# R/V Mirai Cruise Report MR15-04

The observational study of the heavy rainfall zone in the eastern Indian Ocean



Eastern Indian Ocean "Maritime Continent" November 5, 2015 – December 20, 2015



Japan Agency for Marine-Earth Science and Technology





Agency for the Assessment and Application of Technology



# Cruise Report ERRATA of the Nutrients part

| page   | Error             | Correction        |
|--------|-------------------|-------------------|
| 5.19-2 | potassium nitrate | potassium nitrate |
|        | CAS No. 7757-91-1 | CAS No. 7757-79-1 |

# Cruise Report ERRATA of the Photosynthetic Pigments part

| page   | Error                    | Correction               |
|--------|--------------------------|--------------------------|
| 5.21-1 | Ethyl-apo-8'-carotenoate | trans-β-Apo-8'-carotenal |

# **MR15-04** Cruise Report

--- Contents ----

- 1 Introduction
- 2 Cruise summary
- 3 Cruise track and log
- 4 List of participants
- 5 Summary of observations
  - 5.1 GPS radiosonde
  - 5.2 GNSS precipitable water
  - 5.3 C-band weather radar
  - 5.4 Ka-band radar
  - 5.5 Micro rain radar
  - 5.6 Disdrometers
  - 5.7 Videosonde
  - 5.8 Lidar
  - 5.9 Ceilometer
  - 5.10 Shipborne sky radiometer
  - 5.11 Aerosol and gas observations
  - 5.12 Greenhouse gas observations
  - 5.13 Surface meteorological observations
  - 5.14 Continuous monitoring of surface seawater
  - 5.15 Underway pCO2
  - 5.16 CTDO profiling
  - 5.17 Salinity of sampled water
  - 5.18 Dissolved oxygen of sampled water
  - 5.19 Nutrients of sampled water
  - 5.20 Chlorophyll a of sampled water
  - 5.21 HPLC
  - 5.22 LADCP
  - 5.23 Microstructure profiler (MSP) for the ocean
  - 5.24 Underway CTD
  - 5.25 XCTD
  - 5.26 Wave Glider
  - 5.27 Testing CTD sensor for the new floats
  - 5.28 Distribution, cool- and heat-tolerances of the oceanic sea skaters of *Halobates*
  - 5.29 Underway geophysics

# Appendices

- A. Atmospheric profiles by the radiosonde observations
- B. Oceanic profiles by the CTDO observations

## 1. Introduction

The maritime continent (MC) is a key region in the global weather and climate. For example, vital convective activity over MC is a driving force for the global atmospheric circulation. The convective activity over MC is well known to be regulated largely by diurnal cycle, intra-seasonal variations (e.g. Madden-Julian Oscillation (MJO)), seasonal variations (e.g. Asia-Australia monsoon), and inter-annual variations (e.g. El Nino / Southern Oscillation (ENSO)). Among them, for example, the different diurnal characteristics between over landmass and over adjacent seas are still not well reproduced even by the state-of-the-art atmospheric numerical models. The eastward penetration of the MJO over MC from Indian Ocean to the western Pacific is also the big issue to be improved in the numerical models.

The deficiencies to understand and to reproduce these variations are considered to be caused by the lack of our knowledge on, for example, the localized mesoscale circulations associated with coastlines and topography, and /or the moist convection processes over the region. To improve our understandings on these processes in the MC region, the fine-scale, multi-disciplinary observational data is desired.

In the past, many projects have been tried to obtain the observational evidence to reveal the nature of these processes over the MC. While these projects (e.g. CPEA<sup>1</sup>, JEPP-HARIMAU<sup>2</sup>) revealed the nature of the convections over the land and coast in the various situations, the ocean-atmosphere processes in the adjacent sea is still remained to be investigated.

To reveal the oceanic and atmospheric processes in the MC, the collaborative team lead by Japan-Agency of Marine-Earth Science and Technology (JAMSTEC), Indonesian Agency for the Assessment and Application of Technology (Badan Pengkajian dan Penerapan Teknology, BPPT), and Indonesian Agency for Meteorlogy, Climatology and Geophysica (Badan Meteorologi, Klimatologi dan Geofisika, BMKG) planned to deploy the observation network off the western Sumatra, which consists of the research vessel (R/V) Mirai, (which equips bunch of observational instruments like C-band polarimetric radar, CTD system, radiosonde launcher, etc.) and the land-based sites near Bengkulu (with weather radars, radiosonde observations, special "videosonde" observations, and so on) to contrast the processes over land and ocean. We set the target area as the ocean near Bengkulu, western Sumatra, with considering the following factors:

(1) The satellite measurements (e.g. TRMM products) tell the heavy oceanic rainfall occurs near the coast in the area.

(2) The coastline is rather straight, where the two-dimensional processes orthogonal to the coastline can be assumed to simplify the background to understand the coastal process, with our limited observational resources.

(3) The small islands off the coast (like in, for example, the near-equator of the western Sumatra), which may disturb the assumption in (2) and hinder the principles we are trying to reveal, are sparse.

(4) The coastline elongated with certain angle (not near-parallel) to the zonal wind which dominate the wind component in the equatorial region (to encourage understanding quasi two-dimensional processes)

This cruise report summarizes the observed items and preliminary results during the R/V Mirai MR15-04 cruise. The cruise consists of three parts. The primary part is the stationary observation off Bengkulu, west of

<sup>&</sup>lt;sup>1</sup> Coupled Process of the Equatorial Atmosphere

<sup>&</sup>lt;sup>2</sup> Japan EOS (Earth Observation System) Promotion Plan (JEPP) Hydro-meteorological Array for ISV-Monsoon Auto-monitoring.

Sumatra Island to obtain continuous, fine temporal-resolution data for both atmospheric and oceanic states. The principle component of the observations are the surface meteorological measurement, atmospheric sounding by radiosonde, CTD and LADCP casting to profile the ocean thermodynamic and dynamic status, as well as the C-band polarimetric radar observation to capture the details of precipitating systems. Before and after the stationary observation period, the oceanic cross sections along the line between (6S, 101E) and (4S, 102E), namely quasi-orthogonal to the coastline, were obtained by CTD or UCTD observations. Oceanic cross sections were obtained also at the Makassar and Lombok straights by utilizing UCTD and XCTD. In addition, the continuous observations by the autonomous / underway instruments were carried out along the track to / from the stationary observation point.

In this report, the first several sections describes the basic information such as cruise track, on board personnel list are described. Details of each observation are described in Section 5. Additional information and figures are also attached as Appendices.

# \*\*\* Remarks \*\*\*

This cruise report is a preliminary documentation as of the end of the cruise. The contents may be not updated after the end of the cruise, while the contents may be subject to change without notice. Data on the cruise report may be raw or not processed. Please ask the Chief Scientist and the Principle Investigators for the latest information.

# 2. Cruise Summary

# 2.1 Ship

| Name          | Research Vessel MIRAI           |
|---------------|---------------------------------|
| L x B x D     | 128.6m x 19.0m x 13.2m          |
| Gross Tonnage | 8,706 tons                      |
| Call Sign     | JNSR                            |
| Home Port     | Mutsu, Aomori Prefecture, Japan |

# 2.2 Cruise Code

MR15-04

# 2.3 Project Name (Main mission)

"The observational study of the heavy rainfall zone in the eastern Indian Ocean",

(as a part of the Japan-Indonesia collaborative research project "Observational studies of heavy precipitation caused by air-sea interaction in and around coast of western Sumatra water and intra to inter-decadal climate variability of oceanographic environment in the eastern Indian Ocean off Java")

# 2.4 Undertaking Institute

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

2-15, Natsushima, Yokosuka, Kanagawa 237-0061, JAPAN

Agency for Assessment and Application of Technology (BPPT)

Jalan Mohammad Hunsni Thamrin 8, Jakarta 10340, INDONESIA

# 2.5 Chief Scientist

Masaki KATSUMATA Tropical Climate Variability Research Program, Research Institute for Global Change, JAMSTEC Dedy Swandry Banurea Agency for Meteorology, Climatorlogy and Geophysics (BMKG)

# 2.6 Representative of the science party [Affiliation]

Kunio Yoneyama [JAMSTEC]

# 2.7 Periods and Ports of Call

- Nov. 5: departed Sekinehama, Japan
- Nov. 6: called Hachinohe, Japan
- Dec. 20: arrived Jakarta, Indonesia

# 2.8 Research Themes of Sub-missions and Principal Investigators (PIs)

- (1) Observational study on clouds and mixed layer depths over the tropical ocean (PI: Kazuaki YASUNAGA / Toyama University)
- (2) Researches on the organized precipitation systems and the roles of their accompanying cold pool over the eastern Indian Ocean (PI: Hiroaki MIURA / University of Tokyo)
- (3) Physiological and ecological studies on the relationship between the distribution and salinity and temperature tolerance, and environmental factors in oceanic sea skaters, *Halobates*, inhabiting eastern tropical Indian Ocean (PI: Tetsuo HARADA / Kochi University)

- (4) Advanced measurements of aerosols in the marine atmosphere: Toward elucidation of interactions with climate and ecosystem (PI: Yugo KANAYA/JAMSTEC)
- (5) Videosonde observations of ice particles in the precipitating clouds developed over the tropical ocean (PI: Kenji SUZUKI / Yamaguchi University)
- (6) Aerosol optical characteristics measured by ship-borne sky radiometer (PI: Kazuma AOKI / Toyama University)
- (7) Shipboard CO<sub>2</sub> observations over the tropical Indo-Pacific Ocean for a simple estimation fo the carbon flux between the ocean and the atmosphere from GOSAT data (PI: Kei SHIOMI / Japan Aerospace Exploration Agency (JAXA))

#### 2.9 Observation Summary

| GPS Radiosonde               | 224 times    | Nov. 11 to Dec. 18                           |
|------------------------------|--------------|----------------------------------------------|
| GNSS water vapor observation | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| C-band Doppler radar         | continuously | Nov. 8 to Nov. 13 / Nov. 15 to Dec. 19       |
| Micro rain radar             | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| Disdrometers                 | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| Videosonde                   | 5 times      | Nov. 29 to Dec. 15                           |
| Lidar                        | continuously | Nov. 12 to Nov. 13/ Nov.15 to Dec. 19        |
| Ceilometer                   | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| Sky Radiometer               | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| Aerosol and gas observations | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| Greenhouse gas observations  | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| Surface Meteorology          | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| Sea surface water monitoring | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 19       |
| pCO2 observations            | continuously | Nov. 8 to Nov. 13                            |
| CTDO profiling               | 221 profiles | Nov. 21 to Dec. 17                           |
| Sea water sampling           | 108 casts    | Nov. 21 to Dec. 17                           |
| LADCP                        | 221 profiles | Nov. 21 to Dec. 17                           |
| Micro structure profiler     | 46 times     | Nov. 23 to Dec. 17                           |
| Underway CTD                 | 29 times     | Nov. 16 to Dec. 18                           |
| eXpendable CTD               | 11 times     | Nov. 16 to Dec. 17                           |
| Deployment of Wave Glider    | 1 time       | Dec. 10                                      |
| Sea skater sampling          | 27 times     | Nov. 20 to Dec. 14                           |
| Gravity/Magnetic force       | continuously | Nov. 5 to Nov. 13 / Nov. 15 to Dec. 20       |
| Bathymetry                   | continuously | Nov. 5 to 13 / Nov. 15 to 23 / Dec. 18 to 20 |
|                              |              |                                              |

# 2.10 Overview

In order to investigate the atmospheric and oceanic variations in the Maritime Continent, the intensive observations by using R/V Mirai were carried out. This cruise was a component of the joint field campaign under the collaboration of JAMSTEC and BPPT.

The main part of the cruise was dedicated to perform stationary observation at (4-04N, 101-54E) to obtain high-resolution time series of the oceanic and atmospheric variations. R/V Mirai was at the station for 25 days from Nov. 23 to Dec.17. Before and after the stationary observation period, CTD or UCTD were operated to obtain oceanic cross section between (4S, 102E) and (6S, 101E) as well as along the cruise track at Makassar and Lombok straits. The autonomous instruments were in operation continuously all the way from Japan to Jakarta.

During the cruise, we witnessed the significant diurnal cycle both in the atmospheric and oceanic variations, though the detail of the appearance differ day by day. The atmospheric observations also captured the synoptic-scale variations. The oceanic profiles revealed the gradual deepening of the mixed layer thru the stationary observation period. Finally in the last several days, we experienced strong westerly wind as typically seen in the end of the MJO convectively active phase, namely "westerly burst".

These observed results will be analyzed further, with combining the data from land sites in Bengkulu. The further analyses will be performed to engrave the detail of the processes to promote the active convections in the coastal area of MC.

#### 2.11 Acknowledgments

We would like to express our sincere thanks to Captain K. Matsuura and his crew for their skillful ship operation. Special thanks are extended to the technical staff of Global Ocean Development Inc. and Marine Works Japan, Ltd. for their continuous and skillful support to conduct the observations. Supports from collaborators in the project, especially by the member of BPPT, are greatly acknowledged.

# 3. Cruise Track and Log

# 3.1 Cruise Track

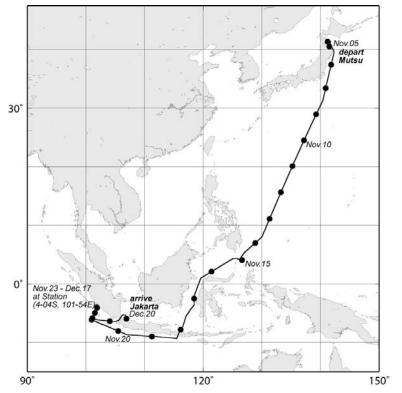



Fig. 3.1-1: Cruise track for all period. Black dots are for the positions at 00UTC at every day.

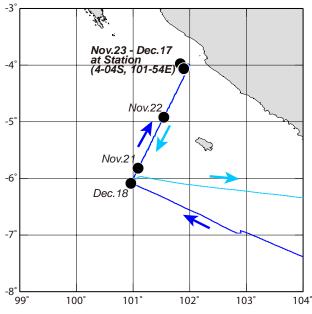



Fig. 3.1-2: Cruise track around the west coast of Sumatra Island, including cross section (6S,101E) - (4S,102E). Blue and cyan line are the cruise track to and from the station (4-04S, 101-54E), respectively.

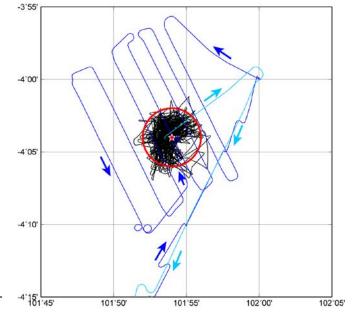



Fig. 3.1-3: Cruise tracks around the station (4-04S, 101-54E). Nominal station is shown by red star. Red circle indicate the area within 2 miles from the station. Black line is the track during stationary observation, while blue and cyan lines are same as Fig. 3.1-2.

# 3.2 Cruise Log

| Date and<br>(in UT |      | SMT  | Location                | Event                                          |
|--------------------|------|------|-------------------------|------------------------------------------------|
| Nov. 5             | 0600 | 1500 |                         | Depart Sekinehama, Japan                       |
|                    | 0947 | 1847 | (41-19.46N, 101-43.10E) | Calibration for magnetometer                   |
| 6                  | 2250 | 0750 |                         | Arrive Hachinohe, Japan                        |
|                    | 0620 | 1520 |                         | Depart Hachinohe, Japan                        |
|                    | 0745 | 1645 |                         | Start sea surface water monitoring             |
| 8                  | 0218 | 1118 |                         | Start C-band radar observation                 |
| 10                 | 0540 | 1440 | (23-27.86N, 136-42.98E) | Radio Sonde #1                                 |
| 11                 | 0100 | 1000 | (19-57.59N, 135-08.27E) | Radio Sonde #2                                 |
|                    | 0540 | 1440 | (19-06.16N, 134-45.19E) | Radio Sonde #3                                 |
| 12                 | 0100 | 1000 | (15-28.08N, 133-10.64E) | Radio Sonde #4                                 |
| 13                 | 1300 |      |                         | Revision of ship mean time (to UTC+8h)         |
|                    | 1632 | 0032 |                         | Enter Philippine EEZ                           |
|                    |      |      |                         | Pause all observations                         |
| 14                 | 2354 | 0754 |                         | Arrive off Talaud Islands                      |
| 15                 | 0030 | 0830 |                         | Embarkation of Indonesian Security Officer and |
|                    |      |      |                         | scientist from Indonesia                       |
|                    | 0042 | 0842 |                         | Depart off Talaud Islands                      |
|                    | 0300 | 1100 |                         | Resume all observations                        |
| 16                 | 0456 | 1256 | (01-33.53N, 120-29.99E) | UCTD #1;200m                                   |
|                    | 0615 | 1415 | (01-24.50N, 120-15.01E) | UCTD #2;200m                                   |
|                    | 0731 | 1531 | (01-15.30N, 120-00.01E) | UCTD #3;200m                                   |
|                    | 0849 | 1649 | (01-06.14N, 119-44.98E) | UCTD #4;200m                                   |
|                    | 0942 | 1742 | (00-59.98N, 119-35.00E) | XCTD #1                                        |
|                    | 1042 | 1842 | (00-44.95N, 119-29.41E) | XCTD #2                                        |
|                    | 1141 | 1941 | (00-29.98N, 119-23.68E) | UCTD #3                                        |
|                    | 1239 | 2039 | (00-15.03N, 119-18.23E) | XCTD #4                                        |
|                    | 1341 | 2141 | (00-00.01S, 119-12.75E) | XCTD #5                                        |
|                    | 1540 | 2340 | (00-30.00S, 119-01.46E) | XCTD #6                                        |
|                    | 1741 | 0141 | (01-00.00S, 118-50.22E) | XCTD #7                                        |
|                    | 1945 | 0345 | (01-29.97S, 118-39.01E) | XCTD #8                                        |
|                    | 2150 | 0550 | (02-00.03S, 118-27.99E) | UCTD #5;200m                                   |
|                    | 2254 | 0654 | (02-15.05S, 118-28.00E) | UCTD #6;200m                                   |
|                    | 2357 | 0757 | (02-30.01S, 118-28.19E) | UCTD #7;200m                                   |
| 17                 | 0059 | 0859 | (02-45.01S, 118-28.01E) | UCTD #8;200m                                   |
|                    | 0200 | 1000 | (03-00.03S, 118-27.99E) | UCTD #9;200m                                   |
|                    | 0258 | 1058 | (03-15.02S, 118-28.02E) | UCTD #10;200m                                  |
|                    | 0401 | 1201 | (03-29.99S, 118-28.00E) | UCTD #11;200m                                  |
|                    | 0519 | 1319 | (03-45.00S, 118-19.19E) | UCTD #12;200m                                  |
|                    | 0643 | 1443 | (04-00.01S, 118-07.05E) | UCTD #13;200m                                  |
| 18                 | 0109 | 0909 | (08-00.00S, 115-59.99E) | UCTD #14;200m                                  |
|                    | 0220 | 1020 | (08-15.01S, 115-54.02E) | UCTD #15;200m                                  |
|                    | 0326 | 1126 | (08-30.01S, 115-48.02E) | UCTD #16;200m                                  |
|                    | 0439 | 1239 | (08-46.98S, 115-41.71E) | XCTD #9                                        |
|                    | 0535 | 1335 | (09-00.00S, 115-35.94E) | UCTD #17;200m                                  |
|                    | 0642 | 1442 | (09-15.00S, 115-29.90E) | UCTD #18;200m                                  |
| 19                 | 1400 |      |                         | Revision of ship mean time ( to UTC+7h)        |
| 20                 | 1219 | 1919 | (06-56.10S, 102-53.82E) | Sample "sea skater" #1-1                       |
|                    | 1241 | 1941 | (06-57.09S, 102-54.23E) | Sample "sea skater" #1-2                       |
|                    | 1301 | 2001 | (06-58.09S, 102-54.37E) | Sample "sea skater" #1-3                       |
|                    | 2330 | 0630 | (06-05.15S, 100-57.44E) | Radio Sonde #5                                 |
|                    | 2334 | 0634 | (06-05.17S, 100-57.47E) | CTD #1;1000m (with sampling seawater)          |
|                    | 0205 | 0905 | (06-00.13S, 101-00.18E) | CTD #2;500m (with sampling seawater)           |
|                    |      |      |                         | , , , r <i>o</i> ,                             |

| 0400 | 1100 | (05-55.06S, 101-02.76E)                            | CTD #3;500m                                     |
|------|------|----------------------------------------------------|-------------------------------------------------|
| 0530 | 1230 | (05-50.19S, 101-04.89E)                            | Radio Sonde #7                                  |
| 0533 | 1233 | (05-50.29S, 101-05.08E)                            | CTD #4;500m                                     |
| 0701 | 1401 | (05-45.17S, 101-07.83E)                            | CTD #5;500m (with sampling seawater)            |
| 0830 | 1530 | (05-42.65S, 101-09.32E)                            | Radio Sonde #8                                  |
| 0901 | 1601 | (05-40.21S, 101-10.10E)                            | CTD #6;500m                                     |
| 1030 | 1730 | (05-35.22S, 101-12.64E)                            | CTD #7;500m                                     |
| 1131 | 1831 | (05-32.93S, 101-12.93E)                            | Radio Sonde #9                                  |
| 1201 | 1901 | (05-30.19S, 101-15.04E)                            | CTD #8;500m (with sampling seawater)            |
| 1354 | 2054 | (05-25.13S, 101-17.61E)                            | CTD #9;500m                                     |
| 1430 | 2130 | (05-25.32S, 101-17.97E)                            | Radio Sonde #10                                 |
| 1532 | 2232 | (05-20.20S, 101-20.11E)                            | CTD #10;500m                                    |
| 1716 | 0016 | (05-14.91S, 101-22.24E)                            | Radio Sonde #11                                 |
| 1719 | 0019 | (05-15.05S, 101-22.59E)                            | CTD #11;500m (with sampling seawater)           |
| 1910 | 0210 | (05-10.09S, 101-25.13E)                            | CTD #12;500m                                    |
| 2037 | 0337 | (05-05.03S, 101-27.37E)                            | CTD #13;500m                                    |
| 2030 | 0330 | (05-07.59S, 101-26.09E)                            | Radio Sonde #12                                 |
| 2100 | 0400 | (05-05.04S, 101-27.38E)                            | Radio Sonde #13                                 |
| 2207 | 0507 | (05-00.15S, 101-30.17E)                            | CTD #14;500m (with sampling seawater)           |
| 2333 | 0633 | (04-56.67S, 101-32.03E)                            | Radio Sonde #14                                 |
| 2358 | 0658 | (04-55.12S, 101-32.55E)                            | CTD #15;500m                                    |
| 0125 | 0825 | (04-50.04S, 101-35.25E)                            | CTD #16;500m                                    |
| 0230 | 0930 | (04-47.93S, 101-35.57E)                            | Radio Sonde #15                                 |
| 0315 | 1015 | (04-45.20S, 101-37.72E)                            | CTD #17;500m (with sampling seawater)           |
| 0515 | 1215 | (04-39.97S, 101-40.09E)                            | Radio Sonde #16                                 |
| 0519 | 1219 | (04-40.02S, 101-40.26E)                            | CTD #18;500m                                    |
| 0648 | 1348 | (04-35.03S, 101-42.69E)                            | CTD #19;500m                                    |
| 0815 | 1515 | (04-30.02S, 101-44.94E)                            | Radio Sonde #17                                 |
| 0819 | 1519 | (04-30.04S, 101-45.15E)                            | CTD #20;500m (with sampling seawater)           |
| 1009 | 1709 | (04-25.09S, 101-47.60E)                            | CTD #21;500m                                    |
| 1131 | 1831 | (04-19.90S, 101-49.87E)                            | Radio Sonde #18                                 |
| 1145 | 1845 | (04-19.96S, 101-49.98E)                            | CTD #22;500m                                    |
| 1318 | 2018 | (04-14.98S, 101-52.57E)                            | CTD #23;500m (with sampling seawater)           |
| 1431 | 2131 | (04-12.86S, 101-53.45E)                            | Radio Sonde #19                                 |
| 1505 | 2205 | (04-10.05S, 101-54.96E)                            | CTD #24;500m                                    |
| 1638 | 2338 | (04-04.97S, 101-57.63E)                            | CTD #25;374m                                    |
| 1706 | 0030 | (04-02.96S, 101-58.79E)                            | Radio Sonde #20                                 |
| 1803 | 0103 | (03-59.86S, 101-59.92E)                            | CTD #26;200m (with sampling seawater)           |
| 1928 | 0228 |                                                    | Start bathymetry survey, to determine "Station" |
| 2024 | 0324 | (04-06.28S, 101-58.40E)                            | Radio Sonde #21                                 |
| 2342 | 0642 | (03-57.43S, 101-51.11E)                            | Radio Sonde #22                                 |
| 0231 | 0931 | (04-01.95S, 101-47.96E)                            | Radio Sonde #23                                 |
| 0314 | 1014 | (04.00.025.101.52.005)                             | End bathymetry survey                           |
| 0315 | 1015 | (04-09.92S, 101-52.09E)                            | Calibration for magnetometer                    |
| 0430 | 1130 | (04-04S, 101-54E)                                  | Arrive "Station" (4-04S, 101-54E)               |
| 0532 | 1232 | (04-04.06S, 101-53.93E)                            | Radio Sonde #24                                 |
| 0533 | 1233 | (04-04.14S, 101-53.92E)<br>(04-05-12S-101-52.(4E)  | CTD #27;300m (with sampling seawater)           |
| 0720 | 1420 | (04-05.12S, 101-52.64E)                            | Deploy Sea Snake                                |
| 0830 | 1530 | (04-04.84S, 101-54.13E)                            | Radio Sonde #25                                 |
| 0832 | 1532 | (04-04.83S, 101-54.25E)                            | CTD #28;300m                                    |
| 0857 | 1557 | (04-04.88S, 101-54.50E)<br>(04-04.02S, 101-55-78E) | MSP #1;370m<br>Padia Sanda #26                  |
| 1131 | 1831 | (04-04.92S, 101.55.78E)<br>(04-05-01S, 101-55-03E) | Radio Sonde #26                                 |
| 1135 | 1835 | (04-05.01S, 101-55.93E)<br>(04-05-20S, 101-56-17E) | CTD #29;300m (with sampling seawater)           |
| 1215 | 1915 | (04-05.20S, 101.56.17E)<br>(04-05-65S, 101-55-74E) | Sample "sea skater" #2-1                        |
| 1235 | 1935 | (04-05.65S, 101-55.74E)<br>(04-06-11S, 101-55-26E) | Sample "sea skater" #2-2                        |
| 1255 | 1955 | (04-06.11S, 101-55.36E)<br>(04-04-05S, 101-53-12E) | Sample "sea skater" #2-3                        |
| 1430 | 2130 | (04-04.95S, 101-53.12E)<br>(04-04-01S, 101-53-23E) | Radio Sonde #27<br>CTD #20:200m                 |
| 1434 | 2134 | (04-04.91S, 101-53.23E)                            | CTD #30;300m                                    |
|      |      |                                                    |                                                 |

23

|    | 1720 | 0020 | (04 02 000 101 52 24E)  |                                       |
|----|------|------|-------------------------|---------------------------------------|
|    | 1730 | 0030 | (04-02.90S, 101-53.24E) | Radio Sonde #28                       |
|    | 1733 | 0033 | (04-02.82S, 101-53.34E) | CTD #31;300m (with sampling seawater) |
|    | 2030 | 0330 | (04-04.01S, 101-52.89E) | Radio Sonde #29                       |
|    | 2035 | 0335 | (04-03.97S, 101-53.02E) | CTD #32;300m                          |
|    | 2331 | 0631 | (04-04.37S, 101-52.78E) | Radio Sonde #30                       |
|    | 2335 | 0635 | (04-04.38S, 101-52.80E) | CTD #33;500m (with sampling seawater) |
| 24 | 0230 | 0930 | (04-02.60S, 101-52.05E) | Radio Sonde #31                       |
|    | 0234 | 0934 | (04-02.57S, 101-53.07E) | CTD #34;300m                          |
|    | 0531 | 1231 | (04-03.58S, 101-53.02E) | Radio Sonde#32                        |
|    | 0537 | 1237 | (04-03.50S, 101-53.07E) | CTD #35;300m (with sampling seawater) |
|    | 1830 | 1530 | (04-03.28S, 101-53.45E) | Radio Sonde #33                       |
|    | 1832 | 1532 | (04-03.26S, 101-53.48E) | CTD #36;300m                          |
|    | 1856 | 1552 | (04-03.20S, 101-53.55E) | MSP #2;416m                           |
|    | 1131 | 1831 | (04-04.03S, 101-53.11E) | Radio Sonde #34                       |
|    |      |      |                         |                                       |
|    | 1134 | 1834 | (04-04.00S, 101-53.16E) | CTD #37;300m (with sampling seawater) |
|    | 1430 | 2130 | (04-03.10S, 101-53.00E) | Radio Sonde#35                        |
|    | 1433 | 2133 | (04-03.06E, 101-53.04E) | CTD#38;300m                           |
|    | 1730 | 0030 | (04-02.61S, 101-53.84E) | Radio Sonde #36                       |
|    | 1733 | 0033 | (04-02.63S, 101-53.87E) | CTD #39;300m (with sampling seawater) |
|    | 2030 | 0330 | (04-03.59S, 101-52.75E) | Radio Sonde #37                       |
|    | 2035 | 0335 | (04-03.68S, 101-52.72E) | CTD #40;300m                          |
|    | 2330 | 6030 | (04-04.228, 101-53.05E) | Radio Sonde #38                       |
|    | 2334 | 6034 | (04-04.31S, 101-53.05E) | CTD #41;500m (with sampling seawater) |
| 25 | 0230 | 0930 | (04-03.43S, 101-53.71E) | Radio Sonde #39                       |
| 20 | 234  | 0934 | (04-03.47S, 101-53.72E) | CTD #42;300m                          |
|    | 0530 | 1230 | (04-03.05S, 101-54.55E) | Radio Sonde #40                       |
|    | 0534 | 1230 | (04-03.10S, 101-54.55E) | CTD #43;300m (with sampling seawater) |
|    |      |      |                         | · · · · · · · · · · · · · · · · · · · |
|    | 1230 | 1530 | (04-03.41S, 101-54.02E) | Radio Sonde #41                       |
|    | 1233 | 1533 | (04-03.45S, 101-54.10E) | CTD #44;300m                          |
|    | 1256 | 1556 | (04-03.57S, 101-54.29E) | MSP #3;339m                           |
|    | 1130 | 1830 | (04-04.09S, 101-52.82E) | Radio Sonde #42                       |
|    | 1133 | 1833 | (04-04.16S, 101-52.80E) | CTD #45;300m (with sampling seawater) |
|    | 1422 | 2122 | (04-04.17S, 101-53.34E) | Radio Sonde #43                       |
|    | 1430 | 2130 | (04-04.24S, 101-53.37E) | CTD #46;300m                          |
|    | 1735 | 0035 | (04-03.22S, 101-52.21E) | CTD #47;300m (with sampling seawater) |
|    | 1807 | 0107 | (04-03.19S, 101-52.21E) | Radio Sonde #44                       |
|    | 2030 | 0330 | (04-03.87S, 101-54.72E) | Radio Sonde #45                       |
|    | 2036 | 0336 | (04-03.938, 101-54.61E) | CTD #48;300m                          |
|    | 2330 | 0630 | (04-03.96S, 101-52.95E) | Radio Sonde #46                       |
|    | 2334 | 0634 | (04-04.18S, 101-53.00E) | CTD #49;500m (with sampling seawater) |
| 26 | 0230 | 0930 | (04-03.61S, 101-53.91E) | Radio Sonde #47                       |
| 20 | 0234 | 0934 | (04-03.81S, 101-54.03E) | CTD #50;300m                          |
|    | 0531 | 1231 | (04-03.17S, 101-54.31E) | Radio Sonde #48                       |
|    |      |      |                         |                                       |
|    | 0534 | 1234 | (04-03.29S, 101-54.37E) | CTD #51;300m (with sampling seawater) |
|    | 0830 | 1530 | (04-03.96S, 101-54.12E) | Radio Sonde #49                       |
|    | 0833 | 1533 | (04-04.06S, 101-54.12E) | CTD #52;300m                          |
|    | 0856 | 1556 | (04-04.30S, 101-54.12E) | MSP #4;339m                           |
|    | 1130 | 1839 | (04-04.06S, 101-53.37E) | Radio Sonde #50                       |
|    | 1133 | 1833 | (04-04.14S, 101-53.39E) | CTD #53;300m (with sampling seawater) |
|    | 1210 | 1910 | (04-04.18S, 101.53.32E) | Sample "sea skater" #3-1              |
|    | 1232 | 1932 | (04-03.55S, 101-53.23E) | Sample "sea skater" #3-2              |
|    | 1252 | 1952 | (04-02.94S, 101-53.17E) | Sample "sea skater" #3-3              |
|    | 1430 | 2130 | (04-03.22S, 101-54.28E) | Radio Sonde #51                       |
|    | 1433 | 2133 | (04-03.21S, 101-54.37E) | CTD #54;300m                          |
|    | 1725 | 0025 | (04-03.15S, 101-54.29E) | Radio Sonde #52                       |
|    | 1730 | 0020 | (04-03.21S, 101-54.44E) | CTD #55;300m (with sampling seawater) |
|    | 2030 | 0330 | (04-03.96S, 101-54.15E) | Radio Sonde #53                       |
|    | 2030 | 0335 | (04-04.06S, 101-54.25E) | CTD #53;300m                          |
|    | 2033 | 0555 | (07-07.003, 101-34.23E) | C1D π55,500II                         |

|    | 2331 | 0631 | (04-04.29S, 101-53.34E)                            | Radio Sonde#54                        |
|----|------|------|----------------------------------------------------|---------------------------------------|
|    | 2331 | 0640 | (04-04.293, 101-53.34E)<br>(04-04.44S, 101-53.47E) | CTD #57;500m (with sampling seawater) |
| 27 | 0230 | 0930 | (04-05.11S, 101-54.16E)                            | Radio Sonde #55                       |
| 21 | 0230 | 0930 | (04-05.23S, 101-54.33E)                            | CTD #58;300m                          |
|    | 0730 | 1230 | (04-04.92S, 101-54.30E)                            | Radio Sonde #56                       |
|    | 0534 | 1230 | (04-05.01S, 101-54.42E)                            | CTD #59;300m (with sampling seawater) |
|    | 0830 | 1530 | (04-04.00S, 101-54.03E)                            | Radio Sonde #57                       |
|    | 0830 | 1530 | (04-04.03S, 101-54.14E)                            | CTD #60;300m                          |
|    | 0855 | 1555 | (04-04.16S, 101-54.30E)                            | MSP #5;346m                           |
|    | 1131 | 1831 | (04-03.95S, 101-53.24E)                            | Radio Sonde #58                       |
|    | 1131 | 1835 | (04-03.97S, 101-53.30E)                            | CTD #61 (with sampling seawater)      |
|    | 1430 | 2130 | (04-02.86S, 101-54.98E)                            | Radio Sonde #59                       |
|    | 1434 | 2130 | (04-02.98S, 101-55.19E)                            | CTD #62;300m                          |
|    | 1730 | 0030 | (04-02.70S, 101-54.35E)                            | Radio Sonde #60                       |
|    | 1733 | 0033 | (04-02.76S, 101-54.47E)                            | CTD #63;300m (with sampling seawater) |
|    | 2030 | 0330 | (04-03.58S, 101-53.91E)                            | Radio Sonde #61                       |
|    | 2036 | 0336 | (04-03.65S, 101-54.06E)                            | CTD #64;300m                          |
|    | 2331 | 0631 | (04-04.14S, 101-53.26E)                            | Radio Sonde #62                       |
|    | 2335 | 0635 | (04-04.24S, 101-53.34E)                            | CTD #65;500m (with sampling seawater) |
|    | 0230 | 0035 | (04-03.47S, 101-54.11E)                            | Radio Sonde #63                       |
|    | 0230 | 0934 | (04-03.528, 101-54.19E)                            | CTD #66;300m                          |
|    | 0531 | 1231 | (04-04.33S, 101-53.67E)                            | Radio Sonde #64                       |
|    | 0536 | 1231 | (04-04.32S, 101-53.74E)                            | CTD #67;300m (with sampling seawater) |
|    | 0330 | 1531 | (04-03.268, 101-53.42E)                            | Radio Sonde #65                       |
|    | 0832 | 1532 | (04-03.30S, 101-53.40E)                            | CTD #68;300m                          |
|    | 0856 | 1556 | (04-03.40S, 101-53.45E)                            | MSP #6;334m                           |
|    | 1131 | 1831 | (04-03.57S, 101-52.94E)                            | Radio Sonde #66                       |
|    | 1136 | 1836 | (04-03.528, 101-52.99E)                            | CTD #69;300m (with sampling seawater) |
|    | 1430 | 2130 | (04-02.48S, 101-53.78E)                            | Radio Sonde #67                       |
|    | 1435 | 2130 | (04-02.50S, 101-53.75E)                            | CTD #70;300m                          |
|    | 1730 | 0030 | (04-05.38S, 101-54.08E)                            | Radio Sonde #68                       |
|    | 1748 | 0048 | (04-05.158, 101-54.35E)                            | Video Sonde #1                        |
|    | 1757 | 0040 | (04-05.258, 101-54.40E)                            | CTD #71;300m (with sampling seawater) |
|    | 2031 | 0331 | (04-03.15S, 101-55.57E)                            | Radio Sonde #69                       |
|    | 2037 | 0337 | (04-03.09S, 101-55.67E)                            | CTD #72;300m                          |
|    | 2330 | 0630 | (04-04.08S, 101-53.29E)                            | Radio Sonde #70                       |
|    | 2334 | 0634 | (04-04.18S, 101-53.28E)                            | CTD #73;500m (with sampling seawater) |
| 29 | 0230 | 0930 | (04-02.98S, 101-53.84E)                            | Radio Sonde #71                       |
| 2) | 0236 | 0936 | (04-03.028, 101-53.77E)                            | CTD #74;300m                          |
|    | 0531 | 1231 | (04-04.43S, 101-53.64E)                            | Radio Sonde #72                       |
|    | 0535 | 1235 | (04-04.49S, 101-53.58E)                            | CTD #75;300m (with sampling seawater) |
|    | 0830 | 1530 | (04-03.498, 101-53.51E)                            | Radio Sonde #73                       |
|    | 0832 | 1532 | (04-03.57S, 101-53.53E)                            | CTD #76;300m                          |
|    | 0857 | 1557 | (04-03.74S, 101-53.66E)                            | MSP #7;339m                           |
|    | 1130 | 1830 | (04-04.06S, 101-53.31E)                            | Radio Sonde #74                       |
|    | 1133 | 1833 | (04-04.17S, 101-53.32E)                            | CTD #77;300m (with sampling seawater) |
|    | 1206 | 1906 | (04-04.41S, 101-53.33E)                            | Sample "sea skater" #4-1              |
|    | 1227 | 1927 | (04-05.16S, 101-53.06E)                            | Sample "sea skater" #4-2              |
|    | 1247 | 1947 | (04-05.84S, 101-52.80E)                            | Sample "sea skater" #4-3              |
|    | 1431 | 2131 | (04-04.49S, 101-53.45E)                            | Radio Sonde #75                       |
|    | 1437 | 2137 | (04-04.598, 101-53.43E)                            | CTD #78;300m                          |
|    | 1720 | 0020 | (04-03.138, 101-53.93E)                            | Radio Sonde #76                       |
|    | 1732 | 0032 | (04-03.028, 101-53.99E)                            | CTD #79;300m (with sampling seawater) |
|    | 2030 | 0330 | (04-03.67S, 101-54.71E)                            | Radio Sonde #77                       |
|    | 2036 | 0336 | (04-03.64S, 101-54.69E)                            | CTD #80;300m                          |
|    | 2331 | 0631 | (04-03.97S, 101-53.07E)                            | Radio Sonde #78                       |
|    | 2336 | 0636 | (04-04.10S, 101-52.99E)                            | CTD #81;500m (with sampling seawater) |
| 30 | 0230 | 0930 | (04-03.49S, 101-53.55E)                            | Radio Sonde #79                       |
|    |      |      | ( , , , , , , , , , , , , , , , , , , ,            | -                                     |

|        | 0227 | 0027 | (04 02 508 101 52 46E)                             | CTD # 2.200m                           |
|--------|------|------|----------------------------------------------------|----------------------------------------|
|        | 0237 | 0937 | (04-03.50S, 101-53.46E)                            | CTD #82;300m                           |
|        | 0530 | 1230 | (04-04.16S, 101-53.57E)                            | Radio Sonde #80                        |
|        | 0534 | 1234 | (04-04.23S, 101-53.53E)                            | CTD #83;300m (with sampling seawater)  |
|        | 0830 | 1530 | (04-04.62S, 101-53.36E)                            | Radio Sonde #81                        |
|        | 0832 | 1532 | (04-04.71S, 101-53.49E)                            | CTD #84;300m                           |
|        | 1130 | 1830 | (04-03.99S, 101-53.73E)                            | Radio Sonde #82                        |
|        | 1133 | 1833 | (04-04.04S, 101-53.77E)                            | CTD #85;300m (with sampling seawater)  |
|        | 1209 | 1909 | (04-04.20S, 101-53.89E)                            | MSP #8;391m                            |
|        | 1430 | 2130 | (04-05.39S, 101-54.14E)                            | Radio Sonde #83                        |
|        | 1436 | 2136 | (04-05.40S, 101-54.03E)                            | CTD #86;300m                           |
|        | 1459 | 2159 | (04-05.43S, 101-53.91E)                            | MSP #9;375m                            |
|        | 1730 | 0030 | (04-04.15S, 101-53.53E)                            | Radio Sonde #84                        |
|        | 1733 | 0033 | (04-04.26S, 101-53.48E)                            | CTD #87;300m (with sampling seawater)  |
|        | 1812 | 0112 | (04-04.52S, 101-53.40E)                            | MSP #10;340m                           |
|        | 2030 | 0330 | (04-04.82S, 101-53.17E)                            | Radio Sonde #85                        |
|        | 2036 | 0336 | (04-04.95S, 101-53.16E)                            | CTD #88;300m                           |
|        | 2102 | 0402 | (04-05.20S, 101-53.13E)                            | MSP #11;334m                           |
|        | 2330 | 0630 | (04-04.17S, 101-53.05E)                            | Radio Sonde #86                        |
|        | 2335 | 0635 | (04-04.20S, 101-52.93E)                            | CTD #89;500m(with sampling seawater)   |
| Dec. 1 | 0230 | 0930 | (04-03.27S, 101-53.95E)                            | Radio Sonde #87                        |
| Dec. 1 | 0235 | 0935 | (04-03.26S, 101-53.84E)                            | CTD #90;300m                           |
|        | 0233 | 1231 | $(04-03.09\mathrm{S}, 101-53.61\mathrm{E})$        | Radio Sonde #88                        |
|        | 0534 | 1231 | (04-03.338, 101-53.59E)                            | CTD #91;300m (with sampling seawater)  |
|        |      |      |                                                    |                                        |
|        | 0830 | 1530 | (04-03.88S, 101-53.49E)                            | Radio Sonde #89                        |
|        | 0832 | 1532 | (04-03.98S, 101-53.42E)                            | CTD #92;300m                           |
|        | 1131 | 1831 | (04-04.00S, 101-52.94E)                            | Radio Sonde #90                        |
|        | 1133 | 1833 | (04-04.05S, 101-52.90E)                            | CTD #93;300m (with sampling seawater)  |
|        | 1210 | 1910 | (04-04.23S, 101-52.88E)                            | MSP #12;362m                           |
|        | 1425 | 2125 | (04-04.31S, 101-53.78E)                            | Radio Sonde #91                        |
|        | 1429 | 2129 | (04-04.36S, 101-53.89E)                            | CTD #94;300m                           |
|        | 1452 | 2152 | (04-04.34S, 101-53.90E)                            | MSP #13;375m                           |
|        | 1730 | 0030 | (04-02.87S, 101-53.49E)                            | Radio Sonde #92                        |
|        | 1735 | 0035 | (04-02.88S, 101-53.55E)                            | CTD #95;299m (with sampling seawater)  |
|        | 1815 | 0115 | (04-02.74S, 101-53.61E)                            | MSP #14;357m                           |
|        | 2030 | 0330 | (04-03.66S, 101-53.77E)                            | Radio Sonde #93                        |
|        | 2036 | 0336 | (04-03.78S, 101-53.83E)                            | CTD #96;300m                           |
|        | 2103 | 0403 | (04-04.20S, 101-53.92E)                            | MSP #15;340m                           |
|        | 2330 | 0630 | (04-04.04S, 101-54.05E)                            | Radio Sonde #94                        |
|        | 2334 | 0634 | (04-04.19S, 101-54.13E)                            | CTD #97;500m (with sampling seawater)  |
| 2      | 0230 | 0930 | (04-03.31S, 101-54.15E)                            | Radio Sonde #95                        |
|        | 0236 | 0936 | (04-03.34S, 101-54.19E)                            | CTD #98;300m                           |
|        | 0530 | 1230 | (04-03.02S, 101-54.85E)                            | Radio Sonde #96                        |
|        | 0534 | 1234 | (04-03.19S, 101-54.83E)                            | CTD #99;300m (with sampling seawater)  |
|        | 0830 | 1530 | (04-03.13S, 101-53.06E)                            | Radio Sonde #97                        |
|        | 0832 | 1532 | (04-03.19S, 101-53.02E)                            | CTD #100;300m                          |
|        | 1130 | 1830 | (04-03.68S, 101-53.12E)                            | Radio Sonde #98                        |
|        | 1135 | 1835 | (04-03.76S, 101-53.16E)                            | CTD #101;300m (with sampling seawater) |
|        | 1211 | 1911 | (04-03.97S, 101-53.14E)                            | MSP #16;384m                           |
|        | 1211 | 1940 | (04-03.938, 101-53.14E)<br>(04-03.938, 101-53.18E) | Sample "sea skater" #5-1               |
|        | 1240 | 2004 | (04-03.21S, 101-53.62E)                            | Sample 'sea skater' #5-2               |
|        |      |      | (04-03.218, 101-53.82E)<br>(04-02.558, 101-53.88E) | -                                      |
|        | 1324 | 2024 |                                                    | Sample "sea skater" #5-3               |
|        | 1431 | 2131 | (04-03.92S, 101-54.21E)                            | Radio Sonde #99                        |
|        | 1434 | 2134 | (04-04.01S, 101-54.19E)                            | CTD #102;300m                          |
|        | 1456 | 2156 | (04-04.14S, 101-54.21E)                            | MSP #17;337m                           |
|        | 1730 | 0030 | (04-02.85S, 101-54.00E)                            | Radio Sonde #100                       |
|        | 1737 | 0037 | (04-02.86S, 101-53.99E)                            | CTD #103;300m (with sampling seawater) |
|        | 1815 | 0115 | (04-03.04S, 101-53.92E)                            | MSP #18;360m                           |
|        | 2030 | 0330 | (04-03.76S, 101-54.08E)                            | Radio Sonde #101                       |
|        |      |      |                                                    |                                        |

|   | 2035 | 0335 | (04-03.74S, 101-54.22E) | CTD #104;300m                          |
|---|------|------|-------------------------|----------------------------------------|
|   | 2101 | 0401 | (04-03.67S, 101-54.30E) | MSP #19;384m                           |
|   | 2330 | 0630 | (04-04.08S, 101-52.80E) | Radio Sonde #102                       |
|   | 2334 | 0634 | (04-04.26S, 101-52.79E) | CTD #105;500m (with sampling seawater) |
| 3 | 0236 | 0936 | (04-03.09S, 101-54.17E) | Radio Sonde #103                       |
| 5 | 0243 | 0943 | (04-02.99S, 101-54.29E) | CTD #106;300m                          |
|   |      |      |                         |                                        |
|   | 0530 | 1230 | (04-04.47S, 101-53.71E) | Radio Sonde #104                       |
|   | 0534 | 1233 | (04-04.58S, 101-53.74E) | CTD #107;300m (with sampling seawater) |
|   | 0830 | 1530 | (04-03.03S, 101-54.41E) | Radio Sonde #105                       |
|   | 0835 | 1535 | (04-03.15S, 101-54.50E) | CTD #108;300m                          |
|   | 0900 | 1600 | (04-03.35S, 101-54.72E) | MSP #20;348m                           |
|   | 1131 | 1831 | (04-03.86S, 101-53.47E) | Radio Sonde #106                       |
|   | 1134 | 1834 | (04-03.89S, 101-53.48E) | CTD #109;300m (with sampling seawater) |
|   | 1406 | 2106 | (04-02.52S, 101-53.27E) | Video Sonde #2                         |
|   | 1430 | 2130 | (04-03.01S, 101-53.37E) | Radio Sonde #107                       |
|   | 1434 | 2130 | (04-03.08S, 101-53.37E) | CTD #110;300m                          |
|   |      |      |                         |                                        |
|   | 1730 | 0030 | (04-02.17S, 101-54.03E) | Radio Sonde #108                       |
|   | 1736 | 0036 | (04-02.15S, 101-54.10E) | CTD #111;300m (with sampling seawater) |
|   | 2030 | 0330 | (04-03.72S, 101-55.48E) | Radio Sonde #109                       |
|   | 2036 | 0336 | (04-03.82S, 101-55.55E) | CTD #112;300m                          |
|   | 2330 | 0630 | (04-03.82S, 101-53.56E) | Radio Sonde #110                       |
|   | 2334 | 0634 | (04-03.81S, 101-53.57E) | CTD #113;500m (with sampling seawater) |
| 4 | 0231 | 0931 | (04-02.54S, 101-53.64E) | Radio Sonde #111                       |
|   | 0237 | 0937 | (04-02.53S, 101-53.65E) | CTD #114;300m                          |
|   | 0531 | 1231 | (04-02.66S, 101-54.77E) | Radio Sonde #112                       |
|   | 0534 | 1231 | (04-02.65S, 101-54.70E) | CTD #115;300m (with sampling seawater) |
|   |      |      |                         | · · · · · · · · · · · · · · · · · · ·  |
|   | 0830 | 1530 | (04-04.16S, 101-53.66E) | Radio Sonde #113                       |
|   | 0834 | 1534 | (04-04.23S, 101-53.64E) | CTD #116;300m                          |
|   | 0859 | 1559 | (04-04.42S, 101-53.77E) | MSP #21;344m                           |
|   | 1130 | 1830 | (04-03.87S, 101-53.40E) | Radio Sonde #114                       |
|   | 1136 | 1836 | (04-03.92S, 101-53.42E) | CTD #117;300m (with sampling seawater) |
|   | 1430 | 2130 | (04-04.95S, 101-54.05E) | Radio Sonde #115                       |
|   | 1433 | 2133 | (04-04.98S, 101-54.06E) | CTD #118;300m                          |
|   | 1730 | 0020 | (04-03.17S, 101-53.49E) | Radio Sonde #116                       |
|   | 1733 | 0033 | (04-03.23S, 101-53.59E) | CTD #119;300m (with sampling seawater) |
|   | 2030 | 0330 | (04-04.28S, 101-53.51E) | Radio Sonde #117                       |
|   | 2035 | 0335 | (04-04.31S, 101-53.71E) | CTD #120;300m                          |
|   |      |      |                         |                                        |
|   | 2331 | 0631 | (04-03.46S, 101-53.40E) | Radio Sonde #118                       |
| _ | 2334 | 0634 | (04-03.46S, 101-53.38E) | CTD #121;501m (with sampling seawater) |
| 5 | 0232 | 0932 | (04-04.43S, 101-52.83E) | Radio Sonde #119                       |
|   | 0234 | 0934 | (04-04.56S, 101-52.90E) | CTD #122;300m                          |
|   | 0530 | 1230 | (04-04.15S, 101-52.71E) | Radio Sonde #120                       |
|   | 0533 | 1233 | (04-04.09S, 101-52.69E) | CTD #123;300m (with sampling seawater) |
|   | 0612 | 1312 | (04-04.25S, 101-52.73E) | MSP #22;350m                           |
|   | 0640 | 1340 | (04-04.42S, 101-52.80E) | MSP #23;350m                           |
|   | 0830 | 1530 | (04-03.59S, 101-53.80E) | Radio Sonde #121                       |
|   | 0832 | 1532 | (04-03.69S, 101-53.78E) | CTD #124;300m                          |
|   | 0858 | 1558 | (04-03.938, 101-53.90E) | MSP #24;361m                           |
|   | 1131 | 1831 | (04-03.798, 101-53.62E) | Radio Sonde #122                       |
|   |      |      |                         |                                        |
|   | 1133 | 1833 | (04-03.83S, 101-53.62E) | CTD #125;300m (with sampling seawater) |
|   | 1210 | 1910 | (04-04.01S, 101-53.72E) | MSP #25;370m                           |
|   | 1233 | 1933 | (04-04.07S, 101.53.67E) | Sample "sea skater" #6-1               |
|   | 1254 | 1954 | (04-03.95S, 101.53.10E) | Sample "sea skater" #6-2               |
|   | 1314 | 2014 | (04-03.73S, 101.52.53E) | Sample "sea skater" #6-3               |
|   | 1425 | 2125 | (04-04.13S, 101-53.71E) | Radio Sonde #123                       |
|   | 1429 | 2129 | (04-04.22S, 101-53.67E) | CTD #126;300m                          |
|   | 1456 | 2153 | (04-04.36S, 101-53.74E) | MSP #26;366m                           |
|   | 1732 | 0032 | (04-05.228, 101-53.91E) | CTD #127;300m (with sampling seawater) |
|   |      |      | (                       |                                        |

|   | 1747 | 0047 | (04 05 248 101 52 01E)                             | Dadia Sanda #124                       |
|---|------|------|----------------------------------------------------|----------------------------------------|
|   | 1747 | 0047 | (04-05.24S, 101-53.91E)                            | Radio Sonde #124                       |
|   | 2030 | 0330 | (04-03.99S, 101-54.65E)                            | Radio Sonde #125                       |
|   | 2034 | 0334 | (04-04.19S, 101-54.72E)                            | CTD #128;300m                          |
|   | 2330 | 0630 | (04-03.90S, 101-53.22E)                            | Radio Sonde #126                       |
|   | 2334 | 0634 | (04-04.10S, 101-53.32E)                            | CTD #129;500m (with sampling seawater) |
| 6 | 0230 | 0930 | (04-04.39S, 101-54.00E)                            | Radio Sonde # 127                      |
|   | 0234 | 0934 | (04-04.55S, 101-54.04E)                            | CTD #130;300m                          |
|   | 0530 | 1230 | (04-04.56S, 101-53.53E)                            | Radio Sonde #128                       |
|   | 0533 | 1233 | (04-04.66S, 101-53.54E)                            | CTD #131;300m (with sampling seawater) |
|   | 0609 | 1309 | (04-04.76S, 101-53.56E)                            | MSP #27;395m                           |
|   | 1830 | 1530 | (04-03.47S, 101-54.02E)                            | Radio Sonde #129                       |
|   | 1832 | 1532 | (04-03.57S, 101-53.99E)                            | CTD #132;300m                          |
|   | 1857 | 1557 | (04-03.72S, 101-54.12E)                            | MSP #28;365m                           |
|   | 1130 | 1830 | (04-04.04S, 101-53.15E)                            | Radio Sonde #130                       |
|   | 1134 | 1834 | (04-04.13S, 101-53.19E)                            | CTD #133;300m (with sampling seawater) |
|   | 1210 | 1910 | (04-04.41S, 101-53.29E)                            | MSP #29                                |
|   | 1430 | 2130 | (04-03.89S, 101-53.67E)                            | Radio Sonde 131                        |
|   | 1432 | 2132 | (04-03.91S, 101-53.68E)                            | CTD #134;300m                          |
|   | 1458 | 2158 | (04-03.97S, 101-53.75E)                            | MSP #30;317m                           |
|   | 1730 | 0030 | (04-04.76S, 191-53.45E)                            | Radio Sonde #132                       |
|   | 1734 | 0034 | (04-04.71S, 101-53.47E)                            | CTD #135;300m (with sampling seawater) |
|   | 2030 | 0330 | (04-03.96S, 101-53.83E)                            | Radio Sonde #133                       |
|   | 2034 | 0334 | (04-03.90S, 101-53.88E)                            | CTD #136;300m (with sampling seawater) |
|   | 2330 | 0630 | (04-04.08S, 101-53.10E)                            | Radio Sonde #134                       |
|   | 2334 | 0635 | (04-04.26S, 101-53.26E)                            | CTD #137;500m (with sampling seawater) |
| 7 | 0118 | 0818 | (04-04.98S, 101-53.20E)                            | Video Sonde #3                         |
| / | 0230 | 0930 | (04-03.97S, 101-54.07E)                            | Radio Sonde #135                       |
|   | 0235 | 0935 | (04-04.128, 101-54.22E)                            | CTD #138;300m                          |
|   | 0531 | 1231 | (04-03.82S, 101-53.28E)                            | Radio Sonde #136                       |
|   | 0534 | 1231 | (04-03.89S, 101-53.23E)                            | CTD#139;300m (with sampling seawater)  |
|   | 1617 | 1317 | (04-03.938, 101-53.29E)<br>(04-03.938, 101-53.29E) | MSP #31;400m                           |
|   | 0830 | 1530 | (04-04.928, 101-52.95E)                            | Radio Sonde#137                        |
|   | 0830 | 1530 | (04-05.08S, 101-52.93E)                            | CTD #140;300m                          |
|   | 0856 | 1556 | (04-05.158, 101-53.11E)                            | MSP #32;370m                           |
|   | 1131 | 1831 | (04-04.32S, 101-53.16E)                            | Radio Sonde #138                       |
|   | 1131 | 1831 | (04-04.43S, 101-53.16E)<br>(04-04.43S, 101-53.16E) | CTD #141;300m(with sampling seawater)  |
|   | 1209 | 1909 | (04-04.758, 101-53.37E)                            | MSP #33;338m                           |
|   |      |      |                                                    | Radio Sonde #139                       |
|   | 1530 | 2130 | (04-03.83S, 101-53.35E)<br>(04-02-005-101-52-27E)  |                                        |
|   | 1532 | 2132 | (04-03.90S, 101-53.27E)                            | CTD #142;300m                          |
|   | 1556 | 2156 | (04-04.01S, 101-53.17E)                            | MSP #34                                |
|   | 1725 | 0025 | (04-04.67S, 101-53.00E)                            | Radio Sonde #140                       |
|   | 1732 | 0032 | (04-04.85S, 101-53.11E)                            | CTD #143;300m (with sampling seawater) |
|   | 1802 | 0102 | (04-04.99S, 101-53.16E)                            | Radio Sonde #141                       |
|   | 2029 | 0329 | (04-03.60S, 101-54.75E)                            | Radio Sonde #142                       |
|   | 2033 | 0333 | (04-03.78S, 101-54.87E)                            | CTD #144;300m                          |
|   | 2330 | 0630 | (04-04.14S, 101-52.96E)                            | Radio Sonde #143                       |
|   | 2334 | 0634 | (04-04.41S, 101-52.99E)                            | CTD #145;500m (with sampling seawater) |
| 8 | 0230 | 0930 | (04-04.98S, 101-53.44E)                            | Radio Sonde #144                       |
|   | 0235 | 0935 | (04-05.17S, 101-53.50E)                            | CTD #146;300m                          |
|   | 0530 | 1230 | (04-03.91S, 101-53.57E)                            | Radio Sonde #145                       |
|   | 0534 | 1234 | (04-04.08S, 101-53.61E)                            | CTD #147;300m (with sampling seawater) |
|   | 0830 | 1530 | (04-04.93S, 101-53.58E)                            | Radio Sonde #146                       |
|   | 0832 | 1532 | (04-05.09S, 101-53.69E)                            | CTD #148;300m                          |
|   | 0856 | 1556 | (04-05.30S, 101-53.96E)                            | MSP #35;333m                           |
|   | 1130 | 1830 | (04-04.12S, 101-52.90E)                            | Radio Sonde #147                       |
|   | 1132 | 1832 | (04-04.18S, 101-53.00E)                            | CTD #149;300m                          |
|   | 1213 | 1913 | (04-04.67S, 101-53.42E)                            | Sample "sea skater" #7-1               |
|   | 1233 | 1933 | (04-05.34S, 101-54.09E)                            | Sample "sea skater" #7-2               |
|   |      |      |                                                    |                                        |

|    | 1051 | 1051 |                                                    |                                         |
|----|------|------|----------------------------------------------------|-----------------------------------------|
|    | 1251 | 1951 | (04-05.90S, 101-54.72E)                            | Sample "sea skater" #7-3                |
|    | 1430 | 2130 | (04-04.02S, 101-53.44E)                            | Radio Sonde #148                        |
|    | 1434 | 2134 | (04-04.14S, 101-53.60E)                            | CTD #150;300m                           |
|    | 1730 | 0030 | (04-04.18S, 101-53.02E)                            | Radio Sonde #149                        |
|    | 1732 | 0032 | (04-04.31S, 101-53.12E)                            | CTD #151;300m (with sampling seawater)  |
|    | 2030 | 0330 | (04-03.24S, 101-53.69E)                            | Radio Sonde #150                        |
|    | 2035 | 0335 | (04-03.45S, 101-53.72E)                            | CTD #152;300m                           |
|    | 2331 | 0631 | (04-04.04S, 101-53.16E)                            | Radio Sonde #151                        |
|    | 2334 | 0634 | (04-04.20S, 101-53.22E)                            | CTD #153;500m (with sampling seawater)  |
| 9  | 0230 | 0930 | (04-03.03S, 101-53.24E)                            | Radio Sonde #152                        |
|    | 0235 | 0935 | (04-03.17S, 101-53.26E)                            | CTD #154;300m                           |
|    | 0235 | 1230 | $(04-05.30\mathrm{S}, 101-53.36\mathrm{E})$        | Radio Sonde #153                        |
|    | 0530 | 1230 | (04-05.39S, 101-53.39E)                            | CTD #155;300m (with sampling seawater)  |
|    |      |      |                                                    |                                         |
|    | 0830 | 1530 | (04-04.91S, 101-53.11E)                            | Radio Sonde #154                        |
|    | 0832 | 1532 | (04-05.04S, 101-53.14E)                            | CTD #156;300m                           |
|    | 0856 | 1556 | (04-05.26S, 101-53.20E)                            | MSP #36;334m                            |
|    | 1130 | 1830 | (04-04.01S, 101-53.30E)                            | Radio Sonde #155                        |
|    | 1133 | 1833 | (04-04.10S, 101-53.27E)                            | CTD #157;300m (with sampling seawater)  |
|    | 1430 | 2130 | (04-04.71S, 101-53.58E)                            | Radio Sonde #156                        |
|    | 1432 | 2132 | (04-04.76S, 101-53.55E)                            | CTD #158;300m                           |
|    | 1730 | 0030 | (04-03.60S, 101-54.07E)                            | Radio Sonde #157                        |
|    | 1732 | 0032 | (04-03.66S, 101-54.15E)                            | CTD #159;300m (with sampling seawater)  |
|    | 2031 | 0331 | (04-03.05S, 101-54.26E)                            | Radio Sonde #158                        |
|    | 2034 | 0334 | (04-03.18S, 101-54.21E)                            | CTD #160;300m                           |
|    | 2331 | 0631 | (04-04.11S, 101-52.99E)                            | Radio Sonde #159                        |
|    | 2334 | 0634 | (04-04.34S, 101-52.97E)                            | CTD #161;500m (with sampling seawater)  |
| 10 | 0110 | 0810 | (04-04.70S, 101-53.06E)                            | Deploy waveglider                       |
| 10 | 0230 | 0930 | (04-04.78S, 101-53.84E)                            | Radio Sonde #160                        |
|    | 0230 | 0934 | (04-04.87S, 101-52.80E)                            | CTD #162;300m                           |
|    | 0234 | 1025 | (04-04.05S, 101-53.48E)                            | Recover waveglider                      |
|    |      |      |                                                    | •                                       |
|    | 0530 | 1230 | (04-04.20S, 101-52.91E)                            | Radio Sonde #161                        |
|    | 0534 | 1234 | (04-04.17S, 101-52.87E)                            | CTD #163;300m (with sampling seawater)  |
|    | 0830 | 1530 | (04-03.64S, 101-52.75E)                            | Radio Sonde #162                        |
|    | 0832 | 1532 | (04-03.64S, 101-52.73E)                            | CTD #164;300m                           |
|    | 0855 | 1555 | (04-03.76S, 101-52.78E)                            | MSP #37                                 |
|    | 1125 | 1825 | (04-04.13S, 101-52.94E)                            | Radio Sonde #163                        |
|    | 1135 | 1835 | (04-04.14S, 101-52.89E)                            | CTD #165;300m (with sampling seawater)  |
|    | 1427 | 2127 | (04-03.01S, 101-54.02E)                            | Radio Sonde #164                        |
|    | 1432 | 2132 | (04-03.05S, 101-53.98E)                            | CTD #166;300m                           |
|    | 1730 | 0030 | (04-02.77S, 101-53.85E)                            | Radio Sonde #165                        |
|    | 1733 | 0033 | (04-02.79S, 101-53.79E)                            | CTD #167; 300m (with sampling seawater) |
|    | 2030 | 0330 | (04-03.07S, 101-53.46E)                            | Radio Sonde #166                        |
|    | 2035 | 0335 | (04-03.12S, 101-53.42E)                            | CTD #168;300m                           |
|    | 2330 | 0630 | (04-01.15S, 101-52.95E)                            | Radio Sonde #167                        |
|    | 2333 | 0633 | (04-04.16S, 101-52.82E)                            | CTD #169;500m with samping seawater     |
| 11 | 0230 | 0930 | (04-02.86S, 101-53.30E)                            | Radio Sonde #168                        |
| 11 | 0235 | 0935 | (04-02.928, 101-53.30E)<br>(04-02.928, 101-53.30E) | CTD #170;300m                           |
|    |      |      |                                                    |                                         |
|    | 0530 | 1230 | (04-03.99S, 101-52.72E)                            | Radio Sonde #169                        |
|    | 0533 | 1233 | (04-04.02S, 101-52.72E)                            | CTD #171;300m (with sampling seawater)  |
|    | 0830 | 1530 | (04-04.68S, 101-52.76E)                            | Radio Sonde #170                        |
|    | 0832 | 1532 | (04-04.78S, 101-52.77E)                            | CTD #172;300m                           |
|    | 0855 | 1555 | (04-04.98S, 101-52.83E)                            | MSP #38;345m                            |
|    | 1130 | 1830 | (04-03.96S, 101-53.25E)                            | Radio Sonde #171                        |
|    | 1133 | 1833 | (04-04.03S, 101-53.30E)                            | CTD #173;300m (with sampling seawater)  |
|    | 1206 | 1906 | (04-04.14S, 101-53.20E)                            | Sample "sea skater" #8-1                |
|    | 1226 | 1926 | (04-04.30S, 101-52.64E)                            | Sample "sea skater" #8-2                |
|    | 1245 | 1945 | (04-04.43S, 101-52.05E)                            | Sample "sea skater" #8-3                |
|    | 1421 | 2121 | (04-02.75S, 101-53.20E)                            | Radio Sonde #172                        |
|    |      |      | ,                                                  |                                         |

|    | 1427 | 2127 | (04-02.66S, 101-53.23E)                            | CTD #174;300m                          |
|----|------|------|----------------------------------------------------|----------------------------------------|
|    | 1730 | 0030 | (04-03.72E, 101-53.88E)                            | Radio Sonde #173                       |
|    | 1732 | 0032 | (04-03.78S, 101-53.88E)                            | CTD #175 (with sampling seawater)      |
|    | 2030 | 0330 | (04-02.68S, 101-54.49E)                            | Radio Sonde #174                       |
|    | 2034 | 0334 | (04-02.77S, 101-54.51E)                            | CTD #176;300m                          |
|    | 2331 | 0631 | (04-03.90S, 101-53.32E)                            | Radio Sonde #175                       |
|    | 2335 | 0635 | (04-04.06S, 101-53.35E)                            | CTD #177;500m (with sampling seawater) |
| 12 | 0230 | 0930 | (04-03.23S, 101-54.47E)                            | Radio Sonde #176                       |
|    | 0235 | 0935 | (04-03.31S, 101-54.59E)                            | CTD #178;300m                          |
|    | 0530 | 1230 | (04-03.18S, 101-53.77E)                            | Radio Sonde #177                       |
|    | 0533 | 1233 | (04-03.22S, 101-53.86E)                            | CTD #179;300m (with sampling seawater) |
|    | 0830 | 1530 | (04-03.84S, 101-53.68E)                            | Radio Sonde #178                       |
|    | 0833 | 1533 | (04-03.88S, 101-53.73E)                            | CTD #180;300m                          |
|    | 0856 | 1556 | (04-04.09S, 101-53.86E)                            | MSP #39;351m                           |
|    | 1130 | 1830 | (04-03.99S, 101-53.36E)                            | Radio Sonde #179                       |
|    | 1130 | 1833 | (04-04.06S, 101-53.41E)                            | CTD #181;300m (with sampling seawater) |
|    | 1430 | 2130 | (04-04.18S, 101-53.48E)                            | Radio Sonde #180                       |
|    | 1430 | 2130 | (04-04.24S, 101-54.55E)                            | CTD #182;300m                          |
|    |      |      |                                                    | Radio Sonde #181                       |
|    | 1722 | 0022 | (04-03.22S, 101-53.32E)<br>(04-02-25S, 101-52-20E) |                                        |
|    | 1733 | 0033 | (04-03.25S, 101-53.29E)                            | CTD #183;300m (with sampling seawater) |
|    | 2030 | 0330 | (04-03.21S, 101-53.81E)                            | Radio Sonde #182                       |
|    | 2034 | 0334 | (04-03.29S, 101-53.82E)                            | CTD #184;300m                          |
|    | 2330 | 0630 | (04-03.26S, 101-53.86E)                            | Radio Sonde #183                       |
|    | 2334 | 0634 | (04-03.34S, 101-53.94E)                            | CTD #185;500m (with sampling seawater) |
| 13 | 0230 | 0930 | (04-03.40S, 101-53.67E)                            | Radio Sonde #184                       |
|    | 0234 | 0934 | (04-03.44S, 101-53.78E)                            | CTD #186;500m                          |
|    | 0529 | 1229 | (04-03.55S, 101-54.08E)                            | Radio Sonde #185                       |
|    | 0535 | 1235 | (04-03.60S, 101-54.22E)                            | CTD #187;300m (with sampling seawater) |
|    | 0830 | 1530 | (04-03.05S, 101-53.91E)                            | Radio Sonde #186                       |
|    | 0837 | 1537 | (04-03.16S, 101-54.20E)                            | CTD #188;300m                          |
|    | 0858 | 1558 | (04-03.36S, 101-54.38E)                            | MSP #40;341m                           |
|    | 1130 | 1830 | (04-03.05S, 101-53.65E)                            | Radio Sonde #187                       |
|    | 1135 | 1835 | (04-03.65S, 101-53.82E)                            | CTD #189;300m (with sampling seawater) |
|    | 1430 | 2130 | (04-03.91S, 101-53.58E)                            | Radio Sonde #188                       |
|    | 1432 | 2132 | (04-04.02S, 101-53.68E)                            | CTD #190;300m                          |
|    | 1731 | 0031 | (04-03.31S, 101-53.68E)                            | Radio Sonde #189                       |
|    | 1733 | 0033 | (04-03.44S, 101-53.72E)                            | CTD #191;300m (with sampling seawater) |
|    | 2030 | 0330 | (04-03.62S, 101-53.64E)                            | Radio Sonde #190                       |
|    | 2034 | 0334 | (04-03.71S, 101-58.70E)                            | CTD #192;300m                          |
|    | 2330 | 0630 | (04-03.78S, 101-53.88E)                            | Radio Sonde #191                       |
|    | 2333 | 0633 | (04-03.82S, 101-53.99E)                            | CTD #193;500m (with sampling seawater) |
| 14 | 0230 | 0930 | (04-03.12S, 101-53.82E)                            | Radio Sonde #192                       |
| 17 | 0230 | 0934 | (04-03.25S, 101-53.91E)                            | CTD #194;300m                          |
|    | 0234 | 1230 | (04-02.78S, 101-54.07E)                            | Radio Sonde #193                       |
|    | 0530 |      |                                                    |                                        |
|    |      | 1233 | (04-02.77S, 101-54.25E)<br>(04-02-27S, 101-52 (1E) | CTD #195;300m (with sampling seawater) |
|    | 0831 | 1531 | (04-03.27S, 101-53.61E)                            | Radio Sonde #194                       |
|    | 0834 | 1534 | (04-03.23S, 101-53.73E)                            | CTD #196;300m                          |
|    | 0854 | 1554 | (04-03.43S, 101-53.85E)                            | MSP #41;330m                           |
|    | 1123 | 1823 | (04-03.34S, 101-53.53E)                            | Radio Sonde #195                       |
|    | 1128 | 1828 | (04-03.39S, 101-53.61E)                            | CTD #197;300m (with sampling seawater) |
|    | 1204 | 1904 | (04-03.39S, 101-53.62E)                            | Sample "sea skater" #9-1               |
|    | 1224 | 1924 | (04-02.76S, 101-53.85E)                            | Sample "sea skater" #9-2               |
|    | 1246 | 1946 | (04-02.11S, 101-53.89E)                            | Sample "sea skater" #9-3               |
|    | 1413 | 2113 | (04-02.58S, 101-53.06E)                            | Video Sonde #4                         |
|    | 1430 | 2130 | (04-02.32S, 101-53.34E)                            | Radio Sonde #196                       |
|    | 1432 | 2132 | (04-02.37S, 101-53.45E)                            | CTD #198;300m                          |
|    | 1731 | 0031 | (04-03.17S, 101-53.12E)                            | Radio Sonde #197                       |
|    | 1734 | 0034 | (04-03.22S, 101-53.21E)                            | CTD #199;300m (with sampling seawater) |
|    |      |      |                                                    |                                        |

|    | 2030 | 0330 | (04-03.82S, 101-53.08E)                            | Radio Sonde #198                       |
|----|------|------|----------------------------------------------------|----------------------------------------|
|    | 2030 |      | (04-03.825, 101-53.08E)<br>(04-04.01S, 101-53.07E) |                                        |
|    |      | 0334 | (04-03.19S, 101-53.19E)                            | CTD #200;300m                          |
|    | 2331 | 0631 |                                                    | Radio Sonde #199                       |
| 15 | 2334 | 0634 | (04-93.37S, 101-53.20E)<br>(04-02.86E, 101-54.39E) | CTD #201;500m (with sampling seawater) |
| 15 | 0230 | 0930 |                                                    | Radio Sonde #200                       |
|    | 0234 | 0934 | (04-02.85S, 101-54.47E)                            | CTD #202;300m                          |
|    | 0530 | 1230 | (04-02.88S, 101-53.66E)                            | Radio Sonde #201                       |
|    | 0534 | 1234 | (04-02.86S, 101-53.71E)                            | CTD #203;300m (with sampling seawater) |
|    | 0831 | 1531 | (04-04.27S, 101-53.59E)                            | Radio Sonde #202                       |
|    | 0834 | 1534 | (04-04.37S, 101-53.68E)                            | CTD #204;300m                          |
|    | 0855 | 1555 | (04-04.61S, 101-53.75E)                            | MSP #42;334m                           |
|    | 1115 | 1815 | (04-03.27S, 101-53.84E)<br>(04-02-20S, 101-52-00E) | Radio Sonde #203                       |
|    | 1121 | 1821 | (04-03.30S, 101-53.90E)                            | CTD #205;300m (with sampling seawater) |
|    | 1218 | 1918 | (04-03.20S, 101-54.01E)<br>(04-02-52S, 101-55-55E) | Video Sonde #5                         |
|    | 1428 | 2128 | (04-03.528, 101-55.55E)                            | Radio Sonde #204                       |
|    | 1433 | 2133 | (04-03.64S, 101-55.87E)                            | CTD #206;300m                          |
|    | 1715 | 0015 | (04-05.17S, 101-54.65E)                            | Radio Sonde #205                       |
|    | 1731 | 0031 | (04-05.23S, 101-54.45E)                            | CTD #207;300m (with sampling seawater) |
|    | 2026 | 0326 | (04-04.13S, 101-53.49E)                            | Radio Sonde #206                       |
|    | 2032 | 0332 | (04-04.25S, 101-53.62E)                            | CTD #208;300m                          |
|    | 2326 | 0626 | (04-03.23S, 101-53.66E)                            | Radio Sonde #207                       |
| 16 | 2331 | 0631 | (04-03.43S, 101-53.84E)                            | CTD #209;500m (with sampling seawater) |
| 16 | 0230 | 0930 | (04-03.38S, 101-53.60E)                            | CTD #210;300m                          |
|    | 0253 | 0953 | (04-03.55S, 101-53.64E)                            | Radio Sonde #208                       |
|    | 0529 | 1229 | (04-04.16S, 101-54.44E)                            | Radio Sonde #209                       |
|    | 0533 | 1233 | (04-04.26S, 101-54.57E)                            | CTD #211;300m (with sampling seawater) |
|    | 0830 | 1530 | (04-03.71S, 101-54.03E)                            | Radio Sonde #210                       |
|    | 0833 | 1533 | (04-04.82S, 101-54.17E)                            | CTD #212;300m                          |
|    | 0853 | 1553 | (04-04.12S, 101-54.38E)                            | MSP #43;324m                           |
|    | 1131 | 1831 | (04-03.92S, 101-53.74E)                            | Radio Sonde #211                       |
|    | 1134 | 1834 | (04-04.30S, 101-53.88E)                            | CTD #213;300m (with sampling seawater) |
|    | 1423 | 2123 | (04-03.50S, 101-53.26E)                            | Radio Sonde #212                       |
|    | 1427 | 2127 | (04-03.598, 101-53.27E)                            | CTD #214;300m                          |
|    | 1730 | 0030 | (04-03.31S, 101-54.46E)                            | Radio Sonde #213                       |
|    | 1734 | 0034 | (04-03.44S, 101-54.57E)                            | CTD #215;300m (with sampling seawater) |
|    | 2031 | 0331 | (04-03.76S, 101-53.84E)                            | Radio Sonde #214                       |
|    | 2035 | 0335 | (04-03.87S, 101-53.90E)                            | CTD #216;300m                          |
|    | 2330 | 0630 | (04-03.57S, 101-53.56E)                            | Radio Sonde #215                       |
| 17 | 2334 | 0634 | (04-03.69S, 101-53.61E)                            | CTD #217;500m (with sampling seawater) |
| 17 | 0230 | 0930 | (04-03.64S, 101-53.61E)                            | Radio Sonde #216                       |
|    | 0234 | 0934 | (04-03.69E, 101-53.67E)                            | CTD #218;300m                          |
|    | 0529 | 1229 | (04-03.27S, 101-53.76E)                            | Radio Sonde #217                       |
|    | 0532 | 1232 | (04-03.37S, 101-53.77E)                            | CTD #219;300m                          |
|    | 0613 | 1313 | (04-03.47S, 101-53.92E)                            | Recover sea snake                      |
|    | 0830 | 1530 | (04-03.56S, 101-53.06E)                            | Radio Sonde #218                       |
|    | 0854 | 1554 | (04-03.65S, 101-53.08E)                            | CTD #220;300m                          |
|    | 0855 | 1555 | (04-03.86S, 101-53.14E)                            | MSP #44;336m                           |
|    | 1130 | 1830 | (04-03.91S, 101-53.38E)                            | Radio Sonde #219                       |
|    | 1132 | 1832 | (04-03.98S, 101-53.43E)                            | CTD #221;300m (with sampling seawater) |
|    | 1212 | 1912 | (02 50 025 102 00 145)                             | Depart "Station" (4-04S, 101-54E)      |
|    | 1303 | 2003 | (03-59.92S, 102-00.14E)<br>(04-10-02S, 101-54-07E) | XCTD #10<br>UCTD #10:200m              |
|    | 1359 | 2059 | (04-10.02S, 101-54.97E)<br>(04-14-25S, 101-52-20E) | UCTD #19;300m                          |
|    | 1430 | 2130 | (04-14.35S, 101-52.20E)<br>(04-02-02S, 101-50-02E) | Radio Sonde #220                       |
|    | 1503 | 2203 | (04-02.02S, 101-50.02E)<br>(04-20.02S, 101-44.06E) | UCTD #20;300m                          |
|    | 1601 | 2301 | (04-30.03S, 101-44.96E)                            | UCTD #21;300m                          |
|    | 1700 | 0000 | (04-04.00S, 101-39.98E)<br>(04-42-55S, 101-28-14E) | UCTD #22;300m<br>Badia Sanda #221      |
|    | 1731 | 0031 | (04-43.55S, 101-38.14E)<br>(04-50.00S, 101-25.00E) | Radio Sonde #221                       |
|    | 1809 | 0109 | (04-50.00S, 101-35.00E)                            | UCTD #23;300m                          |

| 18 | 1905<br>2001<br>2029<br>2057<br>2156<br>2255<br>2337<br>0004<br>0100<br>0115<br>0200 | 0205<br>0301<br>0329<br>0357<br>0456<br>0555<br>0637<br>0704<br>0800<br>0815 | (05-00.00S, 101-30.01E)<br>(05-10.00S, 101-25.00E)<br>(05-14.74S, 101-22.58E)<br>(05-19.98S, 101-20.00E)<br>(05-30.02S, 101-14.99E)<br>(05-40.00S, 101-10.00E)<br>(05-46.32S, 101-06.43E)<br>(05-50.01S, 101-05.00E)<br>(06-00.01S, 101-00.00E)<br>(06-02.28S, 100-58.95E) | UCTD #24;300m<br>UCTD #25;300m<br>Radio Sonde #222<br>UCTD #26;300m<br>UCTD #27;300m<br>UCTD #27;300m<br>Radio Sonde #223<br>UCTD #29;300m<br>UCTD #30;300m<br>Calibration for magnetometer<br>Step and sufficient manifesting |
|----|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | 0115<br>0200                                                                         | 0815<br>0900                                                                 |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
| 20 | 0900<br>0300                                                                         | 1700<br>1000                                                                 |                                                                                                                                                                                                                                                                            | Stop C-band radar observation<br>Arrive Jakarta                                                                                                                                                                                |

# 4. List of Participants

# 4.1 Participants (on board)

| Name               | Affiliation                                        | *Theme No. |
|--------------------|----------------------------------------------------|------------|
| Masaki KATSUMATA   | JAMSTEC                                            | Μ          |
| Biao GENG          | JAMSTEC                                            | Μ          |
| Kyoko TANIGUCHI    | JAMSTEC                                            | Μ          |
| Qoosaku MOTEKI     | JAMSTEC                                            | Μ          |
| Tamaki SUEMATSU    | JAMSTEC                                            | Μ          |
| Makito YOKOTA      | JAMSTEC                                            | Μ          |
| Ichiro MATSUI      | National Institute for Environmental Science (NIES | ) M        |
| Yuki KANEKO        | Japan Aerospace Exploration Agency (JAXA)          | М          |
| Atsushi YAMASE     | Nagoya Univ.                                       | 1          |
| Shuhei MATSUGISHI  | Univ. Tokyo                                        | 2          |
| Tetsuo HARADA      | Kochi Univ.                                        | 3          |
| Noritomo UMAMOTO   | Kochi Univ.                                        | 3          |
| Takahiro FURUKI    | Kochi Univ.                                        | 3          |
| Wataru OHOKA       | Kyoto Univ.                                        | 3          |
| Kazuho YOSHIDA     | Global Ocean Development Inc. (GODI)               | Т          |
| Souichiro SUEYOSHI | GODI                                               | Т          |
| Shinya OKUMURA     | GODI                                               | Т          |
| Miki MORIOKA       | GODI                                               | Т          |
| Kenichi KATAYAMA   | Marine Works Japan Ltd. (MWJ)                      | Т          |
| Tomohide NOGUCHI   | MWJ                                                | Т          |
| Rei ITO            | MWJ                                                | Т          |
| Keisuke TAKEDA     | MWJ                                                | Т          |
| Masanori ENOKI     | MWJ                                                | Т          |
| Atsushi ONO        | MWJ                                                | Т          |
| Tomomi SONE        | MWJ                                                | Т          |
| Misato KUWAHARA    | MWJ                                                | Т          |
| Hiroshi HOSHINO    | MWJ                                                | Т          |
| Haruka TAMADA      | MWJ                                                | Т          |
| Masaki FURUHATA    | MWJ                                                | Т          |
| Katsumi KOTERA     | MWJ                                                | Т          |

Theme number corresponds to that shown in Section 2.7.M and T means main mission and technical staff, respectively.

