4 Undertaking institution
Japan Marine Science and Technology Center (JAMSTEC)
2-15, Natsushima, Yokosuka, 237-0061, Japan
2.2.5 Chief scientist
Leg1: Yoshifumi Kuroda (JAMSTEC)
Leg2: Hideaki Hase (JAMSTEC)
2.2.6 Period
Leg1: June 25, 2002 (Sekinehama)-July 23, 2002 (Port Kelang)
Leg2: July 25, 2002 (Port Kelang)-August 22, 2002 (Sekinehama)

2.2.7 Research participants

Total 30 scientists and technical stuff participated from 10 different institutions, universities and companies including 6 foreign scientists and officers from Indonesia, Malaysia and USA.

2.3 Observation summary

TRITON buoy deployment:	9 sites
TRITON buoy recovery:	7 sites
ADCP subsurface buoy deployment:	2 sites
ADCP subsurface buoy recovery:	2 sites
CTD (Salinity, Temperature, Depth):	28 casts down to 1000 or 2000m
XCTD (Salinity, Temperature, Depth):	114 times down to 1000m
Surface meteorology:	continuous
ADCP measurements:	continuous
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Surface temperature, salinity measurements by intake method: continuous Other specially designed observations have been carried out successfully.

Observed oceanic and atmospheric conditions ENSO status from TAO/TRITON buoy data:

The TRITON and TAO (Tropical Atmosphere and Ocean) buoy data along the equator in the Pacific Ocean indicates development of El Nino in 2002. The warm water pool in the western tropical Pacific Ocean had stored enough heat for causing next El Nino during the La Nina years of 1998-2000. The condition for the onset of El Nino is to have a series of westerly wind bursts associated with intraseasonal atmospheric disturbance over the western tropical Pacific Ocean that pushes the warm water from west to east. Major events of westerly wind bursts were observed in June- July and November-December 2001. After these events, the warm water anomaly reached the Pacific eastern boundary and raised the sea surface temperature (SST) in the eastern Pacific. The monthly sea surface temperature from TRITON and TAO mooring array in June 2002 indicated that 1 deg-C positive anomaly was widely spread from 170E to 100W. By this warming in the entire equatorial Pacific Ocean, Japan Meteorological Agency and National Centers for Environmental Prediction in USA announced in July 2002 that an El Nino has been developing. The relatively low warming level compare to 1997/1998 indicates the developing El Nino to be moderate.

Leg 1: Observation in the western tropical Pacific

During the Leg 1 period, the four typhoons were born and hit Japan. This may be due to the Pacific high-pressure system migrated eastward associated with the El Nino development. By the typhoon RAMMASUN passing through west of the ship course, we encountered strong winds (30 m/s) and high waves (6-8 m) during June 30 - July 1 and delayed one day, otherwise another three typhoons (CHATAAN, HALONG, NAKRI) passed north of the ship and less affected to the observational works.

SST in the western tropical Pacific Ocean on the ship course was almost normal. Along the 130E section, strong SSE winds associated with southwesterly monsoon and the typhoons dominated. By this enhanced southwesterly monsoon, the Halmahera eddy was strongly enhanced, and at the 2N130E near Halmahera Island the high salinity core water over 35.4 psu distributed thickly from 160-230 m depth, which may be transported by the direct inflow of the enhanced northward flowing New Guinea Coastal Current and its Under Current into the Halmahera eddy. The surface layer of the Mindanao Current is also strengthened up to 2.0 m/s during this cruise compare to 1 m/s during the previous cruise of October 2001 based on the shipboard ADCP and moored ADCP data. The current at the TRITON site of 5N130E is also strong as 1.5 m/s due to the enhanced Mindanao Current and Halmahera Eddy.

During the previous cruise of October 2001, the Mindanao Current was extended to southward and low salinity North Pacific Tropical Water was dominated in the Halmahera region. Thus the results indicate how the water masses in the region can vary with the Pacific low latitude western boundary currents in the seasonal and El Nino time scales. The water mass change is important to investigate the heat and salt transport process in the warm pool region and understand the slowly varying ocean conditions in the process of El Nino development.

Leg 2: Observation in the eastern Indian Ocean

July/August is in summer monsoon season in the Indian Ocean. The climatology indicates that southwesterly winds dominate in the northern hemisphere, and wind curl is anticyclonic north of about 15S. Upper ocean layer current is forced by these wind fields, current is expected to flow eastward north of equator and westward south of equator, respectively. However, the observed current was different from climatological seasonal pattern. Strong westward currents were observed in the northern hemisphere along 90E.

SST (at 5 m depth) in the northern hemisphere along 90E is warmer as 29.3-29.8 deg-C than in the southern hemisphere, and water masses less than 34 psu was observed north of Sumatra Island, indicating the low saline water from the Bay of Bengal.

Two TRITON buoys and one ADCP mooring were recovered/re-deployed in the eastern Indian Ocean, and deployed four Argo floats successfully. We also carried out CTD and shipboard ADCP measurements without significant problem.

During the way back to Japan steaming in the Pacific, one typhoon (PHANFONE) was born and hit our ship course. Due to the severe oceanic condition associated with the typhoon, R/V Mirai arrived on 21 August with one-day delay at the port of Hachinohe.

3. Period, ports of call, cruise log and cruise track **3.1** Period

June 25, 2002 – August 22, 2002

3.2 Ports of call

Sekinehama, Japan	(Departure; June 25, 2002)
Hachinohe, Japan	(June 25, 2002)
Klang, Malaysia	(July 23 – 25, 2002)
Hachinohe, Japan	(August 21, 2002)
Sekinehama, Japan	(Arrival; August 22, 2002)

3.3 Cruise log

SMT	UTC	Event
(Ship Mean Ti	me)	
Jun. 25 (Tue)		
06:00	21:00	Departure at Sekinehama, Japan (SMT = $UTC + 9$)
		Start of continuous shipboard observations
09:00-	00:00-	Safety guidance on the R/V Mirai
12:20	03:20	Arrival at Hachinohe, Japan
		Immigration for going aboard
16:00	07:00	Departure from Hachinohe
16:45-17:00	07:45-08:00	Konpira-san
17:00-	08:00-	Start of Lidar observation
18:00-	09:00-	Start of continuous water observation
Jun. 26 (Wed.)		
09:00-10:30	00:00-01:30	Meeting for leg 1 observation, and for editing cruise report
13:00-13:30	04:00-04:30	Boat station drill
19:42-20:48	10:42-11:48	C01 (34-53.91 N, 142-21.95 E, 7042m) CTD cast with
		water sampling, down to 2000 m depth
20:59	11:59	Deployment of ARGO profiling float ID20231 (34-54.99 N,
		142-22.20 E)
21:02	12:02	Deployment of ARGO profiling float ID7995 (34-54.95 N, 142-22.17 E)
Jun.27 (Thu)		
		Steaming
Jun. 28 (Fri.)		
		Steaming
Jun. 29 (Sat.)		
		Steaming (Severe Tropical Storm Rammasun hit R/V Mirai)
		Science seminar
		"Water mass and sea surface height variabilities in the Halmahera eddy region" Speaker: Agus Atmadipoera

Jun. 30 (Sun)		Steaming
Jul. 1 (Mon)		Steaming (Severe Tropical Storm Rammasun hit R/V Mirai)
Jul. 2 (Tue)		
07:45-11:22	22:45-02:33	Deployment of TRITON buoy (07-39.69 N, 136-41.59E, 3144 m)
13:04-13:54	04:04-04:54	C-02 (07-40.51 N, 136-41.97 E, 3147m) CTD cast with 12 water sampling, down to 1000 m depth
15:32-16:15	06:32-07:15	C-03 (07-51.39 N, 136-28.76 E, 3352m) CTD cast with 2 water sampling, down to 1000 m depth
Jul. 3 (Wed.)		
08:00-11:46 14:55	23:00-02:17 05:55	Recovery of TRITON buoy (07-50.53N, 136-29.45 E) XCTD: X001 (07-00.13N, 136-45.77E, 4555m)
19:00	10:00	X002 (06-00.02N, 136-58.15E, 4426m)
Jul. 4 (Thu.)		
08:33-11:29	23:33-02:29	Deployment of TRITON buoy (04-51.55 N, 137-16.04E, 4109 m)
15.04 16.27	06.04.06.27	Restore operation of buoy data transmission
13:04-10:37	00:04-00:37	2 water sampling, down to 1000 m depth
Jul. 5 (Fri.)		
09:17-12:02	00:17-03:02	Recovery of TRITON buoy (04-56.66N, 137-18.65 E)
16:03	07:03	X003 (04-00.08N, 137-33.99E, 4759m)
20:03	11:15	X004 (02-59.94N, 137-49.75E, 4478m) X005 (02-59.48N, 137-50.72E, 4474m)
17.42	11.42	A005 (02-59.4814, 157-50.72E, 447411)
Jul. 6 (Sat.)		
08:16-11:13	23:16-02:13	Deployment of TRITON buoy (02-00.06N, 138-06.16E, 4317 m)
13:03-13:37	04:03-04:37	C-05 (02-01.97N, 138-05.13E, 4288m) CTD cast with
	10.00	2 water sampling, down to 1000 m depth
21:23	12:23	X006 (02-00.01N, 137-00.07E, 4114m)
Jul. 7(Sun.)		
08:41-11:16	23:41-02:16	Recovery of TRITON buoy (02-03.76N, 138-04.32 E)
15:47	06:47	X007 (01-00.03N, 138-00.30E, 4233m)
Jul. 8 (Mon.)		
08:16-11:53	23:16-01:53	Deployment of TRITON buoy (00-01.97N, 137-53.15E, 4371 m)
13:12-13:45	04:12-04:45	C-06 (00-02.97N, 137-53.42E, 4344m) CTD cast with
15:00-15:38	06:00-06:38	2 water sampling, down to 1000 m depth C-07 (00-04.48N, 138-02.50E, 4212m) CTD cast with 2 water sampling, down to 1000 m depth
21:58	12:58	2 water sampling, down to 1000 m depth X008 (00-59.95N, 137-00.05E, 3852m)

Jul. 9 (Tue.)		
09:01-11:40	00:01-02:40	Recovery of TRITON buoy (00-04.94N, 138-03.20E)
15:36	06:36	X009 (00-00.14N, 137-00.00E, 4446m)
19:19	10:19	X010 (00-00.05N, 136-00.01E, 5043m)
21:14	12:14	X011 (00-00.00S, 135-30.00E, 4274m)
Jul. 10 (Wed.)		
01:06	16:06	X012 (00-59.99N, 135-29.90E, 4343m)
04:53	19:53	X013 (02-00.01N, 135-29.99E, 4316m)
08:54	23:54	X014 (02-00.02N, 134-30.00E, 4173m)
12:44	03:44	X015 (02-00.14N, 133-30.00E, 3820m)
16:27	07:27	X016 (01-59.98N, 132-29.99E, 3154m)
20:14	11:14	X017 (01-60.00N, 131-30.00E, 4083m)
23:56	14:56	X018 (02-00.00N, 130-30.01E, 4352m)
Jul. 11 (Thu.)		
08:16-11:02	23:16-02:02	Deployment of TRITON buoy (02-00.07N, 130-02.34E, 4400 m)
13:02-13:41	04:02-04:41	C-08 (02-00.59N, 130-03.35E, 4399m) CTD cast with
		2 water sampling, down to 1000 m depth
15:02-15:42	06:02-06:42	C-09 (01-58.57N, 129-54.82E, 4424m) CTD cast with
		2 water sampling, down to 1000 m depth
18:18	09:18	X019 (02-00.03N, 129-30.01E, 4046m)
Jul. 12 (Fri.)		
09:01-11:42	00:01-02:42	Recovery of TRITON buoy (01-58.66N, 129-5481E)
17:00	06:00	X020 (03-00.02N, 129-55.40E, 3130m)
18:26	09:26	X021 (04-00.02N, 129-56.86E, 4642m)
Jul. 13 (Sat.)		
08:16-12:11	23:16-03:11	Deployment of TRITON buoy (04-59.89N, 129-56.95E, 5096 m)
13:14-13:57	04:14-04-57	C-10 (05-01.07N, 129-57.16E, 5102m) CTD cast with
		2 water sampling, down to 1000 m depth
16:35	07:35	X022 (05-15.85N, 129-30.02E, 4895m)
19:06	10:06	X023 (05-32.18N, 129-00.01E, 5412m)
21:32	12:32	X024 (05-49.07N, 128-30.03E, 4914m)
23:54	14:54	X025 (06-05.98N, 127-59.98E, 5436m)
Jul. 14 (Sun.)		
00:47	15:47	X026 (06-11.74N, 127-50.04E, 5662m)
01:37	16:37	X027 (06-17.21N, 127-40.02E, 5893m)
02:28	17:28	X028 (06-22.67N, 127-30.03E, 7836m)
03:20	18:20	X029 (06-33.56N, 127-20.03E, 9345m)
04:13	19:13	X030 (06-28.09N, 127-10.00E, 7895m)
05:08	20:08	X031 (06-39.65N, 127-00.00E, 6935m)
06:01	21:01	X032 (06-45.48N, 126-50.01E, 5142m)
07:26	22:26	X033 (06-52.54N, 126-37.43E, 2981m)
09:55-11:30	00:55-02:30	Recovery of subsurface ADCP buoy (06-49.29 N, 126-42.65 E, 3441m)

12:14-12:54	03:14-03-54	C-11 (06-50.05N, 126-42.63E, 3429m) CTD cast with 2 water sampling, down to 1000 m depth
14:01-15:12	05:01-06:12	Deployment of subsurface ADCP buoy (06-48.97N, 126-42.59 E, 3435 m)
18:17	09:17	X034 (06-59.98N, 127-14.75E, 8186m)
Jul. 15 (Mon.)		
05:53	20:53	X035 (08-00.01N, 129-59.98E, 5680m)
10.22	01.22	Bathymetry survey for $8N130E$ TRITON site
10:22	01:22	Auti nirrow manufactor orientation
13.00-13.30	04.00-04.50	Anti-piracy measures orientation $X_{027}(00.50.08N, 128.20.28E, 5680m)$
14.44	10.11	X037 (09-59.960, 127-57.05E, 506000) X038 (10-59.90N, 127-57.05E, 5564m)
23:47	14:47	X039 (11-60.00N, 127-14.86E, 5658m)
Jul. 16 (Tue.)		
04:29	19:29	X040 (13-00.00N, 126-30.44E, 5186m)
09:04	00:04	X041 (13-59.96N, 125-49.63E, 6053m)
13:00-14:00	04:00-05:00	Anti-piracy drill
13:40	04:40	X042 (14-59.99N, 125-06.59E, 5525m)
18:23	09:23	X043 (16-00.08N, 124-24.00E, 3168m)
23:12	14:12	X044 (16-59.95N, 123-38.15E, 4265m)
Jul. 17 (Wed.)		
02:21	17:21	X045 (17-40.01N, 123-07.83E, 2801m)
03:10	18:10	X046 (17-50.01N, 123-00.56E, 3739m)
03:59	18:59	X047 (17-59.99N, 122-52.86E, 3579m)
04:49	19:49	X048 (18-10.01N, 122-45.23E, 3775m)
05:36	20:36	X049 (18-20.00N, 122-37.47E, 2964m)
06:06	21:06	X050 (18-26.00N, 122-32.80E, 1765m)
22:00-	13:00-	Ship mean time adjustment (SMT = $UTC + 8$)
Jul. 18 (Thu.)		
		Steaming
Jul. 19 (Fri.)		
		Steaming
Jul. 20 (Sat.)		
		Steaming
Jul. 21 (Sun.)		
13:00-15:20	05:00-07:20	Science meeting to review obtained data Steaming
Jul. 22 (Mon.)		
		Steaming
Jul. 23 (Tue.)		
08:30	00:30	Arrival at Port Klang, Malaysia
		Open house for special guests

Jul. 24 (Wed.)		
~ /		Anchor at Port Klang, Malaysia
Jul. 25 (Thu.)	02.00	
10:00	02:00	Departure from Port Klang
11:00-11:45	03:00-03:45	Safety guidance for participants joining from leg 2
13:00-13:45	05:00-05:45	Meeting for leg 2 observation
16:45	08:45	Konpira-san
Jul. 26 (Fri.)		
09:00-	01:00-	Start of Doppler radar observation
13:34	05:34	X051 (06-11.87N, 095-00.02E, 843m)
16:11	08:11	X052 (05-44.85N, 094-30.03E, 1855m)
18:54	10:54	X053 (05-15.81N, 094-00.01E, 704m)
21:31	13:31	X054 (04-49.47N, 093-30.01E, 1216m)
Jul. 27 (Sat.)		
00:14	16:14	X055 (04-21.66N, 092-59.97E, 4507m)
03:03	19:03	X056 (03-53.77N, 092-30.02E, 4257m)
05:50	21:50	X057 (03-41.77N, 092-00.01E, 4104m)
07:29	23:29	Radio sonde observation RS-001 (03.83N, 091.80E)
08:32	00:32	X058 (04-01.31N, 091-29.99E, 4028m)
11:24	03:24	X059 (04-21.12N, 090-59.99E, 2618m)
13:25	05:25	RS-002 (04.53N, 090.74E)
14:25	06:25	X060 (04-40.90N, 090-30.01E, 3162m)
19:26	11:26	RS-003 (05.00N, 090.00E)
19:31	11:31	X061 (05-00.14N, 089-59.65E, 3440m)
19:38	11:38	X062 (04-59.21N, 089-59.63E, 3360m)
21:39	13:39	X063 (04-30.00N, 089-59.99E, 3266m)
23:59-01:31	15:59-17:31	C-12 (03-59.46N, 090-00.00E, 2841m) CTD cast with
20107 01101	10107 17101	12 water sampling, down to 2000 m depth
01:24	17:24	RS-004 (03.99N, 090.00E)
Jul. 28 (Sun.)		
03:35	19:35	X064 (03-29.99N, 090-00.01E, 2461m)
06:00-07:22	22:00-23:22	C-13 (02-59.97N, 089-59.89E, 2467m) CTD cast with
		12 water sampling, down to 2000 m depth
07:30	23:30	RS-005 (03.00N, 090.00E)
09:39	01:39	X065 (02-29.99N, 089-59.90E, 2718m)
11:59-13:12	03:59-05:12	C-14 (02-00.35N, 089-59.89E, 2648m) CTD cast with
		12 water sampling, down to 2000 m depth
13:24	05:24	RS-006 (02.00N, 089.99E)
15:36	07:36	X066 (01-29.78N, 089-59.99E, 2301m)
17:55-19:06	09:55-11:06	C-15 (00-59.94N, 089-59.97E, 2307m) CTD cast with
		12 water sampling, down to 2000 m depth
19:25	11:25	RS-007 (00.99N, 090.00E)
21:32	13:32	X067 (00-30.00N, 090-01.82E, 4056m)
Jul. 29 (Mon.)		
01:24	17:24	RS-008 (00.04N, 090.06E)
07:25	23:25	RS-009 (00.01N, 090.05E)

07:50-10:32	23:50-02:32	Recovery of subsurface ADCP buoy (00-00.44N, 090-03.35 E, 4399m)
10:24	02:24	RS-010 (00.01N, 090.06E)
11:15-12:31	03:15-04:31	C-16 (00-00.17N, 090-00.81E, 4248m) CTD cast with 12 water sampling, down to 2000 m depth
12:56-14:43	04:56-06:43	Deployment of subsurface ADCP buoy (00-00.37N, 090-03.38E, 4399m)
13:25	05:25	RS-011 (00.02N, 090.01E)
15:02	07:02	X068 (00-00.36S, 090-03.51E, 4290m)
16:37	08:37	RS-012 (00.28S, 090.05E)
17:29	09:29	X069 (00-30.04S, 089-59.28E, 3067m)
19:24	11:24	RS-013 (00.85S, 090.02E)
19:41	11:41	X070 (01-00.03S, 090-01.19E, 3190m)
22:26	14:26	RS-014 (01.61S, 090.07E)
Jul. 30 (Tue.)		
01:25	17:25	RS-015 (01.62S, 090.06E)
04:22	20:22	RS-016 (01.60S, 090.08E)
07:25	23:25	RS-017 (01.62S, 090.09E)
07:54-11:38	23:54-03:38	Deployment of TRITON buoy (01-36.09S, 090-04.47E, 4715m)
10:23	02:23	RS-018 (01.64S, 090.08E)
11:48-12:57	03:48-04:57	C-17 (01-35.95S, 090-03.63E, 4707m) CTD cast with 12 water sampling, down to 2000 m depth at TRITON buoy deployment point
13:24	05:24	RS-019 (01.60S, 090.06E)
13:47-14:53	05:47-06:53	C-18 (01-39.25S, 090-00.64E, 4688m) CTD cast with 3 water sampling, down to 2000 m depth at TRITON buoy recovery point
16:25	08:25	RS-020 (01.74S, 89.99E)
17:32-18:51	09:32-10:51	C-19 (02-00.01S, 090-00.02E, 4735m) CTD cast with 12 water sampling, down to 2000 m depth
19:23	11:23	RS-021 (02.00S, 090.00E)
22:22	14:22	RS-022 (01.70S, 089.99E)
Jul. 31 (Wed.)		
01:22	17:22	RS-023 (01.72S, 089.97E)
04:27	20:27	RS-024 (01.73S, 089.97E)
07:25	23:25	RS-025 (01.67S, 090.00E)
08:12-12:02	00:12-04:02	Recovery of TRITON buoy (01-39.30S, 089-59.45E, 4715m)
13:35	05:35	RS-026 (02.01S, 089.98E)
15:28	07:28	X071 (02-30.00S, 090-00.21E, 3502m)
17:58-19:11	09:58-11:11	C-20 (03-00.01S, 090-00.28E, 3328m) CTD cast with 12 water sampling, down to 2000 m depth
19:27	11:27	RS-027 (03.01S, 090.01E)
19:23	11:23	Deployment of ARGO profiling float ID 10918 (03-00.87S, 090-00.69E)
21:23	13:23	X072 (03-30.01S, 090-00.28E, 3882m)
23:55-01:05	15:55-17:05	C-21 (03-59.91S, 090-00.01E, 3140m) CTD cast with 12 water sampling, down to 2000 m depth

