## MIRAI Cruise Report MR12-E01



20 Feb. - 3 Mar. 2012
Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

## Acknowledgements

We would like to thank all ship officers and crew of R/V MIRAI and a marine technician of GODI, MWJ and NME for their supports during our cruise. We also thank all support stuff of cruise support division for arranging of this cruise. This cruise was supported by research program titled "The Survey and Observation for Earthquakes and Tsunamis off the Pacific Coast of Tohoku" by MEXT.

## MR12-E01 Cruise Report Contents

1. Cruise information and summary of MR12-E01 cruise
2. List of Participant

Scientists
Marine Technician
Ship Crew
3. Ship Logs
4. Istruments
4.1 Shipboard observation system
4.2 Piston coring
4.3 BBOBS
4.4 OBS
5. Operation report and preliminary results
5.1 Shipboard data
5.2 Piston coring
5.3 BBOBS and OBS deployment

## 1. Cruise information and summary of MR12-E01 cruise

## Cruise information

Cruise number
Ship name
Chief scientist Date
Ports of call
Research Area

MR12-E01
R/V MIRAI
Takafumi Kasaya (IFREE, JAMSTEC)
20 Feb. 2012 - 3 Mar. 2012
Sekinehama (JAMSTEC) - Yokohama
Fig. 1


Fig. Ship track of this cruise.

## Cruise summary

On 11 March 2011, Tohoku, northeast Japan, experienced a great earthquake (Mw 9.0, Mt 9.1) called the 2011 off the Pacific coast of Tohoku earthquake. Seismic and tsunami inversion analyses have shown that tsunami waves with a maximum run-up height of 38 m were generated after the main shock by topographic changes on the seafloor in the toe region of the Japan Trench slope off Sendai. These inversion analyses (Maeda et al., 2011) and bathymetric surveys (Fujiwara et al., 2011) indicate that the toe region slipped about 50 m along the thrust. If the thrust fault rapidly deformed the seafloor, as suggested by Ide et al. (2011), the basic theory of tsunami-genesis would predict the generation of tsunamis all along the axis of the Japan Trench.

To investigate many phenomena related with the earthquake, research program "The Survey and Observation for Earthquakes and Tsunamis off the Pacific Coast of Tohoku" supported by MEXT has been started in FY 2011.

In this cruise, we carried out bathymetric and geophysical surveys, a piston coring around the Japan Trench axis and two type OBSs deployments. The most prominent result is supplied by a piston coring around the Japan Trench at 38 degrees North. We succeed to obtain six piston core samples with pilot core samples. Longest sample was about 9.5 meters using 10 meters piston coring system. According to the onboard analysis, we could observe turbidite layer, some mud and sand layers related with some past earthquakes and volcanic arch layers. Using the collected bathymetrical data around the Japan Trench area at from 37.5 to 39 degrees North. Preliminary bathymetry map was obtained after velocity corrections and outlier removal operation on board. Moreover, we could set up six Broad band OBSs and eight short period OBSs off the Boso peninsula.

## 2. List of participants

Onboard Scientists
Chief Scientist (IFREE / JAMSTEC)
Scientist (GSJ / AIST)
Scientist (Chiba University, JAMSTEC)
Marine Technicians
Chief Technician (Nippon Marine Enterprises Ltd)
Technician (Nippon Marine Enterprises Ltd)
Technician (Nippon Marine Enterprises Ltd)
Chief Technician (Marine Works Japan Ltd)
Chief Technician (Global Ocean Development Inc)
Technician (Global Ocean Development Inc)
R/V MIRAI Crews
Master
Chief Officer
$1^{\text {st }}$ Officer
2nd Officer
3rd Officer
Chief Engineer
1st Engineer
2nd Engineer
3rd Engineer
Technical Officer
Boatswain
Able Seaman
Able Seaman
Able Seaman
Ordinary Seaman
No. 1 Oiler
Oiler
Oiler
Oiler
Ordinary Oiler
Ordinary Oiler
Chief Steward
Cook
Cook
Cook
Steward

Takafumi Kasaya
Toshiya Kanamatsu
Hiroko Sugioka
Aki Ito
Koichiro Obana
Tomoyuki Sato
Kazuno Arai

Masato Sugano
Ikumasa Terada
Toshinori Saijo
Kazuhiro Yoshida
Naotaka Togashi
Yasushi Hashimoto
Tetsuharu Iino
Katsuhisa Maeno
Toshio Furuta

Yasushi Ishioka
Takeshi Isohi
Hajime Matsuo
Haruka Wakui
Hiroki Kobayashi
Hiroyuki Suzuki
Hiroyuki Tohken
Keisuke Nakamura
Yusuke Kimoto
Ryo Oyama
Kazuyoshi Kudo
Takeharu Aisaka
Masashige Okada
Shuji Komata
Hideaki Tamotsu
Hideyuki Okubo
Ginta Ogaki
Masaya Tanikawa
Hajime Ikawa
Shohei Uehara
Tomohiro Shimada
Sadanori Honda
Yoshihiro Sugimoto
Kazumi Yamashita
Daisuke Taniguchi
Keisuke Yoshida
Hiromi Ikuta
Hitoshi Ota
Tatsuya Hamabe
Tamotsu Uemura
Sakae Hoshikuma
Shohei Maruyama
3. Ship Log

| Date | Time | Description | Position, depth |
| :---: | :---: | :---: | :---: |
| 20-Feb-12 | 9:00 | Depart from the Sekinehama port |  |
|  | 20:40 | Start MBES, SBP survey |  |
|  | 21:07 | XBT | $\begin{aligned} & \hline 39-22.93 \mathrm{~N}, 142^{-} \\ & 57.35 \mathrm{E} \end{aligned}$ |
| 21-Feb-12 | 4:37 | XBT | $\begin{aligned} & 38-22.31 \mathrm{~N}, 144^{-} \\ & 05.22 \mathrm{E} \end{aligned}$ |
|  | 8:12 | Arrive at PC01 site (Camera 1) |  |
|  |  | Finish MBES, SBP survey |  |
|  | 9:32 | Launch 5 m piston corer (MR12-E01 PC01) |  |
|  | 11:56 | Piston corer on bottom | $\begin{aligned} & \hline 38-05.19 \mathrm{~N}, 143^{-} \\ & 59.45 \mathrm{E}, 7,546 \mathrm{~m} \\ & \hline \end{aligned}$ |
|  | 14:36 | Piston corer on deck |  |
|  |  | Start MBES, SBP survey |  |
| 22-Feb-12 | 5:12 | Arrive at PC02 site (Camera 2) |  |
|  |  | Finish MBES, SBP survey |  |
|  | 6:45 | Launch 5 m piston corer (MR12-E01 PC02) |  |
|  | 8:48 | Piston corer on bottom | $\begin{aligned} & 38-05.11 \mathrm{~N}, \\ & 144.02 .63 \mathrm{E}, 7,249 \mathrm{~m} \\ & \hline \end{aligned}$ |
|  | 11:19 | Piston corer on deck |  |
|  | 12:00 | Arrive at PC03 site (North 3) |  |
|  | 12:55 | Launch 10 m piston corer (MR12-E01 PC03) |  |
|  | 15:14 | Piston corer on bottom | $\begin{aligned} & 38-06.09 \mathrm{~N}, 143- \\ & 59.99 \mathrm{E}, 7,541 \mathrm{~m} \end{aligned}$ |
|  | 17:58 | Piston corer on deck |  |
|  | 18:00 | Start MBES, SBP survey |  |
|  |  |  |  |
| 23-Feb-12 | 2:47 | Finish MBES, SBP survey |  |
|  | 3:30 | Com'ced drifting |  |
|  | 6:48 | Completed drifting |  |
|  | 7:38 | Start MBES, SBP survey |  |
|  | 20:24 | Finish MBES, SBP survey |  |
|  |  | Com'ced drifting |  |
|  |  |  |  |
| 24-Feb-12 | 15:00 | Completed drifting |  |
|  | 15:52 | Start MBES, SBP survey |  |
|  | 16:32 | Finish MBES, SBP survey |  |
|  | 17:53 | Start MBES, SBP survey |  |
|  |  |  |  |
| 25-Feb-12 | 5:00 | Finish MBES, SBP survey |  |
|  |  | Com'ced drifting |  |
|  | 8:30 | Completed drifting |  |
|  |  | Start MBES, SBP survey |  |


|  | $14: 24$ | Finish MBES, SBP survey |  |
| :---: | :---: | :--- | :--- |
|  |  | Com'ced drifting |  |
|  | $19: 00$ | Completed drifting |  |
|  | $19: 01$ | Start MBES, SBP survey |  |
|  |  |  |  |
| 26 -Feb-12 | $0: 18$ | Finish MBES, SBP survey |  |
|  |  | Com'ced drifting |  |
|  | $8: 18$ | Completed drifting |  |
|  |  | Start MBES, SBP survey |  |
|  | 27 -Feb-12 | $2: 36$ | Arrive at BBOBS1 site |
|  |  | Finish MBES, SBP survey |  |
|  | $2: 38$ | Com'ced drifting | XBT |