# 4.2 Participants (not on board)

| Name             | Affiliation     | *Theme No. |
|------------------|-----------------|------------|
| Kunio YONEYAMA   | JAMSTEC         | М          |
| Kazuaki YASUNAGA | Toyama Univ.    | 1          |
| Hiroaki MIURA    | Univ. Tokyo     | 2          |
| Yugo KANAYA      | JAMSTEC         | 4          |
| Kenji SUZUKI     | Yamaguchi Univ. | 5          |
| Kazuma AOKI      | Toyama Univ.    | 6          |
| Kei SHIOMI       | JAXA            | 7          |

# 4.3 Ship Crew

Kan MATSUURA Haruhiko INOUE Takeshi ISOHI Toshihisa AKUTAGAWA Hiroki KOBAYASHI Akihiro NUNOME Yoichi FURUKAWA Yu WATANABE Wataru OKUMA Ryota HASHIDA Ryo KIMURA Kazuyoshi KUDO Takeharu AISAKA Tsuyoshi MONZAWA Masashige OKADA Shuji KOMATA Kaito MURATA Hideyuki OKUBO Akiya CHISHIMA Kosuke ECHIZEN Tetsuya SAKAMOTO Tenki YAMASHIRO Yoshihiro SUGIMOTO Daisuke TANIGUCHI Fumihito KAIZUKA Toshiyuki FURUKI Keisuke YOSHIDA Kazuya ANDO Kazuhiko HAYASHIDA Yukio SHIGE Tamotsu UEMURA Sakae HOSHIKUMA Tsuneaki YOSHINAGA Yukio CHIBA

Master Chief Officer First Officer Jr. First Officer Second Officer Third Officer Chief Engineer First Engineer Second Engineer Third Engineer **Technical Officer** Boatswain Able Seaman Able Seaman Able Seaman Able Seaman Able Seaman Ordinary Seaman Ordinary Seaman Ordinary Seaman Ordinary Seaman Ordinary Seaman No.1 Oiler Oiler Oiler Oiler Oiler Wiper Chief Steward Cook Cook Cook Cook Cook

# 5. Summary of Observations

# 5.1 GPS Radiosonde

| (1) | Personnel |
|-----|-----------|
|-----|-----------|

| • |                    |                |                          |
|---|--------------------|----------------|--------------------------|
|   | Masaki KATSUMATA   | (JAMSTEC)      | - Principal Investigator |
|   | Biao GENG          | (JAMSTEC)      |                          |
|   | Tamaki SUEMATSU    | (JAMSTEC)      |                          |
|   | Shuhei MATSUGISHI  | (Univ. Tokyo)  |                          |
|   | Atsushi YANASE     | (Nagoya Univ.) |                          |
|   | Kunio YONEYAMA     | (JAMSTEC)      | (not on board)           |
|   | Kazuaki YASUNAGA   | (Toyama Univ.) | (not on board)           |
|   | Hiroaki MIURA      | (Univ. Tokyo)  | (not on board)           |
|   | Kazuho YOSHIDA     | (GODI)         | - Operation Leader       |
|   | Miki MORIOKA       | (GODI)         |                          |
|   | Souichiro SUEYOSHI | (GODI)         |                          |
|   | Shinya OKUMURA     | (GODI)         |                          |
|   | Ryo KIMURA         | (MIRAI Crew)   |                          |
|   |                    |                |                          |

#### (2) Objectives

To obtain atmospheric profile of temperature, humidity, and wind speed/direction, and their temporal variations

#### (3) Methods

(3-1) Time series observation using Vaisala system

Atmospheric sounding by radiosonde by using system by Vaisala Oyj was carried out. The GPS radiosonde sensor RS92-SGPD and RS-41SGP was launched with the balloons (Totex TA-200 or TA-350). The on-board system to calibrate, to launch, to log the data and to process the data is MW41, which consists of processor (Vaisala, SPS-311), processing and recording software (MW41, ver.2.2.1), GPS antenna (GA20), UHF antenna (RB21), ground check kit for RS92 (GC25), ground check kit for RS41 (RI41), and balloon launcher (ASAP). In the "ground-check" process, the pressure sensor (Vaisala PTB-330) was also utilized as the standard. In case the relative wind to the ship (launcher) is not appropriate for the launch, the handy launch was selected.

The radiosondes were launched every 3 hours from 00UTC on Nov.21, 2015, to 00UTC on Dec.18, 2015, when the vessel was at or around the station (4-04S, 101-54E). In addition, 4 additional launches were done at the western Pacific. In total, 224 soundings were carried out, as listed in Table 5.1-1.

#### (3-2) Multi-sensor launches for sensor intercomparison

Among the launches in (3-1), 18 launches were dedicated to "multi-sensor" launches for the sensor intercomparison. In the launches, we attached two (RS92-SGPD and RS41-SGP) or three (adding Meisei iMS-100, see below) sensors to one balloon (TA-350) and launched. In the case, the MW41 receiver system in (3-1) were utilized to receive data from RS41-SGP, while data from RS92-SGPD were received by the other MW31 receiver system which installed at aft wheel house. The data from Meisei iMS-100 were received by the receiver system for the Videosonde observation (see Section 5.7).

The multi-sensor launches can be found in gray-shaded rows in Table 5.1-1. The three-sensor (RS92-SGPD, RS41-SGP and iMS-100) launches (8 launches) are written by bold letters, while

# (4) Preliminary Results

The results from Vaisala system are shown in the figures. Figure 5.1-1 is the time-height cross sections during the stationary observation period at (4-04S, 101-54E) for equivalent potential temperature, relative humidity, zonal and meridional wind components. Several basic parameters are derived from sounding data as in Fig. 5.1-2, including convective available potential energy (CAPE), convective inhibition (CIN) and total precipitable water vapor (TPW). Each vertical profiles of temperature and dew point temperature on the thermodynamic chart with wind profiles are attached in Appendix-A.

# (5) Data archive

Data were sent to the world meteorological community via Global Telecommunication System (GTS) through the Japan Meteorological Agency, immediately after each observation. Raw data is recorded in Vaisala original binary format during both ascent and descent. The ASCII data is also available. These raw datasets will be submitted to JAMSTEC Data Management Group (DMG). The corrected datasets will be available from Mirai website at http://www.jamstec.go.jp/cruisedata/mirai/e/.

#### (6) Acknowledgments

The MW31 receiver system was kindly provided by the Institute of Arctic Climate and Environmental Research (IACE) of JAMSTEC.

| -     | 1MS-100) la  | aunch w  | nile norm  | al letter | s for tw | o-sensc    | or (KS4 | 1-30P a | and KS | 92-SGPI | J) launch.    |
|-------|--------------|----------|------------|-----------|----------|------------|---------|---------|--------|---------|---------------|
|       | Nominal Time | Launcheo | d Location |           |          | rface Valu |         |         | Max    |         | Clouds        |
| ID    | YYYYMMDDhh   | Lat.     | Lon.       | Р         | Т        | RH         | WD      | WS      | Height |         | 010000        |
|       |              | deg.N    | deg.E      | hPa       | deg.C    | %          | deg.    | m/s     | m      | Amount  | Types         |
| RS001 | 2015111006   | 23.565   | 136.761    | 1011.6    | 26.7     | 83         | 357     | 3.3     | 25395  | 2       | Cu, Ci        |
| RS002 | 2015111100   | 20.057   | 135.180    | 1014.0    | 27.9     | 80         | 79      | 7.3     | 24345  | 3       | Cu            |
| RS003 | 2015111106   | 19.210   | 134.811    | 1011.6    | 28.0     | 81         | 72      | 8.1     | 26589  | 1       | Cu            |
| RS004 | 2015111200   | 15.557   | 133.216    | 1012.4    | 28.6     | 77         | 62      | 10.7    | 25221  | 2       | Cu            |
| RS005 | 2015112100   | -6.098   | 101.002    | 1006.6    | 27.2     | 81         | 83      | 7.0     | 24231  | 9       | Cu,St         |
| RS006 | 2015112103   | -6.000   | 101.001    | 1007.3    | 28.6     | 85         | 123     | 8.6     | 25213  | 10      | Cu,St         |
| RS007 | 2015112106   | -5.869   | 101.068    | 1005.8    | 28.5     | 86         | 125     | 8.6     | 24288  | 8       | Cu,St         |
| RS008 | 2015112109   | -5.755   | 101.136    | 1003.8    | 28.5     | 86         | 130     | 7.6     | 24766  | 6       | Cu,Ci,As      |
| RS009 | 2015112112   | -5.589   | 101.213    | 1005.5    | 28.4     | 83         | 126     | 9.1     | 23136  | 4       | Cu,Ci,As      |
| RS010 | 2015112115   | -5.418   | 101.296    | 1007.1    | 28.6     | 83         | 124     | 8.8     | 23749  | 7       | Cu,Ac,Cb,,Str |
| RS011 | 2915112118   | -5.276   | 101.359    | 1006.3    | 28.5     | 84         | 127     | 7.5     | 23314  | 8       | Cu,St         |
| RS012 | 2015112121   | -5.127   | 101.435    | 1005.1    | 25.1     | 90         | 108     | 4.4     | -      | 10      | _             |
| RS013 | 2015112121   | -5.084   | 101.456    | 1004.8    | 25.7     | 94         | 26      | 7.3     | 21044  | 10      | _             |
| RS014 | 2015112200   | -4.965   | 101.528    | 1000.6    | 26.1     | 90         | 121     | 0.7     | 24976  | 10      | St            |
| RS015 | 2015112203   | -4.835   | 101.593    | 1007.7    | 27.1     | 88         | 121     | 5.4     | 24453  | 10      | Cu,St,As      |
| RS016 | 2015112206   | -4.691   | 101.658    | 1006.6    | 28.0     | 85         | 109     | 3.9     | 25478  | 7       | Ci,As,Cu      |
| RS017 | 2015112209   | -4.538   | 101.730    | 1003.8    | 28.6     | 83         | 154     | 5.6     | 24412  | 4       | Cu,Cb,Ci      |
| RS018 | 2015112212   | -4.388   | 101.807    | 1005.4    | 28.7     | 86         | 178     | 5.5     | 23501  | 7       | Cu,Cb,St      |
| RS019 | 2015112215   | -4.251   | 101.878    | 1007.6    | 27.0     | 86         | 96      | 6.2     | 21477  | 10      | Cb,Ns         |
| RS020 | 2015112218   | -4.083   | 101.961    | 1005.9    | 27.2     | 84         | 68      | 5.3     | 24630  | 7       | As,Ns         |
| RS021 | 2015112221   | -4.046   | 101.944    | 1004.7    | 27.7     | 82         | 13      | 1.1     | 24155  | 10      | _             |
| RS022 | 2015112300   | -4.035   | 101.885    | 1006.3    | 27.9     | 85         | 349     | 4.9     | 25226  | 8       | Cu,St,As      |
| RS023 | 2015112303   | -4.001   | 101.817    | 1007.7    | 28.3     | 82         | 350     | 4.1     | 21851  | 7       | Cu,Cs,Sc      |

Table 5.1-1: Radiosonde launch log, with surface values and maximum height. The gray-shaded rows indiacates the multi-sensor launch, with the bold letters for three-sensors (RS41-SGP, RS92-SGPD and iMS-100) launch while normal letters for two-sensor (RS41-SGP and RS92-SGPD) launch.

| Roote         2015112309         -4.022         101903         10051         222         22         22         22         23         114         36         2427         6         Due           RS026         201511215         -4.080         101903         10055         223         61         114         36         21231         10         C.S.N.A           RS027         201511221         -4.080         101891         10064         223         67         1036         7.2         2241         6         C.S.S.           RS020         2015112400         -4.084         101.887         10064         223         65         136         63         506         -         C.L.A.S.           RS032         2015112406         -4.084         101.888         10064         223         65         166         32         2081         10         C.L.A.S.           RS032         2015112415         -4.031         101.888         10073         223         85         166         32         20815         10         S.N.A.G.           RS032         201511240         -4.061         10.881         10078         227         64         136         32         33         3                                                                                                                                                                                                         | RS024 | 2015112306 | -4.066 | 101.905 | 1006.0 | 28.3 | 82 | 227 | 2.1 | 24345 | 9  | Ns,Ac,As,Cu       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|--------|---------|--------|------|----|-----|-----|-------|----|-------------------|
| BR000         2015112112         4.005         101833         0075         22.3         46         111         43.4         21013         1010         0.5.Mar           BR027         2015112116         4.000         101831         1007.5         22.3         131         141         4.7         12141         6         0.5.Mar           BR028         201511210         4.006         101871         10062         2.7.5         8.0         100         0.4.2         22054         7         0.4.4.5.8           BR030         2015112400         4.046         101.86         10065         2.5.8         136         10.2         22054         7         0.4.8.5.8           BR030         201511240         4.040         101.88         10064         2.7.3         87         116         6.2         20885         10         S.0.5.8.8           BR030         201511241         -4.040         101.88         10064         2.7.1         87         1316         6.1         20845         6         0.5.N.8           BR030         201511241         -4.040         101.981         10005         2.7.7         6         4.6         2.3983         4         0.4.2.5.N           BR03                                                                                                                                                                                               |       |            |        |         |        |      |    |     |     |       |    |                   |
| Bester         2015112315         -4.000         101881         10075         2.87         81         114         3.4         2.013         110         0         C.S.S.A           BESD8         2015112211         -4.007         101881         10068         2.25         87         108         0.37         2.2215         S           BESD8         2015112400         -4.084         101.837         10062         2.25         87         108         0.37         2.2215         S         0.0         0.4         2.266         7         O.L.A.S.R           RS032         2015112406         -4.084         101.888         10064         2.23         857         186         63.3         508         -1         -1           RS032         2015112415         -4.057         101.888         1008.3         2.79         65         110         66         3.2         2.085         10         C.M.S.R.A.S.R.S.R.S.R.S.R.S.R.S.R.S.R.S.R.S                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |        |         |        |      |    |     |     |       |    |                   |
| BED29         201511221         -4.006         10.008         22.4         38         141         4         4         21241         18         Co.S.           RS029         2015112201         -4.045         101.887         10062         22.5         87         90         0.4         22654         7         Cu.A.s.S.           RS031         2015112400         -4.046         101.881         10062         22.8         5         106         22.0         4.0         22.0511         0         Cu.A.s.S.           RS032         2015112400         -4.045         101.889         10063         27.9         85         166         8.2         20.861         10         St.N.s.C.           RS032         201511241         -4.045         101.881         10005         27.0         87         31         5.2         20.661         8         C.S.N.s.C.           RS032         2015112400         -4.055         101.881         10005         27.7         84         6         4.8         2.2.083         4         C.S.A.S.N.S.C.           RS032         2015112600         -4.055         101.891         10005         2.8         79         2.44         6.0         2.2.1016         5.                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| REND9         201511221         -4072         10147         10047         2 87         67         138         37         2 2815         5            RES00         2015112400         -4064         101885         10082         225         87         90         426         286         271         4.0         22619         9         0.0.42           RS032         2015112400         -4064         101888         10068         228         161         60         2.2         2081         100         0.0.N3.           RS032         2015112415         -4050         101888         10063         27.8         65         166         3.2         20885         10         0.5.N8.           RS032         2015112415         -4056         101.881         10053         27.8         44         51         22864         4         0.0.48         2.3         8.3         2268         4         0.0.4.         0.0.4.         2.3         8.3         2.2         2.8         6         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.         0.0.4.<                                                                                                                                                                                            |       |            |        |         |        |      |    |     |     |       |    |                   |
| R5030         2015112400         -4.088         10.0827         10.084         22.15         87         99         0.4         22.014         7         C.A.S.S.S.           R5031         2015112403         -4.044         101.885         10.084         22.18         166         22         40         22.19         9         C.A.S.S.           R5032         2015112405         -4.065         101.888         10.064         27.1         64         5.1         20.663         10         S.V.R.O.           R5035         2015112415         -4.055         101.881         100.05         27.1         84         318         6.2         8664         8         C.S.S.N.           R5036         2015112415         -4.055         101.881         100.58         27.7         84         6         4.8         23.83         4         C.C.A.S.N.           R5030         2015112500         -4.055         101.891         100.51         22.7         7.7         7.8         6.244         6.7         23.107         C.C.C.A.S.           R5040         2015112510         -4.073         101.885         100.71         28.8         4.0         6.1         13.27         9         C.L.C.A.S. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>00,3t</td></t<>                                                          |       |            |        |         |        |      |    |     |     |       |    | 00,3t             |
| RESR1         2015112400         -4.044         101.885         10084         221         4         221.91         9         0         0.5.3           RES032         2015112400         -4.064         101.885         10043         27.8         685         108         20.85         20.81         20.85         101         0         D.h.N.S.           REG034         2015112400         -4.063         101.881         10063         27.8         68         106         3.2         20.81         101         O.h.N.S.           REG035         2015112415         -4.065         101.881         10063         27.8         64         106         2.2         68         0.2         6854         0.8         C.s.           REG037         201512401         -4.056         101.891         10058         27.9         284         44         12.2         288         4         0.0         C.s.         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                |       |            |        |         |        |      |    |     |     |       |    | -                 |
| BEND2         2015112409         -4.045         101.889         100.89         22.8         95         196         9.3         506            RS033         2015112412         -4.061         101.889         1000.3         27.3         68         166         3.2         20681         101         St.Nu. Gu           RS035         2015112412         -4.061         101.881         1000.3         27.8         64         5.1         20666         8         C.N.S.Nu           RS036         2015112401         -4.055         101.881         1000.5         27.8         64         5.1         20666         8         C.N.S.Nu           RS037         2015112400         -4.055         101.891         1000.6         27.7         64         6         4.8         Q.S.S.Nu           RS040         2015112500         -4.055         101.897         1001.6         22.8         79         22.4         6.6         21017         5         C.G.C.A.S.           RS044         201511251         -4.073         101.885         1000.3         22.7         75         5.5         20404         5.5         C.G.C.A.S.           RS044         2015112610         -4.054         101.00                                                                                                                                                                                                  |       |            |        |         |        |      |    |     |     |       |    |                   |
| Ressa         2015112409         -4.063         101.489         1004.9         27.3         87         21.6         8.2         20111         101         Cb.N.s.Cu.           RS034         2015112415         -4.061         101.889         1006.3         27.9         88         166         3.2         20885         101         St.N.s.Cu.           RS036         2015112415         -4.067         101.861         1000.3         27.6         64         51         20464         10         St.N.s.Cu.           RS036         201511241         -4.062         101.981         1005.3         27.6         64         43         82.2666         4         Cu.Ac.Ac.           RS038         2015112500         -4.055         101.991         1007.0         27.7         72.6         6.7         22.017         5         Cu.Cu.Ac           RS041         2015112512         -4.075         101.885         1007.2         28.0         20         10         2.6         10.446         10         Cu.Cu.Ac         S.10.3         2002.0         8         S.10.3         2002.0         8         S.10.3         20.02.0         8         S.10.3         20.02.0         S.10.0.0         10.02.0         10.02.0                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       | 9  | Gu,St             |
| R5034         2015112412         -4.061         101.899         1006.3         27.9         85         166         5.1         20.803         10         St.Ns.           RS035         2015112418         -4.042         101.881         1007.3         27.0         87         64         5.1         20.864         8         St.Ns.           RS037         2015112412         -4.042         101.861         1005.8         27.6         64         31.8         6.2         8864         8         St.Ns.           RS038         2015112500         -4.055         101.891         1007.6         27.7         7.64         6         4.8         23.83         24.6         C.LGLCC           RS040         2015112506         -4.055         101.885         1007.3         27.6         7.7         27.6         6.7         23.107         5         C.LGLCC           RS041         2015112518         -4.073         101.885         1007.1         22.8         18.2         10.18         C.LGLCC         5         24.44         6.7         24.6         6.0         3.43         6.5         4.444         8         S.LGLCC         S.S.Ns.           RS044         2015112518         -4.0454                                                                                                                                                                                            |       |            |        |         |        |      |    |     |     |       | -  | -                 |
| RS035         2015112415         -4.057         101.81         1007.9         27.0         87         64         5.1         20443         10         St.Ns. Ns.           RS036         2015112421         -4.062         101.841         1005.8         27.1         87         318         6.2         8664         8         Cust.Ns.           RS038         2015112421         -4.055         101.891         1007.8         27.7         84         6.4         4.8         23383         4         Cuc.GAs           RS040         2015112506         -4.055         101.891         1007.6         27.7         246         6.7         2316         7.2         7.5         2.6         2.0404         5         Cuc.GAs           RS041         2015112516         -4.075         101.885         1007.1         2.8         82         10         2.6         10.444         8.5         N44         8.5         N44         8.5         N44         8.5         N44         8.5         N44         8.6         N.5                                                                                                                                                                                         |       |            |        |         |        |      |    |     |     |       |    |                   |
| BENDB         2015112418         -4.042         101.004         10068         27.1         87         318         5.1         21.669         8         Curstrain           RS037         2015112421         -4.055         101.881         1005.3         27.6         84         318         6.2         8664         4         Curstrain           RS038         2015112500         -4.055         101.897         1007.6         27.7         744         6         4.8         23.88         5         CicLuca           RS040         2015112506         -4.054         101.001         0.85         77         27.6         3.6         23.485         5         CicLuca           RS041         2015112506         -4.073         101.88         1007.1         28.3         82         10         2.6         10.484         11         1007.0         28.6         80         3.33         10.3         20.02         5         20.040         5         Curstrain         8         5.5         20.04         5         20.045         5         S.5         20.040         5         S.5         20.04         5         S.5         20.04         5         S.5         20.045         5         S.5                                                                                                                                                                                             |       |            |        |         |        |      |    |     |     |       |    |                   |
| FN307         2015112421         -4.055         101.881         1005.5         27.9         84         318         6.2         9654         8         CLAAS           RS038         2015112500         -4.055         101.891         1005.6         27.7         84         6         4.8         23683         4         CU.C.AS           RS040         2015112506         -4.054         101.901         1006.1         28.5         77         27.5         3.6         23485         5         CI.C.U.C.S           RS042         2015112516         -4.075         101.885         1007.1         28.3         82         10         2.6         19841         10         C.U.AC.S.St           RS044         2015112518         -4.044         101.887         1007.2         26.6         90         343         6.5         4484         8         SLNe           RS044         2015112518         -4.044         101.881         1007.2         27.6         88         32.3         10.3         202026         8         SSLNe           RS044         2015112601         -4.045         101.891         1007.7         27.5         80         331         6.5         28244         8         2444                                                                                                                                                                                            |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS083         2015112500         -4.058         101.891         1005.8         27.9         80         312         3.8         22868         4         Cu_CAs           RS084         2015112503         -4.055         101.897         1007.6         27.7         84         6.4         8.23663         4         Cu_CAs           RS044         2015112506         -4.055         101.902         1003.3         28.7         79         248         6.7         23107         5         Cu_CAs           RS044         2015112515         -4.075         101.885         1007.1         28.3         82         10         2.6         19641         10         Cu_Ac.Cb.Str           RS044         2015112516         -4.0745         101.885         1007.1         28.6         88         233         10.3         20026         8         55.8           RS044         2015112601         -4.061         101.913         1006.7         28.8         88         233         10.3         20026         8         55.4         48         6.0         5307         10         -5.5           RS047         2015112601         -4.064         101.901         1006.7         27.7         78         28.0.3 </td <td>RS036</td> <td>2015112418</td> <td>-4.042</td> <td>101.904</td> <td>1006.8</td> <td>27.1</td> <td>87</td> <td>318</td> <td>5.1</td> <td>21666</td> <td></td> <td>Cu,St,Ns</td> | RS036 | 2015112418 | -4.042 | 101.904 | 1006.8 | 27.1 | 87 | 318 | 5.1 | 21666 |    | Cu,St,Ns          |
| R5039         2015112503         -4.055         101.807         1006.1         22.5         7         275         3.6         23465         5         Ci.Cu.Cs           RS040         2015112509         -4.056         101.902         1003.3         28.7         79         270         5.5         20404         5         Cu.Lc.As           RS042         2015112515         -4.075         101.885         1007.2         28.8         280         10         2.5         20404         5         Cu.Lc.As           RS044         2015112518         -4.046         101.889         1007.2         28.6         90         343         6.5         4484         6         St.Ns           RS044         201511251         -4.046         101.881         1006.6         25.2         94         308         8.0         24459         10         -6         St.Ns           RS044         2015112606         -4.054         101.901         1007.7         27.5         80         312         5.5         22824         9         Cu.Cb.St.St.Rs           RS049         2015112606         -4.054         101.900         1007.7         27.5         80         312         5.5         22824         9 <td>RS037</td> <td></td> <td>-4.055</td> <td></td> <td>1005.3</td> <td></td> <td>84</td> <td>318</td> <td>6.2</td> <td></td> <td></td> <td>St</td>                                       | RS037 |            | -4.055 |         | 1005.3 |      | 84 | 318 | 6.2 |       |    | St                |
| R5040         2015112506         -4.054         101 901         1006.1         22.5         77         27.5         38         22485         5         C).Cu.Gs           RS041         2015112509         -4.075         101.885         1005.3         28.7         79         24.8         6.7         23107         5         C).Cu.Gs           RS042         2015112515         -4.073         101.885         1007.1         28.3         82         10         2.6         19644         10         Cu.Ac.Ac.Br           RS044         2015112515         -4.074         101.885         1007.2         26.6         90         343         6.5         44484         8         St.Ns           RS044         2015112517         -4.064         101.913         10067         22.6         48         30.8         2.0         343         6.0         5307         10         St.Ns           RS047         2015112606         -4.064         101.901         1007.1         22.7         78         313         4.9         2.0615         9         G.Uc.Ds.Ac.As           RS051         2015112606         -4.067         101.900         1007.1         28.3         79         2.127         4.3         <                                                                                                                                                                                   | RS038 | 2015112500 | -4.058 | 101.891 | 1005.8 | 27.9 | 80 | 312 | 3.8 | 22668 | 4  | Cu,As             |
| R8041         2015112509         -4.059         101.902         1003.3         28.7         79         248         6.7         2300         5         CLCLAS           RS042         2015112515         -4.075         101885         1007.2         28.8         220         10         2.6         19841         10         Cu.Cb.St           RS044         2015112515         -4.048         101.885         1007.2         28.6         90         343         6.5         4448         8         St.Ns           RS044         201511251         -4.048         101.887         1007.0         28.6         86         343         6.1         18277         9         St.Ns           RS047         2015112600         -4.071         101.883         1006.6         22.2         94         308         8.0         23.07         10         -5         RS042         2015112600         -4.054         101.901         1007.1         27.5         80         312         25.5         2282         9         Cu.Cb.St.Ac.As           RS050         2015112612         -4.046         101.900         1007.1         28.3         79         327         4.3         2053         10         Cu.Cb.St.Ac.As                                                                                                                                                                                        | RS039 | 2015112503 | -4.055 | 101.897 | 1007.6 | 27.7 | 84 | 6   | 4.8 | 23983 | 4  | Cu,Ci,As          |
| RS042         2015112512         -4.075         101885         1005.3         28.7         79         270         5.5         20444         5         Cu.Cb.St.           RS044         2015112515         -4.073         101885         1007.1         28.8         82         10         26.6         90.44         61.8         85.44         8         St.Ms.           RS045         2015112513         -4.046         101883         1006.7         26.8         86         343         6.1         18277         9         St.Ms.           RS045         2015112600         -4.061         101913         1006.7         26.8         86         323         10.3         2029.8         8         St.Ms.           RS047         2015112600         -4.061         101901         1007.1         27.5         80         312         5.5         22424         9         St.Lo.           RS050         2015112615         -4.068         101900         1007.2         27.1         78         313         4.9         20615         9         Cu.CbA.AS.           RS051         2015112615         -4.068         101905         1006.5         27.9         81         344         3.7         21470                                                                                                                                                                                            | RS040 | 2015112506 | -4.054 | 101.901 | 1006.1 | 28.5 | 77 | 275 | 3.6 | 23485 | 5  | Ci,Cu,Cs          |
| RS043         2015112515        4.073         101.885         1007.2         28.3         82         10         2.6         1944         100         Cu.Ac.Ob.Str           RS044         2015112518        4.048         101.887         1007.0         26.6         90         343         6.5         4448         6         SLNa           RS046         2015112518        4.061         101.893         1007.0         26.8         843         333         10.3         20068         8         SSN4           RS047         2015112600        4.061         101.993         1006.3         26.3         90         343         6.0         5307         10         SSN4           RS049         2015112600        4.061         101.900         1006.7         28.1         78         313         4.9         20615         9         Cu.Db.St.Ac.As           RS050         2015112612        4.068         101.900         1005.7         28.1         78         313         4.9         20615         9         Cu.Db.St.Ac.As           RS052         2015112612        4.043         101.900         1005.7         28.1         78         313         4.9         20615         9                                                                                                                                                                                                            | RS041 | 2015112509 | -4.059 | 101.902 | 1003.3 | 28.7 | 79 | 248 | 6.7 | 23107 | 5  | Ci,Cu,As          |
| RS044         2015112518         -4.048         101.887         1007.0         26.6         90         343         6.5         4848         8         St.Ns           RS046         201511251         -4.061         101.887         1007.0         26.7         86         343         6.1         18277         9         St.Ns           RS046         2015112501         -4.061         101.833         1006.6         25.2         94         306         6.0         2307         10         St.Cu           RS048         2015112600         -4.061         101.896         1008.3         26.3         90         343         6.0         2307         10         St.Cu           RS049         2015112601         -4.064         101.900         1000.7         27.7         78         288         39         22948         8         Cu,Cb.As.St           RS052         2015112615         -4.041         101.905         1005.7         28.1         78         313         4.9         20615         9         Cu,Cb.As.St           RS054         2015112621         -4.041         101.905         1005.7         28.1         73         21028         8         Cu,St.As           RS054 <td>RS042</td> <td>2015112512</td> <td>-4.075</td> <td>101.885</td> <td>1005.3</td> <td>28.7</td> <td>79</td> <td>270</td> <td>5.5</td> <td>20404</td> <td>5</td> <td>Cu,Cb,St</td>               | RS042 | 2015112512 | -4.075 | 101.885 | 1005.3 | 28.7 | 79 | 270 | 5.5 | 20404 | 5  | Cu,Cb,St          |
| R8045         2015112518         -4.054         101.88         1007.0         26.7         86         343         6.1         18277         9         St.Ns           RS046         2015112500         -4.061         101.913         1005.7         26.6         88         322         10.3         20026         8         St.Ns           RS044         2015112600         -4.061         101.901         1007.1         27.5         80         312         5.5         22844         9         CLC.DS.K.Ac.As           RS050         2015112610         -4.061         101.901         1007.1         27.7         78         288         30         22844         9         CLC.DS.K.Ac.As           RS050         2015112615         -4.041         101.900         1005.7         28.1         78         313         4.9         20615         9         Cu.Cb.As.St           RS052         2015112613         -4.043         101.901         1007.7         28.5         89         0         8.8         172.37         10            RS054         2015112610         -4.063         101.89         1005.0         25.6         89         0.8         172.341         10                                                                                                                                                                                                                     | RS043 | 2015112515 | -4.073 | 101.885 | 1007.1 | 28.3 | 82 | 10  | 2.6 | 19641 | 10 | Cu,Ac,Cb,,Str     |
| RS045         2015112518         -4.054         101.87         1007.0         26.7         86         343         6.1         18277         9         St.Ns           RS044         2015112500         -4.061         101.913         1006.7         26.8         88         322         10.3         20026         6         St.Ns           RS044         2015112600         -4.061         101.896         1008.3         26.3         90         343         6.0         5307         10         St.Ns           RS044         2015112600         -4.064         101.901         1007.1         27.7         78         288         30         22844         9         CL.Cb.St.Ac.As           RS050         2015112615         -4.041         101.900         1005.7         28.1         78         313         4.9         20615         9         Cu.Cb.As.St           RS052         2015112618         -4.043         101.905         1005.0         27.9         81         344         37         21474         10         As.St.Cu.Nb           RS054         2015112701         -4.063         101.902         1007.7         25.6         89         282         7.4         2211         10         A                                                                                                                                                                                       | RS044 | 2015112518 | -4.048 | 101.889 | 1007.2 | 26.6 | 90 | 343 | 6.5 | 4848  | 8  | St,Ns             |
| RS046         2015112521         -4.061         101.913         1005.7         26.8         88         323         10.3         20026         8         St           RS047         2015112600         -4.072         101.886         1006.6         25.2         94         306         8.0         24859         10            RS044         2015112600         -4.0061         101.900         1007.1         27.5         80         312         5.5         22874         9         St.Co.           RS050         2015112612         -4.0067         101.900         1007.1         28.1         78         218         31         49         20653         10         Cu.cb.As.St.Co.Nb           RS051         201511261         -4.0471         101.906         1006.5         27.9         81         344         3.7         21470         5         As.St.Cu.Nb           RS054         2015112621         -4.063         101.990         1005.7         26.5         89         0.8         17237         10            RS055         2015112706         -4.063         101.990         1006.7         25.6         89         282         7.4         23211         10         As.Cu.                                                                                                                                                                                                           | RS045 |            | -4.054 | 101.887 | 1007.0 | 26.7 | 86 | 343 | 6.1 | 18277 | 9  |                   |
| RS047         2015112600         -4.072         101.883         1006.6         25.2         94         308         8.0         24859         10           RS048         2015112606         -4.061         101.896         1008.3         263         90         343         6.0         5307         10         St.           RS049         2015112609         -4.068         101.900         1004.2         27.7         78         288         3.9         22948         8         Cu.Cb.St.Ac.As           RS051         2015112615         -4.041         101.905         1006.5         27.9         81         344         3.7         21470         5         As.St.Cu.Nb           RS052         2015112615         -4.043         101.905         1006.5         27.9         81         344         3.7         21470         5         As.St.Cu.Nb           RS054         2015112701         -4.0403         101.902         1008.7         25.6         89         282         7.4         23211         10         As.St.Cu.Nb           RS055         2015112706         -4.085         101.903         1007.3         26.3         89         282         2136         9         Cu.Cb.St.As                                                                                                                                                                                                 |       |            |        |         |        |      |    |     |     |       | 8  |                   |
| RS049         2015112603         -4.061         101.896         1008.3         26.3         90         343         6.0         5307         10         St.Cu           RS049         2015112609         -4.064         101.901         1007.1         27.7         78         288         3.9         2284         9         St.Cu           RS050         2015112612         -4.067         101.900         1005.7         28.1         78         313         4.9         20815         9         Cu.Cb.As.St.CA.As           RS052         2015112618         -4.043         101.905         1007.1         28.3         79         327         4.3         2083         10         Cu.Cb.As.St.CA.NS           RS054         2015112618         -4.043         101.899         1005.1         26.6         89         0         8.8         1723         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |        |         |        |      |    |     |     |       |    | -                 |
| RS049         2015112606         -4.054         101.901         1007.1         27.5         80         312         5.5         22824         9         SLCu           RS050         2015112612         -4.067         101.900         1005.7         28.1         78         31.3         4.9         20615         9         Cu_CbAs.St           RS051         2015112615         -4.067         101.900         1005.5         27.9         81         344         3.7         21470         5         A.s.St.OuNb           RS054         2015112621         -4.063         101.899         1006.5         27.9         81         344         3.7         21470         5         A.s.St.OuNb           RS054         2015112700         -4.063         101.899         1006.1         26.6         84         299         9.3         21028         8         Cu_St.St.St.St.OuNb           RS055         2015112700         -4.0465         101.892         1008.7         25.6         89         228         7.4         22111         10         A.s.CuAbs.St.As           RS056         2015112709         -4.045         101.892         1005.8         2.71.8         86         358         .9         20062                                                                                                                                                                                   |       |            |        |         |        |      |    |     |     |       |    | St                |
| RS050         2015112609         -4.068         101 900         1004.2         27.7         78         288         3.9         22948         8         Cu.Cb.As.CA           RS051         2015112615         -4.061         101.900         1005.7         28.1         78         313         4.9         20615         9         Cu.Cb.As.St           RS052         2015112615         -4.041         101.908         1007.1         28.3         79         327         4.3         20583         10         Cu.As.St           RS054         201511261         -4.063         101.899         1006.0         26.5         89         0         8.8         172.37         10            RS055         2015112700         -4.072         101.889         1006.7         25.6         89         292         7.4         23211         10         As.St.Cu.Ns           RS055         2015112700         -4.079         101.902         1008.7         25.6         89         282         7.4         23211         10         As.St.Cu.Ns           RS056         201511270         -4.085         101.903         1007.7         28.7         84         354         1.0         193.8         St.LCu                                                                                                                                                                                                 |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS051         2015112612         -4.067         101 900         1005.7         28.1         78         313         4.9         20615         9         Cu.Cb.As,St           RS052         2015112615         -4.041         101 905         1006.5         27.9         81         344         3.7         21470         5         AsSt.Cu.Nb           RS054         201511261         -4.063         101 899         1005.0         26.5         89         0         8.8         17237         10            RS055         2015112700         -4.072         101 899         1006.1         26.6         84         299         9.3         21028         8         Gu.st.Cu.St.St.Cu.Nb           RS056         2015112700         -4.089         101 903         1007.3         26.3         89         286         4.7         2131         10         St.Cu.Nc.St.As           RS057         2015112710         -4.069         101 892         1005.8         27.1         86         358         0.9         20062         8         Cu.St.As           RS060         2015112715         -4.038         101 903         1007.7         28.1         85         358         4.7         22569         6                                                                                                                                                                                              |       |            |        |         |        |      |    |     |     |       |    |                   |
| R8052         2015112615         -4.041         101.908         1007.1         28.3         79         327         4.3         20583         10         Cu.A.s.St           R8053         2015112618         -4.053         101.905         1006.5         27.9         81         344         3.7         21470         5         As.St.Cu.Mb           R8054         2015112701         -4.063         101.899         1006.1         26.6         84         299         9.3         21028         8         Cu.st           RS056         2015112703         -4.091         101.890         1007.3         26.3         89         288         4.7         21341         10         St.Cu.           RS057         2015112706         -4.095         101.892         1005.8         27.1         86         358         0.9         20062         8         Cu.Cb.St.As           RS059         2015112715         -4.045         101.925         1008.2         27.8         84         354         1.0         19386         8         St.As.Ao           RS061         2015112715         -4.045         101.931         1007.7         28.2         81         331         4.4         2182         10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                 |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS053         2015112618         -4.053         101.905         100.6.5         27.9         81         344         3.7         21470         5         As.St.Cu.Nb           RS054         2015112621         -4.063         101.899         1005.0         26.5         89         0         8.8         17237         10            RS055         2015112700         -4.072         101.889         1006.1         26.6         84         299         3.2         1028         Cu.St.           RS056         2015112706         -4.085         101.903         1007.3         26.3         89         288         4.7         21341         10         St.Cu.Ns           RS057         2015112709         -4.069         101.892         1008.8         27.1         86         358         0.9         20062         8         Cu.St.As           RS060         2015112718         -4.045         101.903         1007.7         28.2         81         331         4.4         21832         10         St.Cu.Ns           RS062         201511271         -4.045         101.901         100.9         28.1         85         358         4.7         2256         6         St.Cu.Ns      <                                                                                                                                                                                                      |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS054         2015112621         -4.063         101.899         1005.0         26.5         89         0         8.8         17237         10            RS055         2015112700         -4.072         101.899         1006.1         26.6         84         299         9.3         21028         8         Cu.St.           RS056         2015112700         -4.091         101.902         1008.7         25.6         89         288         4.7         21341         10         As.St.Qu.Ns           RS057         2015112709         -4.069         101.892         1005.8         27.1         86         358         0.9         20062         8         Cu.St.As           RS060         2015112715         -4.038         101.925         1008.2         27.8         84         331         4.4         21832         10         St.Cu           RS061         2015112711         -4.057         101.894         1007.7         28.1         81         323         1.3         22042         6         Cu.St.Cu           RS064         2015112700         -4.056         101.909         1009.0         28.5         81         347         1.7         2404         Cu.Ci         Cu.Ci </td <td></td>                                                                      |       |            |        |         |        |      |    |     |     |       |    |                   |
| R8055         2015112700         -4.072         101.889         1006.1         26.6         84         299         9.3         21028         8         Cu.St.           R8056         2015112703         -4.091         101.902         1008.7         25.6         89         282         7.4         23211         10         As.St.Cu.Ms           R8057         2015112706         -4.085         101.903         1007.3         26.3         89         288         4.7         21341         10         St.Cu           R8058         2015112710         -4.036         101.892         1004.5         26.7         88         295         3.2         21636         9         Cu.Cb.St.As           R8060         2015112711         -4.038         101.925         1008.2         27.8         84         354         1.0         19386         8         St.As.Ac           R8061         2015112711         -4.056         101.903         1007.7         28.2         81         331         4.4         21832         1.0         St.Cu           R8063         2015112803         -4.056         101.997         1007.7         28.8         81         347         1.7         24084         4         C                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS056         2015112703         -4.091         101 902         1008.7         25.6         89         282         7.4         23211         10         As,St,Cu,Ns           RS057         2015112706         -4.085         101.903         1007.3         26.3         89         288         4.7         21341         10         St,Cu           RS058         2015112710         -4.069         101.892         1008.8         27.8         84         354         1.0         19386         8         St,As,Ac           RS060         2015112715         -4.035         101.925         1008.2         27.8         84         354         1.0         19386         8         St,As,Ac           RS061         201511271         -4.057         101.894         1006.5         28.1         85         358         4.7         22569         6         St,Cu           RS064         2015112800         -4.057         101.891         1007.7         28.8         1.9         316         0.9         21096         6         Cu,Cs,St,As           RS064         2015112806         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         C                                                                                                                                                                                       |       |            |        |         |        |      |    | -   |     |       |    | Cu St             |
| RS057         2015112706         -4.085         101.903         1007.3         26.3         89         288         4.7         21341         10         St.Cu           RS058         2015112709         -4.069         101.899         1004.5         26.7         88         295         3.2         21636         9         Gu,Ch,St,As           RS059         2015112712         -4.076         101.892         1005.8         27.1         86         355         1.0         19386         8         St,As,Ao           RS060         2015112715         -4.035         101.903         1007.7         28.2         81         331         4.4         21832         10         St,Cou           RS061         2015112711         -4.057         101.894         1006.5         28.1         85         358         4.7         22569         6         St,Cou           RS062         2015112800         -4.067         101.999         1007.7         28.8         79         316         0.9         21096         6         Cu,Cs           RS064         2015112809         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         Cu,Cs <td></td>                                                                  |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS058         2015112709         -4.069         101.899         1004.5         26.7         88         295         3.2         21636         9         Cu.Cb.St.As           RS059         2015112712         -4.076         101.892         1005.8         27.1         86         358         0.9         20062         8         Cu.St.As           RS060         2015112715         -4.038         101.925         1008.2         27.8         84         354         1.0         19386         8         St.As.Ac           RS061         2015112718         -4.045         101.903         1007.7         28.2         81         331         4.4         21832         10         St.Cou           RS062         2015112201         -4.057         101.894         1007.0         28.1         81         323         1.3         22042         6         Cu.St.Cu           RS064         2015112803         -4.056         101.999         1009.0         28.5         81         347         1.7         24084         4         Cu.Ci.As           RS066         2015112809         -4.057         101.891         1006.2         29.3         76         174         2.9         23026         6         C                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS059         2015112712         -4.076         101.892         1005.8         27.1         86         358         0.9         20062         8         Cu.St.As           RS060         2015112715         -4.038         101.925         1008.2         27.8         84         354         1.0         19386         8         St.As,Ac           RS061         201511271         -4.045         101.903         1007.7         28.2         81         331         4.4         21832         10         St.Cu           RS062         2015112800         -4.057         101.894         1006.5         28.1         81         323         1.3         22042         6         Cs.Cu           RS064         2015112800         -4.056         101.899         1007.7         28.5         81         347         1.7         24042         4         Cu.Ci           RS065         2015112806         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         Cu.Cic,Cb           RS066         2015112810         -4.068         101.873         1007.9         27.0         89         342         5.9         20191         9         Cu.Cic,As,S                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS060         2015112715         -4.038         101.925         1008.2         27.8         84         354         1.0         19386         8         StAsAc           RS061         2015112718         -4.045         101.903         1007.7         28.2         81         331         4.4         21832         10         St.Cu           RS062         2015112721         -4.057         101.894         1006.5         28.1         85         358         4.7         22569         6         St.Cu           RS063         2015112800         -4.036         101.909         1009.0         28.5         81         347         1.7         24084         4         Cu,Ci           RS065         2015112806         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         Cu,Ci           RS065         2015112809         -4.067         101.891         1006.2         29.3         76         174         2.9         23026         6         Cu,Ci,C,Cb           RS068         2015112817         -4.048         101.900         1010.3         28.0         84         3.55         18502         10         Cu,As,St                                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS061         2015112718         -4.045         101.903         1007.7         28.2         81         331         4.4         21832         10         St.Cu           RS062         2015112721         -4.057         101.894         1006.5         28.1         85         358         4.7         22569         6         St.Cu           RS063         2015112800         -4.039         101.894         1007.0         28.1         81         323         1.3         22042         6         Cu.St           RS064         2015112800         -4.056         101.999         1009.0         28.5         81         347         1.7         24084         4         Cu.Ci           RS065         2015112806         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         Cu.CiC.AS           RS066         2015112801         -4.068         101.873         1007.7         27.0         89         342         5.9         20191         9         Cu.Cb.As.St           RS068         2015112812         -4.063         101.90         1010.0         25.3         95         284         5.5         18202         10         Cu.As.St </td <td></td>                                                            |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS062         2015112721         -4.057         101.894         1006.5         28.1         85         358         4.7         22569         6         St.Cu           RS063         2015112800         -4.039         101.894         1007.0         28.1         81         323         1.3         22042         6         Cu.St           RS064         2015112803         -4.056         101.909         1009.0         28.5         81         347         1.7         24084         4         Cu.Ci           RS065         2015112806         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         Cu.Ci.Ce,Ch           RS066         2015112812         -4.066         101.897         1007.9         27.0         89         342         5.9         20191         9         Cu.Cb.As,St           RS068         2015112815         -4.040         101.899         1010.0         25.3         95         284         5.5         18202         10         Cu.As,St           RS070         2015112812         -4.067         101.890         1009.6         26.2         90         319         3.0         2174         9         Ns.St.                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS063         2015112800         -4.039         101.894         1007.0         28.1         81         323         1.3         22042         6         CL,St           RS064         2015112803         -4.056         101.909         1009.0         28.5         81         347         1.7         24084         4         Cu,Ci           RS065         2015112806         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         Cu,Ci,Cc,Cb           RS066         2015112812         -4.068         101.873         1007.9         27.0         89         342         5.9         20191         9         Cu,Cb,As,St           RS068         2015112815         -4.040         101.899         1010.3         28.0         84         329         5.7         18852         10         Cu,As,St           RS069         2015112818         -4.0401         101.900         1010.0         25.3         95         284         5.5         18202         10         -           RS070         2015112800         -4.067         101.890         1009.6         26.2         90         3.19         3.0         21724         9         Ns.St.                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS064         2015112803         -4.056         101.909         1009.0         28.5         81         347         1.7         24084         4         Cu.Gi           RS065         2015112806         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         Cu.Gi           RS066         2015112809         -4.057         101.891         1006.2         29.3         76         174         2.9         23026         6         Cu.Gi,Cc,Cb           RS067         2015112812         -4.068         101.873         1007.9         27.0         89         342         5.9         20191         9         Cu.Cb,As,St           RS068         2015112815         -4.040         101.899         1010.0         25.3         95         284         5.5         18202         10         Cu.As,St           RS070         2015112813         -4.067         101.90         100.9         26.2         90         319         3.0         21724         9         Ns.St,Cu           RS071         2015112900         -4.067         101.90         101.4         26.2         88         243         3.9         23755         7         Sc,St<                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS065         2015112806         -4.067         101.897         1007.7         28.8         79         316         0.9         21096         6         Cu.Cs           RS066         2015112809         -4.057         101.891         1006.2         29.3         76         174         2.9         23026         6         Cu.Ci,C.Cb           RS067         2015112812         -4.068         101.873         1007.9         27.0         89         342         5.9         20191         9         Cu.Cb,As,St           RS068         2015112815         -4.040         101.899         1010.3         28.0         84         329         5.7         18852         10         Cu.As,St           RS069         2015112818         -4.081         101.900         1010.0         25.3         95         284         5.5         18202         10            RS070         2015112800         -4.053         101.90         1014.4         26.2         90         319         3.0         21724         9         Ns,St,Cu           RS071         2015112903         -4.051         101.900         1011.4         26.2         88         243         3.9         23755         7         Scs,S                                                                                                                                                                                                  |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS066         2015112809         -4.057         101.891         1006.2         29.3         76         174         2.9         23026         6         Cu.ci.Cc.Ob           RS067         2015112812         -4.068         101.873         1007.9         27.0         89         342         5.9         20191         9         Cu.cb.As.St           RS068         2015112815         -4.040         101.899         1010.3         28.0         84         329         5.7         18852         10         Cu.cb.As.St           RS069         2015112818         -4.081         101.900         1010.0         25.3         95         284         5.5         18202         10            RS070         2015112821         -4.053         101.913         1008.8         25.0         96         275         0.4         20623         8         St           RS071         2015112900         -4.067         101.890         1009.6         26.2         90         319         3.0         21724         9         Ns.St.Cu           RS072         2015112903         -4.067         101.890         1009.8         27.1         86         259         2.5         24240         5         Cs.c                                                                                                                                                                                                 |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS067         2015112812         -4.068         101.873         1007.9         27.0         89         342         5.9         20191         9         Cu,Cb,As,St           RS068         2015112815         -4.040         101.899         1010.3         28.0         84         329         5.7         18852         10         Cu,As,St           RS069         2015112818         -4.081         101.900         1010.0         25.3         95         284         5.5         18202         10            RS070         2015112821         -4.053         101.913         1008.8         25.0         96         275         0.4         20623         8         St           RS071         2015112900         -4.067         101.900         1011.4         26.2         88         243         3.9         23755         7         Sc,St           RS072         2015112903         -4.061         101.900         1011.4         26.2         88         243         3.9         23755         7         Sc,St           RS074         2015112909         -4.062         101.893         1007.3         27.7         83         219         6.5         19788         7         Cu,Ci,Cc,Sc,As,                                                                                                                                                                                                  |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS06820151128154.040101.8991010.328.0843295.71885210Cu,As,StRS0692015112818-4.081101.9001010.025.3952845.51820210-RS0702015112821-4.053101.9131008.825.0962750.4206238StRS0712015112900-4.067101.8901009.626.2903193.0217249Ns,St,CuRS0722015112903-4.051101.9001011.426.2882433.9237557Sc,StRS0732015112906-4.074101.8961009.827.1862592.5242405Cs,Cc,Ci,Cu,StRS0742015112909-4.062101.8931007.327.7832196.5197887Cu,Ci,Cc,Sc,As,NsRS0752015112912-4.059101.8921009.728.3831934.61905410-RS0762015112915-4.060101.8971010.425.6941335.71833310-RS0782015112914-4.062101.897100.925.8913252.0203299StRS0772015112915-4.060101.897101.425.6941335.71833310-RS0792015113000-4.070101.8831009.526.684335<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS0692015112818-4.081101.9001010.025.3952845.51820210-RS0702015112821-4.053101.9131008.825.0962750.4206238StRS0712015112900-4.067101.8901009.626.2903193.0217249Ns.St.CuRS0722015112903-4.051101.9001011.426.2882433.9237557Sc.StRS0732015112906-4.074101.8961009.827.1862592.5242405Cs.Cc.Ci.Cu.StRS0742015112909-4.062101.8931007.327.7832196.5197887Cu.Ci.Cc.Sc.As.NsRS0752015112912-4.059101.8831008.528.0811994.9209139Cu.St.AsRS0762015112915-4.060101.8971009.728.3831934.61905410-RS0772015112918-4.060101.897101.425.6941335.71833310-RS0782015112912-4.062101.9171008.225.8913252.0203299StStRS0792015112913-4.062101.9171008.225.8913252.0203299StStRS0792015113000-4.070101.8831009.727.479 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS0702015112821-4.053101.9131008.825.0962750.4206238StRS0712015112900-4.067101.8901009.626.2903193.0217249Ns,St,CuRS0722015112903-4.051101.9001011.426.2882433.9237557Sc,StRS0732015112906-4.074101.8961009.827.1862592.5242405Cs,Cc,Ci,Cu,StRS0742015112909-4.062101.8931007.327.7832196.5197887Cu,Ci,Cc,Sc,As,NsRS0752015112912-4.059101.8831008.528.0811994.9209139Cu,St,AsRS0762015112915-4.060101.8971010.425.6941335.71833310-RS0782015112918-4.060101.8971010.425.6941335.71833310-RS0792015113000-4.070101.8831009.526.6843353.62360110St,CuRS0802015113003-4.067101.9001009.727.4793342.3225786Cu,Ci,Ci,St,AsRS0812015113006-4.076101.8891007.927.8812500.9231884Cu,St,Cu,St,AsRS0832015113009-4.076101.8891007.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |        |         |        |      |    |     |     |       |    | Cu,As,St          |
| RS0712015112900-4.067101.8901009.626.2903193.0217249Ns,St,CuRS0722015112903-4.051101.9001011.426.2882433.9237557Sc,StRS0732015112906-4.074101.8961009.827.1862592.5242405Cs,Cc,Ci,Cu,StRS0742015112909-4.062101.8931007.327.7832196.5197887Cu,Ci,Cc,Sc,As,NsRS0752015112912-4.059101.8831008.528.0811994.9209139Cu,St,AsRS0762015112915-4.080101.8921009.728.3831934.61905410-RS0782015112918-4.060101.8971010.425.6941335.71833310-RS0782015112921-4.062101.9171008.225.8913252.0203299StRS0792015113000-4.070101.8831009.526.6843353.62360110St,CuRS0812015113003-4.076101.8891007.927.8812500.9231884Cu,StRS0822015113009-4.076101.8851006.228.5752024.221847Cu,Ci,Cb,St,AsRS0832015113012-4.070101.8891007.728.8<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |        |         |        |      |    |     |     |       |    | -                 |
| RS072       2015112903       -4.051       101.900       1011.4       26.2       88       243       3.9       23755       7       Sc,st         RS073       2015112906       -4.074       101.896       1009.8       27.1       86       259       2.5       24240       5       Cs,Cc,Ci,Cu,St         RS074       2015112909       -4.062       101.893       1007.3       27.7       83       219       6.5       19788       7       Cu,Ci,Cc,Sc,As,Ns         RS075       2015112912       -4.059       101.883       1008.5       28.0       81       199       4.9       20913       9       Cu,St,As         RS076       2015112915       -4.080       101.892       1009.7       28.3       83       193       4.6       19054       10       -         RS077       2015112918       -4.060       101.897       101.4       25.6       94       133       5.7       18333       10       -         RS078       2015112911       -4.062       101.917       1008.2       25.8       91       325       2.0       20329       9       St         RS079       2015113000       -4.070       101.883       1009.7       27.4                                                                                                                                                                                                                                                                             |       |            |        |         |        |      |    |     |     |       |    | St                |
| RS073       2015112906       -4.074       101.896       1009.8       27.1       86       259       2.5       24240       5       Cs.Cc.Ci.Cu.st         RS074       2015112909       -4.062       101.893       1007.3       27.7       83       219       6.5       19788       7       Cu.Ci.Cc.Sc.As.Ns         RS075       2015112912       -4.059       101.883       1008.5       28.0       81       199       4.9       20913       9       Cu.St.As         RS076       2015112915       -4.080       101.892       1009.7       28.3       83       193       4.6       19054       10          RS077       2015112918       -4.060       101.897       1010.4       25.6       94       133       5.7       18333       10          RS078       2015112921       -4.062       101.917       1008.2       25.8       91       325       2.0       20329       9       Stt<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS0742015112909-4.062101.8931007.327.7832196.5197887Cu,Ci,Cc,Sc,As,NsRS0752015112912-4.059101.8831008.528.0811994.9209139Cu,St,AsRS0762015112915-4.080101.8921009.728.3831934.61905410-RS0772015112918-4.060101.897101.425.6941335.71833310-RS0782015112921-4.062101.9171008.225.8913252.0203299StRS0792015113000-4.070101.8831009.526.6843353.62360110St,CuRS0802015113003-4.076101.9001009.727.4793342.3225786Cu,Ci,Cu,St,AsRS0812015113006-4.076101.8891007.927.8812500.9231884Cu,St,Cu,St,AsRS0822015113009-4.076101.8891007.928.5752024.2221847Cu,Ci,Cu,St,AsRS0832015113012-4.070101.8891007.728.8781873.8180099Cu,St,Cu,St,As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |        |         |        |      |    |     |     |       |    | Sc,St             |
| RS075       2015112912       -4.059       101.883       1008.5       28.0       81       199       4.9       20913       9       Cu,St,As         RS076       2015112915       -4.080       101.892       1009.7       28.3       83       193       4.6       19054       10       -         RS077       2015112918       -4.060       101.897       101.4       25.6       94       133       5.7       18333       10       -         RS078       2015112921       -4.062       101.917       1008.2       25.8       91       325       2.0       20329       9       St         RS079       2015113000       -4.070       101.883       1009.5       26.6       84       335       3.6       23601       10       St,Cu         RS080       2015113003       -4.077       101.900       1009.7       27.4       79       334       2.3       22578       6       Cu,Gi         RS081       2015113006       -4.076       101.889       1007.9       27.8       81       250       0.9       23188       4       Cu,Si         RS082       2015113009       -4.076       101.889       1007.9       27.8       81                                                                                                                                                                                                                                                                                        |       |            |        |         |        |      |    |     |     |       |    |                   |
| RS076       2015112915       -4.080       101.892       1009.7       28.3       83       193       4.6       19054       10          RS077       2015112918       -4.060       101.897       1010.4       25.6       94       133       5.7       18333       10          RS078       2015112921       -4.062       101.917       1008.2       25.8       91       325       2.0       20329       9       St         RS079       2015113000       -4.070       101.883       1009.5       26.6       84       335       3.6       23601       10       St.Cu         RS080       2015113003       -4.077       101.883       1009.5       27.4       79       334       2.3       22578       6       Cu,Ci         RS081       2015113006       -4.076       101.889       1007.9       27.8       81       250       0.9       23188       4       Cu,St         RS082       2015113009       -4.076       101.889       1007.9       27.8       81       250       0.9       23188       4       Cu,St,Cb,St,As         RS083       2015113012       -4.070       101.889       1007.7       28.8       7                                                                                                                                                                                                                                                                                                |       |            |        |         |        | 27.7 | 83 | 219 | 6.5 | 19788 |    | Cu,Ci,Cc,Sc,As,Ns |
| RS077       2015112918       -4.060       101.897       1010.4       25.6       94       133       5.7       18333       10          RS078       2015112921       -4.062       101.917       1008.2       25.8       91       325       2.0       20329       9       St         RS079       2015113000       -4.070       101.883       1009.5       26.6       84       335       3.6       23601       10       St,Cu         RS080       2015113003       -4.057       101.900       1009.7       27.4       79       334       2.3       22578       6       Cu,Ci         RS081       2015113006       -4.076       101.889       1007.9       27.8       81       250       0.9       23188       4       Cu,St         RS082       2015113009       -4.076       101.885       1006.2       28.5       75       202       4.2       22184       7       Cu,Ci,Cb,St,As         RS083       2015113012       -4.070       101.889       1007.7       28.8       78       187       3.8       18009       9       Cu,St,Cu,St,As                                                                                                                                                                                                                                                                                                                                                                       | RS075 | 2015112912 | -4.059 | 101.883 | 1008.5 | 28.0 | 81 | 199 | 4.9 | 20913 | 9  | Cu,St,As          |
| RS078       2015112921       -4.062       101.917       1008.2       25.8       91       325       2.0       20329       9       St         RS079       2015113000       -4.070       101.883       1009.5       26.6       84       335       3.6       23601       10       St,Cu         RS080       2015113003       -4.057       101.900       1009.7       27.4       79       334       2.3       22578       6       Cu,Ci         RS081       2015113006       -4.076       101.889       1007.9       27.8       81       250       0.9       23188       4       Cu,St         RS082       2015113009       -4.076       101.885       1006.2       28.5       75       202       4.2       22184       7       Cu,Ci,Cb,St,As         RS083       2015113012       -4.070       101.889       1007.7       28.8       78       187       3.8       18009       9       Cu,St,Cu,St,As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS076 | 2015112915 | -4.080 | 101.892 | 1009.7 | 28.3 | 83 | 193 | 4.6 | 19054 | 10 | -                 |
| RS079         2015113000         -4.070         101.883         1009.5         26.6         84         335         3.6         23601         10         St.Cu           RS080         2015113003         -4.057         101.900         1009.7         27.4         79         334         2.3         22578         6         Cu,Ci           RS081         2015113006         -4.076         101.889         1007.9         27.8         81         250         0.9         23188         4         Cu,St           RS082         2015113009         -4.076         101.885         1006.2         28.5         75         202         4.2         22184         7         Cu,Ci,Cb,St,As           RS083         2015113012         -4.070         101.889         1007.7         28.8         78         187         3.8         18009         9         Cu,St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RS077 | 2015112918 | -4.060 | 101.897 | 1010.4 | 25.6 | 94 | 133 | 5.7 | 18333 | 10 |                   |
| RS080         2015113003         -4.057         101.900         1009.7         27.4         79         334         2.3         22578         6         Cu,Ci           RS081         2015113006         -4.076         101.889         1007.9         27.8         81         250         0.9         23188         4         Cu,St           RS082         2015113009         -4.076         101.885         1006.2         28.5         75         202         4.2         22184         7         Cu,Ci,Cb,St,As           RS083         2015113012         -4.070         101.889         1007.7         28.8         78         187         3.8         18009         9         Cu,St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS078 | 2015112921 | -4.062 | 101.917 | 1008.2 | 25.8 | 91 | 325 | 2.0 | 20329 | 9  | St                |
| RS081         2015113006         -4.076         101.889         1007.9         27.8         81         250         0.9         23188         4         Cu,St           RS082         2015113009         -4.076         101.885         1006.2         28.5         75         202         4.2         22184         7         Cu,Ci,Cb,St,As           RS083         2015113012         -4.070         101.889         1007.7         28.8         78         187         3.8         18009         9         Cu,St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS079 | 2015113000 | -4.070 | 101.883 | 1009.5 | 26.6 | 84 | 335 | 3.6 | 23601 | 10 | St,Cu             |
| RS082         2015113009         -4.076         101.885         1006.2         28.5         75         202         4.2         22184         7         Cu,Ci,Cb,St,As           RS083         2015113012         -4.070         101.889         1007.7         28.8         78         187         3.8         18009         9         Cu,St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RS080 | 2015113003 | -4.057 | 101.900 | 1009.7 | 27.4 | 79 | 334 | 2.3 | 22578 | 6  | Cu,Ci             |
| RS083 2015113012 -4.070 101.889 1007.7 28.8 78 187 3.8 18009 9 Cu,St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS081 | 2015113006 | -4.076 | 101.889 | 1007.9 | 27.8 | 81 | 250 | 0.9 | 23188 | 4  | Cu,St             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS082 | 2015113009 | -4.076 | 101.885 | 1006.2 | 28.5 | 75 | 202 | 4.2 | 22184 | 7  | Cu,Ci,Cb,St,As    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS083 | 2015113012 | -4.070 | 101.889 | 1007.7 | 28.8 | 78 | 187 | 3.8 | 18009 | 9  | Cu,St             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS084 |            | -4.097 | 101.901 | 1009.4 | 26.3 | 90 | 31  | 9.5 | 18420 | 10 | Cb,Ns             |

| C+                                                                                                             | 0                                                                  | 20206                                                                                                | 0.4                                                                              | 101                                                                              | 00                                                                         | 06.1                                                                                 | 1000.2                                                                                                     | 101 007                                                                                                    | 4.070                                                                                            | 0015110010                                                                                                                                             | DCOOF                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| St St                                                                                                          | 9<br>5                                                             | 20286                                                                                                | 0.4<br>7.6                                                                       | 101<br>335                                                                       | 88<br>87                                                                   | 26.1<br>26.7                                                                         | 1009.3                                                                                                     | 101.897                                                                                                    | -4.079                                                                                           | 2015113018                                                                                                                                             | RS085                                                                                                                                 |
|                                                                                                                |                                                                    | 22394                                                                                                |                                                                                  |                                                                                  |                                                                            |                                                                                      | 1006.6                                                                                                     | 101.880                                                                                                    | -4.081                                                                                           | 2015113021                                                                                                                                             | RS086                                                                                                                                 |
| Cu,Cs                                                                                                          | 6                                                                  | 24545                                                                                                | 5.7                                                                              | 323                                                                              | 83                                                                         | 27.3                                                                                 | 1007.7                                                                                                     | 101.887                                                                                                    | -4.073                                                                                           | 2015120100                                                                                                                                             | RS087                                                                                                                                 |
| Cu,Cs                                                                                                          | 6                                                                  | 23536                                                                                                | 4.2                                                                              | 344                                                                              | 83                                                                         | 28.1                                                                                 | 1009.2                                                                                                     | 101.897                                                                                                    | -4.059                                                                                           | 2015120103                                                                                                                                             | RS088                                                                                                                                 |
| Cu,Ci,Cs,St                                                                                                    | 3                                                                  | 26507                                                                                                | 2.7                                                                              | 298                                                                              | 79                                                                         | 28.4                                                                                 | 1008.1                                                                                                     | 101.887                                                                                                    | -4.051                                                                                           | 2015120106                                                                                                                                             | RS089                                                                                                                                 |
| Cu,Ns                                                                                                          | 7                                                                  | 22607                                                                                                | 3.0                                                                              | 257                                                                              | 81                                                                         | 28.3                                                                                 | 1006.6                                                                                                     | 101.891                                                                                                    | -4.053                                                                                           | 2015120109                                                                                                                                             | RS090                                                                                                                                 |
| Cu,Cb,As,St                                                                                                    | 9                                                                  | 19117                                                                                                | 3.3                                                                              | 272                                                                              | 80                                                                         | 28.0                                                                                 | 1008.3                                                                                                     | 101.884                                                                                                    | -4.078                                                                                           | 2015120112                                                                                                                                             | RS091                                                                                                                                 |
| Ns                                                                                                             | 10                                                                 | 22986                                                                                                | 3.8                                                                              | 130                                                                              | 92                                                                         | 26.0                                                                                 | 1009.9                                                                                                     | 101.881                                                                                                    | -4.069                                                                                           | 2015120115                                                                                                                                             | RS092                                                                                                                                 |
| St                                                                                                             | 8                                                                  | 20581                                                                                                | 6.6                                                                              | 329                                                                              | 87                                                                         | 26.2                                                                                 | 1009.1                                                                                                     | 101.891                                                                                                    | -4.055                                                                                           | 2015120118                                                                                                                                             | RS093                                                                                                                                 |
| St                                                                                                             | 10                                                                 | 20429                                                                                                | 5.1                                                                              | 338                                                                              | 81                                                                         | 26.6                                                                                 | 1007.5                                                                                                     | 101.883                                                                                                    | -4.060                                                                                           | 2015120121                                                                                                                                             | RS094                                                                                                                                 |
| St,Cu,Cc                                                                                                       | 9                                                                  | 20625                                                                                                | 2.6                                                                              | 353                                                                              | 83                                                                         | 27.4                                                                                 | 1008.4                                                                                                     | 101.907                                                                                                    | -4.068                                                                                           | 2015120200                                                                                                                                             | RS095                                                                                                                                 |
| As,Cb                                                                                                          | 7                                                                  | 23417                                                                                                | 4.8                                                                              | 6                                                                                | 83                                                                         | 27.6                                                                                 | 1009.5                                                                                                     | 101.908                                                                                                    | -4.058                                                                                           | 2015120203                                                                                                                                             | RS096                                                                                                                                 |
| St, Cu                                                                                                         | 8                                                                  | 22053                                                                                                | 3.5                                                                              | 327                                                                              | 82                                                                         | 27.9                                                                                 | 1008.1                                                                                                     | 101.904                                                                                                    | -4.052                                                                                           | 2015120206                                                                                                                                             | RS097                                                                                                                                 |
| Cu,As,St                                                                                                       | 9                                                                  | 21195                                                                                                | 5.1                                                                              | 268                                                                              | 80                                                                         | 28.3                                                                                 | 1006.2                                                                                                     | 101.888                                                                                                    | -4.056                                                                                           | 2015120209                                                                                                                                             | RS098                                                                                                                                 |
| Cu,Cb,Cc,St,As                                                                                                 | 6                                                                  | 21351                                                                                                | 7.2                                                                              | 294                                                                              | 83                                                                         | 27.3                                                                                 | 1008.1                                                                                                     | 101.883                                                                                                    | -4.063                                                                                           | 2015120212                                                                                                                                             | RS099                                                                                                                                 |
| _                                                                                                              | 10                                                                 | 19277                                                                                                | 5.1                                                                              | 283                                                                              | 92                                                                         | 25.8                                                                                 | 1010.2                                                                                                     | 101.911                                                                                                    | -4.053                                                                                           | 2015120215                                                                                                                                             | RS100                                                                                                                                 |
| -                                                                                                              | 10                                                                 | 19445                                                                                                | 1.3                                                                              | 335                                                                              | 89                                                                         | 26.6                                                                                 | 1009.1                                                                                                     | 101.897                                                                                                    | -4.053                                                                                           | 2015120218                                                                                                                                             | RS101                                                                                                                                 |
| -                                                                                                              | 8                                                                  | 21828                                                                                                | 0.9                                                                              | 55                                                                               | 85                                                                         | 27.2                                                                                 | 1007.8                                                                                                     | 101.911                                                                                                    | -4.053                                                                                           | 2015120221                                                                                                                                             | RS102                                                                                                                                 |
| Cu,Cs,Ac,Sc                                                                                                    | 7                                                                  | 21995                                                                                                | 0.5                                                                              | 91                                                                               | 83                                                                         | 27.5                                                                                 | 1008.8                                                                                                     | 101.893                                                                                                    | -4.064                                                                                           | 2015120300                                                                                                                                             | RS103                                                                                                                                 |
| Cs,Sc                                                                                                          | 8                                                                  | 21836                                                                                                | 1.8                                                                              | 57                                                                               | 81                                                                         | 28.1                                                                                 | 1009.9                                                                                                     | 101.895                                                                                                    | -4.055                                                                                           | 2015120303                                                                                                                                             | RS104                                                                                                                                 |
| Cu,Cs,Cb                                                                                                       | 8                                                                  | 28801                                                                                                | 4.2                                                                              | 275                                                                              | 82                                                                         | 28.0                                                                                 | 1008.5                                                                                                     | 101.893                                                                                                    | -4.067                                                                                           | 2015120306                                                                                                                                             | RS105                                                                                                                                 |
| Cu,Cb,Ci,St,As                                                                                                 | 5                                                                  | 21665                                                                                                | 5.7                                                                              | 224                                                                              | 85                                                                         | 28.1                                                                                 | 1006.0                                                                                                     | 101.903                                                                                                    | -4.054                                                                                           | 2015120309                                                                                                                                             | RS106                                                                                                                                 |
| Cu,Cb,As                                                                                                       | 7                                                                  | 17910                                                                                                | 5.1                                                                              | 237                                                                              | 82                                                                         | 28.1                                                                                 | 1007.7                                                                                                     | 101.896                                                                                                    | -4.056                                                                                           | 2015120312                                                                                                                                             | RS107                                                                                                                                 |
| -                                                                                                              | 10                                                                 | 7559                                                                                                 | 4.4                                                                              | 232                                                                              | 89                                                                         | 26.5                                                                                 | 1010.2                                                                                                     | 101.888                                                                                                    | -4.042                                                                                           | 2015120315                                                                                                                                             | RS108                                                                                                                                 |
| _                                                                                                              | 10                                                                 | 20121                                                                                                | 2.3                                                                              | 114                                                                              | 93                                                                         | 25.0                                                                                 | 1009.4                                                                                                     | 101.900                                                                                                    | -4.040                                                                                           | 2015120318                                                                                                                                             | RS109                                                                                                                                 |
| -                                                                                                              | 8                                                                  | 20177                                                                                                | 2.8                                                                              | 304                                                                              | 89                                                                         | 26.0                                                                                 | 1007.3                                                                                                     | 101.927                                                                                                    | -4.061                                                                                           | 2015120321                                                                                                                                             | RS110                                                                                                                                 |
| Cc,Cs,Ci,Ac.Cu,St                                                                                              | 4                                                                  | 25631                                                                                                | 1.6                                                                              | 337                                                                              | 84                                                                         | 26.8                                                                                 | 1008.6                                                                                                     | 101.893                                                                                                    | -4.065                                                                                           | 2015120400                                                                                                                                             | RS111                                                                                                                                 |
| Cu,Ci                                                                                                          | 9                                                                  | 22689                                                                                                | 1.5                                                                              | 4                                                                                | 84                                                                         | 27.4                                                                                 | 1010.5                                                                                                     | 101.895                                                                                                    | -4.045                                                                                           | 2015120403                                                                                                                                             | RS112                                                                                                                                 |
| Cu,As,Ci                                                                                                       | 1                                                                  | 24883                                                                                                | 2.1                                                                              | 329                                                                              | 84                                                                         | 27.8                                                                                 | 1008.7                                                                                                     | 101.903                                                                                                    | -4.046                                                                                           | 2015120406                                                                                                                                             | RS113                                                                                                                                 |
| Cu,Ci,Nb                                                                                                       | 1                                                                  | 25758                                                                                                | 3.8                                                                              | 200                                                                              | 81                                                                         | 28.4                                                                                 | 1005.7                                                                                                     | 101.898                                                                                                    | -4.070                                                                                           | 2015120409                                                                                                                                             | RS114                                                                                                                                 |
| Cu,Cb,Ci                                                                                                       | 3                                                                  | 21640                                                                                                | 4.2                                                                              | 198                                                                              | 81                                                                         | 28.1                                                                                 | 1007.2                                                                                                     | 101.889                                                                                                    | -4.074                                                                                           | 2015120412                                                                                                                                             | RS115                                                                                                                                 |
|                                                                                                                | 3                                                                  | 23487                                                                                                | 3.7                                                                              | 230                                                                              | 85                                                                         | 27.7                                                                                 | 1009.0                                                                                                     | 101.891                                                                                                    | -4.092                                                                                           | 2015120415                                                                                                                                             | RS116                                                                                                                                 |
| _                                                                                                              | 10                                                                 | 21596                                                                                                | 3.3                                                                              | 230                                                                              | 82                                                                         | 28.1                                                                                 | 1007.9                                                                                                     | 101.892                                                                                                    | -4.058                                                                                           | 2015120418                                                                                                                                             | RS117                                                                                                                                 |
| _                                                                                                              | 10                                                                 | 6705                                                                                                 | 1.7                                                                              | 240                                                                              | 95                                                                         | 26.0                                                                                 | 1006.6                                                                                                     | 101.897                                                                                                    | -4.077                                                                                           | 2015120421                                                                                                                                             | RS118                                                                                                                                 |
| Ns,As,St                                                                                                       | 10                                                                 | 24956                                                                                                | 3.1                                                                              | 60                                                                               | 91                                                                         | 25.3                                                                                 | 1008.1                                                                                                     | 101.892                                                                                                    | -4.059                                                                                           | 2015120500                                                                                                                                             | RS119                                                                                                                                 |
| Ns,Sc,St                                                                                                       | 10                                                                 | 28016                                                                                                | 1.9                                                                              | 254                                                                              | 92                                                                         | 26.0                                                                                 | 1009.5                                                                                                     | 101.883                                                                                                    | -4.069                                                                                           | 2015120503                                                                                                                                             | RS120                                                                                                                                 |
| Cu,Cb,Ci,Ac,St                                                                                                 | 7                                                                  | 25287                                                                                                | 3.1                                                                              | 289                                                                              | 84                                                                         | 27.2                                                                                 | 1007.2                                                                                                     | 101.880                                                                                                    | -4.069                                                                                           | 2015120506                                                                                                                                             | RS121                                                                                                                                 |
| Cu,As,Ci,St                                                                                                    | 9                                                                  | 25080                                                                                                | 3.6                                                                              | 200                                                                              | 83                                                                         | 27.9                                                                                 | 1005.9                                                                                                     | 101.894                                                                                                    | -4.064                                                                                           | 2015120509                                                                                                                                             | RS122                                                                                                                                 |
| Cu,St,Cb,As                                                                                                    | 6                                                                  | 21864                                                                                                | 2.9                                                                              | 279                                                                              | 78                                                                         | 28.1                                                                                 | 1007.3                                                                                                     | 101.899                                                                                                    | -4.060                                                                                           | 2015120512                                                                                                                                             | RS122                                                                                                                                 |
| St,Cu,Cb,Ns                                                                                                    | 10                                                                 | 20824                                                                                                | 1.8                                                                              | 248                                                                              | 70                                                                         | 28.3                                                                                 | 1007.0                                                                                                     | 101.897                                                                                                    | -4.064                                                                                           | 2015120512                                                                                                                                             | RS124                                                                                                                                 |
| -                                                                                                              | 10                                                                 | 26822                                                                                                | 1.3                                                                              | 80                                                                               | 86                                                                         | 27.4                                                                                 | 1008.6                                                                                                     | 101.893                                                                                                    | -4.085                                                                                           | 2015120518                                                                                                                                             | RS125                                                                                                                                 |
| _                                                                                                              | 10                                                                 | 24033                                                                                                | 3.2                                                                              | 130                                                                              | 87                                                                         | 27.4                                                                                 | 1003.0                                                                                                     | 101.914                                                                                                    | -4.060                                                                                           | 2015120513                                                                                                                                             | RS126                                                                                                                                 |
|                                                                                                                | 9                                                                  |                                                                                                      |                                                                                  |                                                                                  |                                                                            |                                                                                      |                                                                                                            |                                                                                                            |                                                                                                  |                                                                                                                                                        |                                                                                                                                       |
| Cu,Ci,As,Sc<br>Ci,Sc,St                                                                                        |                                                                    | 24395<br>24601                                                                                       | 4.6<br>4.7                                                                       | 106<br>139                                                                       | 83<br>78                                                                   | 27.6                                                                                 | 1008.0<br>1009.4                                                                                           | 101.892<br>101.921                                                                                         | -4.061<br>-4.066                                                                                 | 2015120600<br>2015120603                                                                                                                               | RS127<br>RS128                                                                                                                        |
|                                                                                                                | 6                                                                  |                                                                                                      |                                                                                  |                                                                                  |                                                                            | 28.5                                                                                 |                                                                                                            |                                                                                                            | -4.066                                                                                           |                                                                                                                                                        |                                                                                                                                       |
| Cu,Cb,Ci,St<br>Cu,St                                                                                           | 3                                                                  | 25368                                                                                                | 5.4                                                                              | 174                                                                              | 84<br>01                                                                   | 28.5                                                                                 | 1007.4                                                                                                     | 101.900<br>101.902                                                                                         |                                                                                                  | 2015120606                                                                                                                                             | RS129                                                                                                                                 |
| GuSt                                                                                                           |                                                                    | 25061                                                                                                | 4.9<br>4.0                                                                       | 161                                                                              | 81                                                                         | 28.8                                                                                 | 1004.2                                                                                                     |                                                                                                            | -4.051                                                                                           | 2015120609                                                                                                                                             | RS130                                                                                                                                 |
|                                                                                                                | - I                                                                |                                                                                                      | 40                                                                               | 159                                                                              | 80                                                                         | 28.7                                                                                 | 1005.9                                                                                                     | 101.893                                                                                                    | -4.073                                                                                           | 2015120612                                                                                                                                             | RS131                                                                                                                                 |
| Cu,As,Ci                                                                                                       | 5                                                                  | 24451                                                                                                |                                                                                  |                                                                                  | 70                                                                         | 00.0                                                                                 | 1000.0                                                                                                     | 101 000                                                                                                    | 4 0 0 4                                                                                          |                                                                                                                                                        | RS132                                                                                                                                 |
|                                                                                                                | 7                                                                  | 22953                                                                                                | 5.9                                                                              | 116                                                                              | 79                                                                         | 29.2                                                                                 | 1008.2                                                                                                     | 101.896                                                                                                    | -4.084                                                                                           | 2015120615                                                                                                                                             | D0100                                                                                                                                 |
| Cu,As,Ci                                                                                                       | 7<br>10                                                            | 22953<br>22096                                                                                       | 5.9<br>6.5                                                                       | 116<br>137                                                                       | 87                                                                         | 27.4                                                                                 | 1008.2                                                                                                     | 101.901                                                                                                    | -4.067                                                                                           | 2015120618                                                                                                                                             | RS133                                                                                                                                 |
| Cu,As,Ci<br>Cb,Cu<br>–                                                                                         | 7<br>10<br>3                                                       | 22953<br>22096<br>27514                                                                              | 5.9<br>6.5<br>6.2                                                                | 116<br>137<br>139                                                                | 87<br>85                                                                   | 27.4<br>27.9                                                                         | 1008.2<br>1005.8                                                                                           | 101.901<br>101.910                                                                                         | -4.067<br>-4.067                                                                                 | 2015120618<br>2015120621                                                                                                                               | RS134                                                                                                                                 |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As                                                                        | 7<br>10<br>3<br>7                                                  | 22953<br>22096<br>27514<br>25243                                                                     | 5.9<br>6.5<br>6.2<br>6.6                                                         | 116<br>137<br>139<br>144                                                         | 87<br>85<br>85                                                             | 27.4<br>27.9<br>28.5                                                                 | 1008.2<br>1005.8<br>1007.3                                                                                 | 101.901<br>101.910<br>101.893                                                                              | -4.067<br>-4.067<br>-4.064                                                                       | 2015120618<br>2015120621<br>2015120700                                                                                                                 | RS134<br>RS135                                                                                                                        |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As<br>Cb,St,Sc                                                            | 7<br>10<br>3<br>7<br>8                                             | 22953<br>22096<br>27514<br>25243<br>24044                                                            | 5.9<br>6.5<br>6.2<br>6.6<br>6.0                                                  | 116<br>137<br>139<br>144<br>120                                                  | 87<br>85<br>85<br>84                                                       | 27.4<br>27.9<br>28.5<br>28.6                                                         | 1008.2<br>1005.8<br>1007.3<br>1008.8                                                                       | 101.901<br>101.910<br>101.893<br>101.892                                                                   | -4.067<br>-4.067<br>-4.064<br>-4.074                                                             | 2015120618<br>2015120621<br>2015120700<br>2015120703                                                                                                   | RS134<br>RS135<br>RS136                                                                                                               |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As<br>Cb,St,Sc<br>Cb,St,Ac                                                | 7<br>10<br>3<br>7<br>8<br>7                                        | 22953<br>22096<br>27514<br>25243<br>24044<br>23675                                                   | 5.9<br>6.5<br>6.2<br>6.6<br>6.0<br>2.6                                           | 116<br>137<br>139<br>144<br>120<br>188                                           | 87<br>85<br>85<br>84<br>82                                                 | 27.4<br>27.9<br>28.5<br>28.6<br>29.2                                                 | 1008.2<br>1005.8<br>1007.3<br>1008.8<br>1006.9                                                             | 101.901<br>101.910<br>101.893<br>101.892<br>101.899                                                        | -4.067<br>-4.067<br>-4.064<br>-4.074<br>-4.056                                                   | 2015120618<br>2015120621<br>2015120700<br>2015120703<br>2015120706                                                                                     | RS134<br>RS135<br>RS136<br>RS137                                                                                                      |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As<br>Cb,St,Sc<br>Cb,St,Ac<br>Cb,Ac,Cu                                    | 7<br>10<br>3<br>7<br>8<br>7<br>9                                   | 22953<br>22096<br>27514<br>25243<br>24044<br>23675<br>24875                                          | 5.9<br>6.5<br>6.2<br>6.6<br>6.0<br>2.6<br>6.3                                    | 116<br>137<br>139<br>144<br>120<br>188<br>158                                    | 87<br>85<br>85<br>84<br>82<br>82                                           | 27.4<br>27.9<br>28.5<br>28.6<br>29.2<br>29.2                                         | 1008.2<br>1005.8<br>1007.3<br>1008.8<br>1006.9<br>1005.1                                                   | 101.901<br>101.910<br>101.893<br>101.892<br>101.899<br>101.872                                             | -4.067<br>-4.067<br>-4.064<br>-4.074<br>-4.056<br>-4.077                                         | 2015120618<br>2015120621<br>2015120700<br>2015120703<br>2015120706<br>2015120709                                                                       | RS134<br>RS135<br>RS136<br>RS137<br>RS138                                                                                             |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As<br>Cb,St,Sc<br>Cb,St,Ac                                                | 7<br>10<br>3<br>7<br>8<br>7<br>9<br>9                              | 22953<br>22096<br>27514<br>25243<br>24044<br>23675<br>24875<br>19814                                 | 5.9<br>6.5<br>6.2<br>6.6<br>6.0<br>2.6<br>6.3<br>3.0                             | 116<br>137<br>139<br>144<br>120<br>188<br>158<br>101                             | 87<br>85<br>85<br>84<br>82<br>82<br>82<br>82<br>82                         | 27.4<br>27.9<br>28.5<br>28.6<br>29.2<br>29.2<br>27.4                                 | 1008.2<br>1005.8<br>1007.3<br>1008.8<br>1006.9<br>1005.1<br>1006.8                                         | 101.901<br>101.910<br>101.893<br>101.892<br>101.899<br>101.872<br>101.884                                  | -4.067<br>-4.067<br>-4.064<br>-4.074<br>-4.056<br>-4.077<br>-4.087                               | 2015120618<br>2015120621<br>2015120700<br>2015120703<br>2015120706<br>2015120709<br>2015120712                                                         | RS134<br>RS135<br>RS136<br>RS137<br>RS138<br>RS139                                                                                    |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As<br>Cb,St,Sc<br>Cb,St,Ac<br>Cb,Ac,Cu                                    | 7<br>10<br>3<br>7<br>8<br>7<br>9<br>9<br>9<br>9                    | 22953<br>22096<br>27514<br>25243<br>24044<br>23675<br>24875<br>19814<br>13369                        | 5.9<br>6.5<br>6.2<br>6.6<br>6.0<br>2.6<br>6.3<br>3.0<br>4.0                      | 116<br>137<br>139<br>144<br>120<br>188<br>158<br>101<br>342                      | 87<br>85<br>85<br>84<br>82<br>82<br>82<br>84<br>83                         | 27.4<br>27.9<br>28.5<br>28.6<br>29.2<br>29.2<br>27.4<br>28.1                         | 1008.2<br>1005.8<br>1007.3<br>1008.8<br>1006.9<br>1005.1<br>1006.8<br>1009.0                               | 101.901<br>101.910<br>101.893<br>101.892<br>101.899<br>101.872<br>101.884<br>101.888                       | -4.067<br>-4.064<br>-4.074<br>-4.076<br>-4.077<br>-4.087<br>-4.087                               | 2015120618<br>2015120621<br>2015120700<br>2015120703<br>2015120706<br>2015120709<br>2015120712<br>2015120715                                           | RS134<br>RS135<br>RS136<br>RS137<br>RS138<br>RS139<br>RS140                                                                           |
| Cu,As,Ci<br>Cb,Cu<br>–<br>Cu,Ci,As<br>Cb,St,Sc<br>Cb,St,Ac<br>Cb,Ac,Cu                                         | 7<br>10<br>3<br>7<br>8<br>7<br>9<br>9<br>9<br>10<br>10             | 22953<br>22096<br>27514<br>25243<br>24044<br>23675<br>24875<br>19814<br>13369<br>4157                | 5.9<br>6.5<br>6.2<br>6.6<br>6.0<br>2.6<br>6.3<br>3.0<br>4.0<br>5.2               | 116<br>137<br>139<br>144<br>120<br>188<br>158<br>101<br>342<br>210               | 87<br>85<br>85<br>84<br>82<br>82<br>82<br>82<br>84<br>83<br>93             | 27.4<br>27.9<br>28.5<br>28.6<br>29.2<br>29.2<br>27.4<br>28.1<br>25.6                 | 1008.2<br>1005.8<br>1007.3<br>1008.8<br>1006.9<br>1005.1<br>1006.8<br>1009.0<br>1008.8                     | 101.901<br>101.893<br>101.892<br>101.899<br>101.872<br>101.884<br>101.888<br>101.873                       | -4.067<br>-4.064<br>-4.074<br>-4.056<br>-4.077<br>-4.087<br>-4.087<br>-4.066<br>-4.070           | 2015120618<br>2015120621<br>2015120700<br>2015120703<br>2015120706<br>2015120709<br>2015120712<br>2015120715<br>2015120718                             | RS134<br>RS135<br>RS136<br>RS137<br>RS138<br>RS139<br>RS140<br>RS141                                                                  |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As<br>Cb,St,Sc<br>Cb,St,Ac<br>Cb,Ac,Cu                                    | 7<br>10<br>3<br>7<br>8<br>7<br>9<br>9<br>9<br>10<br>10<br>10       | 22953<br>22096<br>27514<br>25243<br>24044<br>23675<br>24875<br>19814<br>13369<br>4157<br>332         | 5.9<br>6.5<br>6.2<br>6.6<br>6.0<br>2.6<br>6.3<br>3.0<br>4.0<br>5.2<br>5.0        | 116<br>137<br>139<br>144<br>120<br>188<br>158<br>101<br>342<br>210<br>185        | 87<br>85<br>85<br>84<br>82<br>82<br>82<br>84<br>83<br>93<br>93             | 27.4<br>27.9<br>28.5<br>28.6<br>29.2<br>29.2<br>27.4<br>28.1<br>25.6<br>25.8         | 1008.2<br>1005.8<br>1007.3<br>1008.8<br>1006.9<br>1005.1<br>1006.8<br>1009.0<br>1008.8<br>1008.4           | 101.901<br>101.893<br>101.892<br>101.899<br>101.872<br>101.884<br>101.888<br>101.873<br>101.885            | -4.067<br>-4.064<br>-4.074<br>-4.056<br>-4.077<br>-4.087<br>-4.066<br>-4.070<br>-4.081           | 2015120618<br>2015120621<br>2015120700<br>2015120703<br>2015120706<br>2015120709<br>2015120712<br>2015120715<br>2015120718<br>2015120718               | RS134           RS135           RS136           RS137           RS138           RS139           RS140           RS141           RS142 |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As<br>Cb,St,Sc<br>Cb,St,Ac<br>Cb,Ac,Cu<br>Ns,St,Cb,As<br>-<br>-<br>-<br>- | 7<br>10<br>3<br>7<br>8<br>7<br>9<br>9<br>9<br>10<br>10<br>10<br>10 | 22953<br>22096<br>27514<br>25243<br>24044<br>23675<br>24875<br>19814<br>13369<br>4157<br>332<br>5398 | 5.9<br>6.5<br>6.2<br>6.6<br>6.0<br>2.6<br>6.3<br>3.0<br>4.0<br>5.2<br>5.0<br>3.7 | 116<br>137<br>139<br>144<br>120<br>188<br>158<br>101<br>342<br>210<br>185<br>209 | 87<br>85<br>85<br>84<br>82<br>82<br>82<br>82<br>84<br>83<br>93<br>96<br>96 | 27.4<br>27.9<br>28.5<br>28.6<br>29.2<br>29.2<br>27.4<br>28.1<br>25.6<br>25.8<br>26.1 | 1008.2<br>1005.8<br>1007.3<br>1008.8<br>1006.9<br>1005.1<br>1006.8<br>1009.0<br>1008.8<br>1008.4<br>1008.4 | 101.901<br>101.893<br>101.892<br>101.899<br>101.872<br>101.884<br>101.888<br>101.873<br>101.885<br>101.927 | -4.067<br>-4.064<br>-4.074<br>-4.056<br>-4.077<br>-4.087<br>-4.066<br>-4.070<br>-4.081<br>-4.061 | 2015120618<br>2015120621<br>2015120700<br>2015120703<br>2015120706<br>2015120709<br>2015120712<br>2015120715<br>2015120718<br>2015120718<br>2015120721 | RS134<br>RS135<br>RS136<br>RS137<br>RS138<br>RS139<br>RS140<br>RS141<br>RS142<br>RS143                                                |
| Cu,As,Ci<br>Cb,Cu<br>-<br>-<br>Cu,Ci,As<br>Cb,St,Sc<br>Cb,St,Ac<br>Cb,Ac,Cu                                    | 7<br>10<br>3<br>7<br>8<br>7<br>9<br>9<br>9<br>10<br>10<br>10       | 22953<br>22096<br>27514<br>25243<br>24044<br>23675<br>24875<br>19814<br>13369<br>4157<br>332         | 5.9<br>6.5<br>6.2<br>6.6<br>6.0<br>2.6<br>6.3<br>3.0<br>4.0<br>5.2<br>5.0        | 116<br>137<br>139<br>144<br>120<br>188<br>158<br>101<br>342<br>210<br>185        | 87<br>85<br>85<br>84<br>82<br>82<br>82<br>84<br>83<br>93<br>93             | 27.4<br>27.9<br>28.5<br>28.6<br>29.2<br>29.2<br>27.4<br>28.1<br>25.6<br>25.8         | 1008.2<br>1005.8<br>1007.3<br>1008.8<br>1006.9<br>1005.1<br>1006.8<br>1009.0<br>1008.8<br>1008.4           | 101.901<br>101.893<br>101.892<br>101.899<br>101.872<br>101.884<br>101.888<br>101.873<br>101.885            | -4.067<br>-4.064<br>-4.074<br>-4.056<br>-4.077<br>-4.087<br>-4.066<br>-4.070<br>-4.081           | 2015120618<br>2015120621<br>2015120700<br>2015120703<br>2015120706<br>2015120709<br>2015120712<br>2015120715<br>2015120718<br>2015120718               | RS134           RS135           RS136           RS137           RS138           RS139           RS140           RS141           RS142 |