Aug. 1 (Thu.)		
01:22	17:22	RS-028 (04.00S, 090.00E)
03:39	19:39	X073 (04-31.32S, 090-00.16E, 4699m)
06:00-07:13	22:00-23:13	C-22 (04-59.87S, 089-59.93E, 5004m) CTD cast with
		12 water sampling, down to 2000 m depth
07:22	23:22	RS-029 (04.99S, 090.00E)
07:23	23:23	Deployment of ARGO profiling float ID 17441 (04-59.42S, 089-59 86E)
07:29	23:29	X074 (04-59.498, 090-00.42E, 4999m)
09:28	01:28	X075 (04-59.82S, 090-29.99E, 5044m)
11:58-13:13	03:58-05:13	C-23 (04-59.94S, 090-59.96E, 4985m) CTD cast with
11.00 10110		12 water sampling down to 2000 m depth
13.35	05.35	RS-030 (04 99S, 091 00E)
15.41	07:41	X076(04-59.988, 091-30.00E, 5007m)
17.54-19.02	07.41 09.54-11.02	C_{-24} (04-59.898, 092-00.07E, 5009m) CTD cast with
17.54-17.02	07.54-11.02	12 water sampling, down to 2000 m depth
10.25	11.25	PS $0.31 (0.000 \text{ GoV})$
19.23	11.23	X077(05.00.508,092.00E)
21.25	15.25	A077(03-00.395, 092-29.98E, 3002111)
23:36-01:12	15:50-17:12	C-25 (04-59.965, 092-59.79E, 4621m) C1D cast with
		12 water sampling, down to 2000 m depth
Aug 2 (Fri)		
01.27	17.27	RS-032 (05 00S 093 00F)
03:30	19:30	X078 (05-00.278 0.093-30.00E 5000m)
05.50-07.12	21.50-23.12	C_26 (05-00.275, 095-50.00L, 5000m) CTD cast with
05.57-07.12	21.37-23.12	12 water sampling down to 2000 m denth
07:22	23:22	Deployment of ARGO profiling float ID 18378 (05-00.32S, 094-00.02F)
07.25	23.25	RS-033 (05 00S 094 00F)
09.27	01.27	X079 (04.59 258 094.30 02F 4977m)
13.23	01:27	RS-034 (05 06S 094 90F)
13.23	05:33-06:52	Deployment of TRITON by (05-02.028, 004-58.62F)
15.55-10.52	05.55-00.52	5017m)
17.05-18.17	00.05-10.17	C_{-27} (05-02 348, 094-57 66F, 5007m) CTD cast with
17.05-10.17	07.05-10.17	12 water sampling, down to 2000 m depth at TRITON buoy
		deployment point
18.26	10.26	$X_{080} (05.02.785, 004.58.08E, 5007m)$
10.28	11.28	PS(025/05/24S, 074-36.76E, 5007III)
19.20	11.20	(0.5, 0.5, 0.5, 0.4, 5, 0.4, 5, 0.77E, 50.68m) CTD cost with
20.31-21.37	12.31-15.57	12 water compling down to 2000 m donth
22.02	14.02	Deployment of ADCO profiling float ID 17492 (05-24-575)
22:03	14:03	Deployment of ARGO profiling float ID 1/483 (05-34.5/S,
		094-59.84E)
Aug 3 (Sat)		
02.00	18.00	RS-036 (04 938, 095 02F)
07:26	23.26	RS-037 (04 988, 094 99F)
07.59_11.36	23.20	Recovery of TRITON buoy $(0.4-57, 3.48, 0.04-58, 85F)$
01.57-11.50	25.57-05.50	5017m)
10.26	02.26	$RS_038 (04.99S_095.00F)$
11.42	02.20	X0.000 (07.775, 075.000) X0.81 (05.00.368, 0.05.00.03E, 50.10m)
12.01	03.42	X001 (05-00.505, 055-00.55E, 501000) X082 (05-01.708, 005.04.22E, 5042m)
12.01	04.01	11002 (UJ-01.173, UJJ-04.22E, JU42III)

13:25	05:25	RS-039 (05.10S, 095.28E)
13:51	05:51	X083 (05-11.43S, 095-30.00E, 5029m)
15:53	07:53	X084 (05-19.22S, 096-00.02E, 4814m)
16:25	08:25	RS-040 (05.32S, 096.01E)
18:01	10:01	X085 (05-29.84S, 096-30.01E, 4860m)
19:26	11:26	RS-041 (05.58S, 096.76E)
20:06	12:06	X086 (05-40.47S, 096-59.98E, 4837m)
22:08	14:08	X087 (05-50.72S, 097-30.01E, 4975m)
22:25	14:25	RS-042 (05.84S, 097.48E)
Aug. 4 (Sun.)		
00:16	16:16	X088 (06-01.05S, 097-59.97E, 5463m)
01:26	17:26	RS-043 (06.07S, 098.14E)
02:28	18:28	X089 (06-13.05S, 098-29.96E, 5040m)
04.29	20:29	RS-044 (06 36S 098 88E)
04.40	20:20	X090 (06-25 80S 099-00 01E 5365m)
06:48	20.10	X091 (06-36 15S 099-30 00E 4765m)
07.25	22.40	RS-045 (06 628, 099 57F)
09.01	01:01	X092 (06-43.80S 100-00 00E 4993m)
10.25	02:25	PS 046 (06 80S 100 21E)
10.25	02.25	$X_{003} (06.55.728 \pm 100.30 00E \pm 5366 \text{ m})$
12.25	05:25	A095 (00-55.725, 100-50.00E, 5500III) DS 047 (07 04S, 100 84E)
13.23	05.23	$X_{004}(07.07.608, 101.00.00E, 5521m)$
15.52	03.32	X094 (07-07.005, 101-00.00E, 555111) X005 (07.16.718, 101.20.00E, 5270m)
10:02	08:02	A095 (07-10.715, 101-50.00E, 5270III)
17:00	09:00	RS-048 (07.305, 101.50E)
18:26	10:26	X096 (07-27.415, 101-59.99E, 5472m)
19:26	11:26	RS-049 (07.498, 102.11E)
20:50	12:50	X097 (07-37.885, 102-29.99E, 5845m)
22:25	14:25	RS-050 (07.71S, 102.77E)
23:16	15:16	X098 (07-48.93S, 103-00.00E, 6016m)
Aug. 5 (Mon.)		
01:26	17:26	RS-051 (07.93S, 103.35E)
01:45	17:45	X099 (07-59 90S 103-29 99E 6118m)
03.58	19:58	X100 (08-08 54S 103-59 98E 6243m)
05:00	21:00	RS-052 (08 14S 103 99F)
06.27	21.00	X101 (08-19.75S 104-29.99F 6353m)
07:25	22.27	RS-053 (08 36S 104 59F)
07.25	23.25	$X_{102} (08, 31, 738, 105, 00, 00E, 6607m)$
11.13	00.50	X102 (08 41 825 105 20 00E 6178m)
11.15	05.15	A103 (08-41.823, 105-29.99E, 0178III) DS 054 (08 825, 105 01E)
15:25	05:25	$K_{3}-0.04 (08.835, 103.91E)$
13:39	0539	X104 (08-52.705, 106-00.04E, 4535m) X105 (00.01.265, 106-20.00E, 4074m)
15:55	07:53	X105 (09-01.365, 106-30.00E, 40/4m)
18:09	10:09	X106 (09-11.955, 107-00.00E, 3854m)
19:25	11:25	KS-USS (U9.26S, 107.1/E)
20:32	12:32	A10/ (09-24.30S, 10/-29.99E, 3659m)
22:40	14:40	X108 (09-34.068, 108-00.01E, 3297m)
Aug. 6 (Tue.)		
00:50	16:50	X109 (09-44.09S, 108-29.98E, 3348m)
01:26	17:26	RS-056 (09.73S, 108.49E)
		· · · · /

03:12	19:12	X110 (09-55.49S, 109-00.00E, 3759m)
05:23	21:23	X111 (10-04.78S, 109-30.01E, 4670m)
07:25	23:25	RS-057 (10.19S, 109.84E)
07:44	23:44	X112 (10-15.30S, 109-59.99E, 6898m)
Aug. 7 (Wed.)		
		Steaming
Aug. 8 (Thu.)	0 < 00 0 < 00	
14:00-14:30	06:00-06:30	Meeting for editing cruise report
Aug. 9 (Fri.)		
18:00	10:00	Ship mean time adjustment (SMT = $UTC + 9$)
Aug. 10 (Sat.)		
		Steaming
Aug. 11 (Sun.)		
		Steaming
Aug. 12 (Mon.)		
		Steaming
Aug. 13 (Tue.)		
07:33-11:53	22:33-02:53	Deployment of TRITON buoy (07-58.65N, 130-00.39E, 5723m)
12:19	03:19	X113 (08-00.28N, 130-01.31E, 5636m)
12:40	03:40	X114 (08-00.31N, 130-01.30E, 5572m)
Aug. 14 (Wed.)		
08:27	23:27	RS-058 (12.64N, 131.93E)
14:25	05:25	RS-059 (14.07N, 132.52E)
20:25	11:25	RS-060 (15.55N, 133.15E)
Aug. 15 (Thu.)		
02:26	17:26	RS-061 (17.02N, 133.80E)
08:28	23:28	RS-062 (18.35N, 134.37E)
Aug. 16 (Fri.)		
		Steaming
Aug. 17 (Sat.)		
		Steaming (Severe Tropical Storm Phanfone hit R/V Mirai)
Aug. 18 (Sun.)		
09:00	0:00	Finish of Doppler radar observation
Aug. 19 (Mon.)		
		Steaming (Severe Tropical Storm Phanfone hit R/V Mirai)
Aug. 20 (Tue.)		
		Steaming

Aug. 21 (Wed.) 17:50	08:50	Arrival at Hachinohe, Japan
Aug. 22 (Thu.)		
17:00	08:00	Arrival at Sekinehama, Japan

3.4 Cruise Track

MR02-K04 Leg1 Cruise Track

MR02-K04 Leg1 ARGO & CTD

MR02-K04 Leg2 Cruise Track

MR02-K04 Leg2 TRITON & ADCP & ARGO

MR02-K04 Leg2 TRITON-14 & XCTD

3.4-7

MR02-K04 Radio Sonde

4. Chief scientist

<Leg 1> Yoshifumi Kuroda Associate Scientist Ocean Observation and Research Department, Japan Marine Science and Technology Center (JAMSTEC) 2-15, Natsushima, Yokosuka, Kanagawa 237-0061, JAPAN

<Leg 2> Hideaki Hase Researcher Ocean Observation and Research Department, Japan Marine Science and Technology Center (JAMSTEC) 2-15, Natsushima, Yokosuka, Kanagawa 237-0061, JAPAN

5. Participants list5.1 R/V MIRAI scientist and technical staff

Yoshifumi Kuroda*	Japan Marine Science and Technology Center (JAMSTEC)
Hideaki Hase**	JAMSTEC
Shuichi Mori**	FORSGC
Hiroshi Matsuura**	FORSGC
Ichiro Matsui*	National Institute for Environmental Studies (NIES)
Atsushi Shimizu**	NIES
Yuji Fujitani***	Division of Environmental and Resource Engineering Graduate school of Hokkaido University

Masaki Hanyu*	Global Ocean Development Inc. (GODI)
Yasutaka Imai***	GODI
Wataru Tokunaga**	GODI
Shinya Iwamida***	GODI

Takeo Matsumoto***	
--------------------	--

Marine Works Japan (MWJ)

Masayuki	Fujisaki***	MWJ
i i usu y uiti	i ajibani	111 110

- Masaki Taguchi* MWJ
- Hiroshi Matsunaga* MWJ
- Miki Yoshiike* MWJ
- Tomoyuki Takamori*** MWJ

Atsuo Ito**	MWJ
Kentaro Shiraishi**	MWJ
Kei Suminaga***	MWJ
Yuuichi Sonoyama***	MWJ
Hiroyasu Muramatsu***	MWJ
Takahiro Suzuki***	MWJ
Masahiko Nishino***	MWJ
Albertus Sulaiman***	TISDA-BPPT
Agus Saleh Atmadipoera***	Bogor Agricultural University, Marine Science Department
Mekky Mukarrom Santoso**	PUSSURTA TNI / DIS HIDROS

Maqrun Fadzli bin Mohd Fahmi** Malaysian Meteorological Services

Kamaruddin Bin Yusoff**

Hydrography Department

Saji N.Hameed**

International Pacific Research Center (IPRC)

Legend

*	Leg-1	(Sekinehama, JAPAN – Port Klang, MALAYSIA)
**	Leg-2	(Port Klang, MALAYSIA – Sekinehama, JAPAN)
***	Leg-1,2	(Sekinehama, JAPAN – Port Klang, MALAYSIA – Sekinehama, JAPAN)

5.2 R/V MIRAI crew member

Crew List (Leg1)

Takaaki Hashimoto	Master
Yukio Dowaki	Chief Officer
Hiroki Maruyama	1 st Officer
Masaki Fuchi	2 nd Officer
Shingo Fujita	3 rd Officer
Koichi Higashi	Chief Engineer
Nobuya Araki	1 st Engineer
Koji Masuno	2 nd Engineer
Kyoichi Hashimoto	3rd Engineer
Keiichirou Shishido	C.R.Officer
Naoto Morioka	2 nd R.Officer
Kenetsu Ishikawa	Boatswain
Hisashi Naruo	Able Seaman
Yasuyuki Yamamoto	Able Seaman
Keiji Yamauchi	Able Seaman
Kunihiko Omote	Able Seaman
Yukiharu Suzuki	Able Seaman
Masaru Suzuki	Able Seaman
Yosuke Kuwahara	Able Seaman
Kazuyoshi Kudo	Able Seaman
Tsuyoshi Sato	Able Seaman
Takeharu Aisaka	Able Seaman
Masashige Okada	Able Seaman
Sadanori Honda	No.1 Oiler
Yukitoshi Horiuchi Oiler	
Takashi Miyazaki	Oiler
Nobuo Boshita	Oiler
Kazumi Yamashita Oiler	
Daisuke Taniguchi Oiler	
Yasutaka Kurita	Chief Steward
Takayuki Akita	Cook
Hitoshi Ota	Cook
Kozo Uemura	Cook
Hiroyuki Yoshizawa	Cook

Crew List (Leg2)

Takaaki Hashimoto	Master
Hiroki Maruyama	Chief Officer
Masaki Fuchi	1 st Officer
Takeshi Isohi	2 nd Officer
Shingo Fujita	3 rd Officer
Koichi Higashi	Chief Engineer
Nobuya Araki	1 st Engineer
Koji Masuno	2 nd Engineer
Kyoichi Hashimoto	3 rd Engineer
Keiichirou Shishido	C.R.Officer
Naoto Morioka	2 nd R.Officer
Kenetsu Ishikawa	Boatswain
Hisashi Naruo	Able Seaman
Yasuyuki Yamamoto	Able Seaman
Keiji Yamauchi	Able Seaman
Kunihiko Omote	Able Seaman
Yukiharu Suzuki	Able Seaman
Masaru Suzuki	Able Seaman
Yosuke Kuwahara	Able Seaman
Kazuyoshi Kudo	Able Seaman
Tsuyoshi Sato	Able Seaman
Takeharu Aisaka	Able Seaman
Masashige Okada	Able Seaman
Sadanori Honda	No.1 Oiler
Yukitoshi Horiuchi Oiler	
Takashi Miyazaki	Oiler
Nobuo Boshita	Oiler
Kazumi Yamashita Oiler	
Daisuke Taniguchi Oiler	
Yasutaka Kurita	Chief Steward
Takayuki Akita	Cook
Hitoshi Ota	Cook
Kozo Uemura	Cook
Hiroyuki Yoshizawa	Cook
Tatsuya Hamabe	Cook

6.1 Meteorological Measurement

6.1.1 Surface meteorological observation

(1)	Personnel		
	Kunio Yoneyama (JAMSTEC):	Principal Investigator	- Shore-side participant -
	Masaki Hanyu (GODI):	Operation Leader	- Leg 1 -
	Yasutaka Imai (GODI)		- Leg 1, Leg 2 -
	Shinya Iwamida (GODI)		- Leg 1, Leg 2 -
	Wataru Tokunaga (GODI)		- Leg 2 -

(2) Objective

Surface meteorological parameters are obtained as a basic meteorological dataset. These parameters provide us the information about temporal variation of the meteorological condition surrounding the ship.

(3) Methods

The surface meteorological parameters were observed throughout MR02-K04 cruise from the departure of Sekinehama on 25th June 2002 to the arrival of Sekinehama on 21st August 2002 .

This cruise, we used 2 systems for the surface meteorological observation.

- 1. R/V Mirai meteorological observation system
- 2. Shipboard Oceanographic and Atmospheric Radiation (SOAR) system

(3-1) R/V Mirai meteorological observation system

Instruments of R/V Mirai met system are listed in Table 6.1-1 and measured parameters are listed in Table 6.1-2. Data was collected and processed by KOAC-7800 weather data processor made by Koshin Denki, Japan. The data set has 6-second averaged every 6-second record and 10-minute averaged every 10-minute record.

Table 6.1-1: Instru	ments and their ins	stallation locations	of R/V Mirai	i met system
---------------------	---------------------	----------------------	--------------	--------------

sensors	type	manufacturer	location (altitude from surface)
anemometer	KE-500	Koshin Denki, Japan	foremast (24m)
thermometer	FT	Koshin Denki, Japan	compass deck (21m) AT
	RFN1-0	Koshin Denki, Japan	4th deck (-1m, inlet –5m) SST
dewpoint meter	DW-1	Koshin Denki, Japan	compass deck (21m)
barometer	F-451	Yokogawa, Japan	captain deck (13m)
rain gauge	50202	R. M. Young, USA	compass deck (19m)
optical rain gauge	ORG-115DR	ScTi, USA	compass deck (19m)
radiometer (SW)	MS-801	Eiko Seiki, Japan	radar mast (28m)
radiometer (IR)	MS-202	Eiko Seiki, Japan	radar mast (28m)
wave height meter	MW-2	Tsurumi-seiki, Japan	bow (10m)

Table 6.1-2: Pa	rameters of R/V	Mirai m	neteorological	observation system

parmeters	units	remarks
1. latitude	degree	
2. longitude	degree	
3. ship's speed	knot	Mirai log, DS-30 Furuno
4. ship's heading	degree	Mirai gyro, TG-6000, Tokimec
5. relative wind speed	m/s	6sec/10min averaged
6. relative wind direction	degree	6sec/10min averaged
7. true wind speed	m/s	conducted by 3/4/5/6
		6sec/10min averaged
8. true wind direction	degree	conducted by 3/4/5/6
		6sec/10min averaged
9. barometric pressure	hPa	adjusted to sea surface level
		6sec/10min averaged
10. air temperature (starboard side)	degC	6sec/10min averaged
11. air temperature (port side)	degC	6sec/10min averaged
12. dewpoint temperature (starboard side)	degC	6sec/10min averaged
13. dewpoint temperature (port side)	degC	6sec/10min averaged
14. relative humidity (starboard side)	%	conducted by 9/10/12
		6sec/10min averaged
15. relative humidity (port side)	%	conducted by 9/11/13
		6sec/10min averaged
16. sea surface temperature	degC	6sec/10min averaged
17. rain rate (optical rain gauge)	mm/hr	hourly accumulation
18. rain rate (capacitive rain gauge)	mm/hr	hourly accumulation
19. down welling shortwave radiation	W/m^2	6sec/10min averaged
20. down welling infra-red radiation	W/m^2	6sec/10min averaged
21. significant wave height	m	hourly
22. significant wave period	second	hourly

(3-2) Shipboard Oceanographic and Atmospheric Radiation (SOAR) system

SOAR system, designed by BNL (Brookhaven National Laboratory, USA), is consisted of 3 parts.

- 1. Portable Radiation Package (PRP) designed by BNL short and long wave down welling radiation
- 2. Zeno meteorological system designed by BNL wind, Tair/RH, pressure and rainfall measurement
- 3. Scientific Computer System (SCS) designed by NOAA (National Oceanographic and Atmospheric Administration, USA) centralized data acquisition and logging of all data sets SCS recorded PRP data every 6.5 seconds, Zeno/met data every 10 seconds.

Instruments and their locations are listed in Table 6.1-3 and measured parameters are listed in

Table 6.1-4

sensors	type	manufacturer	location (altitude from surface)
Zeno/Met			
anemometer	05106	R. M. Young, USA	foremast (25m)
T/RH	HMP45A	Vaisala, USA	foremast (24m)
		with 43408 Gill aspirated rad	liation shield (R. M. Young)
barometer	61201	R. M. Young, USA	foremast (24m)
		with 61002 Gill pressure por	t (R. M. Young)
rain gauge	50202	R. M. Young, USA	foremast (24m)
optical rain gauge	ORG-815DA	Optical Science Inc., USA	foremast (24m)
PRP			
radiometer (SW)	PSP	Eppley labs, USA	foremast (25m)
radiometer (IR)	PIR	Eppley labs, USA	foremast (25m)
fast rotating shadowband radiometer		Yankee Environmental Sys	foremast (25m)

Table 6.1-3: Instrument installation locations of SOAR system

Table 6.1-4: Parameters of SOAR System

nits remarks
gree
gree
not Mirai log, DS-30 Furuno
gree Mirai gyro, TG-6000, Tokimec
/s
gree
/s conducted by 3/4/5/6
conducted by 3/4/5/6
Pa
egC
m/hr
m reset at 50mm
//m^2
//m^2
r/m^2

(4) Preliminary results

Wind (converted to U, V component, from SOAR), Tair (from SOAR) / SST (from EPCS), RH (from SOAR) / precipitation (from SOAR), solar radiation (from SOAR), pressure (from SOAR) and hourly significant wave height observed during the cruise are shown in Figure 6.1-1, Figure 6.1-2, Figure 6.1-3, Figure 6.1-4, and Figure 6.1-5 respectively. In the figures, accumulated precipitation data from SOAR capacitive rain gauge was converted to the precipitation amount in every minute and obvious noises were eliminated but not calibrated. Other figures are showing uncorrected data.