|  | 8:53 | Piston corer on bottom | $\begin{aligned} & 38-04.50 \mathrm{~N}, 143-59.58, \\ & 7,486 \mathrm{~m} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | 11:15 | Piston corer on deck |  |
|  | 11:30 | Arrive at PC06 site (Front 9) |  |
|  | 12:08 | Launch 10 m piston corer (MR12-E01 PC06) |  |
|  | 14:25 | Piston corer on bottom | $\begin{aligned} & 38-02.97 \mathrm{~N}, 144^{-} \\ & 00.57 \mathrm{E}, 7,541 \mathrm{~m} \end{aligned}$ |
|  | 16:52 | Piston corer on deck |  |
|  | 17:06 | Tow cesium magnetometer |  |
|  | 17:30 | Start MBES, SBP survey |  |
|  |  |  |  |
| 01-Mar-12 | 15:15 | Start calibration for the magnetometer | $\begin{aligned} & 36-59.06 \mathrm{~N}, 142^{-} \\ & 53.97 \mathrm{E} \end{aligned}$ |
|  | 16:09 | Finish calibration |  |
|  | 16:36 | Recover cesium magnetometer |  |
| 02-Mar-12 | 5:18 | Arrive at BBOBS2 site |  |
|  |  | Finish MBES, SBP survey |  |
|  | 5:22 | Start calibration of BBOBS4 position |  |
|  | 6:18 | Finish calibration |  |
|  |  | Start MBES, SBP survey |  |
|  | 10:42 | Arrive at BBOBS3 site |  |
|  | 10:46 | Deploy BBOBS3 | $\begin{aligned} & \hline 34-26.99 \mathrm{~N}, 141- \\ & 36.96 \mathrm{E} \\ & \hline \end{aligned}$ |
|  | 12:00 | Start MBES, SBP survey |  |
|  | 13:30 | Arrive at BBOBS5 site |  |
|  | 13:37 | Deploy BBOBS5 | $\begin{aligned} & 34-42.60 \mathrm{~N}, 141^{-} \\ & 26.27 \mathrm{E} \end{aligned}$ |
|  | 14:36 | Start MBES, SBP survey |  |
|  | 15:42 | Arrive at BBOBS6 site |  |
|  |  | Finish MBES, SBP survey |  |
|  | 15:50 | Deploy BBOBS6 | $\begin{aligned} & 34-50.28 \mathrm{~N}, 141^{-} \\ & 15.30 \mathrm{E} \end{aligned}$ |
|  | 16:42 | Start MBES, SBP survey |  |
|  | 17:48 | Arrive at BBOBS4 site |  |
|  | 17:48 | Start calibration of BBOBS4 position |  |
|  | 18:24 | Finish calibration |  |
|  | 18:30 | Finish MBES, SBP survey |  |
|  |  |  |  |
| 03-Mar-12 | 9:00 | Arrive at Yokohama port |  |

## 4. Istruments

### 4.1 Shipboard observation system

### 4.1.1 Bathymetric survey

R/V MIRAI is equipped with a Multi narrow Beam Echo Sounding system (MBES), SEABEAM 2112 (SeaBeam Instruments Inc.). The objective of MBES is collecting continuous bathymetric data along ship's track to make a contribution to geological and geophysical investigations and global datasets. The system is fully real time motion-compensated to guarantee full coverage even under severe environmental conditions.

Table 4.1.1.1 shows system configuration and performance of SEABEAM 2112.004 and sub-bottom profiler system.

SEABEAM 2112 (12 kHz system)
Frequency: 12 kHz
Transmit beam width: 2 degree
Transmit power: $\quad 20 \mathrm{~kW}$
Transmit pulse length: 3 to 20 msec .
Depth range: 100 to $11,000 \mathrm{~m}$
Beam spacing: 1 degree athwart ship
Swath width: 150 degree (max)
120 degree to $4,500 \mathrm{~m}$
100 degree to $6,000 \mathrm{~m}$
90 degree to $11,000 \mathrm{~m}$
Depth accuracy: Within $<0.5 \%$ of depth or $+/-1 \mathrm{~m}$, whichever is greater, over the entire swath.
(Nadir beam has greater accuracy;
typically within $<0.2 \%$ of depth or $+/-1 \mathrm{~m}$, whichever is greater)
Sub-bottom profiler system
Frequency; 4 kHz
Beam width; $45^{\circ} \times 5^{\circ}$
Profiling limit; 75 mbsf
Number of pixels; 1000 pix. each for port and stbd

### 4.1.2 Gravity survey

The local gravity is an important parameter in geophysics and geodesy. We collected gravity data at the sea surface. A LaCoste and Romberg air-sea gravity meter S-116 (Micro-G LaCoste, LLC) is equipped onboard R/V Mirai. To convert the relative gravity to absolute one, we measured gravity, using portable gravity meter (CG-5, Scintrex), at Sekinehama as the reference point.

### 4.1.3 Geomagnetic survey <br> Three-component magnetometer

Measurement of magnetic force on the sea is required for the geophysical investigations of marine magnetic anomaly caused by magnetization in upper crustal structure. A shipboard threecomponent magnetometer system (Tierra Tecnica SFG1214) is equipped on-board R/V MIRAI. Three-axes flux-gate sensors with ring-cored coils are fixed on the fore mast. Outputs from the sensors are digitized by a 20 -bit $\mathrm{A} / \mathrm{D}$ converter ( $1 \mathrm{nT} / \mathrm{LSB}$ ), and sampled at 8 times per second. Ship's heading, pitch, and roll are measured by the Inertial Navigation System (INS) for controlling attitude of a Doppler radar. Ship's position (GPS) and speed data are taken from LAN every second.

Table 4.1.3.1 System configuration of MIRAI three component magnetometer system.
Tierra Tecnica SFG1214
SystemRing core: Fluxgate Type
Number of Component: Directly 3 axes

Cable Length: $\quad 50 \mathrm{~m}$
Sensor Dimension: $\quad \varphi 280 \times 130 \mathrm{H} \mathrm{mm}$
Measurement Range: $\pm 100,000 \mathrm{nT}$
Resolution: 1 nT

## Cesium magnetometer

We measured total geomagnetic field using a cesium marine magnetometer (Geometrics Inc., G882) and recorded by G-882 data logger (Clovertech Co., Ver.1.0.0). The G-882 magnetometer uses an optically pumped Cesium-vapor atomic resonance system. The sensor fish towed 500 m behind the vessel to minimize the effects of the ship's magnetic field. Table 6.6.2-1 shows system configuration of MIRAI cesium magnetometer system.

Table 4.1.3.2 System configuration of MIRAI cesium magnetometer system.
Geometrics G-882 system
Dynamic operating range: 20,000 to $100,000 \mathrm{nT}$
Absolute accuracy: $< \pm 2 \mathrm{nT}$ throughout range
Setting: Cycle rate; 0.1 sec
Sensitivity: $\quad 0.001265 \mathrm{nT}$ at a 0.1 second cycle rate
Sampling rate: 1 sec

### 4.2 Piston coring

The piston corer system (PC), which was utilized in this cruise, consists of 0.9 ton-weight, $5 \mathrm{~m}-$ long duralumin barrel(s) with polycarbonate liner tube(s) and a pilot core sampler. The inside diameter (I.D.) of polycarbonate liner tube is 74 mm . The total weight of the system is approximately 1.0 ton. The total barrel length ( 5 m or 10 m ) was decided based on a geological setting of site. For a pilot core sampler, we used a " 74 mm diameter-type pilot corer".

In this cruise, we used two types of piston, Normal type (stainless steel body) and Brass body type. Both of pistons are composing of two O-rings (size: P63). The normal type was used for PC01, 03 and 05 , and the brass body type was used for PC02, 04 and 06.

Two transponders were set to a winch wire in order to monitor the PC position in water. One is a transponder for $11,000 \mathrm{~m}$ water depth with a titan pressure tight case made by the System-Giken ltd., which was set it 50 m or 200 m above the PC system. Another is a glass buoy type transponder for $6,000 \mathrm{~m}$ water depth made by the Benthos ltd., which was set 3000 m above the PC system (Fig.4.2.1).


Fig. 4.2.1 Piston coring system in this cruise.

## Instruments and methods

## Winch operation

When we started lowering PC, a speed of wire out was set to be $0.2 \mathrm{~m} / \mathrm{s}$., and then gradually increased to the maximum of $1.0 \mathrm{~m} / \mathrm{s}$. We stopped wire outing at a depth about 100 m above the seafloor, and waited about 3 minutes to reduce some pendulum motion of the system. Then we restarted wire outing at a speed of $0.3 \mathrm{~m} / \mathrm{s}$. When the system touched the bottom, wire tension abruptly decreases by the loss of the PC weight. Immediately after confirmation that the PC hit the bottom, wire out was stopped and winding of the wire was started at a speed of $0.3 \mathrm{~m} / \mathrm{s}$., until the tension gauge indicates that the PC was liftezd off the bottom. After leaving the bottom, winch wire was wound in at the maximum speed.

## MSCL measurements

We measured physical properties of cores using a GEOTEK multi-sensor core logger (MSCL). MSCL has three sensors, which are gamma-ray attenuation (GRA), P-wave velocity (PWV), and magnetic susceptibility (MS). Measurements on every 2 cm on whole round sections were carried out.

GRA was measured by a gamma ray source and detector. These mounted across the core on a sensor stand that aligns them with the center of the core. A narrow beam of gamma ray is emitted by Caesium-137 $\left({ }^{137} \mathrm{Cs}\right)$ with energies principally at 0.662 MeV . Also, the photon of gamma ray is collimated through 5 mm diameter in rotating shutter at the front of the housing of ${ }^{137} \mathrm{Cs}$. The photon passes through the core and is detected on the other side. The detector comprises a scintillator (a 2 " diameter and 2 " thick NaI crystal).

GRA calibration assumes a two-phase system model for sediments, where the two phases are the minerals and the interstitial water. Aluminum has an attenuation coefficient similar to common minerals and is used as the mineral phase standard. Pure water is used as the interstitial-water phase standard. The actual standard consists of a telescoping aluminum rob (five elements of varying thickness) mounted in a piece of core liner and filled with distilled water. GRA was measured with 10 seconds counting.

PWV was measured two oil filled Acoustic Rolling Contact (ARC) transducers, which are mounted on the center sensor stand with gamma system. These transducers measure the velocity of P -Wave through the core and the P -Wave pulse frequency.