| RS146          | 2015120806               | -4.063           | 101.896            | 1009.6           | 27.5         | 88       | 228        | 3.3        | 24686          | 10       | St,Sc,As          |
|----------------|--------------------------|------------------|--------------------|------------------|--------------|----------|------------|------------|----------------|----------|-------------------|
| RS147          | 2015120809               | -4.089           | 101.887            | 1006.9           | 27.7         | 85       | 138        | 4.4        | 25423          | 9        | Sc,Cb,As,Ns       |
| RS148          | 2015120812               | -4.080           | 101.887            | 1008.4           | 27.5         | 85       | 112        | 3.0        | 24282          | 10       | St,Cb             |
| RS149          | 2015120815               | -4.079           | 101.890            | 1010.5           | 27.9         | 82       | 126        | 3.0        | 26965          | 5        | -                 |
| RS150          | 2015120818               | -4.062           | 101.887            | 1009.5           | 28.1         | 86       | 90         | 4.3        | 23767          | 10       | -                 |
| RS151          | 2015120821               | -4.044           | 101.897            | 1007.2           | 28.0         | 79       | 136        | 5.7        | 24338          | 3        | -                 |
| RS152          | 2015120900               | -4.080           | 101.883            | 1008.2           | 26.7         | 84       | 146        | 2.9        | 24804          | 7        | Cu,Cb,St          |
| RS153          | 2015120903               | -4.053           | 101.887            | 1010.0           | 27.4         | 81       | 298        | 1.9        | 27123          | 8        | St,Sc,Cu          |
| RS154          | 2015120906               | -4.084           | 101.878            | 1008.9           | 27.9         | 85       | 144        | 1.7        | 23050          | 3        | Cu,Cb,Ci,St,Ac    |
| RS155          | 2015120909               | -4.089           | 101.889            | 1006.3           | 28.9         | 77       | 180        | 5.7        | 25435          | 6        | St,Ci,As,Cb,Cu    |
| RS156          | 2015120912               | -4.061           | 101.893            | 1008.0           | 28.8         | 75       | 153        | 4.9        | 23118          | 5        | Cc,Cb,Cu,As,St    |
| RS157          | 2015120915               | -4.084           | 101.899            | 1009.5           | 28.7         | 78       | 151        | 6.6        | 19438          | 10       | -                 |
| RS158          | 2015120918               | -4.056           | 101.906            | 1009.4           | 26.3         | 92       | 216        | 2.7        | 26204          | 10       | -                 |
| RS159          | 2015120921               | -4.047           | 101.921            | 1006.9           | 27.9         | 82       | 94         | 4.3        | 24830          | 3        | -                 |
| RS160          | 2015121000               | -4.060           | 101.890            | 1008.0           | 28.1         | 85       | 106        | 2.8        | 24979          | 4        | Cu,Cb,Cc,As,St    |
| RS161          | 2015121003               | -4.083           | 101.881            | 1009.4           | 28.0         | 85       | 175        | 0.9        | 24510          | 7        | St,Cb,As          |
| RS162          | 2015121006               | -4.074           | 101.885            | 1008.1           | 28.5         | 84       | 276        | 1.9        | 22855          | 5        | Cu,Cb,Cc,Ci,St    |
| RS163          | 2015121009               | -4.055           | 101.880            | 1005.8           | 29.2         | 79       | 241        | 4.7        | 21199          | 6        | St,Cb,Ac,Cc,Ci    |
| RS164          | 2015121012               | -4.068           | 101.876            | 1006.7           | 25.4         | 85       | 98         | 2.1        | 6571           | 10       | Ns,Cb             |
| RS165          | 2015121015               | -4.047           | 101.898            | 1009.1           | 26.4         | 92       | 48         | 3.3        | 16993          | 10       | Ns                |
| RS166          | 2015121018               | -4.042           | 101.890            | 1009.1           | 27.0         | 87       | 6          | 1.4        | 24650          | 10       | -                 |
| RS167          | 2015121021               | -4.049           | 101.880            | 1006.6           | 27.5         | 87       | 20         | 3.2        | 23711          | 7        | -                 |
| RS168          | 2015121100               | -4.065           | 101.887            | 1007.3           | 27.7         | 81       | 354        | 4.1        | 23580          | 3        | Cu,Cb,Ci,Cs,Cc,St |
| RS169          | 2015121103               | -4.052           | 101.884            | 1008.9           | 28.1         | 80       | 349        | 1.0        | 23898          | 2        | Cu,Ci,Cs,As       |
| RS170          | 2015121106               | -4.065           | 101.880            | 1006.9           | 28.7         | 78       | 292        | 2.7        | 25404          | 2        | Cu,Cb,Cs,Ci,As    |
| RS171          | 2015121109               | -4.073           | 101.865            | 1004.1           | 29.1         | 76       | 201        | 0.9        | 24461          | 2        | Cu,St,Cb,As,Ci    |
| RS172          | 2015121112               | -4.076           | 101.883            | 1006.0           | 29.2         | 77       | 302        | 1.5        | 21808          | 10       | Ns                |
| RS173          | 2015121115               | -4.053           | 101.873            | 1008.0           | 25.5         | 98       | 5          | 10.3       | 15050          | 10       | Cb                |
| RS174          | 205121118                | -4.055           | 101.902            | 1008.9           | 24.9         | 93       | 301        | 5.8        | 16366          | 10       | -                 |
| RS175          | 2015121121               | -4.041           | 101.914            | 1007.0           | 26.7         | 87       | 272        | 6.1        | 22403          | 10       | -                 |
| RS176          | 2015121200               | -4.064           | 101.888            | 1007.2           | 27.3         | 82       | 309        | 5.2        | 17503          | 9        | Cu,Ns,As          |
| RS177          | 2015121203               | -4.057           | 101.909            | 1008.9           | 27.8         | 82       | 337        | 5.3        | 24822          | 8        | Cu,Sc,Ns          |
| RS178          | 2015121206               | -4.054           | 101.894            | 1007.3           | 28.4         | 80       | 326        | 5.3        | 24569          | 7        | Cu,Cb,Ci,Cs,Ac,As |
| RS179          | 2015121209               | -4.073           | 101.897            | 1004.5           | 28.6         | 78       | 285        | 7.5        | 20582          | 5        | St,Cu,Cb,As       |
| RS180          | 2015121212               | -4.060           | 101.902            | 1006.4           | 28.0         | 83       | 261        | 5.7        | 17993          | 7        | St,Cb,Ns,Ci       |
| RS181          | 2015121215               | -4.077           | 101.888            | 1008.9           | 28.3         | 85       | 274        | 1.6        | 18733          | 10       | Ns                |
| RS182          | 2015121218               | -4.051           | 101.891            | 1008.8           | 25.6         | 96<br>90 | 5          | 6.7        | 4759           | 10<br>10 | -                 |
| RS183          | 2015121221               | -4.050           | 101.895            | 1006.7           | 26.3         | 90<br>87 | 356<br>344 | 8.6<br>7.8 | 22762          |          | <br>As.St         |
| RS184<br>RS185 | 2015121300<br>2015121303 | -4.054<br>-4.057 | 101.893<br>101.887 | 1008.2<br>1009.9 | 26.8<br>26.7 | 90       | 344        | 7.0<br>8.8 | 19178<br>23047 | 9        | ,                 |
| RS185<br>RS186 | 2015121303               | -4.057           | 101.887            | 1009.9           | 20.7         | 90<br>82 | 332        | 0.0<br>9.8 | 25358          | 9<br>10  | St,Cu<br>St,As    |
| RS180          | 2015121300               | -4.061           | 101.895            | 1008.9           | 27.3         | 84       | 311        | 12.6       | 23338          | 10       | St,As<br>St,As    |
| RS187          | 2015121303               | -4.056           | 101.891            | 1005.9           | 28.2         | 81       | 322        | 10.6       | 24000          | 10       | St,As<br>St,As    |
| RS189          | 2015121315               | -4.063           | 101.888            | 1000.0           | 28.0         | 79       | 329        | 9.0        | 19845          | 10       |                   |
| RS190          | 2015121318               | -4.055           | 101.892            | 1003.0           | 28.2         | 73       | 336        | 10.3       | 20525          | 10       | _                 |
| RS191          | 2015121321               | -4.059           | 101.894            | 1006.1           | 28.1         | 77       | 324        | 6.2        | 20798          | 10       | _                 |
| RS192          | 2015121400               | -4.063           | 101.895            | 1000.1           | 28.5         | 76       | 312        | 7.1        | 23595          | 9        | Cu,Ac,As,St       |
| RS193          | 2015121403               | -4.056           | 101.895            | 1009.5           | 28.7         | 82       | 332        | 4.6        | 21653          | 10       | Cu,St             |
| RS194          | 2015121406               | -4.046           | 101.896            | 1008.6           | 26.6         | 83       | 341        | 6.3        | 5829           | 10       | Cu,Ns,As          |
| RS195          | 2015121409               | -4.053           | 101.892            | 1006.2           | 27.5         | 84       | 338        | 2.6        | 22201          | 10       | St,Cu,As          |
| RS196          | 2015121412               | -4.058           | 101.894            | 1007.0           | 27.2         | 89       | 297        | 1.4        | 20377          | 10       | St,Ns             |
| RS197          | 2015121415               | -4.043           | 101.896            | 1009.0           | 25.4         | 92       | 309        | 4.2        | 17791          | 10       | Ns                |
| RS198          | 2015121418               | -4.053           | 101.883            | 1009.0           | 26.3         | 90       | 349        | 8.0        | 18128          | 10       | -                 |
| RS199          | 2015121421               | -4.057           | 101.880            | 1007.0           | 25.5         | 92       | 341        | 10.3       | 16023          | 10       | _                 |
| RS200          | 2015121500               | -4.052           | 101.885            | 1007.0           | 26.7         | 88       | 323        | 12.5       | 24091          | 10       | Cu,St,As          |
| RS201          | 2015121503               | -4.049           | 101.900            | 1008.5           | 27.1         | 86       | 343        | 10.8       | 24865          | 6        | Sc,St             |
| RS202          | 2015121506               | -4.045           | 101.896            | 1007.9           | 27.6         | 82       | 339        | 8.6        | 23698          | 8        | Cu,As,Ac,St       |
| RS203          | 2015121509               | -4.073           | 101.889            | 1005.9           | 28.2         | 76       | 295        | 9.6        | 22950          | 10       | St,Sc,Cu,As       |
| RS204          | 2015121512               | -4.058           | 101.895            | 1007.0           | 25.8         | 84       | 326        | 6.7        | 15348          | 10       | St,Ns,As          |
| RS205          | 2015121515               | -4.038           | 101.924            | 1009.0           | 25.6         | 93       | 301        | 7.2        | 17974          | 10       | Ns                |
| RS206          | 2015121518               | -4.092           | 101.921            | 1009.6           | 24.5         | 94       | 256        | 10.4       | 5178           | 10       | _                 |
|                |                          |                  |                    |                  |              |          |            |            |                |          |                   |

| RS207 | 2015121521 | -4.070 | 101.892 | 1006.9 | 27.0 | 83 | 297 | 7.6 | 20122 | 10 | -                    |
|-------|------------|--------|---------|--------|------|----|-----|-----|-------|----|----------------------|
| RS208 | 2015121600 | -4.056 | 101.892 | 1007.9 | 26.8 | 78 | 274 | 9.5 | 21229 | 10 | Cu,As,St             |
| RS209 | 2015121603 | -4.057 | 101.886 | 1010.3 | 25.0 | 94 | 310 | 5.2 | 4803  | 10 | Ns,St                |
| RS210 | 2015121606 | -4.061 | 101.903 | 1009.8 | 24.1 | 91 | 286 | 6.0 | 21785 | 10 | Ns                   |
| RS211 | 2015121609 | -4.060 | 101.899 | 1007.4 | 25.8 | 85 | 311 | 7.9 | 22402 | 10 | St,As,Ns             |
| RS212 | 2015121612 | -4.065 | 101.892 | 1008.7 | 25.6 | 85 | 322 | 5.2 | 18459 | 10 | St,Ns                |
| RS213 | 2015121615 | -4.062 | 101.889 | 1010.1 | 26.2 | 90 | 11  | 7.9 | 21629 | 10 | -                    |
| RS214 | 2015121618 | -4.055 | 101.902 | 1009.4 | 25.9 | 85 | 343 | 8.7 | 21149 | 10 | _                    |
| RS215 | 2015121621 | -4.066 | 101.894 | 1007.3 | 26.3 | 81 | 329 | 5.4 | 21907 | 7  | _                    |
| RS216 | 2015121700 | -4.058 | 101.891 | 1007.8 | 27.4 | 80 | 341 | 3.8 | 22364 | 4  | Ci,Cs,As,St          |
| RS217 | 2015121703 | -4.061 | 101.890 | 1009.3 | 28.1 | 73 | 343 | 4.2 | 23883 | 6  | Ac,St,Ci             |
| RS218 | 2015121706 | -4.053 | 101.896 | 1008.2 | 28.2 | 72 | 278 | 1.4 | 21607 | 3  | Cu,Ci,Ac             |
| RS219 | 2015121709 | -4.060 | 101.888 | 1006.3 | 28.7 | 72 | 294 | 3.5 | 23317 | 4  | St,Cu,Cb,As,Cs,Ci,Cc |
| RS220 | 2015121712 | -4.058 | 101.889 | 1006.9 | 28.7 | 79 | 257 | 5.0 | 23101 | 1  | Cu,Ci,Cs             |
| RS221 | 2015121715 | -4.182 | 101.909 | 1009.2 | 28.4 | 78 | 265 | 4.1 | 21480 | 1  | Ci                   |
| RS222 | 2015121718 | -4.672 | 101.664 | 1008.5 | 28.1 | 81 | 287 | 5.3 | 23200 | 3  | _                    |
| RS223 | 2015121721 | -5.173 | 101.413 | 1007.2 | 28.2 | 79 | 303 | 6.0 | 24944 | 2  | _                    |
| RS224 | 2015121800 | -5.690 | 101.155 | 1008.4 | 26.4 | 85 | 278 | 4.8 | 23356 | 9  | Cu,Cb,Ns,As,St       |

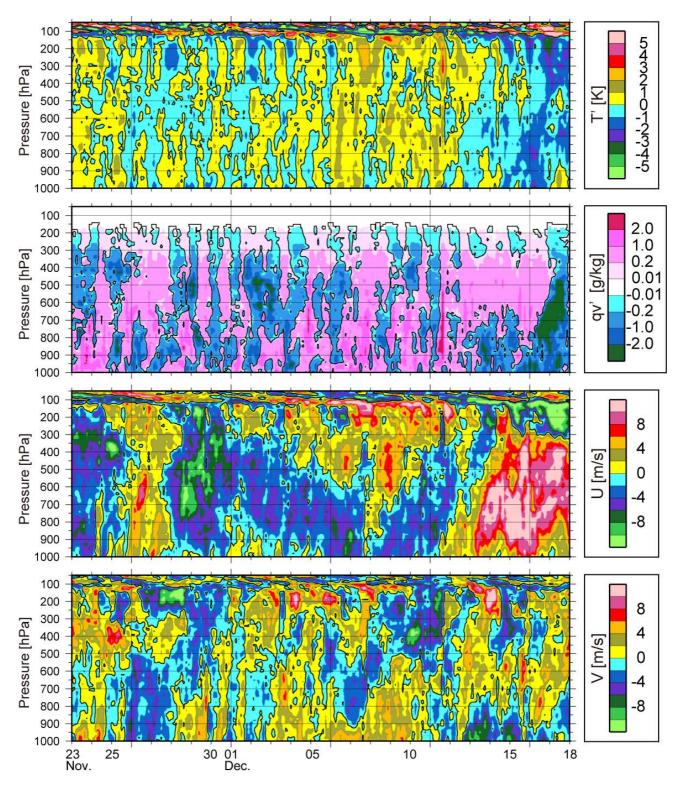



Fig. 5.1-1: Time-height cross sections of observed parameters at the station (4-04S, 101-54E); (a) temperature, in anomaly to the period-averaged value at each pressure level, (b) water vapor mixing ratio, in anomaly to the period-averaged value at each pressure level, (c) zonal wind (absolute value), and (d) meridional wind (absolute value).

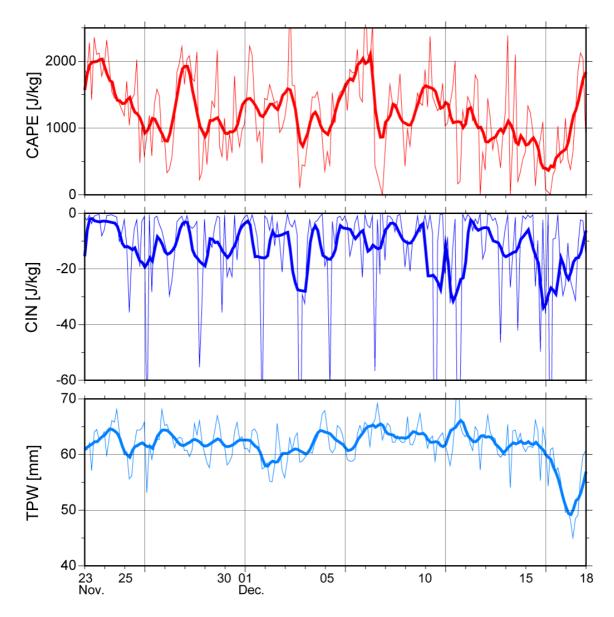



Fig. 5.1-2: Time series of the parameters derived from the radiosonde observations; (a) CAPE, (b) CIN, and (c) precipitable water. The thin lines are from the 3-hourly snapshots, while the thick lines are the running mean for 25 hours.

# 5.2 GNSS precipitable water

# (1) Personnel

| Masaki KATSUMATA   | (JAMSTEC) - I      | Principal Investigator |
|--------------------|--------------------|------------------------|
| Kazuho YOSHIDA     | (GODI) - O         | Operation Leader       |
| Souichiro SUEYOSHI | (GODI)             |                        |
| Shinya OKUMURA     | (GODI)             |                        |
| Miki MORIOKA       | (GODI)             |                        |
| Mikiko FUJITA      | (JAMSTEC)          | (not on board)         |
| Saji HAMEED        | (University of Aiz | cu) (not on board)     |

# (2) Objective

Getting the GNSS satellite data to estimate the total column integrated water vapor content of the atmosphere.

# (3) Method

The GNSS satellite data was archived to the receiver (Trimble NetR9) with 5 sec interval. The GNSS antenna (Margrin) was set on the roof of radar operation room?. Also we set the simplified GNSS receiver (NV08C-CSM) and antenna (NV2410) at the short distance. The observations were carried out all thru the cruise.

# (4) Results

We will calculate the total column integrated water from observed GNSS satellite data after the cruise.

# (5) Data archive

Raw data is recorded as T02 format and stream data every 5 seconds. These raw datasets are available from Mikiko Fujita of JAMSTEC. Corrected data will be submitted to JAMSTEC Marine-Earth Data and Information Department and will be archived there. A List of raw data files is as follows.

| Filename        | File size |
|-----------------|-----------|
| 1511040000C.T02 | 9.0MB     |
| 1511050000C.T02 | 9.6MB     |
| 1511060000C.T02 | 9.9MB     |
| 1511070000C.T02 | 10MB      |
| 1511080000C.T02 | 9.9MB     |
| 1511090000C.T02 | 10MB      |
| 1511100000C.T02 | 10MB      |
| 1511110000C.T02 | 10MB      |
| 1511120000C.T02 | 11MB      |
| 1511130000C.T02 | 11MB      |
| 1511140000C.T02 | 11MB      |

| 1511150000C.T02    | 11MB      |
|--------------------|-----------|
| 1511160000C.T02    | 11MB      |
| 1511170000C.T02    | 11MB      |
| 1511180000C.T02    |           |
| 1511190000C.T02    | 11MB      |
| 1511200000C.T02    | 11MB      |
| 1511210000C.T02    | 11MB      |
| 1511220000C.T02    | 11MB      |
| 1511230000C.T02    | 11MB      |
| 1511240000C.T02    | 11MB      |
| 1511250000C.T02    | 11MB      |
| 1511260000C.T02    | 11MB      |
| 1511270000C.T02    | 11MB      |
| 1511280000C.T02    | 11MB      |
| 1511290000C.T02    | 11MB      |
| 1511300000C.T02    | 11MB      |
| 1512010000C.T02    | 11MB      |
| 1512020000C.T02    | 11MB      |
| 1512030000C.T02    | 11MB      |
| 1512040000C.T02    | 11MB      |
| 1512050000C.T02    | 11MB      |
| 1512060000C.T02    | 11MB      |
| 1512070000C.T02    | 11MB      |
| 1512080000C.T02    | 10MB      |
| 1512090000C.T02    | 11MB      |
| 1512100000C.T02    | 11MB      |
| 1512110000C.T02    | 11MB      |
| 1512120000C.T02    | 11MB      |
| 1512130000C.T02    | 11MB      |
| 1512140000C.T02    | 11MB      |
| 1512150000C.T02    | 11MB      |
| 1512160000C.T02    | 11MB      |
| 1512170000C.T02    | 11MB      |
| 1512180000C.T02    | 11MB      |
| nvc08_2015_11_04.1 | bin 1.2GB |
| nvc08_2015_11_29.1 | bin 966MB |
|                    |           |

# 5.3 C-band Weather Radar

# (1) Personnel

| · · |                    |                |                          |
|-----|--------------------|----------------|--------------------------|
|     | Masaki KATSUMATA   | (JAMSTEC)      | - Principal Investigator |
|     | Biao GENG          | (JAMSTEC)      |                          |
|     | Tamaki SUEMATSU    | (JAMSTEC)      |                          |
|     | Shuhei MATSUGISHI  | (Univ. Tokyo)  |                          |
|     | Atsushi YANASE     | (Nagoya Univ.) |                          |
|     | Kunio YONEYAMA     | (JAMSTEC)      | (not on board)           |
|     | Kazuaki YASUNAGA   | (Toyama Univ.) | (not on board)           |
|     | Hiroaki MIURA      | (Univ. Tokyo)  | (not on board)           |
|     | Kazuho YOSHIDA     | (GODI)         | - Operation Leader       |
|     | Souichiro SUEYOSHI | (GODI)         |                          |
|     | Shinya OKUMURA     | (GODI)         |                          |
|     | Miki MORIOKA       | (GODI)         |                          |
|     | Ryo KIMURA         | (MIRAI Crew)   |                          |
|     |                    |                |                          |

# (2) Objective

The objective of weather radar observations in this cruise is to evaluate the performance of the radar, develop the better strategy of the radar observation, and investigate the structure and evolution of precipitating systems around the Maritime Continent.

# (3) Radar specifications

The C-band weather Doppler radar on board the R/V Mirai is used. Basic specifications of the radar are as follows:

| Frequency:           | 5370 MHz (C-band)                                                 |
|----------------------|-------------------------------------------------------------------|
| Polarimetry:         | Horizontal and vertical (simultaneously transmitted and received) |
| Transmitter:         | Solid-state transmitter                                           |
| Pulse Configuration: | Using pulse-compression                                           |
| Output Power:        | 6  kW (H) + 6  kW (V)                                             |
| Antenna Diameter:    | 4 meter                                                           |
| Beam Width:          | 1.0 degrees                                                       |
| Laser Gyro:          | PHINS (Ixsea S.A.S.)                                              |

# (4) Available radar variables

Radar variables, which are converted from the power and phase of the backscattered signal at vertically- and horizontally-polarized channels, are as follows:

| Radar reflectivity:                 | Ζ                  |
|-------------------------------------|--------------------|
| Doppler velocity:                   | Vr                 |
| Spectrum width of Doppler velocity: | SW                 |
| Differential reflectivity:          | ZDR                |
| Differential propagation phase:     | $\Phi \mathrm{DP}$ |

| Specific differential phase:       | KDP |
|------------------------------------|-----|
| Co-polar correlation coefficients: | ρHV |

#### (5) Operation methodology

The antenna is controlled to point the commanded ground-relative direction, by controlling the azimuth and elevation to cancel the ship attitude (roll, pitch and yaw) detected by the laser gyro. The Doppler velocity is also corrected by subtracting the ship movement in beam direction.

For the maintenance, internal signals of the radar are checked and calibrated at the beginning and the end of the cruise. Meanwhile, the following parameters are checked daily; (1) frequency, (2) mean output power, (3) pulse width, and (4) PRF (pulse repetition frequency).

During the cruise, the radar is operated in four modes, which are shown in Tables 5.3-1, 5.3-2, 5.3-3, and 5.3-4, respectively. Mode 1 is operated usually. Mode 2 and Mode 3 are operated when videosonde observations are conducted in Bengkulu, Indonesia and on board the Mirai, respectively. On the time when the GPM (Global Precipitation Measurement) satellite passes over the Mirai, Mode 4 is operated. A dual PRF mode is used for a volume scan. For a RHI, vertical point, and surveillance PPI scans, a single PRF mode is used.

#### (6) Obtained Data

The C-band weather radar observations were conducted from Nov. 8 to Dec. 19, 2015. Figure 5.3-1 shows a time series of the areal coverage of radar echoes. The figure illustrate the evolution of precipitation systems in the period when the Mirai remains stationary at (-4.67S, 101.90E). During this period, many precipitating systems have been observed. These precipitation systems developed and evolved in time scales ranging from diurnal to seasonal variations. Detailed analyses of the data observed by the weather radar will be performed after the cruise.

# (7) Data archive

All data of the Doppler radar observations during this cruise will be submitted to the JAMSTEC Data Management Group (DMG).

|                                               | Surveillance<br>PPI Scan |        |             | Volı                                                                   | RHI<br>Scan   | Vertical<br>Point<br>Scan          |     |              |                |
|-----------------------------------------------|--------------------------|--------|-------------|------------------------------------------------------------------------|---------------|------------------------------------|-----|--------------|----------------|
| Repeated Cycle (min.)                         | 30                       | 6      |             |                                                                        |               |                                    |     | 12           |                |
| Times in One<br>Cycle                         | 1                        |        |             |                                                                        | 1             |                                    |     | 3            | 3              |
| Pulse Width<br>(long / short, in<br>microsec) | 200 / 2                  | 64 / 1 |             | 32                                                                     | 32 / 1 32 / 1 |                                    | / 1 | 32 / 1       | 32 / 1         |
| Scan Speed<br>(deg/sec)                       | 36                       | 18     |             |                                                                        | 24            | 36                                 |     | 9            | 36             |
| PRF(s)<br>(Hz)                                | 400                      | 667    |             |                                                                        | ray alter     | mative)<br>1333 2000               |     | 1250         | 2000           |
| Pulses / Ray                                  | 8                        | 26     | 33          | 27                                                                     | 34            | 37                                 | 55  | 32           | 64             |
| Ray Spacing (deg.)                            | 0.7                      | 0.7    |             | (                                                                      | ).7           | 1.0                                |     | 0.2          | 1.0            |
| Azimuth (deg)                                 |                          |        | Full Circle |                                                                        |               |                                    |     | Option       | Full<br>Circle |
| Bin Spacing<br>(m)                            |                          |        | 150         |                                                                        |               |                                    |     |              |                |
| Max. Range<br>(km)                            | 300                      | 1:     | 50          | 100                                                                    |               | 60                                 |     | 100          | 60             |
| Elevation<br>Angle(s) (deg.)                  | 0.5                      | 0.5    |             | 1.0, 1.8,<br>2.6, 3.4,<br>4.2, 5.1,<br>6.2, 7.6,<br>9.7, 12.2,<br>15.2 |               | 18.7, 23.0,<br>27.9, 33.5,<br>40.0 |     | 0.0~<br>60.0 | 90             |

Table 5.3-1 Parameters for scans in mode 1

|                             |        | Volume Scan |             |           |             |        | RHI Scan |
|-----------------------------|--------|-------------|-------------|-----------|-------------|--------|----------|
| Repeated Cycle (min.)       | 6      |             |             |           |             |        |          |
| Times in One Cycle          |        |             |             | 1         |             |        | 15       |
| Pulse Width                 | 64 / 1 |             | 27          | 22/1 22/1 |             | / 1    | 22 / 1   |
| (long / short, in microsec) |        |             | 32 / 1      |           | 32 / 1      |        | 32 / 1   |
| Scan Speed (deg/sec)        | 1      | 18          | ,           | 24        | 36          |        | 9        |
| PRF(s)                      |        | dual        | PRF (r      | ay alterr | native)     |        |          |
| (Hz)                        | 667    | 833         | 938         | 1250      | 1333        | 2000   | 1250     |
| Pulses / Ray                | 26     | 33          | 27          | 34        | 37          | 55     | 32       |
| Ray Spacing (deg.)          | 0      | ).7         | (           | ).7       | 1.0         |        | 0.2      |
| Azimuth (deg)               |        |             | Full Circle |           |             | Option |          |
| Bin Spacing (m)             |        |             |             | 1         | 50          |        |          |
| Max. Range (km)             | 1      | 50          | 1           | 00        | 60          |        | 100      |
| Elevation Angle(s) (deg.)   | 0      | .5          | 1.8,        | 3.4,      | 18.7, 27.9, |        | 0.0~     |
|                             |        |             | 5.1,        | 7.6,      | 40.0        |        | 60.0     |
|                             |        |             | 12.2        | ,         | or          |        |          |
|                             |        |             | or          |           | 23.0, 2     | 33.5   |          |
|                             |        |             | 1.0,        | 2.6,      |             |        |          |
|                             |        |             | 4.2,        | 6.2,      |             |        |          |
|                             |        |             | 9.7,        | 15.2      |             |        |          |

Table 5.3-2 Parameters for scans in mode 2

|                                            | Surveillance<br>PPI Scan Volume Scan |        |     | Vertical<br>Point<br>Scan |           |          |       |        |
|--------------------------------------------|--------------------------------------|--------|-----|---------------------------|-----------|----------|-------|--------|
| Repeated Cycle (min.)                      | 30                                   |        |     |                           | (         | 5        |       |        |
| Times in One Cycle                         | 1                                    |        |     |                           | 1         |          |       | 15     |
| Pulse Width<br>(long / short, in microsec) | 200 / 2                              | 64 / 1 |     | 32 / 1 3                  |           | 32       | 2 / 1 | 32 / 1 |
| Scan Speed (deg/sec)                       | 36                                   | 1      | 8   | 2                         | 24        |          | 36    | 36     |
| PRF(s)                                     |                                      | dual   |     | l PRF (                   | (ray alte | rnative) |       |        |
| (Hz)                                       | 400                                  | 667    | 833 | 938                       | 1250      | 1333     | 2000  | 2000   |
| Pulses / Ray                               | 8                                    | 26     | 33  | 27                        | 34        | 37       | 55    | 64     |
| Ray Spacing (deg.)                         | 0.7                                  | 0      | .7  | C                         | ).7       | 1        | .0    | 1.0    |
| Azimuth (deg)                              |                                      |        |     | Full C                    | Circle    |          |       |        |
| Bin Spacing (m)                            |                                      |        |     | 15                        | 50        |          |       |        |
| Max. Range (km)                            | 300                                  | 15     | 50  | 1                         | 00        | (        | 50    | 60     |
| Elevation Angle(s) (deg.)                  | 0.5                                  | 0      | .5  | 1.8,                      | 3.4,      | 18.7,    | 27.9, | 90.0   |
|                                            |                                      |        |     | 5.1,                      | 7.6,      | 40.0     |       |        |
|                                            |                                      |        |     | 12.2                      | 2,        | or       |       |        |
|                                            |                                      |        |     | or                        |           | 23.0,    | 33.5  |        |
|                                            |                                      |        |     |                           | 2.6,      |          |       |        |
|                                            |                                      |        |     | 4.2,                      |           |          |       |        |
|                                            |                                      |        |     | 9.7,                      | 15.2      |          |       |        |

Table 5.3-3 Parameters for scans in mode 3

 Table 5.3-2 Parameters for scans in mode 4

\_\_\_\_\_

|                                            | Volume Scan                |     |               | Vertical Point<br>Scan |        |
|--------------------------------------------|----------------------------|-----|---------------|------------------------|--------|
| Repeated Cycle (min.)                      | 6                          |     |               |                        |        |
| Times in One Cycle                         | 1 24                       |     |               |                        | 24     |
| Pulse Width<br>(long / short, in microsec) | 64 / 1                     |     | 32 / 1        |                        | 32 / 1 |
| Scan Speed (deg/sec)                       | 18                         |     | 24            |                        | 36     |
| PRF(s)                                     | dual PRF (ray alternative) |     |               |                        |        |
| (Hz)                                       | 667                        | 833 | 938           | 1250                   | 2000   |
| Pulses / Ray                               | 26                         | 33  | 27            | 34                     | 64     |
| Ray Spacing (deg.)                         | 0.7                        |     | 0.7           |                        | 1.0    |
| Azimuth (deg)                              | Full Circle                |     |               |                        |        |
| Bin Spacing (m)                            | 150                        |     |               |                        |        |
| Max. Range (km)                            | 150                        |     | 100           |                        | 60     |
| Elevation Angle(s) (deg.)                  | 0.                         | .5  | 1.8, 3.4, 5.1 |                        | 90.0   |

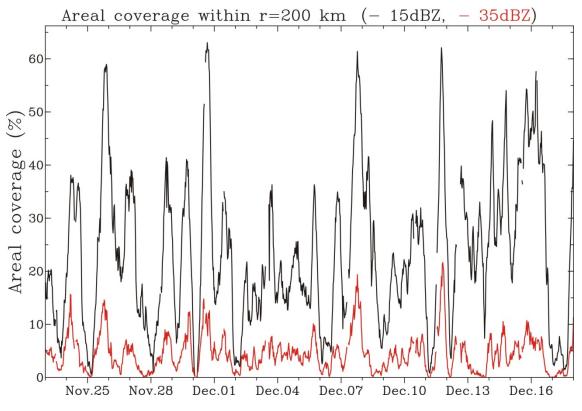



Figure 5.3-1. Time series of the areal coverage of echoes within a radius of 200 km from the radar.

# 5.4 Ka-band Radar

#### (1) Personnel

| Masaki Katsumata  | (JAMSTEC)             |
|-------------------|-----------------------|
| Yuki Kaneko       | (JAXA)                |
| Kazuhide Yamamoto | (JAXA) (not on board) |

### (2) Objective

The objective of Ka-band radar observation is to investigate the vertical structure and evolution of precipitating systems in high spatial resolution.

### (3) Instrumentation and Methods

Basic specifications of the used radar are as follows:

| 35.25 GHz (Ka-band)                     |
|-----------------------------------------|
| FMCW                                    |
| -20 dBZ at 10 km                        |
| n12.5 m                                 |
| 10 sec                                  |
| ±10.6 m/s                               |
| From 500 m to 30 km                     |
| (Depends on the observation mode)       |
| 0.6 deg                                 |
| < 25 dBZ                                |
| Radar reflectivity and Doppler spectrum |
|                                         |

Elevation angle was fixed at vertical through whole cruise. Beam angle should be corrected by rolling/pitching information of R/V Mirai.

#### (4) Preliminary Results

The Ka-band radar observations were conducted from November 5 to December 20 2015, except for November 25 and 26, because of the malfunction. While the continuous observation, it was stopped a few hours per week when the echo is clear due to the maintenances. Figure 5.4-1 and Fig.5.4-3 shows a time series of the radar reflectivity. Figure 5.4-2 shows a time series of the Doppler velocity. Those figures show the typical evolution of precipitation systems with high spatial resolution and high time resolution. Addition to the precipitation observation, Ka-radar can detect ice cloud. Detailed analyses of the data observed by the Ka radar will be performed after the cruise.

#### (5) Data Archive

All data obtained during this cruise will be submitted to the JAMSTEC Data Management Group (DMG).

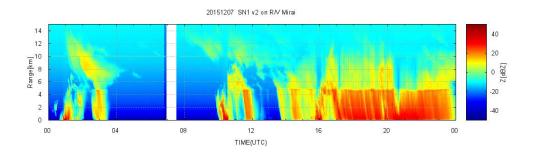



Figure 5.4-1. Time series of the radar reflectivity (dBZ) on December 7.

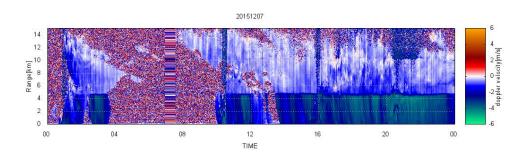



Figure 5.4-2: Time series of the Doppler velocity (m/s, positive means upward)on December 7.

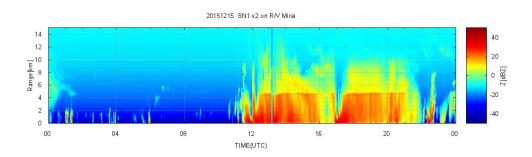



Figure 5.4-3: Time series of the radar reflectivity (dBZ) on December 15.

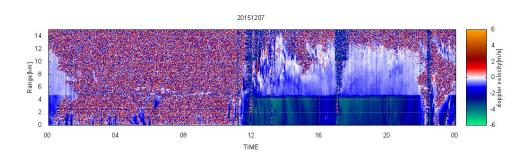



Figure 5.4-4: Time series of the Doppler velocity (m/s, positive means upward) on December 15.

# 5.5 Micro Rain Radar

- (1) Personnel
   Masaki KATSUMATA (JAMSTEC) Principal Investigator
   Yuki KANEKO (JAXA)
- (2) Objectives

The micro rain radar (MRR) is a compact vertically-pointing Doppler radar, to detect vertical profiles of rain drop size distribution. The objective of this observation is to understand detailed vertical structure of the precipitating systems.

### (3) Instruments and Methods

The MRR-2 (METEK GmbH) was utilized. The specifications are in Table 5.5-1. The antenna unit was installed at the starboard side of the anti-rolling systems (see Fig. 5.5-1), and wired to the junction box and laptop PC inside the vessel.

The data was averaged and stored every one minute. The vertical profile of each parameter was obtained every 200 meters in range distance (i.e. height) up to 6200 meters, i.e. well beyond the melting layer. The recorded parameters were; Drop size distribution, radar reflectivity, path-integrated attenuation, rain rate, liquid water content and fall velocity.



Fig. 5.5-1: Photo of the antenna unit of MRR

| Transmitter power | 50 mW |
|-------------------|-------|
| Operating mode    | FM-CW |

Table 5.5-1: Specifications of the MRR-2.

| Operating mode    | FM-CW                      |
|-------------------|----------------------------|
| Frequency         | 24.230 GHz                 |
|                   | (modulation 1.5 to 15 MHz) |
| 3dB beam width    | 1.5 degrees                |
| Spurious emission | < -80 dBm / MHz            |
| Antenna Diameter  | 600 mm                     |
| Gain              | 40.1 dBi                   |

### (4) Preliminary Results

Figure 5.5-2 displays an example of the time-height cross section for one day. The temporal variation reasonably corresponds to the rainrall measured by the Mirai Surface Met sensors (see Section 5.8), disdrometers (see Section 5.4), etc. The further analyses will be after the cruise.

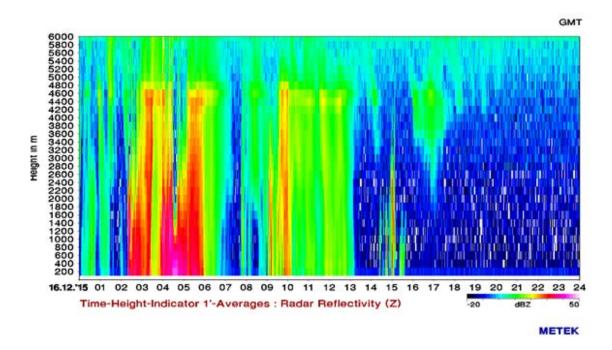



Fig. 5.5-2: An example of the time-height cross section of the radar reflectivity, from 00UTC on Dec. 16 to 00UTC on Dec.17 (24 hours).

(5) Data Archive

All data obtained during this cruise will be submitted to the JAMSTEC Data Management Group (DMG).

(6) Acknowledgment

The operations are supported by Japan Aerospace Exploration Agency (JAXA) Precipitation Measurement Mission (PMM).

#### 5.6 Disdrometers

(1) Personnel

Masaki KATSUMATA (JAMSTEC) - Principal Investigator Yuki KANEKO (JAXA)

#### (2) Objectives

The disdrometer can continuously obtain size distribution of raindrops. The objective of this observation is (a) to reveal microphysical characteristics of the rainfall, depends on the type, temporal stage, etc. of the precipitating clouds, (b) to retrieve the coefficient to convert radar reflectivity (especially from Doppler radar in Section 5.3) to the rainfall amount, and (c) to validate the algorithms and the product of the satellite-borne precipitation radars; TRMM/PR and GPM/DPR.

### (3) Methods

Three different types of disdrometers are utilized to obtain better reasonable and accurate value on the moving vessel. All three, and one optical rain gauge, are installed in one place, the starboard side on the roof of the anti-rolling system of R/V Mirai, as in Fig. 5.6-1. The details of the sensors are described below. All the sensors archive data every one minute, except Parsivel for every 10 seconds.



Fig. 5.6-1: The disdrometers, installed on the roof of the anti-rolling tank.

#### (3-1) Joss-Waldvogel type disdrometer

The "Joss-Waldvogel-type" disdrometer system (RD-80, Disdromet Inc.) (hereafter JW) equipped a microphone on the top of the sensor unit. When a raindrop hit the microphone, the magnitude of induced sound is converted to the size of raindrops. The logging program "DISDRODATA" determines the size as one of the 20 categories as in Table 5.6-1, and accumulates the number of raindrops at each category. The rainfall amount could be also retrieved

from the obtained drop size distribution. The number of raindrops in each category, and converted rainfall amount, are recorded every one minute.

### (3-2) Laser Precipitation Monitor (LPM) optical disdrometer

The "Laser Precipitation Monitor (LPM)" (Adolf Thies GmbH & Co) is an optical disdrometer. The instrument consists of the transmitter unit which emit the infrared laser, and the receiver unit which detects the intensity of the laser come thru the certain path length in the air. When a precipitating particle fall thru the laser, the received intensity of the laser is reduced. The receiver unit detect the magnitude and the duration of the reduction and then convert them onto particle size and fall speed. The sampling volume, i.e. the size of the laser beam "sheet", is 20 mm (W) x 228 mm (D) x 0.75 mm (H).

The number of particles are categorized by the detected size and fall speed and counted every minutes. The categories are shown in Table 5.6-2.

### (3-3) "Parsivel" optical disdrometer

The "Parsivel" (Adolf Thies GmbH & Co) is another optical disdrometer. The principle is same as the LPM. The sampling volume, i.e. the size of the laser beam "sheet", is 30 mm (W) x 180 mm (D). The categories are shown in Table 5.6-3.

### (3-4) Optical rain gauge

The optical rain gauge, which detect scintillation of the laser by falling raindrops, is installed beside the above three disdrometers to measure the exact rainfall. The ORG-815DR (Optical Scientific Inc.) is utilized with the controlling and recording software (manufactured by Sankosha Co.).

## (4) Preliminary Results

An example of the obtained data is shown in Fig. 5.6-1. The further analyses for the rainfall amount, drop-size-distribution parameters, etc., will be carried out after the cruise.

## (5) Data Archive

All data obtained during this cruise will be submitted to the JAMSTEC Data Management Group (DMG).

## (6) Acknowledgment

The optical rain gauge is kindly provided by National Institute for Information and Communication Technology (NICT). The operations are supported by Japan Aerospace Exploration Agency (JAXA) Precipitation Measurement Mission (PMM).

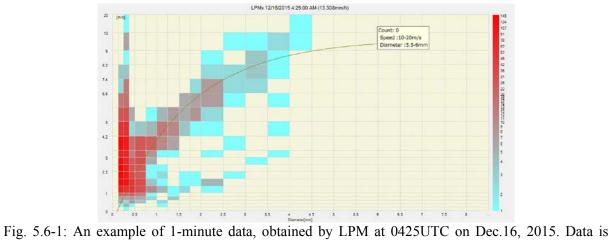



Fig. 5.6-1: An example of 1-minute data, obtained by LPM at 0425UTC on Dec.16, 2015. Data is shown by two-dimensional histogram to display numbers of observed raindrops categorized by diameter and fall speed.

| Category | Corresponding | size range | [mm]  |
|----------|---------------|------------|-------|
| 1        | 0.313         | -          | 0.405 |
| 2        | 0.405         | -          | 0.505 |
| 3        | 0.505         | -          | 0.696 |
| 4        | 0.696         | -          | 0.715 |
| 5        | 0.715         | -          | 0.827 |
| 6        | 0.827         | -          | 0.999 |
| 7        | 0.999         | -          | 1.232 |
| 8        | 1.232         | -          | 1.429 |
| 9        | 1.429         | -          | 1.582 |
| 10       | 1.582         | -          | 1.748 |
| 11       | 1.748         | -          | 2.077 |
| 12       | 2.077         | -          | 2.441 |
| 13       | 2.441         | -          | 2.727 |
| 14       | 2.727         | -          | 3.011 |
| 15       | 3.011         | -          | 3.385 |
| 16       | 3.385         | -          | 3.704 |
| 17       | 3.704         | -          | 4.127 |
| 18       | 4.127         | -          | 4.573 |
| 19       | 4.573         | -          | 5.145 |
| 20       | 5.145         | or larger  |       |

Table 5.6-1: Category number and corresponding size of the raindrop for JW disdrometer.

|       | Table 5.6-2: | Categories of | the size a | nd the fa | ll speed for I | LPM. |
|-------|--------------|---------------|------------|-----------|----------------|------|
|       | Particle S   | lize          |            |           | Fall Spe       | ed   |
| Class | Diameter     | Class width   |            | Class     | Speed          | Clas |
|       | [mm]         | [mm]          |            |           | [m/s]          | [m/s |
| 1     | $\geq$ 0.125 | 0.125         |            | 1         | $\geq$ 0.000   |      |
| 2     | $\geq$ 0.250 | 0.125         |            | 2         | $\geq$ 0.200   |      |
| 3     | $\geq$ 0.375 | 0.125         |            | 3         | $\geq$ 0.400   |      |
| 4     | $\geq$ 0.500 | 0.250         |            | 4         | $\geq$ 0.600   |      |
| 5     | $\geq$ 0.750 | 0.250         |            | 5         | $\geq$ 0.800   |      |
| 6     | $\geq 1.000$ | 0.250         |            | 6         | $\geq 1.000$   |      |
| 7     | ≥ 1.250      | 0.250         |            | 7         | $\geq$ 1.400   |      |
| 8     | $\geq$ 1.500 | 0.250         |            | 8         | $\geq 1.800$   |      |
| 9     | $\geq$ 1.750 | 0.250         |            | 9         | $\geq$ 2.200   |      |
| 10    | $\geq$ 2.000 | 0.500         |            | 10        | $\geq$ 2.600   |      |
| 11    | $\geq$ 2.500 | 0.500         |            | 11        | $\geq$ 3.000   |      |
| 12    | $\geq$ 3.000 | 0.500         |            | 12        | $\geq$ 3.400   |      |
| 13    | $\geq$ 3.500 | 0.500         |            | 13        | $\geq$ 4.200   |      |
| 14    | $\geq$ 4.000 | 0.500         |            | 14        | $\geq$ 5.000   |      |
| 15    | $\geq$ 4.500 | 0.500         |            | 15        | $\geq$ 5.800   |      |
| 16    | $\geq$ 5.000 | 0.500         |            | 16        | $\geq$ 6.600   |      |
| 17    | $\geq$ 5.500 | 0.500         |            | 17        | $\geq$ 7.400   |      |
| 18    | $\geq$ 6.000 | 0.500         |            | 18        | $\geq$ 8.200   |      |
| 19    | $\geq$ 6.500 | 0.500         |            | 19        | $\geq$ 9.000   |      |
| 20    | $\geq 7.000$ | 0.500         |            | 20        | $\geq 10.000$  |      |
| 21    | $\geq 7.500$ | 0.500         |            |           |                |      |
| 22    | $\geq$ 8.000 | unlimited     | ]          |           |                |      |

Fall Speed Class Speed Class width [m/s][m/s] 1  $\geq 0.000$ 0.200 2 0.200  $\geq$  0.200 3  $\geq$  0.400 0.200 4 0.200  $\geq 0.600$ 5  $\geq 0.800$ 0.200  $\geq 1.000$ 6 0.400 7 0.400  $\geq 1.400$ 8 0.400  $\geq 1.800$ 9 0.400  $\geq$  2.200  $\geq 2.600$ 10 0.400 11  $\geq$  3.000 0.800 12 0.800  $\geq$  3.400 13  $\geq$  4.200 0.800 14  $\geq$  5.000 0.800 15  $\geq 5.800$ 0.800 16  $\geq 6.600$ 0.800 17  $\geq 7.400$ 0.800 18 0.800  $\geq$  8.200 19  $\geq 9.000$ 1.00020  $\geq 10.000$ 10.000

|               |          | entegenies er u |  |  |  |
|---------------|----------|-----------------|--|--|--|
| Particle Size |          |                 |  |  |  |
| Class         | Average  | Class           |  |  |  |
|               | Diameter | spread          |  |  |  |
|               | [mm]     | [mm]            |  |  |  |
| 1             | 0.062    | 0.125           |  |  |  |
| 2             | 0.187    | 0.125           |  |  |  |
| 3             | 0.312    | 0.125           |  |  |  |
| 4             | 0.437    | 0.125           |  |  |  |
| 5             | 0.562    | 0.125           |  |  |  |
| 6             | 0.687    | 0.125           |  |  |  |
| 7             | 0.812    | 0.125           |  |  |  |
| 8             | 0.937    | 0.125           |  |  |  |
| 9             | 1.062    | 0.125           |  |  |  |
| 10            | 1.187    | 0.125           |  |  |  |
| 11            | 1.375    | 0.250           |  |  |  |
| 12            | 1.625    | 0.250           |  |  |  |
| 13            | 1.875    | 0.250           |  |  |  |
| 14            | 2.125    | 0.250           |  |  |  |
| 15            | 2.375    | 0.250           |  |  |  |
| 16            | 2.750    | 0.500           |  |  |  |
| 17            | 3.250    | 0.500           |  |  |  |
| 18            | 3.750    | 0.500           |  |  |  |
| 19            | 4.250    | 0.500           |  |  |  |
| 20            | 4.750    | 0.500           |  |  |  |
| 21            | 5.500    | 1.000           |  |  |  |
| 22            | 6.500    | 1.000           |  |  |  |
| 23            | 7.500    | 1.000           |  |  |  |
| 24            | 8.500    | 1.000           |  |  |  |
| 25            | 9.500    | 1.000           |  |  |  |
| 26            | 11.000   | 2.000           |  |  |  |
| 27            | 13.000   | 2.000           |  |  |  |
| 28            | 15.000   | 2.000           |  |  |  |
| 29            | 17.000   | 2.000           |  |  |  |
| 30            | 19.000   | 2.000           |  |  |  |
| 31            | 21.500   | 3.000           |  |  |  |
| 32            | 24.500   | 3.000           |  |  |  |
|               |          |                 |  |  |  |

Table 5.6-3: Categories of the size and the fall speed for Parsivel.

| Class         Average         Class           Speed         Spread           [m/s]         [m/s]           1         0.050         0.1           2         0.150         0.1           3         0.250         0.1           4         0.350         0.1           5         0.450         0.1           7         0.650         0.1           8         0.750         0.1 | 00<br>00<br>00<br>00 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                   | 00<br>00<br>00<br>00 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                      | 00<br>00<br>00<br>00 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                      | 00<br>00<br>00<br>00 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                      | 00<br>00<br>00       |
| 4         0.350         0.1           5         0.450         0.1           6         0.550         0.1           7         0.650         0.1           8         0.750         0.1                                                                                                                                                                                        | 00<br>00             |
| 5         0.450         0.1           6         0.550         0.1           7         0.650         0.1           8         0.750         0.1                                                                                                                                                                                                                              | 00                   |
| 6         0.550         0.1           7         0.650         0.1           8         0.750         0.1                                                                                                                                                                                                                                                                    |                      |
| 7         0.650         0.1           8         0.750         0.1                                                                                                                                                                                                                                                                                                          | 00                   |
| 8 0.750 0.1                                                                                                                                                                                                                                                                                                                                                                | 00                   |
|                                                                                                                                                                                                                                                                                                                                                                            | 00                   |
| 0 0.050 0.1                                                                                                                                                                                                                                                                                                                                                                | 00                   |
| 9 0.850 0.1                                                                                                                                                                                                                                                                                                                                                                | 00                   |
| 10 0.950 0.1                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 11 1.100 0.2                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 12 1.300 0.2                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 13 1.500 0.2                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 14 1.700 0.2                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 15 1.900 0.2                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 16 2.200 0.4                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 17 2.600 0.4                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 18 3.000 0.4                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 19 3.400 0.4                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 20 3.800 0.4                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 21 4.400 0.8                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 22 5.200 0.8                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 23 6.000 0.8                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 24 6.800 0.8                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 25 7.600 0.8                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 26 8.800 1.6                                                                                                                                                                                                                                                                                                                                                               | 00                   |
| 27 10.400 1.6                                                                                                                                                                                                                                                                                                                                                              | 00                   |
| 28 12.000 1.6                                                                                                                                                                                                                                                                                                                                                              | 00                   |
| 29 13.600 1.6                                                                                                                                                                                                                                                                                                                                                              | 00                   |
| 30 15.200 1.6                                                                                                                                                                                                                                                                                                                                                              | 00                   |
| 31 17.600 3.2                                                                                                                                                                                                                                                                                                                                                              | 00                   |
| 32 20.800 3.2                                                                                                                                                                                                                                                                                                                                                              | 00                   |

# 5.7 Videosonde

#### (1) Personnel

| / |                    |                   |                          |
|---|--------------------|-------------------|--------------------------|
|   | Masaki KATSUMATA   | (JAMSTEC)         | - Principal Investigator |
|   | Biao GENG          | (JAMSTEC)         |                          |
|   | Kyoko TANIGUCHI    | (JAMSTEC)         |                          |
|   | Qoosaku MOTEKI     | (JAMSTEC)         |                          |
|   | Tamaki SUEMATSU    | (JAMSTEC)         |                          |
|   | Shuhei MATSUGISHI  | (Univ. Tokyo)     |                          |
|   | Atsushi YANASE     | (Nagoya Univ.)    |                          |
|   | Kunio YONEYAMA     | (JAMSTEC)         | (not on board)           |
|   | Kenji SUZUKI       | (Yamaguchi Univ.) | (not on board)           |
|   | Kazuho YOSHIDA     | (GODI)            |                          |
|   | Souichiro SUEYOSHI | (GODI)            |                          |
|   | Shinya OKUMURA     | (GODI)            |                          |
|   | Miki MORIOKA       | (GODI)            |                          |
|   | Ryo KIMURA         | (MIRAI Crew)      |                          |
|   |                    |                   |                          |

#### (2) Objective

The objective of videosonde observations is to investigate microphysical processes of cloud and precipitation systems developed around the Maritime Continent.

#### (3) Method

Videosonde is a balloon-borne sounding system which takes images of precipitation particles. The videosonde system consists of a CCD camera, a video amplifier, an infrared sensor, a transmitter, and a control circuit. It also has a stroboscopic illumination, which illustrates the size and shape of precipitation particles. Images of precipitation particles are transmitted by the 1680 MHz carrier wave to a receiving system on board the R/V Mirai. The receiving system displays and records the images of precipitation particles. Each videosonde is launched together with a Meisei RS-06G radiosonde.

#### (4) Obtained Data

Five videosondes were launched on board the R/V Mirai during the cruise (Table 5.7-1). Examples of the obtained images of precipitation particles are shown in Figure 5.7-1. Different distributions of precipitation particles were found. The temporal and spatial distribution of precipitation particles will be analyzed in the future.

#### (5) Data Archive

All data obtained during this cruise will be submitted to the JAMSTEC Data Management Group (DMG).

| Videosonde # | Date          | Time (UTC)    | Remarks of precipitation system       |
|--------------|---------------|---------------|---------------------------------------|
|              |               |               | Linear convective system              |
| 1            | Nov. 28, 2015 | 1748          | Nearby lighting and thunder           |
|              |               |               | Echo top around 12 km                 |
|              |               |               | Linear convective system              |
| 2            | Dec. 03, 2015 |               | Nearby lighting and thunder           |
|              |               |               | Echo top around 12 km                 |
| 3            | Dec. 07. 2015 | 0118          | Cumulonimbus (w/ waterspout)          |
| 5            | Dec. 07, 2015 |               | Echo top around 13 km                 |
| 4            | Dec. 14, 2015 | 14, 2015 1413 | Stratiform precipitation              |
| 4            | Dec. 14, 2015 |               | Echo top around 10 km                 |
| 5            | Dec. 15, 2015 | 1217          | Large stratiform precipitating system |
| 5            | Dec. 15, 2015 |               | Echo top around 12 km                 |

Table 5.7-1. List of videosondes launched during the cruise

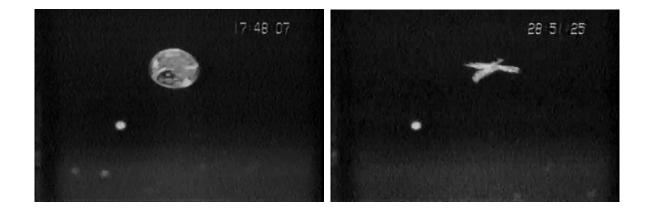



Figure 5.7-1: Example of the images of precipitation particles obtained by the Videosonde, obtained by 5th launch: (left) liquid precipitation, and (right) solid precipitation, respectively. The width of each image corresponds 22 mm.

#### 5.8 Lidar

(1) Personal

| Masaki KATSUMATA  | (JAMSTEC) | - Principal Investigator |
|-------------------|-----------|--------------------------|
| Kyoko TANIGUCHI   | (JAMSTEC) |                          |
| Ichiro MATSUI     | (NIES)    |                          |
| Tomoaki NISHIZAWA | (NIES)    | (not on board)           |
| Atsushi SHIMIZU   | (NIES)    | (not on board)           |

#### (2) Objective

To capture distributions of cloud, aerosol and water vapor in high temporal and special resolutions.

#### (3) Instrumentation and Methods

During the cruise, additional observation channels were equipped on the lidar observation system on R/V Mirai. The upgraded lidar system now transmits laser in three wavelengths, 1064 nm, 532 nm and 355 nm at 10 Hz. Available observations are Mie channels at 1064 nm, 532 nm, 355 nm, depolarization at 532 nm and 355 nm, Raman water vapor (Raman shift: 3652 cm<sup>-1</sup>) at 660 nm for 532 nm light source, and Raman nitrogen (Raman shift: 3652 cm<sup>-1</sup>) at 607 nm and 387 nm for 532 nm and 355 nm light source, respectively. Additionally, near distance 532 nm signals are also observed separately to expand a cover range of the system.

Raman channels have 7.5 m vertical resolution and 1min temporal resolution. The observation in these channels is available only in the nighttime. The rest of the channels have 6 m vertical resolution and 10 s temporal resolution. At 23:56-00:00 UTC each day, the system was paused for calibration.

#### (4) Preliminary Results

The observation was carried out from Nov.12, 2015 to Dec.19, 2015 (in UTC).

Fig 5.8-1 shows preliminary results of 355 nm, 532 nm and 1064 nm data obtained between 12:00 and 16:00 UTC on 22 November 2015. On each wavelength, a layer of high aerosol known as boundary layer is captured below altitude of 1km layer around noon, then clouds appears on top of the layer. Also, dark bands at 5km altitude around before 13:00 to 14:00 suggest a layer height of the 0 degree C.

Fig 5.8-2 is a preliminary result of Raman channels of 607 nm and 660 nm on the same day. The ratio of 660 nm and 607 nm is a proportional to the water vapor mixing ratio. The nitrogen channel expands the ability of water vapor observation by normalizing the effects of signal reduction due to the observation window conditions, especially after rains.

The all data will be reviewed and quality-controlled after the cruise.

# (5) Data Archive

All data obtained during this cruise will be submitted to the JAMSTEC Data Management Group (DMG).

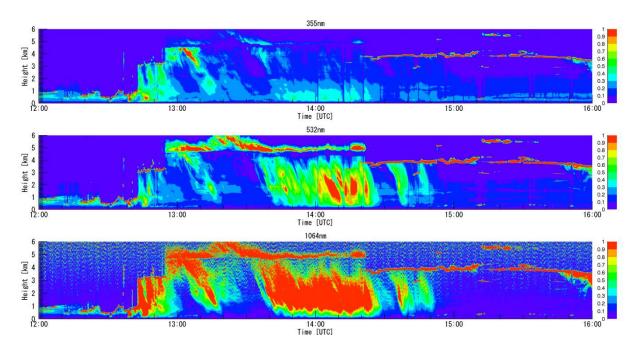



Fig 5.8-1: Preliminary results of 355nm, 532nm and 1064nm data obtained between 12:00 and 16:00 UTC on 22 November 2015.

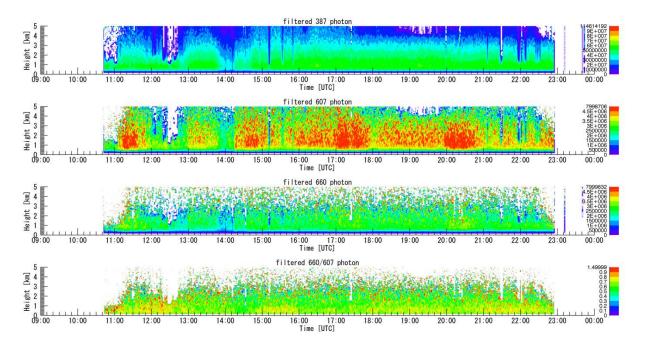



Fig 5.8-2: Preliminary results of 387nm, 607nm, 660nm, and ratio of 660nm and 607nm data obtained nighttime on 22 November 2015.

# 5.9 Ceilometer

#### (1) Personnel

| Masaki KATSUMATA   | (JAMSTEC) - Principal Investigator    |
|--------------------|---------------------------------------|
| Kazuho YOSHIDA     | (Global Ocean Development Inc., GODI) |
| Souichiro SUEYOSHI | (GODI)                                |
| Shinya OKUMURA     | (GODI)                                |
| Miki MORIOKA       | (GODI)                                |
| Ryo KIMURA         | (MIRAI Crew)                          |

#### (2) Objectives

The information of cloud base height and the liquid water amount around cloud base is important to understand the process on formation of the cloud. As one of the methods to measure them, the ceilometer observation was carried out.

#### (3) Instruments and Methods

We measured cloud base height and backscatter profile using ceilometer (CL51, VAISALA, Finland) throughout the MR15-04 cruise.

Major parameters for the measurement configuration are as follows;

Laser source: Indium Gallium Arsenide (InGaAs) Diode Laser

Transmitting center wavelength: 910±10 nm at 25 degC

| Transmitting average power: | 19.5 mW                                                |
|-----------------------------|--------------------------------------------------------|
| Repetition rate:            | 6.5 kHz                                                |
| Detector:                   | Silicon avalanche photodiode (APD)                     |
| Measurement range:          | $0 \sim 15 \text{ km}$                                 |
|                             | $0 \sim 13$ km (Cloud detection)                       |
| Resolution:                 | 10 meter in full range                                 |
| Sampling rate:              | 36 sec                                                 |
| Sky Condition               | 0, 1, 3, 5, 7, 8 oktas (9: Vertical Visibility)        |
| (0: Sky                     | V Clear, 1:Few, 3:Scattered, 5-7: Broken, 8: Overcast) |

On the archive dataset, cloud base height and backscatter profile are recorded with the resolution of 10 m (33 ft).

Obtained Parameters are as follows:

- 1. Cloud base height [m].
- 2. Backscatter profile, sensitivity and range normalized at 10 m resolution.
- 3. Estimated cloud amount [oktas] and height [m]; Sky Condition Algorithm.

### (4) Preliminary results

Fig.5.9-1 shows the time series plot of the lowest, second and third cloud base height during the cruise.

### (5) Data archive

Ceilometer data obtained in this cruise will be submitted to the Data Management Group of JAMSTEC, and will be opened to the public via "Data Research System for Whole Cruise Information in JAMSTEC (DARWIN)" in JAMSTEC web site. <<u>http://www.godac.jamstec.go.jp/darwin/e</u>>

# (6) Remarks

- The following period, data acquisition was suspended in Philippine EEZ.
   16:32UTC 13 Nov. 2015 02:48UTC 15 Nov. 2015
- 2) Window Cleaning

00:05UTC 05 Nov. 2015 04:18UTC 11 Nov. 2015 05:04UTC 19 Nov. 2015 03:47UTC 03 Dec. 2015 06:37UTC 10 Dec. 2015 00:21UTC 19 Dec. 2015

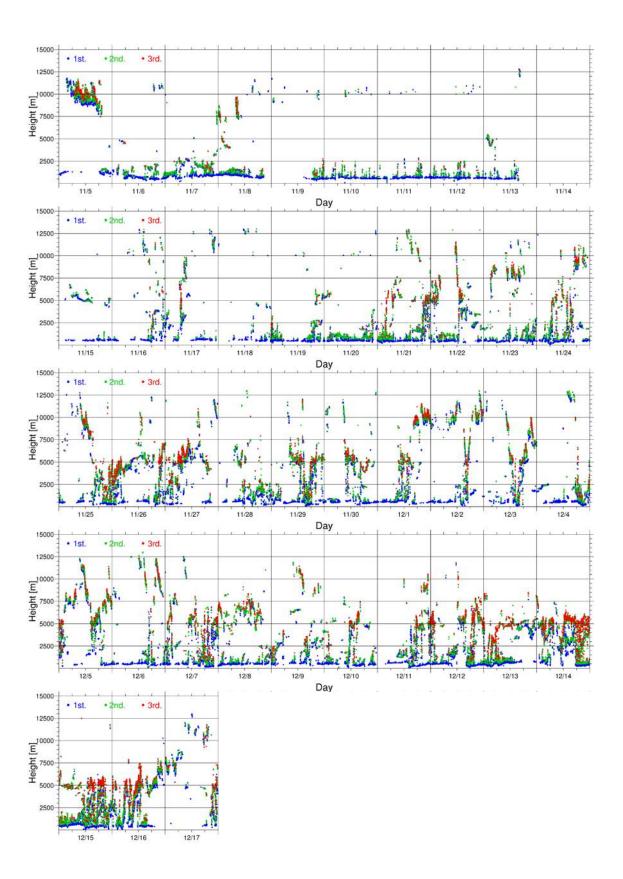



Fig. 5.9-1: First (Blue), 2nd (Green) and 3rd (Red) lowest cloud base height during the cruise.

# 5.10. Aerosol optical characteristics measured by Ship-borne Sky radiometer

# (1) Personnel

Kazuma Aoki (University of Toyama) - Principal Investigator (not on board)Tadahiro Hayasaka (Tohoku University) - Co-Investigator (not onboard)(Sky radiometer operation was supported by Global Ocean Development Inc.)

# (2) Objectives

Objective of this observation is to study distribution and optical characteristics of marine aerosols by using a ship-borne sky radiometer (POM-01 MKII: PREDE Co. Ltd., Japan). Furthermore, collections of the data for calibration and validation to the remote sensing data were performed simultaneously.

## (3) Methods and Instruments

The sky radiometer measures the direct solar irradiance and the solar aureole radiance distribution with seven interference filters (0.34, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02  $\mu$ m). Analysis of these data was performed by SKYRAD.pack version 4.2 developed by Nakajima *et al.* 1996.

# @ Measured parameters

- Aerosol optical thickness at five wavelengths (400, 500, 675, 870 and 1020 nm)
- Ångström exponent
- Single scattering albedo at five wavelengths
- Size distribution of volume  $(0.01 \ \mu m 20 \ \mu m)$

# GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. Horizon sensor provides rolling and pitching angles.

## (4) Preliminary results

Only data collection were performed onboard. At the time of writing, the data obtained in this cruise are under post-cruise processing at University of Toyama.

## (5) Data archives

Aerosol optical data are to be archived at University of Toyama (K.Aoki, SKYNET/SKY: http://skyrad.sci.u-toyama.ac.jp/) after the quality check and will be submitted to JAMSTEC.

# 5.11 Aerosol and gas observations

### (1) Personnel

Yugo KANAYA (JAMSTEC DEGCR, not on board) Fumikazu TAKETANI (JAMSTEC DEGCR, not on board) Takuma MIYAKAWA (JAMSTEC DEGCR, not on board) Hisahiro TAKASHIMA (JAMSTEC DEGCR, not on board) Yuichi KOMAZAKI (JAMSTEC DEGCR, not on board) Hitoshi MATSUI (JAMSTEC DEGCR, not on board) Kazuhiko MATSUMOTO (JAMSTEC DEGCR, not on board) Operation was supported by Global Ocean Development Inc.

### (2) Objectives

Objectives of the observations are to investigate roles of atmospheric aerosols and gases, including black carbon and ozone, in the marine atmosphere in relation to climate change, and to investigate processes of biogeochemical cycles between the atmosphere and the ocean.

### (3) Methods and Instruments

The observed parameters are

- Black carbon (BC) and fluorescent particles
- Aerosol optical depth (AOD) and aerosol extinction coefficient (AEC)
- Surface ozone (O<sub>3</sub>), and carbon monoxide (CO) mixing ratios

Aerosol particles were also collected on filters for offline chemical analysis (e.g., water-soluble ions, metal elements etc.).

Online observations black carbon (BC) and fluorescent particles were made by the instruments based on laser-induced incandescence (SP2, Droplet Measurement Technologies) and on flash-lamp-induced fluorescence (WIBS-4A, Droplet Measurement Technologies). Ambient air was continuously sampled from the flying bridge and drawn through a ~3-m-long conductive tube and introduced to the instruments after dried. In WIBS-4A, two pulsed xenon lamps emitting UV light (280 nm and 370 nm) were used for excitation and fluorescence emitted from a single particle within 310–400 nm and 420–650 nm wavelength windows was recorded.

Ambient aerosol particles were collected along cruise track using a high-volume air sampler (HV-525PM, SIBATA) located on the flying bridge operated at a flow rate of 500 L min<sup>-1</sup>. To avoid collecting particles emitted from the funnel of the own vessel, the sampling period was controlled automatically by using a "wind-direction selection system". Coarse and fine particles separated at the diameter of 2.5  $\mu$ m were collected. The filter samples obtained during the cruise are subject to chemical analysis of aerosol composition, including water-soluble ions and trace metals.

Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), a passive remote sensing technique measuring spectra of scattered visible and ultraviolet (UV) solar radiation, was used for atmospheric aerosol and gas profile measurements. Our MAX-DOAS instrument consists of two main parts: an outdoor telescope unit and an indoor spectrometer (Acton SP-2358 with Princeton Instruments PIXIS-400B), connected to each other by a 14-m bundle optical fiber cable. The line of sight was in the directions of the portside of the vessel and the multiple elevation angles, 1.5, 3, 5, 10, 20, 30, 90 degrees,

were scanned repeatedly (every ~15-min) using a movable prism. For the selected spectra recorded with elevation angles with good accuracy, DOAS spectral fitting was performed to quantify the slant column density (SCD) of NO<sub>2</sub> (and other gases) and O<sub>4</sub> (O<sub>2</sub>-O<sub>2</sub>, collision complex of oxygen) for each elevation angle. Then, the O<sub>4</sub> SCDs were converted to the aerosol optical depth (AOD) and the vertical profile of aerosol extinction coefficient (AEC) using an optimal estimation inversion method with a radiative transfer model. Using derived aerosol information, retrievals of the tropospheric vertical column/profile of NO<sub>2</sub> and other gases were made.

For ozone and CO measurements, ambient air was continuously sampled on the compass deck and drawn through ~20-m-long Teflon tubes connected to a gas filter correlation CO analyzer (Model 48C, Thermo Fisher Scientific) and a UV photometric ozone analyzer (Model 49C, Thermo Fisher Scientific), located in the Research Information Center. The data will be used for characterizing air mass origins.

## (4) Preliminary results

N/A (Data analysis is to be conducted.)

### (5) Data archives

These data obtained in this cruise will be submitted to the Data Management Group of JAMSTEC, and will be opened to the public via "Data Research System for Whole Cruise Information in JAMSTEC (DARWIN)" in JAMSTEC web site.