(5) Data archives

These raw data will be submitted to the Data Management Office (DMO) in JAMSTEC just after the cruise and archived there.

(6) Remarks

1. We did not sample the data in the EEZ of Socialist Republic of Vietnam from 16:43 (UTC) 17 July to 23:06 (UTC) 21 July 2002.

- 2. Radiometers for the upwelling radiation measurement of R/V Mirai meteorological observation system were not installed during this cruise.
- 3. Shortwave radiometer for down welling radiation data was not available from 15:00 (UTC) 29 June to 05:00 (UTC) 2 July due to bad cable connection.
- 4. PRP stopped from 00:40 (UTC) to 02:03 (UTC) 13 August 2002, caused by software trouble.
- 5. Plotting SST (Sea Surface Temperature) data was not available from 04:22 (UTC) 22 July to 07:19 (UTC) 25 July 2002 in Figure 6.1-3.

Figure 6.1-1

Figure 6.1-2

Figure 6.1-3

Figure 6.1-4

Figure 6.1-5

6.1.2 Ceilometer

(1)	Personnel
(1)	Personnel

Kunio Yoneyama (JAMSTEC):	Principal Investigator	- Shore-side participant -
Masaki Hanyu (GODI):	Operation Leader	- Leg 1 -
Yasutaka Imai (GODI)		- Leg 1, Leg 2 -
Shinya Iwamida (GODI)		- Leg 1, Leg 2 -
Wataru Tokunaga (GODI)		- Leg 2 -

(2) Objective

The information of the cloud base height and the liquid water amount around cloud base is important to understand the processes on the formation of the cloud. As one of the methods to measure them, the ceilometer observation was carried out.

(3) Methods

We measured cloud base height and backscatter profiles using CT-25K ceilometer (Vaisala, Finland) throughout MR02-K04 cruise from the departure of Sekinehama on 25th June to the arrival of Sekinehama on 21st August 2002.

Major parameters for the measurement configuration are as follows;

Indium Gallium Arsenide (InGaAs) Diode Laser
905 +/- 5 nm at 25 deg-C
8.9 mW
5.57 kHz
Silicon avalanche photodiode (APD)
65 A/W
0 – 7.5 km
50 ft in full range
60 sec.
Compass deck (18m above the sea level)

On the archived dataset, cloud base height and backscatter profile are recorded with the resolution of 30 m (100 ft).

(4) Preliminary results

The first, second and third lowest cloud base height which the ceilometer detected during the cruise are plotted in Fig. 6.1.2-1 and Fig. 6.1.2-2. Sometimes the ceilometer records calculated vertical visibility and the height of detected highest signal instead of the cloud base heights. But they are not plotted in the figure.

(5) Data archives

These raw data will be submitted to the Data Management Office (DMO) in JAMSTEC just after the cruise and archived there.

(6) Remarks

- 1. We did not sample the data in the EEZ of Socialist Republic of Vietnam from 16:43(UTC) 17 July to 23:06(UTC) 21 July 2002.
- 2. Data logging was stopped from 00:30(UTC) to 02:15(UTC) 13th August 2002, caused by logging PC trouble.
- 3. Following records are missing (MMDDhhmm in UTC). 07031327.

Fig. 6.1.2-1

Fig. 6.1.2-2

6.2 CTD/XCTD 6.2.1 CTD

(1) Personnel

Yoshifumi Kuroda*	(JAMSTEC): Principal Investigator (Leg 1)
Hideaki Hase**	(JAMSTEC): Principal Investigator (Leg 2)
Masayuki Fujisaki***	(MWJ): Operation Leader
Takeo Matsumoto***	(MWJ): Technical staff
Atsuo Ito**	(MWJ): Technical staff
Masaki Taguchi*	(MWJ): Technical staff
Hiroshi Matsunaga*	(MWJ): Technical staff
Kei Suminaga***	(MWJ): Technical staff
Kentaro Shiraishi**	(MWJ): Technical staff
Miki Yoshiike*	(MWJ): Technical staff
Tomoyuki Takamori***	(MWJ): Technical staff
Hiroyasu Muramatsu***	(MWJ): Technical staff
Takahiro Suzuki***	(MWJ): Technical staff

* : Leg 1 ** : Leg 2 *** : Leg 1,2

(2) Objective

Investigation of oceanic structure.

(3) Parameters

Temperature Conductivity Pressure Dissolved Oxygen (Leg 2)

(4) Methods

CTD/Carousel water sampling system (CWS), which is a 12-position Carousel water sampler with Sea-Bird Electronics Inc. CTD (SBE9plus), was used during this cruise. 12-litter Niskin bottles were used for sampling seawater. The sensors attached on the CTD were a temperature sensor, conductivity sensor and pressure sensor and D.O. sensor (during Leg2). Salinity was calculated from measured values of pressure, conductivity and temperature. The CTD/CWS was deployed from starboard on working deck.

The CTD raw data were acquired on real time by using the Seasave-Win32 (ver.5.25b) provided by Sea-Bird Electronics, Inc. and stored on a hard disk of the personal computer. Seawater was sampled during up-cast by sending a fire command from the personal computer. We sampled seawater to calibrate salinity data.

Total 28 casts of CTD measurements have been carried out. (See Table 6.2.1-1)

The CTD raw data was processed using SBE Data Processing-Win32 (ver.5.25). Data processing procedures and used utilities SBE Data Processing-Win32 were as follows:

DATCNV:	Convert the binary raw data to output on physical units.
	This utility selects the CTD data when bottles closed to output on
	another file.
SECTION:	Remove the unnecessary data.
ALIGNCTD* :	ALIGNCTD aligns oxygen measurements in time relative to pressure.
	Oxygen sensor relative to pressure $= 3$ seconds
WILDEDIT:	Obtain an accurate estimate of the true standard deviation of the data.
	Std deviation for pass $1=2$
	Std deviation for pass $2=10$
	Scan per block= 48

	Keep data within this distance of mean= 1000						
	Exclude Scan Marked Bad = Check						
CELLTM :	Remove conductivity cell thermal mass effects from measured						
	conductivity.						
	Alpha = 0.03						
	1/beta = 7.0						
FILTER :	Filter the high frequency noise on the data						
	Filter $A = 0.15$ sec						
	Variable to Filter: Pressure: Low Pass Filter A						
LOOPEDIT :	Mark scan with 'bad flag', if the CTD velocity is less than 0 m/s.						
	Minimum Velocity Type = Fixed Minimum Velocity						
	Minimum CTD Velocity $[m/sec] = 0.0$						
	Exclude Scan Marked Bad = Check						
DERIVE* :	Calculate dissolved oxygen concentration						
BINAVG :	Calculate the averaged data in every 1 db.						
DERIVE :	Calculate oceanographic parameters.						
SPLIT :	Splits the data made in CNV files into up-cast and down-cast files.						
ROSSUM :	Edits the data of water sampled to output a summary file.						
	*: only Leg 2						
Configuration file							
Leg1: MR02K04.	con						
Leg2: MR02K04d	1.con						

Specifications of the sensors are listed below.

CTD system : SBE911plus CTD system Under water unit : Leg1·2: CTD 9plus (S/N 09P21746-0575, Sea-bird Electronics, Inc.) Temperature sensors : Leg1•2: SBE3-04/F Primary sensor (S/N 031525, Sea-bird Electronics, Inc.) Calibrated Date: 21 May. 2002 Conductivity sensors : Leg1•2: SBE4-04/F Primary sensor (S/N 041088, Sea-bird Electronics, Inc.) Calibrated Date: 21 May. 2002 Pressure sensor: Leg1·2 : Digiquartz pressure sensor (S/N 79492) Calibrated Date: 27 Oct. 1999 Deadweight test date: 08 Apr. 2002 Oxygen sensor: Leg2: SBE13 sensor (S/N 130339, Sea-bird Electronics, Inc.) Calibrated Date: 17 May. 2002 Deck unit : Leg1·2: SBE11 (S/N 11P7030-0272, Sea-bird Electronics, Inc.). Carousel water sampler :

Leg1·2: SBE32 (S/N 3227443-0389, Sea-bird Electronics, Inc.).

(5) Preliminary result

Temperature and salinity profiles are shown in Fig.6.2.1-1 - Fig.6.2.1-12. Cross sections of temperature and salinity down-casting profile are shown. Note that in these figures, the correction of salinity data by sampled water is not applied.

(6) Data archive

All raw and processed CTD data files were copied onto magnet-optical disk (MO). The data will be submitted to the Data Management Office (DMO), JAMSTEC, and will be opened to public via "R/V MIRAI Data Web Page" in JAMSTEC home page.

Table 6.2.1-1 CTD Cast Table

Line	St.	File Name	Lat.	Long.	Date [UTC]	Start Time	End Time	Max. Press. [db]	Max. Wire Out [m]	Depth [m]	Water Sampling	Note
Leg1	C01	C01S01	34-53.91N	142-21.95E	26.Jun.2002	10:32	11:52	2001	2000.3	7042	0	Argo Float deployed point
Leg1	C02	C02S01	07-40.51N	136-41.97E	02.Jul.2002	03:58	04:54	1001	992.4	3147	0	TRITON deployment
Leg1	C03	C03S01	07-51.39N	136-28.76E	02.Jul.2002	06:26	07:15	1002	1006.4	3352	0	TRITON recovery
Leg1	C04	C04S01	04-54.22N	137-17.26E	04.Jul.2002	05:58	06:39	1002	997.9	4043	0	TRITON deployment & recovery
Leg1	C05	C05S01	02-01.97N	138-05.13E	06.Jul.2002	03:58	04:40	1000	996.5	4288	0	TRITON deployment & recovery
Leg1	C06	C06S01	00-02.97N	137-53.42E	08.Jul.2002	03:57	04:48	1001	997.0	4344	0	TRITON deployment
Leg1	C07	C07S01	00-04.48N	138-02.50E	08.Jul.2002	05:55	06:42	1001	998.7	4212	0	TRITON recovery
Leg1	C08	C08S01	02-00.59N	130-03.35E	11.Jul.2002	03:56	04:45	1000	993.0	4399	0	TRITON deployment
Leg1	C09	C09S01	01-58.57N	129-54.82E	11.Jul.2002	05:57	06:45	1001	995.2	4424	0	TRITON recovery
Leg1	C10	C10S01	05-01.07N	129-57.16E	13.Jul.2002	04:08	05:00	1014	1094.6	5102	0	TRITON deployment
Leg1	C11	C11S01	06-50.05N	126-42.63E	14.Jul.2002	03:10	03:57	1000	1062.0	3429	0	ADCP Mooring deployment & recovery
Leg2	C12	C12S01	03-59.46N	090-00.00E	27.Jul.2002	15:53	17:34	2024	2010.4	2841	0	
Leg2	C13	C12S01	02-59.97N	089-59.89E	27.Jul.2002	21:53	23:26	2022	2006	2467	0	
Leg2	C14	C14S01	02-00.35N	089-59.89E	28.Jul.2002	03:55	05:15	2022	2013.6	2648	0	
Leg2	C15	C15S01	00-59.94N	089-59.97E	28.Jul.2002	09:51	11:09	2023	2008	2307	0	
Leg2	C16	C16S01	00-00.17N	090-00.81E	29.Jul.2002	03:05	04:34	2023	2001.2	4248	0	ADCP Mooring deployment & recovery
Leg2	C17	C17S01	01-35.95S	090-03.63E	30.Jul.2002	03:43	05:00	2023	2007.7	4707	0	TRITON deployment
Leg2	C18	C18S01	01-39.25S	090-00.64E	30.Jul.2002	05:42	06:55	2023	2023.5	4688	0	TRITON recovery
Leg2	C19	C19S01	02-00.01S	090-00.02E	30.Jul.2002	09:27	10:53	2023	2006.2	4735	0	
Leg2	C20	C20S01	03-00.10S	090-00.28E	31.Jul.2002	09:52	11:13	2023	2003.4	3328	0	Argo Float deployed point
Leg2	C21	C21S01	03-59.91S	090-00.01E	31.Jul.2002	15:51	17:08	2022	2004.0	3140	0	
Leg2	C22	C22S01	04-59.87S	089-59.93E	31.Jul.2002	21:53	23:15	2021	2009.1	5004	0	Argo Float deployed point
Leg2	C23	C23S01	04-59.94S	090-59.96E	01.Aug.2002	03:50	05:16	2023	2003.7	4985	0	
Leg2	C24	C24S01	04-59.89S	092-00.07E	01.Aug.2002	09:51	11:05	2022	2000	5009	0	
Leg2	C25	C25S01	04-59.96S	092-59.79E	01.Aug.2002	15:52	17:14	2024	2002	4621	0	
Leg2	C26	C26S01	05-00.02S	093-59.94E	01.Aug.2002	21:54	23:15	2023	2003.1	4970	0	Argo Float deployed point
Leg2	C27	C27S01	05-02.34S	094-57.66E	02.Aug.2002	09:01	10:19	2023	2006.4	5007	0	TRITON deployment & recovery
Leg2	C28	C28S01	05-34.17S	094-59.77E	02.Aug.2002	12:46	14:00	2022	2006.9	5068	0	Argo Float deployed point

Fig6.2.1-1 CTD Profile

- (a) C01-Argo Float deployed point
- (b) C02-8N137E TRITON deployment
- (c) C03-8N137E TRITON recovery

- (c) C06-EQ138E TRITON deployment
- (d) C07-EQ138E TRITON recovery

- (b) C09-2N130E TRITON recovery
- (c) C10-5N130E TRITON deployment
- (d) C11-ADCP Mooring deployment & recovery

Fig 6.2.1-6 The upper section : St.C16 (temp. Salinity D.O.) The lower section : St.C17 (temp. Salinity D.O.)

Fig 6.2.1-7 The upper section : St.C18 (temp. Salinity D.O.) The lower section : St.C19 (temp. Salinity D.O.)

Fig 6.2.1-8 The upper section : St.C20 (temp. Salinity D.O.) The lower section : St.C21 (temp. Salinity D.O.)

Fig 6.2.1-9 The upper section : St.C22 (temp. Salinity D.O.) The lower section : St.C23 (temp. Salinity D.O.)

Fig 6.2.1-10 The upper section : St.C24 (temp. Salinity D.O.) The lower section : St.C25 (temp. Salinity D.O.)

Fig 6.2.1-11 The upper section : St.C26 (temp. Salinity D.O.) The lower section : St.C27 (temp. Salinity D.O.)

Fig 6.2.1-12 : St.C28 (temp. Salinity D.O.)

6.2.2. XCTD observation

(1) Personnel

Yoshifumi Kuroda (JAMSTEC)	Principal Investigator	- Leg 1 -
Hideaki Hase (JAMSTEC)	Principal Investigator	- Leg 2 -
Masaki Hanyu (GODI)		- Leg 1 -
Yasutaka Imai (GODI)		- Leg 1, 2 -
Wataru Tokunaga (GODI)		- Leg 2 -
Shinya Iwamida (GODI)		- Leg 1, 2 -
Naoto Morioka (R/V Mirai Crew)		- Leg 1, 2 -

(2) Objectives

Investigation of oceanic structure.

(3) Parameters

According to the manufacturer's nominal specifications, the range and accuracy of parameters measured by the XCTD (eXpendable Conductivity, Temperature & Depth profiler) are as follows;

Parameter	Range	Accuracy
Conductivity	0 ~ 60 mS/cm	+/- 0.03 mS/cm
Temperature	-2 ~ 35 deg-C	+/- 0.02 deg-C
Depth	0 ~ 1000 m	

(4) Methods

We observed the vertical profiles of the sea water temperature and salinity measured by XCTD-1 manufactured by Tsurumi-Seiki Co.. The signal was converted by MK-100, Tsurumi-Seiki Co. and was recorded by WinXCTD software (Ver.1.06) provided by Tsurumi-Seiki Co.. We casted 114 probes (X001 – X114) by using automatic launcher.

(5) Observation log

Table 6.2.2-1 XCTD observation log Station Date Time Lon. SST SSS MD WD Probe S/N Lat. X001 2002/07/03 05:55 07-00.13N 136-45.77E 29.15 33.933 1036 4555 02059143 29.27 34.046 1036 4426 X002 2002/07/03 10:00 06-00.02N 136-58.15E 01127082 X003 2002/07/05 07:03 04-00.08N 137-33.99E 29.15 33.957 1036 4759 01127079 1035 4478 X004 2002/07/05 11:15 02-59.94N 137-49.75E 28.97 33.957 01127077 33.965 1036 4474 X005 2002/07/05 11:42 02-59.48N 137-50.72E 28.96 01127080 2002/07/06 12:23 29.17 33.942 1035 4114 X006 02-00.01N 137-00.07E 01127083 4233 X007 2002/07/07 06:47 01-00.03N 138-00.30E 30.17 33.810 1035 01127086 X008 2002/07/08 12:58 00-59.95N 137-00.05E 29.73 34.044 1035 3852 01127087 X009 2002/07/09 06:36 00-00.14N 137-00.00E 30.14 33.961 1035 4446 02059144 5043 X010 2002/07/09 10:19 00-00.05N 136-00.01E 30.06 34.020 1036 01127084 1035 4724 X011 2002/07/09 12:14 00-00.00S 135-30.00E 30.06 34.030 01127078 X012 2002/07/09 16:06 00-59.99N 135-29.90E 29.62 34.093 1035 4343 02059147 X013 2002/07/09 19:53 02-00.01N 135-29.99E 29.19 34.187 1036 4316 01127081

X014	2002/07/09	23:54	02-00.02N	134-30.00E	29.15	34.187	1035	4173	02059146
X015	2002/07/10	03:44	02-00.14N	133-30.00E	29.01	34.080	1035	3820	02059150
X016	2002/07/10	07:27	01-59.98N	132-29.99E	29.82	34.149	1035	3154	02059154
X017	2002/07/10	11:14	01-60.00N	131-30.00E	29.27	34.064	1035	4083	02059155
X018	2002/07/10	14:56	02-00.00N	130-30.01E	29.14	34.055	1035	4352	02059148
X019	2002/07/11	09:18	02-00.03N	129-30.01E	29.12	34.153	1034	4046	02059149
X020	2002/07/12	06:00	03-00.02N	129-55.40E	29.10	34.202	1030	3130	02059152
X021	2002/07/12	09:26	04-00.02N	129-56.86E	29.05	34.300	1034	4642	02059156
X022	2002/07/13	07:35	05-15.85N	129-30.02E	28.61	34.374	1035	4895	02059151
X023	2002/07/13	10:06	05-32.18N	129-00.01E	29.11	34.086	1034	5412	02059167
X024	2002/07/13	12:32	05-49.07N	128-30.03E	29.11	34.101	1036	4914	02059164
X025	2002/07/13	14:54	06-05.98N	127-59.98E	28.90	34.087	1035	5436	02059161
X026	2002/07/13	15:47	06-11.74N	127-50.04E	28.85	34.098	1035	5662	02059166
X027	2002/07/13	16:37	06-17.21N	127-40.02E	28.90	34.095	1033	5893	02059168
X028	2002/07/13	17:28	06-22.67N	127-30.03E	28.99	34.121	1035	7836	02059157
X029	2002/07/13	18:20	06-28.09N	127-20.03E	28.87	34.050	1035	9345	02059160
X030	2002/07/13	19:13	06-33.56N	127-10.00E	29.01	34.009	1033	7895	02059163
X031	2002/07/13	20:08	06-39.65N	127-00.00E	29.19	34.189	1035	6935	02059158
X032	2002/07/13	21:01	06-45.48N	126-50.01E	29.21	34.119	1035	5142	02059165
X033	2002/07/13	22:26	06-52.54N	126-37.43E	28.95	34.297	1035	2981	02059162
X034	2002/07/14	09:17	06-59.98N	127-14.75E	28.91	34.021	1036	8186	02059159
X035	2002/07/14	20:53	08-00.01N	129-59.98E	28.51	33.996	1035	5680	02059169
X036	2002/07/15	01:22	08-60.00N	129-21.58E	28.58	34.069	1035	5807	02059175
X037	2002/07/15	05:44	09-59.98N	128-39.38E	29.06	34.102	1034	5680	02059172
X038	2002/07/15	10:11	10-59.99N	127-57.05E	29.23	34.275	1035	5564	02059170
X039	2002/07/15	14:47	11-60.00N	127-14.86E	29.25	34.287	1034	5658	02059171
X040	2002/07/15	19:29	13-00.00N	126-30.44E	29.36	34.254	1036	5186	02059180
X041	2002/07/16	00:04	13-59.96N	125-49.63E	29.85	34.449	1036	6053	02059179
X042	2002/07/16	04:40	14-59.99N	125-06.59E	29.95	34.426	1035	5525	02059174
X043	2002/07/16	09:23	16-00.08N	124-24.00E	29.56	34.530	1035	3168	02059173
X044	2002/07/16	14:12	16-59.95N	123-38.15E	29.57	34.689	1035	4265	02059184
X045	2002/07/16	17:21	17-40.01N	123-07.83E	29.56	34.439	1036	2801	02059177
X046	2002/07/16	18:10	17-50.01N	123-00.56E	29.52	34.435	1036	3739	02059176
X047	2002/07/16	18:59	17-59.99N	122-52.86E	29.50	34.430	1035	3579	02059183
X048	2002/07/16	19:49	18-10.01N	122-45.23E	29.41	34.431	1036	3775	02059178
X049	2002/07/16	20:36	18-20.00N	122-37.47E	29.34	34.447	1036	2954	02059181
X050	2002/07/16	21:06	18-26.00N	122-32.80E	29.27	34.494	1035	1765	02059182
X051	2002/07/26	05:34	06-11.87N	095-00.02E	29.29	33.410	826	843	02059187
X052	2002/07/26	08:11	05-44.85N	094-30.03E	29.62	33.674	1035	1855	02059185
X053	2002/07/26	10:54	05-15.81N	094-00.01E	29.58	33.651	700	704	02059186
X054	2002/07/26	13:31	04-49.47N	093-30.01E	29.60	33.809	1035	1216	02059191
X055	2002/07/26	16:14	04-21.67N	092-59.98E	29.71	33.947	1036	4507	02059189
X056	2002/07/26	19:03	03-53.77N	092-30.03E	29.78	33.976	1035	4257	02059188
X057	2002/07/26	21:50	03-41.77N	092-00.01E	29.76	34.099	1036	4104	02059190
X058	2002/07/27	00:32	04-01.32N	091-30.00E	29.31	33.790	1036	4028	02059192
X059	2002/07/27	03:24	04-21.13N	090-60.00E	29.19	33.868	1036	2618	02058973
X060	2002/07/27	06:25	04-40.90N	090-30.02E	29.36	33.783	1035	3162	02058971
X061	2002/07/27	11:31	05-00.15N	089-59.65E	29.27	33.874	1036	3440	02059109
X062	2002/07/27	11:38	04-59.22N	089-59.64E	29.28	33.876	1035	3360	02058972