MS was measured using Bartington loop sensor that has an internal diameter of 100 mm installed in MSCL. An oscillator circuit in the sensor produces a low intensity (approx. $80 \mathrm{~A} / \mathrm{m}$ RMS) non-saturating, alternating magnetic field ( 0.565 kHz ). MS was measured with 1 second.

## Core splitting

Whole round sections are longitudinally cut into working and archive halves by a splitting devise and a stainless wire. After that, it marks with the white and blue pins were put in a side of halved sections with 2 cm interval.

## CCR measurements

Core color reference (CCR) was measured by using the Konica Minolta CM-700d (CM-700d) reference photo spectrometer using 400 to 700 nm in wavelengths. This is a compact and hand-held instrument, and can measure spectral reflectance of sediment surface with a scope of 8 mm diameter. To ensure accuracy, the CM-700d was used with a double-beam feedback system, monitoring the illumination on the specimen at the time of measurement and automatically compensating for any changes in the intensity or spectral distribution of the light. The CM-700d has a switch that allows the specular component to be include (SCI) or excluded (SCE). We chose setting the switch to SCE. The SCE setting is the recommended mode of operation for sediments in which the light reflected at a certain angle (angle of specular reflection) is trapped and absorbed at the light trap position on the integration sphere.

Calibrations are zero calibration and white calibration before the measurement of core samples. Zero calibration is carried out into the air. White calibration is carried out using the white calibration piece (CM-700d standard accessories) without crystal clear polyethylene wrap. The color of the split sediment (Archive half core) was measured on every $2-\mathrm{cm}$ through crystal clear polyethylene wrap.

There are different systems to quantify the color reference for soil and sediment measurements, the most common is the L*a*b* system, also referred to as the CIE (Commision International d'Eclairage) LAB system. It can be visualized as a cylindrical coordinate system in which the axis of the cylinder is the lightness variable $\mathrm{L}^{*}$,ranging from $0 \%$ to $100 \%$, and the radii are the chromaticity variables a* and b*. Variable a* is the green (negative) to red (positive) axis, and variable b* is the blue (negative) to yellow (positive) axis. Spectral data can be used to estimate the abundance of certain components of sediments.

Measurement parameters are displayed Table 4-2-1.
Table 4-2-1. Measurement parameters.

| Instrument | Konica Minolta Photospectrometer CM-700d |
| :--- | :--- |
| Software | Spectra Magic NX CM-S100w Ver.2.02.0002 |
| Illuminant | $\mathrm{d} / 8$ (SCE) |
| Light source | $\mathrm{D}_{65}$ |
| Viewing angle | 10 degree |
| Color system | $\mathrm{L}^{*} \mathrm{a}^{*} \mathrm{~b}^{*}$ system |

## Core Photographs

After splitting each section of piston and pilot cores into working and archive halves, sectional photographs of working were taken using a single-lens reflex digital camera (Body: Nikon D90 / Lens: Nikon AF200m Nikkor $24-50 \mathrm{~mm}$ ). When using the digital camera, shutter speed was $1 / 13$ ~ $1 / 40 \mathrm{sec}$, F-number was $5.6 \sim 10$, sensitivity was ISO 200. File format of raw data is Exif-JPEG. Details for settings were included on property of each file.

### 4.3 BBOBS

The Broadband Ocean Bottom Seismometer (BBOBS) has been developed at the Earthquake Research Institute (ERI) of the University of Tokyo since 1999 based on the Ocean Bottom Seismometer (OBS) with a geophone. A broadband sensor (CMG-3T for OBS, Guralp, UK) is installed on an active leveling unit developed at the ERI. The data is digitized by a 24 bit ADC with 200 Hz , and recorded on 2.5 inch HDDs with the total capacity of 80 GB . These and about 70 Li cells ( DD size) are fixed inside of a titanium sphere housing ( $\mathrm{D}=65 \mathrm{~cm}$ ). The BBOBS is deployed by a free fall from the sea surface and pop up by its buoyancy in the recovery. The anchor is released by a forced electrolytic corrosion of two thin titanium plates after receiving a command of an acoustic transponder from the ship. The differential pressure gauge (DPG) is often equipped with the BBOBS.

Table 4.3.1 BBOBS specifications

| BBOBS Outside |  |
| :---: | :---: |
| Size | $1 \mathrm{~m} \times 1 \mathrm{mx} 0.7 \mathrm{~m}$ (Width x Depth x Height) |
| Weight in air | 240 kg (deployment), 150kg (recovery) |
| Pressure case | Titanium sphere ( $\mathrm{D}=65 \mathrm{~cm}$, Buoyancy $=70 \mathrm{~kg}$, Made in Russia) |
| Releasing mechanism | Forced electric corrosion of two thin Ti plates ( $\mathrm{t}=0.4 \mathrm{~mm}$ ) |
| Recovery control | Acoustic transponder system with recorder communication |
| Recovery aids | Radio beacon ( 160 MHz band) and Xenon flasher with light switch |
| BBOBS Inside |  |
| Sensor | CMG-3T for OBS (Guralp, UK) sensor on the active leveling unit |
|  | Period: 360s $\sim 100 \mathrm{~Hz}$ |
|  | Sensitivity: $1500 \mathrm{~V} / \mathrm{m} / \mathrm{s}$ |
|  | leveling works up to 20 degree in tilting |
| Analog unit | gain: 0 dB |
|  | LPF: 32 Hz (4th-order Butterworth) |
| A/D | 24bit (0 $\sim 5 \mathrm{~V}$ ) 200 Hz sampling |
|  | Win format like compression |
| Data media | Two 2.5inch 40GB SCSI HDDs |
| RTC | 0.5ppm, backuped by two |


| Power supply | DD-size lithium cells (Electro Chem, 3.9V, <br> $30 \mathrm{Ah})$ |
| :--- | :--- |

Sensor: 8 parallels (15.6V, 240Ah)
Recorder: 12 parallels ( $11.7 \mathrm{~V}, 360 \mathrm{Ah}$ )
DPG: 3 parallels (11.7V, 90Ah)


Fig. 4.3.1 The appearance (upper) and the inside (lower) of the BBOBS. The differential pressure gauge ( DPG ) was equipped with the BBOBS in the upper figure

### 4.4 OBS

The Ocean Bottom Seismometer (OBS) is equipped with a three-component $4.5-\mathrm{Hz}$ short-period seismometer and a hydrophone. The data is digitized by a 24 bit ADC with 100 Hz . The OBS is deployed by a free fall from the sea surface and pop up by its buoyancy in the recovery. The anchor is released by a forced electrolytic corrosion of a thin stainless steel wire after receiving a command of an acoustic transponder from the ship.

Table 4.4.1 OBS specifications

| OCEAN-BOTTOM SEISMOMETER |  |
| :---: | :---: |
| Type | TOKYO SOKUSHIN TOBS-24N |
| Number of Channel | 4 |
| ch1 | Vertical sensor |
| ch2 / ch3 | Horizontal sensor (two directions) |
| ch4 | Hydrophone |
| SENSOR |  |
| Type | Geo Space Technologies HS-1LT |
| Sensitivity | - *1 |
| Damping | 80\% |
| Natural Frequency | 4.5 Hz |
| Frequency Tolerance | $\pm 0.75 \mathrm{~Hz}$ |
| Coil Resistance | $1460 \Omega$ |
| Coil Current Damping | $1910 \Omega$ |
| HYDROPHONE |  |
| Type - A | HIGH TECH HTI-90-DY |
| Sensitivity | -170 dB re: $1 \mathrm{~V} / \mathrm{uPa}$ |
| Frequency Response | $2-15 \mathrm{kHz}$ |
| RECORDER |  |
| Type | TOKYO SOKUSHIN DTC6730 |
| Sample Rate | 10.0 msec |
| A/D Converter | 24 Bit |
| Frequency Response |  |
| Pre Amplifier Gain |  |
| ch $1 / \mathrm{ch} 2 / \mathrm{ch} 3 / \mathrm{ch} 4$ | 40 / 40 / 40 / 40 dB |
| Digital Filter | Linear Phase |
| Width of quantization step | $0.336 \times 10^{-3}$ |
| Recording Media | SSD 64GB |
| Clock Type | MCXO |
| Clock Frequency | $32.768 \mathrm{kHz}(3.2768 \mathrm{MHz})$ |
| Clock Accuracy | $\pm 5^{*} 10^{-8} \mathrm{sec}$ |
| Time Reference | GPS |
| *1 | Damping 70\%:0.78 V/inch/sec Open $\quad: 1.22 \mathrm{~V} / \mathrm{inch} / \mathrm{sec}$ |



Fig. 4.4.1 The appearance of the OBS

## 5．Operation report and preliminary results

## 5．1 Shipboard data

The＂SEABEAM 21112＂on R／V MIRAI was used for bathymetry mapping during the MR12－E01 cruise from 20th February to 2rd March 2012．Table 5．1．1 shows the information of bathymetric survey lines．

To get accurate sound velocity of water column for ray－path correction of acoustic multibeam，we used Surface Sound Velocimeter（SSV）data to get the sea surface（ 6.2 m ）sound velocity，and the deeper depth sound velocity profiles were calculated by temperature and salinity profiles from CTD or XCTD or ARGO data by the equation in Del Grosso（1974）during the cruise．Table 5．1．2 shows the list of a XBT data obtained in this cruise．We also carried out the subsurface structure acquisition using a sub－bottom profiler（SBP）in all survey line．

Moreover，we measured geomagnetic field using a three－component magnetometer，gravity data through the MR12－E01 cruise．A geomagnetic total force observation only carried out at $1^{\text {st }}$ ，May．