<http://www.godac.jamstec.go.jp/darwin/e>

#### 5.12 Greenhouse gas observations

| (1) | Personnel      |        |
|-----|----------------|--------|
|     | Kei SHIOMI     | (JAXA) |
|     | Shuji KAWAKAMI | (JAXA) |

### (2) Objective

Greenhouse gases Observing SATellite (GOSAT) was launched on 23 January 2009 in order to observe the global distributions of atmospheric greenhouse gas concentrations: column-averaged dry-air mole fractions of carbon dioxide ( $CO_2$ ) and methane ( $CH_4$ ). A network of ground-based high-resolution Fourier transform spectrometers provides essential validation data for GOSAT. Vertical  $CO_2$  profiles obtained during ascents and descents of commercial airliners equipped with the in-situ  $CO_2$  measuring instrument are also used for the GOSAT validation. Because such validation data are obtained mainly over land, there are very few data available for the validation of the over-sea GOSAT products. The objectives of our research are to acquire the validation data over the Indian Ocean and the tropical Pacific Ocean using an automated compact instrument, to compare the acquired data with the over-sea GOSAT products, and to develop a simple estimation of the carbon flux between the ocean and the atmosphere from GOSAT data.

#### (3) Instrumentation

The column-averaged dry-air mole fractions of  $CO_2$  and  $CH_4$  can be estimated from absorption by atmospheric  $CO_2$  and  $CH_4$  that is observed in a solar spectrum. An optical spectrum analyzer (OSA, Yokogawa M&I co., AQ6370) was used for measuring the solar absorption spectra in the near-infrared spectral region. A solar tracker (PREDE co., ltd.) and a small telescope (Figure 1) collected the sunlight into the optical fiber that was connected to the OSA. The solar tracker searches the sun every one minute until the sunlight with a defined intensity. The measurements of the solar spectra were performed during solar zenith angles less than  $80^\circ$ .

#### (4) Analysis method

The  $CO_2$  absorption spectrum at the 1.6  $\mu$ m band measured with the OSA is shown in Figure 2. The absorption spectrum can be simulated based on radiative transfer theory using assumed atmospheric profiles of pressure, temperature, and trace gas

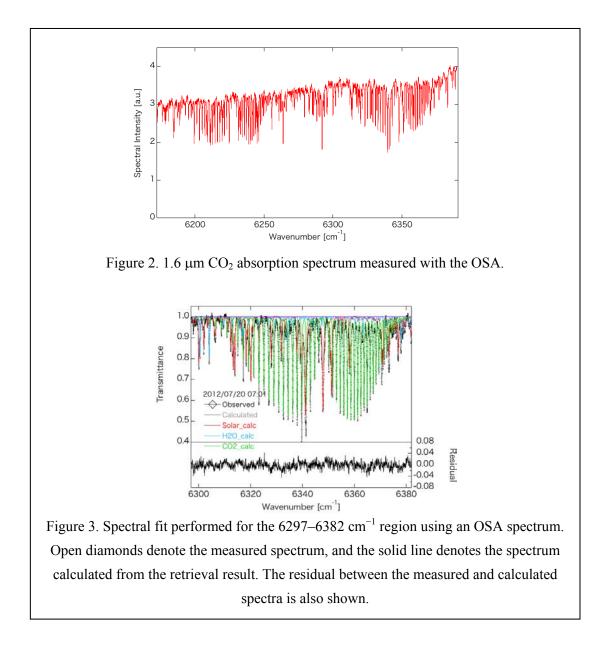



Figure 1. Solar tracker and telescope. The sunlight collected into optical fiber was introduced into the OSA that was installed in an observation room in the MIRAI.

concentrations. The column abundance of  $CO_2$  (CH<sub>4</sub>) was retrieved by adjusting the assumed  $CO_2$  (CH<sub>4</sub>) profile to minimize the differences between the measured and simulated spectra. Figure 3 shows an example of spectral fit performed for the spectral region with the  $CO_2$  absorption lines. The column-averaged dry-air mole fraction of  $CO_2$  (CH<sub>4</sub>) was obtained by taking the ratio of the  $CO_2$  (CH<sub>4</sub>) column to the dry-air column.

# (5) Preliminary results

The observations were made from November 5 to December 17, 2015 continuously in daytime (Table 1 and Figure 2), except in Philippine EEZ and Indonesian EEZ before permitted



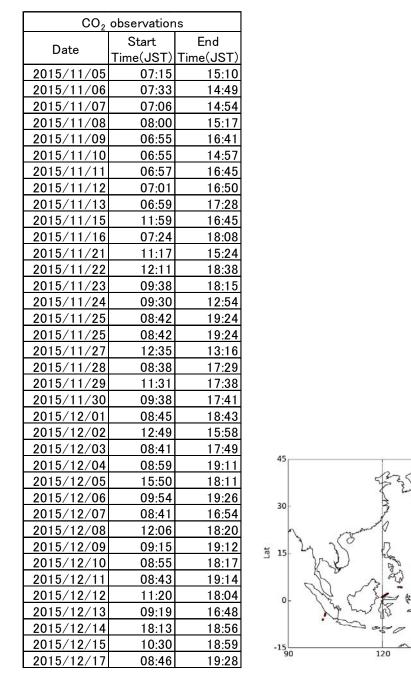
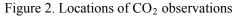




Table 1. Period of CO<sub>2</sub> observations



Lon

150

180

#### (6) Data archive

The column-averaged dry-air mole fractions of  $CO_2$  and  $CH_4$  retrieved from the OSA spectra will be submitted to the JAMSTEC Data Management Group (DMG).

# 5.13 Surface Meteorological Observations

### (1) Personnel

Masaki KATSUMATA(JAMSTEC)- Principal InvestigatorKazuho YOSHIDA(Global Ocean Development Inc., GODI)- Operation LeaderSouichro SUEYOSHI(GODI)Shinya OKUMURA(GODI)Miki MORIOKA(GODI)Ryo KIMURA(Mirai Crew)

### (2) Objectives

Surface meteorological parameters are observed as a basic dataset of the meteorology. These parameters provide the temporal variation of the meteorological condition surrounding the ship.

### (3) Methods

Surface meteorological parameters were observed throughout the MR15-04 cruise. During this cruise, we used two systems for the observation.

i. MIRAI Surface Meteorological observation (SMet) system

Instruments of SMet system are listed in Table 5.13-1 and measured parameters are listed in Table 5.13-2. Data were collected and processed by KOAC-7800 weather data processor made by Koshin-Denki, Japan. The data set consists of 6-second averaged data.

ii. Shipboard Oceanographic and Atmospheric Radiation (SOAR) measurement system

SOAR system designed by BNL (Brookhaven National Laboratory, USA) consists of major six parts.

- a) Portable Radiation Package (PRP) designed by BNL short and long wave downward radiation.
- b) Analog meteorological data sampling with CR1000 logger manufactured by Campbell Inc. Canada – wind pressure, and rainfall (by a capacitive rain gauge) measurement.
- c) Digital meteorological data sampling from individual sensors air temperature, relative humidity and rainfall (by optical rain gauge (ORG)) measurement.
- d) "SeaSnake" the floating thermistor designed by BNL skin sea surface temperature (SSST) measurement.
- e) Photosynthetically Available Radiation(PAR) and Ultraviolet Irradiance (UV) sensor manufactured by Biospherical Instruments Inc (USA) PAR and UV measurement
- f) Scientific Computer System (SCS) developed by NOAA (National Oceanic and Atmospheric Administration, USA) centralized data acquisition and logging of all data sets.

SCS recorded PRP, air temperature and relative humidity, CR1000 and ORG data. SCS composed Event data (JamMet) from these data and ship's navigation data every 6 seconds. Instruments and their locations are listed in Table 5.13-3 and measured parameters are listed in Table 5.13-4.

SeaSnake has two thermistor probes and output voltage was converted to SSST by Steinhart-Hart equation with the following coefficients led from the calibration data.

Sensor a b c T04-005 Sensor: 7.48919E-04 -2.19375E-04 -5.33227E-08 T04-100 Sensor: 8.83640E-04 -2.02001E-04 -9.58779E-08 y = a + b \* x + c \* x \*\*3

 $x = \log ( 1 / ( ( Vref / V - 1 ) * R2 - R1 ) )$ T = 1 / y - 273.15

Vref = 2500[mV], R1= $249000[\Omega]$ , R2= $1000[\Omega]$ T: Temperature [degC], V: Sensor output voltage [mV]

For the quality control as post processing, we checked the following sensors, before and after the cruise.

- Young Rain gauge (SMet and SOAR)
   Inspect of the linearity of output value from the rain gauge sensor to change Input value by adding fixed quantity of test water.
  - ii. Barometer (SMet and SOAR) Comparison with the portable barometer value, PTB220, VAISALA
  - iii. Thermometer (air temperature and relative humidity) (SMet and SOAR) Comparison with the portable thermometer value, HM70, VAISALA
  - iv. SeaSnake SSST (SOAR)
     SeaSnake thermistor probe was calibrated by the bath equipped with SBE-3 plus, Sea-Bird Electronics, Inc.

### (4) Preliminary results

Figure 5.13-1 shows the time series of the following parameters;

Wind (SMet) Air temperature (SOAR) Relative humidity (SOAR) Precipitation (SOAR, rain gauge) Short/long wave radiation (SOAR) Barometric Pressure (SMet) Sea surface temperature (SMet) Significant wave height (SMet)

Figure 5.13-2 shows the time series of SSST compared to sea surface temperature (TSG).

## (5) Data archives

These data obtained in this cruise will be submitted to the Data Management Group of JAMSTEC, and will be opened to the public via "Data Research System for Whole Cruise Information in JAMSTEC (DARWIN)" in JAMSTEC web site. <a href="http://www.godac.jamstec.go.jp/darwin/e>">http://www.godac.jamstec.go.jp/darwin/e></a>

#### (6) Remarks

- 1. The following period, data acquisition was suspended in the Philippine EEZ. 16:32UTC 13 Nov. 2015 02:48UTC 15 Nov. 2015
- The following periods, SST data was available.
   07:45UTC 06 Nov. 2015 12:01UTC 13 Nov. 2015
   02:49UTC 15 Nov. 2015 01:59UTC 19 Dec. 2015

- 3. The following period, SeaSnake SSST data was available. 07:28UTC 23 Nov. 2015 - 06:01UTC 17 Dec. 2015
- 4. The following periods, SSST data were invalid due to maintenance. 03:03UTC 24 Nov. 2015 - 03:07UTC 24 Nov. 2015 03:03UTC 25 Nov. 2015 - 03:05UTC 25 Nov. 2015 02:59UTC 30 Nov. 2015 - 03:01UTC 30 Nov. 2015 02:58UTC 04 Dec. 2015 - 03:01UTC 24 Dec. 2015 02:58UTC 05 Dec. 2015 - 03:00UTC 05 Dec. 2015 02:54UTC 06 Dec. 2015 - 03:00UTC 06 Dec. 2015 03:04UTC 14 Dec. 2015 - 03:06UTC 14 Dec. 2015
- The following period, PRP data of SOAR were invalid due to PRP logging error. 0:34UTC 28 Nov. 2015 - 0:39UTC 28 Nov. 2015 1:18UTC 13 Dec. 2015 - 3:28UTC 13 Dec. 2015
- 6. The following time, increasing of SMet capacitive rain gauge data were invalid due to transmitting for MF/HF radio.

17:46UTC 15 Nov. 2015 15:25UTC 16 Nov. 2015 01:03UTC 17 Nov. 2015

7. The following period, significant wave height and period data were not updated due to software error.

19:35UTC 29 Nov. 2015 - 03:25UTC 30 Nov. 2015

| Table 5.13-1: Instruments and | installation locations | s of MIRAI Surface | Meteorological | observation system |
|-------------------------------|------------------------|--------------------|----------------|--------------------|
|                               |                        |                    |                |                    |

| Sensors                  | Туре           | Manufacturer I        | Location (altitude from surface) |
|--------------------------|----------------|-----------------------|----------------------------------|
| Anemometer               | KE-500         | Koshin Denki, Japan   | foremast (24 m)                  |
| Tair/RH                  | HMP155         | Vaisala, Finland with |                                  |
| 43408 Gill aspirated rad | diation shield | R.M. Young, USA       | compass deck (21 m)              |
|                          |                |                       | starboard side and port side     |
| Thermometer: SST         | RFN2-0         | Koshin Denki, Japan   | 4th deck (-1m, inlet -5m)        |
| Barometer                | Model-370      | Setra System, USA     | captain deck (13 m)              |
|                          |                |                       | weather observation room         |
| Rain gauge               | 50202          | R. M. Young, USA      | compass deck (19 m)              |
| Optical rain gauge       | ORG-815DS      | Osi, USA              | compass deck (19 m)              |
| Radiometer (short wave   | e)MS-802       | Eko Seiki, Japan      | radar mast (28 m)                |
| Radiometer (long wave    | ) MS-202       | Eko Seiki, Japan      | radar mast (28 m)                |
| Wave height meter        | WM-2           | Tsurumi-seiki, Japan  | bow (10 m)                       |

Table 5.13-2: Parameters of MIRAI Surface Meteorological observation system

| Parameter   | Units  | Remarks |
|-------------|--------|---------|
| 1 Latitude  | degree |         |
| 2 Longitude | degree |         |

| 3  | Ship's speed                          | knot   | Mirai log, DS-30 Furuno       |
|----|---------------------------------------|--------|-------------------------------|
| 4  | Ship's heading                        | degree | Mirai gyro, TG-6000, Tokimec  |
| 5  | Relative wind speed                   | m/s    | 6sec./10min. averaged         |
| 6  | Relative wind direction               | degree | 6sec./10min. averaged         |
| 7  | True wind speed                       | m/s    | 6sec./10min. averaged         |
| 8  | True wind direction                   | degree | 6sec./10min. averaged         |
| 9  | Barometric pressure                   | hPa    | adjusted to sea surface level |
|    |                                       |        | 6sec. averaged                |
| 10 | Air temperature (starboard side)      | degC   | 6sec. averaged                |
| 11 | Air temperature (port side)           | degC   | 6sec. averaged                |
| 12 | Dewpoint temperature (starboard side) | degC   | 6sec. averaged                |
| 13 | Dewpoint temperature (port side)      | degC   | 6sec. averaged                |
| 14 | Relative humidity (starboard side)    | %      | 6sec. averaged                |
| 15 | Relative humidity (port side)         | %      | 6sec. averaged                |
| 16 | Sea surface temperature               | degC   | 6sec. averaged                |
| 17 | Rain rate (optical rain gauge)        | mm/hr  | hourly accumulation           |
| 18 | Rain rate (capacitive rain gauge)     | mm/hr  | hourly accumulation           |
| 19 | Down welling shortwave radiation      | W/m2   | 6sec. averaged                |
| 20 | Down welling infra-red radiation      | W/m2   | 6sec. averaged                |
| 21 | Significant wave height (bow)         | m      | hourly                        |
| 22 | Significant wave height (aft)         | m      | hourly                        |
| 23 | Significant wave period (bow)         | second | hourly                        |
| 24 | Significant wave period (aft)         | second | hourly                        |
|    |                                       |        |                               |

| Table 5.13-3: Instruments and installation l | locations of SOAR system |
|----------------------------------------------|--------------------------|
|----------------------------------------------|--------------------------|

| Sensors (Meteorologica  | al) Type        | Manufacturer         | Location (altitude from surface) |
|-------------------------|-----------------|----------------------|----------------------------------|
| Anemometer              | 05106           | R.M. Young, USA      | foremast (25 m)                  |
| Barometer               | PTB210          | Vaisala, Finland     | foremast (23 m)                  |
| with 61002 Gill pres    | sure port, R.M  | . Young, USA         |                                  |
| Rain gauge              | 50202           | R.M. Young, USA      | foremast (24 m)                  |
| Tair/RH                 | HMP155          | Vaisala, Finland     | foremast (23 m)                  |
| with 43408 Gill aspi    | rated radiatior | n shield R.M. Your   | ng, USA                          |
| Optical rain gauge      | ORG-815DF       | R Osi, USA           | foremast (24 m)                  |
|                         |                 |                      |                                  |
| Sensors (PRP)           | Туре            | Manufacturer         | Location (altitude from surface) |
| Radiometer (short wave  | e)PSP           | Epply Labs, USA      | foremast (25 m)                  |
| Radiometer (long wave   | ) PIR           | Epply Labs, USA      | foremast (25 m)                  |
| Fast rotating shadowbar | nd radiometer   | Yankee, USA          | foremast (25 m)                  |
|                         |                 |                      |                                  |
| Sensor (PAR&UV)         | Туре            | Manufacturer         | Location (altitude from surface) |
| PAR&UV sensor           | PUV-510 Bi      | ospherical Instrum   | Navigation deck (18m)            |
|                         | -er             | nts Inc., USA        |                                  |
|                         |                 |                      |                                  |
| Sensors (SeaSnake)      | Туре            | Manufacturer         | Location (altitude from surface) |
| Thermistor              | 107 Camp        | bell Scientific, USA | bow, 5m extension (0 m)          |

| Parameter                               | Units       | Remarks        |
|-----------------------------------------|-------------|----------------|
| 1 Latitude                              | degree      |                |
| 2 Longitude                             | degree      |                |
| 3 SOG                                   | knot        |                |
| 4 COG                                   | degree      |                |
| 5 Relative wind speed                   | m/s         |                |
| 6 Relative wind direction               | degree      |                |
| 7 Barometric pressure                   | hPa         |                |
| 8 Air temperature                       | degC        |                |
| 9 Relative humidity                     | %           |                |
| 10 Rain rate (optical rain gauge)       | mm/hr       |                |
| 11 Precipitation (capacitive rain gauge | ) mm        | reset at 50 mm |
| 12 Down welling shortwave radiation     | W/m2        |                |
| 13 Down welling infra-red radiation     | W/m2        |                |
| 14 Defuse irradiance                    | W/m2        |                |
| 15 "SeaSnake" raw data                  | mV          |                |
| 16 SSST (SeaSnake)                      | degC        |                |
| 17 PAR                                  | microE/cm2/ | /sec.          |
| 18 UV                                   | microW/cm2  | 2/nm           |

# Table 5.13-4: Parameters of SOAR system

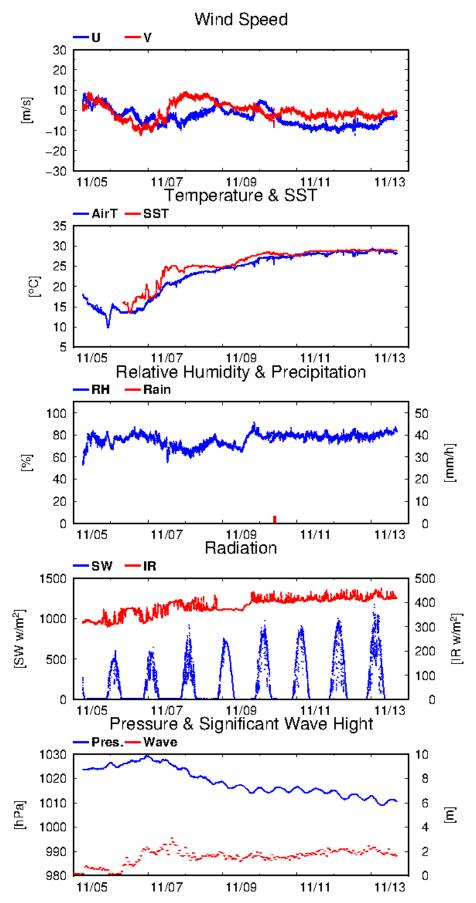
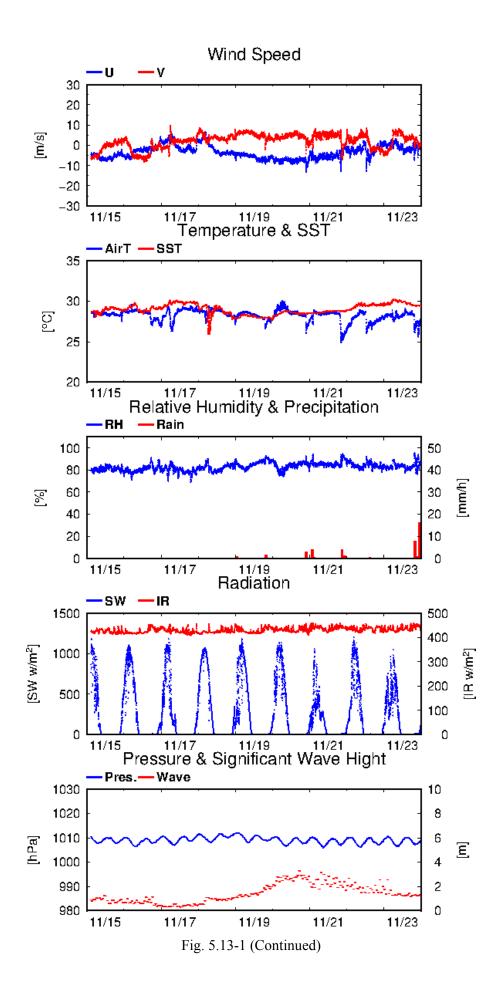
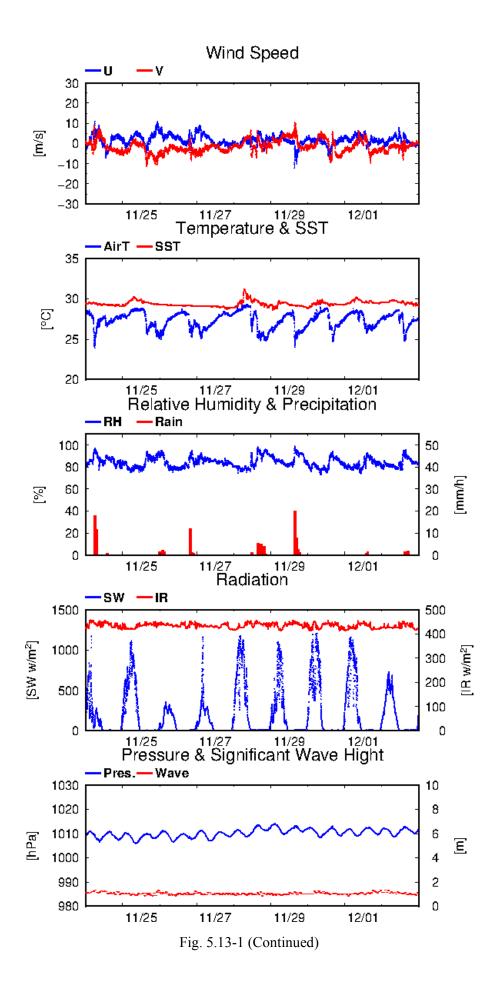
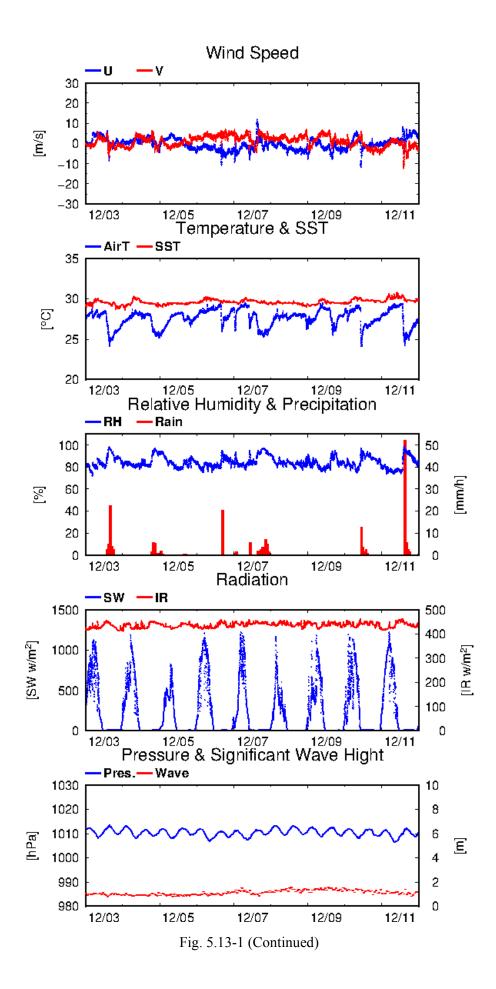
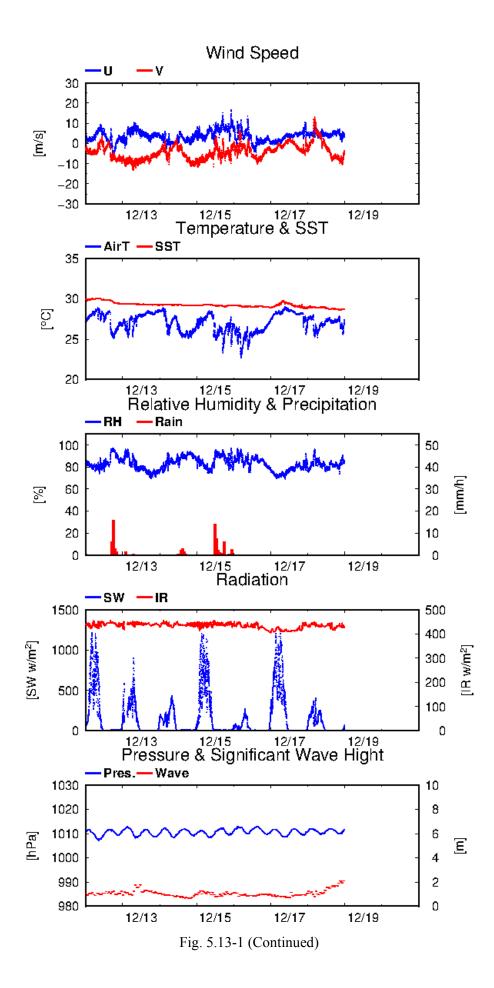







Fig. 5.13-1 Time series of surface meteorological parameters during the cruise









5.13-10

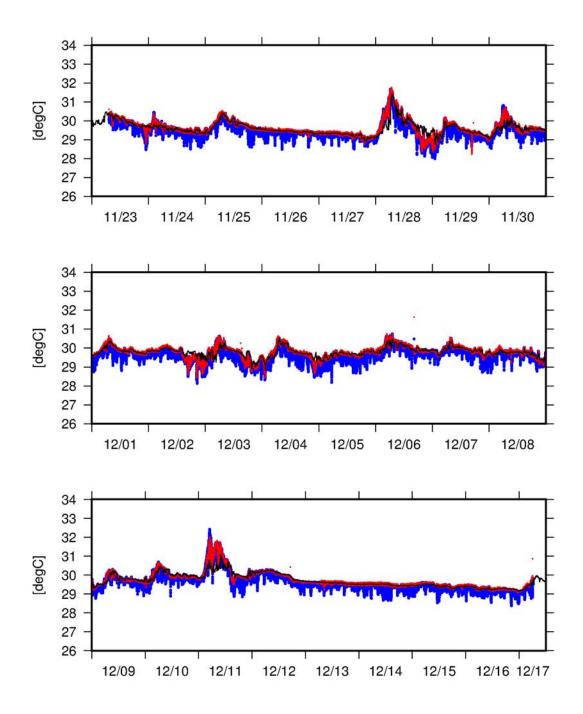



Fig. 5.13-2: Time series of and Skin Sea Surface Temperature (SSST; short(005):Blue, long(100):Red) measured by "SeaSnake", along with the Sea Surface Temperature (measured by TSG, black line) during Stationary observation.

## 5.14 Continuous monitoring of surface seawater

## (1) Personnel

| Masaki KATSUMATA | (JAMSTEC)                    | - Principal Investigator |
|------------------|------------------------------|--------------------------|
| Haruka TAMADA    | (Marine Works Japan Co. Ltd) | - Operation Leader       |
| Misato KUWAHARA  | (Marine Works Japan Co. Ltd) |                          |

## (2) Objective

Our purpose is to obtain temperature, salinity, dissolved oxygen, and fluorescence data continuously in near-sea surface water.

## (3) Instruments and Methods

The Continuous Sea Surface Water Monitoring System (Marine Works Japan Co. Ltd.) has five sensors and automatically measures temperature, salinity, dissolved oxygen and fluorescence in near-sea surface water every one minute. This system is located in the "*sea surface monitoring laboratory*" and connected to shipboard LAN-system. Measured data, time, and location of the ship were stored in a data management PC. The near-surface water was continuously pumped up to the laboratory from about 4.5 m water depth and flowed into the system through a vinyl-chloride pipe. The flow rate of the surface seawater was adjusted to be 10 dm<sup>3</sup> min<sup>-1</sup>.

- Software

Seamoni-kun Ver.1.50

## - Sensors

Specifications of the each sensor in this system are listed below.

## a) Temperature and Conductivity sensor

| Model:                   | SBE-45, SEA-BIRD ELECTRONICS, INC.     |
|--------------------------|----------------------------------------|
| Serial number:           | 4552788-0264                           |
| Measurement range:       | Temperature -5 to +35 °C               |
|                          | Conductivity 0 to 7 S m <sup>-1</sup>  |
| Initial accuracy:        | Temperature 0.002 °C                   |
|                          | Conductivity 0.0003 S m <sup>-1</sup>  |
| Typical stability (per m | nonth):                                |
|                          | Temperature 0.0002 °C                  |
|                          | Conductivity 0.0003 S m <sup>-1</sup>  |
| Resolution:              | Temperatures 0.0001 °C                 |
|                          | Conductivity 0.00001 S m <sup>-1</sup> |
|                          |                                        |

# b) Bottom of ship thermometer

| Model:                   | SBE 38, SEA-BIRD ELECTRONICS, INC. |
|--------------------------|------------------------------------|
| Serial number:           | 3852788-0457                       |
| Measurement range:       | -5 to +35 °C                       |
| Initial accuracy:        | ±0.001 °C                          |
| Typical stability (per 6 | 5 month): 0.001 °C                 |
| Resolution:              | 0.00025 °C                         |

# c) Dissolved oxygen sensor

| Model:           | OPTODE 3835, AANDERAA Instruments.                    |
|------------------|-------------------------------------------------------|
| Serial number:   | 1915                                                  |
| Measuring range: | 0 - 500 μmol dm <sup>-3</sup>                         |
| Resolution:      | $< 1 \ \mu mol \ dm^{-3}$                             |
| Accuracy:        | $< 8 \ \mu mol \ dm^{-3}$ or 5 % whichever is greater |
| Settling time:   | < 25 s                                                |

## d) Dissolved oxygen sensor

| Model:           | RINKO II, JFE ADVANTECH CO. LTD.         |
|------------------|------------------------------------------|
| Serial number:   | 13                                       |
| Measuring range: | 0 - 540 μmol dm <sup>-3</sup>            |
| Resolution:      | $< 0.1 \ \mu mol \ dm^{-3}$              |
|                  | or 0.1 % of reading whichever is greater |
| Accuracy:        | $< 1 \ \mu mol \ dm^{-3}$                |
|                  | or 5 % of reading whichever is greater   |
|                  |                                          |

e) Fluorescence & Turbidity sensor

| Model:                   | C3, TURNER DESIGNS     |
|--------------------------|------------------------|
| Serial number:           | 2300384                |
| Measuring range:         | Turbidity 0 - 3000 NTU |
| Minimum Detection Limit: | Turbidity 0.05 NTU     |

## (4) Observation log

Periods of measurement, maintenance, and problems during MR15-04 are listed in Table 5.14.

| System Date | System Time | Events                                | Remarks             |
|-------------|-------------|---------------------------------------|---------------------|
| [UTC]       | [UTC]       |                                       |                     |
| 2015/11/06  | 08:41       | All the measurements started and data | Start observation   |
|             |             | was available.                        |                     |
| 2015/11/13  | 16:33       | All the measurements stopped.         | Enter to Philippine |
|             |             |                                       | EEZ                 |
| 2015/11/15  | 03:00       | All the measurements started.         | Observation         |
|             |             |                                       | permitted from      |
|             |             |                                       | Indonesian          |
|             |             |                                       | Security Officer    |
| 2015/11/23  | 19:02       | All the measurements stopped.         | Maintenance         |
| 2015/11/23  | 19:52       | All the measurements started.         | Logging restart     |
| 2015/11/26  | 21:34       | All the measurements stopped.         | Maintenance         |
| 2015/11/26  | 21:40       | All the measurements started.         | Logging restart     |
| 2015/11/30  | 19:01       | All the measurements stopped.         | Maintenance         |
| 2015/11/30  | 19:55       | All the measurements started.         | Logging restart     |
| 2015/12/07  | 19:01       | All the measurements stopped.         | Maintenance         |
| 2015/12/07  | 19:48       | All the measurements started.         | Logging restart     |
| 2015/12/14  | 19:02       | All the measurements stopped.         | Maintenance         |
| 2015/12/14  | 19:49       | All the measurements started.         | Logging restart     |
| 2015/12/19  | 00:05       | All the measurements stopped.         | End observation     |

Table 5.14: Events list of the Sea surface water monitoring during MR15-04

We took the surface water samples once a day to compare sensor data with bottle data of salinity, dissolved oxygen and chlorophyll *a*. The results are shown in Fig. 5.14-2-1 ~ 5.14-2-3. All the salinity samples were analyzed by the Guideline 8400B "AUTOSAL" (see 5.17), and dissolved oxygen samples were analyzed by Winkler method (see 5.18), chlorophyll *a* were analyzed by 10-AU (see 5.20).

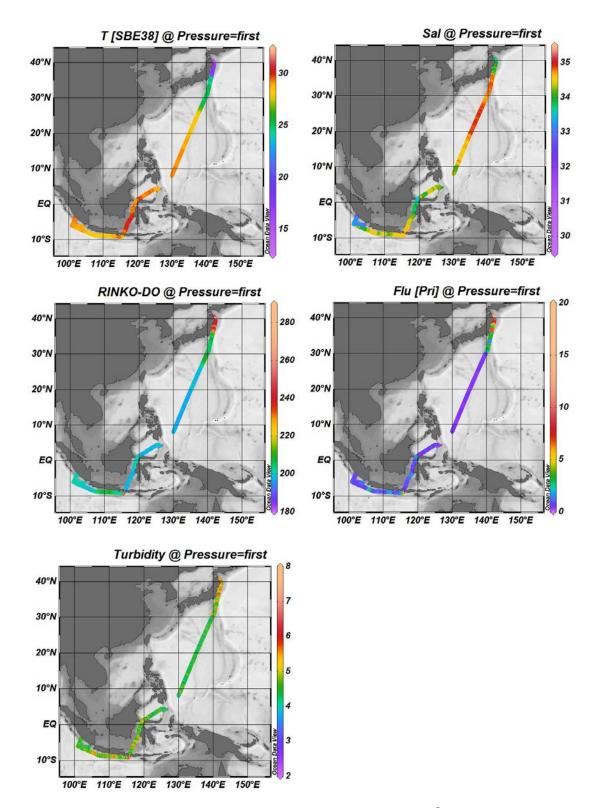



Figure 5.14-1: Spatial and temporal distribution of (a) temperature [ $^{\circ}$ C], (b) salinity [PSU], (c) dissolved oxygen [µmol kg<sup>-1</sup>], (d) fluorescence, and (e) turbidity [NTU] in MR15-04 cruise.

## 5.15 Underway pCO<sub>2</sub>

(1) Personnel

Yoshiyuki NAKANO (JAMSTEC) Kei SHIOMI (JAXA) Atsushi ONO (MWJ) Principal Investigator Co- Investigator Operation Leader

## (2) Objectives

Concentrations of  $CO_2$  in the atmosphere are increasing at a rate of 1.5 ppmv yr<sup>-1</sup> owing to human activities such as burning of fossil fuels, deforestation, and cement production. Oceanic  $CO_2$  concentration is also considered to be increased with the atmospheric  $CO_2$  increase, however, its variation is widely different by time and locations. Underway pCO<sub>2</sub> observation is indispensable to know the pCO<sub>2</sub> distribution, and it leads to elucidate the mechanism of oceanic pCO<sub>2</sub> variation. We here report the underway pCO<sub>2</sub> measurements performed during MR15-04 cruise.

### (3) Methods, Apparatus and Performance

Oceanic and atmospheric  $CO_2$  concentrations were measured during the cruise using an automated system equipped with a non-dispersive infrared gas analyzer (NDIR; LI-7000, Li-Cor). Measurements were done every about one and a half hour, and 4 standard gasses, atmospheric air, and the  $CO_2$  equilibrated air with sea surface water were analyzed subsequently in this hour. The concentrations of the  $CO_2$  standard gasses were 269.08, 330.17, 359.32 and 419.30 ppmv. Atmospheric air taken from the bow of the ship (approx.30 m above the sea level) was introduced into the NDIR by passing through a electrical cooling unit, a mass flow controller which controls the air flow rate of 0.5 L min<sup>-1</sup>, a membrane dryer (MD-110-72P, perma pure llc.) and chemical desiccant (Mg(ClO<sub>4</sub>)<sub>2</sub>). The CO<sub>2</sub> equilibrated air was the air with its CO<sub>2</sub> concentration was equivalent to the sea surface water. Seawater was taken from an intake placed at the approximately 4.5 m below the sea surface and introduced into the equilibrator at the flow rate of 4 - 5 L min<sup>-1</sup> by a pump. The equilibrated air was circulated in a closed loop by a pump at flow rate of 0.6 - 0.8 L min<sup>-1</sup> through two cooling units, a membrane dryer, the chemical desiccant, and the NDIR.

#### (3) Preliminary results

Cruise track during  $pCO_2$  observation is shown in Figure 5.15-1. Temporal variations of both oceanic and atmospheric  $CO_2$  concentration ( $xCO_2$ ) are shown in Fig. 5.15-2.

#### (4) Data Archive

Data obtained in this cruise will be submitted to the Data Management Office (DMO) of JAMSTEC, and will be opened to public via JAMSTEC web page.

## (5) Reference

Dickson, A. G., Sabine, C. L. & Christian, J. R. (2007), Guide to best practices for ocean CO<sub>2</sub> measurements; PICES Special Publication 3, 199pp.

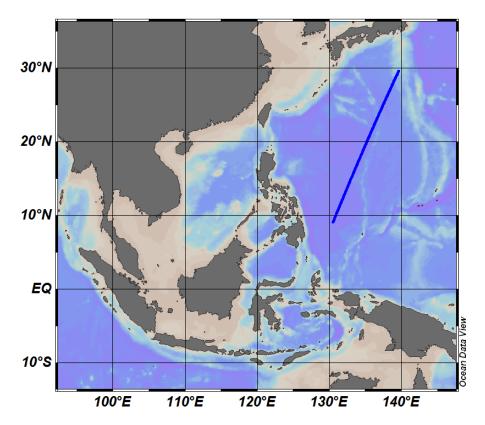



Figure 5.15-1 Observation map



Figure 5.15-2 Temporal variations of oceanic and atmospheric  $CO_2$  concentration ( $xCO_2$ ). Blue dots represent oceanic  $xCO_2$  variation and green atmospheric  $xCO_2$ . SST variation (red) is also shown.

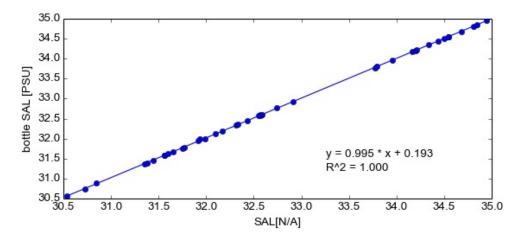



Figure 5.14-2-1: Correlation of salinity between sensor data and bottle data.

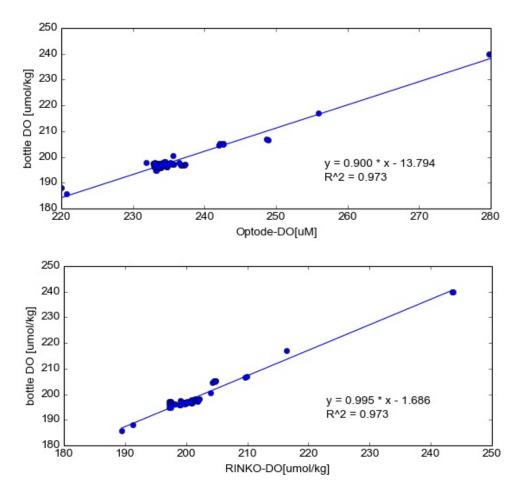



Figure 5.14-2-2: Correlation of dissolved oxygen between sensor data and bottle data. (upper panel: OPTODE, lower panel: RINKO)

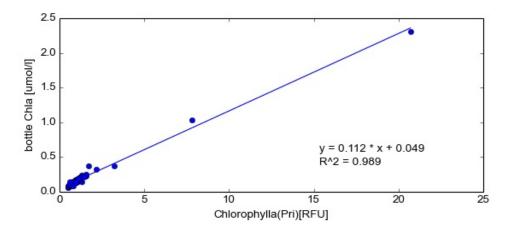



Figure 5.14-2-3: Correlation of fluorescence between sensor data and bottle data.

## (6) Data archives

These data obtained in this cruise will be submitted to the Data Management Office (DMO) of JAMSTEC, and will be opened to public via JAMSTEC web site.

## 5.16 CTDO profiling

### (1) Personnel

| Masaki Katsumata | (JAMSTEC) | *Principal Investigator |
|------------------|-----------|-------------------------|
| Rei Ito          | (MWJ)     | *Operation Leader       |
| Kenichi Katayama | (MWJ)     |                         |
| Masaki Furuhata  | (MWJ)     |                         |
| Tomohide Noguthi | (MWJ)     |                         |
| Katsumi Kotera   | (MWJ)     |                         |
| Keisuke Takeda   | (MWJ)     |                         |

### (2) Objective

Investigation of oceanic structure and water sampling.

## (3) Instruments and Methods

CTD/Carousel Water Sampling System, which is a 36-position Carousel water sampler (CWS) with Sea-Bird Electronics, Inc. CTD (SBE9plus), was used during this cruise. 12-litter Niskin Bottles were used for sampling seawater. The sensors attached on the CTD were temperature (Primary and Secondary), conductivity (Primary and Secondary), pressure, dissolved oxygen (Primary and Secondary), fluorescence, Photosynthetically Active Radiation, and Altimeter. Salinity was calculated by measured values of pressure, conductivity and temperature. The CTD/CWS was deployed from starboard on working deck.

The CTD raw data were acquired on real time using the Seasave-Win32 (ver.7.23.2) provided by Sea-Bird Electronics, Inc. and stored on the hard disk of the personal computer. Seawater was sampled during the up cast by sending fire commands from the personal computer. We usually stop for 30 seconds to stabilize then fire. 221 casts of CTD measurements were conducted (Table 5.16.1).

Data processing procedures and used utilities of SBE Data Processing-Win32 (ver.7.23.2) and SEASOFT were as follows:

### (The process in order)

DATCNV: Convert the binary raw data to engineering unit data. DATCNV also extracts bottle information where scans were marked with the bottle confirm bit during acquisition. The duration was set to 3.0 seconds, and the offset was set to 0.0 seconds.

BOTTLESUM: Create a summary of the bottle data. The data were averaged over 3.0 seconds.

ALIGNCTD: Convert the time-sequence of sensor outputs into the pressure sequence to ensure that all calculations were made using measurements from the same parcel of water. Dissolved oxygen data are systematically delayed with respect to depth mainly because of the long time constant of the dissolved oxygen sensor and of an additional delay from the transit time of water in the pumped pluming line. This delay was compensated by 2 seconds advancing dissolved oxygen sensor output (dissolved oxygen voltage) relative to the temperature data.

- WILDEDIT: Mark extreme outliers in the data files. The first pass of WILDEDIT obtained an accurate estimate of the true standard deviation of the data. The data were read in blocks of 1000 scans. Data greater than 10 standard deviations were flagged. The second pass computed a standard deviation over the same 1000 scans excluding the flagged values. Values greater than 20 standard deviations were marked bad. This process was applied to pressure, depth, temperature, conductivity and dissolved oxygen voltage.
- CELLTM: Remove conductivity cell thermal mass effects from the measured conductivity. Typical values used were thermal anomaly amplitude alpha = 0.03 and the time constant 1/beta = 7.0.
- FILTER: Perform a low pass filter on pressure with a time constant of 0.15 second. In order to produce zero phase lag (no time shift) the filter runs forward first then backward
- WFILTER: Perform a median filter to remove spikes in the fluorescence data. A median value was determined by 49 scans of the window.
- SECTIONU (original module of SECTION):

Select a time span of data based on scan number in order to reduce a file size. The minimum number was set to be the starting time when the CTD package was beneath the sea-surface after activation of the pump. The maximum number of was set to be the end time when the package came up from the surface.

LOOPEDIT: Mark scans where the CTD was moving less than the minimum velocity of 0.0 m/s (traveling backwards due to ship roll).

DERIVE: Compute dissolved oxygen (SBE43).

BINAVG: Average the data into 1-dbar pressure bins.

BOTTOMCUT (original module): Deletes discontinuous scan bottom data, if it's created by BINAVG.

DERIVE: Compute salinity, potential temperature, and sigma-theta.

SPLIT: Separate the data from an input .cnv file into down cast and up cast files.

Configuration file: MR1504A.xmlcon

Specifications of the sensors are listed below. CTD: SBE911plus CTD system Under water unit: SBE9plus (S/N 09P21746-0575, Sea-Bird Electronics, Inc.) Pressure sensor: Digiquartz pressure sensor (S/N 0575\_79492) Calibrated Date: 07 Apr. 2015

Temperature sensors:

Primary: SBE03-04/F (S/N 031464, Sea-Bird Electronics, Inc.) Calibrated Date: 01 May 2015 Secondary: SBE03Plus (S/N 03P4421, Sea-Bird Electronics, Inc.) Calibrated Date: 29 Oct. 2014

Conductivity sensors:

Primary: SBE04C (S/N 043036, Sea-Bird Electronics, Inc.) Calibrated Date: 06 May 2015 Secondary: SBE04-04/0 (S/N 041206, Sea-Bird Electronics, Inc.) Calibrated Date: 17 Sep. 2015

#### Dissolved Oxygen sensor:

Primary: SBE43 (S/N 430330, Sea-Bird Electronics, Inc.) Calibrated Date: 21 Jul. 2015 Secondary: SBE43 (S/N 432211, Sea-Bird Electronics, Inc.) Calibrated Date: 26 Feb. 2015

## Fluorescence:

Chlorophyll Fluorometer (S/N 3618, Seapoint Sensors, Inc.) Gain setting: 10X, 0-15 µg/l Calibrated Date: None Offset: 0.000

Photosynthetically Active Radiation: PAR sensor (S/N 049, Satlantic Inc.) Calibrated Date: 22 Jan. 2009

#### Altimeter:

Benthos PSA-916T (S/N 1157, Teledyne Benthos, Inc.)

#### Carousel water sampler:

SBE32 (S/N 3271515-0924, Sea-Bird Electronics, Inc.)

## Submersible Pump:

Primary: SBE5T (S/N 054595, Sea-Bird Electronics, Inc.) Secondary: SBE5T (S/N 053118, Sea-Bird Electronics, Inc.)

## Bottom contact switch: (Sea-Bird Electronics, Inc.) Used cast: L01M001 ~ L26M001

Deck unit: SBE11plus (S/N 11P54451-0872, Sea-Bird Electronics, Inc.)

## (4) Preliminary Results

During this cruise, 221casts of CTD observation were carried out on line observation and fixed point observation. Date, time and locations of the CTD casts are listed in Table 5.16.1.

The time series contours of primary temperature, salinity, dissolved oxygen, fluorescence, with pressure are shown in Figure. 5.16.1, and Figure. 5.16.2. Vertical profile (down cast) of primary temperature, salinity and dissolved oxygen with pressure are shown in the appendix.

In some cast, we judged noise, spike or shift in the data. These were as follows.

L18M001: Secondary Conductivity and Salinity down 503 dbar - down 507 dbar (shift) up 506 dbar – up322 dbar (shift)

STNM035: Secondary Temperature, Conductivity, Salinity and Dissolved Oxygen down 151 dbar - down 302 dbar (shift) up 301 dbar - 228 dbar (shift)

STNM069: Primary Dissolved Oxygen up 9 dbar – up 1 dbar (shift)

## (5) Remarks

JES-10 profiler mounted with CTD frame for the purpose of compare data of JES-10 profiler with data of CTD between station L01M001 and station L26M001. Moreover, CTD stopped winch up at 1000m, 500m and 300m for 5 minutes in Station L01M001.

The data communications from CTD under water unit was abruptly cut off on Station L21M001. It was happened when winch up at 223 dbar and so we stopped observation and winched up CTD. As a result, we did not collected data of all sensors between 223 dbar to surface in up cast.

We lost the water sample that took at 40m in STNM045. Because of Niskin bottle for sample of 40m was leak and a spare sample was not collected.

## (6) Data archive

All raw and processed data will be submitted to the Data Management Office (DMO), JAMSTEC, and will be opened to public via JAMSTEC web page.

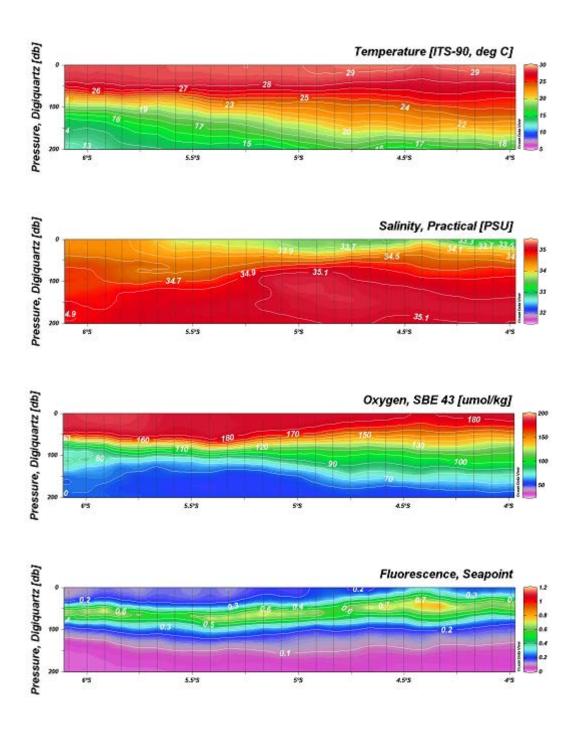



Figure 5.16.1 the time series contours (temperature, salinity oxygen and fluorescence) in line measurement  $(L01M001 \sim L26M001)$ .

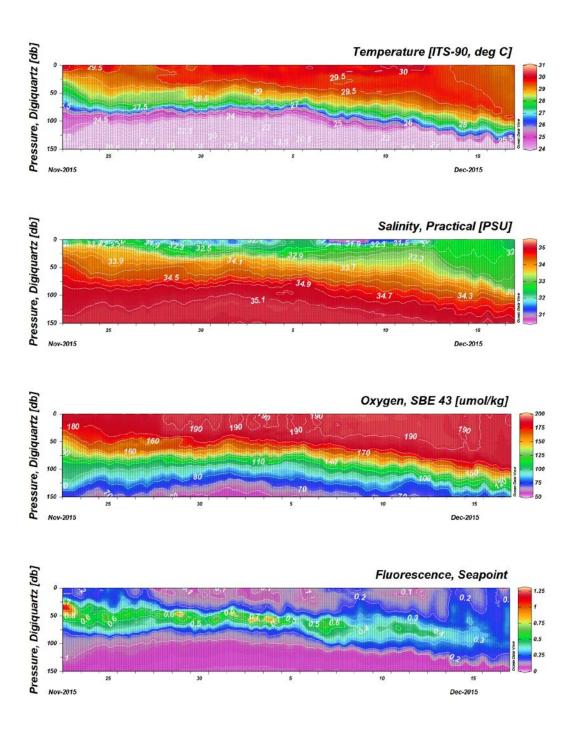



Figure 5.16.2 the time series contours (temperature, salinity oxygen and fluorescence) in fixed point measurement (STNM001 ~ STNM195).

|        |        | Date(UTC) | Time( | (UTC) | Bottom    | Position            |        | Wire  | Height          | Max    | Max      | CTD      |         |
|--------|--------|-----------|-------|-------|-----------|---------------------|--------|-------|-----------------|--------|----------|----------|---------|
| Stnnbr | Castno | (mmddyy)  | Start | End   | Latitude  | Longitude           | Depth  | Out   | Above<br>Bottom | Depth  | Pressure | Filename | Remarks |
| L01    | 1      | 112015    | 23:41 | 00:39 | 06-05.298 | 100-57.50E          | 5364.0 | 993.8 | -               | 1001.0 | 1009.0   | L01M001  |         |
| L02    | 1      | 112115    | 02:10 | 02:49 | 06-00.11S | 101-00.18E          | 5590.0 | 500.3 | -               | 502.6  | 506.0    | L02M001  |         |
| L03    | 1      | 112115    | 04:05 | 04:26 | 05-55.06S | 101-02.75E          | 5922.0 | 499.0 | -               | 501.6  | 505.0    | L03M001  |         |
| L04    | 1      | 112115    | 05:39 | 06:00 | 05-50.288 | 101-05.07E          | 6130.0 | 498.4 | -               | 500.6  | 504.0    | L04M001  |         |
| L05    | 1      | 112115    | 07:07 | 07:51 | 05-45.17S | 101-07.82E          | 6042.0 | 498.3 | -               | 503.6  | 507.0    | L05M001  |         |
| L06    | 1      | 112115    | 09:06 | 09:29 | 05-40.21S | 101-10.09E          | 5373.0 | 496.2 | -               | 501.6  | 505.0    | L06M001  |         |
| L07    | 1      | 112115    | 10:35 | 10:58 | 05-35.228 | 101-12.63E          | 4219.0 | 495.7 | -               | 502.6  | 506.0    | L07M001  |         |
| L08    | 1      | 112115    | 12:05 | 12:42 | 05-30.19S | 101-15.04E          | 3104.0 | 497.0 | -               | 500.6  | 504.0    | L08M001  |         |
| L09    | 1      | 112115    | 13:59 | 14:25 | 05-25.13S | 101-17.80E          | 3628.0 | 500.1 | -               | 503.6  | 507.0    | L09M001  |         |
| L10    | 1      | 112115    | 15:38 | 16:03 | 05-20.208 | 101 <b>-</b> 20.11E | 3299.0 | 499.7 | -               | 503.6  | 507.0    | L10M001  |         |
| L11    | 1      | 112115    | 17:24 | 18:00 | 05-15.04S | 101-22.58E          | 2719.0 | 497.3 | -               | 500.6  | 504.0    | L11M001  |         |
| L12    | 1      | 112115    | 19:15 | 19:36 | 05-10.10S | 101-25.13E          | 2858.0 | 499.0 | -               | 499.6  | 503.0    | L12M001  |         |
| L13    | 1      | 112115    | 20:43 | 21:05 | 05-05.03S | 101 <b>-</b> 27.37E | 2271.0 | 497.7 | -               | 501.6  | 505.0    | L13M001  |         |
| L14    | 1      | 112115    | 22:12 | 22:53 | 05-00.15S | 101-30.17E          | 1311.0 | 498.1 | -               | 502.6  | 506.0    | L14M001  |         |
| L15    | 1      | 112215    | 00:03 | 00:24 | 04-55.12S | 101-32.55E          | 1012.0 | 498.4 | -               | 501.6  | 505.0    | L15M001  |         |
| L16    | 1      | 112215    | 01:30 | 01:52 | 04-50.03S | 101-35.25E          | 929.0  | 501.0 | -               | 504.6  | 508.0    | L16M001  |         |
| L17    | 1      | 112215    | 03:20 | 04:02 | 04-45.19S | 101-37.72E          | 814.0  | 497.5 | -               | 502.6  | 506.0    | L17M001  |         |
| L18    | 1      | 112215    | 05:24 | 05:45 | 04-40.02S | 101-40.26E          | 1000.0 | 499.7 | -               | 503.6  | 507.0    | L18M001  |         |
| L19    | 1      | 112215    | 06:54 | 07:15 | 04-35.03S | 101-42.69E          | 1219.0 | 497.7 | -               | 500.6  | 504.0    | L19M001  |         |

# Table 5.16.1 MR15-04 cast table

| L20 | 1  | 112215 | 08:24 | 09:01 | 04-30.03S | 101-45.15E          | 1284.0 | 500.6 | -    | 502.6 | 506.0 | L20M001 |  |
|-----|----|--------|-------|-------|-----------|---------------------|--------|-------|------|-------|-------|---------|--|
| L21 | 1  | 112215 | 10:14 | 10:39 | 04-25.08S | 101-47.60E          | 1448.0 | 499.0 | -    | 502.6 | 506.0 | L21M001 |  |
| L22 | 1  | 112215 | 11:50 | 12:11 | 04-19.96S | 101-49.98E          | 1367.0 | 498.6 | -    | 502.6 | 506.0 | L22M001 |  |
| L23 | 1  | 112215 | 13:23 | 14:00 | 04-14.98S | 101-52.56E          | 1139.0 | 499.7 | -    | 503.6 | 507.0 | L23M001 |  |
| L24 | 1  | 112215 | 15:11 | 15:32 | 04-10.05S | 101 <b>-</b> 54.96E | 875.0  | 499.4 | -    | 500.6 | 504.0 | L24M001 |  |
| L25 | 1  | 112215 | 16:43 | 17:01 | 04-04.97S | 101 <b>-</b> 57.64E | 394.0  | 371.4 | 18.9 | 374.6 | 377.0 | L25M001 |  |
| L26 | 1  | 112215 | 18:08 | 18:32 | 03-59.868 | 101 <b>-</b> 59.91E | 217.0  | 197.5 | 15.4 | 200.8 | 202.0 | L26M001 |  |
| STN | 1  | 112315 | 05:37 | 06:09 | 04-04.14S | 101-53.92E          | 677.0  | 297.8 | -    | 300.1 | 302.0 | STNM001 |  |
| STN | 2  | 112315 | 08:37 | 08:49 | 04-04.83S | 101-54.25E          | 758.0  | 298.7 | -    | 300.1 | 302.0 | STNM002 |  |
| STN | 3  | 112315 | 11:39 | 12:07 | 04-05.00S | 101-55.92E          | 553.0  | 296.5 | -    | 300.1 | 302.0 | STNM003 |  |
| STN | 4  | 112315 | 14:39 | 14:54 | 04-04.90S | 101-53.23E          | 766.0  | 297.3 | -    | 301.1 | 303.0 | STNM004 |  |
| STN | 5  | 112315 | 17:38 | 18:04 | 04-02.82S | 101-53.34E          | 705.0  | 297.1 | -    | 300.1 | 302.0 | STNM005 |  |
| STN | 6  | 112315 | 20:41 | 20:54 | 04-03.97S | 101-53.02E          | 745.0  | 296.4 | -    | 300.1 | 302.0 | STNM006 |  |
| STN | 7  | 112315 | 23:40 | 00:25 | 04-04.38S | 101-52.80E          | 772.0  | 498.4 | -    | 501.6 | 505.0 | STNM007 |  |
| STN | 8  | 112415 | 02:40 | 02:54 | 04-02.568 | 101-53.07E          | 732.0  | 298.4 | -    | 301.1 | 303.0 | STNM008 |  |
| STN | 9  | 112415 | 05:42 | 06:08 | 04-03.508 | 101-53.07E          | 742.0  | 298.4 | -    | 301.1 | 303.0 | STNM009 |  |
| STN | 10 | 112415 | 08:37 | 08:49 | 04-03.26S | 101-53.48E          | 690.0  | 297.5 | -    | 300.1 | 302.0 | STNM010 |  |
| STN | 11 | 112415 | 11:40 | 12:06 | 04-04.00S | 101-53.16E          | 738.0  | 298.2 | -    | 301.1 | 303.0 | STNM011 |  |
| STN | 12 | 112415 | 14:39 | 14:51 | 04-03.05S | 101-53.04E          | 713.0  | 297.8 | -    | 301.1 | 303.0 | STNM012 |  |
| STN | 13 | 112415 | 17:38 | 18:03 | 04-02.63S | 101-53.87E          | 676.0  | 297.3 | -    | 300.1 | 302.0 | STNM013 |  |
| STN | 14 | 112415 | 20:41 | 20:54 | 04-03.68S | 101-52.72E          | 780.0  | 296.4 | -    | 300.1 | 302.0 | STNM014 |  |
| STN | 15 | 112415 | 23:39 | 00:22 | 04-04.30S | 101-53.04E          | 753.0  | 496.6 | -    | 500.6 | 504.0 | STNM015 |  |
| STN | 16 | 112515 | 02:40 | 02:55 | 04-03.46S | 101-53.71E          | 674.0  | 298.0 | -    | 301.1 | 303.0 | STNM016 |  |

| STN | 17 | 112515 | 05:40 | 06:13 | 04-03.10S | 101-54.55E          | 600.0 | 297.6 | - | 301.1 | 303.0 | STNM017 |  |
|-----|----|--------|-------|-------|-----------|---------------------|-------|-------|---|-------|-------|---------|--|
| STN | 18 | 112515 | 08:37 | 08:50 | 04-03.45S | 101-54.10E          | 646.0 | 298.6 | - | 300.1 | 302.0 | STNM018 |  |
| STN | 19 | 112515 | 11:38 | 12:05 | 04-04.15S | 101-52.80E          | 771.0 | 297.8 | - | 301.1 | 303.0 | STNM019 |  |
| STN | 20 | 112515 | 14:35 | 14:48 | 04-04.238 | 101-53.36E          | 731.0 | 297.5 | - | 300.1 | 302.0 | STNM020 |  |
| STN | 21 | 112515 | 17:37 | 18:03 | 04-03.228 | 101-53.21E          | 708.0 | 297.1 | - | 300.1 | 302.0 | STNM021 |  |
| STN | 22 | 112515 | 20:41 | 20:54 | 04-03.93S | 101-54.61E          | 632.0 | 296.9 | - | 301.1 | 303.0 | STNM022 |  |
| STN | 23 | 112515 | 23:39 | 00:34 | 04-04.17S | 101 <b>-</b> 52.99E | 754.0 | 498.3 | - | 501.6 | 505.0 | STNM023 |  |
| STN | 24 | 112615 | 02:41 | 02:53 | 04-03.80S | 101-54.02E          | 669.0 | 297.8 | - | 300.1 | 302.0 | STNM024 |  |
| STN | 25 | 112615 | 05:40 | 06:13 | 04-03.29S | 101-54.37E          | 617.0 | 298.0 | - | 301.1 | 303.0 | STNM025 |  |
| STN | 26 | 112615 | 08:37 | 08:49 | 04-04.06S | 101-54.11E          | 659.0 | 298.2 | - | 300.1 | 302.0 | STNM026 |  |
| STN | 27 | 112615 | 11:38 | 12:04 | 04-04.14S | 101-53.38E          | 725.0 | 297.3 | - | 301.1 | 303.0 | STNM027 |  |
| STN | 28 | 112615 | 14:38 | 14:51 | 04-03.208 | 101-54.37E          | 618.0 | 298.2 | - | 301.1 | 303.0 | STNM028 |  |
| STN | 29 | 112615 | 17:35 | 18:00 | 04-03.21S | 101-54.44E          | 613.0 | 298.0 | - | 300.1 | 302.0 | STNM029 |  |
| STN | 30 | 112615 | 20:41 | 20:53 | 04-04.06S | 101-54.24E          | 654.0 | 296.4 | - | 301.1 | 303.0 | STNM030 |  |
| STN | 31 | 112615 | 23:45 | 00:24 | 04-04.44S | 101-53.47E          | 739.0 | 496.4 | - | 500.6 | 504.0 | STNM031 |  |
| STN | 32 | 112715 | 02:41 | 02:54 | 04-05.228 | 101-54.33E          | 691.0 | 297.1 | - | 300.1 | 302.0 | STNM032 |  |
| STN | 33 | 112715 | 05:39 | 06:04 | 04-05.01S | 101-54.42E          | 690.0 | 298.4 | - | 301.1 | 303.0 | STNM033 |  |
| STN | 34 | 112715 | 08:37 | 08:49 | 04-04.03S | 101-54.13E          | 659.0 | 297.8 | - | 301.1 | 303.0 | STNM034 |  |
| STN | 35 | 112715 | 11:40 | 12:07 | 04-03.97S | 101-53.30E          | 722.0 | 298.0 | - | 300.1 | 302.0 | STNM035 |  |
| STN | 36 | 112715 | 14:41 | 14:53 | 04-02.97S | 101-55.19E          | 543.0 | 297.8 | - | 300.1 | 302.0 | STNM036 |  |
| STN | 37 | 112715 | 17:38 | 18:02 | 04-02.76S | 101-54.46E          | 628.0 | 296.9 | - | 300.1 | 302.0 | STNM037 |  |
| STN | 38 | 112715 | 20:42 | 20:55 | 04-03.65S | 101-54.06E          | 655.0 | 296.5 | - | 300.1 | 302.0 | STNM038 |  |
| STN | 39 | 112715 | 23:40 | 00:22 | 04-04.24S | 101-53.33E          | 734.0 | 498.4 | - | 503.6 | 507.0 | STNM039 |  |

| STN | 40 | 112815 | 02:39 | 02:51 | 04-03.518 | 101 <b>-</b> 54.18E | 643.0 | 297.6 | - | 301.1 | 303.0 | STNM040 |  |
|-----|----|--------|-------|-------|-----------|---------------------|-------|-------|---|-------|-------|---------|--|
| STN | 41 | 112815 | 05:40 | 06:12 | 04-04.32S | 101-53.73E          | 704.0 | 297.5 | - | 300.1 | 302.0 | STNM041 |  |
| STN | 42 | 112815 | 08:37 | 08:49 | 04-03.308 | 101-53.40E          | 696.0 | 296.9 | - | 300.1 | 302.0 | STNM042 |  |
| STN | 43 | 112815 | 11:41 | 12:07 | 04-03.51S | 101-52.99E          | 750.0 | 297.6 | - | 301.1 | 303.0 | STNM043 |  |
| STN | 44 | 112815 | 14:40 | 14:52 | 04-02.49S | 101-53.75E          | 648.0 | 297.8 | - | 301.1 | 303.0 | STNM044 |  |
| STN | 45 | 112815 | 18:02 | 18:26 | 04-05.258 | 101-54.40E          | 682.0 | 298.2 | - | 300.1 | 302.0 | STNM045 |  |
| STN | 46 | 112815 | 20:42 | 20:55 | 04-03.09S | 101-55.67E          | 509.0 | 297.1 | - | 300.1 | 302.0 | STNM046 |  |
| STN | 47 | 112815 | 23:39 | 00:16 | 04-04.17S | 101-53.27E          | 735.0 | 497.2 | - | 500.6 | 504.0 | STNM047 |  |
| STN | 48 | 112915 | 02:42 | 02:54 | 04-03.02S | 101-53.77E          | 656.0 | 297.5 | - | 300.1 | 302.0 | STNM048 |  |
| STN | 49 | 112915 | 05:40 | 06:11 | 04-04.49S | 101-53.57E          | 749.0 | 298.6 | - | 301.1 | 303.0 | STNM049 |  |
| STN | 50 | 112915 | 08:38 | 08:50 | 04-03.57S | 101-53.52E          | 692.0 | 298.0 | - | 301.1 | 303.0 | STNM050 |  |
| STN | 51 | 112915 | 11:38 | 12:02 | 04-04.16S | 101-53.32E          | 732.0 | 296.4 | - | 301.1 | 303.0 | STNM051 |  |
| STN | 52 | 112915 | 14:42 | 14:52 | 04-04.56S | 101-53.43E          | 780.0 | 296.5 | - | 301.1 | 303.0 | STNM052 |  |
| STN | 53 | 112915 | 17:37 | 18:03 | 04-03.02S | 101 <b>-</b> 53.99E | 639.0 | 297.3 | - | 301.1 | 303.0 | STNM053 |  |
| STN | 54 | 112915 | 20:40 | 20:53 | 04-03.64S | 101 <b>-</b> 54.69E | 615.0 | 296.9 | - | 300.1 | 302.0 | STNM054 |  |
| STN | 55 | 112915 | 23:41 | 00:24 | 04-04.09S | 101-52.98E          | 754.0 | 500.6 | - | 500.6 | 504.0 | STNM055 |  |
| STN | 56 | 113015 | 02:42 | 02:52 | 04-03.508 | 101 <b>-</b> 53.46E | 696.0 | 298.4 | - | 301.1 | 303.0 | STNM056 |  |
| STN | 57 | 113015 | 05:39 | 06:06 | 04-04.23S | 101-53.53E          | 717.0 | 297.8 | - | 300.1 | 302.0 | STNM057 |  |
| STN | 58 | 113015 | 08:38 | 08:50 | 04-04.71S | 101 <b>-</b> 53.49E | 760.0 | 300.8 | - | 301.1 | 303.0 | STNM058 |  |
| STN | 59 | 113015 | 11:37 | 12:02 | 04-04.04S | 101-53.77E          | 687.0 | 296.7 | - | 300.1 | 302.0 | STNM059 |  |
| STN | 60 | 113015 | 14:41 | 14:52 | 04-05.398 | 101-54.03E          | 730.0 | 300.2 | - | 301.1 | 303.0 | STNM060 |  |
| STN | 61 | 113015 | 17:38 | 18:05 | 04-04.26S | 101-53.47E          | 723.0 | 298.0 | - | 300.1 | 302.0 | STNM061 |  |
| STN | 62 | 113015 | 20:41 | 20:54 | 04-04.95S | 101-53.16E          | 772.0 | 296.7 | - | 301.1 | 303.0 | STNM062 |  |

| STN | 63 | 113015 | 23:40 | 00:19 | 04-04.19S | 101-52.92E          | 759.0 | 498.3 | - | 500.6 | 504.0 | STNM063 |  |
|-----|----|--------|-------|-------|-----------|---------------------|-------|-------|---|-------|-------|---------|--|
| STN | 64 | 120115 | 02:40 | 02:51 | 04-03.26S | 101-53.84E          | 660.0 | 298.4 | - | 301.1 | 303.0 | STNM064 |  |
| STN | 65 | 120115 | 05:40 | 06:12 | 04-03.328 | 101-53.60E          | 681.0 | 302.6 | - | 302.1 | 304.0 | STNM065 |  |
| STN | 66 | 120115 | 08:38 | 08:51 | 04-03.98S | 101-53.42E          | 714.0 | 298.2 | - | 301.1 | 303.0 | STNM066 |  |
| STN | 67 | 120115 | 11:37 | 12:02 | 04-04.05S | 101-52.90E          | 760.0 | 296.9 | - | 300.1 | 302.0 | STNM067 |  |
| STN | 68 | 120115 | 14:34 | 14:46 | 04-04.36S | 101 <b>-</b> 53.89E | 712.0 | 296.9 | - | 300.1 | 302.0 | STNM068 |  |
| STN | 69 | 120115 | 17:40 | 18:08 | 04-02.87S | 101-53.55E          | 687.0 | 296.7 | - | 301.1 | 303.0 | STNM069 |  |
| STN | 70 | 120115 | 20:42 | 20:55 | 04-03.78S | 101-53.83E          | 691.0 | 296.2 | - | 301.1 | 303.0 | STNM070 |  |
| STN | 71 | 120115 | 23:39 | 00:16 | 04-04.19S | 101-54.12E          | 671.0 | 497.0 | - | 500.6 | 504.0 | STNM071 |  |
| STN | 72 | 120215 | 02:41 | 02:52 | 04-03.34S | 101-54.19E          | 635.0 | 297.8 | - | 300.1 | 302.0 | STNM072 |  |
| STN | 73 | 120215 | 05:39 | 06:09 | 04-03.04S | 101-54.83E          | 579.0 | 296.9 | - | 300.1 | 302.0 | STNM073 |  |
| STN | 74 | 120215 | 08:37 | 08:50 | 04-03.198 | 101-53.02E          | 721.0 | 298.2 | - | 300.1 | 302.0 | STNM074 |  |
| STN | 75 | 120215 | 11:40 | 12:04 | 04-03.768 | 101-53.15E          | 737.0 | 297.1 | - | 300.1 | 302.0 | STNM075 |  |
| STN | 76 | 120215 | 14:39 | 14:50 | 04-04.00S | 101-54.19E          | 653.0 | 298.0 | - | 300.1 | 302.0 | STNM076 |  |
| STN | 77 | 120215 | 17:42 | 18:09 | 04-02.85S | 101-53.99E          | 673.0 | 297.6 | - | 301.1 | 303.0 | STNM077 |  |
| STN | 78 | 120215 | 20:40 | 20:53 | 04-03.74S | 101-54.22E          | 657.0 | 296.0 | - | 300.1 | 302.0 | STNM078 |  |
| STN | 79 | 120215 | 23:39 | 00:26 | 04-04.26S | 101-52.78E          | 770.0 | 501.9 | - | 501.6 | 505.0 | STNM079 |  |
| STN | 80 | 120315 | 02:47 | 02:58 | 04-02.98S | 101-54.28E          | 628.0 | 292.9 | - | 301.1 | 303.0 | STNM080 |  |
| STN | 81 | 120315 | 05:39 | 06:04 | 04-04.58S | 101-53.74E          | 743.0 | 299.3 | - | 301.1 | 303.0 | STNM081 |  |
| STN | 82 | 120315 | 08:40 | 08:53 | 04-03.15S | 101-54.50E          | 607.0 | 298.0 | - | 300.1 | 302.0 | STNM082 |  |
| STN | 83 | 120315 | 11:38 | 12:05 | 04-03.898 | 101-53.47E          | 705.0 | 297.8 | - | 301.1 | 303.0 | STNM083 |  |
| STN | 84 | 120315 | 14:39 | 14:50 | 04-03.07S | 101-53.37E          | 685.0 | 297.6 | - | 300.1 | 302.0 | STNM084 |  |
| STN | 85 | 120315 | 17:41 | 18:07 | 04-02.14S | 101-54.10E          | 618.0 | 297.6 | - | 301.1 | 303.0 | STNM085 |  |

| STN | 86  | 120315 | 20:41 | 20:54 | 04-03.82S | 101-55.55E          | 546.0 | 297.8 | - | 301.1 | 303.0 | STNM086 |  |
|-----|-----|--------|-------|-------|-----------|---------------------|-------|-------|---|-------|-------|---------|--|
| STN | 87  | 120315 | 23:39 | 00:19 | 04-03.80S | 101-53.57E          | 698.0 | 496.8 | - | 500.6 | 504.0 | STNM087 |  |
| STN | 88  | 120415 | 02:42 | 02:52 | 04-02.528 | 101-53.64E          | 683.0 | 298.2 | - | 300.1 | 302.0 | STNM088 |  |
| STN | 89  | 120415 | 05:40 | 06:13 | 04-02.658 | 101-54.70E          | 600.0 | 298.7 | - | 301.1 | 303.0 | STNM089 |  |
| STN | 90  | 120415 | 08:39 | 08:52 | 04-04.23S | 101 <b>-</b> 53.64E | 703.0 | 297.5 | - | 300.1 | 302.0 | STNM090 |  |
| STN | 91  | 120415 | 11:40 | 12:07 | 04-03.91S | 101-53.41E          | 715.0 | 297.8 | - | 300.1 | 302.0 | STNM091 |  |
| STN | 92  | 120415 | 14:37 | 14:48 | 04-04.98S | 101 <b>-</b> 54.06E | 785.0 | 297.6 | - | 300.1 | 302.0 | STNM092 |  |
| STN | 93  | 120415 | 17:39 | 18:06 | 04-03.23S | 101-53.59E          | 680.0 | 300.4 | - | 301.1 | 303.0 | STNM093 |  |
| STN | 94  | 120415 | 20:40 | 20:52 | 04-04.31S | 101-53.71E          | 711.0 | 296.7 | - | 300.1 | 302.0 | STNM094 |  |
| STN | 95  | 120415 | 23:39 | 00:16 | 04-03.45S | 101-53.37E          | 707.0 | 498.4 | - | 502.6 | 506.0 | STNM095 |  |
| STN | 96  | 120515 | 02:39 | 02:50 | 04-04.55S | 101-52.90E          | 789.0 | 299.3 | - | 300.1 | 302.0 | STNM096 |  |
| STN | 97  | 120515 | 05:39 | 06:05 | 04-04.09S | 101-52.69E          | 770.0 | 298.0 | - | 300.1 | 302.0 | STNM097 |  |
| STN | 98  | 120515 | 08:38 | 08:51 | 04-03.69S | 101-53.78E          | 675.0 | 299.3 | - | 301.1 | 303.0 | STNM098 |  |
| STN | 99  | 120515 | 11:38 | 12:03 | 04-03.82S | 101-53.62E          | 697.0 | 296.0 | - | 300.1 | 302.0 | STNM099 |  |
| STN | 100 | 120515 | 14:34 | 14:46 | 04-04.22S | 101-53.66E          | 703.0 | 297.8 | - | 300.1 | 302.0 | STNM100 |  |
| STN | 101 | 120515 | 17:38 | 18:04 | 04-05.22S | 101-53.91E          | 762.0 | 298.6 | - | 301.1 | 303.0 | STNM101 |  |
| STN | 102 | 120515 | 20:40 | 20:52 | 04-04.19S | 101-54.72E          | 621.0 | 298.9 | - | 301.1 | 303.0 | STNM102 |  |
| STN | 103 | 120515 | 23:39 | 00:20 | 04-04.09S | 101-53.32E          | 727.0 | 496.8 | - | 500.6 | 504.0 | STNM103 |  |
| STN | 104 | 120615 | 02:39 | 02:50 | 04-04.55S | 101-54.03E          | 686.0 | 298.9 | - | 300.1 | 302.0 | STNM104 |  |
| STN | 105 | 120615 | 05:38 | 06:03 | 04-04.65S | 101-53.54E          | 769.0 | 297.8 | - | 301.1 | 303.0 | STNM105 |  |
| STN | 106 | 120615 | 08:38 | 08:50 | 04-03.57S | 101-53.99E          | 658.0 | 297.6 | - | 301.1 | 303.0 | STNM106 |  |
| STN | 107 | 120615 | 11:38 | 12:03 | 04-04.12S | 101-53.19E          | 738.0 | 297.3 | - | 301.1 | 303.0 | STNM107 |  |
| STN | 108 | 120615 | 14:38 | 14:50 | 04-03.91S | 101-53.68E          | 698.0 | 297.3 | - | 300.1 | 302.0 | STNM108 |  |

| STN | 109 | 120615 | 17:39 | 18:05 | 04-04.71S | 101-53.47E          | 766.0 | 298.0 | - | 301.1 | 303.0 | STNM109 |  |
|-----|-----|--------|-------|-------|-----------|---------------------|-------|-------|---|-------|-------|---------|--|
| STN | 110 | 120615 | 20:39 | 20:52 | 04-03.895 | 101-53.88E          | 678.0 | 296.0 | - | 300.1 | 302.0 | STNM110 |  |
| STN | 111 | 120615 | 23:40 | 00:18 | 04-04.26S | 101-53.26E          | 744.0 | 498.6 | - | 500.6 | 504.0 | STNM111 |  |
| STN | 112 | 120715 | 02:40 | 02:52 | 04-04.12S | 101-54.21E          | 662.0 | 299.1 | - | 301.1 | 303.0 | STNM112 |  |
| STN | 113 | 120715 | 05:40 | 06:11 | 04-03.895 | 101-53.23E          | 729.0 | 297.6 | - | 300.1 | 302.0 | STNM113 |  |
| STN | 114 | 120715 | 08:38 | 08:50 | 04-05.08S | 101-52.93E          | 797.0 | 298.7 | - | 301.1 | 303.0 | STNM114 |  |
| STN | 115 | 120715 | 11:38 | 12:02 | 04-04.42S | 101-53.15E          | 769.0 | 297.1 | - | 301.1 | 303.0 | STNM115 |  |
| STN | 116 | 120715 | 14:38 | 14:49 | 04-03.89S | 101-53.27E          | 727.0 | 297.6 | - | 300.1 | 302.0 | STNM116 |  |
| STN | 117 | 120715 | 17:37 | 18:03 | 04-04.85S | 101-53.11E          | 807.0 | 298.9 | - | 301.1 | 303.0 | STNM117 |  |
| STN | 118 | 120715 | 20:38 | 20:50 | 04-03.78S | 101 <b>-</b> 54.86E | 603.0 | 296.9 | - | 300.1 | 302.0 | STNM118 |  |
| STN | 119 | 120715 | 23:39 | 00:12 | 04-04.41S | 101-52.98E          | 764.0 | 502.8 | - | 502.6 | 506.0 | STNM119 |  |
| STN | 120 | 120815 | 02:40 | 02:51 | 04-05.17S | 101-53.49E          | 815.0 | 299.1 | - | 300.1 | 302.0 | STNM120 |  |
| STN | 121 | 120815 | 05:39 | 06:10 | 04-04.08S | 101-53.61E          | 703.0 | 300.9 | - | 302.1 | 304.0 | STNM121 |  |
| STN | 122 | 120815 | 08:37 | 08:50 | 04-05.098 | 101-53.69E          | 812.0 | 300.8 | - | 301.1 | 303.0 | STNM122 |  |
| STN | 123 | 120815 | 11:37 | 12:01 | 04-04.17S | 101-53.00E          | 757.0 | 297.5 | - | 300.1 | 302.0 | STNM123 |  |
| STN | 124 | 120815 | 14:39 | 14:51 | 04-04.13S | 101-53.59E          | 711.0 | 300.2 | - | 301.1 | 303.0 | STNM124 |  |
| STN | 125 | 120815 | 17:37 | 18:03 | 04-04.31S | 101-53.12E          | 749.0 | 298.7 | - | 301.1 | 303.0 | STNM125 |  |
| STN | 126 | 120815 | 20:40 | 20:52 | 04-03.45S | 101-53.72E          | 674.0 | 298.4 | - | 301.1 | 303.0 | STNM126 |  |
| STN | 127 | 120815 | 23:39 | 00:12 | 04-04.19S | 101-53.22E          | 739.0 | 495.1 | - | 500.6 | 504.0 | STNM127 |  |
| STN | 128 | 120915 | 02:40 | 02:51 | 04-03.17S | 101-53.26E          | 701.0 | 300.0 | - | 300.1 | 302.0 | STNM128 |  |
| STN | 129 | 120915 | 05:39 | 06:11 | 04-05.398 | 101-53.39E          | 833.0 | 298.0 | - | 300.1 | 302.0 | STNM129 |  |
| STN | 130 | 120915 | 08:37 | 08:50 | 04-05.04S | 101-53.13E          | 771.0 | 299.3 | - | 301.1 | 303.0 | STNM130 |  |
| STN | 131 | 120915 | 11:38 | 12:06 | 04-04.09S | 101-53.27E          | 732.0 | 297.1 | - | 300.1 | 302.0 | STNM131 |  |

| STN | 132 | 120915 | 14:37 | 14:48 | 04-04.77S | 101-53.54E          | 739.0 | 298.6 | - | 302.1 | 304.0 | STNM132 |  |
|-----|-----|--------|-------|-------|-----------|---------------------|-------|-------|---|-------|-------|---------|--|
| STN | 133 | 120915 | 17:37 | 18:02 | 04-03.66S | 101-54.15E          | 653.0 | 298.0 | - | 301.1 | 303.0 | STNM133 |  |
| STN | 134 | 120915 | 20:40 | 20:52 | 04-03.18S | 101-54.21E          | 628.0 | 297.3 | - | 300.1 | 302.0 | STNM134 |  |
| STN | 135 | 120915 | 23:39 | 00:19 | 04-04.34S | 101 <b>-</b> 52.96E | 757.0 | 501.7 | - | 505.6 | 509.0 | STNM135 |  |
| STN | 136 | 121015 | 02:39 | 02:50 | 04-04.86S | 101-52.80E          | 846.0 | 298.6 | - | 301.1 | 303.0 | STNM136 |  |
| STN | 137 | 121015 | 05:39 | 06:09 | 04-04.16S | 101-52.87E          | 767.0 | 298.0 | - | 300.1 | 302.0 | STNM137 |  |
| STN | 138 | 121015 | 08:37 | 08:50 | 04-03.64S | 101-52.73E          | 781.0 | 297.8 | - | 301.1 | 303.0 | STNM138 |  |
| STN | 139 | 121015 | 11:40 | 12:02 | 04-04.13S | 101 <b>-</b> 52.89E | 761.0 | 297.6 | - | 301.1 | 303.0 | STNM139 |  |
| STN | 140 | 121015 | 14:36 | 14:47 | 04-03.04S | 101-53.98E          | 641.0 | 297.3 | - | 301.1 | 303.0 | STNM140 |  |
| STN | 141 | 121015 | 17:37 | 18:03 | 04-02.79S | 101-53.79E          | 704.0 | 297.8 | - | 301.1 | 303.0 | STNM141 |  |
| STN | 142 | 121015 | 20:40 | 20:53 | 04-03.12S | 101-53.43E          | 682.0 | 296.2 | - | 300.1 | 302.0 | STNM142 |  |
| STN | 143 | 121015 | 23:38 | 00:12 | 04-04.16S | 101-52.82E          | 766.0 | 498.1 | - | 500.6 | 504.0 | STNM143 |  |
| STN | 144 | 121115 | 02:41 | 02:52 | 04-02.928 | 101-53.30E          | 695.0 | 298.9 | - | 300.1 | 302.0 | STNM144 |  |
| STN | 145 | 121115 | 05:38 | 06:08 | 04-04.02S | 101-52.72E          | 769.0 | 297.6 | - | 300.1 | 302.0 | STNM145 |  |
| STN | 146 | 121115 | 08:37 | 08:49 | 04-04.78S | 101-52.77E          | 834.0 | 298.6 | - | 300.1 | 302.0 | STNM146 |  |
| STN | 147 | 121115 | 11:38 | 12:02 | 04-04.03S | 101-53.30E          | 729.0 | 297.5 | - | 300.1 | 302.0 | STNM147 |  |
| STN | 148 | 121115 | 14:32 | 14:44 | 04-02.86S | 101-53.23E          | 711.0 | 299.5 | - | 301.1 | 303.0 | STNM148 |  |
| STN | 149 | 121115 | 17:37 | 18:06 | 04-03.78S | 101-53.87E          | 684.0 | 297.6 | - | 301.1 | 303.0 | STNM149 |  |
| STN | 150 | 121115 | 20:39 | 20:52 | 04-02.77S | 101-54.51E          | 628.0 | 292.1 | - | 301.1 | 303.0 | STNM150 |  |
| STN | 151 | 121115 | 23:40 | 00:19 | 04-04.06S | 101-53.34E          | 725.0 | 501.4 | - | 503.6 | 507.0 | STNM151 |  |
| STN | 152 | 121215 | 02:40 | 02:51 | 04-03.308 | 101-54.58E          | 610.0 | 298.7 | - | 300.1 | 302.0 | STNM152 |  |
| STN | 153 | 121215 | 05:38 | 06:02 | 04-03.22S | 101-53.86E          | 658.0 | 298.7 | - | 300.1 | 302.0 | STNM153 |  |
| STN | 154 | 121215 | 08:38 | 08:50 | 04-03.88S | 101-53.72E          | 693.0 | 297.8 | - | 300.1 | 302.0 | STNM154 |  |

| STN | 155 | 121215 | 11:37 | 12:03 | 04-04.06S | 101-53.40E          | 719.0 | 297.5 | - | 300.1 | 302.0 | STNM155 |  |
|-----|-----|--------|-------|-------|-----------|---------------------|-------|-------|---|-------|-------|---------|--|
| STN | 156 | 121215 | 14:39 | 14:50 | 04-04.23S | 101-53.55E          | 718.0 | 297.6 | - | 300.1 | 302.0 | STNM156 |  |
| STN | 157 | 121215 | 17:37 | 18:02 | 04-03.258 | 101-53.28E          | 706.0 | 296.7 | - | 300.1 | 302.0 | STNM157 |  |
| STN | 158 | 121215 | 20:39 | 20:52 | 04-03.298 | 101-53.81E          | 662.0 | 296.4 | - | 300.1 | 302.0 | STNM158 |  |
| STN | 159 | 121215 | 23:39 | 00:16 | 04-03.34S | 101 <b>-</b> 53.94E | 657.0 | 496.6 | - | 501.6 | 505.0 | STNM159 |  |
| STN | 160 | 121315 | 02:39 | 03:21 | 04-03.44S | 101-53.78E          | 669.0 | 497.9 | - | 500.6 | 504.0 | STNM160 |  |
| STN | 161 | 121315 | 05:39 | 06:08 | 04-03.60S | 101-54.22E          | 642.0 | 297.5 | - | 300.1 | 302.0 | STNM161 |  |
| STN | 162 | 121315 | 08:42 | 08:53 | 04-03.16S | 101-54.22E          | 624.0 | 295.8 | - | 300.1 | 302.0 | STNM162 |  |
| STN | 163 | 121315 | 11:40 | 12:04 | 04-03.64S | 101-53.81E          | 672.0 | 297.6 | - | 301.1 | 303.0 | STNM163 |  |
| STN | 164 | 121315 | 14:37 | 14:49 | 04-04.01S | 101-53.67E          | 696.0 | 297.5 | - | 300.1 | 302.0 | STNM164 |  |
| STN | 165 | 121315 | 17:38 | 18:04 | 04-03.44S | 101-53.72E          | 674.0 | 297.5 | - | 301.1 | 303.0 | STNM165 |  |
| STN | 166 | 121315 | 20:40 | 20:52 | 04-03.71S | 101-53.70E          | 683.0 | 296.5 | - | 300.1 | 302.0 | STNM166 |  |
| STN | 167 | 121315 | 23:39 | 00:12 | 04-03.82S | 101-53.99E          | 670.0 | 497.7 | - | 502.6 | 506.0 | STNM167 |  |
| STN | 168 | 121415 | 02:40 | 02:51 | 04-03.24S | 101-53.90E          | 654.0 | 298.4 | - | 300.1 | 302.0 | STNM168 |  |
| STN | 169 | 121415 | 05:38 | 06:06 | 04-02.77S | 101-54.25E          | 654.0 | 298.7 | - | 301.1 | 303.0 | STNM169 |  |
| STN | 170 | 121415 | 08:37 | 08:48 | 04-03.238 | 101-53.72E          | 668.0 | 298.2 | - | 300.1 | 302.0 | STNM170 |  |
| STN | 171 | 121415 | 11:33 | 11:57 | 04-03.38S | 101-53.61E          | 684.0 | 298.0 | - | 301.1 | 303.0 | STNM171 |  |
| STN | 172 | 121415 | 14:37 | 14:49 | 04-02.378 | 101-53.45E          | 653.0 | 298.2 | - | 300.1 | 302.0 | STNM172 |  |
| STN | 173 | 121415 | 17:38 | 18:03 | 04-03.22S | 101-53.21E          | 709.0 | 297.5 | - | 300.1 | 302.0 | STNM173 |  |
| STN | 174 | 121415 | 20:39 | 20:52 | 04-04.01S | 101-53.07E          | 746.0 | 298.0 | - | 301.1 | 303.0 | STNM174 |  |
| STN | 175 | 121415 | 23:40 | 00:19 | 04-03.36S | 101-53.19E          | 733.0 | 499.4 | - | 500.6 | 504.0 | STNM175 |  |
| STN | 176 | 121515 | 02:39 | 02:50 | 04-02.85S | 101-54.47E          | 640.0 | 297.8 | - | 300.1 | 302.0 | STNM176 |  |
| STN | 177 | 121515 | 05:39 | 06:06 | 04-02.85S | 101-53.71E          | 691.0 | 295.8 | - | 300.1 | 302.0 | STNM177 |  |

| STN | 178 | 121515 | 08:39 | 08:49 | 04-04.37S | 101-53.67E          | 716.0 | 298.2 | - | 300.1 | 302.0 | STNM178 |  |
|-----|-----|--------|-------|-------|-----------|---------------------|-------|-------|---|-------|-------|---------|--|
| STN | 179 | 121515 | 11:26 | 11:50 | 04-03.308 | 101-53.89E          | 657.0 | 298.0 | - | 300.1 | 302.0 | STNM179 |  |
| STN | 180 | 121515 | 14:38 | 14:50 | 04-03.63S | 101-55.87E          | 513.0 | 297.8 | - | 301.1 | 303.0 | STNM180 |  |
| STN | 181 | 121515 | 17:35 | 18:01 | 04-05.238 | 101-54.45E          | 679.0 | 297.1 | - | 300.1 | 302.0 | STNM181 |  |
| STN | 182 | 121515 | 20:37 | 20:49 | 04-04.258 | 101-53.62E          | 708.0 | 296.9 | - | 300.1 | 302.0 | STNM182 |  |
| STN | 183 | 121515 | 23:36 | 00:11 | 04-03.42S | 101-53.84E          | 664.0 | 498.8 | - | 500.6 | 504.0 | STNM183 |  |
| STN | 184 | 121615 | 02:35 | 02:47 | 04-03.37S | 101-53.59E          | 685.0 | 300.0 | - | 301.1 | 303.0 | STNM184 |  |
| STN | 185 | 121615 | 05:37 | 06:05 | 04-04.26S | 101-54.57E          | 637.0 | 296.7 | - | 301.1 | 303.0 | STNM185 |  |
| STN | 186 | 121615 | 08:37 | 08:48 | 04-03.82S | 101-54.17E          | 655.0 | 301.7 | - | 301.1 | 303.0 | STNM186 |  |
| STN | 187 | 121615 | 11:38 | 12:04 | 04-04.03S | 101-53.87E          | 677.0 | 298.7 | - | 301.1 | 303.0 | STNM187 |  |
| STN | 188 | 121615 | 14:32 | 14:43 | 04-03.598 | 101-53.26E          | 718.0 | 298.0 | - | 300.1 | 302.0 | STNM188 |  |
| STN | 189 | 121615 | 17:38 | 18:04 | 04-03.44S | 101 <b>-</b> 54.57E | 610.0 | 297.6 | - | 301.1 | 303.0 | STNM189 |  |
| STN | 190 | 121615 | 20:41 | 20:53 | 04-03.87S | 101-53.90E          | 675.0 | 296.5 | - | 300.1 | 302.0 | STNM190 |  |
| STN | 191 | 121615 | 23:39 | 00:15 | 04-03.68S | 101-53.61E          | 690.0 | 499.4 | - | 501.6 | 505.0 | STNM191 |  |
| STN | 192 | 121715 | 02:39 | 02:51 | 04-03.69S | 101-53.67E          | 686.0 | 298.7 | - | 301.1 | 303.0 | STNM192 |  |
| STN | 193 | 121715 | 05:36 | 06:04 | 04-03.36S | 101-53.76E          | 671.0 | 297.6 | - | 301.1 | 303.0 | STNM193 |  |
| STN | 194 | 121715 | 08:39 | 08:50 | 04-03.65S | 101-53.08E          | 739.0 | 299.1 | - | 300.1 | 302.0 | STNM194 |  |
| STN | 195 | 121715 | 11:37 | 12:04 | 04-03.985 | 101-53.43E          | 715.0 | 297.5 | - | 300.1 | 302.0 | STNM195 |  |

## 5.17 Salinity of sampled water

(1) Personnel

| Masaki Katsumata | (JAMSTEC) | - Principal Investigator |
|------------------|-----------|--------------------------|
| Kenichi Katayama | (MWJ)     | - Operation Leader       |

## (2) Objective

To provide calibrations for the measurements of salinity collected from CTD casts and The Continuous Sea Surface Water Monitoring System (TSG).