V062	2002/07/27	12.20	04 20 01 N	080 60 00E	20.21	22 861	1025	2766	02058074
X064	2002/07/27	10.39	04-30.01N 03 20 00N	089-00.00E	29.31	33.001	1035	5200 2461	02030974
X065	2002/07/27	01.30	03-29.99N	090-00.01E	29.55	37 161	1030	2401	02059108
X065	2002/07/28	07.36	02-29.99N	089-60 00E	29.82	34.101	1035	2710	02050775
X067	2002/07/28	13.32	00-30 00N	089-00.00E	29.72	34.301	1035	4056	02059100
X068	2002/07/28	13.32 07.02	00-00 375	090-03 51E	29.19	34.421	1035	4000	02059111
X069	2002/07/29	07.02	00-30.055	090-09.51E	29.55	34.331	1030	3067	02037107
X007	2002/07/29	11.41	01-00.035	089-59.28E	29.12	34 353	1035	3190	02027710
X070 X071	2002/07/21	07.28	02-30.015	090-00.21E	20.70	34.355	1030	3502	02037110
X071 X072	2002/07/31	13.23	02-30.013	090-00.21E	29.10	34.203	1035	3882	02027713
X072 X073	2002/07/31	10.20	04-31 335	090-00.25E	29.05	34.203	1035	7600 7600	02027709
X073	2002/07/31	19.39	04-51.555	090-00.13E	20.05	34.745	1035	4099	02027719
X074 X075	2002/07/31	01.29	04-59.503	090-00.43E	28.50	24.505	1035	4999 5044	02027715
X075	2002/08/01	01.20	04-39.823	090-30.00E	20.57	24.219	1035	5007	02027713
A070 X077	2002/08/01	12.22	04-39.965	091-30.00E	20.00	34.310 24.501	1035	5007	02027712
A077 X079	2002/08/01	15.25	05-00.395	092-29.99E	20.07	34.391	1035	5002	02027711
A078	2002/08/01	19:50	03-00.285	093-30.00E	28.00	34.330	1035	3000	02027708
A079 X090	2002/08/02	10.26	04-39.235	094-30.02E	28.77	34.003	1035	4977	02027714
X080 X081	2002/08/02	10:36	05-02.798	094-58.98E	28.99	34.742	1035	5007	0202//1/
X081	2002/08/03	03:42	05-00.378	095-00.93E	28.74	34.339	1034	5010	02059129
X082	2002/08/03	04:01	05-01.795	095-04.23E	28.69	34.201	1035	5042	02059128
X085	2002/08/03	05:51	05-11.445	095-30.01E	29.30	34.590	1035	5029	02059132
X084	2002/08/03	07:53	05-19.228	096-00.03E	29.20	34.550	1033	4814	02059137
X085	2002/08/03	10:01	05-29.845	096-30.02E	29.05	34.504	1035	4860	02059139
X086	2002/08/03	12:06	05-40.478	096-59.98E	28.92	34.515	1035	4837	02048765
X08/	2002/08/03	14:08	05-50.728	097-30.02E	28.95	34.547	1035	4975	02048/64
X088	2002/08/03	10:10	06-01.065	097-59.98E	28.77	34.398	1035	5463	02059141
X089	2002/08/03	18:28	06-13.065	098-29.97E	28.05	34.480	1035	5040	02059130
X090	2002/08/03	20:40	06-25.805	099-00.02E	28.71	33.983	1035	3365	02059140
X091	2002/08/03	22:48	06-36.155	099-30.00E	29.00	34.041	1035	4/65	02059127
X092	2002/08/04	01:01	06-43.805	100-00.01E	28.96	34.085	1036	4993	02059142
X093	2002/08/04	03:25	06-55.725	100-30.00E	28.97	34.187	1033	5366	02059135
X094	2002/08/04	05:52	07-07.605	101-00.00E	29.04	34.267	1035	5531	02048767
X095	2002/08/04	08:02	07-16./15	101-30.01E	28.91	34.139	1035	5270	02048766
X090	2002/08/04	10:20	07-27.415	101-60.00E	28.87	34.289	1035	5472	02048708
X097	2002/08/04	12:50	07-37.895	102-29.99E	28.71	34.230	1035	5845	02048771
X098	2002/08/04	15:10	07-48.935	103-00.00E	28.28	33.943	1030	0010	02048772
X099	2002/08/04	1/:45	07-59.905	103-30.00E	28.42	33.922	1034	6118	02048770
X100	2002/08/04	19:58	08-08.545	103-59.99E	27.04	33.931	1035	6243	02048773
X101 X102	2002/08/04	22:27	08-19.765	104-30.00E	27.09	33.977	1035	6353	02048/69
X102	2002/08/05	00:56	08-31.745	105-00.01E	26.60	34.145	1033	6607	02048800
X103	2002/08/05	03:13	08-41.835	105-30.00E	26.76	34.300	1034	61/8	02048//4
X104	2002/08/05	05:39	08-52.715	106-00.04E	26.60	34.260	1035	4335	02048//5
X105	2002/08/05	07:53	09-01.378	106-30.00E	26.27	34.207	1033	4074	02048802
X106	2002/08/05	10:09	09-11.95S	107-00.00E	26.37	34.158	1035	3854	02048801
X107	2002/08/05	12:32	09-24.31S	107-30.00E	26.74	34.047	1033	3659	02048810
X108	2002/08/05	14:40	09-34.06S	108-00.01E	27.21	33.960	1035	3297	02048811
X109	2002/08/05	16:50	09-44.10S	108-29.99E	27.46	33.960	1035	3348	02048808
X110	2002/08/05	19:12	09-55.498	109-00.01E	27.33	34.009	1035	3/59	02048804
X111	2002/08/05	21:23	10-04.78S	109-30.01E	26.80	34.066	1035	4670	02048807

X112	2002/08/05	23:44	10-15.30S	109-59.99E	26.06	34.090	1034	6898	02048805
X113	2002/08/13	03:19	08-00.29N	130-01.32E	28.30	34.001	1035	5636	02048806
X114	2002/08/13	03:40	08-00.31N	130-01.31E	28.31	34.005	1034	5572	02048803

Acronyms in Table 6.2.2-1 are as follows;

- SST: Sea surface temperature [deg-C] measured by Continuous Sea Surface Monitoring System
- SSS: Sea surface salinity [PSU] measured by Continuous Sea Surface Monitorring System
- MD: Maximum measured depth [m]
- WD: Water Depth [m]
- (6) Preliminary results

Vertical sections are shown in the following figures. Fig.6.2.2-1 and Fig.6.2.2-2 are temperature and salinity plots along 2N from 137E to 129_30E, Fig.6.2.2-3 and Fig.6.2.2-4 are along Ship's track from 5_16N129_30E to 6_53N126_37E, Fig.6.2.2-5 and Fig.6.2.2-6 are along Ship's track from 8N130E to 18_26N122_33E, Fig.6.2.2-7 and Fig.6.2.2-8 along Ship's track from 6_12N95E to 5N90E, Fig.6.2.2-9 and Fig.6.2.2-10 along 90E from 5N to 5S, Fig.6.2.2-11 and Fig.6.2.2-12 are along Ship's track from 5S90E to 10_15S110E respectively.

(7) Data archive

XCTD data obtained during this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be available via "R/V Mirai Data Web Page" in JAMSTEC home page.

Fig.6.2.2-1 Temperature along 2N from 137E to 129_30E

Fig.6.2.2-2 Salinity along 2N from 137E to 129_30E

Fig.6.2.2-3 Temperature along Ship's track from 5_16N129_30E to 6_53N126_37E

Fig.6.2.2-4 Salinity along Ship's track from 5_16N129_30E to 6_53N126_37E

Fig.6.2.2-5 Temperature along Ship's track from 8N130E to 18_26N122_33E

Fig.6.2.2-6 Salinity along Ship's track from 8N130E to 18_26N122_33E

Fig.6.2.2-7 Temperature along Ship's track from 6_12N95E to 5N90E

Fig.6.2.2-8 Salinity along Ship's track from 6_12N95E to 5N90E

Fig.6.2.2-9 Temperature along 90E from 5N to 5S

Fig.6.2.2-11 Temperature along Ship's track from 5S90E to 10_15S110E

Fig.6.2.2-12 Salinity along Ship's track from 5S90E to 10_15S110E

6.3.1 Salinity measurements of sampled seawater for validation of CTD cast data

(1) Personnel

Yoshifumi Kuroda	(JAMSTEC):on board Leg 1 Principal Investigator
Hideaki Hase	(JAMSTEC):on board Leg 2 Principal Investigator
Takeo Matsumoto	(MWJ): on board Leg 1, 2 Operation Leader
Atsuo Ito	(MWJ): on board Leg 2
Masayuki Fujisaki	(MWJ): on board Leg 1, 2

(2) Objectives

To check the quality of CTD salinity.

(3) Parameters

Salinity of sampled water

(4) Method

Seawater samples were collected with a bucket for the surface, 12-liter Niskin bottles for the deepest layer (2020db) and the other layers. They were stored in 250ml Phoenix brown glass bottles. The salinity analysis of samples were carried out using "Guildline Autosal 8400B Salinometer", which was modified by addition of an Ocean Scientific International peristaltic-type sample intake pump. The instrument was operated "Autosal Room" of R/V Mirai constant temperature laboratory at a bath temperature of 24 deg-C with the laboratory set under 24 deg-C.A double conductivity ratio was defined as a median of 31 readings of the salinometer. Data collection was started after 5 seconds and it took about 10 seconds to collect 31 readings by a personal computer. The salinometer standardzations were made with IAPSO Standard Seawater batch P142, of which 10 ampoules were consumed. These conductivity ratio is 0.99991 (2K 1.99982, salinity 34.996). Sub-standard seawater was used to check the drift of the Autosal.

(5) Results

Data of all samples were shown in Table 6.3.1. - 1. We estimated the precision of this method using ten pairs of duplicate samples taken by the same Niskin bottle and bucket, and compared the salinity of all samples except for the surface samples to check the salinity data of CTD.

The mean standardization drift was 0.00001 by 2K. There were 2 pairs of duplicate samples drawn. The standard deviations and mean of sample pairs were shown in Table 6.3.1. - 2.

(6) Data archive

The data of salinity sample will be submitted to the DMO at JAMSTEC.

		Sal.	Niskin		CTD	Sal
Station	Bottle	measure	Bottle No.	Pressure	Sal.	Difference
C01	1	34.5716	1	1999.859	34.5712	0.0004
	2	34.5711	1	1999.859	34.5712	-0.0001
C02	3	34.5528	1	1000.695	34.5516	0.0012
	4	34.5527	1	1000.695	34.5516	0.0011
	5	34.5226	2	750.761	34.5208	0.0018
	6	34.5348	3	500.146	34.5327	0.0021
	7	34.5226	4	299.322	34.5159	0.0067
	8	34.5247	5	250.140	34.5223	0.0024
	9		6	199.773	34.5433	-
	10	34.6853	7	150.085	34.6692	0.0161
	11	34.7737	8	125.320	34.7664	0.0073
	12	34.8321	9	100.164	34.8406	-0.0085
	13	34.7957	10	75.353	34.7894	0.0063
	14	34.2983	11	49.973	34.2386	0.0597
	15	34.1059	12	25.669	34.0932	0.0127
C03	16	34.5536	1	1000.690	34.5522	0.0014
	17	34.5535	1	1000.690	34.5522	0.0013
C04	18	34.5589	1	1000.721	34.5568	0.0021
	19	34.5583	1	1000.721	34.5568	0.0015
C05	20	34.5574	7	998.723	34.5555	0.0019
	21	34.5573	7	998.723	34.5555	0.0018
C06	22	34.5476	7	1000.454	34.5467	0.0009
	23	34.5479	7	1000.454	34.5467	0.0012
C07	24	34.5485	1	1000.851	34.5477	0.0008
	25	34.5485	1	1000.851	34.5477	0.0008
C08	26	34.5596	1	998.847	34.5582	0.0014
	27	34.5595	1	998.847	34.5582	0.0013
C09	28	34.5566	1	1000.844	34.5552	0.0014
	29	34.5572	1	1000.844	34.5552	0.0020
C10	30	34.5585	1	1006.887	34.5576	0.0009
	31	34.5581	1	1006.887	34.5576	0.0005
C11	32	34.5598	1	996.867	34.5585	0.0013
	33	34.5596	1	996.867	34.5585	0.0011
C12	1	33.9336	Bucket	-	-	-
	2	33.9277	12	50.787	33.9182	0.0095
	3	34.6022	11	100.920	34.6083	-0.0061
	4	34.8488	10	150.289	34.8298	0.0190
	5	34.9868	9	201.655	34.9846	0.0022
	6	35.0432	8	302.369	35.0395	0.0037
	7	35.0487	7	401.825	35.0471	0.0016
	8	35.0373	6	502.646	35.0370	0.0003
	9	34.9986	5	756.785	34.9913	0.0073
	10	34.9299	4	1010.006	34.9287	0.0012
	11	34.9394	4	1010.006	34.9287	0.0107
	12	34.8456	3	1514.009	34.8438	0.0018
	13	34.7785	2	2022.124	34.7766	0.0019
ļ	14	34.7783	2	2022.124	34.7766	0.0017
012	15	34.7785	1	2020.745	34.7766	0.0019
C13	16	33.9458	Bucket	-	-	-
	17	34.1177	12	51.130	34.1080	0.0097
	18	35.0500	11	100.907	35.0523	-0.0023
	19	34.9296	10	151.573	34.9079	0.0217
	20	35.0646	9	202.669	35.0631	0.0015
	21	35.0649	8	302.811	35.0645	0.0004
	22	35.0434	7	402.571	35.0428	0.0006
	23	35.0374	6	503.449	35.0363	0.0011
	24	35.0009	5	/54.965	35.0000	0.0009
L	25	34.9459	4	1008.441	34.9451	0.0008
L	26	34.9459	4	1008.441	34.9451	0.0008
	27	34.8491	3	1513.140	54.84/8	0.0013
L	28	34.7749	2	2021.222	34.7729	0.0020
	29	34.7751	1	2022.182	34.7728	0.0023
	30	54.7753	1	2022.182	34.7728	0.0025

Table 6.3.1.-1. Difference between bottle-sampling salinity and CTD salinity
Table 6.3.1.-1. Continued

			Niskin		CTD	Sal
Station	Bottle	Smeasure	Bottle No.	Pressure	Sal.	Difference
C14	31	34.2020	Bucket	-	-	-
	32	34.3170	12	49.486	34.3089	0.0081
	33	35.1955	11	101.162	35.1902	0.0053
	34	35.0708	10	150.276	35.0716	-0.0008
	35	35.0586	9	201.694	35.0573	0.0013
	36	35.0461	8	301.782	35.0452	0.0009
	37	35.0216	7	401.641	35.0209	0.0007
	38	35.0208	6	502.362	35.0197	0.0011
	39	34.9973	5	754.980	34.9976	-0.0003
	40	34.9527	4	1008.140	34.9515	0.0012
	41	34.9527	4	1008.140	34.9515	0.0012
	42	34.8434	3	1514.126	34.8414	0.0020
	43	34.7765	2	2019.806	34.7740	0.0025
	44	34.7759	1	2021.593	34.7737	0.0022
	45	34.7758	1	2021.593	34.7737	0.0021
C15	46	34.4055	Bucket	-	-	-
	47	34.4684	12	50.454	34.4286	0.0398
	48	34.9846	11	100.345	34.9553	0.0293
	49	35.1087	10	150.625	35.1071	0.0016
	50	35.0870	9	201.388	35.0846	0.0024
	51	35.0204	8	301.998	35.0183	0.0021
	52	35.0039	7	402.825	34.9980	0.0059
	53	35.0175	6	503.681	35.0153	0.0022
	54	34.9960	5	755.504	34.9947	0.0013
	55	34.9584	4	1007.894	34.9570	0.0014
	56	34.9578	4	1007.894	34.9570	0.0008
	57	34.8344	3	1513.517	34.8316	0.0028
	58	34.7778	2	2021.030	34.7754	0.0024
	59	34.7788	1	2020.384	34.7757	0.0031
	60	34.8383	1	2020.384	34.7757	0.0626
C16	61	34.7696	12	51.652	34.7958	-0.0262
	62	35.0642	11	100.781	35.0510	0.0132
	63	35.1017	10	150.305	35.1017	0.0000
	64	35.0742	9	201.857	35.0742	0.0000
	65	35.0337	8	301.934	35.0326	0.0011
	66	35.0164	7	403.616	35.0149	0.0015
	67	35.0024	6	502.933	34.9981	0.0043
	68	34.9942	5	756.276	34.9920	0.0022
	69	34.9395	4	1009.735	34.9374	0.0021
	70	34.8285	3	1512.065	34.8255	0.0030
	71	34.7776	2	2020.272	34.7748	0.0028
	72	34.7779	1	2021.525	34.7749	0.0030
C17	73	34.4288	Bucket	-	-	-
	74	34.8652	12	49.174	34.7984	0.0668
	75	35.1515	11	100.246	35.1465	0.0050
	76	35.0969	10	151.304	35.0957	0.0012
	77	35.0603	9	200.967	35.0580	0.0023
	78	35.0072	8	301.552	35.0053	0.0019
	79	34.9874	7	403.527	34.9892	-0.0018
	80	34.9874	6	503.783	34.9850	0.0024
<u> </u>	81	34.9572	5	/30.693	34.9552	0.0020
	82	34.9402	4	1007.386	34.9394	0.0008
	83	34.828/	3	1012.977	34.8201	0.0026
	05	34.7702	1	2022.031	34.1103	0.0022
C18	05 20	34.7792	1	1008 0292	34.7703	0.0027
C10	00	34.730/	9	1513 000	3/ 8757	0.0017
	07	3/ 7701	1	2021 864	34.0237	0.0020
I.	00	54.7791	1	2021.004	54.7703	0.0028

Table 6.3.1.-1. Continued

			Niskin		CTD	Sal
Station	Bottle	Smeasure	Bottle No.	Pressure	Sal.	Difference
C19	89	34.3705	Bucket	-	-	-
	90	34.8224	12	50.606	34.8172	0.0052
	91	35.1308	11	102.056	35.1063	0.0245
	92	35.1399	10	150.156	35.1430	-0.0031
	93	35.0802	9	202.279	35.0803	-0.0001
	94	35.0209	8	302.756	35.0189	0.0020
	95	34.9601	7	403.477	34.9578	0.0023
	96	34.9901	6	505.186	34.9889	0.0012
	97	34.9613	5	756.006	34.9602	0.0011
	98	34.9415	4	1009.073	34.9435	-0.0020
	99	34.8197	3	1513.734	34.8174	0.0023
	100	34.7721	2	2021.491	34.7695	0.0026
	101	34.7725	1	2020.207	34.7696	0.0029
C20	102	35.2362	12	50.146	35.2313	0.0049
	103	35.1003	11	100.915	35.0917	0.0086
	104	35.0982	10	150.923	35.0984	-0.0002
	105	35.1067	9	202.254	35.1039	0.0028
	106	34.9866	8	301.832	34.9848	0.0018
	107	34.9287	7	403.581	34.9263	0.0024
	108	34.9120	6	503.295	34.9106	0.0014
	109	34.8821	5	754.192	34.8803	0.0018
	110	34.8543	4	1008.368	34.8536	0.0007
	111	34.8117	3	1513.518	34.8092	0.0025
	112	34.7671	2	2021.185	34.7645	0.0026
	113	34.7673	1	2022.199	34.7644	0.0029
C21	114	35.0317	Bucket	-	-	-
	115	35.0365	12	50.662	35.0252	0.0113
	116	35.1873	11	100.038	35.1812	0.0061
	117	34.7618	10	151.932	34.7593	0.0025
	118	34.9773	9	201.047	34.9739	0.0034
	119	34.9402	8	302.266	34.9398	0.0004
	120	34.9212	7	402.323	34.9239	-0.0027
	121	34.8782	6	502.337	34.8775	0.0007
	122	34.8503	5	755.689	34.8498	0.0005
	123	34.8109	4	1007.901	34.8101	0.0008
	124	34.7951	3	1514.549	34.7933	0.0018
	125	34.7659	2	2021.585	34.7637	0.0022
	126	34.7660	1	2020.727	34.7637	0.0023
C22	127	34.3967	Bucket	-	-	-
	128	35.1463	12	50.430	35.2034	-0.0571
	129	35.4390	11	100.045	35.4276	0.0114
	130	34.7418	10	149.905	34.7396	0.0022
	131	34.9796	9	202.051	34.9786	0.0010
	132	34.9363	8	300.946	34.9338	0.0025
	133	34.8948	7	400.694	34.8930	0.0018
	134	34.8975	6	503.745	34.8967	0.0008
	135	34.8523	5	757.006	34.8500	0.0023
	136	34.7702	4	1009.953	34.7675	0.0027
	137	34.7826	3	1516.090	34.7801	0.0025
	138	34.7599	2	2018.496	34.7574	0.0025
	139	34.7605	1	2019.885	34.7573	0.0032
C23	140	34.9185	12	50.096	34.8761	0.0424
	141	35.4248	11	100.021	35.4242	0.0006
	142	34.7752	10	151.008	34.7345	0.0407
	143	34.8803	9	203.100	34.8223	0.0580
	144	34.9301	8	300.944	34.9291	0.0010
	145	34.8831	7	403.147	34.8831	0.0000
	146	34.8735	6	504.574	34.8731	0.0004
	147	34.7481	5	754.055	34.7455	0.0026
	148	34.7459	4	1008.498	34.7450	0.0009
	149	34.7830	3	1513.777	34.7828	0.0002
	150	34.7544	2	2019.596	34.7523	0.0021
	151	34.7547	1	2020.918	34.7524	0.0023