Table 5．1．1 Survey line list of this cruise．

| Line |  | Lat | Long |
| :---: | :---: | :---: | :---: |
| Survey（1） | start | 39－20．35 | 143－00．56 |
| Survey（1） | wp | 38－34．24 | 144－00．54 |
| Survey（1） | end | 38－22．13 | 144－05．69 |
| Survey（2） | start | 38－21．87 | 144－05．74 |
| Survey（2） | Wp | 38－00．00 | 144－00．95 |
| Survey（2） | end | 37－57．82 | 143－57．92 |
| Survey（3） | start | 37－58．12 | 143－58．94 |
| Survey（3） | end | 38－05．14 | 144－00．71 |
| Survey（4） | start | 38－05．03 | 143－50．08 |
| Survey（4） | end | 38－04．99 | 144－04．98 |
| Survey（5） | start | 38－04．83 | 144－05．43 |
| Survey（5） | end | 37－57．47 | 144－22．80 |
| Survey（6） | start | 37－58．20 | 144－23．94 |
| Survey（6） | end | 38－45．76 | 144－32．03 |
| Survey（7） | start | 38－46．15 | 144－31．51 |
| Survey（7） | end | 38－46．00 | 144－24．23 |
| Survey（8） | start | 38－45．51 | 144－23．81 |
| Survey（8） | end | 38－03．31 | 144－16．67 |
| Survey（9） | start | 38－06．11 | 144－09．13 |
| Survey（9） | end | 38－28．41 | 144－13．80 |
| Survey（10） | start | 38－28．22 | 144－13．78 |
| Survey（10） | end | 39－03．85 | 144－21．36 |
| Survey（12） | start | 39－05．88 | 144－40．13 |
| Survey（12） | end | 39－14．53 | 143－55．12 |
| Survey（13） | start | 39－21．09 | 143－59．51 |
| Survey（13） | end | 39－14．29 | 144－39．62 |
| Survey（14） | start | 39－13．40 | 144－39．40 |
| Survey（14） | end | 38－49．30 | 144－09．26 |
| Survey（15） | start | 38－48．80 | 144－09．12 |
| Survey（15） | end | 38－00．77 | 144－59．99 |
| Survey（16） | start | 38－00．99 | 144－01．50 |
| Survey（16） | end | 37－29．64 | 143－47．11 |
| 南航 toOBS（17） | start | 37－24．83 | 143－26．31 |
| 南航 toOBS（17） | end | 35－18．94 | 141－32．02 |
| OBS | start | 35－19．52 | 141－33．46 |


| OBS | wp | 35－14．93 | 141－37．31 |
| :---: | :---: | :---: | :---: |
| OBS | wp | 35－13．65 | 141－48．67 |
| OBS | wp | 35－07．39 | 141－53．16 |
| OBS | wp | 35－03．47 | 141－45．17 |
| OBS | wp | 35－05．15 | 141－35．92 |
| OBS | wp | 35－09．46 | 141－30．33 |
| OBS | wp | 35－00．48 | 141－24．67 |
| OBS | end | 35－02．54 | 141－24．40 |
| 北航 toPiston（18） | start | 35－03．14 | 141－24．91 |
| 北航 toPiston（18） | wp | 37－29．74 | 143－42．75 |
| 北航 toPiston（18） | end | 37－59．29 | 143－58．93 |
| ピストンから移動（19） | start | 38－02．10 | 144－03．80 |
| ピストンから移動（19） | end | 38－00．00 | 144－29．25 |
| Survey（20） | start | 37－59．46 | 144－29．77 |
| Survey（20） | end | 37－09．82 | 144－13．16 |
| Survey（21） | start | 37－09．57 | 144－12．74 |
| Survey（21） | end | 37－09．51 | 144－05．72 |
| Survey（22） | start | 37－10．09 | 144－05．38 |
| Survey（22） | end | 37－40．25 | 144－15．15 |
| ピストンに移動（23） | start | 37－40．50 | 144－15．08 |
| ピストンに移動（23） | end | 38－00．71 | 144－02．00 |
| ピストンから移動（24） | start | 37－48．54 | 144－06．07 |
| ピストンから移動（24） | end | 37－40．00 | 144－08．05 |
| Survey（25） | start | 37－39．88 | 144－07．97 |
| Survey（25） | end | 36－59．40 | 143－51．63 |
| Survey（26） | start | 36－59．13 | 143－51．23 |
| Survey（26） | end | 36－59．13 | 143－43．27 |
| Survey（27） | start | 36－59．54 | 143－42．82 |
| Survey（27） | end | 37－27．55 | 143－53．28 |
| Survey（29） | start | 37－25．37 | 143－43．32 |
| Survey（29） | end | 36－59．74 | 143－33．89 |
| Survey（30） | start | 36－59．32 | 143－33．22 |
| Survey（30） | end | 36－59．02 | 143－26．94 |
| Survey（31） | start | 37－00．03 | 143－26．09 |
| Survey（31） | end | 37－32．17 | 143－30．07 |
| Survey（32） | start | 37－29．98 | 143－22．74 |
| Survey（32） | end | 36－59．97 | 142－54．92 |
| Survey（33） | start | 36－59．74 | 142－53．80 |
| Survey（33） | end | 37－00．01 | 143－24．77 |
| OBS へ南航（34） | start | 36－59．16 | 143－25．28 |
| OBS へ南航（34） | end | 35－08．29 | 141－52．65 |
| Survey（35） | start | 35－07．39 | 141－53．16 |
| Survey（35） | end | 34－33．61 | 141－39．59 |
| BBOBS05 へ移動（36） | start | 34－27．05 | 141－36．84 |
| BBOBS05 へ移動（36） | end | 34－42．42 | 141－26．19 |
| BBOBS06 へ移動（37） | start | 34－42．79 | 141－26．00 |
| BBOBS06 へ移動（37） | end | 34－50．11 | 141－15．28 |
| BBOBS04 へ移動（38） | start | 34－50．70 | 141－15．70 |
| BBOBS04 へ移動（38） | end | 34－59．91 | 141－25．18 |

Table 5.1.2 Sound velocity profile list.

| Time <br> [UTC] | SVP File | Source File | 適用 File <br> [sb*****.mb41] |
| ---: | :--- | :--- | :--- |
|  |  |  |  |
| $02: 35$ | $1108 \_39.4 n 145.9 \mathrm{e}$ _ctd_feb04 | - | 201202200236 |
| $12: 29$ | 12E01_39.4n143.0e_xbt_feb20 | 201202201206. XBT | 201202201229 |
| $19: 53$ | 12E01_38.4n144.1e_xbt_feb20 | $201202201936 . X B T$ | 201202201953 |
| $17: 35$ | 12E01_35.3n141.5e_xbt_feb26 | $201202261735 . X B T$ | 201202261753 |
| $01: 59$ | 12E01_38.4n144.1e_xbt_feb20 | - | 201202280159 |



Fig. 5.1.1 Compiled bathymetric map using the YK11-E06 cruise and this cruise data.

### 5.2 Piston coring

### 5.2.1 Operation

A deferential bathymetric study between before and after the earthquake revealed large coseismic displacements (up to 50 m horizontally) of the overriding plate, and a possible landsliding induced by the earthquake in the trench axis (Fujiwara et al., 2011). In such seafloor, we believe event deposits (e.g. slump, debris, or turbidite) should be formed, and they could be regarded as a proxy of mega-earthquake like 3.11 earthquake.
In order to characterize the sediments formed or disturbed by 3.11 earthquake, several sediment coring operations were conducted around a topographic high regarded as the landslide block in the deep trench axis (Figure 5.2.1.1, Table 5.2.1.1).


Figure 5.2.1.1: Location of six piston cores collected during "MR12-E01"
Table 5.2.1.1 Coring summary MR12-E01 cruise.
Table A Coring Smmary_MR12-E01 cruise

| Date (UTC) (yymmdd) | Core ID | Corer type* | Location | Lat. ( $\mathrm{TP}^{* * \text { ) }}$ | Lon. (TP**) | Lat. (Ship) | Lon. (Ship) | Deph <br> (m) | Conebamel length (m) | Tension $\max$. <br> (t) | Core length (cm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2012/2/21 | PC01 | Inner type PC | Off Sanrikn (Camera 1) | $38^{\circ} 05.1540{ }^{\prime} \mathrm{N}$ | 143 ${ }^{\circ} 59.4602 \mathrm{E}$ | $38^{\circ} 05.1879 \mathrm{~N}$ | $143{ }^{\circ} 59.4466 \mathrm{E}$ | 7546 | 5 | 8.0 | 440.9 |
|  | PL01 | 74 diam. corer |  |  |  |  |  |  | 0.7 |  | 54.0 |
| 2012/2/21 | PC02 | Inner type PC | Off Sannikn (Camera 2) | $38^{\circ} 05.1239 \mathrm{~N}$ | 14402.6097E | $38^{\circ} 05.1192 \mathrm{~N}$ | $144^{\circ} 02.6381 \mathrm{E}$ | 7,249 | 5 | 8.4 | 458.2 |
|  | PL02 | 74 diam. corer |  |  |  |  |  |  | 0.7 |  | 53.2 |
| 2012/2/22 | PC03 | Inner type PC | Off Sanrikn (North 3) | $38^{\circ} 05.9916 \mathrm{~N}$ | 143 ${ }^{\circ} 59.9781 \mathrm{E}$ | $38^{\circ} 06.0426 \mathrm{~N}$ | $143{ }^{\circ} 59.9913 \mathrm{E}$ | 7,541 | 10 | 8.0 | 948.6 |
|  | PL03 | 74 diam. corer |  |  |  |  |  |  | 0.7 |  | 98.0 |
| 2012/2/28 | PC04 | Inner type PC | Off Sanrikn (South 4) | $38^{\circ} 01.4348 \mathrm{~N}$ | 144*00.2359\% | $38^{\circ} 01.5168 \mathrm{~N}^{\prime}$ | $144^{\circ} 00.1446 \mathrm{E}$ | 7,554 | 10 | 8.3 | 961.1 |
|  | PL04 | 74 diam. corer |  |  |  |  |  |  | 0.7 |  | 75.0 |
| 2012/2/28 | PCOS | Inner type PC | Off Sanrikn (Top 10) | $38^{\circ} 04.4927 \mathrm{~N}$ | 143 ${ }^{\circ} 59.4269 \mathrm{E}$ | $38^{\circ} 04.5068{ }^{\prime}$ | 143 ${ }^{\circ} 59.5845 \mathrm{E}$ | 7517 | 5 | 8.0 | 469.7 |
|  | PL05 | 74 diam. corer |  |  |  |  |  |  | 0.7 |  | 86.0 |
| 2012/2/29 | PC06 | Inner type PC | Off Sanrikn (Front 9) | $38^{\circ} 03.0143 \mathrm{~N}$ | 144 ${ }^{\circ} 00.4309 \mathrm{E}$ | $38^{\circ} 02.9667 \mathrm{~N}$ | $144^{\circ} 00.5661 \mathrm{E}$ | 7,541 | 10 | 8.0 | 923.2 |
|  | PL06 | 74 diam. corer |  |  |  |  |  |  | 0.7 |  | 78.0 |