## (3) Method

#### a. Salinity Sample Collection

Seawater samples were collected with 12 liter Niskin-X bottles and TSG. The salinity sample bottle of the 250ml brown glass bottle with screw cap was used for collecting the sample water. Each bottle was rinsed 3 times with the sample water, and was filled with sample water to the bottle shoulder. All of sample bottle were sealed with a plastic cone and a screw cap because we took into consideration the possibility of storage for about a month. The cone was rinsed 3 times with the sample seawater before its use. Each bottle was stored for more than 12 hours in the laboratory before the salinity measurement.

The kind and number of samples taken are shown as follows ;

| <i>Tuble 3.17-1 Kind C</i> | ind number of samples |
|----------------------------|-----------------------|
| Kind of Samples            | Number of Samples     |
| Samples for CTD            | 66                    |
| Samples for TSG            | 41                    |
| Total                      | 107                   |

Table 5.17-1 Kind and number of samples

#### b. Instruments and Method

The salinity analysis was carried out on R/V MIRAI during the cruise of MR15-04 using the salinometer (Model 8400B "AUTOSAL"; Guildline Instruments Ltd.: S/N 62556) with an additional peristaltic-type intake pump (Ocean Scientific International, Ltd.). A pair of precision digital thermometers (Model 9540; Guildline Instruments Ltd.) were used. The thermometer monitored the ambient temperature and the other monitored a bath temperature.

The specifications of the AUTOSAL salinometer and thermometer are shown as follows ;

| Salinometer (Model 8400B | "AU | TOSAL"; Guildline Instruments Ltd.)           |
|--------------------------|-----|-----------------------------------------------|
| Measurement Range        | :   | 0.005 to 42 (PSU)                             |
| Accuracy                 |     | : Better than $\pm 0.002$ (PSU) over 24 hours |
|                          |     | without re-standardization                    |
| Maximum Resolution       | :   | Better than $\pm 0.0002$ (PSU) at 35 (PSU)    |

| Thermometer (Model 9540; | G | uildline Instruments Ltd.)                                                        |
|--------------------------|---|-----------------------------------------------------------------------------------|
| Measurement Range        | : | -40 to +180 deg C                                                                 |
| Resolution               |   | : 0.001                                                                           |
| Limits of error ±deg C   | : | $0.01 (24 \text{ hours } @ 23 \text{ deg } \text{C} \pm 1 \text{ deg } \text{C})$ |
| Repeatability            | : | ±2 least significant digits                                                       |

The measurement system was almost the same as Aoyama *et al.* (2002). The salinometer was operated in the air-conditioned ship's laboratory at a bath temperature of 24 deg C. The ambient temperature varied from approximately 22 deg C to 24 deg C, while the bath temperature was very stable and varied within +/- 0.004 deg C on rare occasion. The measurement for each sample was done with a double conductivity ratio and defined as the median of 31 readings of the salinometer. Data collection was started 5 seconds after filling the cell with the sample and it took about 10 seconds to collect 31 readings by a personal computer. Data were taken for the sixth and seventh filling of the cell. In the case of the difference between the double conductivity ratio of these two fillings being smaller than 0.00002, the average value of the double conductivity ratio was used to calculate the bottle salinity with the algorithm for the practical salinity scale, 1978 (UNESCO, 1981). If the difference between the double conductivity ratio of these two fillings being smaller than 0.00002, the average value of the double conductivity ratio do the cell was done. In the case of the difference between the double conductivity ratio was used to calculate the bottle salinity with the algorithm for the practical salinity scale, 1978 (UNESCO, 1981). If the difference between the double conductivity ratio of these two fillings being smaller than 0.00002, the average value of the double conductivity ratio was used to calculate the bottle salinity. The measurement was conducted in about 4 hours per day and the cell was cleaned with soap after the measurement of the day.

## (4) Results

## a. Standard Seawater

Standardization control of the salinometer was set to 713 and all measurements were done at this setting. The value of STANDBY was 24+5215~5216 and that of ZERO was 0.0-0001~0000. The conductivity ratio of IAPSO Standard Seawater batch P157 was 0.99985 (double conductivity ratio was 1.99970) and was used as the standard for salinity. 15 bottles of P157 were measured.

Fig.5.17-1 shows the time series of the double conductivity ratio of the Standard Seawater batch P157. The average of the double conductivity ratio was 1.99969 and the standard deviation was 0.00001 which is equivalent to 0.0002 in salinity.

Fig.5.17-2 shows the time series of the double conductivity ratio of the Standard Seawater batch P157 after correction. The average of the double conductivity ratio after correction was 1.99970 and the standard deviation was 0.00001, which is equivalent to 0.0002 in salinity.

The specifications of SSW used in this cruise are shown as follows ;

| batch              | : | P157                      |
|--------------------|---|---------------------------|
| conductivity ratio | : | 0.99985                   |
| salinity           | : | 34.994                    |
| use by             | : | 15 <sup>th</sup> May 2017 |

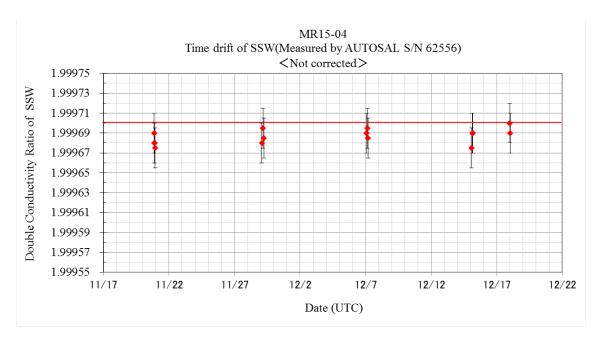



Fig. 5.17-1: Time series of double conductivity ratio for the Standard Seawater batch P157 (before correction)



Fig. 5.17-2: Time series of double conductivity ratio for the Standard Seawater batch P157 (after correction)

## b. Sub-Standard Seawater

Sub-standard seawater was made from Surface-sea water filtered by a pore size of 0.22 micrometer and stored in a 20 liter container made of polyethylene and stirred for at least 24 hours before measuring. It was measured about every 6 samples in order to check for the possible sudden drifts of the salinometer.

## c. Replicate Samples

We estimated the precision of this method using 33 pairs of replicate samples taken from the same Niskin bottle. The average and the standard deviation of absolute difference among 33 pairs of replicate samples were 0.0003 and 0.0002 in salinity, respectively.

## (5) Data archive

These raw datasets will be submitted to JAMSTEC Data Management Office (DMO).

## (6) Reference

- Aoyama, M., T. Joyce, T. Kawano and Y. Takatsuki : Standard seawater comparison up to P129. Deep-Sea Research, I, Vol. 49, 1103~1114, 2002
- •UNESCO : Tenth report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Papers in Mar. Sci., 36, 25 pp., 1981

## 5.18 Dissolved oxygen of sampled water

## (1) Personnel

| Masaki KATSUMATA | (JAMSTEC)                    | - Principal Investigator |
|------------------|------------------------------|--------------------------|
| Haruka TAMADA    | (Marine Works Japan Co. Ltd) | - Operation Leader       |
| Misato KUWAHARA  | (Marine Works Japan Co. Ltd) |                          |

(2) Objective

Determination of dissolved oxygen in seawater by Winkler titration.

#### (3) Instruments and Methods

Following procedure is based on an analytical method, entitled by "Determination of dissolved oxygen in sea water by Winkler titration", in the WHP Operations and Methods (Dickson, 1996).

a. Instruments

Burette for sodium thiosulfate and potassium iodate;

APB-510 / APB-620 manufactured by Kyoto Electronic Co. Ltd. / 10 cm<sup>3</sup> of titration vessel

Detector;

Automatic photometric titrator (DOT-01X) manufactured by Kimoto Electronic Co. Ltd. Software;

DOT Terminal Ver. 1.2.0

b. Reagents

Pickling Reagent I: Manganese chloride solution (3 mol dm<sup>-3</sup>) Pickling Reagent II:

Sodium hydroxide (8 mol dm<sup>-3</sup>) / sodium iodide solution (4 mol dm<sup>-3</sup>)

Sulfuric acid solution (5 mol dm<sup>-3</sup>)

Sodium thiosulfate (0.025 mol dm<sup>-3</sup>)

Potassium iodide (0.001667 mol dm<sup>-3</sup>)

CSK standard of potassium iodide:

Lot KPG6393, Wako Pure Chemical Industries Ltd., 0.0100N

## c. Sampling

Seawater samples were collected with Niskin bottle attached to the CTD-system and surface bucket sampler. Seawater for oxygen measurement was transferred from sampler to a volume calibrated flask (ca. 100 cm<sup>3</sup>). Three times volume of the flask of seawater was overflowed. Temperature was measured by digital thermometer during the overflowing. Then two reagent solutions (Reagent I and II) of 0.5 cm<sup>3</sup> each were added immediately into the sample flask and the stopper was inserted carefully into the flask. The sample

flask was then shaken vigorously to mix the contents and to disperse the precipitate finely throughout. After the precipitate has settled at least halfway down the flask, the flask was shaken again vigorously to disperse the precipitate. The sample flasks containing pickled samples were stored in a laboratory until they were titrated.

### d. Sample measurement

At least two hours after the re-shaking, the pickled samples were measured on board. 1 cm<sup>3</sup> sulfuric acid solution and a magnetic stirrer bar were added into the sample flask and stirring began. Samples were titrated by sodium thiosulfate solution whose morality was determined by potassium iodate solution. Temperature of sodium thiosulfate during titration was recorded by a digital thermometer. During this cruise, we measured dissolved oxygen concentration using 2 sets of the titration apparatus. Dissolved oxygen concentration (µmol kg<sup>-1</sup>) was calculated by sample temperature during seawater sampling, salinity of the bottle sampling, flask volume, and titrated volume of sodium thiosulfate solution without the blank.

### e. Standardization and determination of the blank

Concentration of sodium thiosulfate titrant was determined by potassium iodate solution. Pure potassium iodate was dried in an oven at 130°C. 1.7835g potassium iodate weighed out accurately was dissolved in deionized water and diluted to final volume of 5 dm<sup>3</sup> in a calibrated volumetric flask (0.001667 mol dm<sup>-3</sup>). 10 cm<sup>3</sup> of the standard potassium iodate solution was added to a flask using a volume-calibrated dispenser. Then 90 cm<sup>3</sup> of deionized water, 1 cm<sup>3</sup> of sulfuric acid solution, and 0.5 cm<sup>3</sup> of pickling reagent solution II and I were added into the flask in order. Amount of titrated volume of sodium thiosulfate (usually 5 times measurements average) gave the morality of sodium thiosulfate titrant.

The oxygen in the pickling reagents I ( $0.5 \text{ cm}^3$ ) and II ( $0.5 \text{ cm}^3$ ) was assumed to be  $3.8 \times 10^{-8} \text{ mol}$  (Murray *et al.*, 1968). The blank due to other than oxygen was determined as follows.1 and 2 cm<sup>3</sup> of the standard potassium iodate solution were added to two flasks respectively using a calibrated dispenser. Then 100 cm<sup>3</sup> of deionized water, 1 cm<sup>3</sup> of sulfuric acid solution, and  $0.5 \text{ cm}^3$  of pickling reagent solution II and I each were added into the flask in order. The blank was determined by difference between the first ( $1 \text{ cm}^3$  of KIO<sub>3</sub>) titrated volume of the sodium thiosulfate and the second ( $2 \text{ cm}^3$  of KIO<sub>3</sub>) one. The results of 3 times blank determinations were averaged.

#### (4) Observation log

a. Standardization and determination of the blank

Table 5.18-1 shows results of the standardization and the blank determination during this cruise.

| Date       | KIO <sub>3</sub> ID | Na <sub>2</sub> S <sub>2</sub> O | DOT-01X(No.6) |       | DOT-01X(No.8) |       | Quations                                                                                                                                            |  |
|------------|---------------------|----------------------------------|---------------|-------|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            |                     | 3                                | E.P.          | Blank | E.P.          | Blank | Stations                                                                                                                                            |  |
| 2015/11/12 | K1504C09            | T1505F                           | 4.022         | 0.006 | 4.023         | 0.005 |                                                                                                                                                     |  |
| 2015/11/20 | CSK_KPG6<br>393     | T1505F                           | 4.026         | 0.007 | 4.028         | 0.005 |                                                                                                                                                     |  |
| 2015/11/20 | K1504D02            | T1505F                           | 4.021         | 0.007 | 4.025         | 0.005 | L01, L02, L05, L08, L11, L14, L17, L20,<br>L23, L26, STN(cast001, 003, 005, 007, 009,<br>011, 015, 017, 019, 023, 025, 027, 029, 031,<br>033)       |  |
| 2015/11/27 | K1504D03            | T1505F                           | 4.023         | 0.004 | 4.026         | 0.006 | STN(cast035, 037, 039, 041, 043, 045, 047, 049, 051, 053, 055, 057, 059, 061, 063, 065)                                                             |  |
| 2015/12/2  | K1504D04            | T1505F                           | 4.024         | 0.010 | 4.027         | 0.005 |                                                                                                                                                     |  |
| 2015/12/2  | K1504D04            | T1505G                           | 3.963         | 0.005 | 3.962         | 0.001 | STN(cast067, 069, 071, 073, 075, 077, 079, 081, 083, 085, 087, 089, 091, 093, 095, 097, 099, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121) |  |
| 2015/12/8  | K1504D05            | T1505G                           | 3.962         | 0.008 | 3.961         | 0.002 | STN(cast123, 125, 127, 129, 131, 133, 135,<br>137, 139, 141, 143, 145, 147, 149, 151, 153,<br>155, 157, 159, 161, 163, 165)                         |  |
| 2015/12/15 | K1504D06            | T1505G                           | 3.963         | 0.006 | 3.963         | 0.002 | STN(cast167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195)                                                                  |  |

Table 5.18-1 Results of the standardization and the blank determinations during cruise.

## b. Results

Time-series profile for dissolved oxygen fixed point is shown in figure 5.18-1.

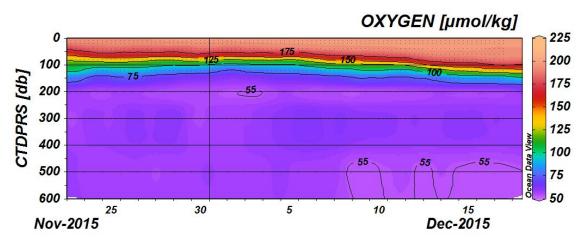



Figure 5.18-1 Time-series profile of dissolved oxygen.

#### c. Repeatability of sample measurement

Replicate samples were taken at every CTD casts. Total amount of the replicate sample pairs of good measurement was 108. The standard deviation of the replicate measurement was 0.10  $\mu$ mol kg<sup>-1</sup> that was calculated by a procedure in Guide to best practices for ocean CO<sub>2</sub> measurements Chapter4 SOP23 Ver.3.0 (2007). Results of replicate samples diagram were shown in Fig. 5.18-2.

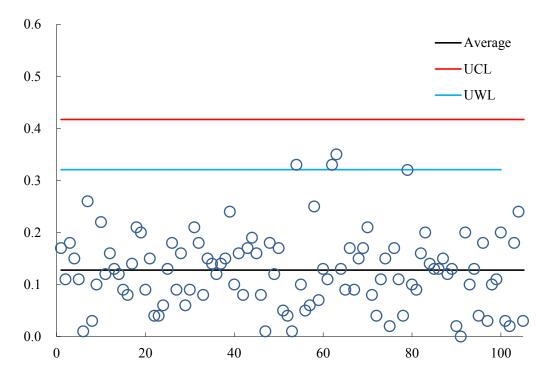



Fig. 5.18-2 Differences of replicate samples against sequence number.

## (5) Data archives

These data obtained in this cruise will be submitted to the Data Management Office (DMO) of JAMSTEC, and will be opened to public via JAMSTEC web site.

## (6) References

Dickson, A.G., Determination of dissolved oxygen in sea water by Winkler titration. (1996)

Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.), Guide to best practices for ocean CO2 measurements. (2007)

Culberson, C.H., WHP Operations and Methods July-1991 "Dissolved Oxygen", (1991)

Japan Meteorological Agency, Oceanographic research guidelines (Part 1). (1999)

KIMOTO electric CO. LTD., Automatic photometric titrator DOT-01 Instruction manual

## 5.19 Nutrients of Sampled Water

#### (1) Personnel

| Masaki Katsumata | (JAMSTEC) | : Principal Investigator |
|------------------|-----------|--------------------------|
| Tomomi Sone      | (MWJ)     | : Operating Leader       |
| Masanori Enoki   | (MWJ)     | : Operator               |

#### (2) Objectives

The vertical and horizontal distributions of the nutrients are one of the most important factors on the primary production. During this cruise nutrient measurements will give us the important information on the mechanism of the primary production or seawater circulation.

#### (3) Methods

Nutrient analysis was performed on the BL-Tech QUAATRO system. The laboratory temperature was maintained between 20.0-22.5 deg C.

The analytical methods of the nutrients, nitrate, nitrite, silicate and phosphate, during this cruise were same as the methods used in Kawano et al. (2009).

#### a. Measured Parameters

Nitrate + nitrite and nitrite were analyzed according to the modification method of Grasshoff (1970). The sample nitrate was reduced to nitrite in a cadmium tube inside of which was coated with metallic copper. The sample streamed with its equivalent nitrite was treated with an acidic, sulfanilamide reagent and the nitrite forms nitrous acid which reacted with the sulfanilamide to produce a diazonium ion. N-1-Naphthylethylene-diamine added to the sample stream then coupled with the diazonium ion to produce a red, azo dye. With reduction of the nitrate to nitrite, both nitrate and nitrite reacted and were measured; without reduction, only nitrite reacted. Thus, for the nitrite analysis, no reduction was performed and the alkaline buffer was not necessary. Nitrate was computed by difference.

Absorbance of 550 nm by azo dye in analysis is measured using a 1 cm length cell for nitrate and 3 cm length cell for nitrite. At L02M001-L26M001 and STNM001-STNM009, however, 2cm length cell was used for measuring nitrite.

The silicate method was analogous to that described for phosphate. The method used was essentially that of Grasshoff et al. (1983), wherein silicomolybdic acid was first formed from the silicate in the sample and added molybdic acid; then the silicomolybdic acid was reduced to silicomolybdous acid, or "molybdenum blue" using ascorbic acid as the reductant.

Absorbance of 630 nm by silicomolybdous acid in analysis is measured using a 1 cm length cell.

The phosphate analysis was a modification of the procedure of Murphy and Riley (1962). Molybdic acid was added to the seawater sample to form phosphomolybdic acid which was in turn reduced to phosphomolybdous acid using L-ascorbic acid as the reductant.

Absorbance of 880 nm by phosphomolybdous acid in analysis is measured using a 1 cm length cell.

#### b. Nutrients Standard

#### Specifications

For nitrate standard, "potassium nitrate 99.995 suprapur®" provided by Merck, Lot. B0771365211, CAS No.: 7757-91-1, was used.

For nitrite standard solution, we used "nitrous acid iron standard solution (NO<sub>2</sub><sup>-</sup> 1000) provided by Wako, Lot ECP4122, Code. No. 140-06451." This standard solution was certified by Wako using Ion chromatograph method. Calibration result is 999 mg/L at 20 deg. C. Expanded uncertainty of calibration (k=2) is 0.7 % for the calibration result.

For phosphate standard, "potassium dihydrogen phosphate anhydrous 99.995 suprapur®" provided by Merck, Lot. B0691108204, CAS No.: 7778-77-0, was used.

For the silicate standard, we use "Silicon standard solution  $SiO_2$  in NaOH 0.5 mol/l CertiPUR®" provided by Merck, CAS No.: 1310-73-2, of which lot number is HC54715536 are used. The silicate concentration is certified by NIST-SRM3150 with the uncertainty of 0.5 %. HC54715536 is certified as 1001 mg L<sup>-1</sup>.

Ultra pure water (Milli-Q) freshly drawn was used for preparation of reagent, standard solutions and for measurement of reagent and system blanks.

### Concentrations of nutrients for A, B and C standards

Concentrations of nutrients for A, B and C standards (working standards) were set as shown in Table 5.19.1 Then the actual concentration of nutrients in each fresh standard was calculated based on the ambient temperature, solution temperature and determined factors of volumetric laboratory wares.

The calibration curves for each run were obtained using 4 levels working standards, C-1, C-2, C-3, and C-4.

|                    | А     | В    | C-1   | C-2   | C-3   | C-4   |  |  |  |  |
|--------------------|-------|------|-------|-------|-------|-------|--|--|--|--|
| Nitrate (µmol/l)   | 22500 | 770  | 0.02  | 13.96 | 27.96 | 42.85 |  |  |  |  |
| Nitrite (µmol/l)   | 22000 | 26   | 0.02  | 0.53  | 1.05  | 1.57  |  |  |  |  |
| Silicate (µmol/l)  | 36000 | 1430 | 0.68  | 29.15 | 57.65 | 86.05 |  |  |  |  |
| Phosphate (µmol/l) | 3000  | 60   | 0.027 | 1.223 | 2.420 | 3.612 |  |  |  |  |

Table 5.19.1 Nominal concentrations of nutrients for A, B and C standards.

#### c. Sampling Procedures

Sampling of nutrients followed that of oxygen. Samples were drawn into two of virgin 10 ml polyacrylates vials without sample drawing tubes. These were rinsed three times before filling and vials were capped immediately after the drawing. The vials were put into water bath adjusted to ambient temperature,  $22 \pm 1$  deg. C, in about 30 minutes before use to stabilize the temperature of samples. The samples of bottle 16 (or 15 at deep cast), and 22 (or 21, 20) were measured in replicate and the rest were measured in single on each sample run.

No transfer was made and the vials were set an auto sampler tray directly. All the samples put into aluminum bag

were stored in iced water to avoid concentration change of nutrients and analyzed after collection basically within 48 hours. The samples collected at STNM171-195 were analyzed after collection within 24 hours, as nitrite concentration of some samples stored for 2days decreased from initial concentration by more than 10% maybe due to biological activity.

Sets of 4 different concentrations for nitrate, nitrite, silicate, phosphate of the shipboard standards were analyzed at beginning and end of each group of analysis. The standard solutions of highest concentration were measured every 14 - 15 samples and were used to evaluate precision of nutrients analysis during the cruise. We also used reference material for nutrients in seawater, RMNS (KANSO Co., Ltd., Lot CA), for every 2 runs to secure comparability on nutrient analysis throughout the cruise. We used same serial RMNS for 4 days.

#### d. Low Nutrients Sea Water (LNSW)

Surface water having low nutrient concentration was taken and filtered using 0.20 µm pore size membrane filter at MR14-06 cruise on November, 2014. This water is stored in 20 liter cubitainer with paper box.

We put 800 liter LNSW into gather the 1000 liter plastic bag (SHOWA PAXXS), which was pasteurized at 70 deg. C, in the Tank (S-CUBE). Filtering with 0.20 µm/0.45 µm pore size membrane filter, we've sterilized UV ray to LNSW for 36 hours used by "Onboard UV sterilization system." After that, LNSW was stored in 20 liter cubitainer with paper box again. LNSW' concentrations were assigned to August, 2015 on MR15-03 cruise.

#### (4) Results

We made 16 QuAAtro runs for the water columns sample at 107 casts during MR15-04 (9cast in line observation, 98cast in fixed point observation). The total amount of layers of the seawater sample reached up to 1430. We made basically single measurement. The station locations for nutrients measurement is shown in Figure 5.19.1.

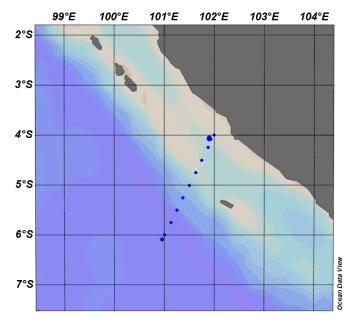



Figure 5.19.1 Sampling positions of nutrients sample.

Time-series profile for each nutrient at fixed point is shown in figure 5.19.2-5.19.5.

Analytical precisions in this cruise were 0.08% for nitrate, 0.18% for nitrite, 0.11% for silicate, 0.14% for phosphate in terms of median of precision, respectively. Results of analytical precisions for nitrate, nitrite, silicate and phosphate are shown in Table 5.19.2 for the cast's comparability.

Results of RMNS analysis are shown in Table 5.19.3 for the cast's comparability.

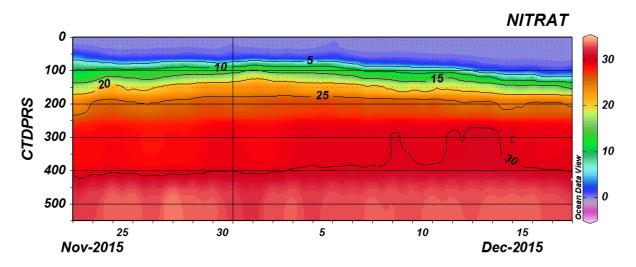



Figure 5.19.2 Time-series profile of nitrate

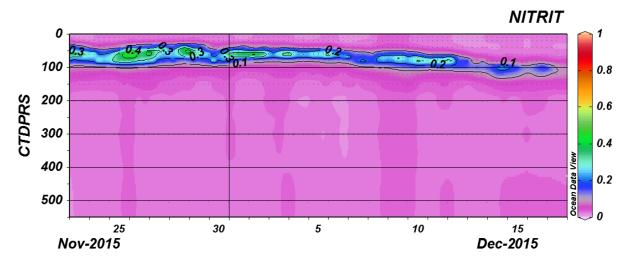



Figure 5.19.3 Time-series profile of nitrite

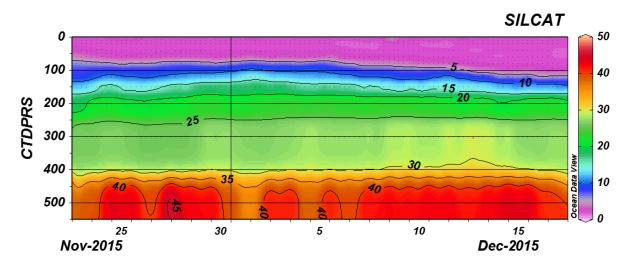



Figure 5.19.4 Time-series profile of silicate

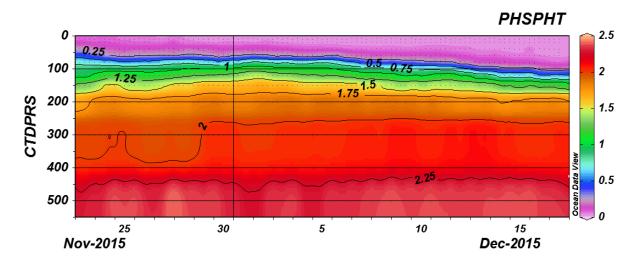



Figure 5.19.5 Time-series profile of phosphate

| Table 5.19.2 Summary of precision based on the analyses |         |         |          |           |  |  |
|---------------------------------------------------------|---------|---------|----------|-----------|--|--|
|                                                         | Nitrate | Nitrite | Silicate | Phosphate |  |  |
|                                                         | CV %    | CV %    | CV %     | CV %      |  |  |
| Median                                                  | 0.08    | 0.18    | 0.11     | 0.14      |  |  |
| Mean                                                    | 0.08    | 0.18    | 0.11     | 0.14      |  |  |
| Maximum                                                 | 0.17    | 0.35    | 0.17     | 0.24      |  |  |
| Minimum                                                 | 0.03    | 0.10    | 0.05     | 0.05      |  |  |
| Ν                                                       | 16      | 16      | 16       | 16        |  |  |

| Date(UTC) | Serial | Station                         | Nitrate  | Nitrite    | Silicate | Phosphate |
|-----------|--------|---------------------------------|----------|------------|----------|-----------|
| Date(01C) | Serial | Station                         | µmol/kg) | µmol/kg)   | µmol/kg) | µmol/kg)  |
| 22 Nov    | 0438   | L02,L05,L08,L11,L14,L17         | 19.65    | 0.07       | 36.59    | 1.414     |
| 24 Nov    | 0438   | L20,L23,L26,001,003,005,007,009 | 19.64    | 0.07       | 36.60    | 1.407     |
| 26 Nov    | 1245   | 011,013,015,017,019,021,023,025 | 19.62    | 0.07       | 36.61    | 1.413     |
| 28 Nov    | 1245   | 027,029,031,033,035,037,039,041 | 19.66    | 0.07       | 36.62    | 1.405     |
| 30 Nov    | 0616   | 043,045,047,049,051,053,055,057 | 19.62    | 0.07       | 36.59    | 1.41      |
| 3 Dec     | 1612   | 059,061,063,065,067,069,071,073 | 19.67    | 0.07       | 36.62    | 1.414     |
| 4 Dec     | 0290   | 075,077,079,081,083,085,087,089 | 19.63    | 0.07       | 36.59    | 1.41      |
| 6 Dec     | 0290   | 091,093,095,097,099,101,103,105 | 19.62    | 0.07       | 36.56    | 1.404     |
| 8 Dec     | 0204   | 107,109,111,113,115,117,119,121 | 19.65    | 0.07       | 36.65    | 1.418     |
| 10 Dec    | 0204   | 123,125,127,129,131,133,135,137 | 19.64    | 0.07       | 36.58    | 1.415     |
| 12 Dec    | 0818   | 139,141,143,145,147,149,151,153 | 19.62    | 0.08       | 36.60    | 1.413     |
| 14 Dec    | 0818   | 155,157,159,161,163,165,167,169 | 19.63    | 0.07       | 36.56    | 1.417     |
| 15 Dec    | 0818   | 171,173,175,177                 | 19.64    | 0.07       | 36.55    | 1.412     |
| 16 Dec    | 2297   | 179,181,183,185                 | 19.61    | 0.07       | 36.57    | 1.406     |
| 17 Dec    | 2297   | 187,189,191                     | 19.58    | 0.07       | 36.57    | 1.405     |
| 17 Dec    | 2297   | 193,195                         | 19.57    | 0.07       | 36.58    | 1.414     |
|           |        | Average                         | 19.63    | 0.07       | 36.59    | 1.411     |
|           |        | S.D.                            | ±0.03    | $\pm 0.00$ | ±0.03    | ±0.004    |

Table 5.19.3 Results of RMNS Lot CA analysis in this cruise

(5) Data Archive

These data obtained in this cruise will be submitted to the Data Management Office (DMO) of JAMSTEC, and will be opened to public via JAMSTEC web site.

(6) Reference

Grasshoff, K. (1970), Technicon paper, 691-57.

Grasshoff, K., Ehrhardt, M., Kremling K. et al. (1983), Methods of seawater analysis. 2nd rev. Weinheim: Verlag Chemie, Germany, West.

Kawano, T., Uchida, H. and Doi, T. WHP P01, P14 REVISIT DATA BOOK, (Ryoin Co., Ltd., Yokohama, 2009). Murphy, J., and Riley, J.P. (1962), Analytica chim. Acta 27, 31-36.

### 5.20 Chlorophyll *a* of sampled water

#### (1) Personnel

| Masaki Katsumata | (JAMSTEC) | - Principal Investigator |
|------------------|-----------|--------------------------|
| Misato Kuwahara  | (MWJ)     | - Operation Leader       |
| Haruka Tamada    | (MWJ)     |                          |

#### (2) Objective

We measured total chlorophyll *a and* size-fractionated chlorophyll *a* in seawater by using the fluorometric method.

#### (3) Instruments and methods

We collected samples for total chlorophyll *a* (chl-*a*) from 11 depths and size-fractionated chl-*a* from 11 depths between the surface and 200 m depth including a chl-*a* maxmum layer. The chl-*a* maximum layer was determined by a fluorometer (Seapoint Sensors, Inc.) attached to the CTD system.

Water samples for total chl-*a* were vacuum-filtrated (<0.02MPa) through 25mm-diameter Whatman GF/F filter. 10 $\mu$ m, 3 $\mu$ m and 1 $\mu$ m pore-size nuclepore filters (47 mm in diameter), and Whatman GF/F filter (25 mm in diameter) under gentle vacuum (<0.02MPa). Phytoplankton ipigments retained on the filters were immediately extracted in a polypropylene tube with 7 ml of N,N-dimethylformamide. The tubes were stored at –20°C under the dark condition to extract chl-*a* at least for 24 hours.

Fluorescences of each sample were measured by Turner Design fluorometer (10-AU-005), which was calibrated against a pure chl-*a* (Sigma chemical Co.). We applied fluorometric determination for the samples of chl-*a* "Non-acidification method" (Welschmeyer, 1994). Analytical conditions of this method were listed in Table 5.20-1.

#### (4) Station list

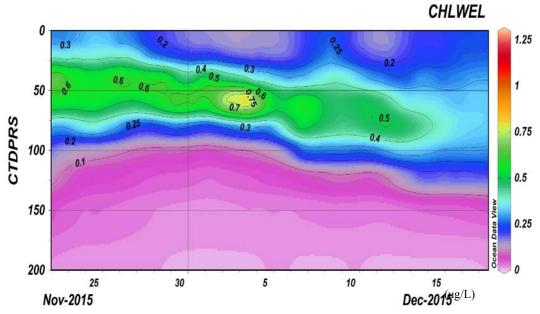
Samples for total and size-fractionated chl-*a* were collected at 10 Station and 107 casts. Samples for size-fractionated chl-*a* were collected at 1 Station and 8 casts. The numbers of samples for total and size-fractionated chl-*a* were 1284 and 352, respectively.

#### (5) Preliminary results

Time-series profile for chl-*a* fixed point is shown in figure 5.20-1.

At each station, water samples were taken in replicate for water of chl-*a* maximum layer. The relative error was 2 % (n = 107).

#### (6) Data archives


These data obtained in this cruise will be submitted to the Data Management Office (DMO) of JAMSTEC, and will be opened to public via JAMSTEC web site.

## (7) Reference

Welschmeyer, N. A. (1994): Fluorometric analysis of chlorophyll *a* in the presence of chlorophyll *b* and pheopigments. *Limnol. Oceanogr.*, 39, 1985–1992.

Table 5.20-1. Analytical conditions of non-acidification method for chlorophyll a with Turner Design fluorometer (10-AU-005).

|                        | Non-acidification method |
|------------------------|--------------------------|
| Excitation filter (nm) | 436                      |
| Emission filter (nm)   | 680                      |
| Lamp                   | Blue F4T5,B2/BP          |





## **5.21 HPLC**

### (1) Personnel

| Masaki KATSUMATA | (JAMSTEC) | Principal Investigator |
|------------------|-----------|------------------------|
| Hiroshi HOSHINO  | (MWJ)     | Operation Leader       |
| Atsushi ONO      | (MWJ)     |                        |

### (2) Objective

The chemotaxonomic assessment of phytoplankton populations present in natural seawater requires taxon-specific algal pigments as good biochemical markers. A high-performance liquid chromatography (HPLC) measurement is an optimum method for separating and quantifying phytoplankton pigments in natural seawater. In this cruise, we measured the marine phytoplankton pigments by HPLC to investigate the marine phytoplankton community structure.

### (3) Methods, Apparatus and Performance

Seawater samples were collected from 11 depths between the surface and 200 m. Seawater samples were collected using Niskin bottles, except for the surface water, which was taken by a bucket. For the total phytoplankton pigment measurements, 2L of seawater samples were filtered (<0.02 MPa) through the 47-mm diameter Whatman GF/F filter. For the size fractionated phytoplankton pigment measurements, 3 L of seawater samples were filtered by the 1, 3 or 10 µm pore size of nuclepore filters prior to the GF/F filter. To remove retaining seawater in the sample filters, GF/F filters were vacuum-dried in a freezer (0 °C) within 13.5 hours. Subsequently, phytoplankton pigments retained on a filter were extracted in a glass tube with 4 ml of N,N-dimethylformamide (HPLC-grade) for at least 24 hours in a freezer (-20 °C), and analyzed by HPLC within a few days.

Residua cells and filter debris were removed through PTFE syringe filter (pore size: 0.2  $\mu$ m) before the analysis. The samples injection of 500  $\mu$ l was conducted by auto-sampler with the mixture of extracted pigments (350  $\mu$ l), pure water (150  $\mu$ l) and internal standard (10  $\mu$ l). Phytoplankton pigments were quantified based on C<sub>8</sub> column method containing pyridine in the mobile phase (Zapata *et al.*, 2000).

### (i) HPLC System

HPLC System was composed by Agilent 1200 modular system, G1311A Quaternary pump (low-pressure mixing system), G1329A auto-sampler and G1315D photodiode array detector.

#### (ii) Stationary phase

Analytical separation was performed using a YMC  $C_8$  column (150×4.6 mm). The column was thermostatted at 35 °C in the column heater box.

#### (iii) Mobile phases

The eluant A was a mixture of methanol: acetonitrile: aqueous pyridine solution (0.25M pyridine), (50:25:25, v:v:v). The eluant B was a mixture of methanol: acetonitrile: acetone (20:60:20, v:v:v). Organic solvents for mobile phases were used reagents of HPLC-grade.

#### (iv) Calibrations

HPLC was calibrated using the standard pigments (Table 5.21-1).

#### (v) Internal standard

Ethyl-apo-8'-carotenoate was added into the samples prior to the injection as the internal standard. The mean chromatogram area and coefficient of variation (CV) of internal standard were estimated as the following two samples:

Standard samples:  $186.4 \pm 3.4$  (n = 50), CV=1.8% Seawater samples:  $186.6 \pm 2.5$  (n = 84), CV=1.4%

### (vi) Pigment detection and identification

Chlorophylls and carotenoids were detected by photodiode array spectroscopy (350~800 nm). Pigment concentrations were calculated from the chromatogram area at different five channels (Table 5.21-1). First channel was allocated at 409 nm of wavelength for the absorption maximum of Pheophorbide a and Pheophytin a. Second channel was allocated at 431 nm for the absorption maximum of chlorophyll *a*. Third channel was allocated at 440 nm for the absorption maximum of [3,8-divinyl]-protochlorophyllide. Fourth channel was allocated at 450 nm for other pigments. Fifth channel was allocated at 462 nm for chlorophyll *b*.

## (4) Preliminary results

Almost data are under the processing. Vertical profiles of major pigments (Chlorophyll a, Chlorophyll b, Divinyl Chlorophyll a, and Zeaxanthin) at stations from L02 to L26 were shown in Figure 5.21-1 and 5.21-2.

### (5) Data archives

The processed data file of pigments will be submitted to the JAMSTEC Data Management Office (DMO) within a restricted period. Please ask PI for the latest information.

## (6) Reference

Zapata M, Rodriguez F, Garrido JL (2000), Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C<sub>8</sub> column and pyridine-containing mobile phases, *Mar. Ecol. Prog. Ser.*, 195, 29-45.

| No. | Pigment                           | Productions          | Wavelength<br>of<br>identification<br>(nm) |
|-----|-----------------------------------|----------------------|--------------------------------------------|
| 1   | Chlorophyll <i>c3</i>             | DHI Co.              | 462                                        |
| 2   | Chlorophyllide <i>a</i>           | DHI Co.              | 431                                        |
| 3   | [3,8-Divinyl]-Protochlorophyllide | DHI Co.              | 440                                        |
| 4   | Chlorophyll c2                    | DHI Co.              | 450                                        |
| 5   | Peridinin                         | DHI Co.              | 462                                        |
| 6   | Pheophorbide <i>a</i>             | DHI Co.              | 409                                        |
| 7   | 19'-butanoyloxyfucoxanthin        | DHI Co.              | 450                                        |
| 8   | Fucoxanthin                       | DHI Co.              | 450                                        |
| 9   | Neoxanthin                        | DHI Co.              | 440                                        |
| 10  | Prasinoxanthin                    | DHI Co.              | 450                                        |
| 11  | 19'-hexanoyloxyfucoxanthin        | DHI Co.              | 450                                        |
| 12  | Violaxanthin                      | DHI Co.              | 440                                        |
| 13  | Diadinoxanthin                    | DHI Co.              | 450                                        |
| 14  | Dinoxanthin                       | DHI Co.              | 440                                        |
| 15  | Alloxanthin                       | DHI Co.              | 450                                        |
| 17  | Diatoxanthin                      | DHI Co.              | 450                                        |
| 18  | Zeaxanthin                        | DHI Co.              | 450                                        |
| 19  | Lutein                            | DHI Co.              | 450                                        |
| 20  | Ethyl-apo-8'-carotenoate          | Sigma-Aldrich<br>Co. | 462                                        |
| 21  | Chlorophyll <i>b</i>              | DHI Co.              | 462                                        |
| 22  | Divinyl Chlorophyll a             | DHI Co.              | 440                                        |
| 23  | Chlorophyll <i>a</i>              | Sigma-Aldrich<br>Co. | 431                                        |
| 24  | Pheophytin a                      | DHI Co.              | 409                                        |
| 25  | Alpha-carotene                    | DHI Co.              | 450                                        |
| 26  | Beta-carotene                     | DHI Co.              | 450                                        |

| Table 5.21-1 | Wavelength of identification for pigment standards. |
|--------------|-----------------------------------------------------|
|              |                                                     |

•

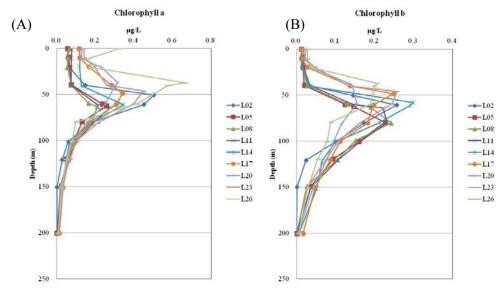



Figure 5.21-1-(A). Vertical distributions of Chlorophyll *a* at stations from L02 to L26. Figure 5.21-1-(B). Vertical distributions of Chlorophyll *b* at stations from L02 to L26.

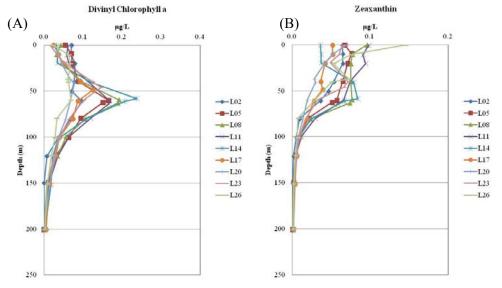



Figure 5.21-2-(A). Vertical distributions of Divinyl Chlorophyll *a* at stations from L02 to L26. Figure 5.21-2-(B). Vertical distributions of Zeaxanthin at stations from L02 to L26.

# **5.22 LADCP**

(1) Personnel

| Masaki Katsumata | (JAMSTEC) | Principal investigator |
|------------------|-----------|------------------------|
| Tomohide Noguchi | (MWJ)     | Operation leader       |
| Kenichi Katayama | (MWJ)     |                        |
| Masaki Furuhata  | (MWJ)     |                        |
| Katsumi Kotera   | (MWJ)     |                        |
| Rei Ito          | (MWJ)     |                        |
| Keisuke Takeda   | (MWJ)     |                        |

### (2) Objectives

To obtain horizontal current velocity in high vertical resolution.

## (3) Methods

In order to measure the velocity structure at fine vertical scales a high frequency ADCP was used in lowered mode (LADCP). The instrument was a Teledyne RDI Workhorse Sentinel 600kHz ADCP rated for 1000m depth.

The instrument was attached to the frame of the CTD system using a steel collar sealed around the instrument by three bolts on each side, with the collar attached to the rosette frame by two u-bolts on two mounting points (see Figure 5.22-1).

The instrument was deployed on all CTD stations in the tropics, performing well throughout its use. The instrument is self-contained with an internal battery pack. The health of the battery is monitored by the recorded voltage count.



Figure 5.22-1: Mounting of LADCP on CTD System

The instrument was controlled at deploy and recover stages by the RDI software (BBTalk) installed on the Windows PC. The commands sent to the instrument at setup were contained in ladcp600.cmd. The instrument was set up to have a relatively small bin depth (2m) and a fast ping rate (every 0.25 sec). The full list of commands sent to the instrument were:

| CR1           | # Retrieve parameter (default)                            |
|---------------|-----------------------------------------------------------|
| TC2           | # Ensemble per burst                                      |
| WP1           | # Pings per ensemble                                      |
| TE 00:00:00.0 | # Time per ensemble (time between data collection cycles) |
| TP 00:00.25   | # Time between pings in mm:ss                             |
| WN25          | # Number of Depth cells                                   |
| WS0200        | # Depth cell size (in cm)                                 |
| WF0088        | # Blank after transit (recommended setting for 600kHz)    |
| WB0           | # Mode 1 bandwidth control (default - wide)               |
| WV250         | # Ambiguity velocity (in cm/s)                            |
| EZ0111101     | # Sensor source (speed of sound excluded)                 |
| EX00000       | # Beam coordinates                                        |
| CF11101       | # Data flow control parameters                            |
|               |                                                           |

(see the RDI Workhorse "Commands and Data Output Format" document for details.)

### (4) Preliminary results

During the cruise, 221 profiles were obtained in total, including fixed point measurement and line measurement. All the data has to be converted and quality-controlled before the analyses. The further analyses will be in near future.

### (5) Data archive

All data obtained during this cruise will be submitted to the JAMSTEC Data Management Office (DMO).

### 5.23 Microstructure profiler (MSP) for the ocean

#### (1) Personnel

MOTEKI Qoosaku (JAMSTEC) - Principle Investigator YOSHIDA Kazuho (GODI) - Operation Leader SUEYOSHI Soichiro (GODI) OKUMURA Satoshi (GODI) MORIOKA Miki (GODI)

#### (2) Objectives

To obtain oceanic vertical profiles of the dissipation rate of turbulent kinematic energy, as well as dissipation rate of temperature variance, turbulent mixing rate of substances, etc.

#### (3) Methods

The instrument in this observation consists of sensor unit "TurboMAP-L" (manufactured by JFE Advantech Inc., serial no. 34) and the software "TMtools" (ver. 3.04D) on PC to monitor, record and process the data. The probes on the TurboMAP sensor unit are as follows:

- Vertical shear of the horizontal current speed (two sensors, 512 Hz)
- Fast thermistor temperature "FPO-7" (512Hz)
- Slow response temperature (64Hz)
- Conductivity (64Hz)
- Pressure (64Hz)
- Acceleration in X, Y and Z dimensions (256Hz for horizontal, 64Hz for vertical)
- Fluorescence (256Hz) (\*see (6)Remarks )
- Turbidity (256Hz)

These parameters were obtained during the sensor descends without artificial accelerations (i.e. "free fall"). The obtained data was monitored and stored in the PC on the vessel in real-time. The instruments were operated to obtain profiles down to 300m depth (see (6) Remarks for exceptions). To do it by minimized time consumption, the cable between PC and the sensor unit were deployed until the sensor unit reached 260-m depth, and then started winding up when sensor reached 300-m depth. The data was recorded until the sensor stopped its free-fall (i.e. falling speed start decreasing).

All profiles were obtained at (4-04S, 101-54E). The observations were conducted once per day during the stationary observation period (23 November, 2015 - 17 December, 2015) at 09UTC. For the days of 30 November, 1, 2, 5, 6, 7, December, the observations of 4 times per day were conducted for measuring the variation by the oceanic tide. Each profile was obtained sequentially, while one or several profiles were obtained occasionally. As in Table 5.20-1, 874 profiles were obtained in total during the present cruise.

## (4) Preliminary Results

Figure 5.23-1 is the time-depth cross section of the dissipation rate of kinematic energy (epsilon). The high epsilon values are generally found in the layer above 300 m depth before the neap tide and the epsilon values are clearly decreased after the neap tide on 9 December. After 14 December, the epsilon values are rapidly increased in the layer above 100 m with significant westerly burst after the passage of the MJO. The further detailed analyses will be in near future.

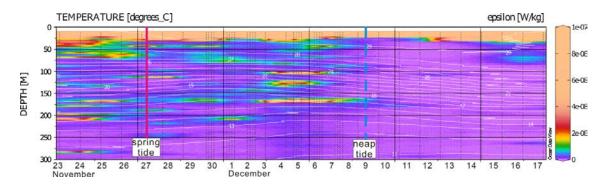



Fig.5.23-1: Time-depth cross section of the dissipation ratio of the kinematic energy from 23 November to 17 December, 2015. The spring and neap tide dates on 27 November and 9 December are indicated by red solid and blue dashed lines, respectively.

(5) Data archive

All corrected data during this cruise will be available at pre-YMC website.

- (6) Remarks
- a) Data from fluorescence sensor is not valid for all profiles because the sensor was covered by black tape to prevent the light going out. This was to reduce the risk of accidents due to oceanic creatures which may attracted by the light from the fluorescence sensor.
- b) Data from secondary sensor were continuously noisy.

|     | Date             | Latitude    | Longitudo              | Loggin | g Time | Donth        | Observation | Wire Length |               |      | Sensor S/N |         |
|-----|------------------|-------------|------------------------|--------|--------|--------------|-------------|-------------|---------------|------|------------|---------|
| No. | [YYYY/M<br>M/DD] | [deg-min]   | Longitude<br>[deg-min] | Start  | Stop   | Depth<br>[m] | Depth[m]    | [m]         | File name     | FPO7 | Shear 1    | Shear 2 |
| 01  | 2015/11/23       | 04-04.8407S | 101-54.3894E           | 8:57   | 9:09   | 741          | 370         | 470         | MR1504-1.BIN  | 229  | 922        | 877     |
| 02  | 2015/11/24       | 04-03.2090S | 101-53.5227E           | 8:56   | 9:08   | 680          | 416         | 450         | MR1504-2.BIN  | 229  | 922        | 877     |
| 03  | 2015/11/25       | 04-03.50788 | 101-54.2019E           | 8:57   | 9:07   | 640          | 339         | 520         | MR1504-3.BIN  | 229  | 922        | 1341    |
| 04  | 2015/11/26       | 04-04.1743S | 101-54.0933E           | 8:55   | 9:06   | 668          | 339         | 560         | MR1504-4.BIN  | 229  | 1341       | 922     |
| 05  | 2015/11/27       | 04-04.0707S | 101-54.2110E           | 8:55   | 9:06   | 656          | 346         | 530         | MR1504-5.BIN  | 229  | 922        | 877     |
| 06  | 2015/11/28       | 04-03.35058 | 101-53.4121E           | 8:56   | 9:06   | 699          | 334         | 470         | MR1504-6.BIN  | 229  | 922        | 877     |
| 07  | 2015/11/29       | 04-03.6668S | 101-53.6051E           | 8:57   | 9:08   | 690          | 339         | 490         | MR1504-7.BIN  | 229  | 922        | 877     |
| 08  | 2015/11/29       | 04-04.13398 | 101-53.8427E           | 12:09  | 12:21  | 683          | 391         | 520         | MR1504-8.BIN  | 229  | 922        | 877     |
| 09  | 2015/11/30       | 04-05.42958 | 101-53.9504E           | 14:59  | 15:10  | 735          | 375         | 460         | MR1504-9.BIN  | 229  | 922        | 877     |
| 10  | 2015/11/30       | 04-04.4577S | 101-53.4807E           | 18:12  | 18:22  | 738          | 340         | 540         | MR1504-10.BIN | 229  | 922        | 877     |
| 11  | 2015/11/30       | 04-05.0786S | 101-53.1469E           | 21:02  | 21:14  | 771          | 334         | 530         | MR1504_11.BIN | 229  | 922        | 877     |
| 12  | 2015/12/01       | 04-04.1809S | 101-52.8788E           | 12:10  | 12:20  | 762          | 356         | 480         | MR1504_12.BIN | 229  | 922        | 877     |
| 13  | 2015/12/01       | 04-04.35478 | 101-52.8995E           | 14:53  | 15:04  | 708          | 375         | 480         | MR1504_13.BIN | 229  | 922        | 877     |
| 14  | 2015/12/01       | 04-02.7709S | 101-53.5543E           | 18:14  | 18:25  | 721          | 357         | 510         | MR1504_14.BIN | 229  | 922        | 877     |
| 15  | 2015/12/01       | 04-03.9052S | 101-53.8567E           | 21:04  | 21:13  | 685          | 310         | 400         | MR1504_15.BIN | 229  | 922        | 877     |
| 16  | 2015/12/01       | 04-04.0860S | 101-53.8996E           | 21:21  | 21:30  | 685          | 340         | 520         | MR1504_16.BIN | 229  | 922        | 877     |
| 17  | 2015/12/02       | 04-03.9202S | 101-53.1412E           | 12:12  | 12:23  | 738          | 384         | 500         | MR1504_17.BIN | 229  | 922        | 877     |
| 18  | 2015/12/02       | 04-04.0663S | 101-54.1704E           | 14:57  | 15:07  | 657          | 337         | 490         | MR1504_18.BIN | 229  | 922        | 877     |
| 19  | 2015/12/02       | 04-02.9847S | 101-53.9650E           | 18:15  | 18:26  | 646          | 360         | 500         | MR1504_19.BIN | 229  | 922        | 877     |
| 20  | 2015/12/02       | 04-03.71568 | 101-54.2347E           | 21:01  | 21:12  | 664          | 389         | 530         | MR1504_20.BIN | 229  | 922        | 877     |
| 21  | 2015/12/03       | 04-03.2711S | 101-54.6225E           | 9:01   | 9:11   | 603          | 348         | 500         | MR1504_21.BIN | 229  | 922        | 877     |

Table 5.23-1 List of the MSP

| 22 | 2015/12/04 | 04-04.3187S | 101-53.7072E | 9:00  | 9:09  | 707 | 344 | 490 | MR1504_22.BIN | 229 | 922  | 877  |
|----|------------|-------------|--------------|-------|-------|-----|-----|-----|---------------|-----|------|------|
| 23 | 2015/12/05 | 04-04.1550S | 101-52.6769E | 6:12  | 6:23  | 776 | 350 | 510 | MR1504_23.BIN | 229 | 922  | 877  |
| 24 | 2015/12/05 | 04-04.32678 | 101-52.7369E | 6:31  | 6:40  | 770 | 350 | 505 | MR1504_24.BIN | 229 | 922  | 877  |
| 25 | 2015/12/05 | 04-03.83138 | 101-53.8367E | 8:57  | 9:08  | 693 | 361 | 500 | MR1504_25.BIN | 229 | 1341 | 877  |
| 26 | 2015/12/05 | 04-03.95208 | 101-53.6944E | 12:09 | 12:21 | 697 | 370 | 480 | MR1504_26.BIN | 229 | 1341 | 877  |
| 27 | 2015/12/05 | 04-04.2912S | 101-53.7279E | 14:53 | 15:04 | 704 | 366 | 460 | MR1504_27.BIN | 229 | 1341 | 877  |
| 28 | 2015/12/06 | 04-04.6886S | 101-53.5464E | 6:10  | 6:21  | 762 | 395 | 510 | MR1504_28.BIN | 229 | 922  | 877  |
| 29 | 2015/12/06 | 04-03.6474S | 101-54.0389E | 8:56  | 9:07  | 657 | 365 | 450 | MR1504_29.BIN | 229 | 922  | 877  |
| 30 | 2015/12/06 | 04-03.30865 | 101-53.2475E | 12:10 | 12:22 | 746 | 404 | 500 | MR1504_30.BIN | 229 | 922  | 877  |
| 31 | 2015/12/06 | 04-03.9188S | 101-53.7395E | 14:58 | 15:08 | 693 | 317 | 430 | MR1504_31.BIN | 229 | 922  | 877  |
| 32 | 2015/12/07 | 04-03.8853S | 101-53.2346E | 6:17  | 6:29  | 729 | 400 | 480 | MR1504_32.BIN | 229 | 922  | 877  |
| 33 | 2015/12/07 | 04-05.15538 | 101-53.0078E | 8:56  | 9:07  | 789 | 370 | 510 | MR1504_33.BIN | 229 | 922  | 877  |
| 34 | 2015/12/07 | 04-04.6517S | 101-53.3601E | 12:09 | 12:19 | 795 | 338 | 470 | MR1504_34.BIN | 229 | 922  | 877  |
| 35 | 2015/12/07 | 04-03.9566S | 101-53.1911E | 14:56 | 15:07 | 731 | 358 | 500 | MR1504_35.BIN | 229 | 922  | 877  |
| 36 | 2015/12/08 | 04-05.1944S | 101-538544E  | 8:56  | 9:06  |     | 333 | 510 | MR1504_36.BIN | 229 | 922  | 1341 |
| 37 | 2015/12/09 | 04-05.1599S | 101-53.1758E | 8:56  | 9:06  | 776 | 334 | 480 | MR1504_37.BIN | 229 | 922  | 1341 |
| 38 | 2015/12/10 | 04-05.1599S | 101-53.1758E | 8:55  | 9:06  | 781 | 366 | 480 | MR1504_38.BIN | 229 | 922  | 1341 |
| 39 | 2015/12/11 | 04-04.8953S | 101-52.7958E | 8:55  | 9:06  | 845 | 345 | 480 | MR1504_39.BIN | 229 | 922  | 1341 |
| 40 | 2015/12/11 | 04-05.03728 | 101-52.8502E | 9:13  | 9:22  | -   | 341 | 480 | MR1504_40.BIN | 229 | 922  | 1341 |
| 41 | 2015/12/12 | 04-03.97308 | 101-53.7939E | 8:56  | 9:07  | 690 | 351 | 570 | MR1504_41.BIN | 229 | 922  | 1341 |
| 42 | 2015/12/13 | 04-03.2610S | 101-54.3169E | 8:58  | 9:09  | 625 | 341 | 530 | MR1504_42.BIN | 229 | 922  | 1341 |
| 43 | 2015/12/14 | 04-03.3003S | 101-53.8005E | 8:54  | 9:06  | 663 | 330 | 530 | MR1504_43.BIN | 229 | 922  | 1341 |
| 44 | 2015/12/15 | 04-04.4987S | 101-53.7484E | 8:55  | 9:05  | 663 | 334 | 540 | MR1504_44.BIN | 229 | 922  | 1341 |
| 45 | 2015/12/16 | 04-03.9777S | 101-54.2591E | 8:53  | 9:05  | 647 | 324 | 550 | MR1504_45.BIN | 229 | 922  | 1341 |
| 46 | 2015/12/17 | 04-03.7374S | 101-53.1189E | 8:55  | 9:05  | 739 | 336 | 570 | MR1504_46.BIN | 229 | 922  | 1341 |

### 5.24 Underway CTD

(1) Personnel

| Masaki Katsumata | (JAMSTEC) | - Principal investigator |
|------------------|-----------|--------------------------|
| Kyoko Taniguchi  | (JAMSTEC) |                          |
| Tomohide Noguchi | (MWJ)     | - Operation leader       |
| Kenichi Katayama | (MWJ)     |                          |
| Masaki Furuhata  | (MWJ)     |                          |
| Katsumi Kotera   | (MWJ)     |                          |
| Rei Ito          | (MWJ)     |                          |
| Keisuke Takeda   | (MWJ)     |                          |

### (2) Objective

The "Underway CTD" (UCTD) system measures vertical profiles of temperature, conductivity and pressure like traditional CTD system. The advantage of the UCTD system is to obtain good-quality CTD profiles from moving vessels with repeatable operation. In addition, the UCTD data are more accurate than those from XCTD because the sensor of the UCTD is basically same as that used in the traditional CTD system.

The purpose of UCTD observation in this cruise is to explore oceanic structure of temperature and salinity at the Makassar Strait, Lombok Strait and offshore Sumatran. The station locations is shown in Figure 5.24-1.

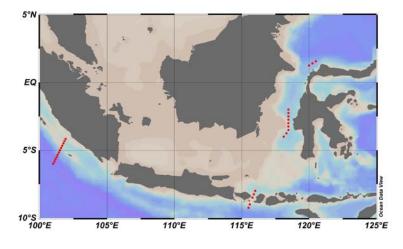



Figure 5.24-1:Research area of MR15-04

#### (3) Methods

The UCTD system, manufactured by Oceanscience Group, was utilized in this cruise. The system consists of the probe unit and on-deck unit with the winch and the rewinder, as in Figure 5.24-2. After spooling the line for certain length onto the probe unit (in "tail spool" part), the probe unit is released from the vessels in to the ocean, and then measure temperature, conductivity, and pressure during its free-fall with speed of roughly 4 m/s in the ocean. The probe unit is physically connected to the winch on the vessel by line. Releasing the line from the tail spool ensure the probe unit to be fall without physical forcing by the movement of vessel. After the probe unit

reaches the deepest layer for observation, it is recovered by using the winch on the vessel. The observed data are stored in the memory within the probe unit. The dataset can be downloaded into PCs via Bluetooth communication on the deck.

The specifications of the sensors are listed in Table 5.24-1. The UCTD system used in this cruise can observe temperature, conductivity and pressure from surface to 1000 m depth with 16 Hz sampling rate.

During the profiling, the vessel can be cruised (straight line recommended). The manufacturer recommends the maximum speed of the vessel during the profiling as in Table 5.24-2.

| Parameter           | Accuracy Resolution |        | Range     |  |
|---------------------|---------------------|--------|-----------|--|
| Temperature (deg.C) | 0.004               | 0.002  | -5 to 43  |  |
| Conductivity (S/m)  | 0.0003              | 0.0005 | 0 to 9    |  |
| Pressure (dbar)     | 1.0                 | 0.5    | 0 to 2000 |  |

Table 5.24-1:Specification of the sensors of the UCTD system in this cruise.

| Table 5.24-2: Maximum de | oth and sp   | eed of the vess | el during profile. |
|--------------------------|--------------|-----------------|--------------------|
|                          | pen enter op |                 |                    |

| Maximum depth to profile | Maximum ship speed (knot) |
|--------------------------|---------------------------|
| 0 to 350 m               | 13                        |
| 350 to 400 m             | 12                        |
| 400 to 450 m             | 11                        |
| 450 to 500 m             | 10                        |
| 500 to 550 m             | 8                         |
| 550 to 600 m             | 6                         |
| 600 to 650 m             | 4                         |
| 650 to 1000 m            | 2                         |

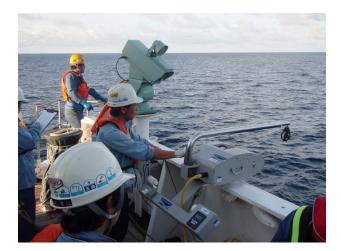



Figure 5.24-2:UCTD system installed and operated on R/V Mirai.

## (4) Preliminary Results

During this cruise, 30 casts of UCTD observation were carried out. Date, time and locations of the CTD casts are listed in Table 5.24-3.

Vertical profiles (down cast) of temperature, conductivity, salinity with descent rate are shown in Figure 5.24-3-5.24-7. Unfortunately, the data of station MKS04 was not stored in the memory within the probe unit.

## (5) Data archive

All data obtained during this cruise will be submitted to the JAMSTEC Data Management Office (DMO).

| Station           | Cast           | Time Tamed          | Position          | n Towed           | Donth to           | Ship spe | ed (knot) | C/NL of       |                  |
|-------------------|----------------|---------------------|-------------------|-------------------|--------------------|----------|-----------|---------------|------------------|
| Station<br>Number | Cast<br>Number | Time Towed<br>(UTC) | Lat.<br>(deg-min) | Lon.<br>(deg-min) | Depth to<br>go (m) | Tow      | Recovery  | S/N of sensor | Notes            |
| MKS01             | 1              | Nov.16 04:56        | 01-33.54N         | 120-29.99E        | 250                | 11.0     | 11.0      | 0236          |                  |
| MKS02             | 1              | Nov.16 06:16        | 01-24.49N         | 120-15.01E        | 250                | 11.2     | 11.2      | 0236          |                  |
| MKS03             | 1              | Nov.16 07:31        | 01-15.30N         | 120-00.01E        | 250                | 11.2     | 11.1      | 0236          |                  |
| MKS04             | 1              | Nov.16 08:49        | 01-06.14N         | 119-44.99E        | 385                | 11.3     | 11.3      | 0236          | Not logging data |
| MKS13             | 1              | Nov.16 21:50        | 02-00.028         | 118-27.99E        | 385                | 11.7     | 11.6      | 0236          |                  |
| MKS14             | 1              | Nov.16 22:54        | 02-15.038         | 118-27.99E        | 335                | 11.5     | 11.3      | 0236          |                  |
| MKS15             | 1              | Nov.16 23:57        | 02-30.028         | 118-28.09E        | 335                | 12.0     | 11.8      | 0257          |                  |
| MKS16             | 1              | Nov.17 00:59        | 02-45.00S         | 118-28.00E        | 335                | 11.5     | 11.4      | 0236          |                  |
| MKS17             | 1              | Nov.17 02:00        | 03-00.03S         | 118-27.98E        | 335                | 11.4     | 11.3      | 0257          |                  |
| MKS18             | 1              | Nov.17 02:58        | 03-15.02S         | 118-28.00E        | 335                | 10.9     | 10.8      | 0236          |                  |
| MKS19             | 1              | Nov.17 04:00        | 03-29.988         | 118-28.00E        | 335                | 10.9     | 10.8      | 0257          |                  |
| MKS20             | 1              | Nov.17 05:19        | 03-45.00S         | 118-19.19E        | 335                | 10.9     | 10.9      | 0236          |                  |
| MKS21             | 1              | Nov.17 06:43        | 04-00.00S         | 118-07.05E        | 335                | 10.4     | 10.4      | 0257          |                  |
| LBK01             | 1              | Nov.18 01:09        | 08-00.01S         | 115-59.99E        | 335                | 10.8     | 10.8      | 0236          |                  |
| LBK02             | 1              | Nov.18 02:33        | 08-15.01S         | 115-54.01E        | 335                | 11.5     | 11.3      | 0257          |                  |
| LBK03             | 1              | Nov.18 03:26        | 08-30.01S         | 115-48.02E        | 335                | 10.0     | 10.0      | 0236          |                  |
| LBK05             | 1              | Nov.18 05:36        | 09-00.00S         | 115-35.93E        | 335                | 11.2     | 11.3      | 0257          |                  |
| LBK06             | 1              | Nov.18 06:44        | 09-15.01S         | 115-29.89E        | 335                | 10.9     | 10.9      | 0236          |                  |
| L24               | 1              | Dec.17 14:01        | 04-10.02S         | 101-54.96E        | 335                | 10.9     | 10.4      | 0236          |                  |
| L22               | 1              | Dec.17 15:03        | 04-20.01S         | 101-50.02E        | 335                | 10.3     | 10.3      | 0257          |                  |
| L20               | 1              | Dec.17 16:01        | 04-30.02S         | 101-44.96E        | 335                | 10.3     | 10.1      | 0236          |                  |
| L18               | 1              | Dec.17 17:00        | 04-40.00S         | 101-39.98E        | 335                | 10.4     | 10.6      | 0257          |                  |
| L16               | 1              | Dec.17 18:09        | 04-49.99S         | 101-35.00E        | 335                | 11.0     | 11.0      | 0236          |                  |
| L14               | 1              | Dec.17 19:05        | 04-59.998         | 101-30.00E        | 335                | 10.8     | 10.5      | 0257          |                  |

Table 5.24-3: List of UCTD stations during MR15-04 cruise.

| L12 | 1 | Dec.17 20:01 | 05-09.81S | 101-25.00E | 335 | 11.0 | 10.4 | 0236 |  |
|-----|---|--------------|-----------|------------|-----|------|------|------|--|
| L10 | 1 | Dec.17 20:57 | 05-19.98S | 101-20.00E | 335 | 11.2 | 10.4 | 0257 |  |
| L08 | 1 | Dec.17 21:56 | 05-30.00S | 101-14.99E | 335 | 10.8 | 10.2 | 0236 |  |
| L06 | 1 | Dec.17 22:55 | 05-40.00S | 101-09.99E | 335 | 11.0 | 10.4 | 0257 |  |
| L04 | 1 | Dec.18 00:03 | 05-50.00S | 101-04.99E | 335 | 11.1 | 10.5 | 0236 |  |
| L02 | 1 | Dec.18 01:00 | 06-00.00S | 100-59.99E | 335 | 10.3 | 10.3 | 0257 |  |

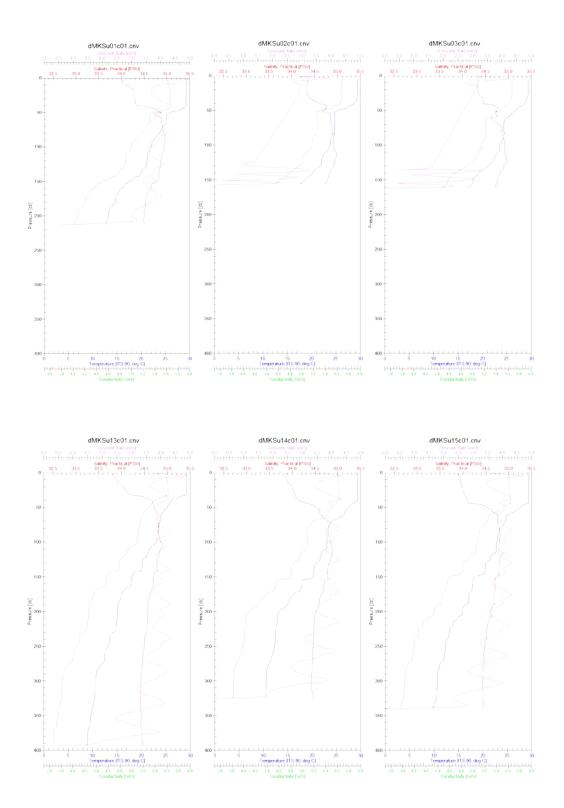



Figure 5.24-3: UCTD profiles of temperature (blue line), salinity (red line), conductivity (green line), and descent rate (pink line) at the station of MKS01, MKS02, MKS03, MKS13, MKS14 and MKS15.

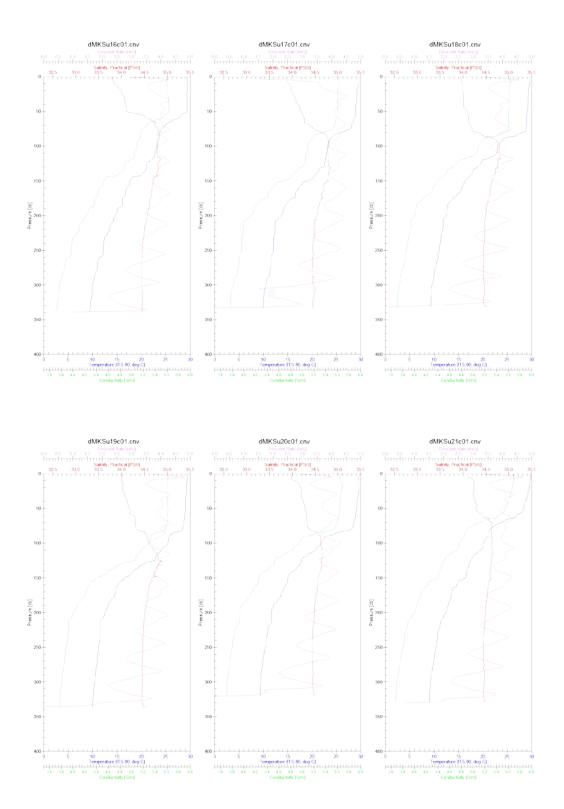



Figure 5.24-4: UCTD profiles of temperature (blue line), salinity (red line), conductivity (green line), and descent rate (pink line) at the station of MKS16, MKS17, MKS18, MKS19, MKS20 and MKS21.

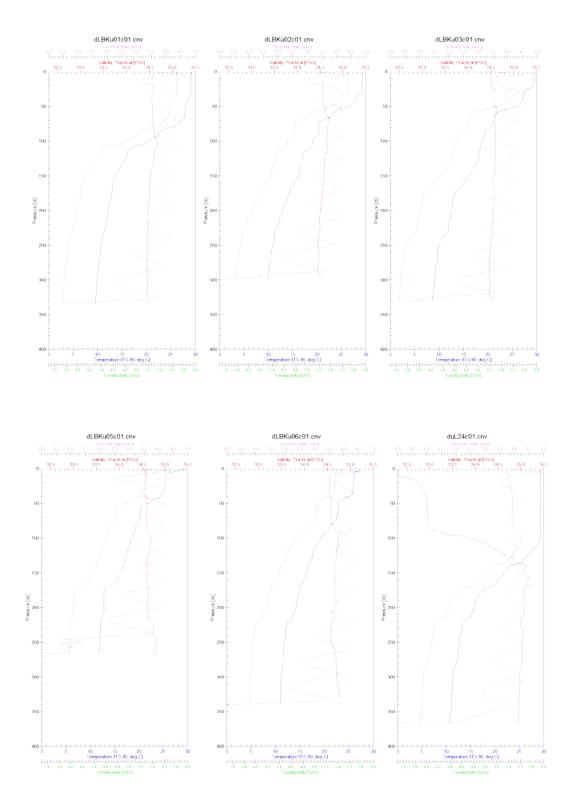



Figure 5.24-5: UCTD profiles of temperature (blue line), salinity (red line), conductivity (green line), and descent rate (pink line) at the station of LBK01, LBK02, LBK03, LBK05, LBK06 and L24.