Table 6.3.1.-1. Continued

			Niskin		CTD	Sal
Station	Bottle	Smeasure	Bottle No.	Pressure	Sal.	Difference
C24	152	35.2693	12	50.920	35.2542	0.0151
	153	35.1968	11	100.344	35.2009	-0.0041
	154	34.9115	10	148.964	34.9139	-0.0024
	155	34.8509	9	199.529	34.8384	0.0125
	156	34,9345	8	304.225	34,9354	-0.0009
	157	34,9004	7	402.168	34,8987	0.0017
	158	34.8701	6	504.077	34.8698	0.0003
	159	34 8154	5	754 605	34 8138	0.0016
	160	34 7622	4	1007 540	34 7598	0.0024
	161	34 7761	3	1513 794	34 7739	0.0024
	162	34 7575	2	2019 102	34 7552	0.0022
	162	34 7574	1	2017.102	34 7553	0.0023
C25	164	34.7574	12	50 607	34.7555	0.1363
C23	165	25 1609	12	101.002	25 1405	0.1303
	167	24 6480	10	101.002	24 6420	0.0293
	10/	34.0489	10	150.050	34.0420	0.0009
	166	34.8290	9	201.778	34.8316	-0.0026
	168	34.9588	8	302.018	34.9549	0.0039
	169	34.9037	7	404.052	34.9023	0.0014
	170	34.8885	6	504.478	34.8867	0.0018
	171	34.7973	5	755.430	34.7972	0.0001
	172	34.7677	4	1006.881	34.7659	0.0018
	173	34.7272	3	1515.483	34.7744	-0.0472
	174	34.7550	2	2021.895	34.7528	0.0022
	175	34.7549	1	2021.398	34.7528	0.0021
C26	176	34.4683	Bucket	-	-	-
	177	35.0223	12	50.543	35.1412	-0.1189
	178	35.3489	11	100.884	35.3676	-0.0187
	179	34.7499	10	150.128	34.7495	0.0004
	180	34.8403	9	200.021	34.8299	0.0104
	181	34.9462	8	301.567	34.9462	0.0000
	182	34.9068	7	402.139	34.9058	0.0010
	183	34.8782	6	504.172	34.8764	0.0018
	184	34.8175	5	754.371	34.8168	0.0007
	185	34.8014	4	1009.132	34.8003	0.0011
	186	34.7787	3	1513.833	34.7765	0.0022
	187	34.7618	2	2021.680	34.7567	0.0051
	188	34.7590	1	2021.755	34.7568	0.0022
C27	189	34.7479	Bucket	-	-	-
	190	34.7782	12	50.208	34.7692	0.0090
	191	35.3367	11	101.507	35.3234	0.0133
	192	34.5791	10	149.776	34.5771	0.0020
	193	34.7740	9	201.118	34.7539	0.0201
	194	34.9461	8	302.731	34.9471	-0.0010
	195	34.9142	7	402.069	34.9123	0.0019
	196	34.8715	6	503.559	34.8695	0.0020
	197	34.8721	5	756.206	34.8699	0.0022
	198	34.8115	4	1008.454	34.8094	0.0021
	199	34.7809	3	1512.952	34.7788	0.0021
	200	34.7583	2	2020.405	34.7562	0.0021
	201	34.7586	1	2019.397	34.7563	0.0023
C28	202	34.7217	12	10.931	34,7155	0.0062
	203	34 7214	11	10.651	34 7153	0.0061
	203	34 7719	10	51 552	34,7381	0.0338
	204	35 3920	10	102 119	35 3850	0.0070
	205	35 3087	2	99,607	35 3788	0.0070
	200	3/ 0000	7	252 122	3/ 0086	0.0199
	207	21 2025	1	502 214	2/ 2010	0.0004
	208	34.0033	0 5	1009 501	34.0010	0.0017
	209	24.7414	3	1008.381	34.7390	0.0018
	210	24.7413	4	1512.040	34./393	0.0020
	211	34.1113	3	1512.049	34.7740	0.0033
	212	34./560	2	2021.532	34./538	0.0022
	213	34./339	1	2020.341	54./558	0.0021

	Sample	Sample			Niskin	CTD	CTD	Dupri.
Station	Bottle	Bottle	Sal. Meas.	Sal. Meas.	Bottle No.	Pressure	Sal.	Sal.
C01	1	2	34.5718	34.5713	1	1999.859	34.5712	0.0005
C02	3	4	34.5530	34.5529	1	1000.695	34.5516	0.0001
C03	16	17	34.5538	34.5537	1	1000.69	34.5522	0.0001
C04	18	19	34.5591	34.5585	1	1000.721	34.5568	0.0006
C05	20	21	34.5576	34.5575	7	998.723	34.5555	0.0001
C06	22	23	34.5478	34.5481	7	1000.454	34.5467	0.0003
C07	24	25	34.5487	34.5487	1	1000.851	34.5477	0.0000
C08	26	27	34.5598	34.5597	1	998.847	34.5582	0.0001
C09	28	29	34.5568	34.5573	1	1000.844	34.5552	0.0006
C10	30	31	34.5587	34.5583	1	1006.887	34.5576	0.0004
C11	32	33	34.5600	34.5598	1	996.867	34.5585	0.0002
C12	10	11	34.9299	34.9394	4	1010.006	34.9287	
	13	14	34.7785	34.7783	2	2022.124	34.7766	0.0002
C13	25	26	34.9459	34.9459	4	1008.441	34.9451	0.0000
	29	30	34.7751	34.7753	1	2022.182	34.7728	0.0002
C14	40	41	34.9527	34.9527	4	1008.14	34.9515	0.0000
	44	45	34.7759	34.7758	1	2021.593	34.7737	0.0001
C15	55	56	34.9584	34.9578	4	1007.894	34.9570	0.0006
	59	60	34.7788	34.8383	1	2020.384	34.7757	
							Avg.	0.0002
							Std. Dev.	0.0002

Table 6.3.1.-2. Difference of salinity of duplicately sample bottles.

6.3.2 Dissolved Oxygen

(1) Personnel

Hideaki Hase	(JAMSTEC) Principal Investigator (Leg 2)
Yuichi Sonoyama	(Marine Works Japan Ltd.)
Masahiko Nishino	(Marine Works Japan Ltd.)

(2) Objective

Precise determination of dissolved oxygen (below D.O.) using the Winkler titration with potentiometric detection.

(3) Methods

(a) Instruments and Apparatus

Sample flasks:

BOD flasks of 180ml nominal capacity with glass stoppers.

OPTIFIX:

Capable of dispensing 1ml pickling reagents.

Thermometers:

Thermometer is used to measure the water temperature at sampling to within 0.5 . Dispensers:

Metrohm Model 725 Multi Dosimat, capable of dispensing standard KIO₃ solution. Eppendorf:

Capable of dispensing 1ml 5M H₂SO₄ and standard KIO₃ solution.

Titrator:

Metrohm Model 716 DMS Titrino, capable of titrating $Na_2S_2O_3$ solution for 0.001 ml. Metrohm Pt Electrode 6.9904.030

Software:

Metrohm, Titrino Workcell, capable of date acquisition and endpoint evaluation

(b) Methods

Sampling and analytical methods were based on the WHP Operations and Methods (Culberson, 1991, Dickson, 1994).

(b-1) Sampling

Seawater were sampled from 12 litters Niskin bottles to the calibrated dry glass bottles on the stations whose number was from C12 to C27. At each station, we collected seawater samples from 2000m to surface for 12 layers, except for C18 (C18: 3 layers). During each sampling, 3 bottle volumes of seawater were overflowed to minimize contamination with atmospheric oxygen, and the seawater temperature at the time of collection was measured with thermometers. After the sampling, $MnCl_2$ (aq.) 1ml and NaOH / NaI (aq.) 1ml were added into the glass bottle, and then shook well. After the precipitation was settled, we shook the bottle vigorously to disperse the precipitation.

(b-2) Dissolved Oxygen analysis

The samples were analyzed by 1 sets of Metrohm titrator with 10 ml piston burette and Pt electrode. Titration values were determined by the potentiometeric methods, and the endpoint for titration was evaluated by the software of Metrohm, Titrino Workcell. From the titration values, we calculated concentration of dissolved oxygen by WHP Operations and Methods (Culberson, 1991, Dickson, 1994).

(4) Preliminary Result

The vertical profiles of dissolved oxygen were shown in Figs. $6.3.2-1 \sim 3$, and the correlation between D.O. sensor values and Winkler method values were shown in Fig. 6.3.2-4.

In our measurements, the standard deviations of the duplicate sample were from 0.003 μ mol/kg-sw to 0.498 μ mol/kg-sw (Table 6.3.2) that satisfied WOCE precision (below 0.5 μ mol/kg-sw).

(5) References

Culberson, C.H. (1991) Dissolved Oxygen, in WHP Operations and Methods, Woods Hole., pp1-15.

Culberson, C.H., G.Knapp, R.T.Williams and F.Zemlyak (1991) A comparison of methods for the determination of dissolved oxygen in seawater. (WHPO 91-2)

Dickson, A.G. (1994) Determination of dissolved oxygen in seawater by Winkler titration, in WHP Operations and Methods, Woods Hole., pp1-14.

Murray, N., J.P.Riley and T.R.S. Wilson (1968) The solubility of oxygen in Winkler regents used for the determination of dissolved oxygen, Deep-Sea Res., 15, 237-238.

O; Winkler titration method (µmol/kg sw) ; D.O. sensor (µmol/kg sw)

Fig. 6.3.2-1 Vertical profile of dissolved oxygen at each station (Cast12 ~ 17).

O; Winkler titration method (µmol/kg sw) ; D.O. sensor (µmol/kg sw)

Fig. 6.3.2-2 Vertical profile of dissolved oxygen at each station (Cast18 ~ 23).

O; Winkler titration method (µmol/kg sw) ; D.O. sensor (µmol/kg sw)

Fig. 6.3.2-3 Vertical profile of dissolved oxygen at each station (Cast24 ~ 27).

Fig. 6.3.2-4 The correlation between D.O. sensor values and Winkler method values in all stations.

Station	Niskin	Depth(m)	Sampling person	Analyst	S.D.(µmol/kg-sw)
C12	2	2000	T.Matsumoto	M.Nishino	0.057
	3	1500			0.440
	4	1000			0.139
C13	2	2000	M.Fujisaki	Y.Sonoyama	0.152
	3	1500			0.207
	4	1000			0.258
C14	3	1500	A.Ito	Y.Sonoyama	0.011
	4	1000			0.146
C15	2	2000	T.Matsumoto	M.Nishino	0.325
	3	1500			0.365
	4	1000			0.018
C16	2	2000	M.Fujisaki	M.Nishino	0.498
	3	1500			0.254
	4	1000			0.344
C17	2	2000	T.Matsumoto	Y.Sonoyama	0.152
C18	1	2000	A.Ito	Y.Sonoyama	0.283
C19	2	2000	M.Fujisaki	M.Nishino	0.406
	3	1500			0.144
	4	1000			0.196
C20	2	2000	M.Fujisaki	M.Nishino	0.019
	3	1500			0.060
	4	1000			0.177
C21	2	2000	T.Matsumoto	M.Nishino	0.300
C22	2	2000	A.Ito	Y.Sonoyama	0.006
	3	1500			0.098
	4	1000			0.139
C23	2	2000	M.Fujisaki	Y.Sonoyama	0.306
C24	2	2000	T.Matsumoto	M.Nishino	0.133
	3	1500			0.294
	4	1000			0.276
C25	2	2000	A.Ito	M.Nishino	0.447
C26	2	2000	M.Fujisaki	Y.Sonoyama	0.288
C27	2	2000	A.Ito	M.Nishino	0.003
	3	1500			0.211
	4	1000			0.021

Table 6.3.2 Standard deviation derived from the duplicate samples at each station.

6.4 Continuous monitoring of surface seawater 6.4.1 EPCS

(1) Personnel

g 1)
g 2)

(2) Objective

Measurement of temperature, salinity, dissolved oxygen and fluorescence in the sea surface water.

(3) Methods

EPCS (Nippon Kaiyo co., Ltd.) has five kinds of sensors and fluorescence photometer, and can measure automatically temperature, salinity, dissolved oxygen, fluorescence and particle size of plankton in near-sea surface water continuously every 1-minute. This system is located in the "*sea surface monitoring laboratory*" of R/V Mirai, and connected to the shipboard LAN-system. Measured data are stored in a hard disk of PC machine every 1-minute with time and position of ship, and displayed on a data management PC machine.

Near-sea surface water is continuously pumped up to the laboratory and flows into the *EPCS* through a vinyl-chloride pipe. The flow rate for the system is controlled by several valves to be 12L/min except the fluorometer (about 0.3L/min). The flow rate is measured with two flow meters and each values are checked by marine technicians everyday.

Specification of the each sensor in this system are listed below.

a) Temperature and salinity sensor

emperature and samily sensor						
SEACAT THERMOSALINOGRAPH						
Model:	SBE-21, SEA-BIRD ELECTRONICS, INC.					
Serial number:	r: 2126391-3126					
Measurement range: Temperature -5 to +35 , Salinity0 to 6.5 S /m						
Accuracy:	Temperature 0.01 /6month,	Salinity0.001 S /m month				
Resolution:	Temperature 0.001 ,	Salinity0.0001 S /m				

b) Bottom of ship thermometer

Model:	SBE 3S, SEA-BIRD ELECTRONICS, INC.
Serial number:	032607
Measurement range	-5 to +35
Resolution:	± 0.001
Stability:	0.002 / year

c) Dissolved oxygen sensor

Model:	2127A, Oubi	sufair Laboratories Japan INC.
Serial number:	44733	
Measurement rang	ge:0 to 14 ppm	
Accuracy:	± 1% at 5	of correction range
Stability:	1% /month	

d) Fluorometer

Model:	10-AU-005, TURNER DESIGNS
Serial number:	5562 FRXX

	Detection limit: Stability:		5 ppt or less for chlorophyll a 0.5% /month of full scale
e) Particle size sensor Model: Serial number: Measurement range Accuracy: Reproducibility: Stability:		ze sensor number: rement range cy: ucibility: y:	P-05, Nippon Kaiyo LTD. P5024 :0.02681 mmt to 6.666 mm ± 10% of range ± 5% 5% /week
f) Flow meter Model: Serial number: Measurement range Accuracy: Stability:		er number: rement range cy: y:	EMARG2W, Aichi Watch Electronics LTD. 8672 :0 to 301/min ± 1% ± 1% /day
The	monitor Leg.1	ing periods (11:15-25-Ju The period 6:37-6-July 7:48-17-Jul	UTC) during this cruise are listed below. ine to 4:21-22-July 2002 s when data were not acquired due to system down. 7 to 7:01-6-July 2002 ly to 8:48-17-July 2002
Leg.2 9:25-25-July to 9:00-19-August 2002 The periods when data were not acquired due to system down. 22:43-29-July to 23:20-29-July 2002 4:13-3-August to 5:21-3-August 2002 0:03-11-August to 0:20-11-August 2002 9:25-15-August to 9:45-15-August 2002 1:51-16-August to 3:00-16-August 2002			
Prel T sho T sho C C	iminary ime seri- wn in Fig ime seri- wn in Fig correlatio correlatio	Result es of the ter g. 6.4.1-1-4. es of the ter g. 6.4.1-5-8. on between so on between so	nperature, salinity, dissolved oxygen and fluorescence in Leg 1 were nperature, salinity, dissolved oxygen and fluorescence in Leg 2 were ensor salinity and water-sampling salinity were shown in Fig. 6.4.1-9. ensor D.O. and water-sampling D.O. were shown in Fig. 6.4.1-10.
Dat T Mar Web	e archive he data nagemen o Page "	were stored t Office (DM in JAMSTE	I on a magnetic optical disk, which will be submitted to the Data MO) JAMSTEC, and will be opened to public via " R/V MIRAI Data C homepage.
Ren V to 2	narks Ve did no 3:06-21-	ot sample the July 2002.	e data in the EEZ of Socialist Republic of Vietnam from 16:43-17-July

(4)

(5)

(6)

Fig. 6.4.1-4 Time series of sea surface fluorescence (Leg 1)

Fig. 6.4.1-5 Time series of sea surface temperature (Leg 2)

Fig. 6.4.1-6 Time series of sea surface salinity (Leg 2)

Dissolved Oxygen(mg/l)

Fluorescence

Fig. 6.4.1-8 Time series of sea surface fluorescence (Leg 2)

Fig. 6.4.1-9 Correlation between sensor salinity and water-sampling salinity

Fig. 6.4.1-10 Correlation between sensor D.O. and water-sampling D.O.

6.5 Shipboard ADCP

(1) Personnel	
Yoshifumi Kuroda	(JAMSTEC) Principal Investigator -Leg 1-
Hideaki Hase	(JAMSTEC) Principal Investigator -Leg 2-
Masaki Hanyu	(GODI) Operation Leader -Leg 1-
Yasutaka Imai	(GODI) -Leg 1, 2-
Shinya Iwamida	(GODI) -Leg 1, 2-
Wataru Tokunaga	(GODI) -Leg 2-

(2) Parameters Current velocity of each depth cell [cm/s] Echo intensity of each depth cell [dB]

(3) Methods

Upper ocean current measurements were made throughout MR02-K04 cruise (25/June/2002 --- 20 /August/2002, Sekinehama --- Port Klang --- Sekinehama) using the hull-mounted Acoustic Doppler Current Profiler (ADCP) system that is permanently installed on the R/V Mirai. The system consists of following components;

- a 75 kHz Broadband width ADCP (RD Instruments, USA) with 4-beam Doppler sonar pointing 1) 30 degrees from the vertical that is mounted 45 degrees azimuth from the keel;
- 2) the Ship's main gyro compass (Tokimec, Japan) continuously providing ship's heading to the ADCP;
- 3) a GPS navigation receiver (Leica MX9400) providing position fixes;
- 4) an IBM-compatible personal computer running data acquisition software (VmDas version 1.3; RD Instruments, USA). The clock of the logging PC was adjusted to GPS time every 5 minutes.

The ADCP was configured for 16-m processing bin, a 8-m blanking interval. The sound speed is calculated from temperature (thermistor near the transducer faces), salinity (constant value; 35.0 psu) and depth (6.5 m; transducer depth) by the equation in Medwin (1975). The transducer depth was 6.5 m; 64 velocity measurements were made at 16-m intervals starting 31m below the surface. Each 1 ping was recorded as raw ensemble data. Also, 60 seconds and 300 seconds average data were recorded as short-term average (STA) and long-term average (LTA) data.

Major parameters for the measurement (Direct Command) are listed in the appendix.

(4) Preliminary result

Figures 6.5-1 to 6.5-9 show the current vectors at depth of 31, 63, 111, 159, 207 and 303m during Leg 1. Figures 6.5-7 to 6.5-9 show the current vectors in the equatorial region. Figures 6.5-10 to 6.5-12 show the current vectors at depth of 31, 63, 111, 159, 207 and 303m during Leg 2.

(5) Data archive

These data obtained during this cruise will be submitted to the JAMSTEC DMO (Data Management Office), and will be opened to the public via "R/V Mirai Data Web Page" in JAMSTEC home page.

(6) Remarks

We did not sample the data in the EEZ of Socialist Republic of Vietnam from 1643UTC 17 July to 2307UTC 21July2002.

Fig. 6.5-1 Current vectors at 31m depth (5minutes average)

Fig. 6.5-2 Current vectors at 63m depth (5minutes average)

Fig. 6.5-3 Current vectors at 111m depth (5minutes average)

Fig. 6.5-4 Current vectors at 159m depth (5minutes average)

Fig. 6.5-5 Current vectors at 207m depth (5minutes average)

Fig. 6.5-6 Current vectors at 303m depth (5minutes average)

Fig. 6.5-7 Current vectors at 31m depth (above) and 63m depth (below)

Fig. 6.5-8 Current vectors at 111m depth (above) and 159m depth (below)

Fig. 6.5-9 Current vectors at 207m depth (above) and 303m depth (below)

6.6 Underway Geophysics6.6.1 Sea Surface Gravity

(1) PersonnelToshiya Fujiwara(JAMSTEC) Principal investigator (not on board)Masaki Hanyu(GODI) Operation Leader -Leg 1-Yasutaka Imai(GODI) -Leg 1, 2-Shinya Iwamida(GODI) -Leg 1, 2-Wataru Tokunaga(GODI) -Leg 2-

(2) Objectives

The difference of local gravity is an important parameter in geophysics. We measured relative gravity at the sea surface during MR02-K04 cruise (25/June/2002 --- 20 /August/2002, Sekinehama - -- Port Klang --- Sekinehama)

(3) Parameters

Gravity [mgal]

(4) Methods

The relative gravity was continuously measured using LaCoste-Romberg onboard gravity meter S-116 during MR02-K04 (25/June/2002 --- 20 /August/2002, Sekinehama --- Port Klang --- Sekinehama). We measured the absolute gravity at the reference point of Sekinehama port using portable gravity meter (Scintrex gravity meter CG-3M) to desire the absolute gravity along the cruise track. Information of crust and upper-mantle structures is derived from measured gravity.

(5) Results

Absolute gravity (Table 6.6.1-1)

(6) Data archives

Gravity data obtained during this cruise will be submitted to the JAMSTEC DMO (Data Management Office), and archived there.

1able 6.6.1-1									
No	Date	UTC	Port	Absolute	Sea	Draft	Gravity	L&R	Remarks
				Gravity	Level	(cm)	at sensor	(mGal)	
				(mGal)	(cm)		(mGal)		
1	2002/Jun/24	08:31	Sekine	980371.84	234	625	980372.60	12666.2	
3	2002/Aug/23	04:30	Sekine	980371.88	252	615	980372.69	12663.8	

Table 6.6.1-1

• Gravity at sensor = Absolute gravity + sea level*0.3086/100 + (Draft - 530)/100*0.0431

• L&R: LaCoste - Romberg onboard gravity meter S-116

(7) Remarks

We did not sample the data in the EEZ of Socialist Republic of Vietnam from 1643UTC 17 July to 2307UTC 21July2002.