*Weight of the PC is 900 kg .
**"TP" is position by the transponder, PC01~PC03 are Glass buoy type above $3,000 \mathrm{~m}$ from PC, PC04-PC06 are Titan type above 200 m from PC.

### 5.2.2 Piston core samples

Piston core samples were collected at six sites at Japan Trench, northeast Japan using 5 m and 10 m piston-corer systems operated by Marine Work Japan Co. Ltd. The piston corer system has a pilot corer, so that a piston core sample and a pilot core sample were collected from one coring site. Sample names of the piston cores and pilot cores are MR12-E01 PC01, 02, 03, 04, 05, 06 and PL01, $02,03,04,05,06$ in this description.

The piston core and pilot core samples were processed as follow;

1) Cut the whole core into 1 m sections.
2) Measure core thickness, r-ray attenuation, P-wave velocity, magnetic susceptibility using Multi-Sensor Core Logger (MSCL) system, Geotek Ltd.
3) Split the whole core into ARCHIVE half and WORKING half.
4) ARICHIVE half: measure digital color.
5) WORKING half: describe sedimentary structure by naked eyes and smear slides (horizons of smear slide are shown in next tables).
6) Take photographs.
7) Pack cores into D-tubes.

The recovered six core samples are described in detail below.

| Sec | Sec.depth | Core depth | Lithology | Name | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.0 | 3.0 | surface brown mud |  |  |
| 1 | 9.0 | 9.0 | darker mud |  |  |
| 1 | 18.0 | 18.0 | mud |  |  |
| 1 | 28.0 | 28.0 | mud |  |  |
| 1 | 30.5 | 30.5 | black layer | silty clay with diatom / spicules |  |
| 1 | 38.0 | 38.0 | mud |  |  |
| 1 | 43.0 | 43.0 | mud |  |  |
| 2 | 2.0 | 47.4 | mud |  |  |
| 2 | 20.0 | 65.4 | mud | diatom silty clay |  |
| 2 | 33.7 | 79.1 | black burrow | silty clay with diatom / spicules | Many black fragment |
| 2 | 38.0 | 83.4 | mud |  |  |
| 2 | 39.5 | 84.9 | black layer |  |  |
| 2 | 41.0 | 86.4 | black layer (sand) |  |  |
| 2 | 51.0 | 96.4 | mud |  |  |
| 2 | 63.0 | 108.4 | mud |  |  |
| 2 | 71.0 | 116.4 | mud |  |  |
| 2 | 80.0 | 125.4 | mud | diatom silty clay |  |
| 2 | 90.0 | 135.4 | mud |  |  |
| 2 | 99.0 | 144.4 | black layer | silty clay with diatom / spicules |  |
| 2 | 100.0 | 145.4 | mud |  |  |
| 3 | 2.5 | 148.4 | black layer | silty clay with diatom / spicules | black fragment |
| 3 | 15.5 | 161.4 | mud |  |  |
| 3 | 39.2 | 185.1 | mud |  |  |
| 3 | 60.0 | 205.9 | mud |  |  |
| 3 | 84.5 | 230.4 | white bed | diatom ooze - diatom silty clay |  |
| 3 | 94.0 | 239.9 | mud |  |  |
| 4 | 10.0 | 255.9 | mud |  |  |
| 4 | 20.0 | 265.9 | mud | diatom clayey silt |  |
| 4 | 36.0 | 281.9 | black lens |  |  |
| 4 | 40.5 | 286.4 | grayish olive |  |  |
| 4 | 42.5 | 288.4 | mud |  |  |
| 4 | 50.0 | 295.9 | mud |  |  |
| 4 | 70.0 | 315.9 | mud |  |  |
| 4 | 80.0 | 325.9 | mud |  |  |
| 4 | 90.0 | 335.9 | mud |  |  |
| 5 | 25.0 | 370.9 | mud | diatom clayey silt |  |
| 5 | 85.0 | 430.9 | mud |  |  |
| PL | 5.0 | 5.0 | brown mud (upper bed) |  |  |
| PL | 8.0 | 8.0 | brown mud (lower): uppermost white bed | diatom ooze |  |
| PL | 14.0 | 14.0 | brown mud (lower): upper part of grading layer |  |  |
| PL | 22.0 | 22.0 | brown mud (lower): base |  |  |
| PL | 29.0 | 29.0 | mud |  |  |
| PL | 51.0 | 51.0 | mud |  |  |

Table 5.2.2.1: Description of smear slides (PC01 and PL01)

| Sec | Sec.depth | Core depth | Lithology | Name | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 1 1 1 1 | $\begin{array}{r} 2.0 \\ 3.5 \\ 30.0 \\ 53.5 \\ 57.0 \\ \hline \end{array}$ | $\begin{array}{r} 2.0 \\ 3.5 \\ 30.0 \\ 53.5 \\ 57.0 \\ \hline \end{array}$ | uppermost mud <br> yellowish bed inserted within olive mud <br> mud <br> ash? <br> mud | diatom silty clay | pumice |
| 2 | 50.0 | 112.0 | mud | silty clay with diatom / volcanic clast |  |
| 3 3 3 3 3 | $\begin{array}{r} 15.0 \\ 34.0 \\ 70.0 \\ 96.0 \\ 100.0 \\ \hline \end{array}$ | $\begin{aligned} & 177.3 \\ & 196.3 \\ & 232.3 \\ & 258.3 \\ & 262.3 \end{aligned}$ | mud <br> greenish gray layer <br> mud <br> ash? <br> mud | diatom silty clay | volcanic glass |
|  |  |  | black layer mud | $\begin{aligned} & ? \\ & \text { diatom silty clay } \end{aligned}$ | volcanic glass? |
| 5 5 5 | $\begin{aligned} & 15.0 \\ & 27.0 \\ & 31.0 \\ & 58.0 \\ & 80.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 378.2 \\ & 390.2 \\ & 394.2 \\ & 421.2 \\ & 443.2 \\ & \hline \end{aligned}$ | $\qquad$ | diatom silty clay <br> diatom silty clay | pumice volcanic glass ? pumice, volcanic glass |
| $\begin{array}{\|l} \hline \mathrm{PL} \\ \hline \end{array}$ | 1.0 2.0 3.3 4.0 7.0 9.0 13.0 30.0 | $\begin{array}{r} \hline 1.0 \\ 2.0 \\ 3.3 \\ 4.0 \\ 7.0 \\ 9.0 \\ 13.0 \\ 30.0 \\ \hline \end{array}$ | surface brown layer surface olive layer graded? bed upper graded? bed lower graded? bed upper graded? bed lower darker mud layer mud |  |  |

Table 5.2.2.2: Description of smear slides (PC02 and PL02)