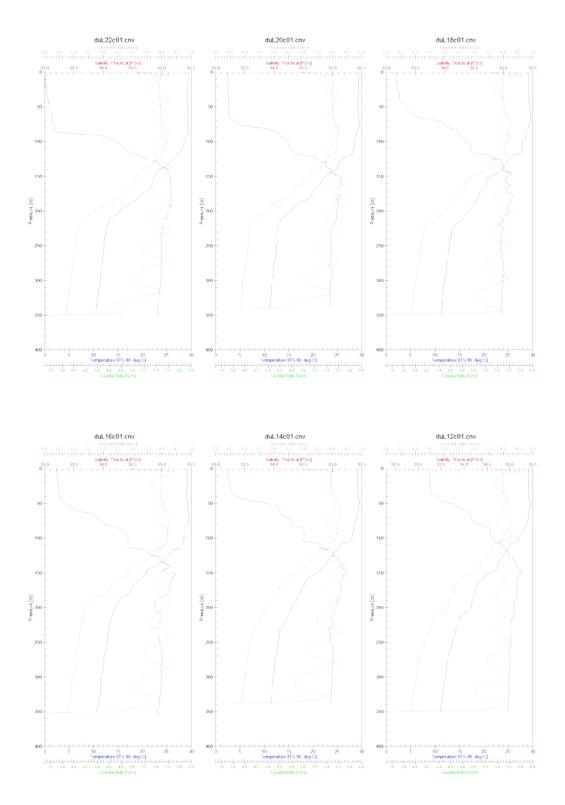



Figure 5.24-6: UCTD profiles of temperature (blue line), salinity (red line), conductivity (green line), and descent rate (pink line) at the station of L22, L20, L18, L16, L14 and L12.

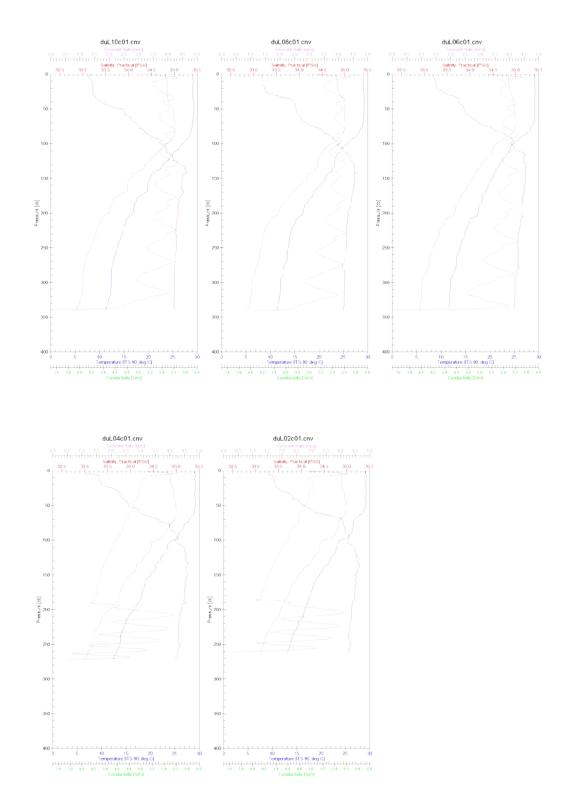



Figure 5.24-7: UCTD profiles of temperature (blue line), salinity (red line), conductivity (green line), and descent rate (pink line) at the station of L10, L08, L06, L04 and L02.

# 5.25 XCTD

## (1) Personnel

| Masaki KATSUMATA   | (JAMSTEC)        | - Principal Investigator |
|--------------------|------------------|--------------------------|
| Kazuho YOSHIDA     | (Global Ocean De | evelopment Inc., GODI)   |
| Souichiro SUEYOSHI | (GODI)           |                          |
| Shinya OKUMURA     | (GODI)           |                          |
| Miki MORIOKA       | (GODI)           |                          |
| Ryo KIMURA         | (MIRAI Crew)     |                          |

## (2) Objective

Investigation of oceanic structure.

## (3) Methods

We observed the vertical profiles of the sea water temperature and salinity measured by XCTD-1 (manufactured by Tsurumi-Seiki Co.). The signal was converted by MK-150N (Tsurumi-Seiki Co.) and was recorded by AL-12B software (Ver.1.1.4; Tsurumi-Seiki Co). The specifications of the measured parameters are as in Table 5.25-1. We launched probes by using automatic launcher during MR15-04 cruise as listed in Table 5.25-2.

| Parameter    | Range                       | Accuracy                                 |
|--------------|-----------------------------|------------------------------------------|
| Conductivity | $0 \sim 60 \text{ [mS/cm]}$ | +/- 0.03 [mS/cm]                         |
| Temperature  | -2 ~ 35 [deg-C]             | +/- 0.02 [deg-C]                         |
| Depth        | 0 ~ 1000 [m]                | 5 [m] or 2 [%] (either of them is major) |

Table 5.25-1: The range and accuracy of parameters measured by XCTD-1.

# (4) Data archive

XCTD data obtained in this cruise will be submitted to the Data Management Group of JAMSTEC, and will be opened to the public via "Data Research System for Whole Cruise Information in JAMSTEC (DARWIN)" in JAMSTEC web site.

<<u>http://www.godac.jamstec.go.jp/darwin/e</u>>

| No. | Date       | Time  | Latitude<br>[dd-mm.mmmm]         | Longitude<br>[ddd-mm.mmmm] | SST<br>[deg-C] | SSS<br>[PSU] | Probe<br>S/N |
|-----|------------|-------|----------------------------------|----------------------------|----------------|--------------|--------------|
| 01  | 2015/11/16 | 09:42 | 00-59.9825 N                     | 119-34.9974 E              | 29.147         | 33.470       | 13010569     |
| 02  | 2015/11/16 | 10:41 | 00-44.9522 N                     | 119-29.4113 E              | 28.891         | 33.534       | 13010571     |
| 03  | 2015/11/16 | 11:40 | 00-29.9817 N                     | 119-28.6782 E              | 28.994         | 33.447       | 13010571     |
| 04  | 2015/11/16 | 12:39 | 00-15.0283 N                     | 119-18.2253 E              | 28.829         | 33.509       | 13010566     |
| 05  | 2015/11/16 | 13:41 | 00-00.0078 S                     | 119-12.7450 E              | 29.057         | 33.530       | 13010573     |
| 06  | 2015/11/16 | 15:39 | 00-29.9999 S                     | 119-01.4568 E              | 28.966         | 33.501       | 13010563     |
| 07  | 2015/11/16 | 17:40 | $00-59.9991~{ m S}$              | 118-50.2164 E              | 29.385         | 33.879       | 13010575     |
| 08  | 2015/11/16 | 19:45 | $01\text{-}29.9740~\mathrm{S}$   | 118-39.0089 E              | 29.267         | 33.849       | 13010572     |
| 09  | 2015/11/18 | 04:39 | 08-46.9806 S                     | 115-41.7081 E              | 29.702         | 34.564       | 13010570     |
| 10  | 2015/12/17 | 13:02 | $03\text{-}59.9172 \ \mathrm{S}$ | 102-00.1409 E              | 29.524         | 32.290       | 13010560     |

Table 5.25-2: List of XCTD observations. SST (sea surface temperature) and SSS (sea surface salinity).

# 5.26 Wave Gilder

### (1) Personnel

| Makito Yokota     | (JAMSTEC) - Principal Investigator |
|-------------------|------------------------------------|
| Iwao Ueki         | (JAMSTEC) - Not Onboard            |
| Yasuhisa Ishihara | (JAMSTEC) - Not Onboard            |
| Tatsuya Fukuda    | (JAMSTEC) - Not Onboard            |
| Masaki Furuhata   | (MWJ)                              |
| Nobuhiro Fujii    | (MWJ) - Not Onboard                |

### (2) Background and Objectives

Sea surface heat flux variability is crucial for understanding of the ocean-atmosphere interaction. However our knowledge, especially based on in situ measurements, is limited because of lack of observation opportunity. Although we usually use surface moorings, such as TRITON buoy, for the meteorological measurements, it is difficult to capture horizontal structure of sea surface heat flux variability by limited number of the moorings. Thus, we try to capture the structure by meteorological and underwater sensors installed with the Wave Glider. In this cruise, we tried to evaluate the performance of the Wave Glider observation.

#### (3) Instrumentation

The Wave Glider is an autonomous surface vehicle, which utilize wave motion for forward propolution. The Wave Glider consists of two-part architecture; float and glider connected umbilical cable (Figure 5.26-1). The Wave Glider can install several payloads for measurement.

Meteorological sensors (air temperature, relative humidity, barometric pressure, longwave and shortwave radiation, and wind speed and direction) were installed with a JAMSTEC developed logger on the surface float. The acquired data are transmitted to land station via iridium satellite communication system. Temperature sensors also installed on the wire cable attached with the end of the surface float for temperature profile measurements within the ocean uppermost layer.

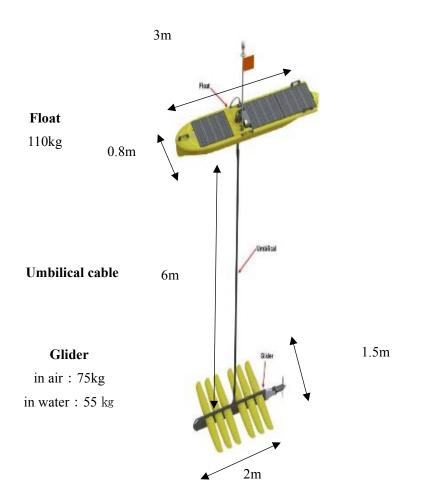



Fig 5.26-1: Wave Glider overview

# (4) Method

① Operation

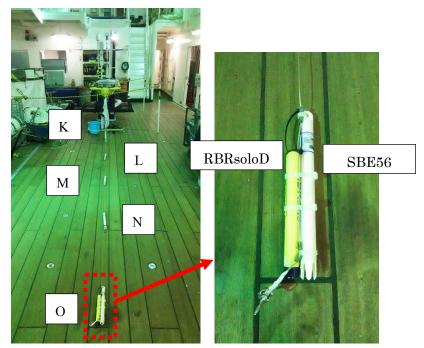
Deploy and recovery of Wave Glider from R/V MIRAI.

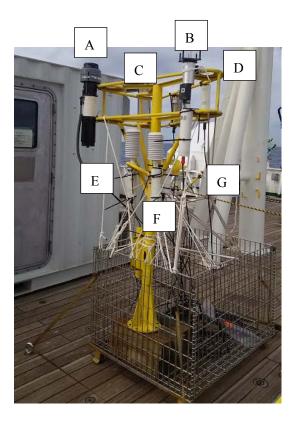
The wire rope with the temperature and pressure sensors was attached with the end of the surface float after deploy. (See specifications and configuration for Table 5.26-1, 5.26-2 and Figure 5.26-1)

| Sensor   | Parameter   | Range       | Accuracy          | Observation interval |
|----------|-------------|-------------|-------------------|----------------------|
| SBE56    | Temperature | -5 - 45degC | ±0.002degC        | 2Hz                  |
| RBRsoloD | Depth       | 0 - 50m     | ±0.05% full scale | 2Hz                  |

|   |          | 1           |             |                           |
|---|----------|-------------|-------------|---------------------------|
|   | Sensor   | Manufacture | Parameter   | Distance from Wave Glider |
|   | type     |             |             | bottom(mm)                |
| K | SBE56    | SBE         | Temperature | 970                       |
| L | SBE56    | SBE         | Temperature | 1970                      |
| М | SBE56    | SBE         | Temperature | 2970                      |
| Ν | SBE56    | SBE         | Temperature | 3970                      |
| 0 | SBE56    | SBE         | Temperature | 4970                      |
|   | RBRsoloD | RBR         | Depth       |                           |

Table 5.26-2: Configuration of the temperature profile measurements





Fig 5.26-1: Thermistor chain overview

2 Evaluation of the meteorological sensors

Through the side-by-side experiment on the R/V MIRAI deck, we compared performance of each meteorological sensor attached with the Wave Glider and with a tower (Table 5.26-3 and Figure 5.26-2). For the meteorological sensors attached with the tower, the measurement interval is 1 minute, whereas that for the Wave Glider is 10 minutes. The comparison was conducted for divided periods described in Table 5.26-4.

| Table5 26-3. | Configuration | of meteorological sen | sors  |
|--------------|---------------|-----------------------|-------|
| 100105.20 5. | configuration | of meteorological sen | 15015 |

|   | Sensor type         | Manufacture     | Parameter              | Location(height from deck) |
|---|---------------------|-----------------|------------------------|----------------------------|
| А | JAMMET_RAN          | JAMSTEC         | Precipitation(RAN)     | Tower(2320mm)              |
| В | JAMMET_WNDu         | JAMSTEC         | Wind speed(WS)         | Tower(2300mm)              |
|   |                     |                 | Wind direction(WD)     | Wave Glider(2190mm)        |
|   |                     |                 | Magnetic direction(MD) |                            |
| С | ASIMET_PIR          | WHOI,USA        | Long wave              | Tower(2200mm)              |
|   |                     |                 | radiation(LWR)         |                            |
| D | JAMMET_SWR          | JAMSTEC         | Short wave             | Tower(2200mm)              |
|   |                     |                 | radiation(SWR)         |                            |
| Е | JAMMET_HRH          | JAMSTEC         | Air temperature(AT)    | Tower(1810mm)              |
|   |                     |                 | Relative humidity(RH)  |                            |
| F | EasyJAMMET_HRH,B    | JAMSTEC         | Air temperature(AT)    | Tower(AT,RH:1780mm,        |
|   | AR                  |                 | Relative humidity(RH)  | BAR:1550mm)                |
|   |                     |                 | Barometric(BAR)        | Wave Glider(AT,RH:950mm,   |
|   |                     |                 |                        | BAR:720mm)                 |
| G | Paroscientific_BAR  | Paroscientific  | Barometric(BAR)        | Tower(1610mm)              |
|   |                     | Inc,USA         |                        |                            |
| Н | Weather Station     | AIRMAR,USA      | Wind Speed(WS_WS)      | Wave Glider(1120mm)        |
|   | (Airmar PB200)      |                 | Wind                   |                            |
|   |                     |                 | Direction(WS_WD)       |                            |
|   |                     |                 | Air                    |                            |
|   |                     |                 | Temperature(WS_AT)     |                            |
|   |                     |                 | Barometric(WS_BAR)     |                            |
| Ι | EasyJAMMET_SWR,L    | JAMSTEC         | Short wave             | Wave Glider(1200mm)        |
|   | WR                  |                 | radiation(SWR)         |                            |
|   |                     |                 | Long wave              |                            |
|   |                     |                 | radiation(LWR)         |                            |
| J | Weather transmitter | Vaisala,Finland | Wind Speed(WXT_WS)     | Wave Glider(1170mm)        |
|   |                     |                 | Wind                   |                            |
|   |                     |                 | Direction(WXT_WD)      |                            |
|   |                     |                 | Air                    |                            |
|   |                     |                 | Temperature(WXT_AT)    |                            |
|   |                     |                 | Relative               |                            |
|   |                     |                 | Humidity(WXT_RH)       |                            |
|   |                     |                 | Barometric(WXT_BAR)    |                            |
|   |                     |                 | Precipitation(WXT_RAN  |                            |
|   |                     |                 | )                      |                            |



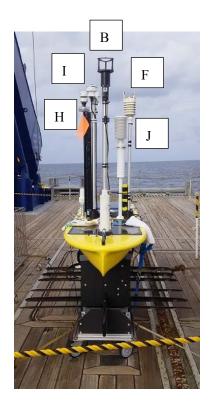



Fig5.26-2:Photo of the tower was attached meteorological sensors on R/V MIRAI deck.(left) The Wave Glider was attached meteorological sensors on MIRAI deck.(right)

| Tuble 5.20 1.1 enous of comparison meteorological sensors |                      |                      |  |  |
|-----------------------------------------------------------|----------------------|----------------------|--|--|
|                                                           | Started              | Ended                |  |  |
| Period 1                                                  | 0000UTC 09 Nov. 2015 | 0533UTC 13 Nov. 2015 |  |  |
| Period 2                                                  | 0133UTC 17 Nov. 2015 | 0000UTC 21 Nov. 2015 |  |  |
| Period 3                                                  | 0704UTC 06 Dec. 2015 | 0000UTC 14 Dec. 2015 |  |  |

Table 5.26-4: Periods of comparison meteorological sensors

## (5) Field experiment

① Time record

The field experiment for the Wave Glider was conducted at 10th December 2015.

- <Deploy>
- 01:15z Operation started
- 01:15z Deployment tool was set to the Wave Glider and the Aframe crane.
- 01:23z MIRAI stopped thruster.
- 01:30z Operation vehicle (MIRAI6) was deployed.
- 01:33z MIRAI turned to face wave direction.
- 01:40z Wave Glider was hanged. (Figure 5.26-3)
- 01:42z Wave Glider was deployed. (Figure 5.26-3)
- 01:43z Launching saddle was recovered by operation vehicle.

01:45z Thermistor chain was attached to Wave Glider by operation vehicle.

01:53z Operation vehicle was recovered.

02:01z Wave Glider was confirmed by MIRAI's radar.

<Observation>

02:01z to 03:30z Wave Glider observed ocean. (Figure 5.26-4)

<Recovery>

03:25z MIRAI stopped thruster. Operation vehicle was deployed.

03:30z Operation vehicle attached mooring line to Wave Glider and recovered thermistor chain.

MIRAI turned to face wave direction.

03:36z Recovery tool was set to crane. Operation vehicle towed Wave Glider near MIRAI. (Figure 5.26-4)

03:43z Wave Glider was set recovery tool and was hanged. (Figure 5.26-5)

03:45z Messenger was set to umbilical. (Figure 5.26-5)

03:51z Glider on deck. (Figure 5.26-6)

03:53z Float on deck.

04:00z Operation vehicle on deck.

04:00z Operation finished

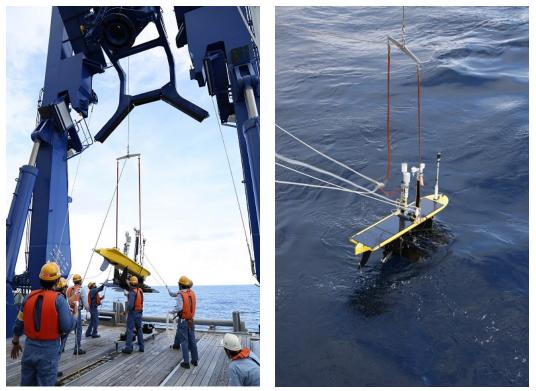



Fig5.26-3: Wave Glider was hanged (left) and was deployed. (right)

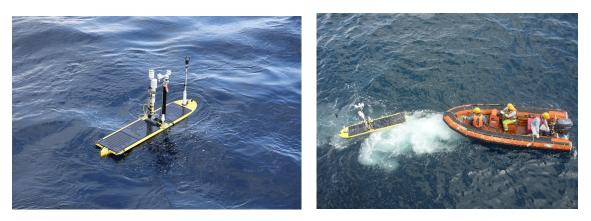



Fig5.26-4: During observation (left) and was towed near MIRAI to recovery. (right)

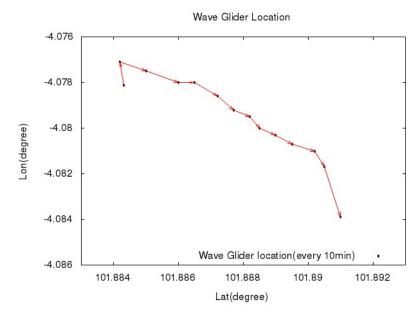
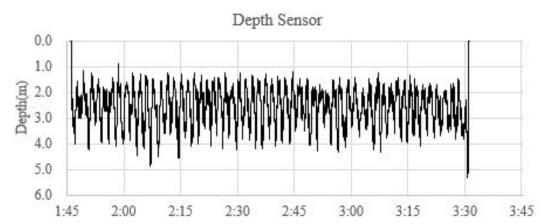


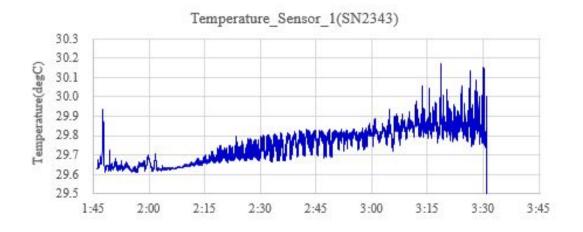
Fig5.26-5: Recovery tool was set. (left) Messenger was set. (right)



Fig5.26-6: Wave Glider was hanged to recovery. (left) On deck. (right)

② Wave Glider location during operation



Fig 5.26-7: Wave Glider location during operation

## (6) Preliminary Result

- Temperature profile within ocean uppermost layer
   Figure 5.26-4 show the time series of the temperature profile measurements during the
   Wave Glider operation.
- ② Observation of meteorological elements

Figure 5.26-5 show the time series of the meteorological elements.





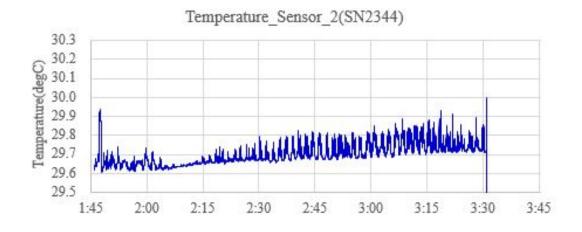



Fig.5.26-8 Time series of the temperature profile.



Fig.5.26-8 (Continued)

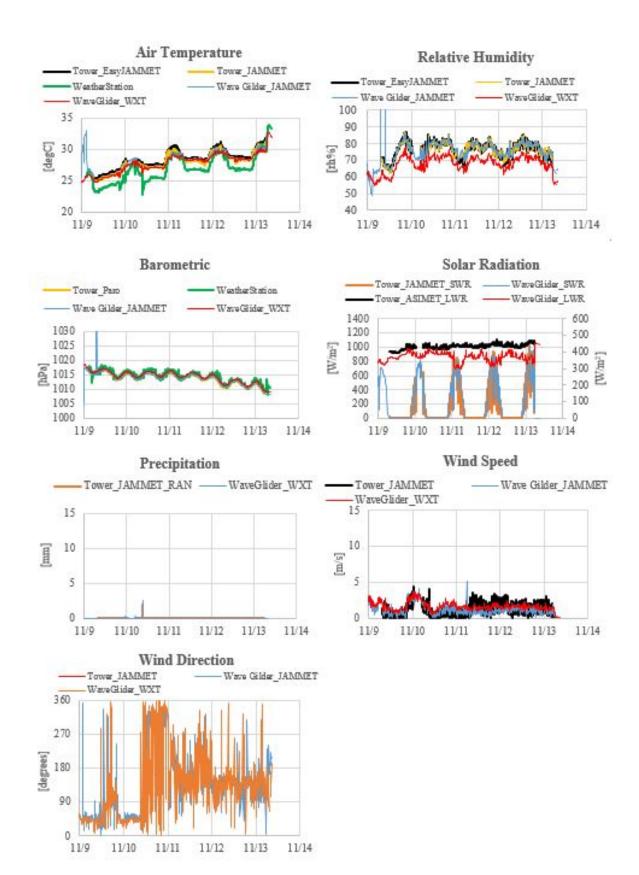



Fig.5.26-9 Time series of meteorological elements.

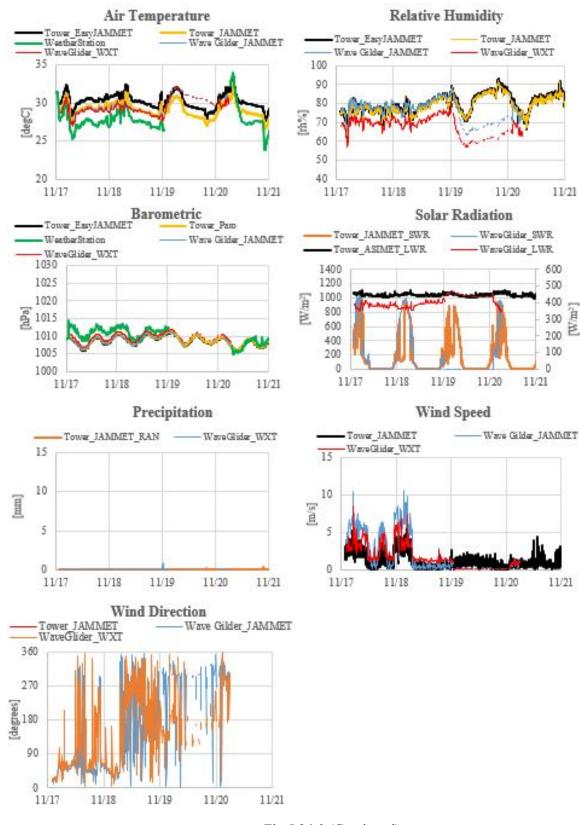



Fig.5.26-9 (Continued)

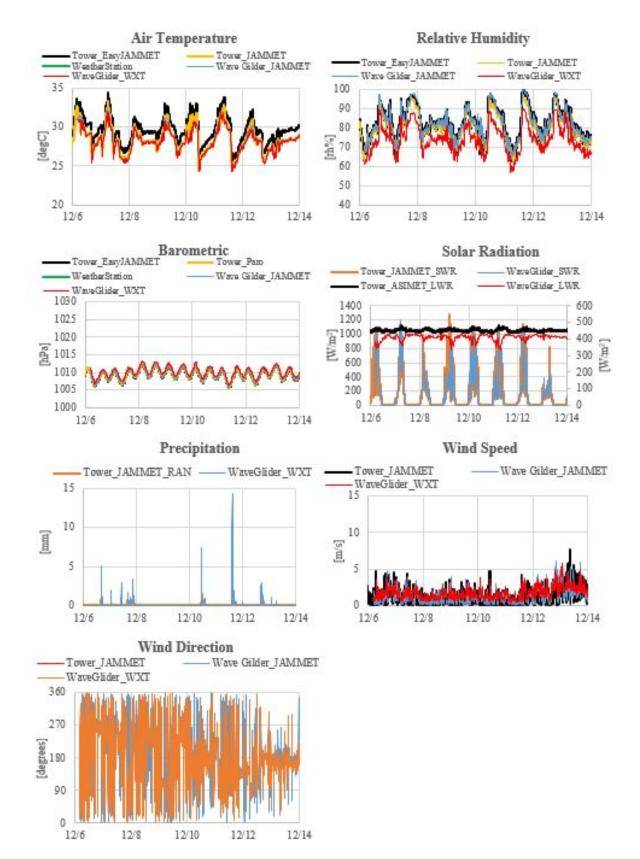



Fig.5.26-9 (Continued)

# 5.27 Testing CTD sensor for the new floats

### (1) Personnel

Yukio TAKAHASHI(JAMSTEC, not on board)- Principal InvestigatorMakito YOKOTA(JAMSTEC)Kensuke WATARI(JAMSTEC, not on board)

#### (2) Objective

JES10 Profiler (JES10) is JAMSTEC original CTD sensor for the profiling float. (Figure 5.29-1)This operation was conducted to evaluate two things.

- ① Pressure dependence of the water temperature sensor
- 2 Profiling data comparison with 9plus



Fig5.29-1 JES10 Profiler

## (3) Method

Two JES10 was cast with CTD system and compared with SBE 9plus. These sensors attached near SBE 9Plus and one of it installed pump. (Figure 5.29-2) Table 5.29-1 is casts specification.

① Pressure dependence of the water temperature sensor

The CTD system was stopped for 5 minutes at each depth 1000m, 500m, and 300m. JES10 and SBE 9plus water temperature data was averaged and compared.

2 Profiling data comparison with 9plus

Profiling data was measured decent(L03) to 500m and ascent(STN) from 500m .Station STN cast ascent rate was controlled like a profiling float.

| Station | Date        | Rate(m/sec)               | Max Depth | Stop Depth(m)(5min)    |
|---------|-------------|---------------------------|-----------|------------------------|
| L01     | Nov.20 2015 | Decent:1.0,Ascent:1.2     | 1000m     | 1000,500,300 at ascent |
| L03     | Nov.21 2015 | Decent:1.0,Ascent:1.2     | 500m      | -                      |
| STN     | Dec.13 2015 | Decent:1.0,Ascent:0.2-0.3 | 500m      | -                      |

Table 5.29-1 List of CTD casts for JES10.

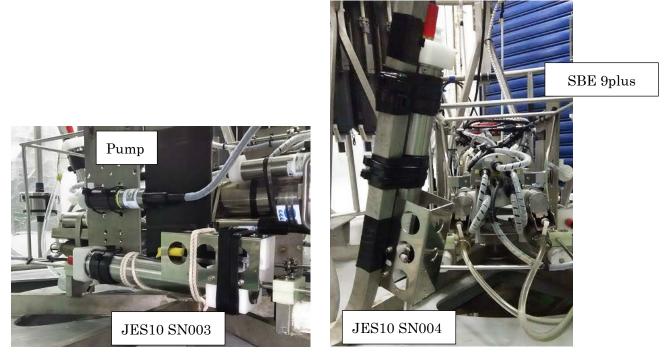



Fig 5.29-2 CTD frame with JES10

## (4) Preliminary Result

 Pressure dependence of the water temperature sensor JES10 is the goal of temperature accuracy 0.005K. Temperature difference was less than goal at each depth. (Table 5.29-2)

|       | ,       | Temperature(deg | C)          | Temperatur          | e difference        |  |  |
|-------|---------|-----------------|-------------|---------------------|---------------------|--|--|
| Depth | 9plus   | JES10_SN003     | JES10_SN004 | JES10_SN003 - 9plus | JES10_SN004 - 9plus |  |  |
| 1000m | 5.9260  | 5.9281          | 5.9234      | 0.0021              | -0.0027             |  |  |
| 500m  | 9.7179  | 9.7203          | 9.7140      | 0.0024              | -0.0039             |  |  |
| 300m  | 11.4315 | 11.4322         | 11.4271     | 0.0006              | -0.0044             |  |  |

Table 5.29-2 List of temperature difference each depth

# 2 Profiling data comparison with 9plus

All the sensors successfully provide the data during observation. The data will be processed after the end of the cruise.

# 5.28 Distribution, Cool- and Heat-Tolerances of the Oceanic Sea Skaters of *Halobates* (Heteroptera: Gerridae) Inhabiting tropical area of 4°S-06°S 101°E-102°E in the Indian Ocean

#### (1) PERSONNEL

| Tetsuo Harada    | (Kochi Univ.) |
|------------------|---------------|
| Takahiro Furuki  | (Kochi Univ.) |
| Wataru Ohoka     | (Kyoto Univ.) |
| Noritomo Umamoto | (Kochi Univ.) |

#### (2) PURPOSE

This study during this scientific cruise, MR15-04 aims, first, to examine the relationship between the population density of the oceanic sea skaters of *Halobates* (Heteroptera: Gerridae) inhabiting the tropical Indian Ocean of 4°S-7°S, 101°E-103°E and meteorological change (for example precipitation and atmospheric temperarure) in November and December 2015. This study aims, second, to examine whether sea skaters, living in the tropical Indian Ocean, show a positive or negative correlation between hardiness to lower temperature and that to higher temperature. The third aim of this study is to examine the relationship between such hardiness to lower and higher temperatures and meteorological changes during the three weeks at the fixed station, 4°S, 101°E.

#### (3) MATERIALS AND METHODS

#### Samplings

Samplings were performed every three days in 20<sup>th</sup> November 2015 to 14<sup>th</sup> December 2015 in the area of 4°S-7°S, 101°E-103°E with a Neuston NET (6 m long and with diameter of 1.3 m.) (Photo 1). The Neuston NET was trailed for 15 mm x 3 times as one set-trial on the sea surface. Nine set-trials have been performed in total from the starboard side of R/V MIRAI (8687t) which is owned by JAMSTEC (Japan Agency for Marine-earth Science and TECHnology). The trailing was performed for 15min at night for the all 9 set-trials with the ship speed of 2.0 knot to the sea water (Photo 1). It was repeated 2 times in each station. Surface area which was swept by Neuston NET was evaluated as an expression of [flow-meter value x 1.3m of width of the Neuston NET.

#### Treatments of specimens after the samplings and before the experiments

Sea skaters trapped in the pants (grey plastic bottle) located and fixed at the end of Neuston NET (Photo 2) were paralyzed with the physical shock due to the trailing of the NET. Such paralyzed sea skaters were transferred on the surface of paper towel to respire. Then, the paralysis of most of the paralyzed individuals was discontinued within 20 min. When sea skaters were trapped in the jelly of jelly fishes, the jelly was removed from the body of sea skaters very carefully and quickly by hand for recovery out of the paralysis.

Adults which recovered out of the paralysis were moved on the sea water in the aquaria set in the laboratory for the Cool Coma and Heat Coma Experiments. Many white cube aquaria  $(30 \text{ cm} \times 30 \text{ cm} \times 40 \text{ cm})$  were used

in the laboratory of the ship for rearing the adults which had been recovered out of the paralysis due to the trailing. Each aquarium contained ten to forty adults of *Halobates*. Both the room temperature and sea water temperature in the aquaria were kept at  $29 \pm 2^{\circ}$ C. For 11-12 hours after the collection, sea skaters were kept in the aquaria without foods. The adults kept for 11-12 hours after the collection were used for Cool and Heat Coma experiments. When those kept more than 12 hours after the collection were used for the experiments, the adults were fed on adult flies, *Lucillia illustris* before the Cool and Heat Coma Experiments. Foods were given and replaced to new ones every 6-12 hours and sea water in the aquaria was replaced by the new one three times at 8:00, 13:00 and 18:00 because of avoidance from water pollution due to the foods.

#### Cool Coma Experiments and Heat Coma Experiments

Twelve or thirteen adults and/or 5<sup>th</sup> and 4<sup>th</sup> instars larvae specimens were moved from the cube aquaria in which those specimen had been kept, to the two machines as Low Temperature Thermostatic Water Bathes (Thomas: T22LA) (55cm  $\times$  40cm  $\times$  35cm). Temperature was gradually decreased (1 °C per 3-5 min) by 1°C or increased every 15 min by the automatic cooling/heating system of the water bathes till the cool or heat temperature comas which occur in all the experimental specimens.

Temperature was very precisely controlled by automatic thermo-stat system of the water bath. Temperature at which Semi Cool Coma or Semi Heat Coma (Semi Cool Coma Temperature [SCCT] or Semi Heat Coma Temperature [SHCT]: The temperature at which skating behavior stopped completely for more than 5 seconds) occurs and Temperature at which Cool Coma or Heat Coma (Cool Coma Temperature [CCT] or Heat Coma Temperature [HCT]: The temperature when ventral surface of the body was caught by sea water film and the ability to skate was lost, or when abnormal postures on the sea-water were observed - for example, one leg sank into the water, the body was upside down, or the mid-leg moved behind and attached to hind leg) occurs was recorded (Table 4 and 5).

#### Recovery Experiments

When they suffered Cool Coma (CC) or Heat Coma (HC), the experimental specimens were transferred from the Experimental Water Bathes to the sea water in the round shaped transparent small containers (17cm diameter and 6cm height) at  $29\pm2^{\circ}$ C as air and water temperatures and observed for two hours to detect and the recovery from these comas and measure the time for the recovery. Any individuals have never recovered from the comas after two hours in coma. The recovery was judged when the specimen began to skate normally on the surface. All individuals who recovered from the comas did the continuous "cleaning behavior" using all 6 legs before the recovery.

#### Measurement of body sizes

Body length, body width and head width of all individuals as sea skaters which have been collected in this cruise were measured and photos of adults and larvae (H. germanus, H. micans, H. princeps and H. sp [a proposed name: *H. sumatraensis*] were taken during this cruise.

#### (4) RESULTS AND DISCUSSION

#### Distribution

The samplings of *Halobates* (Table 1) (Photo 2) inhabiting tropical stations in the eastern Indian Ocean showed that 12-327 individuals per one-set trial of three species of Halobates sericeus (Photo 1), H. princeps and un-described and relatively large (about 5 cm of body length of adults with "gourd" like shape)(probably new species and proposed name is *Halobates sumatraensis*) due to an morphological study and precise comparison with all the 71 species described in the Appendix as the Key of the identification of Halobates Eschsholtz: Andersen and Chang, 2004) were collected at the stations within 04°00'S-06°00'S, 101°00'E-103°00'E. The population density of the station A (Table 2-7A) was moderate as about 6000 individuals / km<sup>2</sup> and exclusively *H. germanus* seems to occupy this area. On the other hand at the fixed station (04°02'S 101°53'E) located about 50 km in the southern-western direction from the shore of Sumatra Island, Indonesia, three species of Halobates (H. germanus, H. princeps and H. sp. ) were collected. However, H. germanus was dominant species in this fixed station. The number of individuals collected were greatly varied from 12 to 327 individuals. This results imply that sea skaters inhabit sea surface not averagely but gregariously in some specific place like as Station 7 (Tables 1, 3) in this area. On average, the population density of dominant species, H. gerumanus and H. sp. (H. sumatoraensis) were about 20,000 and 2,500, respectively at the fixed station (Stations 2-9 in Tables 1, 3). At the Stations 6 and 7, 50 and 152 larvae were collected, respectively, and 51 exuviae (wasted skin at molting) were caught in total. Reproductive and growth activity might be very active at the two stations.

# Cool Coma Experiments (CCEs), Heat Coma Experiments (HCEs) and Recovery Time from CC and HC (RTCC and RTHC)

All the individuals of *H. germanus and H.* sp (proposed *H. sumatraensis*) collected at Stations 1-9 which had been completely recovered from the paralysis by the physical shock due to the neuston net sweeping were used for Cool Coma Experiments and Heat Coma Experiments. Semi-Cool-Coma Temperature (SCCT), Cool-Coma Temperature (CCT), Gap Temperature for Cool Coma (GTCC), Recovery Time from Cool-Coma (RTCC) were ranged 13.1°C to 25.0°C, 13.0°C to 25.0°C, 3.1°C to 16.1°C, 1 second to 4370 seconds, respectively (Table 4). On the other hand, Semi-Heat-Coma Temperature (SHCT), Heat-Coma Temperature (HCT), Gap Temperature for Heat Coma (GTHC), Recovery Time from Heat-Coma (RTHC) were ranged 29.4°C to 43.1°C, 29.4°C to 43.1°C, 1.9 °C to 15.5°C, 2 second to 6420 seconds, respectively (Table 4). In many and most of the experimental individuals, Semi-Cool Coma and Cool Coma, and Semi-Heat Coma and Heat Coma, respectively, have occurred at the same time.

The mean and standard deviation of CCT, GCCT, RTCT, HCT, GHCT and RTHT were shown in Table 6 and Table 7. At the Station 1, experimental individuals of *H. germanus* showed significantly lower SCCT and CCT, higher GTCC and longer RTCC than those collected at Stations 2-9. The CCT and GTCC showed the change in a fluctuated manner with 14 days period (Fig. 1) (One-Way ANOVA: F-value=2.314, df=7, p=0.028). Average HCT was extremely high as around 40 °C at the Stations 4, 6, 7 and 9, whereas it was quite low as 35.5°C of the individuals collected at the Station 5 (Fig. 2). Both cool tolerance and heat tolerance of H. germanus collected at the Site 1 (Station 1) were significantly harder than those at the Site 2 (Stations 2-9) (Table 6). However, the recovery time shown by the specimens at the Site 1 was longer than that by those at the Site 2, probably because of exposure to higher temperature (Table 6).

Most of individuals which suffered from CC have recovered within 20 seconds (Fig. 3), whereas the recovery time was significantly longer when they recovered from HC which occurred at the temperature higher than 38 °C (Fig. 4). Some of the individuals which suffered from HC at 40°-42° C did not recover. When they suffered from HC at 43°C, all individuals did not recover any more (Fig.4). Males recovered from HC with shorter seconds than females (Table 7). There were no significant differences in both cool hardiness and heat hardiness between sexes and nor between species (Table 7).

The exposure to around 40°C might make some injury in neurophysiological function for sea skaters, whereas that to around 15°C seems to make a moderate and temporary damage in this function and such damage would be possible to be recovered.

#### (5) ADDITIONAL ANALYSYS

It will be analyzed how the data on field samplings and hardiness to lower and higher temperature in this study are related to environmental data as the oceanography data at the sampling stations of this cruise, MR15-04. This relationship can be compared to other similar analyses on the data collected in the area of 4°S to 13°S and 8°N to 6°S in the Indian Ocean at two cruises, KH-10-05-Leg 1 (Harada et al., 2010a) and KH-07-04-Leg1 (Harada et al., 2010b, 2011a), respectively and also in the area of 30°-35°N along the Kuroshio Current at the cruises, KT-07-19, KT-08-23, KT-09-20 and the other R/V TANSEIMARU cruises held in the past. The relationship between the sampling data and oceanographic data (for example, surface sea temperature and air temperature, chlorophyll contents and dissolved oxygen level) will be analyzed. The body size data will be compared among the three species of *H. germanus, H. micans* and *H.* sp (*H. sumatraensis*) and morphological analysis on larvae and adults will be done in the near future.

#### (6) ACKNOWLEDGEMENT

We would like to thank Dr. Masaki KATSUMATA (Chief Scientist of the cruise: MR15-04, Senior Scientist, Japan Agency for Marine-Earth Science and Technology: JAMSTEC) for his permission of doing this study during the cruise boarding on the R/V MIRAI, for his warm suggestion on this study, and encouragement and help throughout this cruise. The samplings and the experimental study were also possible due to supports from all of the crew (Captain: Mr. Hiroshi MATSUURA) and all the scientists and the engineers from MWJ and GODI in this cruise. We would like to give special thanks to them. Thanks are also due to Dr Dedy Swandry Banurea (BMKG) and Mr. Bangbang Soetarutono (Security Officer) for nice friendship and discussion during this group with us.

#### (7) REFERENCE AND RELATED LITERATURE

Harada T 2005: Geographical distribution of three oceanic *Halobates* spp. and an account of the behaviour of *H. sericeus* (Heteroptera: Gerridae). *European Journal of Entomology* 102: 299-302.

- Harada T, Sekimoto T 2013 Distribution and ecology of oceanic *Halobates* inhabiting tropical area of Pacific Ocean and their responding system to several environmental factors. *The Cruise Report of MR-13-03, JAMSTEC*
- Harada T, Iyota K, Sekimoto T 2010a: Distribution and tolerance to brackish water bodies as habitat in oceanic sea skater of *Halobates* (Heteroptera: Gerridae) inhabiting Tropical Indian Ocean. *The Cruise Report of KH-10-05-Leg 1, JAMSTEC*
- Harada T, Sekimoto T, Iyota K, Shiraki T, Takenaka S, Nakajyo M, Osumi O and Katagiri C 2010b:
  Comparison of the population density of oceanic sea skater of *Halobates* (Heteroptera: Gerridae) among several areas in the tropical pacific ocean and the tropical Indian Ocean. *Formosan Entomologist* 30: 307-316.
- Harada T, Takenaka S, Sekimoto T, Ohsumi Y, Nakajyo M, Katagiri C 2011a: Heat coma and its relationship to ocean dynamics in the oceanic sea skaters of *Halobates* (Heteroptera: Gerridae) inhabiting Indian and Pacific Oceans. *Journal of Thermal Biology* 36: 299–305.
- Harada T, Sekimoto T, Osumi Y, Kobayashi A, Shiraki T 2011b: Distribution and ecology of oceanic *Halobates* inhabiting tropical area of Indian Ocean and their responding system to several environmental factors.*The Cruise Report of MR-11-07 JAMSTEC*
- Harada T, Takenaka S, Sekimoto, T, Nakajyo M, Inoue T, Ishibashi T and Katagiri C (2011c) Heat coma as an indicator of resistance to environmental stress and its relationship to ocean dynamics in the sea skaters, Ha-lobates (Heteroptera: Gerridae). *Insect Science* 18: 703-711. http://dx.doi.org/10.1111/j.1744-7917.2011.01409.x
- Harada T, Takenaka S, Sekimoto T, Osumi Y, Iyota K, Furutani T, Shiraki T, Nakajo M, Katagiri C, Moku M, Koštál V 2012: Correlation analysis of heat hardiness and super-cooling point in the oceanic sea skaters, *Halobates. Trends in Entomology* 10:115-124.
- Harada T, Takenaka S, Iyota K, Shiraki T, Moku M, Katagiri C, Koštál V 2013: Supercooling points and heat coma temperatures in four species of oceanic sea skaters of the genus *Halobates* (Heteroptera: Gerridae: Halobatinae). *Journal of Asia-Pacific Entomology* 16: 219–222.
- Harada T, Osumi Y, Shiraki T, Kobayashi A, Sekimoto T, Nakajo M, Takeuchi H, Iyota K 2014: Abundance of oceanic sea skaters, Halobates in the tropical Indian Ocean with respect to surface chlorophyll and oxygen concentrations. *Journal of Experimental Marine Biology and Ecology* 460: 32–36.
- Nakajo M, Sekimoto T, Emi K, Ide R, Wada K, Inoue T, Moku M, Koštál V, Katagiri C, Harada T 2013: Comparison of temperature preference for habitat among three species of oceanic sea skaters, *Halobates micans*, *H. germanus* and *H. sericeus*. *Natural Science* 5-12A: 9-15 http://dx.doi.org/10.4236/ns.2013.512A002
- Sekimoto T, Iyota K, Osumi Y, Shiraki T, Harada T 2013: Supercooling points and heat coma temperatures in four species of oceanic sea skaters of the genus *Halobates* (Heteroptera: Gerridae: Halobatinae). *Environmental Entomology* 42: 572–577.
- Sekimoto T, Osumi Y, Shiraki T, Kobayashi A, Emi K., Nakajo M., Moku M, Koštál V, Katagiri C, Harada T 2014: Comparative study of salinity tolerance an oceanic sea skater, *Halobates micans* and its closely

related fresh water species, Metrocoris histrio. Natural Science 6: 1141-1148.

- Takenaka S, Katagiri C, Koštál V, Harada T 2014: Heat coma temperature, relative contents of saturated/unsaturated fatty acids and reproductive maturation in the oceanic sea skaters, *Halobates micans*. *Journal of Asia-Pacific Entomology* 17: 633–637.
- Zhao YX, Kang L. 2000: Cold tolerance of the leafminer *Liriomyza sativae* (Dipt., Agromyzidae). *J. Appl. Entomol.* 124: 185-189.

**Table 1:** Number of oceanic sea skaters, *Halobates* collected at locations in the tropical Indian Ocean in November 20<sup>th</sup>, 2015 - December 14<sup>th</sup> 2015 during the science cruise, MR15-04 (N: Total number of individuals collected; H.g.: *Halobates germanus*, H.sp.: un-described species (a proposed name: *H. sumatraensis*), H.p.: *Halobates princeps*; Stat: Station number; WT: Water temperature ( $^{\circ}$ C); AT: Air temp.; L: N of larvae; A: N of adults, E: N of exuviae; EG: number of eggs (on some substrates like as polystyrene form); Date: sampling date; Sampling was performed for 15min. S: Surface area which was swept by Neuston NET was expressed as value of flow-meter x 1.3m of width of Neuston NET; WS: wind speed (m/s); W: weather; TD: Time of day; WS: Wind speed, CS: Current speed(m/s)CD: Current direction; F: female; M: male, S: salinity of sea surface (‰), Chla: Chlorophyll A (ug/L) No other species of oceanic sea skaters were collected in this area.

| Latitude         | Longitude   | N    | L     | A     | <u>Н,</u> g | H.s    | <u>p H.p. EG</u> | E Stat |       | WT AT    | ws     | W      | CS    | <u>s</u> c | D 1 | ſD   | Date        | <u>S (x1.3 m<sup>2</sup>)</u> | <u>Ch OD</u> |          |             |   |
|------------------|-------------|------|-------|-------|-------------|--------|------------------|--------|-------|----------|--------|--------|-------|------------|-----|------|-------------|-------------------------------|--------------|----------|-------------|---|
|                  |             |      |       | F     | М           |        |                  |        |       |          |        |        |       |            |     |      |             |                               |              |          |             |   |
| 06°56'S          | 102°53'E    | 7    | 4     | 1     | 2           | 7      | 0 0              | 0      | 0     | St.1-1   | 28.7   | 28.9   | 10.3  | Cloudy     | 1.0 | 31   | 151         | 19:22~37                      | Nov 20       | 1991.0   | -           | - |
| 06°57'S          | 102°54'E    | 17   | 11    | 5     | 1           | 17     | 0 0              | 0      | 1     | St.1-2   | 28.7   | 28.9   | 8.9   | Cloudy     | 1.0 | 31   | 145         | 19:45~57                      | Nov 20       | 1929.5   | -           | - |
| 06°58'S          | 102°54'E    | 22   | 14    | 4     | 4           | 22     | 0 0              | 0      | 1     | St.1-3   | 28.7   | 28.9   | 11.2  | Cloudy     | 1.1 | 31   | 141         | 20:02~15                      | Nov 20       | 1803.0   | -           | - |
| 04°05'S          | 101°56'E    | 14   | 9     | 3     | 2           | 5      | 9 (              | ) 0    | (     | St.2-1   | 29.9   | 28.2   | 5.9   | R/C        | 0.7 | 28.9 | 122         | 19:16~31                      | Nov 23       | 1955.0   | -           | - |
| 04°05'S          | 101°55'E    | 9    | 6     | 1     | 2           | 1      | 8                | 0 0    | 0     | St.2-2   | 29.9   | 28.2   | 5.3   | Cloudy     | 0.6 | 28.9 | 115         | 19:36~51                      | Nov 23       | 1754.0   | -           | - |
| 04°06'S          | 101°55'E    | 8    | 5     | 3     | 0           | 1      | 7                | 0 0    | 0     | St.2-3   | 29.9   | 28.2   | 6.3   | Cloudy     | 0.6 | 28.9 | 119         | 19:56-20:                     | 11 Nov 23    | 1712.0   | -           | - |
| 04°04'S          | 101°53'E    | 10   | 6     | 2     | 2           | 10     | 0                | 0 0    | 0     | St.3-1   | 29.3   | 28.2   | 6.3   | Cloudy     | 0.4 | 30.0 | 219         | 19:12~27                      | Nov 26       | 964.5    | -           | - |
| 04°03'S          | 101°53'E    | 6    | 3     | 2     | 1           | 6      | 0                | 0 0    | 0     | St.3-2   | 29.3   | 28.2   | 5.5   | Cloudy     | 0.4 | 30.0 | 196         | 19:32~47                      | Nov 26       | 956.0    | -           | - |
| 04°02'S          | 101°53'E    | 8    | 3     | 5     | 0           | 8      | 0                | 0 0    | 0     | St.3-3   | 29.3   | 28.2   | 5.4   | Cloudy     | 0.4 | 30.0 | 190         | 19:53-20:                     | 08 Nov 26    | 891.5    | -           | - |
| 04°04'S          | 101°53'E    | 39   | 19    | 9     | 11          | 39     | 0                | 0 0    | 0     | St.4-1   | 29.3   | 29.5   | 5.7   | Cloudy     | 0.2 | 28.5 | 242         | 19:08~23                      | Nov 29       | 1831.0   | -           | - |
| 04°05'S          | 101°53'E    | 27   | 16    | 9     | 2           | 27     | 0                | 0 0    | 0     | St.4-2   | 29.3   | 29.5   | 4.4   | Cloudy     | 0.1 | 28.5 | 227         | 19:28~43                      | Nov 29       | 1822.0   | -           | - |
| 04°05'S          | 101°52'E    | 13   | 6     | 3     | 4           | 13     | 0                | 0 0    | 0     | St.4-3   | 29.3   | 29.5   | 3.9   | Cloudy     | 0.1 | 28.5 | 265         | 19:48-20:                     | 03 Nov 29    | 1693.0   | -           | - |
| 04°03'S          | 101'53'E    | 16   | 3     | 9     | 4           | 16     | 0                | 0 0    | 0     | St.5-1   | 29.6   | 28.8   | 3.3   | Cloudy     | 0.1 | 28.9 | 66          | 19:41-56                      | Dec 02       | 799.0    | -           | - |
| 04°03'S          | 101°53'E    | 30   | 18    | 3     | 9           | 30     | 0                | 0 0    | 0     | St.5-2   | 29.6   | 28.8   | 1.2   | Cloudy     | 0.0 | 28.9 | 105         | 20:05~20                      | Dec 02       | 733.0    | -           | - |
| 04°03'S          | 101°53'E    | 14   | 1     | 6     | 7           | 13     | 0                | 1 0    | 0     | St.5-3   | 29.6   | 28.8   | 3.4   | Cloudy     | 0.1 | 28.9 | 136         | 20:25-40                      | Dec 02       | 784.0    | -           | - |
| 04°04'S          | 101°53'E    | 37   | 24    | 7     | 6           | 37     | 0                | 0 0    | 6     | St.6-1   | 29.0   | 28.2   | 3.5   | Cloudy     | 0.4 | 30.1 | 132         | 19:34~49                      | Dec 05       | 634.0    | -           | - |
| 04°03'S          | 101°53'E    | 30   | 18    | 8     | 4           | 28     | 2                | 0 0    | 27    | St.6-2   | 29.0   | 28.2   | 3.9   | Cloudy     | 0.4 | 30.1 | 125         | 19:55~20:                     | 10 Dec 05    | 5 596.5  | -           | - |
| 04°03'S          | 101°52'E    | 46   | 33    | 10    | 3           | 46     | 0                | 0 0    | 17    | St.6-3   | 29.0   | 28.2   | 2.6   | Cloudy     | 0.3 | 30.1 | 129         | 20:15~20:                     | 30 Dec 05    | 612.8    | -           | - |
| 04°04'S          | 101°53'E    | 90   | 34    | 25    | 31          | 74     | 16               | 0 0    | 1     | St.7-1   | 29.7.  | 28.7   | 3.7   | Cloudy     | 0.7 | 27.6 | 140         | 19:14-29                      | Dec 08       | 467.5    | -           | - |
| 04°04'S          | 101°53'E    | 131  | 55    | 44    | 32          | 116    | 15               | 0 0    | 0     | St.7-2   | 29.7.  | 28.7   | 3.4   | Cloudy     | 0.7 | 27.6 | 136         | 19:33~48                      | Dec 08       | 485.1    | -           | - |
| 04°05'S          | 101°54'E    | 109  | 63    | 24    | 22          | 71     | 38               | 0 0    | (     | St.7-3   | 29.7   | 28.7   | 3.1   | Cloudy     | 0.7 | 27.6 | 136         | 19: 52-20                     | :07 Dec 0    | 8 466.0  | -           | - |
| 04°04'S          | 101°53'E    | 2    | 0     | 2     | 0           | 2      | 0                | 0 (    | )     | 0 St.8-1 | 30.3   | 30.0   | 2.9   | Cloudy     | 0.3 | 27.7 | 126         | 19:07-22                      | Dec 1        | 1 725.0  |             | - |
| (At St.8-1       | , one adult | male | indiv | idual | of Ge       | rris s | p was coll       | ected) |       |          |        |        |       |            |     |      |             |                               |              |          |             |   |
| 04°04'S          | 101°52'E    | 4    | 4     | 0     | 0           | 3      | 1                | 0 1    | l     | 0 St.8-2 | 30.3   | 30.0   | 2.2   | Cloudy     | 0.3 | 27.7 | 117         | 19:26~19:                     | 41 Dec       | 11 816.0 | -           | - |
| 04°04'S          | 101°52'E    | 6    | 3     | 2     | 1           | 5      | 1                | 0 3 (H | (.sp) | 0 St.8-3 | 3 30.3 | 30.0   | 3.9   | Cloudy     | 0.3 | 27.7 | 107         | 19:46~20                      | ;01 Dec      | 11 762.5 |             | - |
| 04°03'S          | 101°53'E    | 31   | 14    | 11    | 6           | 20     | 11(H.m.          | )0     | 0     | 0 St.9   | -1 29  | .2 27. | 7 4.0 | Rainy      | 0.6 | 31.  | 0 11        | 9 19:05~20                    | ) Dec        | 14 794.  | .0          | - |
| 04°02'S          | 101°53'E    | 23   | 12    | 6     | 5           | 17     | 6(H.m.           | )0 (   | )     | 0 St.9   | -2 29. | 2 27.3 | 7 4.6 | Rainy      | 0.5 | 31.0 | ) 122       | 2 19:26~41                    | Dec          | 14 710.  | 5           | - |
| <u>04°02'S 1</u> | 101°53'E 1  | 10   | 3     | 4     | 3           | 4      | 6(H.m.)          | 0 1    | 0     | St.9     | -3 29. | 2 27.7 | 7 5.1 | Rainy      | 0.4 | 31   | <b>.0</b> 1 | 120 19:40                     | 5-20:01      | Dec 14 6 | <u>71.0</u> |   |

 Table 2: A comparison of population density of oceanic sea skaters, *Halobates* among four areas of open Indian

 and Pacific Oceans. Samplings were performed during the seven cruises including this cruise. *H.m: Halobates micans: H.g.: H. germanus; H.s.: H. sericeus; H.p.: H. princeps; H. sumatoraensis=H.sp* (un-described species

 collected during this cruise). Density: individual number/km<sup>2</sup>

| 1.KH-07-0 | 94-Leg 1: Eas  | stern Tropical | l Indian Ocea | an, 8°N-6°35'S | S, 86ºE- 76  | °36'E) (H  | Iarada et al., 2010b, 2 | 011a)         |
|-----------|----------------|----------------|---------------|----------------|--------------|------------|-------------------------|---------------|
|           | 1              | Total          | H.m           | H.g            | H. s .       | Н. р       | <u>H. sumatoraensis</u> | AS            |
|           | Nymphs         | Adults         |               |                |              |            |                         |               |
| Number    | 1291           | 706            | 1886          | 111            | 0            | 0          | 0                       | 0.044292      |
| Density   | 29147.5        | 15939.7        | 42581.1       | 2506.1         | 0            | 0          | 0                       |               |
| 2. MR-1   | 1-07-Leg 1:    | Eastern Trop   | ical Indian O | cean, 01°55'S  | S, 083°24E;  | 8°S, 80°3  | 30'E) (Harada et al., 2 | 011b)         |
|           | 1              | Total          | H.m           | H.g            | H. s .       | Н. р       | <u>H. sumatoraensis</u> | AS            |
|           | Nymphs         | Adults         |               |                |              |            |                         |               |
| Number    | 551            | 255            | 697           | 109            | 0            | 0          | 0                       | 0.0438607     |
| Density   | 12562.5        | 5813.9         | 15891.2       | 2485.1         | 0            | 0          | 0                       |               |
| 3. MR-1   | 2-05-Leg 1 (   | Stations A, B  | and C)): We   | estern Subtrop | vical and Ti | ropical Pa | acific Ocean (Nakajo    | et al., 2013) |
|           | Тс             | otal           | H.m           | H.g            | H. s .       | Н. р       | H. sumatoraensis        | AS            |
|           | Nymphs         | Adults         |               |                |              |            |                         |               |
| A. 13°5   | 9'N 149°16'    | Έ              |               |                |              |            |                         |               |
| Number    | 44             | 73             | 43            | 0              | 74           | 0          | 0                       | 0.0061659     |
| Density   | 7136.0         | 11839.3        | 6973.8        | 0              | 12001.5      | 0          | 0                       |               |
|           | 7              | Total          | H.m           | H.g            | <i>H.s.</i>  | Н. р       | <u>H. sumatoraensis</u> | <u></u>       |
|           | Nymphs         | Adults         |               |                |              |            |                         |               |
| B. 01°5   | 5 'N 150°31 '  | Έ              |               |                |              |            |                         |               |
| Number    | 66             | 379            | 8             | 437            | 0            | 0          | 0                       | 0.0043914     |
| Density   | 15029.4        | 86305.1        | 1821.7        | 99512.7        | 0            | 0          | 0                       | -             |
| C. 26°5   | 5 'S 165°34 'I | E              |               |                |              |            |                         |               |
| Number    | 71             | 183            | 0             | 0              | 254          | 0          | 0                       | 0.0066742     |
| Density   | 10638.0        | 27419.0        | 0             | 0              | 38057.0      | 0          | 0                       |               |

|             | <u> </u>        | tal           | H.m           | H.g           | <i>H. s</i> . | Н. р       | H. sumatoraensis | AS         |
|-------------|-----------------|---------------|---------------|---------------|---------------|------------|------------------|------------|
|             | Nymphs          | Adults        |               |               |               |            |                  |            |
| A. 24°00'.  | N 138°10'E (    | Station 1)    |               |               |               |            |                  |            |
| Number      | 179             | 126           | 6             | 0             | 299           | 0          | 0                | 0.0031594  |
| Density     | 56656.5         | 39881.1       | 1899,1        | 0             | 94638.5       | 0          | 0                |            |
|             | То              | tal           | H.m           | H.g           | H. s .        | Н. р       | H. sumatoraensis | AS         |
|             | Nymphs          | Adults        |               |               |               |            |                  |            |
| B. 12°00'.  | N 135°00'E (    | Stations 2-10 | ))            |               |               |            |                  |            |
| Number      | 484             | 119           | 276           | 327           | 0             | 0          | 0                | 0.02802519 |
| Density     | 17270.2         | 4246.2        | 9848.3        | 11688.1       | 0             | 0          | 0                |            |
| 5. KH-14    | -02 (Stations   | A and B): W   | estern Subtr  | opical and Ti | opical Paci   | ific Ocean |                  |            |
|             | То              | tal           | H.m           | H.g           | <i>H. s</i> . | Н. р       | H. sumatoraensis | AS         |
|             | Nymphs          | Adults        |               |               |               |            |                  |            |
| A: Norther  | n Station at 4  | 7°00'N 160°0  | 00'N          |               |               |            |                  |            |
| Number      | 0               | 0             | 0             | 0             | 0             | 0          | 0                | 0.0126451  |
| Density     | 0               | 0             | 0             | 0             | 0             | 0          | 0                |            |
|             | То              | tal           | H.m           | H.g           | <i>H. s</i> . | Н. р       | H. sumatoraensis | AS         |
|             | Nymphs          | Adults        |               |               |               |            |                  |            |
| B: Southern | n Station at 2. | 5°00'N 160°(  | 00'E          |               |               |            |                  |            |
| Number      | 593             | 254           | 0             | 0             | 847           | 0          | 0                | 0.0162708  |
| Density     | 36445.7         | 15610.8       | 0             | 0             | 52056.4       | 0          | 0                |            |
| 6. MR14-    | -06 leg 2: We   | stern Tropica | al Pacific Oc | ean (Harada a | and Umame     | oto, 2015) |                  |            |
|             | То              | tal           | H.m           | H.g           | <i>H. s</i> . | Н. р       | H. sumatoraensis | AS         |
|             | Nymphs          | Adults        |               |               |               |            |                  |            |
| Number      | 266             | 367           | 112           | 521           | 0             | 0          | 0                | 0.03036016 |
| Density     | 8761.5          | 12088.2       | 3689.0        | 17160.6       | 0             | 0          | 0                |            |
| #           |                 |               |               | 2             |               |            |                  |            |

4. MR-13-03 (Stations 1-10): Western Subtropical and Tropical Pacific Ocean (Harada and Sekimoto, 2013)

AS  $\stackrel{\#}{:}$  Area of surface where the Neuston net has swept (km<sup>2</sup>)

# 7. MR15-04: Eastern Tropical Indian Ocean (this cruise)

A. 06°56-58'S 102°53-54'E (Station 1)

|         | ]          | Total       | H.m              | H.g     | <i>H. s</i> . | Н. р | <u>H. sumatoraensis</u> | <u>AS</u>  |
|---------|------------|-------------|------------------|---------|---------------|------|-------------------------|------------|
|         | Nymphs     | Adults      |                  |         |               |      |                         |            |
| Number  | 29         | 17          | 0                | 46      | 0             | 0    | 0                       | 0.00744055 |
| Density | 3897.6     | 2284.8      | 0                | 6182.3  | 0             | 0    | 0                       |            |
| В.      | 04°02-06'S | 101°52-55'E | E (Stations 2-8) | )       |               |      |                         |            |
| -       | T          | otal        | H.m              | H.g     | H. s .        | Н. р | <u>H. sumatoraensis</u> | AS         |
| -       | Nymphs     | Adults      |                  |         |               |      |                         |            |
| Number  | 358        | 355         | 23               | 621     | 0             | 1    | 68                      | 0.03072667 |
| Density | 11651.1    | 11553.5     | 748.5            | 20210.5 | 0             | 32.5 | 2213.1                  | -          |

|        |                       |                       |                       | Halob                 | oates geri            | manus |        |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------|--------|
|        |                       |                       | Larva                 | ne                    |                       |       | Adults |
|        | <u>1<sup>st</sup></u> | <u>2<sup>nd</sup></u> | <u>3<sup>rd</sup></u> | <u>4<sup>th</sup></u> | <u>5<sup>th</sup></u> | F     | M      |
| St.1-1 | 0                     | 3                     | 0                     | 1                     | 0                     | 1     | 2      |
| St.1-2 | 0                     | 6                     | 2                     | 0                     | 3                     | 5     | 1      |
| St.1-3 | 1                     | 7                     | 1                     | 2                     | 3                     | 4     | 4      |
| St.2-1 | 0                     | 0                     | 0                     | 0                     | 2                     | 2     | 1      |
| St.2-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0     | 1      |
| St.2-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 1     | 0      |
| St.3-1 | 2                     | 0                     | 2                     | 1                     | 1                     | 2     | 2      |
| St.3-2 | 1                     | 0                     | 2                     | 0                     | 0                     | 2     | 1      |
| St.3-3 | 0                     | 2                     | 0                     | 1                     | 0                     | 5     | 0      |
| St.4-1 | 2(1)*                 | 2                     | 2                     | 2                     | 11                    | 9     | 11     |
| St.4-2 | 2                     | 2                     | 0                     | 1                     | 11                    | 9     | 2      |
| St.4-3 | 1                     | 0                     | 3                     | 0                     | 2                     | 3     | 4      |
| St.5-1 | 0                     | 0                     | 0                     | 0                     | 3                     | 9     | 4      |
| St.5-2 | 7(3)*                 | 1                     | 2                     | 5                     | 3                     | 3     | 9      |
| St.5-3 | 1                     | 0                     | 0                     | 0                     | 0                     | 6     | 6      |
| St.6-1 | 2                     | 4                     | 3                     | 6                     | 9                     | 7     | 6      |
| St.6-2 | 2(2)*                 | 3                     | 7                     | 1                     | 5                     | 8     | 4      |
| St.6-3 | 16(7)*                | 2                     | 4                     | 5                     | 4                     | 10    | 3      |
| St.7-1 | 8(1)*                 | 4                     | 1                     | 1                     | 4                     | 25    | 31     |
| St.7-2 | 15(4)*                | 9                     | 7                     | 5                     | 4                     | 44    | 32     |
| St.7-3 | 13(2)*                | 1                     | 4                     | 1                     | 6                     | 24    | 22     |
| St.8-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 2     | 0      |
| St.8-2 | 1                     | 1                     | 0                     | 0                     | 1                     | 0     | 0      |
| St.8-3 | 0                     | 0                     | 0                     | 1                     | 1                     | 2     | 1      |
| St.9-1 | 1                     | 3                     | 0                     | 0                     | 4                     | 6     | 6      |
| St.9-2 | 4                     | 2                     | 0                     | 4                     | 2                     | 3     | 2      |
| St.9-3 | 0                     | 0                     | 1                     | 0                     | 0                     | 2     | 1      |
| Total  | 79                    | 52                    | 41                    | 37                    | 79                    | 194   | 156    |

**Table 3-A.** Components of instars of larvae and adults of oceanic sea skaters, *Halobates germanus* sampled at Stations located in 4 ° S-7 ° S, 101° E~103° E in the tropical Indean Ocean during the science cruise, MR15-04.

\*: number of smaller individuals which can be supposed to be just after hatching (0<sup>th</sup> instar)

|               |             |                       |                       |                       | Halobate                   | es sp. (a propos | ed name: <i>H</i> . |
|---------------|-------------|-----------------------|-----------------------|-----------------------|----------------------------|------------------|---------------------|
| _             |             | ]                     | Larvae                |                       |                            | Adul             | ts                  |
| _             | 1 <u>st</u> | <u>2<sup>nd</sup></u> | <u>3<sup>rd</sup></u> | <u>4<sup>th</sup></u> | <u>    5<sup>th</sup> </u> | F                | Μ                   |
| .1-1          | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 1-2           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| .1-3          | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 2-1           | 2           | 1                     | 0                     | 2                     | 2                          | 1                | 1                   |
| 2-2           | 0           | 2                     | 0                     | 1                     | 3                          | 1                | 1                   |
| 2-3           | 0           | 1                     | 1                     | 0                     | 3                          | 1                | 1                   |
| 3-1           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 3-2           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 3-3           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 4-1           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 4-2           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 4-3           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 5-1           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 5-2           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 5-3           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| -1            | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| -2            | 1           | 1                     | 0                     | 0                     | 0                          | 0                | 0                   |
| -3            | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| -1 9          | 9(7) *      | 2                     | 1                     | 2                     | 2                          | 0                | 0                   |
| 7-2           | 13(10) *    | 0                     | 0                     | 1                     | 1                          | 0                | 0                   |
| -3            | 15(8) *     | 8                     | 7                     | 3                     | 5                          | 0                | 0                   |
| 8-1           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 8-2           | 0           | 1                     | 0                     | 0                     | 0                          | 0                | 0                   |
| -3            | 0           | 1                     | 0                     | 0                     | 0                          | 0                | 0                   |
| St.3, three e | xuviae o    | of <i>H</i> . sj      | p were co             | ollected)             |                            |                  |                     |
| -1            | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| 0-2           | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| -3            | 0           | 0                     | 0                     | 0                     | 0                          | 0                | 0                   |
| d             | 31          | 17                    | 9                     | 9                     | 16                         | 3                | 3                   |

 Table 3-B.
 Components of instars of larvae and adults of oceanic sea skaters, *Halobates* sp sampled at

 Stations located in 10 ° N-5 ° S. 130 ° E~160 ° E in the tropical Pacific Ocean during the science cruise. MR15-04.

 Under the science cruise in the tropical Pacific Ocean during the science cruise.

\*: number of smaller individuals which can be supposed to be just after hatching (0<sup>th</sup> instar)

|        |                       |                       |                       |                       | Haloba                | tes princeps |    |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------|----|
|        |                       | ]                     | Larvae                |                       |                       | Adult        | ts |
|        | <u>1<sup>st</sup></u> | <u>2<sup>nd</sup></u> | <u>3<sup>rd</sup></u> | <u>4<sup>th</sup></u> | <u>5<sup>th</sup></u> | F            | Μ  |
| St.1-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.1-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.1-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.2-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.2-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.2-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.3-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.3-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.3-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.4-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.4-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.4-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.5-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.5-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.5-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 1  |
| St.6-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.6-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.6-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.7-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.7-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.7-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.8-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.8-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.8-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.9-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.9-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| St.9-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 0  |
| Total  | 0                     | 0                     | 0                     | 0                     | 0                     | 0            | 1  |

Table 3-C.Components of instars of larvae and adults of oceanic sea skaters, Halobates princeps sampled atStations located in 10 ° N-5 ° S, 130 ° E~160 ° E in the tropical Pacific Ocean during the science cruise, MR15-04.

|        |                       |                       |                       |                       | Halobates             | micans |     |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------|-----|
|        |                       |                       | Larvae                |                       |                       | Adu    | lts |
|        | <u>1<sup>st</sup></u> | <u>2<sup>nd</sup></u> | <u>3<sup>rd</sup></u> | <u>4<sup>th</sup></u> | <u>5<sup>th</sup></u> | F      | М   |
| St.1-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.1-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.1-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.2-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.2-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| st.2-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.3-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.3-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.3-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.4-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.4-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.4-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.5-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| st.5-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.5-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| st.6-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.6-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| st.6-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| st.7-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.7-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.7-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.8-1 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.8-2 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| st.8-3 | 0                     | 0                     | 0                     | 0                     | 0                     | 0      | 0   |
| St.9-1 | 0                     | 0                     | 3                     | 0                     | 3                     | 5      | 0   |
| t.9-2  | 0                     | 0                     | 0                     | 0                     | 0                     | 3      | 3   |
| St.9-3 | 1                     | 0                     | 0                     | 1                     | 0                     | 2      | 2   |
| otal   | 1                     | 0                     | 3                     | 1                     | 3                     | 10     | 5   |

 Table 3-D.
 Components of instars of larvae and adults of oceanic sea skaters, *Halobates micans* sampled at

 Stations located in 10 ° N-5 ° S. 130 ° E~160 ° E in the tropical Pacific Ocean during the science cruise, MR15-04.