6.6.2 Surface three-component magnetometer

(1) Personnel	
Toshiya Fujiwara	(JAMSTEC) Principal investigator (not on board)
Masaki Hanyu	(GODI) Operation Leader -Leg 1-
Yasutaka Imai	(GODI) -Leg 1, 2-
Shinya Iwamida	(GODI) -Leg 1, 2-
Wataru Tokunaga	(GODI) -Leg 2-

(2) Objectives

Measurements of magnetic force that is induced by magnetized body beneath the sub-bottom and the earth dipole on the sea surface are required for studying of the geophysical crust structure. We measured a geomagnetic field at the sea surface using a three-component magnetometer, two horizontals and one vertical component.

(3) Parameters

Three-component magnetic force [nT] Ship's attitude [1/100deg]

(4) Method

A three-component fluxgate magnetometer is set on the top of foremast. Sampling is controlled by the 1pps (pulse per second) standard clock of GPS signal. Every one-second data is composed of navigation information, 8Hz three component of magnetic forces and vertical reference unit (VRU) data.

(5) Preliminary results

The magnetic force is continuously measured during MR02-K04 cruise (25/June/2002 --- 20 /August/2002, Sekinehama --- Port Klang --- Sekinehama).

(6) Data archives

Magnetic force data obtained during this cruise will be submitted to the JAMSTEC DMO (Data Management Office), and archived there.

(7) Remarks

We did not sample the data in the EEZ of Socialist Republic of Vietnam from 1643UTC 17 July to 2307UTC 21July2002.

6.6.3 Multi-narrow beam echo sounding system

(1) Personnel	
Toshiya Fujiwara	(JAMSTEC) Principal investigator (not on board)
Masaki Hanyu	(GODI) Operation Leader -Leg 1-
Yasutaka Imai	(GODI) -Leg 1, 2-
Shinya Iwamida	(GODI) -Leg 1, 2-
Wataru Tokunaga	(GODI) -Leg 2-

(2) Objectives

To obtain the bathymetry for buoy deployment, geophysical investigation and water sampling.

(3) Methods

A multi-narrow beam echo sounding system "SeaBeam 2100" on R/V Mirai was used for bathymetry mapping during the MR02-K04 cruise (25/June/2002 --- 20 /August/2002, Sekinehama - -- Port Klang --- Sekinehama).

(4) Data archives

Bathymetry data obtained during this cruise will be submitted to the JAMSTEC DMO (Data Management Office), and archived there.

(5) Remarks

We did not sample the data in the EEZ of Socialist Republic of Vietnam from 1643UTC 17 July to 2307UTC 21July2002.

7 Special Observation

7.1 TRITON moorings

7.1.1 TRITON Mooring Operation

(1) Personnel

Yoshifumi Kuroda	(JAMSTEC): Principal Investigator (on board Leg1)
Hideaki Hase	(JAMSTEC): Principal Investigator (on board Leg2)
Takeo Matsumoto	(MWJ): Operation leader (on board Leg1, 2)
Masayuki Fujisaki	(MWJ): Technical staff (on board Leg1, 2)
Masaki Taguchi	(MWJ): Technical staff (on board Leg1)
Hiroshi Matsunaga	(MWJ): Technical staff (on board Leg1)
Miki Yoshiike	(MWJ): Technical staff (on board Leg1)
Tomoyuki Takamori	(MWJ): Technical staff (on board Leg1, 2)
Yuuichi Sonoyama	(MWJ): Technical staff (on board Leg1, 2)
Atsuo Ito	(MWJ): Technical staff (on board Leg2)
Kentaro Shiraishi	(MWJ): Technical staff (on board Leg2)
Kei Suminaga	(MWJ): Technical staff (on board Leg1, 2)
Hiroyasu Muramatsu	(MWJ): Technical staff (on board Leg1, 2)
Takahiro Suzuki	(MWJ): Technical staff (on board Leg1, 2)
Masahiko Nishino	(MWJ): Technical staff (on board Leg1, 2)

(2) Objectives

The large-scale air-sea interaction over the warmest sea surface temperature region in the western tropical Pacific Ocean called warm pool affects the global atmosphere and causes El Nino phenomena. The formation mechanism of the warm pool and the air-sea interaction over the warm pool have not been well understood. Long term data sets of temperature, salinity, currents, so on have been required at fixed locations. In particular, the oceanic change due to the surface winds over the western tropical Pacific is important to study the relation with El Nino and rain fall over the ocean is also important parameter to study El Nino and Asia-Australian Monsoon. The TRITON program aims to obtain the basic data to improve the predictions of El Nino and variations of Asia-Australian Monsoon system.

TRITON buoy array is integrated with the existing TAO(Tropical Atmosphere Ocean) array, which is presently operated by the Pacific Marine Environmental Laboratory/National Oceanic and Atmospheric Administration of the United States. TRITON is a component of international research program of CLIVAR (Climate Variability and Predictability), which is a major component of World Climate Research Program sponsored by the World Meteorological Organization, the International Council of Scientific Unions, and the Intergovernmental Oceanographic Commission of UNESCO. TRITON will also contribute to the development of GOOS (Global Ocean Observing System) and GCOS (Global Climate Observing System).

The seven TRITON buoys have been successfully recovered during this R/V Mirai cruise (MR02-K04), deployed nine TRITON buoys.

(3) Measured parameters

Meteorological parameters:	wind speed, direction, atmospheric pressure, air temperature, relative
	humidity, radiation, precipitation.
Oceanic parameters:	water temperature and conductivity at 1.5m, 25m, 50m, 75m, 100m,
	125m, 150m, 200m, 300m, 500m 750m, depth at 300m and 750m,
	currents at 10m.

(4) Instrument	
1) CTD and CT	
SBE-37 IM MicroCAT	
A/D cycles to average :	4
Sampling interval :	600sec
Measurement range Temperature :	-5 ~ +35
Measurement range Conductivity :	
0~+7	
Measurement range Pressure :	0 ~ full scale range
2) CRN(Current meter)	
SonTek Argonaut ADCM	
Sensor frequency :	1500kHz
Sampling interval :	1200sec
Average interval :	120sec
3) Meteorological sensors	
Precipitation	
SCTI ORG-115DX	
Atmospheric pressure	
PARPSCIENTIFIC. Inc. DIGIQUART	TZ FLOATING BAROMETER 6000SERIES
Relative humidity/air temperature, Shortwa	ave radiation, Wind speed/direction
Woods Hole Institution ASIMET	
Sampling interval :	600sec
Average interval :	60sec
(5) Locations of TRITON Buoys	
1) TRITON buoys deployed	
Nominal location	8N, 137E
ID number at JAMSTEC	10002
Number on surface float	T13
ARGOS PTT number	20275
ARGOS backup PTT number	24229
Deployed date	02 July 2002
Exact location	07 39.69 N, 136 41.59 E
Depth	3144 m
Nominal location	5N, 137E
ID number at JAMSTEC	11002
Number on surface float	T21
ARGOS PTT number	20417
ARGOS backup PTT number	24230
Deployed date	04 July 2002
Exact location	04 51.55N, 137 16.04E
Depth	4109 m
Option sensors	CT sensor at 175m: S/N 0512,
	Precipitation sensor (capacitive type) at Tower

Nominal location	2N, 138E
ID number at JAMSTEC	12004
Number on surface float	T22
ARGOS PTT number	20371
ARGOS backup PTT number	24231
Deployed date	06 July 2002
Exact location	02 00.06N, 138 06.16E
Depth	4317 m
Option sensors	CT at 175m:S/N 0523,
	Precipitation sensor (capacitive type) at Tower
Nominal location	EQ, 138E
ID number at JAMSTEC	13004
Number on surface float	T23
ARGOS PTT number	none
ARGOS backup PTT number	24232, 24233
Deployed date	08 July 2002
Exact location	00 01.97 N, 138 53.15 E
Depth	4371 m
Option sensors	CT at 175m:S/N 0558
-	
Nominal location	8N, 130E
ID number at JAMSTEC	14001
Number on surface float	T24
ARGOS PTT number	20384
ARGOS backup PTT number	24235
Deployed date	13 Aug 2002
Exact location	07 58.65N, 130 00.39E
Depth	5723m
Nominal location	5N, 130E
ID number at JAMSTEC	15001
Number on surface float	T25
ARGOS PTT number	20439
ARGOS backup PTT number	24236
Deployed date	13 July 2002
Exact location	04 59.89S, 129 56.95E
Depth	5096 m
Nominal location	2N, 130E
ID number at JAMSTEC	16002
Number on surface float	T26
ARGOS PTT number	20384
ARGOS backup PTT number	24235
Deployed date	11 July 2002
Exact location	02 00.07N, 130 02.34 E

	Depth	4400 m
	Option sensors	CT at 175m:S/N 0579
	Nominal location	58, 95E
	ID number at JAMSTEC	17002
	Number on surface float	T27
	ARGOS PTT number	20434
	ARGOS backup PTT number	24239
	Deployed date	02 Aug 2002
	Exact location	05 02.02S, 94 58.62E
	Depth	5017m
	Nominal location	1.5S. 90E
	ID number at JAMSTEC	18002
	Number on surface float	T28
	ARGOS PTT number	20380
	ARGOS backup PTT number	24240
	Deployed date	24240 30 July 2002
	Exact location	01 36.095 90 04.47E
	Depth	4715m
	Option concers	Provinitation sonsor (consolitive type) at Toward
	Option sensors	recipitation sensor (capacitive type) at rower
2)	FRITON recovered	
	Nominal location	8N, 137E
	ID number at JAMSTEC	10001
	Number on surface float	T03
	ARGOS PTT number	11825
	ARGOS backup PTT number	24242
	Deployed date	28 Sep. 2001
	Recovered date	03 July 2002
	Exact location	07 50.39N, 136 29.14 E
	Depth	3353 m
	Nominal location	5N 137E
	ID number at IAMSTEC	11001
	Number on surface float	T04
	APCOS PTT number	11826
	AROOS FIT humber	24242
	AROOS backup FTT humber	24243 20 See 2001
	Deployed date	29 Sep. 2001
	Recovered date	05 JULY 2002
	Exact location	04 50.40IN, 157 17.57 E
	Deptn	4133 m
	Option sensors	C1 sensor at 1/5m: S/N 1056
	Nominal location	2N, 138E
	ID number at JAMSTEC	12003
	Number on surface float	T05

ARGOS PTT number 1132 ARGOS backup PTT number 13065 Deployed date 30 Sep. 2001 Recovered date 07 July 2002 Exact location 02 03.79N, 138 03.10E Depth 4335 m CRN at 40m:S/N D86, CT at 175m:S/N 0625 Option sensors Pressure at 1.5m, Precipitation at tower Nominal location EQ, 138E ID number at JAMSTEC 13003 Number on surface float T06 ARGOS PTT number none ARGOS backup PTT number 24245, 24246 Deployed date 03 Oct. 2001 Recovered date 09 July 2002 Exact location 00 04.70 N, 138 02.61 E Depth 4206 m Option sensors CRN at 40m:S/N D88, CT at 175m:S/N 0985 Nominal location 2N, 130E ID number at JAMSTEC 16001 T07 Number on surface float ARGOS PTT number 3594 ARGOS backup PTT number 24244 Deployed date 07 Oct. 2001 Recovered date 12 July 2002 Exact location 01 56.38N, 129 55.71 E Depth 4428 m Option sensors CT at 175m:S/N 0995 Nominal location 5S, 95E **ID** number at **JAMSTEC** 17001 Number on surface float T08 ARGOS PTT number 3595 ARGOS backup PTT number 13066 Deployed date 26 Oct. 2001 Recovered date 03 Aug 2002 04 57.13S, 94 58.64 E Exact location 5009 m Depth Nominal location 1.5S, 90E **ID** number at **JAMSTEC** 18001 Number on surface float T08 ARGOS PTT number 3779 ARGOS backup PTT number 13067 23 Oct. 2001 Deployed date
Recovered date	31 July 2002		
Exact location	01	39.51 N, 89	59.57 E
Depth	4697 m		

*: Dates are UTC and represent anchor drop times for deployments and release time for recoveries, respectively.

(6) Details of deployed

We deployed nine TRITON buoys, as in the list.

Deployed and Repaired TRITON buoys

Observation No.	Location.	Details.
10002	8N 137E	Deploy with full spec.
11002	5N 137E	Deploy with full spec.
12004	2N 138E	Deploy with full spec.
13004	EQ 138E	Deploy with only underwater sensors.No data transmission system.
14001	8N 130E	Deploy with only underwater sensors.
15001	5N 130E	Deploy with only underwater sensors.
16002	2N 130E	Deploy with only underwater sensors.
17002	5S 95E	Deploy with full spec.
18002	1.5S 90E	Deploy with full spec.

(7) Data archive

Hourly averaged data transmitted are through ARGOS satellite data transmission system in near real time. The real time data are provided to meteorological organizations via Global Telecommunication System and utilized for daily weather forecast. The data will be also distributed world wide through Internet from JAMSTEC and PMEL home pages. All data will be archived at JAMSTEC Mutsu Institute.

TRITON Homepage: http://www.jamstec.go.jp/jamstec/triton

7.1.2 Intercomparison between shipboard CTD and TRITON data

(1) Personnel

Kentaro Ando	(JAMSTEC): not on board Principal investigator
Takeo Matsumoto	(MWJ): on board Leg1, 2
Tetsuya Nagahama	(MWJ): not on board

(2) Objectives

TRITON CTD data validation.

- (3) Measured parameters
 - Temperature
 - Conductivity
 - Pressure

(4) Methods

TRITON buoy underwater sensors are equipped along wire cable of buoy below sea surface. We used the same CTD (SBE 9/11Plus) system with general CTD observation (See section 6.2.1) on R/V MIRAI for this inter-comparison. We conducted 1 CTD cast at each TRITON buoy site. The cast was performed immediately after the deployment and before recovery. R/V MIRAI was kept the distance from the TRITON buoy within 2 nm.

TRITON buoy data was sampled every 1 hour except for transmission to the ship. We compared CTD observation by R/V MIRAI data with TRITON buoy data using the 1 hour averaged value.

As our temperature sensors are expected to be more stable than conductivity sensors, conductivity data and salinity data are selected at the same value of temperature data. Then, we calculated difference of salinity and conductivity between CTD casting and TRITON buoy for each deployment and recovery.

(5) Results

Most of temperature, conductivity and salinity data from TRITON buoy showed good agreement with CTD cast data. See the Figures 7.1.2-1(a), (b).

To evaluate the performance of the conductivity sensors on TRITON buoy, the data from deployed buoy and shipboard CTD data at the same location were analyzed.

The estimation was calculated as deployed buoy data minus shipboard CTD data. The salinity differences are from -0.129 to 0.200 psu for all depths. Below 300 db, salinity differences are from -0.016 to 0.085 psu (See the Figures 7.1.2-2(a) and Table 7.1.2-1(a)). The average of salinity differences was 0.003 psu with standard deviation of 0.047 psu.

The estimation was calculated as recovered buoy data minus shipboard CTD (9Plus) data. The salinity differences are from -1.040 to 0.164 psu for all depths. Below 300 db, salinity differences are from -0.036 to 0.009 psu (See the Figures 7.1.2-2(b) and Table 7.1.2-1(b)). The average of salinity differences was 0.037 psu with standard deviation of 0.177 psu.

The estimation of time-drift was calculated as recovered buoy data minus deployed buoy data. The salinity change for 1 year is from -0.216 to 0.053 psu, for all depths. Below 300 db, salinity change for 1 year are from -0.020 to 0.015 psu (See the Figures 7.1.2-3 and Table 7.1.2-3). The average of salinity differences was - 0.010 psu with standard deviation of 0.045 psu.

(6) Data archive

All raw and processed CTD data files were copied on 3.5 inch magnetic optical disks and submitted to JAMSTEC Data Management Office. All original data will be stored at JAMSTEC Mutsu brunch. (See section 6.2.1)

Fig.7.1.2.-1(a) T-S diagram of TRITON buoys data and shipboard CTD data after deployment

Fig.7.1.2.-1(b) T-S diagram of TRITON buoys data and shipboard CTD data before recover

Salinity(psu):TRITON - 9Plus

Fig.7.1.2.-2 (a) Salinity differences between TRITON buoys data and shipboard CTD data after deployment

Salinity(psu):TRITON - 9Plus

Fig.7.1.2.-2 (b) Salinity differences between TRITON buoys data and shipboard CTD data before recover

Observation	Pressure	Temperature	Salinity		
No.	(db)	(degC) (S/m)		(psu)	
10002	1.5	0.38	0.039	0.001	
10002	25	0.00	0.000	0.005	
10002	50	0.00	0.000	0.011	
10002	75	-0.02	-0.007	-0.031	
10002	100	-0.11	-0.015	-0.020	
10002	125	0.03	-0.007	-0.082	
10002	150	-0.02	-0.012	-0.081	
10002	200	0.07	0.003	-0.026	
10002	250	-0.02	-0.001	-0.001	
10002	300	0.01	0.001	-0.003	
10002	500	0.00	-0.001	-0.002	
10002	750	0.00	0.001	0.005	
11002	1.5	-0.04	-0.004	0.010	
11002	25	-0.04	-0.003	0.010	
11002	50	0.05	-0.001	-0.042	
11002	75	-0.17	-0.014	0.025	
11002	100	-0.02	-0.004	-0.008	
11002	125	-0.03	0.004	0.061	
11002	150	-0.07	-0.008	-0.011	
11002	200	-0.04	-0.005	-0.002	
11002	250	0.00	-0.003	-0.022	
11002	300	0.00	-0.002	-0.006	
11002	500	0.01	0.001	-0.002	
11002	750	0.00	0.001	0.004	
12004	1.5	0.28	0.025	-0.019	
12004	25	0.00	-0.003	-0.015	
12004	50	0.00	-0.002	-0.008	
12004	75	-0.01	0.002	0.027	
12004	100	-0.01	0.000	0.004	
12004	125	0.00	0.009	0.067	
12004	150	0.03	0.000	-0.015	
12004	200	0.00	0.003	0.024	
12004	250	0.12	0.010	-0.006	
12004	300	-0.04	-0.006	-0.017	
12004	500	0.00	0.000	-0.012	
12004	750	0.00	0.000	0.000	
16002	1.5	0.00	0.000	0.009	
16002	25	0.00	0.001	0.012	
16002	50	0.00	-0.009	-0.056	
16002	75	-0.02	-0.003	-0.004	
16002	100	0.04	0.008	0.032	
16002	125	0.00	0.000	0.006	
16002	150	0.03	0.001	-0.011	
16002	200	-0.03	-0.005	-0.015	
16002	250	-0.02	-0.004	-0.024	
16002	300	-0.03	-0.005	-0.016	
16002	500	0.00	-0.001	-0.004	
16002	750	0.00	0.000	0.005	

Table 7.1.2.-1(a) Data differences between TRITON buoys data and ship board CTD data after deployment

Observation	Pressure	Temperature	Salinity	
No.	(db)	(degC)	(S/m)	(psu)
15001	1.5	0.04	0.010	0.047
15001	25	0.01	0.003	0.026
15001	50	-0.01	-0.003	-0.003
15001	75	0.00	0.013	0.093
15001	100	0.01	0.004	0.022
15001	125	0.00	0.002	0.018
15001	150	0.01	-0.001	-0.022
15001	200	-0.01	-0.003	-0.029
15001	250	-0.01	0.024	0.200
15001	300	0.01	0.010	0.085
15001	500	0.00	0.000	-0.014
15001	750	0.00	0.000	0.008
16002	1.5	0.00	0.000	0.047
16002	25	0.00	0.001	0.026
16002	50	0.00	-0.009	-0.003
16002	75	-0.02	-0.003	0.093
16002	100	0.04	0.008	0.022
16002	125	0.00	0.000	0.018
16002	150	0.03	0.001	-0.022
16002	200	-0.03	-0.005	-0.029
16002	250	-0.02	-0.004	0.200
16002	300	-0.03	-0.005	0.085
16002	500	0.00	-0.001	-0.014
16002	750	0.00	0.000	0.008
17002	1.5	0.03	0.003	0.006
17002	25	0.00	-0.002	-0.004
17002	50	0.00	0.001	0.013
17002	75	0.00	-0.014	-0.098
17002	100	-0.07	-0.008	0.001
17002	125	0.15	0.016	0.016
17002	150	0.03	0.001	-0.017
17002	200	0.02	-0.001	-0.024
17002	250	0.01	-0.004	-0.038
17002	300	-0.01	-0.002	-0.007
17002	500	0.00	-0.001	-0.009
17002	750	0.00	0.000	-0.002
18002	1.5	0.00	-0.021	-0.129
18002	25	0.00	-0.019	-0.123
18002	50	0.00	0.008	0.057
18002	75	-0.01	0.000	0.011
18002	100	0.01	0.001	0.007
18002	125	-0.08	-0.006	0.017
18002	150	-0.01	-0.002	-0.010
18002	200	-0.03	-0.004	-0.008
18002	250	0.00	-0.001	-0.002
18002	300	0.00	0.000	0.002
18002	500	0.00	-0.001	-0.010
18002	750	0.00	0.000	0.002

 Table 7.1.2.-1(a) Data differences between TRITON buoys data and ship board CTD data after deployment