| Sec | Sec.depth | Core depth | Lithology | Name |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2.0 | 2.0 | uppermost mud |  |
| 1 | 12.0 | 12.0 | convoluted dark layer |  |
|  | 30.0 | 30.0 | mud |  |
| 1 | 33.0 | 33.0 | dark layer | diatom silty clay |
| 1 | 43.0 | 43.0 | mud |  |
| 2 | 8.0 | 57.4 | mud | diatom silty clay |
| 2 | 30.0 | 79.4 | dark mud | diatom silty clay |
| 2 | 44.0 | 93.4 | mud |  |
| 2 | 64.0 | 113.4 | mud |  |
| 2 | 94.0 | 143.4 | mud (low water \%?) | diatom silty clay |
| 3 | 5.0 | 154.8 | mud | diatom silty clay |
| 3 | 29.5 | 179.3 | mud |  |
| 3 | 40.0 | 189.8 | mud |  |
| 3 | 43.7 | 193.5 | white layer | diatom ooze |
| 3 | 45.0 | 194.8 | mud (low water \%?) below white layer: upper |  |
| 3 | 47.0 | 196.8 | mud (low water \%?) below white layer: lower |  |
| 3 | 80.0 | 229.8 | mud (low water \%?) |  |
| 4 | 20.0 | 267.8 | mud (low water \%?) |  |
| 4 | 80.0 | 327.8 | mud (low water \%?) | diatom silty clay |
| 5 | 26.0 | 374.1 | mud (low water \%?) |  |
| 5 | 93.0 | 441.1 | mud (low water \%?) with faint bedding |  |
| 6 | 20.0 | 467.5 | mud | diatom silty clay |
| 6 | 25.5 | 473.0 | ash? |  |
| 6 | 29.0 | 476.5 | mud above white layer |  |
| 6 | 31.0 | 478.5 | white layer: upper | spicules ooze with diatom |
| 6 | 32.0 | 479.5 | white layer: lower |  |
| 6 | 35.0 | 482.5 | brownish mud below white layer |  |
| 6 | 65.0 | 512.5 | mud |  |
| 7 | 7.0 | 555.0 | mud | diatom silty clay |
| 7 | 12.0 | 560.0 | sandy bed |  |
| 7 | 45.0 | 593.0 | dark mud | diatom silty clay |
| 7 | 80.0 | 628.0 | mud inserted within black bed |  |
| 8 | 24.0 | 672.0 |  | diatom silty clay |
| 8 | 54.0 | 702.0 | brown mud | diatom silty clay |
| 8 | 66.0 | 714.0 | cross laminated sand | sand |
| 8 | 69.0 | 717.0 | brown mud | diatom silty clay |
| 8 | 88.0 | 736.0 | thin black layer | silty clay |
| 8 | 94.0 | 742.0 | brown mud | silty clay |
| 9 | 50.0 | 798.5 | brown mud | silty clay |
| 10 | 25.0 | 874.2 | brown mud |  |
| 10 | 76.0 | 925.2 | brown mud | silty clay |
| PL | 3.0 | 3.0 | uppermost mud |  |
| PL | 4.3 | 4.3 | white layer | diatom ooze - diatom silty clay |
| PL | 7.0 | 7.0 | mud below white layer (grading?) |  |
| PL | 9.0 | 9.0 | white layer | diatom ooze - diatom silty clay |
| PL | 12.0 | 12.0 | mud below white layer (grading?) |  |
| PL | 25.0 | 25.0 | base of grading bed |  |
| PL | 26.3 | 26.3 | mud below grading bed |  |
| PL | 27.0 | 27.0 | white layer | diatom ooze - diatom silty clay |
| PL | 29.0 | 29.0 | mud below white layer (grading?) |  |
| PL | 30.0 | 30.0 | white layer | diatom ooze |
| PL | 32.0 | 32.0 | mud below white layer (grading?) |  |
| PL | 34.0 | 34.0 | uppermost part of grading bed |  |
| PL | 40.0 | 40.0 | middle part of grading bed | diatom silty clay |
| PL | 45.0 | 45.0 | middle part of grading bed |  |
| PL | 50.0 | 50.0 | lower part of grading bed |  |
| PL | 57.0 | 57.0 | base of grading bed | Sand-silt-clay |
| PL | 65.0 | 65.0 | mud below brown grading bed |  |
| PL | 85.0 | 85.0 | mud |  |

Table 5.2.2.3: Description of smear slides (PC03 and PL03)

| Sec | Sec.depth | Core depth | Lithology | Name |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 5.0 | 5.0 | uppermost mud | diatom silty clay |
| 1 | 28.0 | 28.0 | brownish mud | silty clay |
| 1 | 31.0 | 31.0 | mud | diatom silty clay |
| 1 | 38.0 | 38.0 | mud | diatom silty clay |
| 1 | 56.0 | 56.0 | dark mud | diatom silty clay |
| 2 | 5.0 | 65.8 | dark mud | silty clay w. diatom |
| 2 | 25.0 | 85.8 | mud | diatom silty clay |
| 2 | 70.0 | 130.8 | mud | diatom ooze |
| 2 | 92.0 | 152.8 | light mud | diatom ooze |
| 2 | 98.0 | 158.8 | mud | diatom ooze |
| 3 | 35.0 | 196.8 | dark mud | diatom ooze |
| 3 | 39.0 | 200.8 | mud | diatom ooze - diatom silty clay |
| 3 | 70.0 | 231.8 | mud (light?) | diatom ooze - diatom silty clay |
| 3 | 90.0 | 251.8 | mud (low water \%?) | diatom silty clay |
| 3 | 93.0 | 254.8 | white layer | diatom ooze |
| 4 | 96.0 | 257.8 | mud (low water \%?) | diatom silty clay |
| 3 | 97.5 | 259.3 | white layer | diatom ooze |
| 3 | 99.0 | 260.8 | mud (low water \%?) | diatom silty clay |
| 4 | 20.0 | 281.8 | mud (low water \%?) | silty clay w. diatom |
| 4 | 90.0 | 351.8 | mud (low water \%? | silty clay |
| 5 | 10.0 | 372.8 | mud | clayeysilt |
| 6 | 36.0 | 398.8 | mud | silty clay |
| 5 | 88.0 | 450.8 | dark mud | silty clay |
| 6 | 2.0 | 463.3 | mud | silty clay w. diatom |
| 6 | 25.5 | 486.8 | ash? | clayey silt |
| 6 | 30.0 | 491.3 | mud | diatom ooze - diatom silty clay |
| 6 | 70.0 | 531.3 | dark mud | diatom ooze - diatom silty clay |
| 7 | 25.0 | 585.8 | mud | diatom silty clay |
| 7 | 52.5 | 613.3 | white layer | diatom ooze |
| 7 | 65.0 | 625.8 | mud | diatom ooze - diatom silty clay |
| 7 | 84.0 | 644.8 | white layer | diatom silty clay |
| 7 | 94.0 | 654.8 | mud | clayey silt |
| 8 | 25.0 | 687.3 | mud | silty clay |
| 8 | 36.5 | 698.8 | dark mud | silty clay |
| 8 | 50.0 | 712.3 | mud | silty clay |
| 8 | 58.0 | 720.3 | mud | clayey silt |
| 8 | 59.5 | 721.8 | sand | silty sand |
| 8 | 62.0 | 724.3 | mud | silty clay |
| 8 | 64.5 | 726.8 | sand | silty clay |
| 8 | 67.0 | 729.3 | mud | silty clay |
| 8 | 69.0 | 731.3 | sand | silty sand |
| 8 | 71.0 | 733.3 | mud | silty clay w. diatom |
| 9 | 20.0 | 782.8 | mud (light) | silty clay |
| 9 | 80.0 | 842.8 | mud (dark) | silty clay |
| 10 | 20.0 | 882.6 | mud | silty clay |
| 10 | 50.0 | 912.6 | mud | silty clay |
| 10 | 95.0 | 957.6 | mud | silty clay |
| PL | 2.0 | 2.0 | uppermost mud | diatom ooze |
| PL | 3.0 | 3.0 | white layer | diatom ooze |
| PL | 3.5 | 3.5 | mud below white layer (grading?) | diatom ooze |
| PL | 5.5 | 5.5 | white layer | diatom ooze |
| PL | 33.0 | 33.0 | mud below white layer (grading?) | diatom silty clay |
| PL | 36.0 | 36.0 | base of grading bed | silty clay |
| PL | 38.5 | 38.5 | mud below grading bed | diatom silty clay |
| PL | 50.0 | 50.0 | mud | diatom silty clay |

Table 5.2.2.4: Description of smear slides (PC04 and PL04)

| Sec | Sec.depth | Core depth | Lithology | Name |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 4.0 | 4.0 | uppermost mud | diatom silty clay |
| 1 | 7.0 | 7.0 | base of uppermost sandy mud | diatom clayey silt |
| 1 | 14.0 | 14.0 | mud | diatom silty clay |
| 1 | 36.0 | 36.0 | mud | diatom silty clay |
| 1 | 61.5 | 61.5 | sandy mud | diatom silty clay |
| 1 | 63.0 | 63.0 | mud | diatom silty clay |
| 2 | 20.0 | 84.0 | mud | diatom silty clay |
| 2 | 46.0 | 110.0 | dark mud | diatom ooze - diatom silty clay |
| 2 | 56.0 | 120.0 | sand | sand |
| 2 | 58.0 | 122.0 | mud (grading?) | clayey silt |
| 2 | 60.0 | 124.0 | sand | diatom ooze - diatom silty clay |
| 2 | 61.0 | 125.0 | mud (grading?) | diatom silty clay |
| 2 | 63.0 | 127.0 | black layer | diatom ooze - diatom silty clay w. spicule |
| 2 | 81.0 | 145.0 | dark mud | silty clay |
| 2 | 83.5 | 147.5 | black burrow | sand |
| 3 | 15.0 | 179.0 | mud | diatom silty clay w. spicule - diatom ooze |
| 3 | 30.0 | 194.0 | mud | diatom ooze - diatom silty clay w. spicule |
| 3 | 30.5 | 194.5 | sandy mud | diatom ooze |
| 3 | 31.0 | 195.0 | mud (grading?) | diatom ooze |
| 3 | 65.0 | 229.0 | mud | silty clay |
| 4 | 30.0 | 294.7 | mud | diatom silty clay |
| 5 | 50.0 | 414.7 | mud | silty clay w. diatom |
| 5 | 92.0 | 456.7 | mud | clayey silt |
| 5 | 93.0 | 457.7 | black layer | silty sand |
| 5 | 93.5 | 458.2 | mud | silty clay |
| 5 | 94.0 | 458.7 | mud | silty sand |
| 5 | 95.5 | 460.2 | black layer | silty sand |
| 5 | 96.2 | 460.9 | mud | silty clay w. diatom |
| PL | 6.0 | 6.0 | uppermost mud | silty clay w. diatom |
| PL | 8.5 | 8.5 | white layer | silty clay w. diatom spicule - diatom ooze |
| PL | 9.5 | 9.5 | mud below white layer (grading?) | silty clay w. diatom spicule |
| PL | 33.0 | 33.0 | base of grading mud | silty clay |
| PL | 33.5 | 33.5 | base of sandy part | Sand-silt-clay |
| PL | 53.0 | 53.0 | sandy layer | silty clay |