**Table 4-Sheet 1.** Results of "Cool-coma" experiments and measurement of recovery time from the cool coma (RTCC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SCCT: temp. at which semi-cool coma occurred; CCT: temp. at which cool coma occurred ; GTCC: gap temp. for cool coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when cool coma experiment was performed.

| <u>St.No. Latitude Longi</u> |         |      |      |      |      | <u>Species</u> |       | Date                   | TD        |                    |
|------------------------------|---------|------|------|------|------|----------------|-------|------------------------|-----------|--------------------|
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 16.1 | 16.1 | 11.9 | 10             | H.g.  | Male                   | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 15.0 | 14.1 | 13.9 | 30             | H.g.  | Female                 | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 14.1 | 14.0 | 14.0 | 3060           | H.g.  | Female                 | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 14.0 | 14.0 | 14.0 | 26             | H.g.  | Female                 | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 14.0 | 14.0 | 14.0 | 6              | H.g.  | Female                 | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 15.0 | 14.0 | 14.0 | 22             | H.g.  | Male                   | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 15.0 | 14.0 | 14.0 | 43             | H.g.  | Male                   | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 14.0 | 14.0 | 14.0 | >2(hours)      | H.g.  | 5 <sup>th</sup> instar | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 13.3 | 13.3 | 14.7 | 60             | H.g.  | Female                 | Nov 21    | 8:00~              |
| St.1-2,3 06°56'S 102°        | 53'E 1  | 28.0 | 13.1 | 13.1 | 14.9 | 2              | H.g.  | Male                   | Nov 21    | 8:00~              |
| St.1-1,2,3 06°56'S 102°      | 53'E 2  | 28.0 | 22.0 | 22.0 | 6.0  | 180            | H.g.  | 4 <sup>th</sup> instar | Nov 21    | 8:00~              |
| St.1-1,2,3 06 °56'S 102      | °53'E 2 | 28.0 | 18.0 | 18.0 | 10.0 | >2(hours)      | H.g.  | Female                 | Nov 21    | 8:00~              |
| St.1-1,2,3 06 °56'S 102      | °53'E 2 | 28.0 | 18.0 | 18.0 | 10.0 | 1320           | H.g.  | Female                 | Nov 21    | 8:00~              |
| St.1-1,2,3 06°56'S 102°      | 53'E 2  | 28.0 | 16.0 | 16.0 | 12.0 | 15             | H.g.  | Male                   | Nov 21    | 8:00~              |
| St.1-1,2,3 06°56'S 102°      | 53'E 2  | 28.0 | 14.1 | 14.1 | 13.9 | >2(hours)      | H.g.  | 4 <sup>th</sup> instar | Nov 21    | 8:00~              |
| St.1-1,2,3 06°56'S 102°      | 53'E 2  | 28.0 | 13.5 | 13.5 | 14.5 | 4              | H.g.  | 5 <sup>th</sup> instar | Nov 21    | 8:00~              |
| St.1-1,2,3 06°56'S 102°      | 53'E 2  | 28.0 | 17.0 | 17.0 | 11.0 | 10             | H.g.  | Female                 | Nov 21    | 8:00~              |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 19.0 | 19.0 | 9.1  | 45             | H.g.  | Female                 | Nov 24    | 07:45              |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 18.0 | 18.0 | 10.1 | 12             | H.g.  | Female                 | Nov 24    | 07:45              |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 16.0 | 16.0 | 12.1 | 2              | H.g.  | Male                   | Nov 24    | 07:45 <sup>,</sup> |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 16.0 | 16.0 | 12.1 | 49             | H.sp. | 5 <sup>th</sup> instar | Nov 24    | 07:45              |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 15.0 | 15.0 | 13.1 | 270            | H.sp. | 5 <sup>th</sup> instar | Nov 24    | 07:45              |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 15.0 | 14.0 | 14.1 | 5              | H.sp. | 4 <sup>th</sup> instar | · Nov 24  | 07:45              |
| St.2-1.2.3 04°05'S 101°      | 55'E 3  | 28.1 | 15.0 | 14.0 | 14.1 | 16             | H.g.  | 5 <sup>th</sup> insta  | r Nov 24  | 07:45              |
| St.2-1.2.3 04°05'S 101°      | 55'E 3  | 28.1 | 15.0 | 14.0 | 14.1 | 31             |       | Male                   | Nov 24    | 07:4               |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 15.0 | 14.0 | 14.1 | 42             | H.sp. | 5 <sup>th</sup> instar | Nov 2     | 4 07:4             |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 15.0 | 13.7 | 14.4 | 360            | H.sp. | Female                 | Nov 24    | 07:45              |
| St.2-1,2,3 04°05'S 101°      | 55'E 3  | 28.1 | 15.0 | 12.0 | 16.1 | 4              | H.sp. | 5 <sup>th</sup> instar | Nov 24    | 07:45              |
| St.2-1,2,3 04°05'S 101°      | 55'E 4  | 28.1 | 25.0 | 25.0 | 3.1  | 105            | H.g.  | Female                 | Nov 2     | 4 07:45            |
| St.2-1,2,3 04°05'S 101°      | 55'E 4  | 28.1 | 24.0 | 24.0 | 4.1  | (<900)         | H.g.  | 5 <sup>th</sup> insta  | ar Nov 24 | 4 07:45            |
| St.2-1,2,3 04°05'S 101°      | °55'E 4 | 28.1 | 20.0 | 20.0 | 8.1  | 18             | H.g.  | Female                 | Nov 24    | 07:45              |
| St.2-1.2.3 04°05'S 101°      |         | 28.1 | 17.0 | 14.0 | 14.1 | 467            | H.g.  | Male                   | Nov 24    | 1 07:4:            |

**Table 4-Sheet 2.** Results of "Cool-coma" experiments and measurement of recovery time from the cool coma (RTCC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SCCT: temp. at which semi-cool coma occurred; CCT: temp. at which cool coma occurred ; GTCC: gap temp. for cool coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when cool coma experiment was performed

| <u>St.No. Latitude</u>    | Longitude Ex | <u>kp.No</u> . | TA SC | <u>сст со</u> | CT GT | CC RTCC | Species | s Sex | Date                         | TD       |               |
|---------------------------|--------------|----------------|-------|---------------|-------|---------|---------|-------|------------------------------|----------|---------------|
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 21.0          | 21.0  | 7.3     | 45      | H.g.  | Male                         | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'N        | 101°53' E    | 5              | 28.3  | 18.4          | 18.4  | 10.0    | 5       | H.g.  | Male                         | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 17.5          | 17.5  | 10.8    | 31      | H.g.  | Female                       | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 16.2          | 16.2  | 12.1    | 7       | H.g.  | Female                       | Nov 37   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 15.8          | 15.8  | 12.5    | 23      | H.g.  | Male                         | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 15.7          | 15.7  | 12.6    | 25      | H.g.  | Female                       | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 14.2          | 14.2  | 14.1    | 19      | H.g.  | Female                       | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 14.0          | 13.3  | 15.0    | 11      | H.g.  | Female                       | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 14.0          | 13.1  | 15.2    | 9       | H.g.  | Female                       | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 5              | 28.3  | 14.0          | 12.5  | 15.8    | 18      | H.g.  | Female                       | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 6              | 28.3  | 22.2          | 22.2  | 6.1     | 22      | H.g.  | Female                       | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 6              | 28.3  | 22.0          | 22.0  | 6.3     | 12      | H.g.  | Female                       | Nov 27   | 07:45~        |
| St.3-1,2,3 04°03'S        | 101°53'E     | 6              | 28.3  | 14.0          | 13.0  | 10.3    | 9       | H.g.  | 2 <sup>nd</sup> insta        | r Nov 27 | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 22.7          | 22.7  | 5.5     | 31      | H.g.  | Male                         | Nov 30   | 07:45~        |
| St4-1,2,3 04°05'S         | 101°53'E     | 7              | 28.2  | 22.3          | 22.3  | 5.9     | 1096    | H.g.  | Female                       | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 21.2          | 21.2  | 7.0     | 1       | H.g.  | Male                         | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 20.0          | 20.0  | 8.2     | 6       | H.g.  | Female                       | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 18.7          | 18.7  | 9.5     | 96      | H.g.  | Female                       | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 18.0          | 18.0  | 10.2    | 22      | H.g.  | Female                       | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 18.0          | 18.0  | 10.2    | 23      | H.g.  | Female                       | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 17.8          | 17.8  | 10.4    | 18      | H.g.  | Female                       | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 17.0          | 17.0  | 11.2    | 8       | H.g.  | Male                         | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 17.0          | 17.0  | 11.2    | 13      | H.g.  | Male                         | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 16.2          | 16.2  | 12.0    | 18      | H.g.  | Male                         | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 7              | 28.2  | 16.0          | 16.0  | 12.2    | 10      | H.g.  | Male                         | Nov 30   | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 8              | 28.3  | 18.0          | 17.0  | 10.3    | 17      | H.g.  | 5 <sup>th</sup> instar       | Dec 1    | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 8              | 28.3  | 16.3          | 16.3  | 12.0    | 5       | H.g.  | 5 <sup>th</sup> instar       | Dec 1    | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 8              | 28.3  | 16.0          | 16.0  | 12.3    | 11      | H.g.  | 5 <sup>th</sup> instar       | Dec 1    | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 8              | 28.3  | 15.2          | 15.2  | 13.1    | 2       | H.g.  | Female                       | Dec 1    | 07:45~        |
| St.4-1,2,3 04°05'S        | 101°53'E     | 8              | 28.3  | 15.1          | 15.1  | 13.2    | 24      | H.g.  | 5 <sup>th</sup> instar       | Dec 1    | 07:45~        |
| <u>St.4-1.2.3 04°05'S</u> | 101°53'E     | 8              | 28.3  | 15.0          | 15.0  | 13.3    | 35      | H.g.  | <u>5<sup>th</sup> instar</u> | Dec 1    | <u>07:45~</u> |

**Table 4-Sheet 3.** Results of "Cool-coma" experiments and measurement of recovery time from the cool coma (RTCC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SCCT: temp. at which semi-cool coma occurred; CCT: temp. at which cool coma occurred ; GTCC: gap temp. for cool coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when cool coma experiment was performed.

| St.No. Latitude I  |           |    | •    |      | -    |      | <u>Species</u> |      | Date                   | TD    | _      |
|--------------------|-----------|----|------|------|------|------|----------------|------|------------------------|-------|--------|
| St.4-1,2,3 04°05'S | 101°53'E  | 8  | 28.3 | 15.0 | 15.0 | 13.3 | 14             | H.g. | 5 <sup>th</sup> instar | Dec 1 | 07:45~ |
| St.4-1,2,3 04°05'S | 101°53' E | 8  | 28.3 | 14.9 | 14.9 | 13.4 | 26             | H.g. | 5 <sup>th</sup> instar | Dec 1 | 07:45~ |
| St.4-1,2,3 04°05'S | 101°53' E | 8  | 28.3 | 14.7 | 14.7 | 13.6 | 9              | H.g. | Female                 | Dec 1 | 07:45~ |
| St.4-1,2,3 04°05'S | 101°53' E | 8  | 28.3 | 14.5 | 14.5 | 13.8 | 4              | H.g. | 5 <sup>th</sup> instar | Dec 1 | 07:45~ |
| St.4-1,2,3 04°05'S | 101°53' E | 8  | 28.3 | 14.4 | 14.4 | 13.9 | 16             | H.g. | 5 <sup>th</sup> instar | Dec 1 | 07:45~ |
| St.4-1,2,3 04°05'S | 101°53' E | 8  | 28.3 | 14.0 | 13.2 | 15.1 | 14             | H.g. | Female                 | Dec 1 | 07:45~ |
| St.4-1,2,3 04°05'S | 101°53' E | 8  | 28.3 | 14.0 | 13.1 | 15.2 | 7              | H.g. | Female                 | Dec 1 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 21.8 | 21.8 | 6.1  | 9              | H.g. | Female                 | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 21.1 | 21.1 | 6.8  | 11             | H.g. | Female                 | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 19.8 | 19.8 | 8.1  | 26             | H.g. | Male                   | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 19.5 | 19.5 | 8.4  | 102            | H.g. | Female                 | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 19.0 | 19.0 | 8.9  | 14             | H.g. | Male                   | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 18.8 | 18.8 | 9.1  | 15             | H.g. | Male                   | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 18.0 | 18.0 | 9.9  | 13             | H.g. | Female                 | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 17.4 | 17.4 | 10.5 | 6              | H.g. | Female                 | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 17.1 | 17.1 | 10.8 | 9              | H.g. | Male                   | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 17.0 | 17.0 | 10.9 | 9              | H.g. | Female                 | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 16.6 | 16.6 | 11.3 | 26             | H.g. | Male                   | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 9  | 27.9 | 15.3 | 15.3 | 12.6 | 17             | H.g. | Male                   | Dec 3 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 10 | 27.9 | 24.6 | 24.6 | 3.3  | 5              | H.g. | Male                   | Dec 4 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 10 | 27.9 | 17.9 | 17.9 | 10.0 | 23             | H.g. | Female                 | Dec 4 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 10 | 27.9 | 17.6 | 17.6 | 10.3 | 7              | H.g. | 5 <sup>th</sup> instar | Dec 4 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53'E  | 10 | 27.9 | 17.3 | 17.3 | 10.6 | 1              | H.g. | Female                 | Dec 4 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53'E  | 10 | 27.9 | 17.0 | 17.0 | 10.9 | 22             | H.g. | 4 <sup>th</sup> instar | Dec 4 | 07:45~ |
| St.5-1,2,3 04°03'S | 101°53' E | 10 | 27.9 | 16.1 | 16.1 | 11.8 | 7              | H.g. | Male                   | Dec 4 | 07:45~ |
| St.6-1,2,3 04°03'S | 101°53' E | 11 | 27.8 | 24.0 | 24.0 | 3.8  | 20             | H.g. | Female                 | Dec 6 | 07:45- |
| St.6-1,2,3 04°03'S | 101°53' E | 11 | 27.8 | 22.0 | 22.0 | 5.8  | 4              | H.g. | Male                   | Dec 6 | 07:45- |
| St.6-1,2,3 04°03'S | 101°53' E | 11 | 27.8 | 19.6 | 19.6 | 8.2  | 10             | H.g. | Male                   | Dec 6 | 07:45  |
| st.6-1,2,3 04°03'S | 101°53' E | 11 | 27.8 | 19.2 | 19.2 | 8.6  | 18             | H.g. | Female                 | Dec 6 | 07:45- |
| St.6-1,2,3 04°03'S | 101°53' E | 11 | 27.8 | 19.1 | 19.1 | 8.7  | 3              | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1.2.3 04°03'S | 101°53' E | 11 | 27.8 | 18.0 | 18.0 | 9.8  | 8              | H.g. | Female                 | Dec 6 | 07:45~ |

**Table 4-Sheet 4.** Results of "Cool-coma" experiments and measurement of recovery time from the cool coma (RTCC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SCCT: temp. at which semi-cool coma occurred; CCT: temp. at which cool coma occurred ; GTCC: gap temp. for cool coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when cool coma experiment was performed.

| St.No. Latitude       |                   |    | -    |      |      |      | -   |      | Date                   | TD    | _      |
|-----------------------|-------------------|----|------|------|------|------|-----|------|------------------------|-------|--------|
| St.6-1,2,3 04°03'S    | 101°53' E         | 11 | 27.8 | 17.3 | 17.3 | 10.5 | 7   | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 11 | 27.8 | 17.0 | 17.0 | 10.8 | 7   | H.g. | Male                   | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 11 | 27.8 | 17.0 | 17.0 | 10.8 | 18  | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 11 | 27.8 | 17.0 | 17.0 | 10.8 | 10  | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101° <b>53'</b> E | 11 | 27.8 | 17.0 | 17.0 | 10.8 | 12  | H.g. | Male                   | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 11 | 27.8 | 14.3 | 14.3 | 13.5 | 13  | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 12 | 28.8 | 23.1 | 23.1 | 5.7  | 8   | H.g. | 4 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 12 | 28.8 | 19.0 | 19.0 | 9.8  | 208 | H.g. | 5 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 12 | 28.8 | 18.0 | 18.0 | 10.8 | 2   | H.g. | 5 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03S     | 101°53' E         | 12 | 28.8 | 17.7 | 17.7 | 11.1 | 20  | H.g. | 4 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 12 | 28.8 | 17.3 | 17.3 | 11.5 | 15  | H.g. | Female                 | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 12 | 28.8 | 17.0 | 17.0 | 11.8 | 6   | H.g. | Female                 | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 12 | 28.8 | 17.0 | 16.7 | 12.1 | 5   | H.g. | 5 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 12 | 28.8 | 15.5 | 15.5 | 13.3 | 13  | H.g. | 5 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S    | 101°53' E         | 12 | 28.8 | 15.0 | 14.4 | 14.4 | 10  | H.g. | Female                 | Dec 7 | 07:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 22.0 | 22.0 | 6.1  | 3   | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 20.0 | 20.0 | 8.1  | 168 | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 20.0 | 20.0 | 8.1  | 21  | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 18.7 | 18.7 | 9.4  | 16  | H.g. | Female                 | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 18.1 | 18.1 | 10.0 | 11  | H.g. | Female                 | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 17.2 | 17.2 | 10.9 | 9   | H.g. | Female                 | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 17.1 | 17.1 | 11.0 | 7   | H.g. | Female                 | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101° <b>53'</b> E | 13 | 28.1 | 17.0 | 17.0 | 11.1 | 18  | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101° <b>53'</b> E | 13 | 28.1 | 16.9 | 16.9 | 11.2 | 7   | H.g. | Female                 | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101° <b>53'</b> E | 13 | 28.1 | 16.2 | 16.2 | 11.9 | 2   | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 15.7 | 15.7 | 12.4 | 4   | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 15.1 | 15.1 | 13.0 | 7   | H.g. | Female                 | Dec 9 | 06:45~ |
| St.7-1 04°04'S        | 101°53' E         | 13 | 28.1 | 15.1 | 15.1 | 13.0 | 18  | H.g. | Female                 | Dec 9 | 06:45~ |
| St.7-2 04°04'S        | 101°53' E         | 14 | 28.4 | 18.0 | 18.0 | 10.4 | 12  | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-2 04°04'S        | 101°53' E         | 14 | 28.4 | 18.0 | 18.0 | 10.4 | 14  | H.g. | Male                   | Dec 9 | 06:45~ |
| <u>St.7-2 04°04'S</u> | 101°53' E         | 14 | 28.4 | 17.0 | 16.5 | 11.9 | 8   | H.g  | . Female               | Dec 9 | 06:45~ |

**Table 4-Sheet 5.** Results of "Cool-coma" experiments and measurement of recovery time from the cool coma (RTCC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SCCT: temp. at which semi-cool coma occurred; CCT: temp. at which cool coma occurred ; GTCC: gap temp. for cool coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when cool coma experiment was performed

| St.No.          | <u>Latitude</u> | Longitude H | Exp.No. | -    |      |      | <u>CC RTCC</u> | -   | Sex  | Date   | TD            | _      |
|-----------------|-----------------|-------------|---------|------|------|------|----------------|-----|------|--------|---------------|--------|
| St.7-2          | 04°04'S         | 101°53'E    | 14      | 28.4 | 16.0 | 16.0 | 12.4           | 24  | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2          | 04°04'S         | 101°53'E    | 14      | 28.4 | 17.0 | 15.8 | 12.6           | 6   | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2          | 04°04'S         | 101°53' E   | 14      | 28.4 | 17.0 | 15.5 | 12.9           | 8   | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2          | 04°04'S         | 101°53' E   | 14      | 28.4 | 15.3 | 15.3 | 13.1           | 12  | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2          | 04°04'S         | 101°53' E   | 14      | 28.4 | 15.1 | 15.1 | 13.3           | 12  | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2          | 04°04'S         | 101°53' E   | 14      | 28.4 | 15.0 | 15.0 | 13.4           | 12  | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2          | 04°04'S         | 101°53' E   | 14      | 28.4 | 16.0 | 15.0 | 13.4           | 23  | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2          | 04°04'S         | 101°53' E   | 14      | 28.4 | 16.0 | 14.3 | 14.1           | 7   | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2          | 04°04'S         | 101°53' E   | 14      | 28.4 | 13.4 | 13.4 | 15.0           | 13  | H.g. | Female | Dec 9         | 10:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 23.0 | 23.0 | 5.0            | 120 | H.g. | Male   | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54' E   | 15      | 28.0 | 22.0 | 22.0 | 6.0            | 36  | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54' E   | 15      | 28.0 | 18.0 | 18.0 | 10.0           | 13  | H.g. | Male   | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 18.0 | 18.0 | 10.0           | 3   | H.g. | Male   | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 17.1 | 17.1 | 10.9           | 5   | H.g. | Male   | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 19.0 | 17.0 | 11.0           | 16  | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 17.0 | 17.0 | 11.0           | 10  | H.g. | Male   | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 17.0 | 17.0 | 11.0           | 11  | H.g. | Male   | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 19.0 | 17.0 | 11.0           | 8   | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 16.0 | 15.8 | 12.2           | 5   | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 16.0 | 15.0 | 13.0           | 25  | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3          | 04°05'S         | 101°54'E    | 15      | 28.0 | 15.0 | 15.0 | 13.0           | 7   | H.g. | Female | Dec 10        | 06:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 18.4 | 18.4 | 10.0           | 14  | H.g. | Female | Dec 10        | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 18.3 | 18.3 | 10.1           | 9   | H.g. | Female | Dec 10        | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 18.2 | 18.2 | 10.2           | 9   | H.g. | Female | <b>Dec 10</b> | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 18.0 | 17.0 | 11.4           | 17  | H.g. | Male   | <b>Dec 10</b> | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 16.0 | 16.0 | 12.4           | 5   | H.g. | Male   | <b>Dec 10</b> | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 16.0 | 16.0 | 12.4           | 9   | H.g. | Male   | Dec 10        | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 16.0 | 16.0 | 12.4           | 6   | H.g. | Female | Dec 10        | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 16.0 | 16.0 | 12.4           | 6   | H.g. | Female | Dec 10        | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 15.8 | 15.8 | 12.6           | 4   | H.g. | Male   | Dec 10        | 10:30~ |
| St.7-1,2        | ,3 04°04'S      | 101°53'E    | 16      | 28.4 | 15.1 | 15.1 | 13.3           | 3   | H.g. | Male   | Dec 10        | 10:30~ |
| <u>St.7-1.2</u> | .3 04°04'S      | 101°53'E    | 16      | 28.4 | 15.0 | 15.0 | 13.4           | 10  | H.g. | Male   | Dec 10        | 10:30~ |

**Table 4-Sheet 6.** Results of "Cool-coma" experiments and measurement of recovery time from the cool coma (RTCC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SCCT: temp. at which semi-cool coma occurred; CCT: temp. at which cool coma occurred ; GTCC: gap temp. for cool coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when cool coma experiment was performed

| St.No. Latitude Lon       |          |    | -    |      | -    |      | -        |       | Date                   | TD                             |
|---------------------------|----------|----|------|------|------|------|----------|-------|------------------------|--------------------------------|
|                           | 01°53'E  | 16 | 28.4 | 14.1 | 14.1 | 14.3 | <u> </u> | H.g.  | Male                   | Dec 10 10:30~                  |
|                           | 01°53'E  | 16 | 28.4 | 14.0 | 14.0 | 14.4 | 57       | H.g.  | Male                   | Dec 10 10:30~                  |
|                           | 01°53'E  | 17 | 27.5 | 17.0 | 16.0 | 11.5 | 15       | H.g.  | Male                   | Dec 11 06:45~                  |
|                           | 01°53'E  | 17 | 27.5 | 16.0 | 16.0 | 11.5 | 31       | H.g.  | Female                 | Dec 11 06:45~                  |
|                           | 01°53'E  | 17 | 27.5 | 17.0 | 16.0 | 11.5 | 9        | H.g.  | Female                 | Dec 11 06:45~                  |
|                           | 01°53'E  | 17 | 27.5 | 17.0 | 15.9 | 11.5 | 5        | H.sp  |                        | Dec 11 06:45~                  |
|                           | 01°53'E  | 17 | 27.5 | 17.0 | 15.6 | 11.0 | 15       | H.g.  | Female                 | Dec 11 06:45~                  |
|                           | 01°53'E  | 17 | 27.5 | 15.2 | 15.2 | 12.3 | 9        | H.g.  | Female                 | Dec 11 06:45~                  |
|                           | 01°53'E  | 17 | 27.5 | 15.0 | 15.0 | 12.5 | 12       | H.g.  | Female                 | Dec 11 06:45~                  |
|                           | 01°53'E  | 17 | 27.5 | 17.0 | 15.0 | 12.5 | 10       | H.g.  | Male                   | Dec 11 06:45~                  |
|                           | 01°53'E  | 17 | 27.5 | 17.0 | 15.0 | 12.5 | 10       | H.g.  | Female                 | Dec 11 00:43~<br>Dec 11 06:45~ |
|                           | 01°53'E  | 17 | 27.5 | 13.0 | 13.0 | 12.5 | 14       | H.g.  | Male                   | Dec 10 06:45~                  |
|                           |          |    |      |      |      |      |          | 0     | 5 <sup>th</sup> instar |                                |
|                           | 01°53'E  | 17 | 27.5 | 14.0 | 14.0 | 13.5 | 4370     | H.g.  |                        | Dec 11 06:45~                  |
|                           | 101°53'E | 17 | 27.5 | 13.9 | 13.9 | 13.6 | 4        | H.g.  | Male                   | Dec 11 06:45~                  |
|                           | 101°52'E | 17 | 28.0 | 19.0 | 18.0 | 10.0 | 14       | H.g.  | 5 <sup>th</sup> instar | Dec 12 07:45~                  |
|                           | 101°52'E | 18 | 28.0 | 18.0 | 18.0 | 10.0 | 10       | H.g.  | Male                   | Dec 12 07:45~                  |
|                           | 101°52'E | 18 | 28.0 | 17.0 | 17.0 | 11.0 | 19       | H.g.  | Female                 | Dec 12 07:45~                  |
| St.8-1,2,3 04°04'S 1      | 101°52'E | 18 | 28.0 | 17.0 | 17.0 | 11.0 | 9        | H.g.  | Female                 | Dec 12 07:45~                  |
| St.8-1,2,3 04°04'S 1      | 101°52'E | 18 | 28.0 | 16.1 | 16.1 | 11.9 | 5        | H.g.  | 5 <sup>th</sup> instar | Dec 12 07:45~                  |
| St.8-1,2,3 04°04'S 1      | 101°52'E | 18 | 28.0 | 16.0 | 16.0 | 12.0 | 4        | H.g.  | 5 <sup>th</sup> instar | Dec 12 07:45~                  |
| St.7-1,2,3 04°04'S 1      | l01°52'E | 19 | 28.3 | 25.0 | 25.0 | 3.3  | 18       | H.sp. | 5 <sup>th</sup> instar | Dec 13 07:45~                  |
| St.7-1,2,3 04°04'S 1      | 01°52'E  | 19 | 28.3 | 22.8 | 22.8 | 5.5  | 6        | H.g.  | 5 <sup>th</sup> instar | Dec 13 07:45~                  |
| St.7-1,2,3 04°04'S 1      | l01°52'E | 19 | 28.3 | 20.0 | 20.0 | 8.3  | 27       | H.g.  | Male <sup>#</sup>      | Dec 13 07:45~                  |
| St.7-1,2,3 04°04'S 1      | l01°52'E | 19 | 28.3 | 18.0 | 18.0 | 10.3 | 28       | H.g.  | 4 <sup>th</sup> instar | Dec 13 07:45~                  |
| St.7-1,2,3 04°04'S 1      | l01°52'E | 19 | 28.3 | 16.0 | 16.0 | 12.3 | 8        | H.g.  | 5 <sup>th</sup> instar | Dec 13 07:45~                  |
| St.9-1,2 04°03'S 1        | l01°53'E | 20 | 27.8 | 22.1 | 22.1 | 5.7  | 6        | H.g.  | 5 <sup>th</sup> instar | Dec 15 06:30~                  |
| St.9-1,2 04°03'S 1        | l01°53'E | 20 | 27.8 | 21.6 | 21.6 | 6.2  | 17       | H.g.  | Female                 | Dec 15 06:30~                  |
| St.9-1,2 04°03'S 1        | 101°53'E | 20 | 27.8 | 18.4 | 18.4 | 9.4  | 3        | H.g.  | Male                   | Dec 15 06:30~                  |
| St.9-1,2 04°03'S 1        | 101°53'E | 20 | 27.8 | 18.0 | 18.0 | 9.8  | 2        | H.g.  | 5 <sup>th</sup> instar | Dec 15 06:30~                  |
| St.9-1,2 04°03'S 1        | 101°53'E | 20 | 27.8 | 17.0 | 17.0 | 10.8 | 3        | H.g.  | 5 <sup>th</sup> instar | Dec 15 06:30~                  |
| St.9-1,2 04°03'S 1        | 101°53'E | 20 | 27.8 | 16.0 | 16.0 | 11.8 | 3        | H.g.  | Male                   | Dec 15 06:30~                  |
| <u>St.9-1.2 04°03'S 1</u> | 101°53'E | 20 | 27.8 | 16.0 | 16.0 | 11.8 | 4        | H.g.  | Male                   | Dec 15 06:30~                  |

**Table 4-Sheet 7.** Results of "Cool-coma" experiments and measurement of recovery time from the cool coma (RTCC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SCCT: temp. at which semi-cool coma occurred; CCT: temp. at which cool coma occurred ; GTCC: gap temp. for cool coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when cool coma experiment was performed

| <u>St.No. Latitude L</u> | ongitude Ex | <u>p.No</u> . | TA SC | <u>ст со</u> | CT GTCC  | <u> </u> | <u>CC</u> S | pecies Sex | Date                         | TD     |        |
|--------------------------|-------------|---------------|-------|--------------|----------|----------|-------------|------------|------------------------------|--------|--------|
| St.9-1,2 04°03'S         | 101°53'E    | 20            | 27.8  | 16.0         | 16.0     | 11.8     | 10          | H.g.       | Male                         | Dec 15 | 06:30~ |
| St.9-1,2 04°03'S         | 101°53'E    | 20            | 27.8  | 16.0         | 16.0     | 11.8     | 10          | H.g.       | Female                       | Dec 15 | 06:30~ |
| St.9-1,2 04°03'S         | 101°53'E    | 20            | 27.8  | 16.0         | 16.0     | 11.8     | 17          | H.g.       | Male                         | Dec 15 | 06:30~ |
| St.9-1,2 04°03'S         | 101°53'E    | 20            | 27.   | 8 15         | 5.1 15.1 |          | 12.7        | 10         | H.g.                         | Female | Dec 15 |
| 06:30~                   |             |               |       |              |          |          |             |            |                              |        |        |
| St.9-1,2 04°03'S         | 101°53'E    | 20            | 27.   | 8 14         | 1.5 14.5 |          | 13.3        | 5          | H.g.                         | Male   | Dec 15 |
| 06:30~                   |             |               |       |              |          |          |             |            |                              |        |        |
| St.9-1,2,3 04°03'S       | 101°53'E    | 21            | 28.2  | 17.0         | 16.6     | 11.6     | 22          | H.g.       | 5 <sup>th</sup> instar       | Dec 15 | 10:15~ |
| St.9-1,2,3 04°03'S       | 101°53'E    | 21            | 28.2  | 17.0         | 16.3     | 11.9     | 3           | H.g.       | Female                       | Dec 15 | 10:15~ |
| St.9-1,2,3 04°03'S       | 101°53'E    | 21            | 28.2  | 17.0         | 15.3     | 12.9     | 22          | H.g.       | Female                       | Dec 15 | 10:15~ |
| St.9-1,2,3 04°03'S       | 101°53'E    | 21            | 28.2  | 15.0         | 15.0     | 13.2     | 11          | H.g.       | Female                       | Dec 15 | 10:15~ |
| St.9-1.2.3 04°03'S       | 101°53'E    | 21            | 28.2  | 14.2         | 14.2     | 14.0     | 6           | H.g.       | <u>5<sup>th</sup> instar</u> | Dec 15 | 10:15~ |

<sup>#</sup>with no left-mid-leg but very active

**Table 5-Sheet 1.** Results of "Heat-coma" experiments and measurement of recovery time from the heat coma (RTHC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SHCT: temp. at which semi-heat coma occurred; HCT: temp. at which heat coma occurred ; GTHC: gap temp. for heat coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when heat coma experiment was performed

| <u>St.No.</u> Latitude  |           |   |      |      |      |      | -          | ies Se  | x Date                 | e TD    |        |
|-------------------------|-----------|---|------|------|------|------|------------|---------|------------------------|---------|--------|
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 35.7 | 35.8 | 7.6  | >2 (hours) | H.g.    | Female                 | Nov 30  | 07:45~ |
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 39.3 | 39.3 | 11.1 | 4          | H.g.    | Female                 | Nov 30  | 07:45~ |
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 39.4 | 39.5 | 11.3 | 3          | H.g.    | Female                 | Nov 30  | 07:45~ |
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 39.6 | 39.6 | 11.4 | 116        | H.g.    | Female                 | Nov 30  | 07:45~ |
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 41.2 | 41.2 | 13.0 | 150        | H.g.    | Male                   | Nov 30  | 07:45~ |
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 41.8 | 41.8 | 13.6 | 1117       | H.g.    | Male                   | Nov 30  | 07:45~ |
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 42.1 | 42.1 | 13.9 | >6 (hours  | s) H.g. | Female                 | Nov 30  | 07:45~ |
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 42.9 | 42.9 | 14.7 | >6 (hours  | s) H.g. | Female                 | Nov 30  | 07:45~ |
| St.4-1,2 04°05'S        | 101°53'E  | 1 | 28.2 | 43.1 | 43.1 | 14.9 | >6 (hours  | s) H.g. | Female                 | Nov 30  | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 33.7 | 33.7 | 5.4  | 3          | H.g.    | 5 <sup>th</sup> instar | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 37.0 | 37.0 | 8.7  | 14         | H.g.    | 5 <sup>th</sup> instar | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 37.2 | 37.2 | 8.9  | 53         | H.g.    | Male                   | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 39.0 | 39.0 | 10.7 | 13         | H.g.    | 5 <sup>th</sup> instar | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 40.2 | 40.2 | 11.9 | 118        | H.g.    | 5 <sup>th</sup> instar | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 40.9 | 40.9 | 12.6 | 2          | H.g.    | Male                   | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 40.9 | 40.9 | 12.6 | 522        | H.g.    | Male                   | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 41.7 | 41.7 | 13.4 | >2(hours)  | ) H.g.  | Female                 | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 41.9 | 41.9 | 13.6 | >2(hours)  | ) H.g.  | Female                 | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 42.0 | 42.0 | 13.7 | >2(hours   | ) H.g.  | 5 <sup>th</sup> instar | Dec 1   | 07:45~ |
| St.4-1,2,3 04°05'S      | 101°53'E  | 2 | 28.3 | 42.0 | 42.0 | 13.7 | >2(hours   | ) H.g.  | Female                 | Dec 1   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 32.6 | 32.6 | 4.7  | 19         | H.g.    | Female                 | Dec 3   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 32.6 | 32.6 | 4.7  | 57         | H.g.    | Male                   | Dec 3 0 | 7:45~  |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 32.9 | 32.9 | 5.0  | 5          | H.g.    | Female                 | Dec 3   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 34.5 | 34.5 | 6.6  | 26         | H.g.    | Female                 | Dec 3   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 35.0 | 35.0 | 7.1  | 3          | H.g.    | Male                   | Dec 3   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 35.0 | 35.0 | 7.1  | >2(hours)  | H.g.    | Female                 | Dec 3   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 38.1 | 38.1 | 10.2 | 1305       | H.g.    | Female                 | Dec 3   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 38.0 | 38.0 | 10.1 | 12         | H.g.    | Male                   | Dec 3   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53'E  | 3 | 27.9 | 39.0 | 39.0 | 11.1 | 59         | H.g.    | Male                   | Dec 3   | 07:45~ |
| St.4-1,2 04°03'S        | 101°53' E | 3 | 27.9 | 40.0 | 40.0 | 12.1 | 166        | H.g.    | Male                   | Dec 3 ( | 07:45~ |
| <u>St.4-1.2 04°03'S</u> | 101°53'E  | 3 | 27.9 | 41.0 | 41.0 | 13.1 | 627        | H.g.    | Male                   | Dec 3   | 07:45~ |

**Table 5-Sheet 2.** Results of "Heat-coma" experiments and measurement of recovery time from the heat coma (RTHC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SHCT: temp. at which semi-heat coma occurred; HCT: temp. at which heat coma occurred ; GTHC: gap temp. for heat coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when heat coma experiment was performed.

| St.No. Latitude Longitude H     | Exp.No. | TA SI | <u>НСТ НО</u> | CT GTH | IC RTH | C Species |      | Date                   | TD    | )      |
|---------------------------------|---------|-------|---------------|--------|--------|-----------|------|------------------------|-------|--------|
| St.5-1,2 04°03'S 101°53'E       | 3       | 27.9  | 41.0          | 41.0   | 13.1   | 1371      | H.g. | Female                 | Dec 3 | 07:45~ |
| St5-2,3 04°03'S 101°53'E        | 4       | 27.9  | 29.4          | 29.4   | 1.5    | 19        | H.g. | Male                   | Dec 4 | 07:45~ |
| St.5-2,3 04°03'S 101°53'E       | 4       | 27.9  | 30.1          | 30.1   | 2.2    | 717       | H.g. | 5 <sup>th</sup> instar | Dec 4 | 07:45~ |
| St.5-2,3 04°03'S 101°53'E       | 4       | 27.9  | 32.0          | 32.0   | 4.1    | 51        | H.g. | Female                 | Dec 4 | 07:45~ |
| St.5-2,3 04°03'S 101°53'E       | 4       | 27.9  | 37.3          | 37.3   | 9.4    | 14        | H.g. | Female                 | Dec 4 | 07:45~ |
| St.5-2,3 04°03'S 101°53'E       | 4       | 27.9  | 40.0          | 40.0   | 12.1   | 30        | H.g. | 5 <sup>th</sup> instar | Dec 4 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 5       | 27.9  | 36.0          | 36.0   | 8.1    | 12        | H.g. | Male                   | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 5       | 27.9  | 37.0          | 37.0   | 9.1    | 13        | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,23 04°03'S 101°53'E      | 5       | 27.9  | 38.1          | 38.1   | 10.2   | 11        | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 5       | 27.9  | 38.7          | 38.7   | 10.8   | 18        | H.g. | Male                   | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 5       | 27.9  | 39.0          | 39.0   | 11.1   | 165       | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,23 04°03'S 101°53'E      | 5       | 27.9  | 41.9          | 41.9   | 14.0   | 3843      | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 5       | 27.9  | 42.0          | 42.0   | 14.1   | 3515      | H.g. | Male                   | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 5       | 27.9  | 42.0          | 42.0   | 14.1   | >2hours   | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 5       | 27.9  | 42.0          | 42.0   | 14.1   | >2hours   | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 5       | 27.9  | 42.0          | 42.0   | 14.1   | >2hours   | H.g. | Female                 | Dec 6 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 35.0          | 35.0   | 6.1    | 5         | H.g. | Female                 | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 40.0          | 40.0   | 11.1   | 72        | H.g. | Female                 | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 40.0          | 40.0   | 11.1   | 429       | H.g. | 5 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 40.9          | 40.9   | 12.0   | 537       | H.g. | 5 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 41.0          | 41.0   | 12.1   | 426       | H.g. | Female                 | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 41.0          | 41.0   | 12.1   | 1885      | H.g. | Female                 | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 41.0          | 41.0   | 12.1   | >2hours   | H.g. | 5 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 41.0          | 41.0   | 12.1   | >2hours   | H.g. | 4 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.6-1,2,3 04°03'S 101°53'E     | 6       | 28.9  | 41.2          | 41.2   | 12.3   | >2hours   | H.g. | 4 <sup>th</sup> instar | Dec 7 | 07:45~ |
| St.7-1 04°04'S 101°53'E         | 7       | 28.1  | 36.0          | 36.0   | 7.9    | 32        | H.g. | Female                 | Dec 9 | 06:45~ |
| St.7-1 04°04'S 101°53'E         | 7       | 28.1  | 38.0          | 38.0   | 9.9    | 39        | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S 101°53'E         | 7       | 28.1  | 40.0          | 40.0   | 11.9   | -         | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S 101°53'E         | 7       | 28.1  | 40.0          | 40.0   | 11.9   | >2hours   | H.g. | Male                   | Dec 9 | 06:45~ |
| St.7-1 04°04'S 101°53'E         | 7       | 28.1  | 40.0          | 40.0   | 11.9   | 153       | H.g. | Male                   | Dec 9 | 06:45~ |
| <u>St.7-1 04°04'S 101°53' E</u> | 7       | 28.1  | 40.1          | 40.1   | 11.9   | >2hours   | H.g. | Female                 | Dec 9 | 06:45~ |

**Table 5-Sheet 3.** Results of "Heat-coma" experiments and measurement of recovery time from the heat coma (RTHC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SHCT: temp. at which semi-heat coma occurred; HCT: temp. at which heat coma occurred ; GTHC: gap temp. for heat coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when heat coma experiment was performed.

|               |         |          |   |      |      | -    |      | <u>IC Specie</u> |      | Date   | TD            |        |
|---------------|---------|----------|---|------|------|------|------|------------------|------|--------|---------------|--------|
| St.7-1        | 04°04'S | 101°53'E | 7 | 28.1 | 40.9 | 40.9 | 12.8 | 2616             | H.g. | Male   | Dec 9         | 06:45~ |
| St.7-1        | 04°04'S | 101°53'E | 7 | 28.1 | 41.0 | 41.0 | 12.9 | >2hours          | H.g. | Male   | Dec 9         | 06:45~ |
| St.7-1        | 04°04'S | 101°53'E | 7 | 28.1 | 41.0 | 41.0 | 12.9 | >2hours          | H.g. | Female | Dec 9         | 06:45~ |
| St.7-1        | 04°04'S | 101°53'E | 7 | 28.1 | 41.0 | 41.0 | 12.9 | >2hours          | H.g. | Female | Dec 9         | 06:45~ |
| St.7-1        | 04°04'S | 101°53'E | 7 | 28.1 | 41.0 | 41.0 | 12.9 | 877              | H.g. | Female | Dec 9         | 06:45~ |
| St.7-1        | 04°04'S | 101°53'E | 7 | 28.1 | 41.0 | 41.0 | 12.9 | >2hours          | H.g. | Female | Dec 9         | 06:45~ |
| St.7-1        | 04°04'S | 101°53'E | 7 | 28.1 | 41.0 | 41.0 | 12.9 | >2hours          | H.g. | Female | Dec 9         | 06:45~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 39.0 | 39.0 | 10.6 | 65               | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 40.1 | 40.1 | 11.7 | 21               | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 40.0 | 40.0 | 11.6 | 20               | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 40.0 | 40.0 | 11.6 | 25               | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 40.5 | 40.5 | 12.1 | >2hours          | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 41.0 | 41.0 | 12.6 | 600              | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 41.1 | 41.1 | 12.7 | 2980             | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 41.0 | 41.0 | 12.6 | >2hours          | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 41.0 | 41.0 | 12.6 | 39               | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 41.0 | 41.0 | 12.6 | >2hours          | H.g. | Female | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 41.6 | 41.6 | 13.2 | >2hours          | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 42.0 | 42.0 | 13.6 | >2hours          | H.g. | Male   | Dec 9         | 10:30~ |
| St.7-2        | 04°04'S | 101°53'E | 8 | 28.4 | 42.0 | 42.0 | 13.6 | >2hours          | H.g. | Female | Dec 9         | 10:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 38.0 | 38.0 | 10.0 | 188              | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 39.0 | 39.0 | 11.0 | 716              | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 39.8 | 39.8 | 11.8 | 1389             | H.g. | Male   | Dec 10        | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 40.0 | 40.0 | 12.0 | 458              | H.g. | Male   | <b>Dec 10</b> | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 40.0 | 40.0 | 12.0 | 553              | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 40.9 | 40.9 | 12.9 | 570              | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 41.0 | 41.0 | 13.0 | 572              | H.g. | Male   | <b>Dec 10</b> | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 41.0 | 41.0 | 13.0 | 2641             | H.g. | Male   | <b>Dec 10</b> | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 41.0 | 41.0 | 13.0 | >7200            | H.g. | Female | <b>Dec 10</b> | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 41.0 | 41.0 | 13.0 | 2533             | H.g. | Female | Dec 10        | 06:30~ |
| St.7-3        | 04°05'S | 101°54'E | 9 | 28.0 | 41.0 | 41.0 | 13.0 | 501              | H.g. | Male   | <b>Dec 10</b> | 06:30~ |
| <u>St.7-3</u> | 04°05'S | 101°54'E | 9 | 28.0 | 41.0 | 41.0 | 13.0 | 870              | H.g. | Male   | <b>Dec 10</b> | 06:30~ |

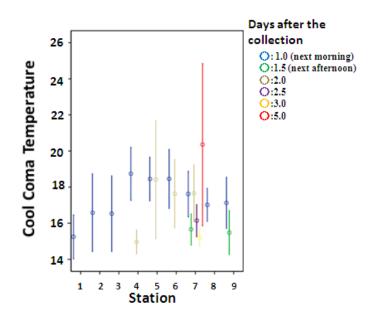
**Table 5-Sheet 4.** Results of "Heat-coma" experiments and measurement of recovery time from the heat coma (RTHC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SHCT: temp. at which semi-heat coma occurred; HCT: temp. at which heat coma occurred ; GTHC: gap temp. for heat coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when heat coma experiment was performed.

| St.No. Latitude Longitude          | <u>Exp.No</u> . | TA S | <u>нст н</u> | <u>CT GTI</u> | <u>IC RTI</u> | I <u>C</u> Spe | <u>ecies Sex</u> | Date   | TD            | _      |
|------------------------------------|-----------------|------|--------------|---------------|---------------|----------------|------------------|--------|---------------|--------|
| St.7-3 04°05'S 101°54'E            | 9               | 28.0 | 42.0         | 42.0          | 14.0          | >7200          | H.g.             | Female | Dec 10        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 36.9         | 36.9          | 8.5           | -              | H.g.             | Female | Dec 10        | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 36.9         | 36.9          | 8.5           | 15             | H.g.             | Male   | <b>Dec 10</b> | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 37.0         | 37.0          | 8.6           | 27             | H.g.             | Female | <b>Dec 10</b> | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 39.0         | 39.0          | 10.6          | 947            | H.g.             | Female | <b>Dec 10</b> | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 40.1         | 40.1          | 11.7          | 1111           | H.g.             | Male   | Dec 10        | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 40.0         | 40.0          | 11.6          | 57             | H.g.             | Female | Dec 10        | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 40.0         | 40.0          | 11.6          | 33             | H.g.             | Male   | <b>Dec 10</b> | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 41.0         | 41.0          | 12.6          | 6420           | H.g.             | Female | Dec 10        | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 41.0         | 41.0          | 12.6          | 6180           | H.g.             | Male   | <b>Dec 10</b> | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 41.0         | 41.0          | 12.6          | >7200          | H.g.             | Female | Dec 10        | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 41.0         | 41.0          | 12.6          | 1258           | H.g.             | Female | <b>Dec 10</b> | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 42.0         | 42.0          | 13.6          | >7200          | H.g.             | Male   | Dec 10        | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 42.0         | 42.0          | 13.6          | >7200          | H.g.             | Female | Dec 10        | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 10              | 28.4 | 43.0         | 43.0          | 14.6          | >7200          | H.g.             | Female | Dec 10        | 10:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 32.0         | 32.0          | 4.5           | 765            | H.g.             | Female | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 32.0         | 32.0          | 4.5           | 170            | H.g.             | Female | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 38.0         | 38.0          | 10.5          | 81             | H.g.             | Male   | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 39.9         | 39.9          | 12.4          | 771            | H.g.             | Female | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 40.3         | 40.3          | 12.8          | 4174           | H.g.             | Male   | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 40.9         | 40.9          | 13.4          | 858            | H.g.             | Male   | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 41.0         | 41.0          | 13.5          | >7200          | H.g.             | Female | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 41.0         | 41.0          | 13.5          | >7200          | H.g.             | Female | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 41.0         | 41.0          | 13.5          | >7200          | H.g.             | Female | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 41.2         | 41.2          | 13.7          | >7200          | H.g.             | Female | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 42.0         | 42.0          | 14.5          | >7200          | H.g.             | Male   | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 43.0         | 43.0          | 15.5          | >7200          | H.g.             | Male   | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 11              | 27.5 | 43.0         | 43.0          | 15.5          | >7200          | H.g.             | Male   | Dec 11        | 06:30~ |
| St.7-1,2,3 04°04'S 101°53'E        | 12              | 28.0 | 38.0         | 38.0          | 10.0          | 509            | H.g.             | Female | Dec 12        | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 12              | 28.0 | 38.0         | 38.0          | 10.0          | 254            | H.g.             | Female | Dec 12        | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E        | 12              | 28.0 | 40.0         | 40.0          | 12.0          | 205            | H.g.             | Female | Dec 12        | 07:45~ |
| <u>St.7-1,2,3 04°04'S 101°53'E</u> | 12              | 28.0 | 40.0         | 40.0          | 12.0          | 2791           | H.g.             | Female | Dec 12        | 07:45~ |

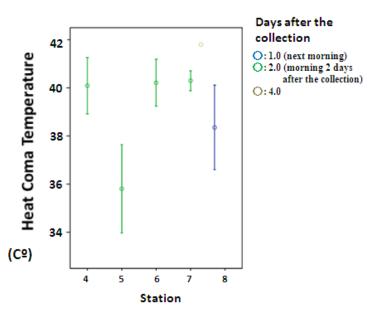
**Table 5-Sheet 5.** Results of "Heat-coma" experiments and measurement of recovery time from the heat coma (RTHC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SHCT: temp. at which semi-heat coma occurred; HCT: temp. at which heat coma occurred ; GTHC: gap temp. for heat coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015), TD: Time of day when heat coma experiment was performed.

| <u>St.No.</u> Latitude Longitude Exp.N | -    |                   | -      | -     |       | Date                         | TD       | _      |
|----------------------------------------|------|-------------------|--------|-------|-------|------------------------------|----------|--------|
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 40.0 40.0         | 12.0   | 6035  | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 40.5 40.5         | 5 12.5 | 794   | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 41.0 41.0         | 13.0   | 604   | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 41.0 41.0         | 13.0   | >7200 | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 41.0 41.0         | 13.0   | 5630  | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 42.0 42.0         | 0 14.0 | >7200 | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 42.0 42.0         | 0 14.0 | >7200 | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 42.0 42.0         | 0 14.0 | >7200 | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 43.0 43.0         | 15.0   | >7200 | H.g.  | Male                         | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 12         | 28.0 | 43.0 43.0         | 15.0   | >7200 | H.g.  | Female                       | Dec 12   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 13         | 28.3 | <b>38.1 38.</b> 1 | 9.8    | 304   | H.g.  | 5 <sup>th</sup> instar       | Dec 13   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 13         | 28.3 | 39.9 39.9         | 11.6   | 861   | H.g.  | 5 <sup>th</sup> instar       | Dec 13   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 13         | 28.3 | 40.0 40.0         | ) 11.7 | 55    | H.g.  | Male                         | Dec 13   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 13         | 28.3 | 40.8 40.8         | 8 12.5 | 67    | H.g.  | 5 <sup>th</sup> instar       | Dec 13   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 13         | 28.3 | 41.8 41.8         | 3 13.5 | 1020  | H.sp. | 5 <sup>th</sup> instar       | Dec 13   | 07:45~ |
| St.7-1,2,3 04°04'S 101°53'E 13         | 28.3 | 42.0 42.0         | 13.7   | >7200 | H.g.  | Female                       | Dec 13   | 07:45~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 31.0 31.0         | 3.2    | 68    | H.m.  | 5 <sup>th</sup> instar       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 31.7 31.7         | 3.9    | 46    | H.m.  | 5 <sup>th</sup> instar       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 32.0 32.0         | 4.2    | 15    | H.m.  | Female                       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 37.0 37.0         | 9.2    | 788   | H.m.  | 5 <sup>th</sup> instar       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 37.5 37.5         | 5 9.7  | 25    | H.m.  | Female                       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 39.0 39.0         | ) 11.2 | 32    | H.m.  | Female                       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 40.0 40.0         | 12.2   | >7200 | H.m.  | Male                         | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 40.0 40.0         | 12.2   | >7200 | H.m.  | 5 <sup>th</sup> instar       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 40.8 40.8         | 3 13.0 | >7200 | H.m.  | Female                       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 41.0 41.0         | 13.2   | >7200 | H.m.  | Female                       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 41.0 41.0         | 13.2   | >7200 | H.m.  | Female                       | Dec 15   | 06:30~ |
| St.9-1,2 04°03'S 101°53'E 14           | 27.8 | 41.0 41.0         | 13.2   | >7200 | H.m.  | Female                       | Dec 15   | 06:30~ |
| St.9-1 04°03'S 101°53'E 15             | 28.2 | 40.0 40.          | 0 11.8 | 1352  | H.m.  | Female                       | Dec 15   | 10:15~ |
| St.9-1 04°03'S 101°53'E 15             | 28.2 | 36.0 40.          | 0 11.8 | >7200 | H.m.  | 5 <sup>th</sup> instar       | Dec 15   | 10:15~ |
| St.9-1 04°03'S 101°53'E 15             | 28.2 | 40.0 40.          | 0 11.8 | >7200 | H.m.  | 3 <sup>rd</sup> instar       | Dec 15   | 10:15~ |
| <u>St.9-1 04°03'S 101°53'E 15</u>      | 28.2 | 40.0 40.          | 0 11.8 | >7200 | H.m.  | <u>3<sup>rd</sup> instar</u> | · Dec 15 | 10:15~ |

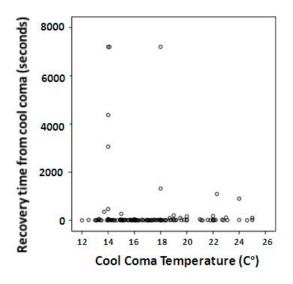
Table 5-Sheet 6. Results of "Heat-coma" experiments and measurement of recovery time from the heat coma (RTHC as seconds) performed on adults of *H. germanus* (H.g); TA: temp. at which specimen adapted, SHCT: temp. at which semi-heat coma occurred; HCT: temp. at which heat coma occurred ; GTHC: gap temp. for heat coma (from base temp.); "Date and Time of Day" when experiments were performed. (MR15-04: November 5, 2015 ~ December 20, 2015). TD: Time of day when heat coma experiment was performed


| <u>St.No.</u> | <u>Latitude</u> Longitude | <u>Exp.No</u> . | TA S | HCT HCT | <u>GTHC</u> | <u>RTHC</u>       | <u>Species</u> | Sex  | Date                         | TD     |        |
|---------------|---------------------------|-----------------|------|---------|-------------|-------------------|----------------|------|------------------------------|--------|--------|
| <u>St.9-1</u> | 04°03'S 101°53'E          | 15              | 28.2 | 40.0    | 40.0        | <u>11.8 &gt;7</u> | 200            | H.m. | <u>3<sup>rd</sup> instar</u> | Dec 15 | 10:15~ |

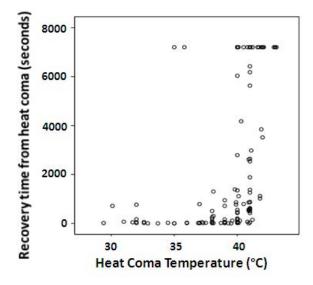
**Table 6.** Comparison of Semi-Cool Coma Temperature (SCCT), Cool Coma Temperature (CCT), Gap Temperature for Cool Coma (GTHC), Recovery Time from Cool Coma (RTCC), Semi-Cool Coma Temperature (SHCT), Heat Coma Temperature (HCT), Gap Temperature for Heat Coma (GTHC), Recovery Time from Heat Coma (RTHC) in *Halobates germanus*. between the individuals collected at two stations: one (A: 06°56'-58'S 102°53'-54'E) and another fixed one (B: 04°02'-06'S, 101°52'-55'E) in this cruise. Experiments were performed in the period from 21<sup>st</sup> November to 15<sup>th</sup> December 2015 during this cruise, MR15-04, in in the wet-lab. 2 of R/V MIRAI.


|                         |                           | ССТ                       | СТСС                      | DTCC                        |
|-------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|
|                         | SCCT                      | ССТ                       | GTCC                      | RTCC                        |
| A site (Station 1)      |                           |                           |                           |                             |
| Adults                  | $15.28 \pm 1.65$ (13)     | $15.05 \pm 1.74$ (13)     | $12.95 \pm 1.74$ (13)     | 908.00 ± 2086.38 (13)       |
| 5 <sup>th</sup> instars | $13.75 \pm 0.35$ (2)      | $13.75 \pm 0.35$ (2)      | $14.25 \pm 0.35$ (2)      | $3602.00 \pm 5088.34$ (2)   |
| 4 <sup>th</sup> instars | $18.05 \pm 5.59$ (2)      | $18.05 \pm 5.59$ (2)      | $9.95 \pm 5.59$ (2)       | 3690.00 ± 4963.89 (2)       |
| Total                   | 15.42 ± 2.28 (17)         | $15.25 \pm 2.35$ (17)     | ) $12.75 \pm 2.35$ (17)   | $1552.24 \pm 2802.97(17)$   |
|                         | SCCT                      | ССТ                       | GTCC                      | RTCC                        |
| B site (Stations 2-9)   |                           |                           |                           |                             |
| Adults                  | $17.36 \pm 2.39(142)$     | ) $17.20 \pm 2.48$ (142)  | $10.93 \pm 2.59 (142)$    | 24.12 ± 93.21 (142)         |
| 5 <sup>th</sup> instars | $16.92 \pm 2.60$ (27)     | ) $16.67 \pm 2.66$ (27)   | 11.51 ± 2.69 (27)         | 229.96 ± 849.10 (27)        |
| 4 <sup>th</sup> instars | $18.95 \pm 2.80$ (4)      | $18.95 \pm 2.80$ (4)      | $9.50 \pm 2.56$ (4)       | $19.5 \pm 8.39$ (4)         |
| Total (including        | $17.31 \pm 2.44$ (173)    | ) $17.13 \pm 2.54 (173)$  | $10.99 \pm 2.61 (173)$    | 56.17 ± 348.89 (173)        |
| one $2^{nd}$ instar)    |                           |                           |                           |                             |
|                         | SCCT                      | ССТ                       | GTCC                      | RTCC                        |
| ANCOVA                  | <u>F-value P-value df</u> | <u>F-value P-value df</u> | F-value P-value df        | F-value P-value df          |
| Sites                   | 9.159 0.003 1             | 8.364 0.004 1             | 7.276 0.008 1             | 43.160 <0.001 1             |
| Stages                  | 0.48 0.827 1              | 0.124 0.725 1             | 0.143 0.706 1             | 6.564 0.011 1               |
|                         | SHCT                      | НСТ                       | GTHC                      | RTHC                        |
| B site (Stations 2-9)   |                           |                           |                           |                             |
| Adults                  | 39.80 ± 2.58 (125)        | 39.83 ± 2.58 (125)        | 11.74 ±2.55 (125)         | 3175.78 ± 3253.78(125)      |
| 5 <sup>th</sup> instars | 38.19 ± 3.68 (14)         | 38.19 ± 3.68 (14)         | $9.85 \pm 3.50$ (14)      | 1253.14 ± 2534.95 (14)      |
| 4 <sup>th</sup> instars | $41.10 \pm 0.14$ (2)      | $41.10 \pm 0.14$ (14)     | $12.20 \pm 0.14$ (2)      | $7200 \pm 0.00$ (2)         |
| Total                   | $39.68 \pm 2.73$ (141)    | $39.69 \pm 2.72$ (141)    | $11.56 \pm 2.69$ (141)    | $3040.00 \pm 3249.01$ (139) |
|                         | SHCT                      | НСТ                       | GTHC                      | RTHC                        |
| ANOVA                   | F-value P-value df        |                           | <u>F-value P-value df</u> | F-value P-value df          |
| Stages                  | 2.599 0.078 2             | 2.605 0.078 2             | 3.275 0.041 2             | 4.034 0.020 2               |

**Table 7.** Comparison of Semi-Cool Coma Temperature (SCCT), Cool Coma Temperature (CCT), Gap Temperature for Cool Coma (GTHC) and Recovery Time from Cool Coma (RTCC) Semi-Cool Coma Temperature (SHCT), Heat Coma Temperature (HCT), Gap Temperature for Heat Coma (GTHC), Recovery Time from Heat Coma (RTHC) between *Halobates germanus* and *H. micans* or *H.*sp. (un-described species and a proposed name: *H. sumatoraensis*) and comparison of these values between adults males and females in all 9 stations (Station 1: 06°56'-58'S 102°53'-54'E; Stations 2-9: 04°02'-06'S, 101°52'-55'E) in this cruise. Experiments were performed in the period from 21<sup>st</sup> November to 15<sup>th</sup> December 2015 during this cruise, MR15-04, in in the wet-lab. 2 of R/V MIRAI.


| OI K/V MIKAL                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. Cool Coma                                                                                                                                                 | SCCT                                                                                                                                                                                                                                    | ССТ                                                                                                                                                                                                                                                                                 | GTCC                                                                                                                                                                                                                          | RTCC                                                                                                                                                                                                                    |
| Halobates germanus                                                                                                                                           | 17.14 ± 2.47 (191)                                                                                                                                                                                                                      | 16.96 ± 2.57 (191)                                                                                                                                                                                                                                                                  | 11.14 ± 2.63 (191)                                                                                                                                                                                                            | 189.05 ± 976.90 (191)                                                                                                                                                                                                   |
| Halobates sp                                                                                                                                                 | 16.44 ± 3.28 (9)                                                                                                                                                                                                                        | 15.51 ± 3.76 (9)                                                                                                                                                                                                                                                                    | 12.54 ± 3.71 (9)                                                                                                                                                                                                              | 87.11 ± 132.16 (9)                                                                                                                                                                                                      |
| (proposed name: H. su                                                                                                                                        | matraensis)                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |
| Total                                                                                                                                                        | 17.05 ± 2.65 (200)                                                                                                                                                                                                                      | $16.90 \pm 2.64$ (200)                                                                                                                                                                                                                                                              | 11.24 ± 2.73 (200)                                                                                                                                                                                                            | 184.46 ± 955.15 (200)                                                                                                                                                                                                   |
| Females (adults)                                                                                                                                             | 17.26 ± 2.51 (91)                                                                                                                                                                                                                       | $17.04 \pm 2.64$ (91)                                                                                                                                                                                                                                                               | $11.02 \pm 2.70$ (91)                                                                                                                                                                                                         | 160.78 ± 829.95 (91)                                                                                                                                                                                                    |
| Males (adults)                                                                                                                                               | 16.85 ± 2.66 (67)                                                                                                                                                                                                                       | $16.89 \pm 2.29$ (67)                                                                                                                                                                                                                                                               | $11.39 \pm 2.58$ (67)                                                                                                                                                                                                         | 14.78 ± 21.76 (67)                                                                                                                                                                                                      |
| Total                                                                                                                                                        | 17.08±2.57 (158)                                                                                                                                                                                                                        | 16.98±2.49 (158                                                                                                                                                                                                                                                                     | ) <u>11.18±2.65 (158</u>                                                                                                                                                                                                      | ) <u>98.87±632.70 (158)</u>                                                                                                                                                                                             |
|                                                                                                                                                              | <u>SCCT</u> C                                                                                                                                                                                                                           | CT G                                                                                                                                                                                                                                                                                | TCC R                                                                                                                                                                                                                         | ТСС                                                                                                                                                                                                                     |
| ANCOVA <u>F-value</u>                                                                                                                                        | P-value df <u>F</u> -value                                                                                                                                                                                                              | P-value df <u>F</u> -value                                                                                                                                                                                                                                                          | P-value df <u>F</u> -valu                                                                                                                                                                                                     | e P-value df                                                                                                                                                                                                            |
| Species 1.627                                                                                                                                                | 0.204 1 3.163                                                                                                                                                                                                                           | 0.077 1 2.897                                                                                                                                                                                                                                                                       | 0.091 1 0.05                                                                                                                                                                                                                  | 8 0.810 1                                                                                                                                                                                                               |
|                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |
| Sex 0.334                                                                                                                                                    | 0.564 1 0.143                                                                                                                                                                                                                           | 0.706 1 0.387                                                                                                                                                                                                                                                                       | 0.535 1 2.03                                                                                                                                                                                                                  | 2 0.156 1                                                                                                                                                                                                               |
| <u>Sex 0.334</u><br>One-Way ANOVA                                                                                                                            |                                                                                                                                                                                                                                         | 0.706 1 0.387<br>CCT                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               | 2 0.156 1<br>RTCC                                                                                                                                                                                                       |
| One-Way ANOVA                                                                                                                                                | SCCT                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                     | GTCC                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |
| One-Way ANOVA                                                                                                                                                | SCCT                                                                                                                                                                                                                                    | <u>CCT</u><br>ue P-value df <u>F</u> -valu                                                                                                                                                                                                                                          | GTCC<br>e P-value df <u>F-v</u>                                                                                                                                                                                               | RTCC                                                                                                                                                                                                                    |
| One-Way ANOVA                                                                                                                                                | SCCT                                                                                                                                                                                                                                    | <u>CCT</u><br>ue P-value df <u>F</u> -valu                                                                                                                                                                                                                                          | GTCC<br>e P-value df <u>F-v</u>                                                                                                                                                                                               | RTCC<br>alue P-value df                                                                                                                                                                                                 |
| One-Way ANOVA<br><u>F-val</u><br>Stations 1-9 3.264                                                                                                          | SCCT                                                                                                                                                                                                                                    | <u>CCT</u><br>ue P-value df <u>F</u> -valu                                                                                                                                                                                                                                          | GTCC<br>e P-value df <u>F-v</u>                                                                                                                                                                                               | RTCC<br>alue P-value df                                                                                                                                                                                                 |
| One-Way ANOVA<br><u>F-val</u><br>Stations 1-9 3.264                                                                                                          | SCCT<br>ue P-value df F-valu<br>0.002 8 3.17                                                                                                                                                                                            | <u>CCT<br/>ue P-value df F-valu</u><br>9 0.002 8 3.088<br><u>HCT</u>                                                                                                                                                                                                                | GTCC<br><u>e P-value df F-v</u><br>8 0.003 8 5.                                                                                                                                                                               | RTCC<br>alue P-value df<br>443 <0.001 8                                                                                                                                                                                 |
| One-Way ANOVA                                                                                                                                                | SCCT<br>lue P-value df F-valu<br>0.002 8 3.17<br>SHCT                                                                                                                                                                                   | <u>CCT<br/>ue P-value df F-valu</u><br>9 0.002 8 3.088<br><u>HCT</u>                                                                                                                                                                                                                | GTCC<br><u>e P-value df F-v</u><br><u>8 0.003 8 5.</u><br>GTHC<br>) 11.56 ± 2.69 (141)                                                                                                                                        | RTCC<br>alue P-value df<br>443 <0.001 8<br>RTHC                                                                                                                                                                         |
| One-Way ANOVA<br><u>F-val</u><br>Stations 1-9 3.264<br>Heat Coma<br>Halobates germanus                                                                       | SCCT<br><u>ue P-value df F-valu</u><br><u>0.002 8 3.179</u><br><u>SHCT</u><br>39.68 ± 2.73 (141)                                                                                                                                        | CCT<br><u>ue P-value df F-valu</u><br>9 0.002 8 3.088<br><u>HCT</u><br>38.35 ± 2.73 (141)                                                                                                                                                                                           | GTCC<br><u>e P-value df F-v</u><br><u>8 0.003 8 5.</u><br>GTHC<br>) 11.56 ± 2.69 (141)                                                                                                                                        | RTCC<br>alue P-value df<br>443 <0.001 8<br>RTHC<br>3249.01±3249.01(139)                                                                                                                                                 |
| One-Way ANOVA<br><u>F-val</u><br><u>Stations 1-9</u> 3.264<br>Heat Coma<br>Halobates germanus<br><u>Halobates micans</u>                                     | SCCT<br><u>ue P-value df F-value</u><br>0.002 8 3.17<br>SHCT<br>39.68 ± 2.73 (141)<br>38.12 ± 3.44 (17)                                                                                                                                 | CCT           ue         P-value         df         F-valu           9         0.002         8         3.088           HCT         38.35 ± 2.73 (141)         38.35 ± 3.42(17)           39.76 ± 2.64 (90)         39.76 ± 2.64 (90)         1000000000000000000000000000000000000  | GTCC<br><u>e P-value df F-v</u><br><u>8 0.003 8 5.</u><br>GTHC<br>) 11.56 ± 2.69 (141)<br>10.44± 3.37(17)                                                                                                                     | RTCC<br>alue P-value df<br>443 <0.001 8<br>RTHC<br>3249.01±3249.01(139)<br>4372.1±3499.07 (17)                                                                                                                          |
| One-Way ANOVA<br><u>F-val</u><br><u>Stations 1-9</u> 3.264<br>Heat Coma<br>Halobates germanus<br><u>Halobates micans</u><br>Females                          | SCCT           ue         P-value         df         F-value $0.002$ 8 $3.17$ SHCT         39.68 ± 2.73 (141)         38.12 ± 3.44 (17) $39.76 \pm 2.64$ (90) $39.76 \pm 2.64$ (90)                                                     | CCT           ue         P-value         df         F-valu           9         0.002         8         3.088           HCT         38.35 ± 2.73 (141)         38.35 ± 3.42(17)           39.76 ± 2.64 (90)         39.76 ± 2.64 (90)         1000000000000000000000000000000000000  | GTCC         e       P-value       df       F-v         8       0.003       8       5.         GTHC                                                                                                                           | RTCC<br>alue P-value df<br>443 <0.001 8<br>RTHC<br>3249.01±3249.01(139)<br>4372.1±3499.07 (17)<br>3733.65±3300.93(89)                                                                                                   |
| One-Way ANOVA<br><u>F-val</u><br><u>Stations 1-9</u> 3.264<br>Heat Coma<br>Halobates germanus<br><u>Halobates micans</u><br>Females<br><u>Males</u>          | SCCT           ue         P-value         df         F-value $0.002$ 8 $3.17$ SHCT         39.68 ± 2.73 (141)         38.12 ± 3.44 (17) $39.76 \pm 2.64$ (90) $39.76 \pm 2.64$ (90)                                                     | CCT           ue         P-value         df         F-valu           9         0.002         8         3.088           HCT         38.35 ± 2.73 (141)         38.35 ± 3.42(17)           39.76 ± 2.64 (90)         39.76 ± 2.64 (90)         1000000000000000000000000000000000000  | GTCC         e       P-value       df       F-v         8       0.003       8       5.         GTHC                                                                                                                           | RTCC<br>alue P-value df<br>443 <0.001 8<br>RTHC<br>3249.01±3249.01(139)<br>4372.1±3499.07 (17)<br>3733.65±3300.93(89)                                                                                                   |
| One-Way ANOVA<br><u>F-val</u><br><u>Stations 1-9</u> 3.264<br>Heat Coma<br>Halobates germanus<br><u>Halobates micans</u><br>Females<br><u>Males</u>          | SCCT           ue         P-value         df         F-value           4         0.002         8         3.17           SHCT         39.68 ± 2.73 (141)         38.12 ± 3.44 (17)           39.76 ± 2.64 (90)         39.83 ± 2.53 (44) | CCT           ue         P-value         df         F-valu           9         0.002         8         3.088           HCT         38.35 ± 2.73 (141)         38.35 ± 3.42(17)           39.76 ± 2.64 (90)         39.83 ± 2.53 (44)         39.83 ± 2.53 (44)                      | GTCC         e       P-value       df       F-v         8       0.003       8       5.         GTHC       0       11.56 $\pm$ 2.69 (141)       10.44 $\pm$ 3.37(17)         11.68 $\pm$ 2.60 (90)       11.78 $\pm$ 2.53 (44) | RTCC         alue       P-value       df         443       <0.001       8         RTHC       3249.01 ± 3249.01(139)         4372.1±3499.07 (17)       3733.65 ± 3300.93(89)         2226.65 ± 3009.61 (43)              |
| One-Way ANOVA<br><u>F-val</u><br><u>Stations 1-9</u> 3.264<br>Heat Coma<br>Halobates germanus<br><u>Halobates micans</u><br>Females<br><u>Males</u><br>Total | SCCT           ue         P-value         df         F-value $0.002$ 8 $3.17$ $\underline{SHCT}$ 39.68 ± 2.73 (141) $38.12 \pm 3.44 (17)$ 39.76 ± 2.64 (90) $39.83 \pm 2.53 (44)$ SHCT                                                  | CCT           ue         P-value         df         F-valu           9         0.002         8         3.088           HCT         38.35 ± 2.73 (141)         38.35 ± 3.42(17)           39.76 ± 2.64 (90)         39.83 ± 2.53 (44)         44           HCT         44         44 | GTCC<br><u>e P-value df F-v</u><br><u>8 0.003 8 5.</u><br>GTHC<br>) 11.56 ± 2.69 (141)<br>10.44± 3.37(17)<br>11.68 ± 2.60 (90)<br>11.78 ± 2.53 (44)<br>GTHC                                                                   | RTCC         alue       P-value       df         443       <0.001       8         RTHC       3249.01 ± 3249.01(139)         4372.1±3499.07 (17)       3733.65 ± 3300.93(89)         2226.65 ± 3009.61 (43)         RTHC |




**Fig. 1:** Comparison of Cool Coma Temperature (C°) (CCT: Mean  $\pm$  95% confidence value) and the Site 1 (06°54'-56'S 102°53'-54'E) and Site 2 (04°02'-06'S 101°52'-56'E) and change in CCT according to time course (every 3 days samplings showing Stations 2-9 at the Site 2. Experiments were performed using specimens which had been kept in the aquarium of the laboratory in the ship till the next morning of the sampling day (1.0 day), the next afternoon (1.5 day), the morning of 2 days after sampling (2.0 days), the afternoon of 2 days (2.5 days), the morning of 3 days (3.0 days) and the morning of 5 days (5 days).



**Fig. 2:** The time course change in Heat Coma Temperature (C°) (HCT: Mean  $\pm$  95% confidence value) (every 3 days samplings showing Stations 4-8) at the Site 2 (04°02'-06'S 101°52'-56'E). Experiments were performed using specimens which had been kept in the aquarium of the laboratory in the ship till the next morning of the sampling day (1.0 day), the morning of 2 days after sampling (2.0 days) and the morning of 4 days (4.0 days).



**Fig. 3:** Relationship between the temperature at which cool coma occurred and recovery time There was no correlative relationship (Pearson's correlation test: r=-0.080, p=0.250n n=200).



**Fig. 4:** Relationship between the temperature at which heat coma occurred and recovery time There was clear positive correlative relationship (Pearson's correlation test: r=0.522, p<0.001, n=157). Observation was continued within 2 hours after the onset of heat coma. 7200 seconds (2 hours) mean that no recovery from the coma for 2 hours.



Photo 1: A trailing scene of Neuston-NET



Photo 2: Female adult of Halobates germanus making "cleaning behavior".

# 5.29 Underway Geophysics

Personnel

| Masaki KATSUMATA   | (JAMSTEC)    | - Principal Investigator |
|--------------------|--------------|--------------------------|
| Kazuho YOSHIDA     | (GODI)       |                          |
| Souichiro SUEYOSHI | (GODI)       |                          |
| Shinya OKUMURA     | (GODI)       |                          |
| Miki MORIOKA       | (GODI)       |                          |
| Ryo KIMURA         | (MIRAI Crew) |                          |

## 5.29.1 Sea surface gravity

#### (1) Introduction

The local gravity is an important parameter in geophysics and geodesy. We collected gravity data at the sea surface.

#### (2) Data Acquisition

We measured relative gravity [CU: Counter Unit] ([mGal] = (coef1: 0.9946) \* [CU]), using LaCoste and Romberg air-sea gravity meter S-116 (Micro-g LaCoste, LLC) during thins cruise. To convert the relative gravity to absolute one, we measured gravity, using portable gravity meter CG-5 (Scintrex), at Sekinehama as the reference point.

#### (3) Preliminary Results

Absolute gravity table was shown in Table.5.29-1.

#### (4) Data Archives

Surface gravity data obtained in this cruise will be submitted to the Data Management Group of JAMSTEC, and will be opened to the public via "Data Research System for Whole Cruise Information in JAMSTEC (DARWIN)" in JAMSTEC web site. <<u>http://www.godac.jamstec.go.jp/darwin/e></u>

#### (6) Remarks

 The follwing period, data acquisition was suspended in the EEZs of Philippine and Indonesia. 16:32UTC 13 Nov. 2015 - 02:48UTC 15 Nov. 2015

|    | Table 5.29-1 Absolute gravity table |       |            |            |       |               |            |                   |
|----|-------------------------------------|-------|------------|------------|-------|---------------|------------|-------------------|
| No | Date                                | UTC   | Port       | Absolute   | Sea   | Draft<br>[cm] | Gravity at | L&R* <sup>2</sup> |
|    |                                     |       |            | Gravity    | Level |               | Sensor *1  | Gravity           |
|    |                                     |       |            | [mGal]     | [cm]  |               | [mGal]     | [mGal]            |
| #1 | NOV/05                              | 01:07 | Sekinehama | 980,371.86 | 251   | 607           | 980,372.81 | 12662.42          |

<sup>\*1</sup>: Gravity at Sensor = Absolute Gravity + Sea Level\*0.3086/100 + (Draft-530)/100\*0.2222

\*2: LaCoste and Romberg air-sea gravity meter S-116

# 5.29.2 Sea surface three-component magnetometer

#### (1) Introduction

Measurement of magnetic force on the sea is required for the geophysical investigations of marine magnetic anomaly caused by magnetization in upper crustal structure. We measured geomagnetic field using a three-component magnetometer during this cruise.

## (2) Principle of ship-board geomagnetic vector measurement

The relation between a magnetic-field vector observed on-board, Hob, (in the ship's fixed coordinate system) and the geomagnetic field vector, F, (in the Earth's fixed coordinate system) is expressed as:

 $Hob = \widetilde{\mathbf{A}} \ \widetilde{\mathbf{R}} \ \widetilde{\mathbf{P}} \ \widetilde{\mathbf{Y}} \ F + Hp \qquad (a)$ 

where  $\mathbf{\tilde{R}}$ ,  $\mathbf{\tilde{P}}$  and  $\mathbf{\tilde{Y}}$  are the matrices of rotation due to roll, pitch and heading of a ship, respectively.  $\mathbf{\tilde{A}}$  is a 3 x 3 matrix which represents magnetic susceptibility of the ship, and Hp is a magnetic field vector produced by a permanent magnetic moment of the ship's body. Rearrangement of Eq. (a) makes

 $\mathbf{R} \operatorname{Hob} + \operatorname{Hbp} = \mathbf{R} \mathbf{P} \mathbf{Y} F \qquad (b)$ 

where  $\mathbf{R} = \mathbf{A}^{-1}$ , and Hbp = - $\mathbf{R}$  Hp. The magnetic field, F, can be obtained by measuring  $\mathbf{R}$ ,  $\mathbf{P}$ ,  $\mathbf{Y}$  and Hob, if  $\mathbf{\tilde{R}}$  and Hbp are known. Twelve constants in  $\mathbf{\tilde{R}}$  and Hbp can be determined by measuring variation of Hob with  $\mathbf{\tilde{R}}$ ,  $\mathbf{\tilde{P}}$  and  $\mathbf{\tilde{Y}}$  at a place where the geomagnetic field, F, is known.

## (3) Instruments on R/V MIRAI

A shipboard three-component magnetometer system (Tierra Tecnica SFG1214) is equipped on-board R/V MIRAI. Three-axes flux-gate sensors with ring-cored coils are fixed on the fore mast. Outputs from the sensors are digitized by a 20-bit A/D converter (1 nT/LSB), and sampled at 8 times per second. Ship's heading, pitch, and roll are measured by the Inertial Navigation System (INS) for controlling attitude of a Doppler radar. Ship's position (GPS) and speed data are taken from LAN every second.

## (4) Data Archives

Surface gravity data obtained in this cruise will be submitted to the Data Management Group of JAMSTEC, and will be opened to the public via "Data Research System for Whole Cruise Information in JAMSTEC (DARWIN)" in JAMSTEC web site. <<u>http://www.godac.jamstec.go.jp/darwin/e</u>>

(5) Remarks

- The following period, data acquisition was suspended in the EEZs of Philippine and Indonesia. 16:32UTC 13 Nov. 2015 - 02:48UTC 15 Nov. 2015
- 2) For calibration of the ship's magnetic effect, we made a "figure-eight" turn (a pair of clockwise and anti-clockwise rotation). This calibration was carried out as below.

09:47UTC - 10:14UTC 05 Nov. 2015 around 41-19N, 141-43E 03:15UTC - 03:42UTC 23 Nov. 2015 around 04-10S, 101-52E 01:14UTC - 01:42UTC 18 Dec. 2015 around 06-01S, 101-00E

# 5.29.3 Swath Bathymetry

## (1) Introduction

R/V MIRAI equips a Multi narrow Beam Echo Sounding system (MBES), SEABEAM 3012 Model (L3 Communications ELAC Nautik). The objective of MBES is collecting continuous bathymetric data along ship's track to make a contribution to geological and geophysical investigations and global datasets.

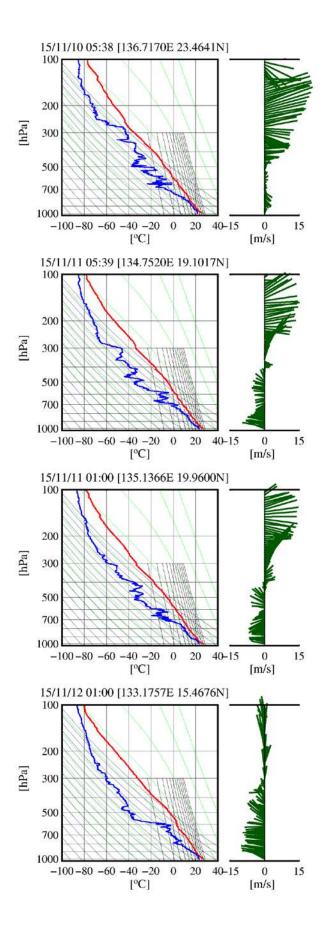
# (2) Data Acquisition

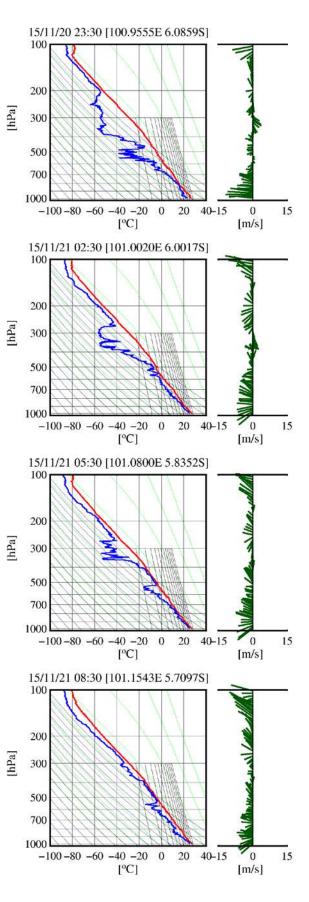
The "SEABEAM 3012 Model" on R/V MIRAI was used for bathymetry mapping during this cruise.

To get accurate sound velocity of water column for ray-path correction of acoustic multibeam, we used Surface Sound Velocimeter (SSV) data to get the sea surface (6.62m) sound velocity, and the deeper depth sound velocity profiles were calculated by temperature and salinity profiles from CTD, XCTD and Argo float data by the equation in Del Grosso (1974) during the cruise. Table 5.29.3-1 shows system configuration and performance of SEABEAM 3012 system.

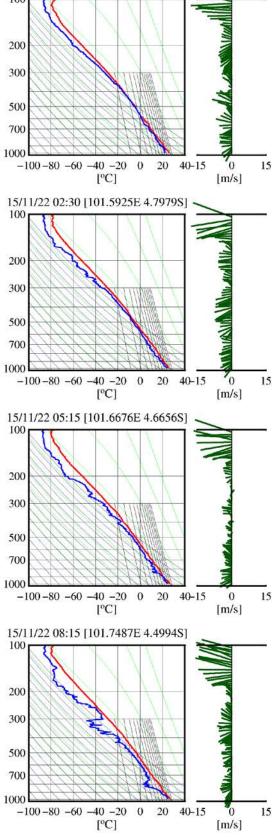
| Table 5.29.3-1 SEABEAM 3012 System configuration and performance |                                                                         |  |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Frequency:                                                       | 12 kHz                                                                  |  |  |  |
| Transmit beam width:                                             | 1.6 degree                                                              |  |  |  |
| Transmit power:                                                  | 20 kW                                                                   |  |  |  |
| Transmit pulse length:                                           | 2 to 20 msec.                                                           |  |  |  |
| Receive beam width:                                              | 1.8 degree                                                              |  |  |  |
| Depth range:                                                     | 100 to 11,000 m                                                         |  |  |  |
| Beam spacing:                                                    | 0.5 degree athwart ship                                                 |  |  |  |
| Swath width:                                                     | 150 degree (max)                                                        |  |  |  |
|                                                                  | 120 degree to 4,500 m                                                   |  |  |  |
|                                                                  | 100 degree to 6,000 m                                                   |  |  |  |
|                                                                  | 90 degree to 11,000 m                                                   |  |  |  |
| Depth accuracy:                                                  | Within $< 0.5\%$ of depth or $\pm 1$ m,                                 |  |  |  |
|                                                                  | Whichever is greater, over the entire swath.                            |  |  |  |
|                                                                  | (Nadir beam has greater accuracy;                                       |  |  |  |
|                                                                  | typically within $< 0.2\%$ of depth or $\pm 1$ m, whichever is greater) |  |  |  |

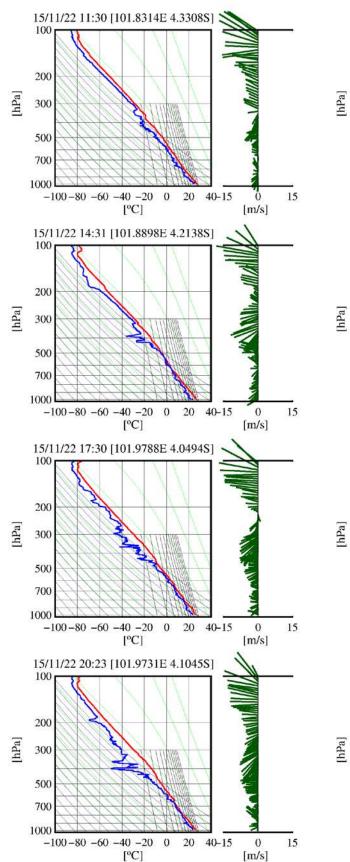
## (3) Preliminary Results

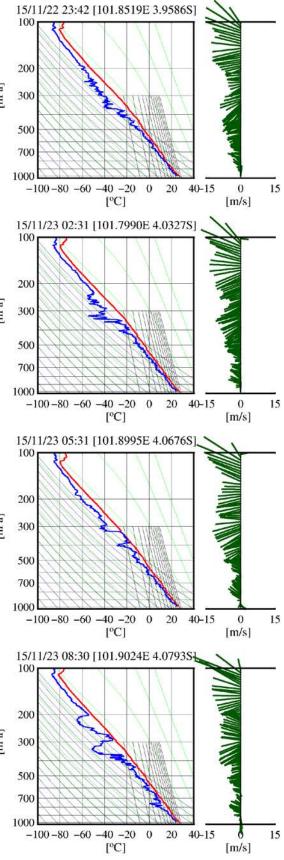

The results will be published after primary processing.

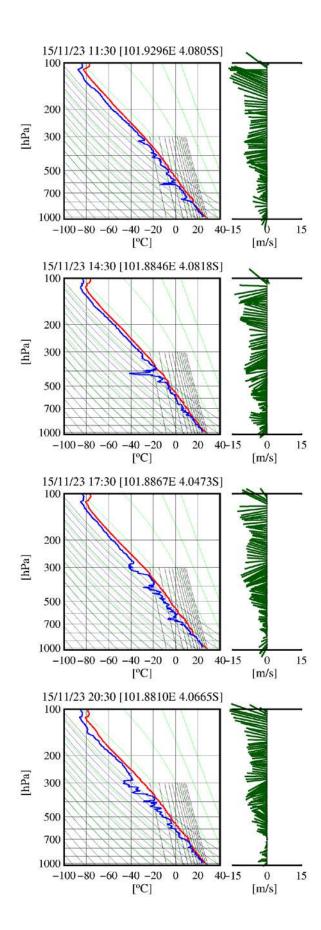

## (4) Data Archives

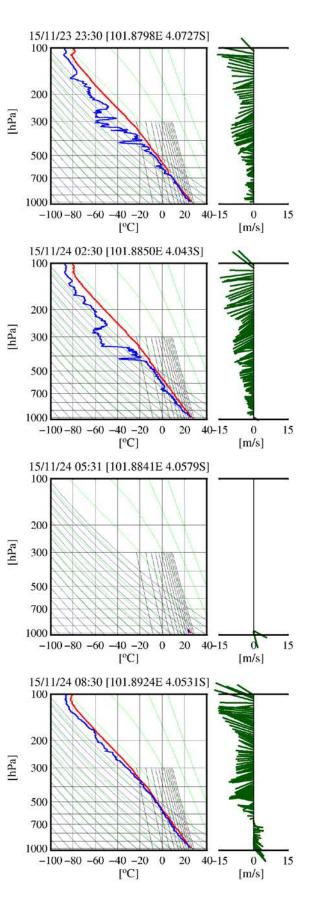
Bathymetric data obtained in this cruise will be submitted to the Data Management Group of JAMSTEC, and will be opened to the public via "Data Research System for Whole Cruise Information in JAMSTEC (DARWIN)" in JAMSTEC web site.