Observation	Pressure	Salinity		
No.	(db)	(degC)	(S/m)	(psu)
10001	1.5	0.06	0.002	-0.026
10001	25	0.00	-0.003	-0.010
10001	50	-0.01	-0.002	0.003
10001	75	0.04	0.001	-0.023
10001	100	0.04	0.006	0.023
10001	125	0.01	0.002	0.006
10001	150	0.04	0.005	0.018
10001	200	-0.09	-0.080	-0.689
10001	250	-0.01	-0.001	-0.005
10001	300	0.00	0.002	0.009
10001	500	0.00	-0.001	-0.009
10001	750	0.00	-0.001	-0.017
11001	1.5	***	***	***
11001	25	***	***	***
11001	50	***	***	***
11001	75	***	***	***
11001	100	***	***	***
11001	125	0.00	0.001	0.011
11001	150	0.10	0.010	0.007
11001	200	-0.09	-0.010	0.000
11001	250	-0.02	-0.004	-0.010
11001	300	***	***	***
11001	500	-0.01	-0.001	-0.011
11001	750	***	***	***
12003	1.5	0.21	0.031	0.071
12003	25	0.00	0.005	0.039
12003	50 75	0.00	0.006	0.043
12003	/3 100	0.01	-0.003	-0.022
12003	100	0.04	-0.139	-1.040
12003	125	-0.03	0.006	0.073
12003	200	0.02	-0.001	-0.020
12003	200	-0.01	-0.000	-0.030
12003	200	-0.03	-0.001	-0.011
12003	500	0.00	-0.003	0.007
12003	750	0.00	0.000	-0.009
16001	15	0.03	-0.007	-0.060
16001	25	0.00	-0.002	-0.004
16001	50	0.00	-0.008	-0.051
16001	75	0.00	0.005	0.035
16001	100	-0.04	-0.002	0.014
16001	125	0.00	0.021	0.164
16001	150	-0.01	-0.001	-0.003
16001	200	-0.01	-0.002	0.000
16001	250	-0.04	-0.006	-0.012
16001	300	-0.10	-0.014	-0.036
16001	500	0.01	0.000	-0.001
16001	750	0.00	-0.001	-0.013
18001	1.5	***	***	***
18001	25	0.00	-0.014	-0.085
18001	50	0.00	-0.032	-0.212
18001	75	0.00	-0.011	-0.069
18001	100	-0.03	0.001	0.035
18001	125	-0.06	-0.004	0.019
18001	150	0.00	-0.001	-0.007
18001	200	0.00	0.000	0.001
18001	250	0.01	0.000	-0.007
18001	300	0.00	0.000	0.003
18001	500	0.00	-0.001	-0.012
18001	750	0.00	0.000	-0.004
		*** : no data		

Table 7.1.2.-1(b) Data differences between TRITON buoys data and shipboard CTD data before recover

Salinity(psu):TRITON - 9Plus

Fig.7.1.2.-3 Salinity differences between TRITON buoys data and shipboard CTD data for 1 year

Table 7.1.2-3 Difference between R/V MIRAI CTD casting data and TRITON data for 1 year

ſ		Recovery	Deploy	Drift
Observation	Pressure	Salinity	Salinity	Salinity
No.	(db)	(psu)	(psu)	(psu)
10001	300	0.009	-0.001	0.009
10001	500	-0.009	-0.004	-0.005
10001	750	-0.017	-0.008	-0.009
11001	300	0.000	-0.015	0.015
11001	500	-0.011	-0.007	-0.004
11001	750	0.000	0.005	-0.005
12003	300	-0.011	0.008	-0.020
12003	500	0.007	0.013	-0.006
12003	750	-0.009	-0.007	-0.002
18001	300	0.003	0.000	0.003
18001	500	-0.012	-0.009	-0.003
18001	750	-0.004	-0.002	-0.002
	Average	-0.005	-0.002	-0.003
	Stdev.	0.009	0.009	0.010

R/V MIRAI CTD DATA - TRITON CT DATA

7.2 ADCP subsurface mooring

(1) Personnel

(JAMSTEC): Principal Investigator (Leg 1)
(JAMSTEC): Investigator (Leg 2)
(FORSGC): Principal Investigator (Leg 2)
(MWJ): Operation leader (Leg 1)
(MWJ): Operation leader (Leg 2)
(MWJ): Technical staff (Leg 1)
(MWJ): Technical staff (Leg 1-2)
(MWJ): Technical staff (Leg 1)
(MWJ): Technical staff (Leg 1-2)
(MWJ): Technical staff (Leg 1-2)
(MWJ): Technical staff (Leg 1-2)

(2) Objectives

The purpose is to get the knowledge of physical process in the western equatorial Pacific Ocean and the equatorial Indian Ocean. We have been observing subsurface currents along the equator. In this cruise (MR02-K04), we recovered two subsurface ADCP mooring at 7° N-127 $^{\circ}$ E, EQ-90° E, and re-deployed two ADCP moorings at the same place.

(3) Parameters

Current profiles Echo intensity Pressure, Temperature and Conductivity

(4) Methods

Two instruments are mounted at the top float of the mooring. One is an ADCP (Acoustic Doppler Current Profiler) to observe upper ocean layer currents above 300m depth, and the other is a CTD to observe pressure, temperature and salinity at the top of the mooring. Obtained upper ocean layer current velocities are corrected for depths using CTD pressure data.

Two current meters are equipped on the mooring at 400m and 700m depth of 7° N-127° E. Details of the instruments and their parameters are as follows:

1) ADCP

(a) Self-Contained Broadband ADCP 150 kHz (RD Instruments)

Distance to first bin:	8 m
Pings per ensemble:	16
Time per ping:	2.00 seconds
Bin length:	8.00 m
Sampling Interval:	3600 seconds
Recovered ADCP	
Serial Number:	1154 (Mooring No.011008-7N127E)
Deployed ADCP	
Serial Number:	1678 (Mooring No.020714-7N127E)

(b) Self-Contained Workhorse Long Ranger ADCP 75 kHz (RD Instruments)

Distance to first bin:	7.04 m
Pings per ensemble:	27
Time per ping:	6.66 seconds
Bin length:	8.00 m
Sampling Interval:	3600 seconds

Recovered ADCP	
Serial Number:	1645 (Mooring No.011022-EQ90E)
Deployed ADCP	
•Serial Number:	1248 (Mooring No.020729-EQ90E)
2) CTD	
(a) SBE-16 (Sea Bird Electron	nics Inc.)
Sampling Interval:	1800 seconds
Recovered CTD	
• Serial Number:	1281 (Mooring No.011008-7N127E
Deployed CTD	
• Serial Number:	1275 (Mooring No.020714-7N127E
(b) SBE-37 (Sea Bird Electro	onics Inc.)
Sampling Interval:	3600 seconds
Recovered CTD	
• Serial Number:	1775 (Mooring No.011022-EQ90E)
Deployed CTD	
• Serial Number:	1388 (Mooring No.020729-EQ90E)
3) Other instrument	
(a) Acoustic Releaser (BENTI	HOS, Inc.)
Recovered Acoustic Rele	easer
•Serial Number:	664 (Mooring No.011008-7N127E)
• Serial Number:	689 (Mooring No.011008-7N127E)
•Serial Number:	960 (Mooring No.011022-EQ90E)
• Serial Number:	961 (Mooring No.011022-EQ90E)
Deployed Acoustic Relea	aser
• Serial Number:	716 (Mooring No.020714-7N127E)
•Serial Number:	666 (Mooring No.020714-7N127E)
• Serial Number:	844 (Mooring No.020729-EQ90E)
• Serial Number:	937 (Mooring No.020729-EQ90E)
(b) RCM-9 (AANDERAA Ins	struments)
Temperature range:	low
Recording:	60min
Conductivity range:	0-74 mS
Channel:	7ch
Recovered RCM9	
• Serial Number:	355 (Mooring No.011008-7N127E)
• Serial Number:	357 (Mooring No.011008-7N127E)
Deployed RCM9	
• Serial Number:	541 (Mooring No.020714-7N127E)
Seriar i vanno erv	

At 7 N-127 E and EQ-90 E, ADCPs were planned to placed the ADCP at about 310m, 371m depth. After we dropped the anchor, we monitored the depth of the acoustic releaser (Fig.7-2-1).

 The position of the mooring No.020714-7N127E

 Date: 14 Jul. 2002
 Lat: 06-48.97N
 Long: 126-42.59E
 Depth: 3435m

The position of the mooring No.020729-EQ90E Date: 29 Jul. 2002 Lat: 00-00.44N Long: 90-03.35E Depth: 4399m

(6) Recovery

Recovered moorings (during MR01-K05 cruise) were deployed at 7° N-127° Eon 9 Oct. 2001 and EQ-90° E on 22 Oct. 2001. After the recovery, we uploaded ADCP, RCM-9 and CTD data into a computer, then raw data were converted into ASCII code. Results were shown in the figures in the following pages. Figures 7-2-2 ~ 7-2-3 show CTD pressure, temperature and salinity data. Figures 7-2-4 ~ 7-2-9 show the velocity data (zonal and meridional component) at bin#25, bin#19 ,bin#12 ,bin#6 and bin#1. Figures 7-2-10 ~ 7-2-14 show the velocity data (zonal and meridional component) at bin#47, bin#44 ,bin#41 ,bin#35 and bin#29. Depth of bins was calculated from CTD data. Figures 7-2-16 , 7-2-17 show velocity data of RCM-9.

(7) Remarks

- Current data of RCM-9 at 400m depth of 7 N-127 E were missing from 20 Feb.2002 to 14 Jul.2002.
- Pressure data of CTD at EQ-90° E indicated getting shallower from deployment with time, and were missing from 18 Apr.2002 to 29 Jul.2002. It suggests that the pressure data cannot be used to determine the ADCP depth for this mooring.

(8) Data archive

The ADCP and CTD data at 7 N-127 E and EQ-90 E will be archived by the member of TOCS project at JAMSTEC and FORSGC, respectively.

All data will be submitted to DMO at JAMSTEC within 3 years after each recovery.

Fig7-2-1 Depth monitoring of acoustic release (A.R. : Acoustic Release)

Fig7-2-2 Depth monitoring of acoustic release (A.R. : Acoustic Release)

(a) Pressure

(c) Salinity

Fig. 7-2-3 Time series (25-hour low pass filtered) of (a) pressure, (b) temperature and (c) salinity obtained with CTD of 7°N-127°E mooring from 09 Oct. 2001 to 14 Jul. 2002

Fig. 7-2-4 Time series of (a) pressure, (b)temperature and (c)salinity obtained with CTD of EQ-90°E mooring from 22 Oct. 2001 to 29 Jul. 2002

Fig.7-2-5 Time series of (a)zonal, (b)meridional velocities and (c) cell depth of 7°N-127°E mooring at bin #1.

Fig.7-2-6 Time series of (a)zonal, (b)meridional velocities and (c) cell depth of 7°N-127°E mooring at bin #6.

25-hour low pass filtered

Fig.7-2-7 Time series of (a)zonal, (b)meridional velocities and (c) cell depth of 7°N-127°E mooring at bin #12.

- 25-hour low pass filtered

Fig.7-2-8 Time series of (a)zonal, (b)meridional velocities and (c) cell depth of 7°N-127°E mooring at bin #19.

25-hour low pass filtered

Fig.7-2-9 Time series of (a)zonal, (b)meridional velocities and (c) cell depth of 7°N-127°E mooring at bin #25.

Fig.7-2-10 Time series of zonal and meridional velocities of EQ-90°E mooring at 54m depth.

Fig.7-2-11 Time series of zonal and meridional velocities of EQ-90°E mooring at 78m depth.

Fig.7-2-12 Time series of zonal and meridional velocities of EQ-90°E mooring at 102m depth.

Fig.7-2-13 Time series of zonal and meridional velocities of EQ-90°E mooring at 150m depth.

Fig.7-2-14 Time series of zonal and meridional velocities of EQ-90°E mooring at 200m depth.

(a) Zonal component

(b) Meridional component

Fig.7-2-15 Vertical profile of velocity (a)zonal and (b)meridional velocities of 7 ° N-127 ° E mooring.

(a) Zonal component

(b) Meridional component

Fig. 7-2-16 Time series of current velocity (25-hour low pass filtered) obtained with RCM-9 at 400 m depth of 7 ° N-127 ° E mooring.

(a) Zonal component

(b) Meridional component

Fig. 7-2-17 Time series of current velocity (25-hour low pass filtered) obtained with RCM-9 at 700 m depth of 7 ° N-127 ° E mooring.

7.3 Aerosol Measurement

(1) Personnel

On board scientists

Yuji Fujitani (Graduate school of Engineering, Hokkaido University) Graduate student

Principal investigators (not on board)

Tatsuo Endoh (Institute of Low Temperature Science, Hokkaido University): Associate Professor Sachio Ohta (Graduate school of Engineering, Hokkaido University): Professor Tamio Takamura (Center for Environmental Remote Sensing, Chiba University): Professor Teruyuki Nakajima (Center for Climate System Research, University of Tokyo): Professor

(2) Objectives

Anthropogenic aerosols affect on climate by perturbing radiation budget through scattering and absorbing solar radiation, which is called the direct effect of aerosol. At present, uncertainty of radiative forcing due to greenhouse gases is 15%, whereas it lies in a factor of 2 of the direct aerosol forcing. As in The Third Assessment Report of IPCC in 2001, a chapter was spared about aerosols effect on climate, this problem had been regarded as important. The larger uncertainty of aerosol forcing comes from little available information about aerosol distribution of optical properties. Aerosols have various sources and sinks, the lifetime is short as a week or 10 days. As a result, aerosols have various spatial and temporal distributions. Furthermore, aerosol optical properties are function of aerosol chemical species, aerosol size distribution, and mixed state (i.e. internal mixture or external mixture). To calculate radiative forcing, the various input parameters are needed, but there are still shortages of them. It is then necessary to conduct long term and large-scale observations to understand aerosol distribution of optical properties.

There are few measurements, in particular, of aerosol optical properties over the Pacific Ocean, whereas this region is very important. Anthropogenic materials are increasingly emitted from Asian countries, and more amounts of aerosols may be transported to the Pacific Ocean. Thus, it is important to monitor the atmospheric environment in the East Asia and western Pacific ocean. Satellite remote sensing is hoped for monitoring global aerosol distribution. For atmospheric correction of the remote sensing, surface measurements are indispensable to optical and chemical properties of atmospheric aerosols.

During this cruise, we measured spatial distribution of aerosol optical and chemical properties to estimate radiative forcing by aerosol accurately and to do ground truth for satellite remote sensing.

(3) Methods

Sky Radiometer (POM-01MK ; PREDE), equipped on deck, measures direct and aureole sun light intensity every 5min. The sensor provides optical thickness, Åangstrom exponent and size distribution of atmospheric aerosols.

To confirm retrieved optical properties from skyradiometer data analysis, *in-situ* measurement is conducted during this cruise. Sample air is drawn through inlets 5m height on compass deck, to manifold in research room. Particle larger than 2μ m in diameter are removed by cyclone separators. From the manifold, the sample air is distributed to Particle Soot / Absorption Photometer (PSAP; Radiance Research), Integrating Nephelometer (IN; M903; Radiance Research) and Optical Particle Counter (OPC; KC-01C; RION). PSAP measures volume absorption coefficient, IN measures volume scattering coefficient and OPC counts number concentration of aerosols larger than 0.3, 0.5, 1.0, 2.0 and 5.0 μ m in diameter. All measurements are conducted every 1min. The aerosols are also collected on filter for chemical analysis by using another sampling system. The sampling system consists of three parts. One is Teflon filter sampling line (FP-500; 47mm ; SUMITOMO DENKOH), the second is quartz fiber filter sampling line (2500QAT-UP; 47mm ; Pallflex), and

the third is teflon and quartz fiber filters in tandem use line. Aerosol sampling on Teflon filter are also conducted on the compass deck without cyclone separators. Aerosol sampling is performed with the special cautions not to be contaminated with chimney exhaust. The filters are stored in the refrigerator. From the aerosols collected on Teflon filters, amounts of inorganic and metal components are analysed by Ion chromatography and ICP-MS. From the sample on quartz fiber filters amounts of analyzed elemental and total carbons are determined by carbon analyzer.

(4) Results

The sky radiometer has been going well, so measured values will be expected to be considerably stable and provide good calculated parameters in higher quality. The volume scattering and absorption coefficients were $0.2 \sim 87.6 \times 10^{-6}$ m⁻¹ and $\sim 35.8 \times 10^{-6}$ m⁻¹, respectively. The single scattering albedo ranged 0.56 to 0.99, absorptivity aerosols were dominant during this cruise. Figure 1 shows time series of particle concentration larger than 0.3 µ m. The particle number was under 1 to 300 cm⁻³. Tables 1 and 2 summarized the aerosol sampling results.

(5) Data archive

The data of skyradiometer, PSAP, IN, and OPC are numerically analyzed and filter samples are chemically analyzed. All data are archived at Hokkaido University (Endoh and Ohta), University of Tokyo (Nakajima) and Chiba University (Takamura), and submitted to JAMSTEC within 3-years.

(6) Remarks

We stopped the aerosol sampling in the EEZ of Socialist Republic of Vietnam from 16:43 July 17 to 23:06 July 21, 2002.

Figure 1. Time series of particle number concentration diameter larger than 0.3 μ m

No	date and t	ime (UTC)	sampling period	total sampling	sampling volume	start	t (deg)	end	(deg)
NO.	start	end	[hh+mm]	period [min]	[m ³]	Latitude	Longitude	Latitude	Longitude
1	25Jun. 7:25	26Jun. 6:05	22h+20m	1340	26.8	40.6	141.5	36.0	142.4
2	26Jun. 6:45	27Jun. 6:30	21h+8m	1268	25.4	35.8	142.4	30.4	141.4
3	27Jun. 7:08	28Jun. 6:23	23h+13m	1393	27.9	30.2	141.4	24.3	140.1
4	28Jun. 6:37	30Jun. 23:03	62h+23m	3743	74.9	24.2	140.1	9.6	137.3
5	30Jun. 23:50	4Jul. 23:24	40h	2940	58.8	9.5	137.2	4.9	137.3
6	5Jul. 0:00	7Jul. 6:25	43h+18m	2598	52.0	4.9	137.3	1.1	138.0
7	7Jul. 6:34	9Jul. 23:05	50h+36m	3036	60.7	1.1	138.0	2.0	134.6
8	9Jul. 23:36	13Jul. 3:20	43h+39m	2619	52.4	2.0	134.6	5.0	129.9
9	13Jul. 4:07	15Jul. 8:50	36h+54m	2214	44.3	5.0	130.0	10.7	128.2
10	15Jul. 9:04	17Jul. 1:13	39h+56m	2396	47.9	10.7	128.1	19.6	122.3
11	25Jul. 9:18	26Jul. 4:34	24h+00m	1440	28.8	3.4	101.0	6.2	95.3
12	26Jul. 5:05	27Jul. 4:22	45h+59m	2759	55.2	6.2	95.1	4.5	90.8
13	27Jul. 4:33	1Aug. 2:00	49h+1m	2941	58.8	4.5	90.8	-5.0	90.6
14	1Aug. 2:16	3Aug. 6:36	42h+4m	2524	50.5	-5.0	90.7	-7.2	101.2
15	3Aug. 7:12	5Aug. 2:08	41h+16m	2476	49.5	-7.2	101.3	-8.6	105.3
16	5Aug. 2:18	6Aug. 7:47	29h+17m	1757	35.1	-8.6	105.3	-10.3	112.0
17	6Aug. 8:13	8Aug. 2:11	41h+58m	2518	50.4	-10.3	112.1	-10.6	120.6
18	8Aug. 2:52	10Aug. 0:03	42h+8m	2528	50.6	-10.6	120.8	-2.8	126.0
19	10Aug. 0:15	14Aug. 5:35	-	-	39.8	-2.8	126.1	14.2	132.6

Table 1. Information of aerosol sampling on Teflon filter

	No	date and time (UTC)		sampling period total sampling sampling volume			start (deg)		end (deg)	
	NO.	start	end	[hh+mm]	period [min]	[m ³]	Latitude	Longitude	Latitude	Longitude
-	1	25Jun. 7:25	26Jun. 6:05	22h+20m	1340	26.8	40.6	141.5	36.0	142.4
	2	26Jun. 6:45	27Jun. 6:30	21h+8m	1268	25.4	35.8	142.4	30.4	141.4
	3	27Jun. 7:08	30Jun. 23:03	85h+49m	5149	103.0	30.2	141.4	9.6	137.3
	4	30Jun. 23:50	6Jul. 5:57	73h+7m	4387	87.7	9.5	137.2	2.1	138.1
	5	6Jul. 6:08	9Jul. 23:05	69h+46m	4186	83.7	2.1	138.1	2.0	134.6
	6	9Jul. 23:36	13Jul. 3:20	43h+39m	2619	52.4	2.0	134.6	5.0	129.9
	7	13Jul. 4:07	15Jul. 23:25	51h+26m	3086	61.7	5.0	130.0	13.9	125.9
	8	15Jul. 23:34	17Jul. 1:13	25h+37m	1537	30.7	13.9	125.9	19.6	122.3
	9	25Jul. 9:18	26Jul. 4:34	24h+00m	1440	28.8	3.4	101.0	6.2	95.3
	10	26Jul. 5:05	30Jul. 4:36	66h+07m	3967	79.3	6.2	95.1	-1.6	90.1
	11	30Jul. 4:46	3Aug. 6:36	70h+57m	4257	85.1	-1.6	90.1	-7.2	101.2
	12	3Aug. 7:12	6Aug. 7:47	70h+33m	4233	84.7	-7.2	101.3	-10.3	112.0
	13	6Aug. 8:13	8Aug. 2:11	41h+58m	2518	50.4	-10.3	112.1	-10.6	120.6
	14	8Aug. 2:52	10Aug. 10:45	-	-	58.2	-10.6	120.8	0.0	126.7
	15	10Aug. 10:57	14Aug. 5:35	-	-	36.1	0.1	126.7	132.6	1003.7

Table 2.	Information	of aeı	rosol	sampling	on	quartz	fiber	filter
7.4 ARGO float (profiling float)

(1) Personnel

Kensuke Takeuchi	(FORSGC)	not on board	Principal Investigator
Keisuke Mizuno	(JAMSTEC)	not on board	
Kentaro Ando	(JAMSTEC)	not on board	
Kenji Izawa	(JAMSTEC)	not on board	
Naoto Iwasaka	(FORSGC)	not on board	
Taiyo Kobayashi	(FORSGC)	not on board	
Eitaro Oka	(FORSGC)	not on board	
Asako Inoue	(MWJ)	not on board	

(2) Objectives

Four Argo floats were deployed as a part of the international Argo project and the Japanese ARGO project. The purpose of these projects is to observe the upper ocean on global scales in realtime using numerous profiling floats: for better understanding of ocean variations associated with climate variability, and for improvement of long-range weather forecasts. Since the locations of deployments are near one of the poles of the Indian Ocean Dipole Mode Oscillation, the floats are especially expected to provide information about variations of the upper ocean associated with the oscillation.