Table 5.2.2.5: Description of smear slides (PC05 and PL05)

| Sec | Sec.depth | Core depth | Lithology | Name | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 30.0 | 30.0 | mud | silty clay | sandy |
| 1 | 65.0 | 65.0 | mud | silty clay |  |
| 1 | 71.0 | 71.0 | mud | silty clay - ooze |  |
| 1 | 80.0 | 80.0 | mud | silty clay-ooze |  |
| 2 | 41.5 | 132.5 | sand lamina | sand |  |
| 2 | 64.5 | 155.5 | ash? | silty clay | pumice, volcanic glass |
| 2 | 96.5 | 187.5 | mud | clayey silt |  |
| 3 | 19.0 | 210.0 | sand lamina | sand |  |
| 3 | 44.0 | 235.0 | black sandy layer | clayey silt | black fragment |
| 3 | 49.5 | 240.5 | light mud | silty clay |  |
| 3 | 63.0 | 254.0 | mud | silty clay | cocolith |
| 3 | 96.0 | 287.0 | mud | silty sand |  |
| 3 | 99.0 | 290.0 | mud | silty clay | sandy |
| 4 | 9.0 | 300.2 | dark mud | clayey silt | cocolith, black fragment |
| 4 | 34.5 | 325.7 | white layer | diatom ooze |  |
| 4 | 35.0 | 326.2 | mud (grading?) | diatom ooze | spicule |
| 4 | 35.5 | 326.7 | white layer | diatom ooze | spicule |
| 4 | 36.0 | 327.2 | mud (grading?) | silty clay |  |
| 5 | 54.0 | 445.2 | light mud | diatom ooze - diatom silty clay |  |
| 5 | 76.0 | 467.2 | mud | silty clay |  |
| 6 | 40.0 | 535.8 | mud | clayey silt w. diatom |  |
| 7 | 19.0 | 618.3 | mud | silty clay w. diatom | sandy |
| 7 | 90.0 | 689.3 | mud | silty clay w. diatom | volcanic glass |
| 8 | 70.0 | 775.3 | mud | silty clay w. diatom |  |
| 8 | 96.0 | 801.3 | mud | clayey silt | black fragment |
| 9 | 6.0 | 815.3 | sand (base) | sand |  |
| 9 | 23.8 | 833.1 | uppermost part of grayish layer | silty clay w. diatom /spicule - ooze | volcanic glass |
| 9 | 25.0 | 834.3 | middle part of grayish layer | silty clay | upward fining |
| 9 | 26.0 | 835.3 | base of grayish layer | clayey silt | diatom, spicule |
| 9 | 84.0 | 893.3 | mud | silty clay | spicule |
| 9 | 96.0 | 905.3 | mud | silty clay | diatom, spicule |
| 10 | 7.0 | 917.2 | sandy mud | silty clay | sandy |
| PL | 0.5 | 0.5 | whitish part pf uppermost mud | ooze | finer than below sample |
| PL | 2.5 | 2.5 | base of uppermost mud | clayey silt w. spicule |  |
| PL | 3.0 | 3.0 | white layer | ooze |  |
| PL | 4.4 | 4.4 | base of grading bed | clayey silt | diatom |
| PL | 4.5 | 4.5 | white layer | ooze | finer than below sample |
| PL | 6.0 | 6.0 | upper part of grading bed | ooze | diatom, spicule |
| PL | 25.0 | 25.0 | middle part of grading bed | silty clay | sandy |
| PL | 33.5 | 33.5 | base of grading bed | silty clay | silicious grain rich |
| PL | 64.0 | 64.0 | mud | silty clay | diatom, spicule |

Table 5.2.2.6: Description of smear slides (PC06 and PL06)


Figure 5.2.2.1: Lithological column of the cores of this cruise.

## [PL01 and PC01]

PL01and PC01 were conducted on the north of the block like landslide deposit (Fujiwara et al., 2012), a coring point of YK11-E06 leg1 (Camera 1) at Japan Trench, at $38^{\circ} 05.1540^{\prime} \mathrm{N}$ and $143^{\circ} 59.4602^{\prime} \mathrm{E}$. The water depth was 7546 m .
The pilot and piston cores are 54.0 cm and 440.9 cm long, respectively. Mounds of mud are seen at the tops of PL01 and PC01. The pilot and piston core sediment consist of graded dark olive (brownish) silty clay unit and olive black diatom silty clay unit. Graded dark olive silty clay unit is the several successions of dark olive silty clay (diatom silty clay) and olive yellow silty clay and clay (diatom ooze or ooze), fining upward from dark olive silty clay to olive yellow silty clay. Olive black ( $7.5 \mathrm{Y} 3 / 2$ or $10 \mathrm{Y} 3 / 2$ ) diatom silty clay unit is composed of mostly clay particles, diatom, and sponge spicules. This sediment has a lot of biotarbation (burrows), and is interbedded with olive black ( $7.5 \mathrm{Y} 2 / 1$ ) silty clay, composed of black fragment, clay particles, diatom, and sponge spicules. The magnetic susceptibility is fluctuated between 5 and $49 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$ and that of PC01 has five large peaks. The magnetic susceptibility of PL01 and section $1-3$ of PC01 vary significantly, but that of section $4-5$ of PC01 varies a little.

## [PL02 and PC02]

PL02 and PC02 were conducted on the trench slope at the east of Japan Trench, a coring point of YK11-E06 leg1 (Camera 2) at $38^{\circ} 05.1239^{\prime} \mathrm{N}$ and $144^{\circ} 2.6097^{\prime} \mathrm{E}$. The water depth was 7249 m . The pilot and piston cores were recovered 53.2 and 458.2 cm long, respectively. The pilot and piston core sediments consist of olive black ( $7.5 \mathrm{Y} 3 / 2$ or $10 \mathrm{Y} 3 / 2$ ) diatom silty clay and silty clay. Olive black silty clay is composed of mostly clay particles, diatom, and sponge spicules. Whitish volcanic ash layers and patches are seen at $53-54,256.3-258.8,389.2-391.2$, and $420.2-423.2 \mathrm{~cm}$ of PC02. The magnetic susceptibility is fluctuated between 13 and $130 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$. The magnetic susceptibility of PL02 has two peaks at around 14 and 50 cm . Whitish volcanic ash layers (except last one) are shown high magnetic susceptibility values ( $90-130 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$ ).

## [PL03 and PC03]

PL03 and PC03 were conducted on the north of the block like landslide deposit (Fujiwara et al., 2012) and PC01 at Japan Trench, at $38^{\circ} 5.9916^{\prime} \mathrm{N}$ and $143^{\circ} 59.9781^{\prime} \mathrm{E}$. The water depth was 7541 m . The pilot and piston cores are 98.0 and 948.6 cm long, respectively. The pilot and piston core sediment consist of graded grayish olive (brownish) silty clay unit, olive black diatom silty clay unit and grayish olive silty clay unit. Graded grayish olive unit are the several successions of dark olive brown sandy silt, (dark) grayish olive silty clay and (light) grayish olive clay, fining upward. Olive black ( $7.5 \mathrm{Y} 3 / 2$ or 10Y3/2) diatom silty clay unit is same as PL01 and PC01. This sediment has a lot of biotarbation (burrows), and is interbedded with olive black layers (including black fragments), light grayish olive layers (ooze) and olive black sand and sandy layers. Grayish olive silty clay unit is composed of clay particles, diatom and a few cocolith. Volcanic ash layer is seen at $472.5-473.5 \mathrm{~cm}$ of PC03. Light grayish olive layers (ooze) are seen at 193.5, 478.5 cm . Olive black sand and sandy layers are seen at $560.0-564.0$ and $712.0-718.0 \mathrm{~cm}$, and lower one has ripple cross-lamination.

The magnetic susceptibility is fluctuated between 4 and $131 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$. The magnetic susceptibility of PL03 has three or four peaks at around $5,24,57$ and 88 cm . The magnetic susceptibility of PL03 and section $1-3,6-8$ of PC03 vary significantly, but that of section $4-5,9$ -10 of PC03 varies a little. The sandy layers are shown high magnetic susceptibility values (100 $131 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$ ).

## [PL04 and PC04]

PL04 and PC04 were conducted on the south of the block like landslide deposit (Fujiwara et al., 2012) at Japan Trench, at $38^{\circ} 01.4348^{\prime} \mathrm{N}$ and $144^{\circ} 00.2359^{\prime}$ E. The water depth was 7554 m . The pilot and piston cores are 75.0 and 961.1 cm long, respectively.

The pilot core and piston core sediments consist of graded dark olive (brownish) silty clay unit, olive black diatom silty clay unit and grayish olive silty clay, are same as PL03 and PC03. Olive black diatom silty clay unit has olive black silty clay (including black fragment) and grayish olive clay (ooze). This core has thicker ooze layer than any other core. Whitish volcanic ash layer is seen at 486.3 cm of PC04.

The magnetic susceptibility is fluctuated between 5 and $92 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$. That of PL04 has two peaks at around 35 and 70 cm and that of PC 04 is higher value downward.

## [PL05 and PC05]

PL05 and PC05 were conducted on top of the block like landslide deposit (Fujiwara et al., 2012) at Japan Trench, at $38^{\circ} 04.4927^{\prime} \mathrm{N}$ and $143^{\circ} 59.4269^{\prime} \mathrm{E}$. The water depth was 7517 m . The pilot and piston cores are 86.0 and 461.2 cm long, respectively. The pilot and piston core sediments consist of graded dark olive (brownish) silty clay and olive black diatom silty clay, are same as PL01 and PC01. PC05 has sandy layer at $458.2-461.2 \mathrm{~cm}$.