(3) Parameters

- Vertical profiles of water temperature, salinity, and pressure
- Location and time of observation
- Ocean currents at the sea surface and the parking depth

(4) Methods

The floats deployed during this cruise were 4 PROVOR floats manufactured by MTEOCEAN Data Systems. The floats were launched at 3°S, 90°E, 5°S, 90°E, 5°S, 94°E, and 5°-34.6S, 94°-59.84E. All the floats are launched just after CTD observation at the same location, so that we can use CTD data for calibration of the float sensors.

The floats are designed to drift at a specified depth called "parking depth" or "drifting depth" for a specified period, and then change their buoyancy by increasing their volume to rise up to the sea surface. During their ascent, they measure temperature, salinity, and pressure. The floats remain at the sea surface for about 10 to 24 hours, transmit their positions and the CTD data to ARGOS satellites, and then return to the parking depth by decreasing their volume. Each of the ascent and descent takes about 5-10 hours. Their detail deployment status are shown in section 3.3 cruise log.

(5) Data archive

All data acquired through the ARGOS system is stored and analyzed at FORSGC. The real-time data are provided to meteorological organizations via the Global Telecommunication System (GTS) and are utilized for analysis and forecasts of sea conditions. In addition, the data will be also opened to the public via "Japan ARGO home page". (http://www.jamstec.go.jp/ARGO/J ARGOe.html)

7.5 Mie scattering Lidar observation

(1) Personnel

Ichiro Matsui (National Institute for Environmental Studies) [Leg. 1], Atsushi Shimizu (National Institute for Environmental Studies) [Leg. 2], Nobuo Sugimoto (National Institute for Environmental Studies) (not on board)

(2) Objectives

Objectives of the observations and experiments during this cruise are to study distribution and optical characteristics of aerosols and clouds using a two-wavelength dual polarization lidar.

(3) Measured parameters

- Vertical profiles of backscattering coefficient at 532 nm and 1064 nm.

- Vertical profile of depolarization ratio at 532 nm.

(4) Method

Vertical profiles of aerosols and clouds were measured with a two-wavelength dual polarization lidar. The lidar employs a Nd:YAG laser as a light source which generates the fundamental output at 1064 nm and the second harmonic at 532 nm. Transmitted laser energy is typically 100 mJ per pulse at 1064 nm and 50 mJ per pulse at 532 nm. The pulse repetition rate is 10 Hz. The receiver telescope has a diameter of 25 cm. The receiver has three detection channels to receive the lidar signals at 1064 nm and the parallel and perpendicular polarization components at 532 nm. An analog-mode avalanche photo diode (APD) is used as a detector for 1064 nm, and photomultiplier tubes (PMTs) are used for 532 nm. The detected signals are recorded with a digital oscilloscope and stored on a hard disk with a computer. The lidar system was installed in a 20-ft container with the cloud profiling radar (CPR) of the Communications Research Laboratory (CRL). The container has a glass window on the roof, and the lidar was operated continuously regardless of weather.

(5) Results

Figures 7.5-1 and 7.5-2 show the quick-look time-height indications of the range-corrected signal during Leg.1 and 2 of the cruise, respectively.

The lower clouds at 600 m are continuously observed over western Pacific Ocean. Also higher cirrus around 15 km is detected in lower latitude where the tropopause is supposed to be located at 16-18 km. A close look into a middle cloud reveals fine structures of cloud system accompanied by precipitation.

In Leg.2, higher cirrus clouds were often detected around 15-16 km in the Indian Ocean. It was an interesting future that the slightly depolarizing aerosol layer was detected just above (1.5-2 km) the

marine (surface) aerosol layer, around the southern region of Java Islands. It suggests that a longrange transport of some land-origin aerosols has occurred.

(6) Data archive

- raw data

lidar signal at 532 nm (parallel polarization) lidar signal at 532 nm (perpendicular polarization) lidar signal at 1064 nm temporal resolution 10 sec. vertical resolution 6 m. - processed data

cloud base height, apparent cloud top height, cloud phase cloud fraction boundary layer height (aerosol layer upper boundary height) backscatter coefficient of aerosols depolarization ratio

All data will be archived at National Institute for Environmental Studies, and submitted to JAMSTEC within 3-years.

(7) Remarks

We did not observe the atmosphere in the EEZ of Socialist Republic of Vietnam from 16:43-17-July to 23:06-21-July 2002.

Fig. 7.5-2 Same as Fig. 7.5-1 but for Leg 2.

7.6 Doppler Radar Observation

(1) Personnel

Shuichi Mori (FORSGC): Principal Investigator Yasutaka Imai (GODI) Shin-Ya Iwamida (GODI) Wataru Tokunaga (GODI)

(2) Objective

The objective of Doppler radar observation is to understand precipitating convective systems in the eastern Indian Ocean during the Indian monsoon season by obtain both special and temporal distribution of rainfall amount, and structures of the precipitating convective system.

(3) Method

The hardware specifications of this shipboard Doppler radar (RC-52B, manufactured by Mitsubishi Electric Co. Ltd., Japan) are:

Frequency:	5290 MHz
Beam Width:	better than 1.5 degrees
Output Power:	250kW (Peak Power)
Signal Processor:	RVP-7 (Sigmet Inc., U.S.A.)
Inertial Navigation Unit:	DRUH (Honeywell Inc., U.S.A.)
Application Software:	IRIS/Open (Sigmet Inc., U.S.A.)

The hardware is calibrated by checking (1) frequency, (2) mean power output, (3) pulse repetition frequency (PRF) for once a day, (4) transmitting pulse width and (5) receiver linearity at the beginning and the end of the observation period.

The observation is performed continuously from July 25 through August 18, 2002. during the observation, the programmed "tasks" are repeated every 10 minutes. One cycle consists of one "volume scan" (consists of PPIs for 21 elevations) with Doppler-mode (160 km range for reflectivity and Doppler velocity), one-elevation "surveillance" PPI with Intensity-mode (300 km range for reflectivity). In the interval of the cycles, RHI (Range Height Indicator) scans were operated to obtain detailed vertical cross sections with Doppler-mode. The Doppler velocity is unfolded automatically by dualPRF unfolding algorithm. The parameters for the above three tasks are listed in Table 7.6-1.

	Surveillance PPI	Volume Scan	RHI				
Pulse Width	2 [microsec.]	0.5 [microsec.]					
Scan Speed	18 [de	Automatically determined					
PRF	260 [Hz] 900/720 [Hz]						
Sweep Integration	32 samples						
Ray Spacing	1.0 [0.2 [deg.]					
Bin Spacing	250 [m]	125 [m]					
Elevations	0.5	0.5, 1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.1, 11.3, 12.8, 14.6, 16.6, 18.9, 21.6, 25.0, 29.0, 34.0, 40.0	0.0 to 70.0				
Azimuths	Full (Optional					
Range	300 km	160 [km]					

Table 7.6-1

(4) Preliminary results

Continuous observation of Doppler radar has been carried out successfully without any trouble during this period. Major disturbance events were observed on July 29, August 01, 03, and 04 in the Indian Ocean, August 14-15 in eastern offshore area of Philippine, when the vessel passed through cloud cluster areas observed by Geostationary Meteorological Satellite (GMS). Furthermore, a typhoon (T0213; Phanfone) related convective systems were also detected after August 18, 2002 as shown in Figs. 7.6-1 through 7.6-3.

The detailed analyses for these observed events with other obtained datasets are in future work.

(5) Data archive

The inventory information of the Doppler radar data obtained during this cruise will be submitted to JAMSTEC Data Management Office (DMO). The original data will be archived at and available from Frontier Observational Research System for Global Change (FORSGC).

Fig. 7.6-1 Radar reflectivity field by surveillance (intensity-mode) PPI at 19UTC on August 17, 2002. TS0213 (Phanfone) is indicated centered on 210 km SSW from R/V Mirai.

Fig. 7.6-2 RHI of radar reflectivity at 19UTC on August 17, 2002. Azimuth from the radar is 90 degree and horizontal range is 160 km.

7.7 Rawinsonde Observation

(1) Personnel

Shuichi Mori (FORSGC): Principal Investigator Yasutaka Imai (GODI) Shin-Ya Iwamida (GODI) Wataru Tokunaga (GODI)

(2) Objective

The objective of rawinsonde observation is to understand precipitating convective systems in the eastern Indian Ocean during the Indian monsoon season by obtaining the atmospheric environmental profiles of pressure, temperature, relative humidity, wind direction, and wind speed. (3) Method

Atmospheric sounding by rawinsonde was carried out 6 or 3 hours during July 27 and August 06, 2002 along the cruise track described in Fig. 7.7-1. Table 7.7-1 shows the summary of 62 launches in total including special observations in eastern offshore area of Philippine during August 14-15, 2002. The observation system consists of receiver/processor (Vaisala DigiCORA MW11), GPS antenna (GA20), UHF telemetry antenna (RB20), balloon launcher (ASAP), 200g balloon (Totex TA-200), and GPS rawinsonde transmitter (Vaisala RS80-15GH).

Every transmitter except one marked with * in Table 7.7-1 were calibrated before launch by using the digital barometer (Vaisala PTB220 Class A) and the humidity calibrator (General Eastern C-1 RH Generator) set at approximately 70 %. Other transmitters marked with * in the Table 7.7-1 were calibrated with the ground check kit (Vaisala GC23) which humidity was set at 0 % because of some malfunction with Vaporpak H-31 calibrator at that time.

(4) Preliminary results

Time-height cross sections of temperature, zonal and meridional wind components, relative humidity, specific humidity, and equivalent potential temperature are shown in Fig. 7.7-2. Vertical profiles of temperature, dew-point temperature are plotted on the thermodynamic chart wind profiles in Fig7.7-3. Both southwesterly wind in the lower troposphere and northeasterly wind in the upper troposphere are observed along 90E line from 5N through 4S (July 27 - 31) corresponding to Indian monsoon circulation. Especially, rather strong westerly wind with much water vapor is indicated around the equator (July 28 - 29) when the ship passed through a large precipitating cloud system. The wind field is replaced by easterly wind, corresponding to winter circulation in the southern hemisphere, in the area from 90E through 110E (August 01 - 06) over southwestern side of Sumatra Island. Notable dry southeasterly wind is indicated after August 04 that may be caused by winter Australian monsoon.

A typical tropical atmospheric structure with convective unstable condition is indicated throughout the observation period, which has both much specific humidity of 15-20 g/kg in the near surface and rather dries air in the middle of troposphere. Rainfall of 5 mm or above a day observed this period only on July 29, 31, August 01, 03, and 04, however, quasi diurnal variations of humidity in the lower troposphere are indicated throughout the period.

(5) Data archive

All sounding data have been sent to the world meteorological community by Global Telecommunication System (GTS) through Japan Meteorological Agency (JMA) immediately after the each observation. Raw data are stored in digital ASCII format that are available through JAMSTEC Data Management Office (DMO).

MR02-K04 Radio Sonde

Fig. 7.7-1 Locations of rawinsonde launching along the cruise track of MR02-K04. Numbers indicated in the figure show the observation number

Table 7.7-1 Rawinsonde	Observation Log
------------------------	-----------------

	Deta & Time (UTC)		Position		Surface Data				Maximum		Claud				
No.	Date	& I1	me (t	JTC)	Lon. E	Lat. N	Р	Т	RH	WD	WS	Altit	ude		Cloud
	YY	MM	DD	HH	(deg.)	(deg.)	(hPa)	(deg. C)	(%)	(deg.)	(m/s)	(hPa)	(gpm)	Ar	nount & Type
RS-001	02	07	27	00	91.80	3.83	1009.3	28.5	75	245	5.5	31.5	23550	8	Cu, Ac, As
RS-002	02	07	27	06	90.74	4.53	1008.2	29.0	74	246	6.5	20.9	26150	3	Cu
RS-003	02	07	27	12	90.00	5.00	1006.2	29.2	74	240	8.2	31.0	23593	3	Cu, Cb, Ac
RS-004	02	07	27	18	90.00	3.99	1009.5	28.7	74	236	5.9	32.5	23353	1	Cu
RS-005	02	07	- 28	- 00	90.00	3.00	1008.2	27.3	79	277	5.4	41.2	21839	8	Cu, Ac, As
RS-006	02	07	- 28	06	89.99	2.00	1009.2	29.3	69	278	13.1	35.0	22908	9	Cb, Ac
RS-007	02	07	28	12	90.00	0.99	1008.0	29.2	73	249	6.6	33.2	23250	10	Sc, Cu, Ac
RS-008	02	07	28	18	90.06	0.04	1009.4	28.2	77	241	5.7	55.4	20053	10	Cu, Ac
RS-009	02	07	29	00	90.05	0.01	1007.2	27.5	79	223	10.3	42.3	21683	10	Cu. Ac. As
RS-010	02	07	29	03	90.06	0.01	1008.2	29.0	80	285	7.2	26.5	24686	10	Cu. Cb. Ac. As
RS-011	02	07	29	06	90.01	0.02	1008.2	27.3	82	247	10.9	397.9	7635	10	St. Sc. Cu
*RS-012	02	07	29	09	90.02	-0.28	1007.8	26.5	86	214	2.8	28.1	24235	10	Cu. Cb. As
*RS-013	02	07	29	12	90.02	-0.85	1006.9	26.4	79	215	1.4	32.4	23342	10	St. Cu
*RS-014	02	07	29	15	90.07	-1.61	1007.6	27.0	75	110	1.8	41.7	21783	10	Unknown
*RS-015	02	07	29	18	90.06	-1.62	1008.9	27.3	71	107	0.1	28.0	24300	10	Cu Ac
RS-016	02	07	29	21	90.08	-1.62	1006.2	27.2	77	161	3.7	38.4	27255	10	Ac
RS-017	02	07	30	00	90.00	-1.62	1006.2	27.2	75	144	1.2	38.3	22233	8	$C_{\rm H}$ Δc Δs
RS-018	02	07	30	03	90.09	-1.64	1000.2	27.5	76	170	1.2	25.0	25016	0	Cu Ch Ac As
RS-019	02	07	30	05	90.06	-1.60	1008.0	27.8	75	177	4.2	23.0	25533	6	Cu, Cb, Ac, As
RS-020	02	07	30	00	80.00	-1.00	1007.2	27.0	70	137	2.5	25.1	23333	7	Δc. Δs
RS-020	02	07	30	12	00.00	2.00	1004.2	20.5	70	165	2.J	21.0	24363	/ Q	Cu Ch As Ci
RS-021	02	07	30	12	90.00	-2.00	1005.0	27.0	78	162	4.1	20.1	23439	0	Cu, CO, AS, CI
RS-022	02	07	20	10	89.99	-1.70	1000.0	27.9	74	102	0.2	42.0	24070	10	Unknown
RS-025	02	07	20	21	89.97	-1.72	1000.9	27.9	74	220	2.0	42.0	21732	10	Clikilowii
RS-024	02	07	21	21	89.97	-1.75	1003.0	27.4	11	230	3.9	40.1	22022	10	SC Union and
RS-025	02	07	21	00	90.00	-1.07	1004.2	25.8	80	201	10.3	34.4	22979	10	Unknown Cra A a
RS-020	02	07	21	10	89.99	-2.02	1006.2	27.5	82	210	8.2	24.8	25072	10	Cu, As
KS-027	02	07	21	12	90.01	-3.01	1004.8	27.5	82	227	1.7	44.0	21305	10	Cu, Cb, Ac
RS-028	02	07	31	18	90.00	-4.00	1007.1	27.4	/8	190	1.3	29.7	23936	10	Unknown
RS-029	02	08	01	00	90.00	-4.99	1006.2	22.9	92	328	5.0	165.4	13604	10	Cu, Cb, Ac, As
RS-030	02	08	01	10	91.00	-4.99	1006.2	25.5	93	161	8.5	20.1	26475	10	As
RS-031	02	08	01	12	92.00	-4.99	1006.4	26.4	89	80	11.8	24.1	4995	10	Cu, As
RS-032	02	08	01	18	93.00	-5.00	1007.9	26.5	86	83	11.5	34.1	23050	10	Unknown
RS-033	02	08	02	00	94.00	-5.00	1006.2	27.3	/9	60	6.5	36.0	22664	9	Cu, Ac, As
RS-034	02	08	02	06	94.97	-5.06	1007.2	28.0	80	45	5.8	25.2	25016	8	Cu, Cb, Ac
RS-035	02	08	02	12	94.99	-5.34	1006.2	28.0	/6	30	5.4	36.3	22653	5	Cu, Ac
RS-036	02	08	02	18	95.02	-4.93	1008.1	28.1	/5	24	5.0	1008.1	18	I	Ac
RS-037	02	08	03	00	94.99	-4.98	1007.2	27.9	77	30	5.3	24.7	25042	6	Cu, Cb, Cı, Cs
RS-038	02	08	03	03	95.00	-4.99	1008.2	28.8	76	30	3.0	33.6	23117	3	Cu
RS-039	02	08	03	06	95.28	-5.10	1008.3	28.3	77	84	4.4	90.7	17079	1	Cu, Cb, Ac
RS-040	02	08	03	09	96.01	-5.32	1007.2	27.5	78	84	5.0	23.4	25351	8	Cu, Cb, As
RS-041	02	08	03	12	96.76	-5.58	1007.6	27.9	71	40	1.5	25.6	24821	6	Sc, Cb, Ac
RS-042	02	08	03	15	97.48	-5.84	1010.0	28.0	74	56	3.6	47.3	21009	1	Unknown
RS-043	02	08	03	18	98.14	-6.07	1009.5	27.3	79	102	5.3	51.1	20520	1	Cu
*RS-044	02	08	03	21	98.88	-6.36	1008.3	27.7	73	95	7.5	33.8	23038	1	Cu
*RS-045	02	08	04	00	99.60	-6.63	1009.2	24.5	89	170	9.2	22.1	25725	10	Cu, Cb, As
RS-046	02	08	04	03	100.21	-6.80	1011.1	28.4	75	127	11.4	42.9	21619	7	Sc, Ac
RS-047	02	08	04	06	100.84	-7.04	1010.2	28.0	75	127	10.5	26.8	24555	8	Cu, As
RS-048	02	08	04	09	101.56	-7.30	1008.2	27.9	71	136	10.0	29.5	23938		Unknown
RS-049	02	08	04	12	102.11	-7.49	1009.4	27.4	72	120	10.9	33.1	23204	8	Sc, Cu
RS-050	02	08	04	15	102.77	-7.71	1011.1	27.0	71	129	9.5	25.8	24784	3	Cu
RS-051	02	08	04	18	103.35	-7.93	1011.5	26.5	67	132	9.6	30.4	23758	1	Cu
RS-052	02	08	04	21	103.99	-8.14	1010.9	26.3	69	125	10.9	33.0	23240	2	Cu
RS-053	02	08	05	00	104.59	-8.36	1010.2	26.4	70	124	12.1	41.2	21818	5	Cu, Cb, Ci
RS-054	02	08	05	06	105.91	-8.83	1010.2	26.4	72	116	10.6	20.7	26172	3	Cu, Ac
RS-055	02	08	05	12	107.17	-9.26	1010.8	26.3	68	107	9.0	29.3	23980	2	Cu
RS-056	02	08	05	18	108.49	-9.73	1011.8	26.3	70	109	11.2	40.6	21941	1	Cu
RS-057	02	08	06	00	109.84	-10.19	1011.2	25.7	69	100	9.1	34.8	22860	3	Cu
<u>RS-</u> 058	02	08	14	00	131.93	12.64	1004.2	25.4	94	305	4.0	49.7	20757	10	Cu, Cb, As
RS-059	02	08	14	06	132.52	14.07	1001.2	26.2	97	208	4.8	24.4	25172	8	Cu, Cb, As
RS-060	02	08	14	12	133.15	15.55	1002.6	28.9	77	95	6.1	80.7	17863	8	Cu, Ac, As
RS-061	02	08	14	18	133.80	17.02	1001.2	28.6	77	94	4.2	110.1	16043	—	Unknown
RS-062	02	08	15	00	134.39	18.40	1003.2	28.8	75	60	4.9	39.4	22203	3	Cu, Ci

*: Calibrated with Vaisala Ground Check Kit GC23

Fig. 7.7-2 Time-height cross sections of temperature (upper panel), zonal wind component (middle panel), and meridional wind component (lower panel), respectively.

Fig. 7.7-2 (continued) Time-height cross sections of relative humidity (upper panel), specific humidity (middle panel), and equivalent potential temperature (lower panel), respectively.

Fig. 7.7-3 Vertical profiles of temperature (red line) and dew-point temperature (blue line), respectively, described on the emagram. Wind direction and speed are indicated by vector on the right hand of each panel.

Fig. 7.7-3 (continued)

Fig. 7.7-3 (continued)

7.8 Observation of Rainfall Drop Size Distribution

(1) Personnel

Shuichi Mori (FORSGC): Principal Investigator Yasutaka Imai (GODI) Shin-Ya Iwamida (GODI) Wataru Tokunaga (GODI)

(2) Objective

Rainfall Drop Size Distribution (DSD) data is obtained to study rainfall characteristics, that vary with its originated precipitating cloud system, i.e., clouds type (convective and stratiform) and development stage of precipitating clouds system (developing, mature, and dissipating). Both temporal and spatial variations of DSD characteristics are also interested over the Indian Ocean during the Indian monsoon season.

(3) Method

A Joss type disdrometer (Distromet RD-80) is installed over the Compass Deck of the vessel, with an optical rain gauge (Sato Keiryoki Mfg. Co., Ltd. No. 7980-S-43) for calibration of rainfall amount. The range of drop diameters that can be measured spans from 0.3 mm to 5 mm. DSD data are collected then recorded every one minute with 20 drop size classes.

(4) Preliminary results

Continuous observation of DSD has been carried out, however, we found the data were contaminated with noise caused by both vibration of vessel body and strong wind over the deck in the cruise. The detailed analyses with other obtained datasets are in future work because the data have to be examined with quality check after the cruise.

(5) Data archive

Original samples will be preserved at Frontier Observational Research System for Global Change (FORSGC). Both inventory information and analyzed dataset will be submitted to JAMSTEC Data Management Office (DMO).