The magnetic susceptibility is fluctuated between 5 and $56 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$. The magnetic susceptibility of PL05 has two or three peaks at around 6,35 and 55 cm . The magnetic susceptibility of section $1-3$ of PC05 varies significantly, but that of section $4-5$ of PC03 varies a little.

## [PL06 and PC06]

PL06 and PC06 were conducted on the southeast of the block like landslide deposit (Fujiwara et al., 2012) at Japan Trench, at $38^{\circ} 03.0143^{\prime} \mathrm{N}$ and $144^{\circ} 00.4309^{\prime} \mathrm{E}$. The water depth was 7541 m . The pilot and piston cores are 78.0 and 917.2 cm long, respectively. The pilot and piston core sediments consist of graded dark olive (brownish) silty clay, olive black diatom silty clay and grayish olive silty clay (including cocolith), are same as PC03, PC04.However, grayish olive silty clay is shallower horizon than PC03 and PC04. This core has a few sandy layers. Sandy layer at 809.3 - 816.3 cm has ripple cross-lamination. Volcanic ash layer is seen at 486.3 cm of PC06.PC06 core sediment below 500 cm has much gas.

The magnetic susceptibility is fluctuated between 5 and $161 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$. The sandy layers (around 291.2 and 301.2 cm ) are shown high magnetic susceptibility values ( $160 \mathrm{SI} \times 10^{-8} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$ ).


Figure 5.2.2.2: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PL01


Figure 5.2.2.3: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PC01


Figure 5.2.2.4: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PL02


Figure 5.2.2.5: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PC02


Figure 5.2.2.6: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PL03


Figure 5.2.2.7: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PC03


Figure 5.2.2.8: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PL04


Figure 5.2.2.9: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PC04


Figure 5.2.2.10: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PL05


Figure 5.2.2.11: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PC05


Figure 5.2.2.12: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PL06


Figure 5.2.2.13: Lithology, Core thickness, P-wave amplitude, P-wave velocity, $\gamma$-ray density, magnetic susceptibility, Acoustic impedance, and Fractional porosity of PC06


Figure 5.2.2.14: Core color reference variations (L*, $\mathrm{a}^{*}$ and $\mathrm{b}^{*}$ ) of PL01.


Figure 5.2.2.15: Core color reference variations (L*, a*and b*) of PC01.


Figure 5.2.2.16: Core color reference variations ( $L^{*}$, $a^{*}$ and $b^{*}$ ) of PL02.


Figure 5.2.2.17: Core color reference variations ( $L^{*}$, $\mathrm{a}^{*}$ and $\mathrm{b}^{*}$ ) of PC 02.


Figure 5.2.2.18: Core color reference variations (L*, a*and b*) of PL03.


Figure 5.2.2.19: Core color reference variations ( $L^{*}$, $a^{*}$ and $b^{*}$ ) of PC03.


Figure 5.2.2.20: Core color reference variations (L*, a*and b*) of PL04.


Figure 5.2.2.21: Core color reference variations ( $L^{*}, a^{*}$ and $b^{*}$ ) of PC04.


Figure 5.2.2.22: Core color reference variations (L*, a*and b*) of PL05.


Figure 5.2.2.23: Core color reference variations $\left(L^{*}, a^{L^{*}(\mathrm{D} 65)}{ }^{a^{*}(\mathrm{D} 65)} \mathrm{and}^{*}\right)$ of PC05.


Figure 5.2.2.24: Core color reference variations ( $L^{*}$, $a^{*}$ and $b^{*}$ ) of PL06.


Figure 5.2.2.25: Core color reference variations (L*, $\mathrm{a}^{*}$ and $\mathrm{b}^{*}$ ) of PC06.

### 5.3 BBOBS and OBS deployment

We successfully deployed six BBOBSs and eight OBSs off Boso area. They were launched by multi-joint crane on R/V Mirai. After BBOBSs settled on the sea floor, we communicated with them using the acoustic transponder to check the status of leveling unit. We started recording manually at site $\mathrm{BB} 1, \mathrm{BB} 2$ and BB 4 . We calibrated the location of BBOBS stations at site BB2 and BB4 by measuring slant range between R/V Mirai and the settled BBOBS at three points around the launching position. BBOBSs at site BB3 and BB4 were installed Differential Pressure gauge (DPG). For OBSs, we didn't deploy two of ten that had been prepared for observation because instrumental trouble had occurred on board. We communicated with sinking OBS using the acoustic transponder down to about $300-500 \mathrm{~m}$ below the sea surface. Both of the BBOBS and the OBS can record seismic signal for about one year.


Fig. 5.3.1 Installation operation by multi-joint crane on R/V Mirai


Fig. 5.3.2 Locations of BBOBS (orange circle) and OBS (yellow circle) stations deployed off Boso area. Site "BB" and "S" mean BBOBS and OBS stations, respectively

Table 5.3.1 Deployment information

| Site | Planned Position |  | Deployment information |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Time | Vessel position |  |  |  |
|  | Lat(N) | Lon(E) | UTC | Lat(N) | Lon(E) | Depth(m) |  |
| BB1 | 35_19.00 | 141_32.00 | 2012/2/26 21:09:48 | 35_18.4943 | 141_32.1168 | 2877 |  |
| BB2 | 35_07.50 | 141_53.30 | 2012/2/27 1:52:00 | 35_07.4536 | 141_53.4536 | 5628 | Calibrated |
| BB3 | 34_27.00 | 141_37.00 | 2012/3/2 1:45:42 | 34_26.9935 | 141_36.9687 | 5993 | With DPG |
| BB4 | 35_00.50 | 141_24.50 | 2012/2/27 7:51:32 | 35_00.5059 | 141_24.5438 | 3794 | Calibrated, With DPG |
| BB5 | 34_42.50 | 141_26.20 | 2012/3/2 4:37:30 | 34_42.6028 | 141_26.2698 | 4421 |  |
| BB6 | 34_50.30 | 141_15.30 | 2012/3/2 6:51:00 | 34_50.2900 | 141_15.3010 | 3571 |  |
| S1 | 35_19.50 | 141_33.60 | 2012/2/26 22:34:00 | 35_19.59500 | 141-33.55370 | 2540 |  |
| S2 | 35_00.70 | 141_24.50 | 2012/2/27 7:56:15 | 35_00.56630 | 141_24.50290 | 3780 |  |
| S3 | 35_05.00 | 141_24.20 | - | - | - | - | Canceled*1 |
| S4 | 34_52.15 | 141_18.20 | - | - | - | - | Canceled*1 |
| S5 | 35_06.90 | 141_51.80 | 2012/2/27 2:13:40 | 35_06.86220 | 141_51.87340 | 5800 |  |
| S6 | 35_03.50 | 141_45.00 | 2012/2/27 4:35:40 | 35_03.43550 | 141-45.13300 | 5532 |  |
| S7 | 35_14.00 | 141_49.00 | 2012/2/27 0:50:40 | 35_13.90490 | 141_48.98020 | 5392 |  |
| S8 | 35_05.20 | 141_35.80 | 2012/2/27 5:39:05 | 35_05.19450 | 141_35.83610 | 4683 |  |
| S9 | 35_15.00 | 141_37.50 | 2012/2/26 23:32:45 | 35_15.04730 | 141_37.64480 | 3549 |  |
| S10 | 35_09.50 | 141_30.40 | 2012/2/27 6:31:20 | 35_09.50150 | 141_30.41950 | 3536 |  |
| S11 | 34_37.50 | 141_17.50 | - | - | - | - | Canceled*2 |

*1: because of instrumental trouble
*2: spare site

Table 5.3.2 Time schedule

| Site | Start time of the <br> recording | End time | Deadline for <br> recovering | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| BB1 | $2012 / 2 / 2621: 45$ | $2013 / 4 / 10: 00$ | $2014 / 4 / 1$ |  |
| BB2 | $2012 / 2 / 273: 07$ | $2013 / 4 / 10: 00$ | $2014 / 4 / 1$ |  |
| BB3 | $2012 / 3 / 312: 00$ | $2013 / 4 / 10: 00$ | $2014 / 4 / 1$ |  |
| BB4 | $2012 / 2 / 278: 39$ | $2013 / 4 / 10: 00$ | $2014 / 4 / 1$ |  |
| BB5 | $2012 / 3 / 312: 00$ | $2013 / 4 / 10: 00$ | $2014 / 4 / 1$ |  |
| BB6 | $2012 / 3 / 312: 00$ | $2013 / 4 / 10: 00$ | $2014 / 4 / 1$ |  |
| S1 | $2012 / 3 / 223: 54$ | $2013 / 1 / 160: 00$ | $2013 / 5 / 130: 00$ |  |
| S2 | $2012 / 3 / 223: 59$ | $2013 / 1 / 160: 00$ | $2013 / 5 / 130: 00$ |  |
| S3 | - | - | - | Canceled*1 |
| S4 | - | - | - | Canceled*1 |
| S5 | $2012 / 3 / 223: 56$ | $2013 / 1 / 160: 00$ | $2013 / 5 / 130: 00$ |  |
| S6 | $2012 / 3 / 223: 51$ | $2013 / 1 / 160: 00$ | $2013 / 5 / 130: 00$ |  |
| S7 | $2012 / 3 / 223: 55$ | $2013 / 1 / 160: 00$ | $2013 / 5 / 130: 00$ |  |
| S8 | $2012 / 3 / 223: 58$ | $2013 / 1 / 160: 00$ | $2013 / 5 / 130: 00$ |  |
| S9 | $2012 / 3 / 223: 57$ | $2013 / 1 / 160: 00$ | $2013 / 5 / 130: 00$ |  |
| S10 | $2012 / 3 / 223: 53$ | $2013 / 1 / 160: 00$ | $2013 / 5 / 130: 00$ |  |
| S11 | - | - |  | Canceled*2 |

*1: because of instrumental trouble
*2: spare site