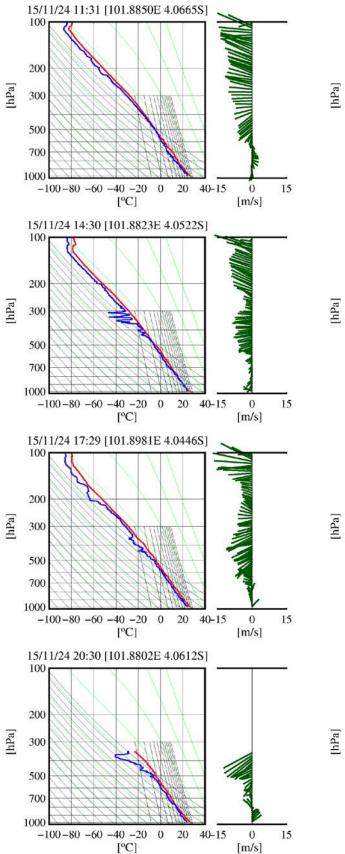

## (5) Remarks

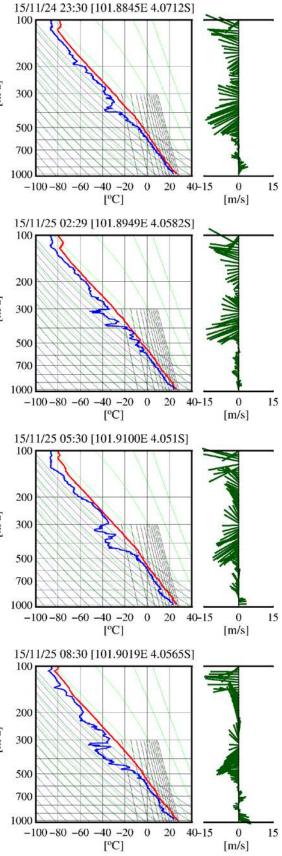

 The following period, data acquisition was suspended in the EEZs of Philippine and Indonesia. 12:00UTC 13 Nov. 2015 - 03:04UTC 15 Nov. 2015 Appendix A: Atmospheric profiles by the radiosonde observations

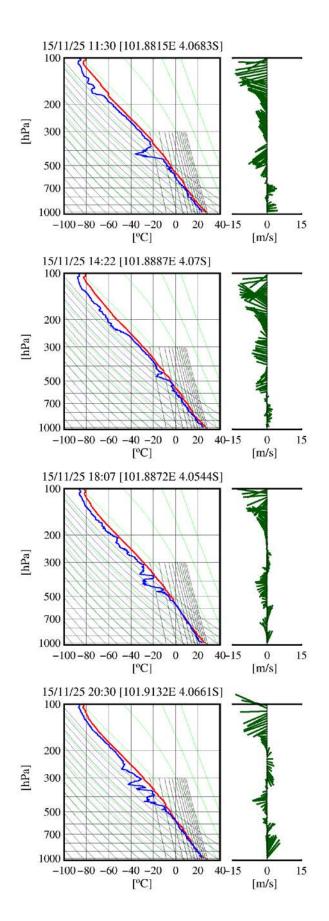


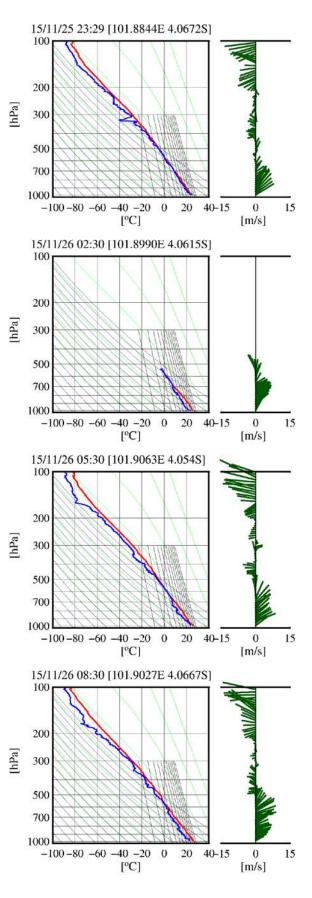



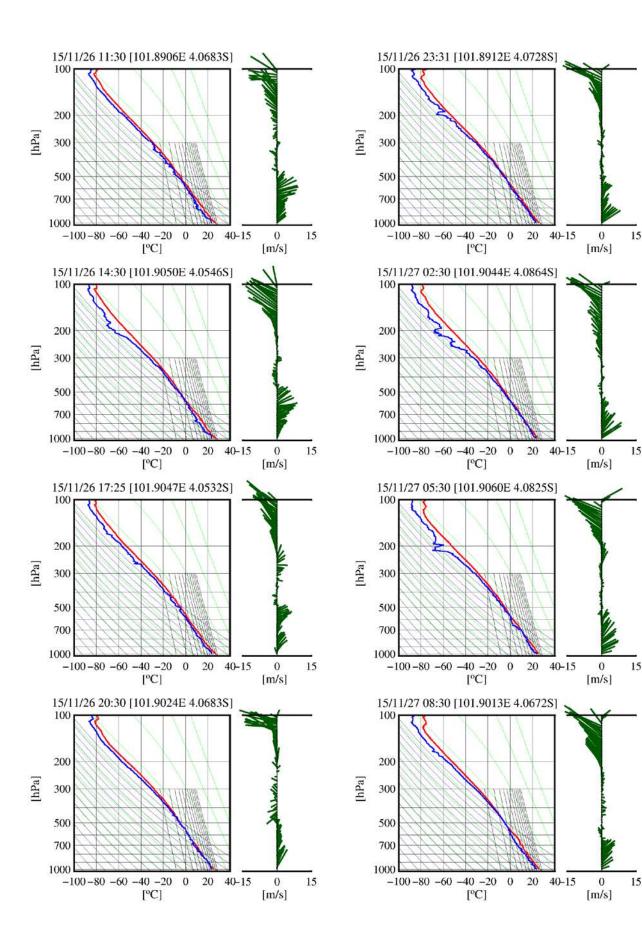



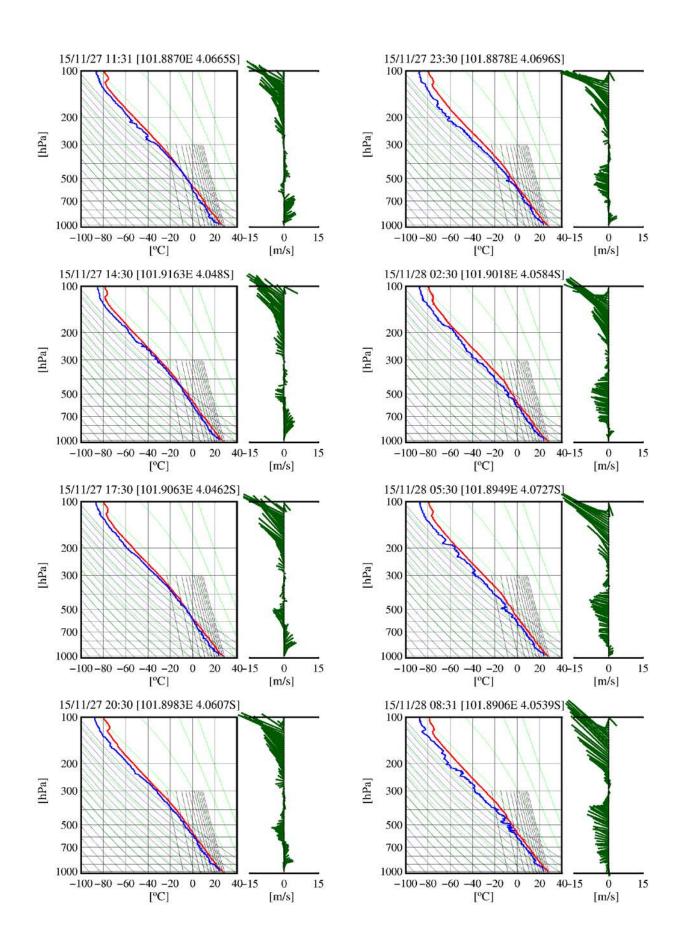



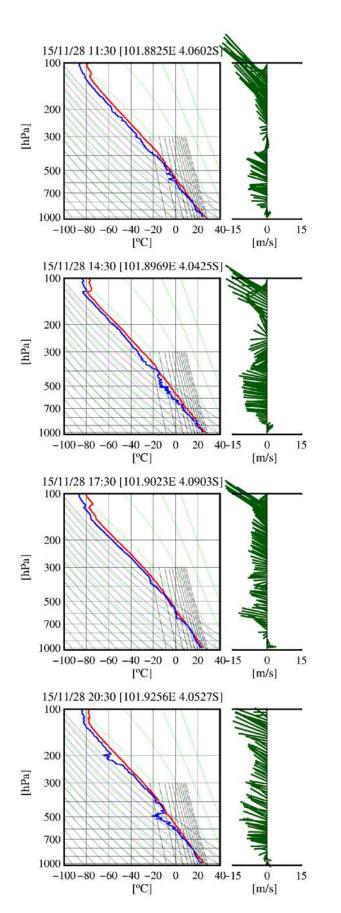



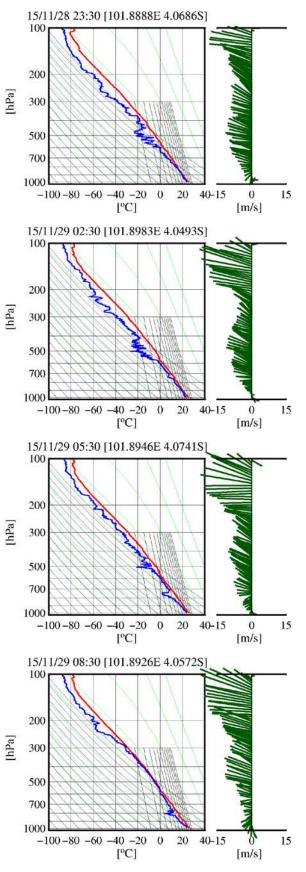



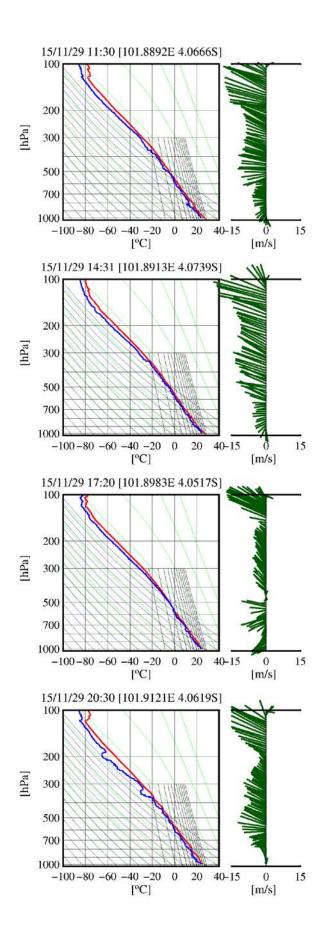



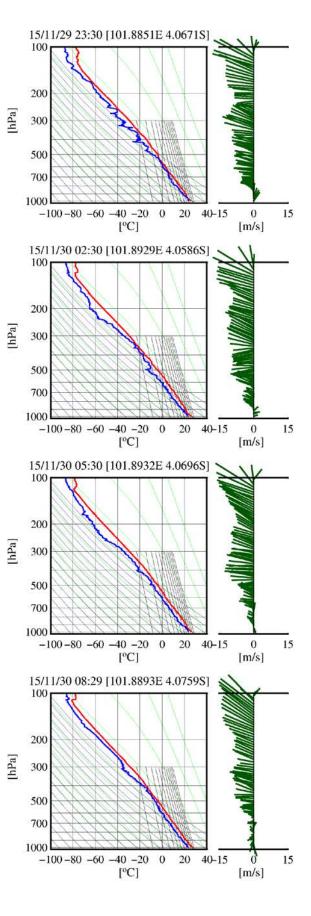



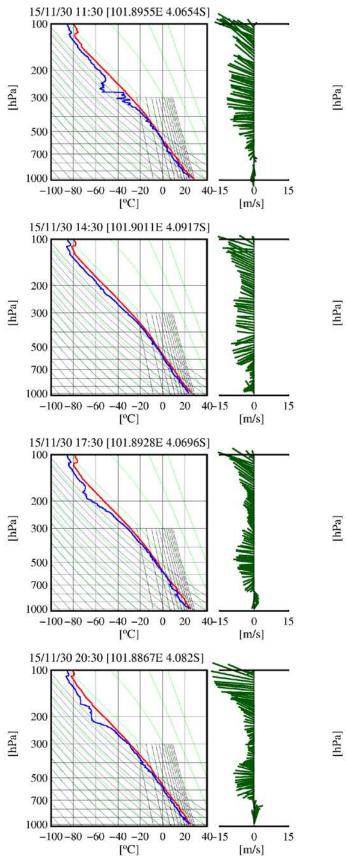



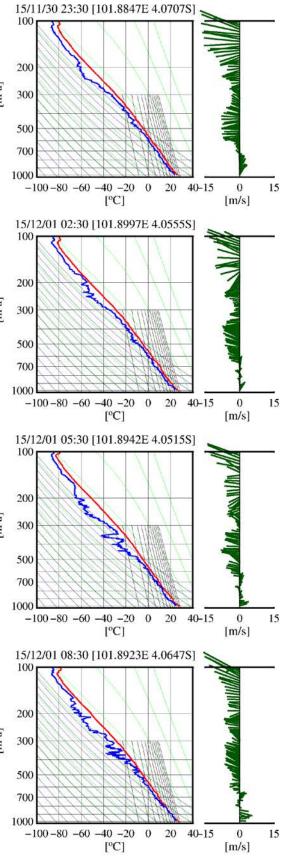



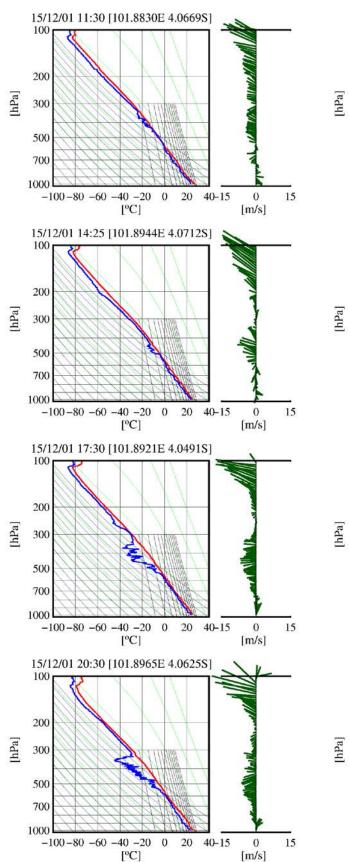



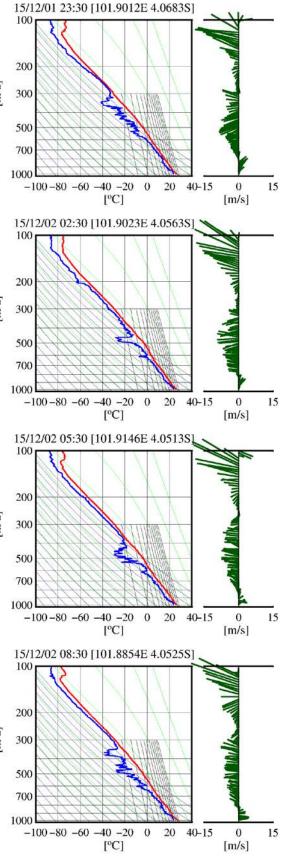



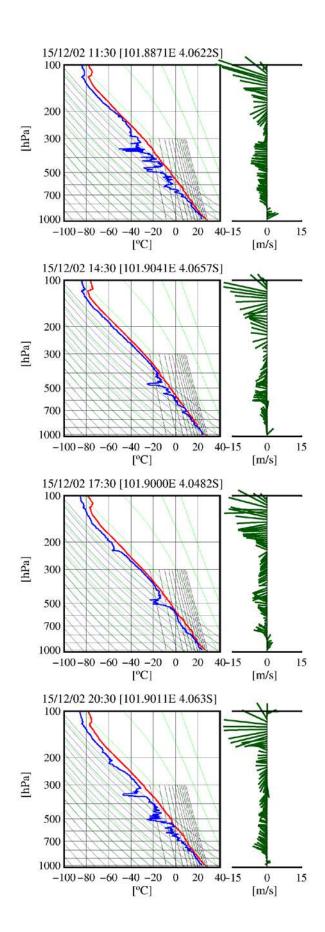



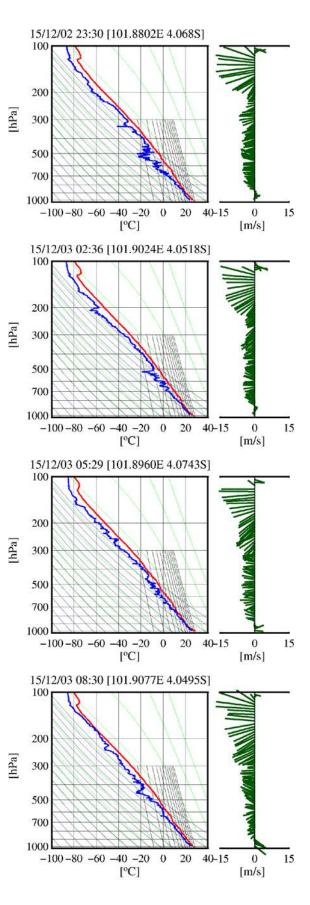



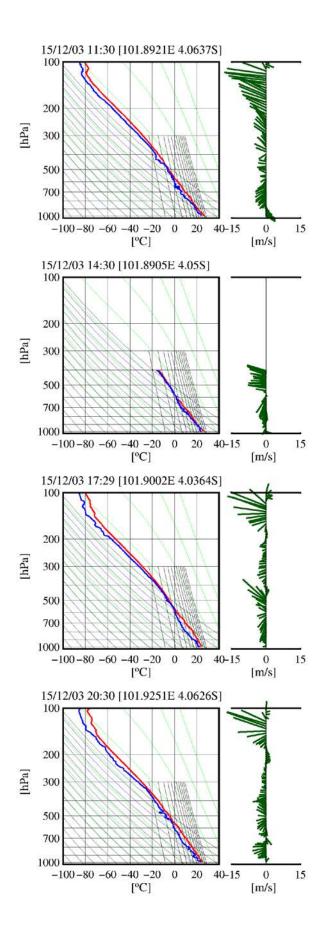



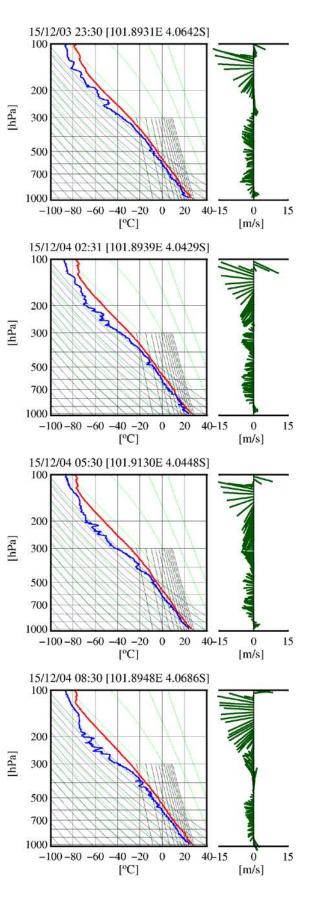



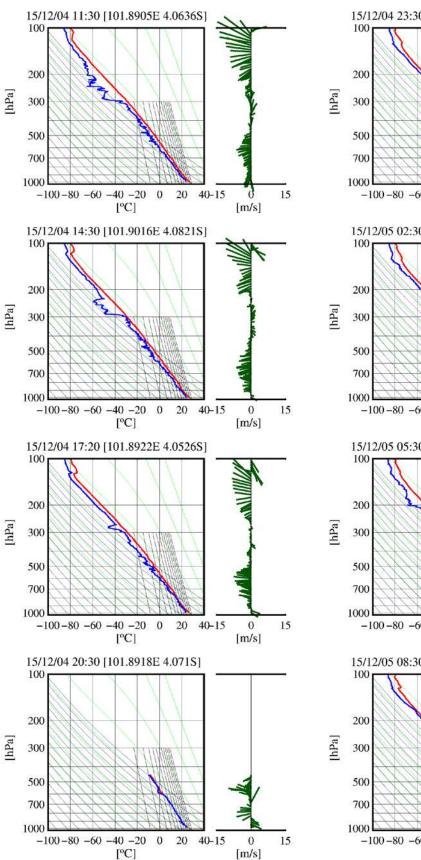



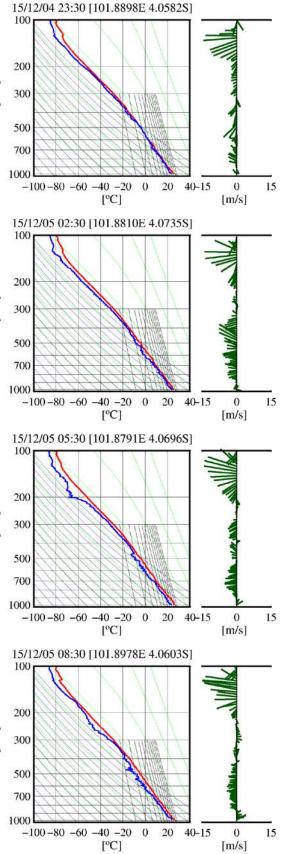



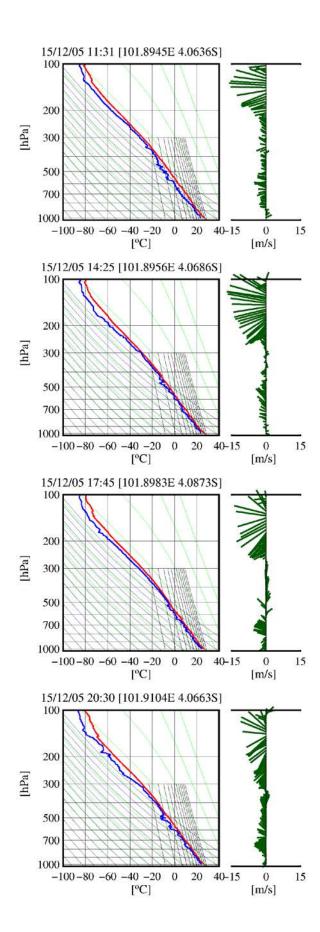



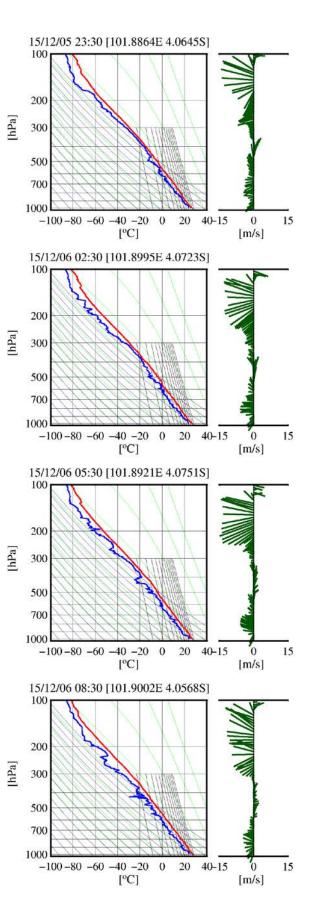



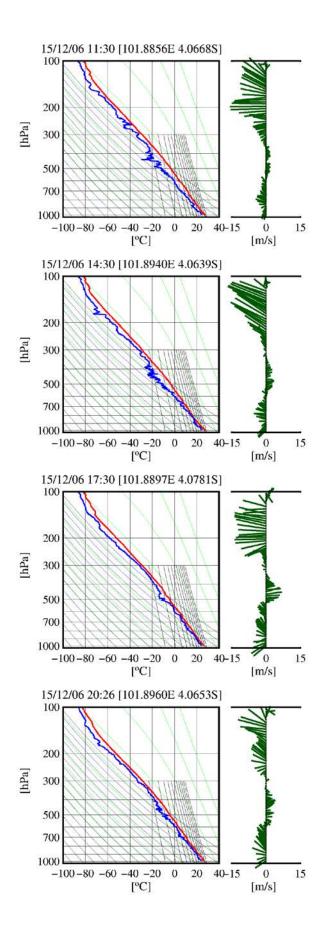



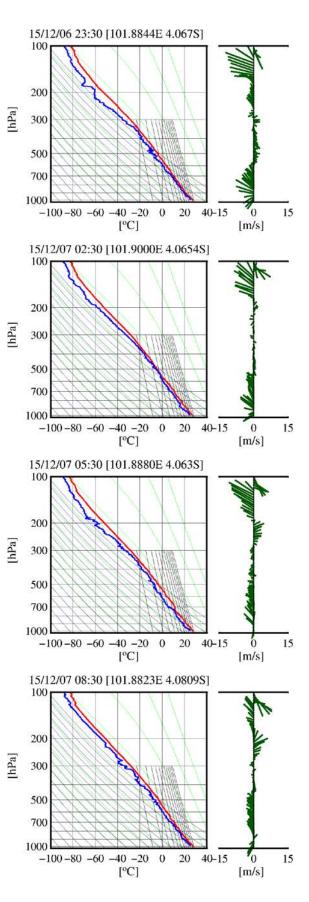



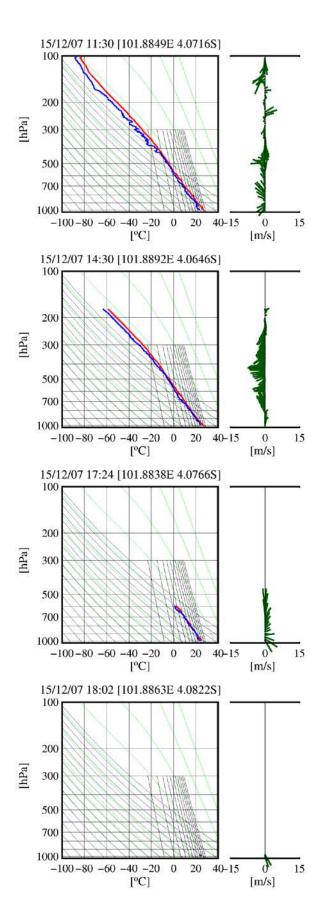



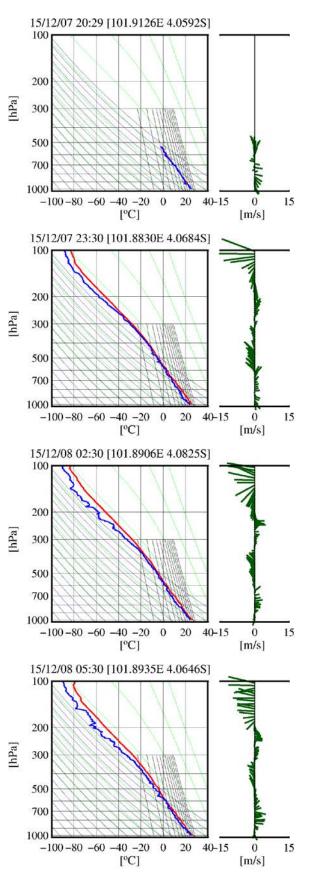



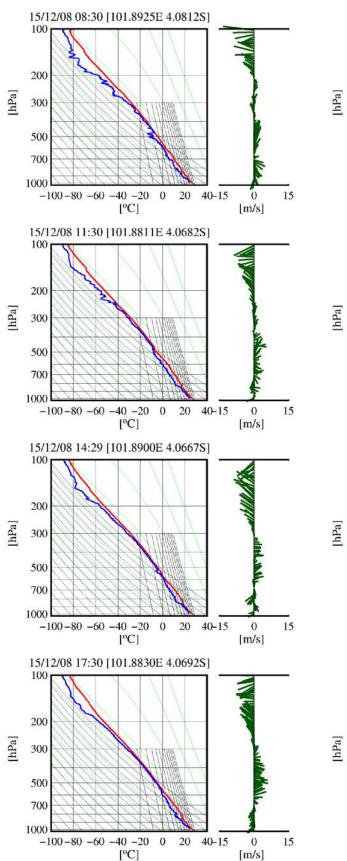



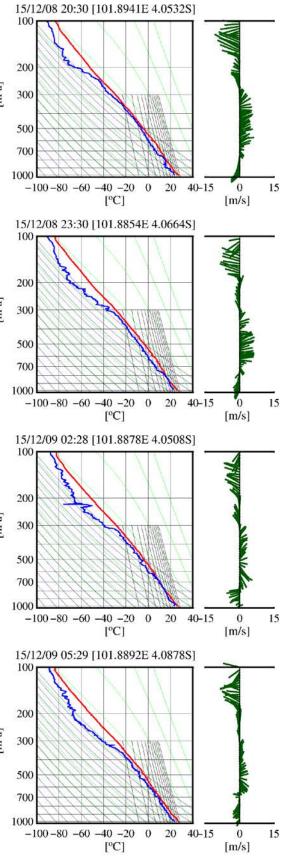



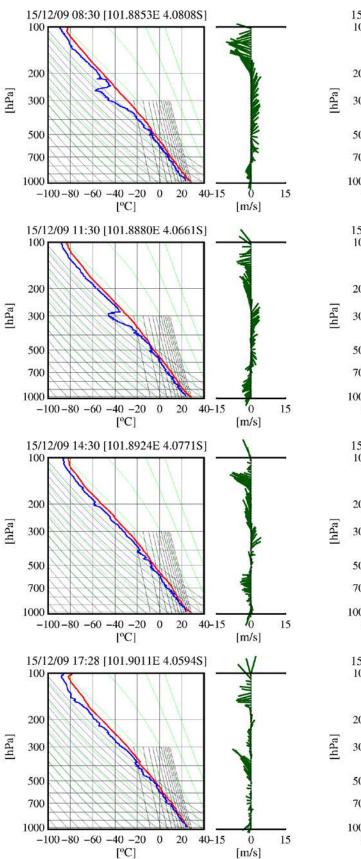



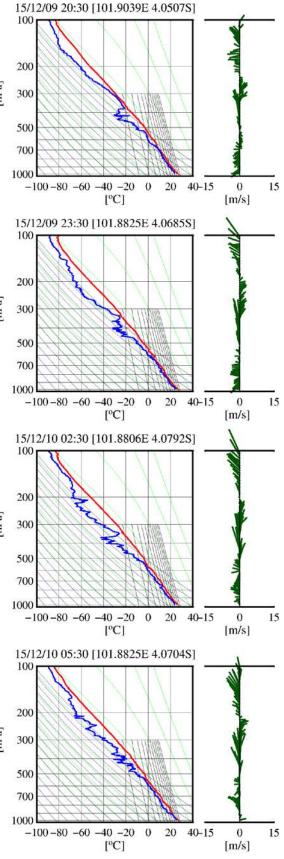



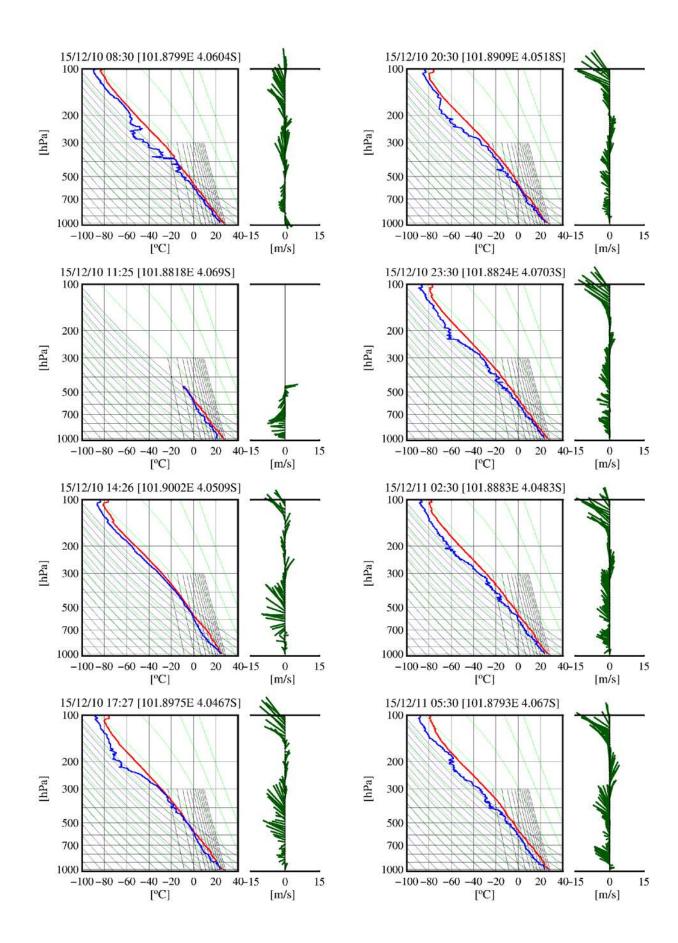



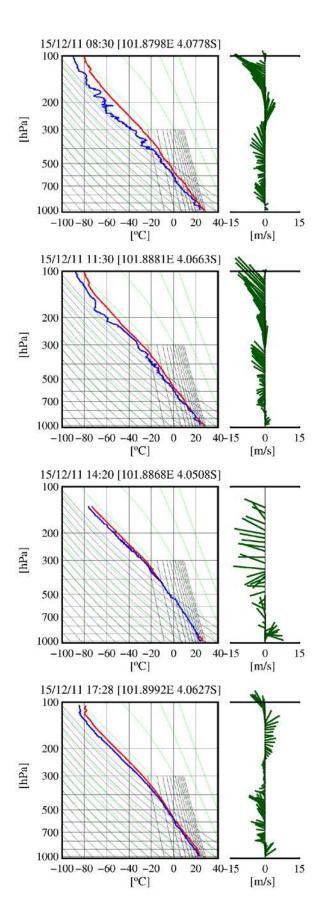



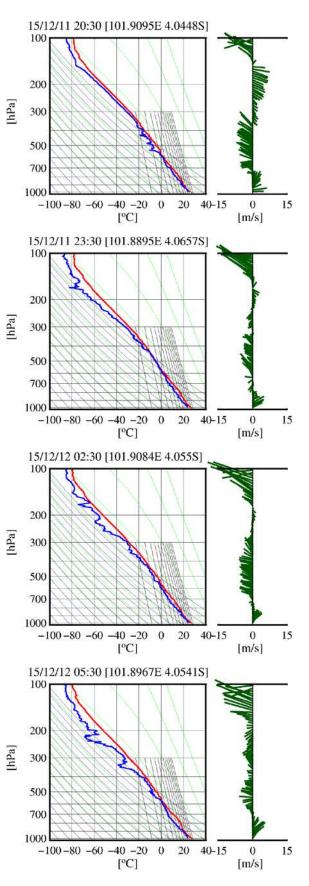



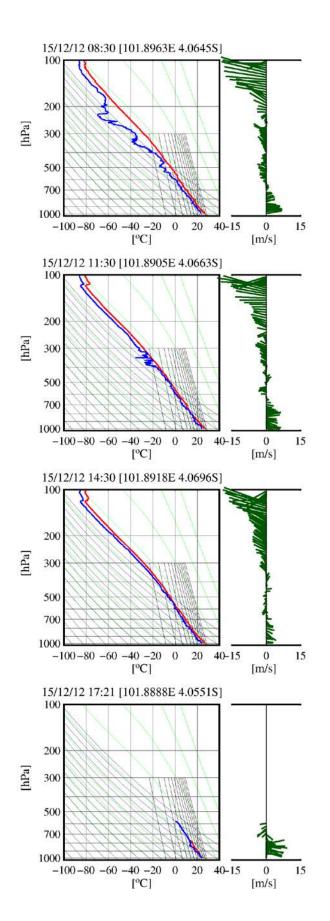



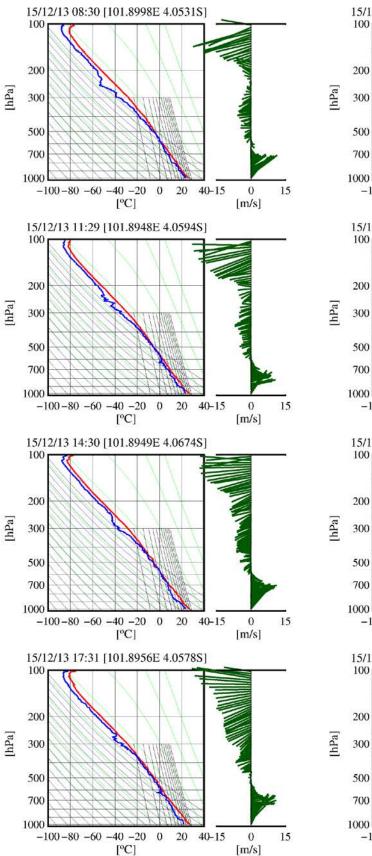



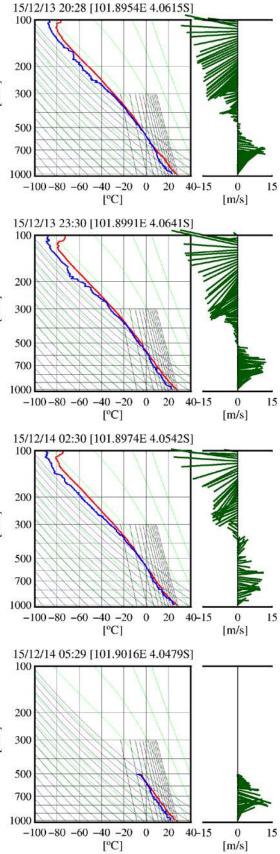



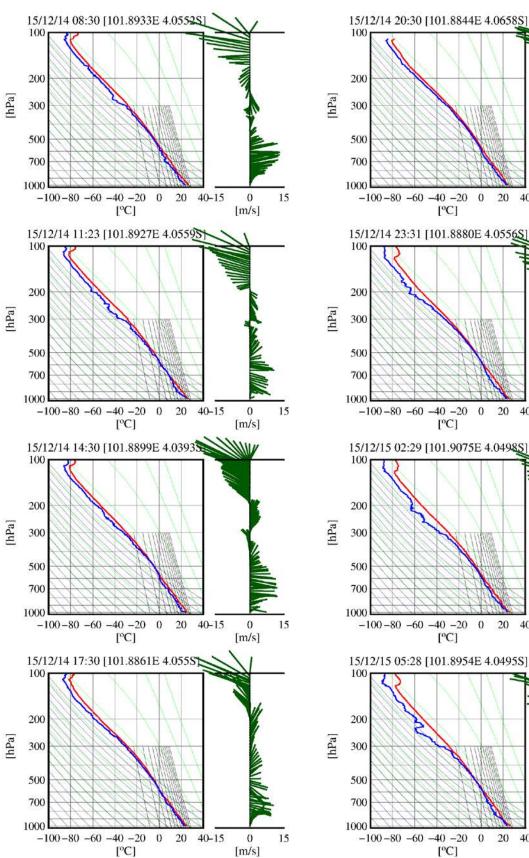



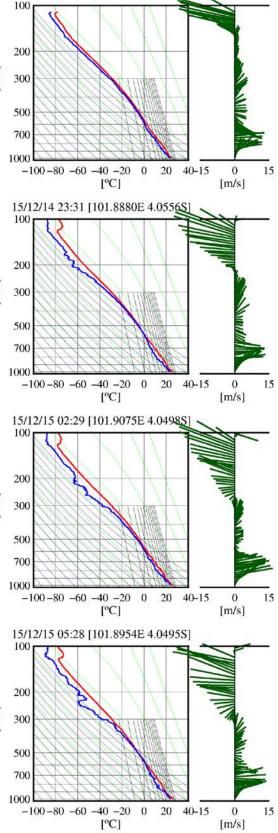



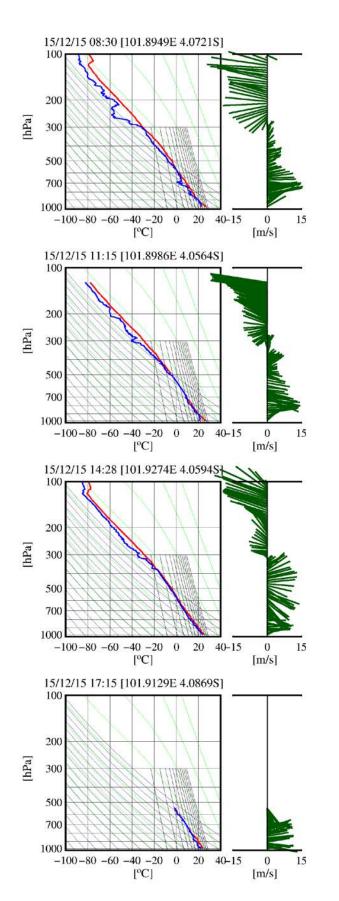


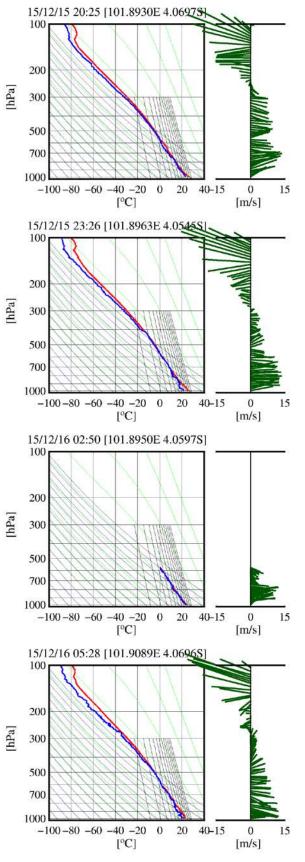



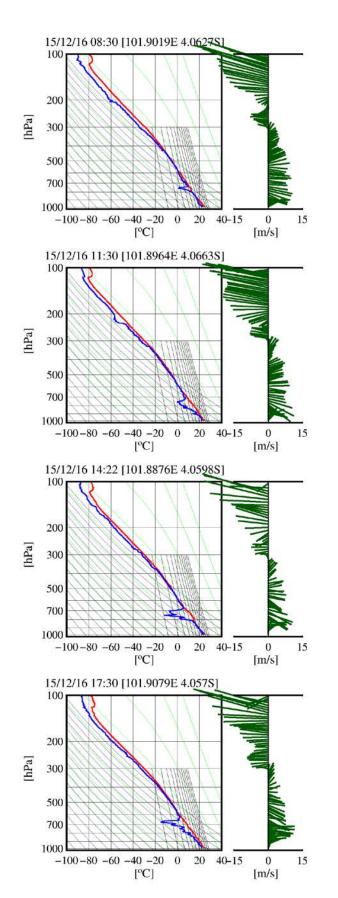



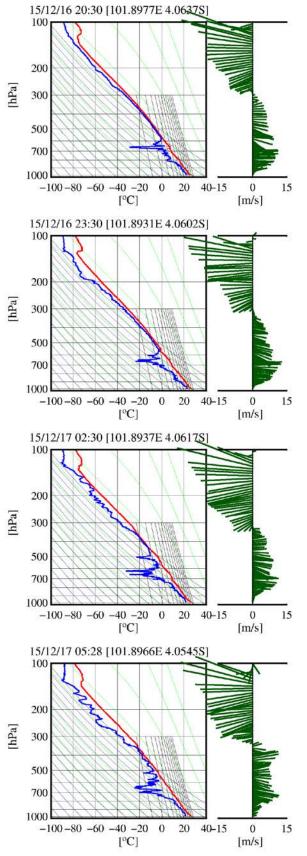



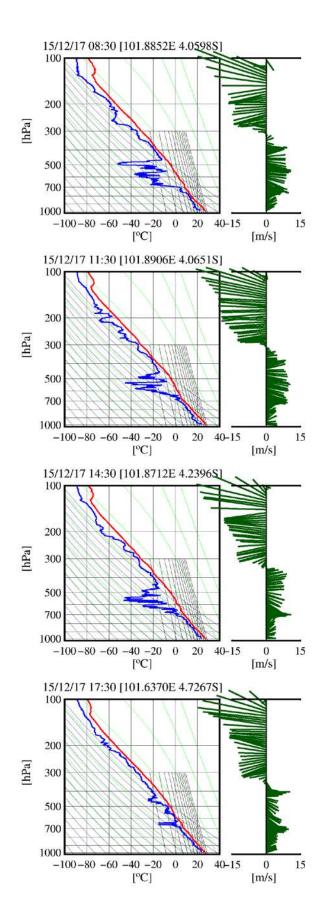



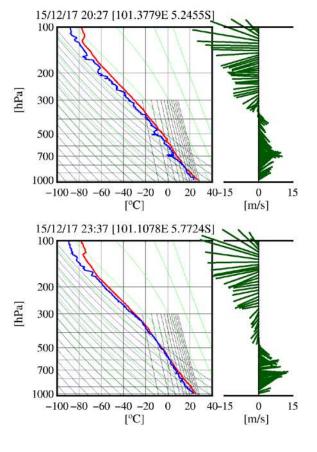



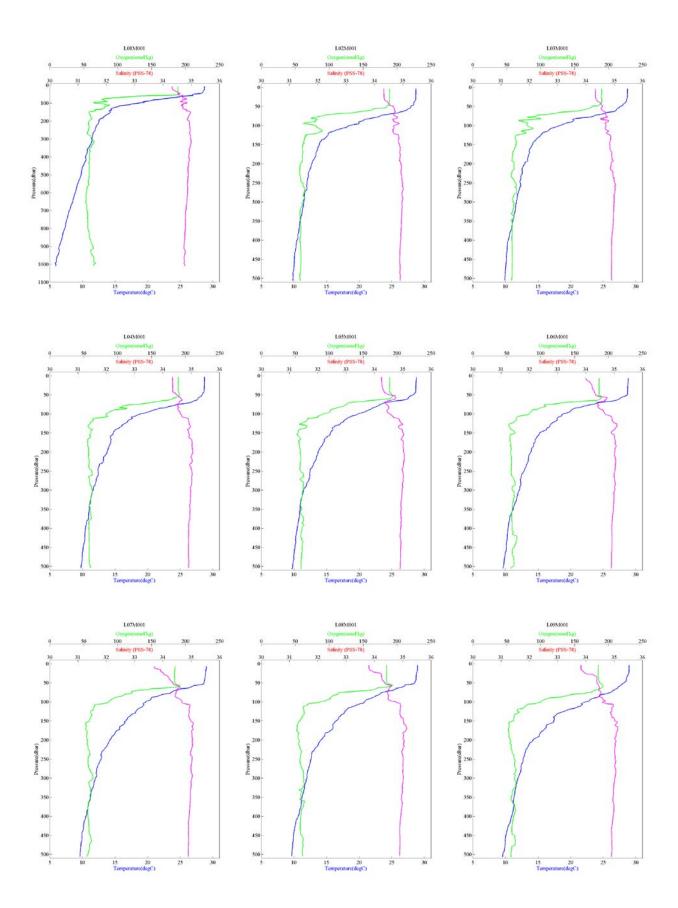



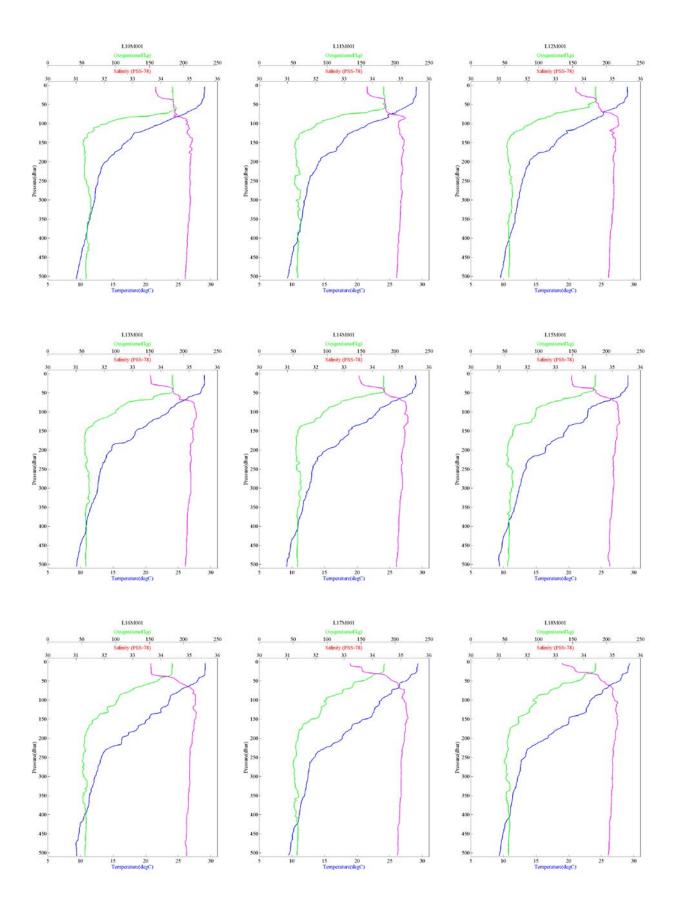



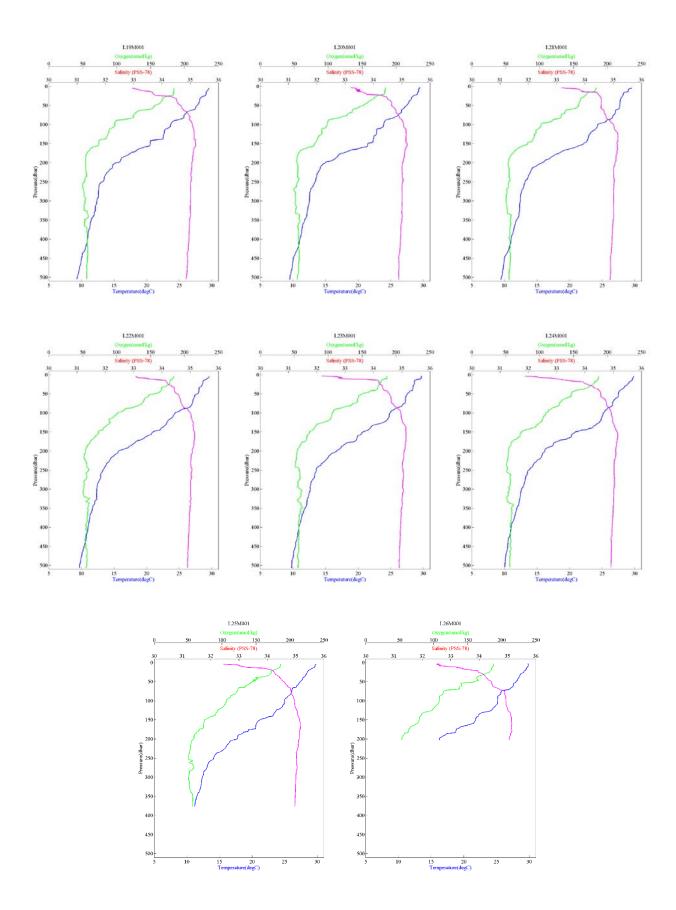


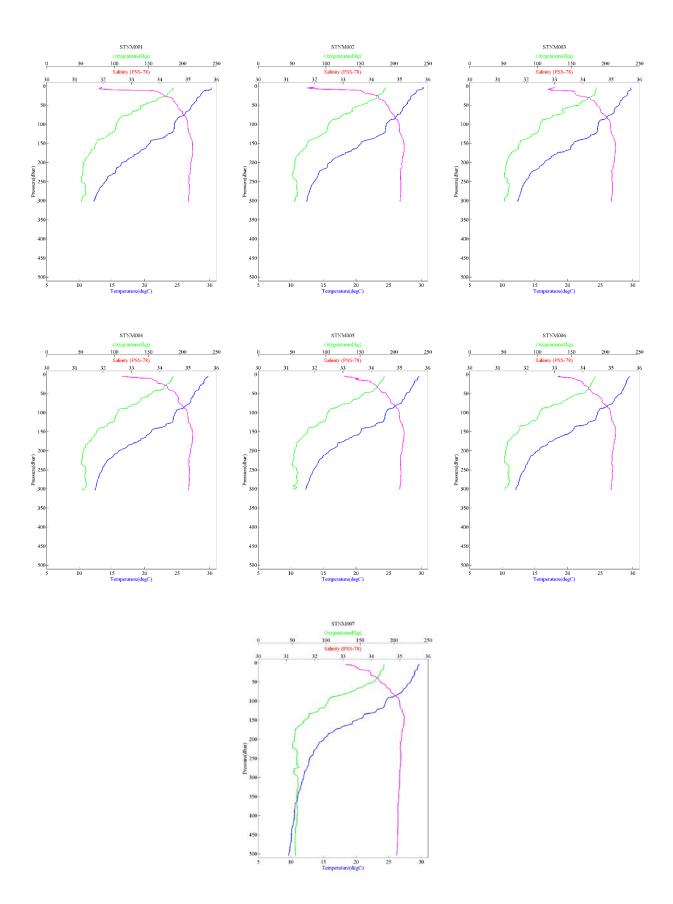


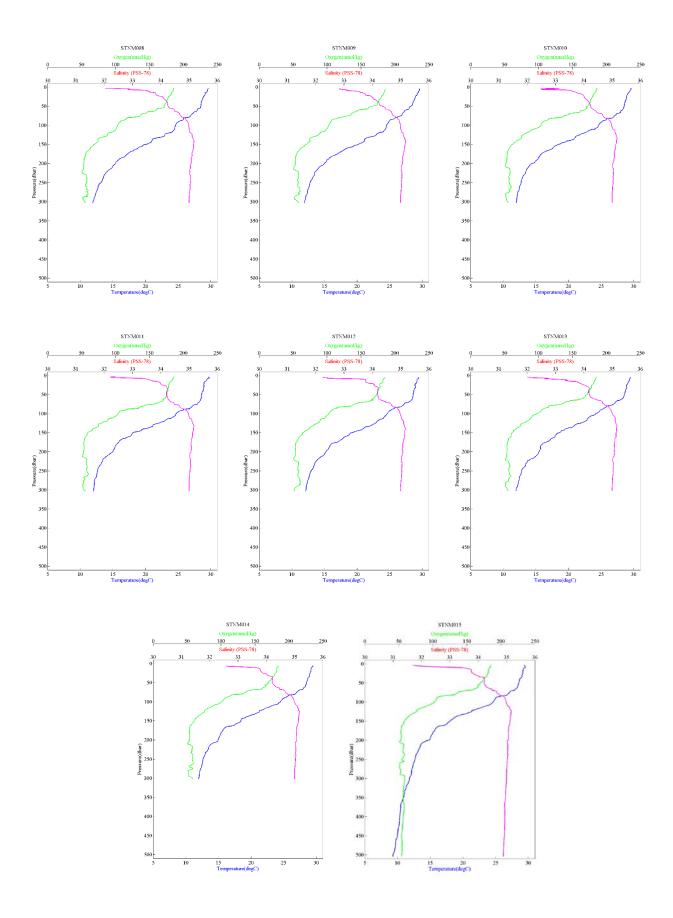




Appendix B: Oceanic profiles by the CTDO observations

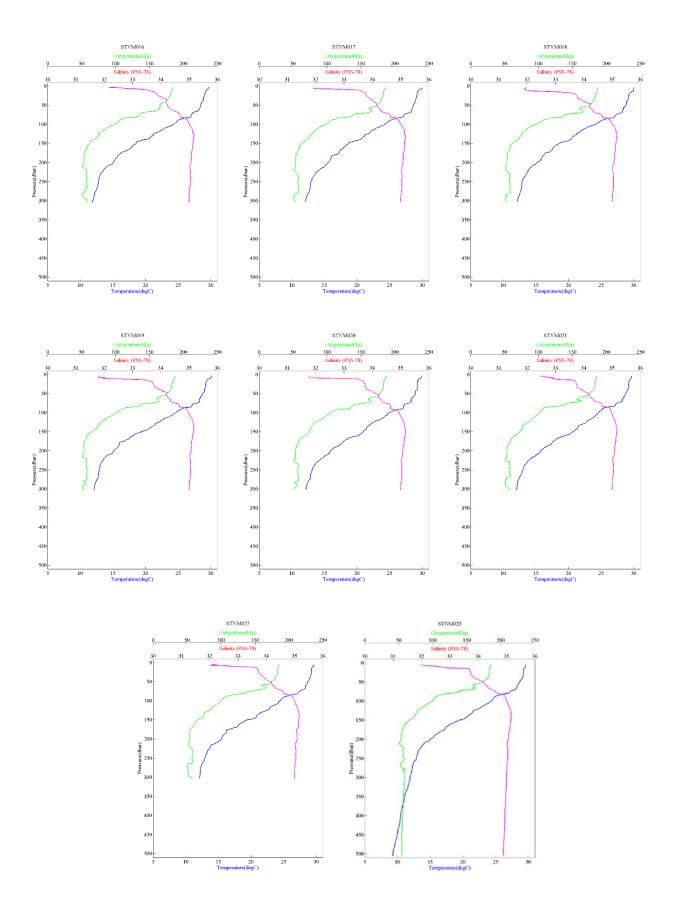



CTD profile (L01M001, L02M001, L03M001, L04M001, L05M001, L06M001, L07M001, L08M001 and L09M001)

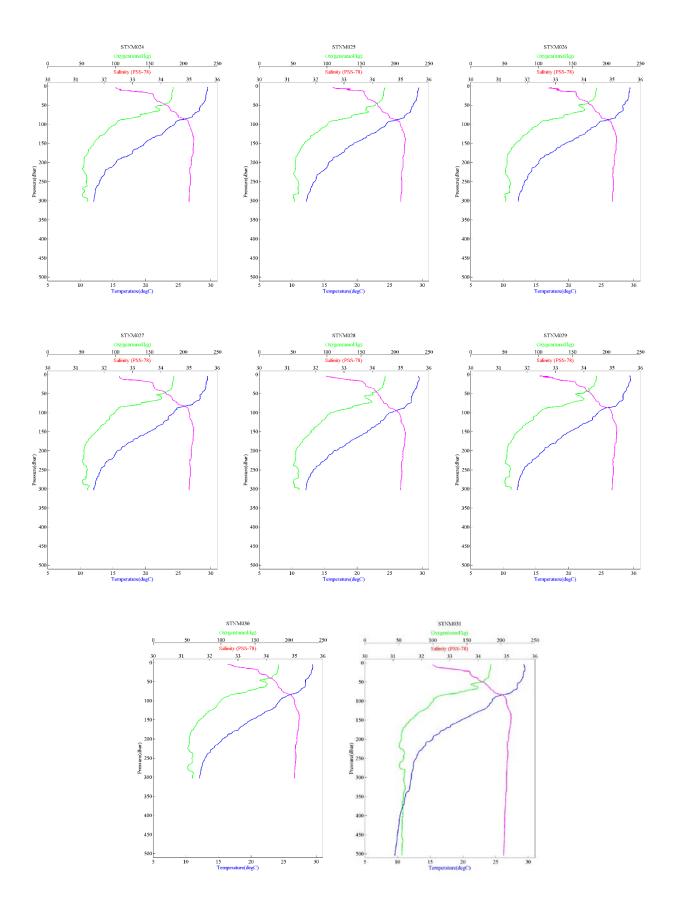



CTD profile (L10M001, L11M001, L12M001, L13M001, L14M001, L15M001, L16M001, L17M001 and L18M001)

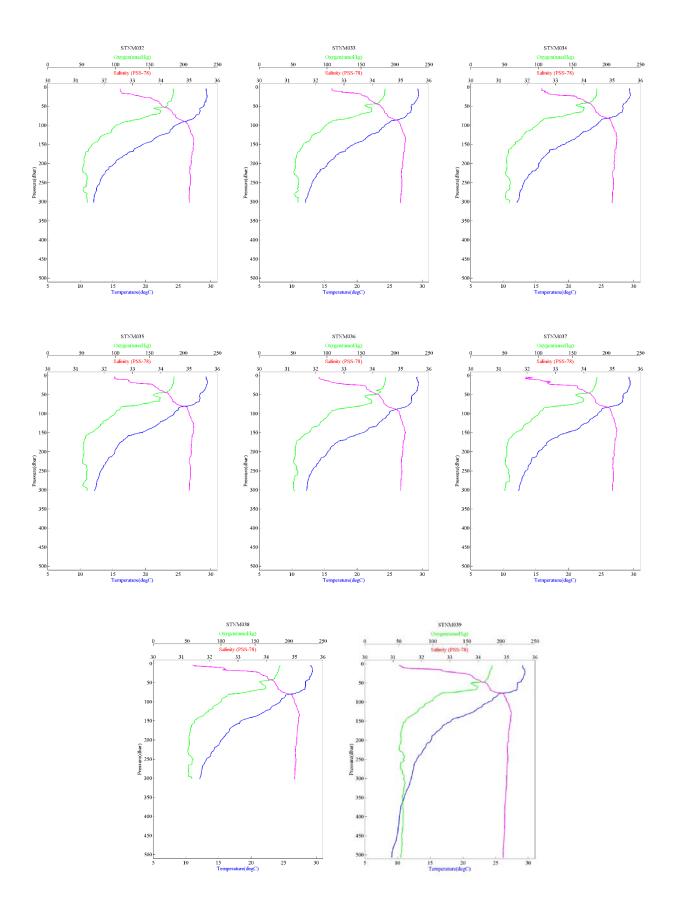



CTD profile (L19M001, L20M001, L21M001, L22M001, L23M001, L24M001, L25M001 and L26M001)

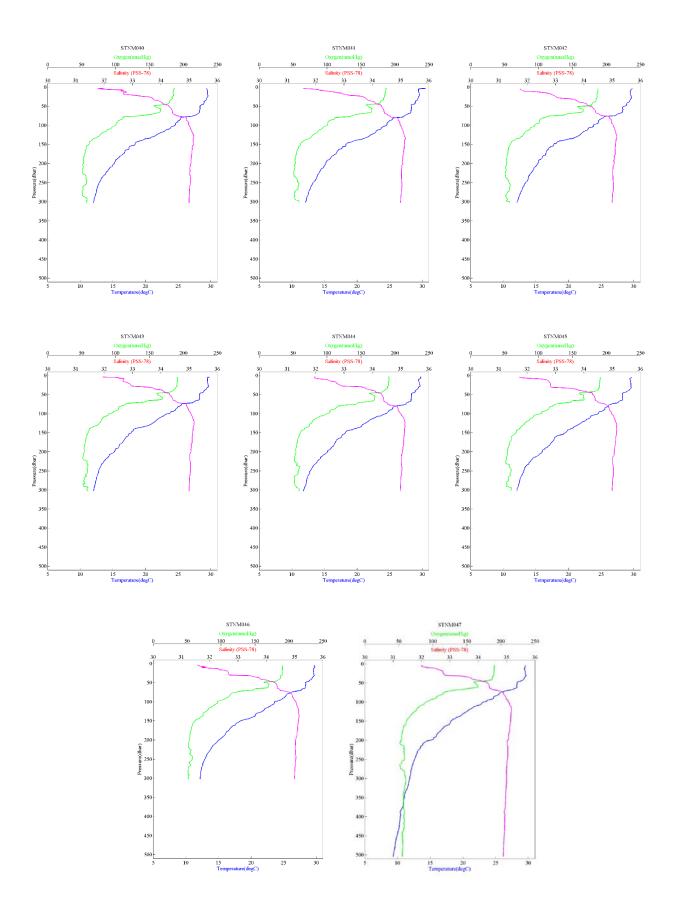



CTD profile (Fixed Point 23 Nov. 2015)

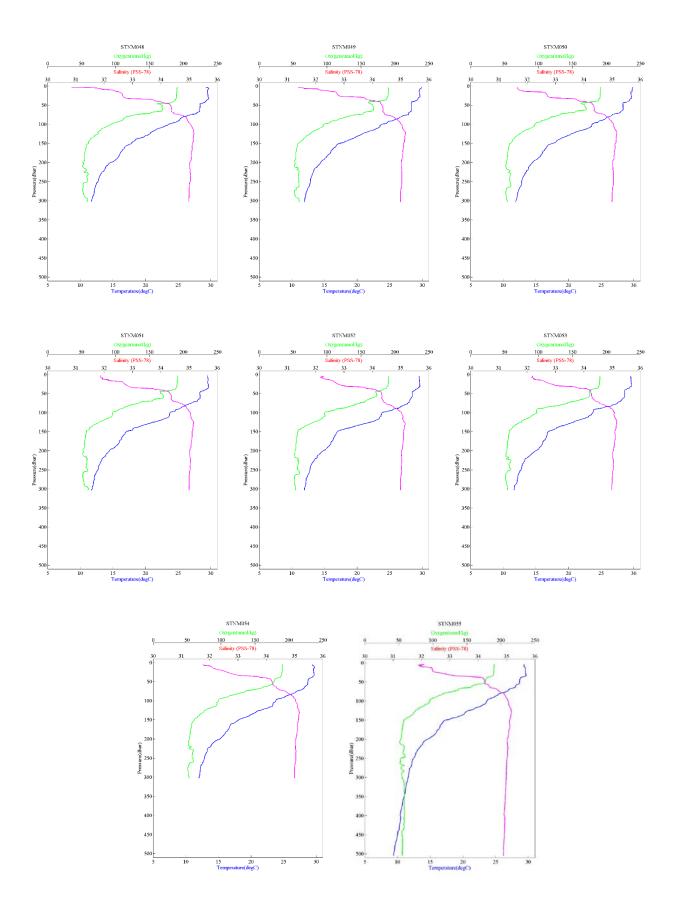



CTD profile (Fixed Point 24 Nov. 2015)

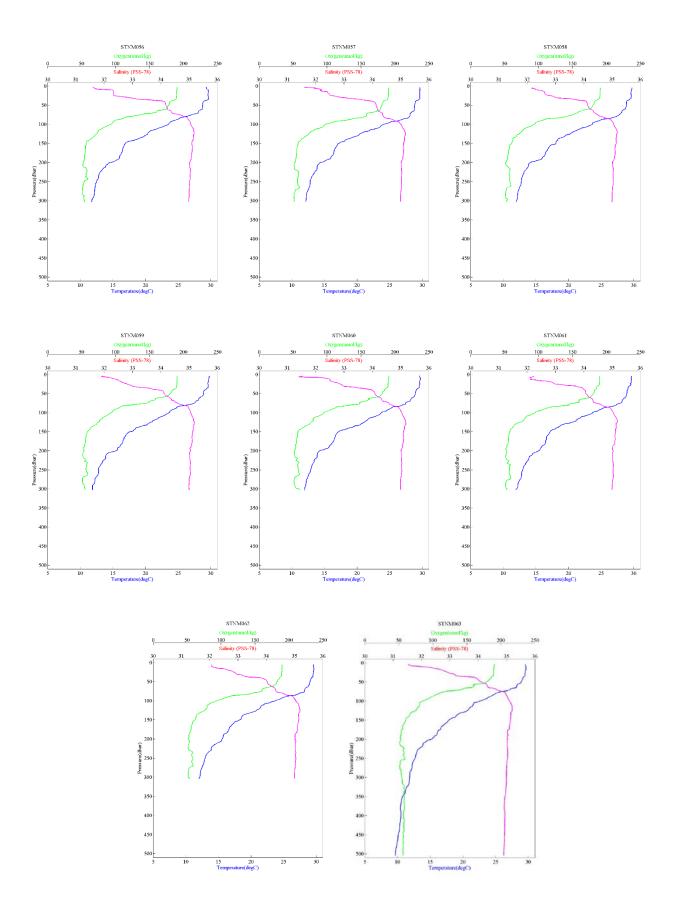



CTD profile (Fixed Point 25 Nov. 2015)

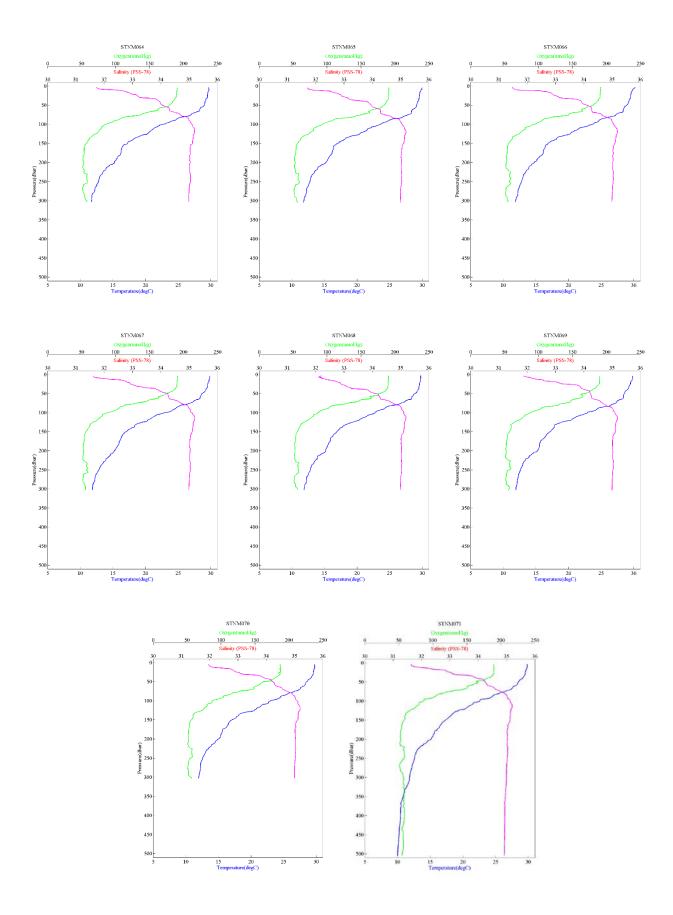



CTD profile (Fixed Point 26 Nov. 2015)

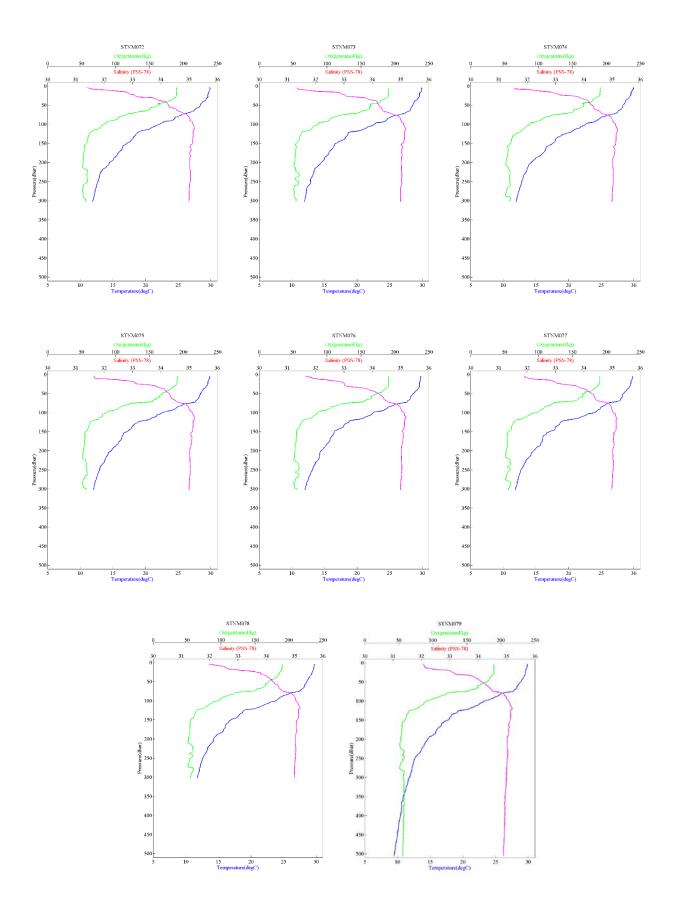



CTD profile (Fixed Point 27 Nov. 2015)

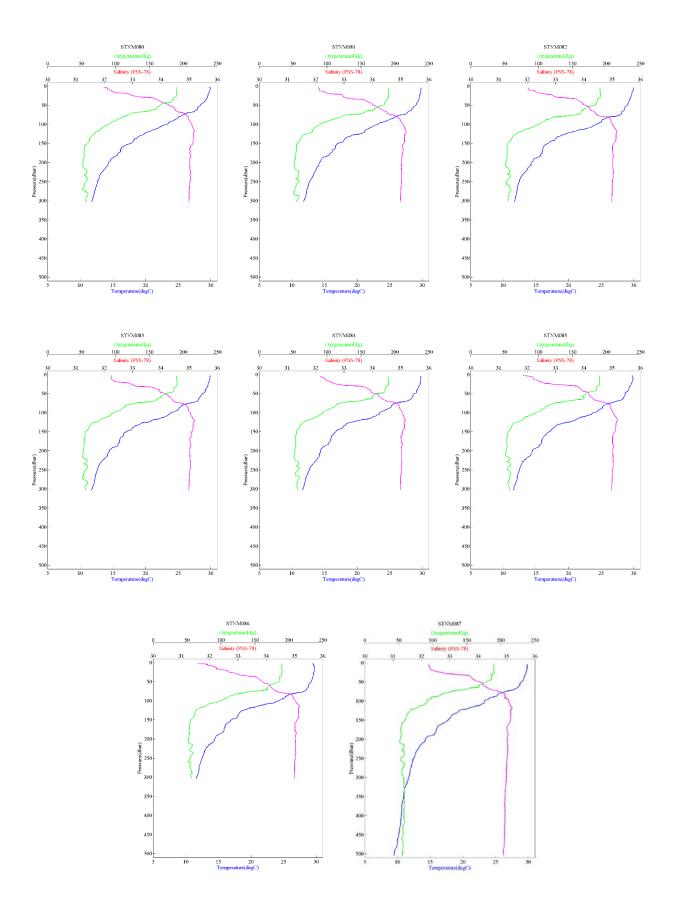



CTD profile (Fixed Point 28 Nov. 2015)

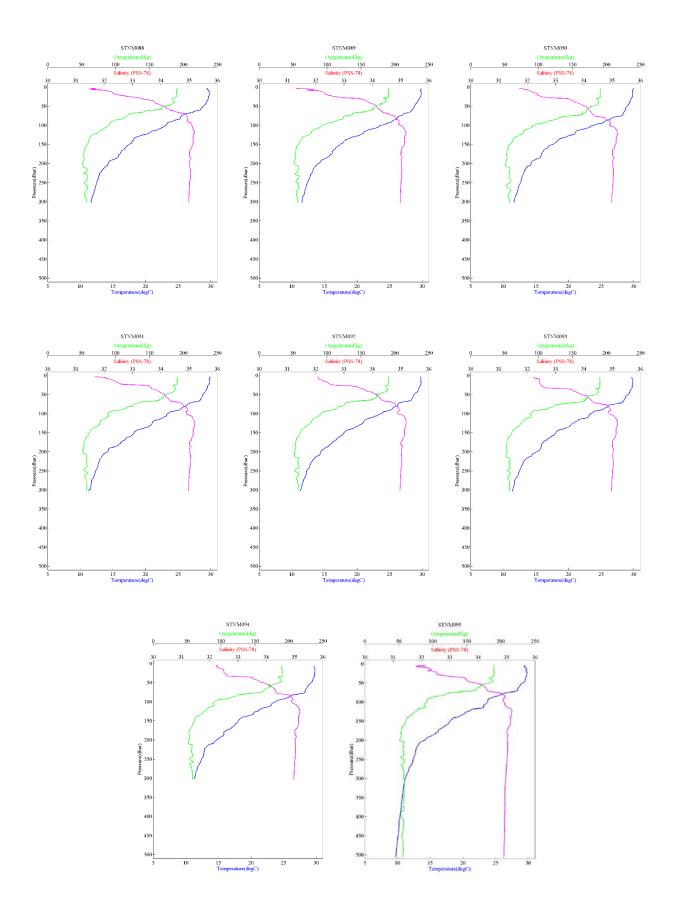



CTD profile (Fixed Point 29 Nov. 2015)

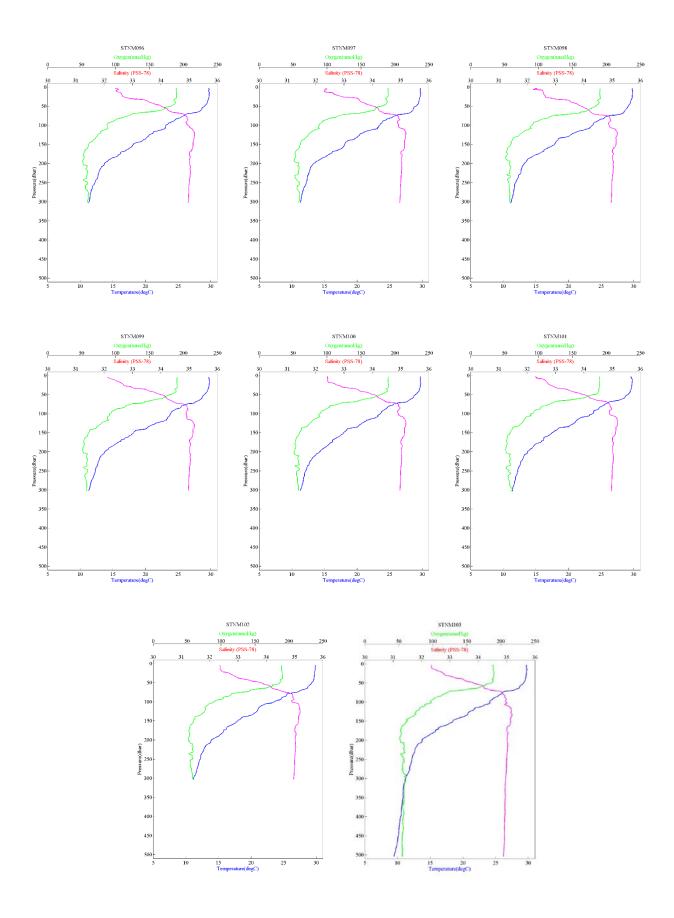



CTD profile (Fixed Point 30 Nov. 2015)

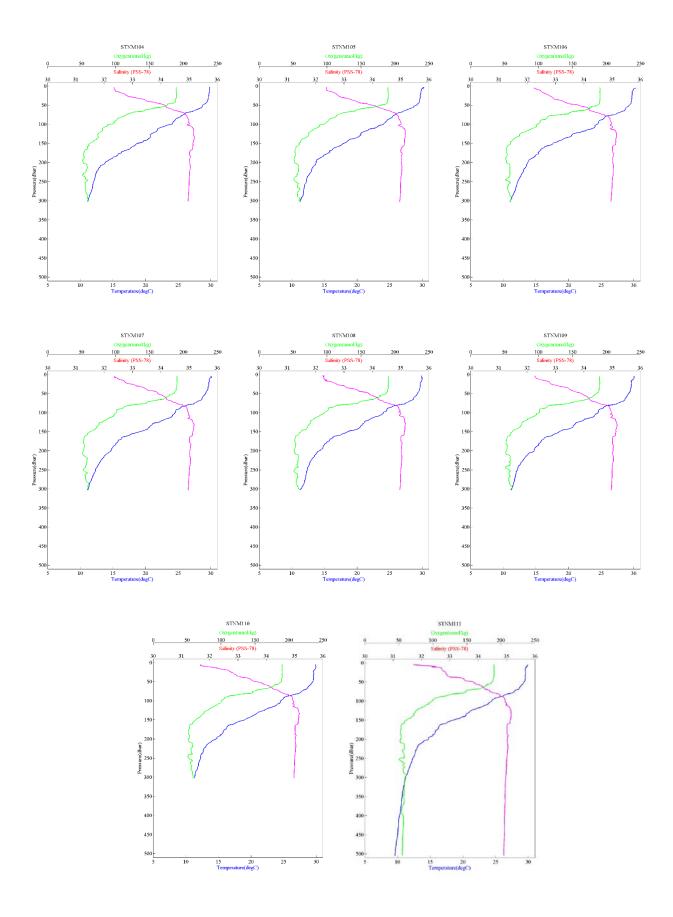



CTD profile (Fixed Point 1 Dec. 2015)

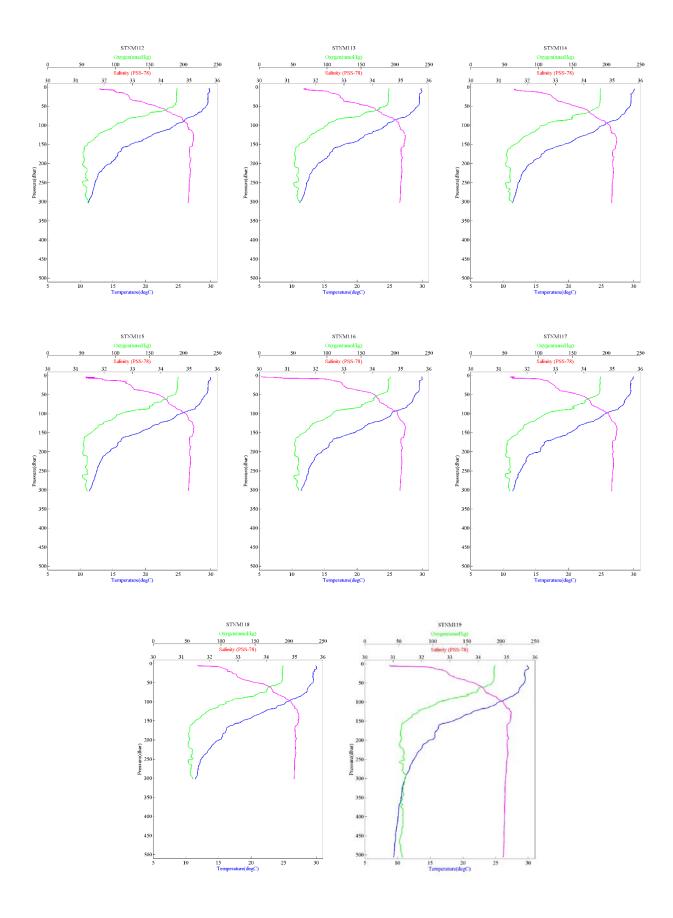



CTD profile (Fixed Point 2 Dec. 2015)

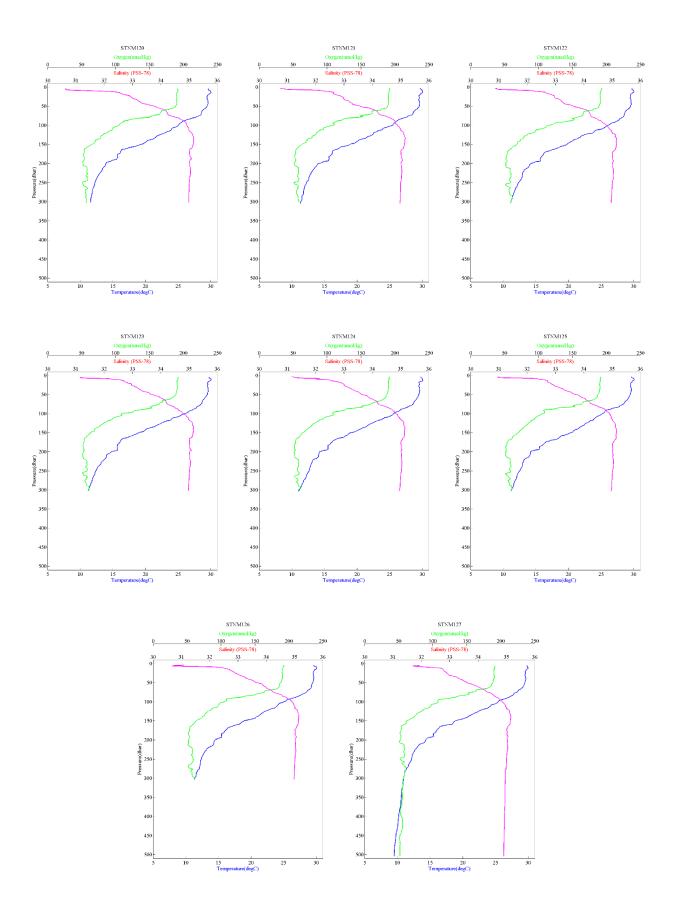



CTD profile (Fixed Point 3 Dec. 2015)

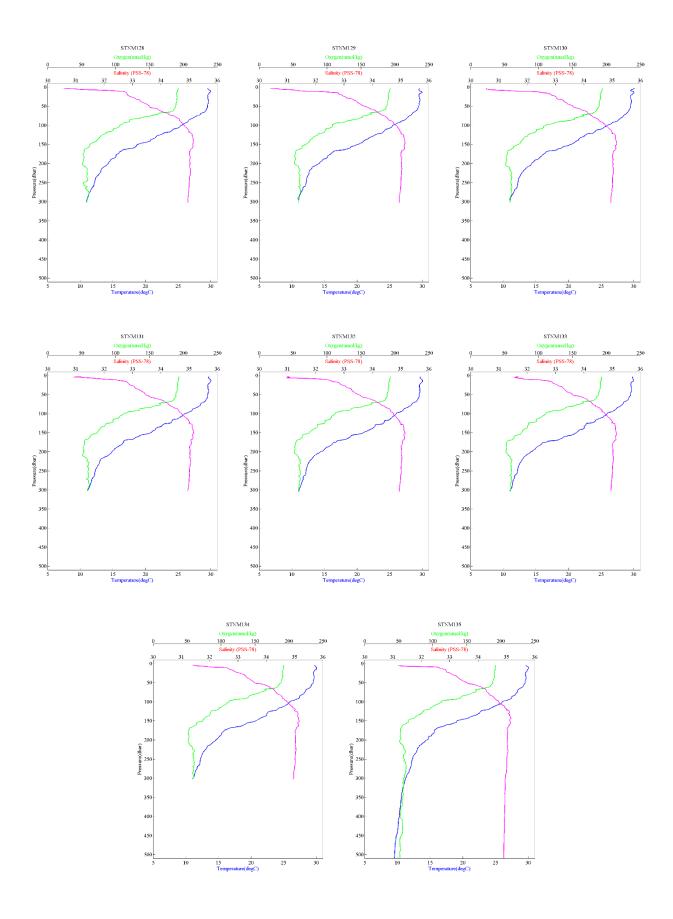



CTD profile (Fixed Point 4 Dec. 2015)

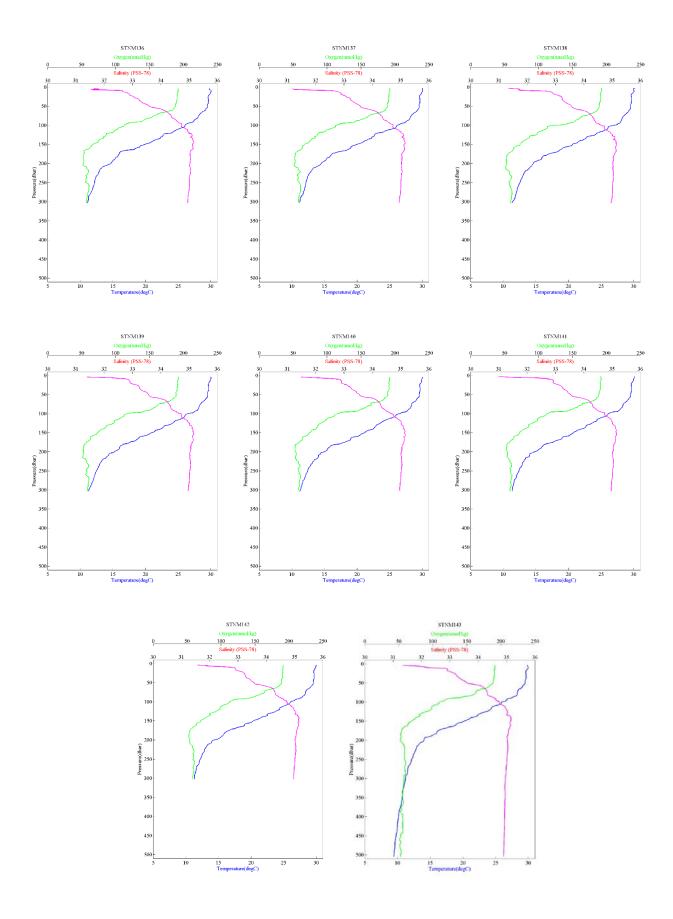



CTD profile (Fixed Point 5 Dec. 2015)

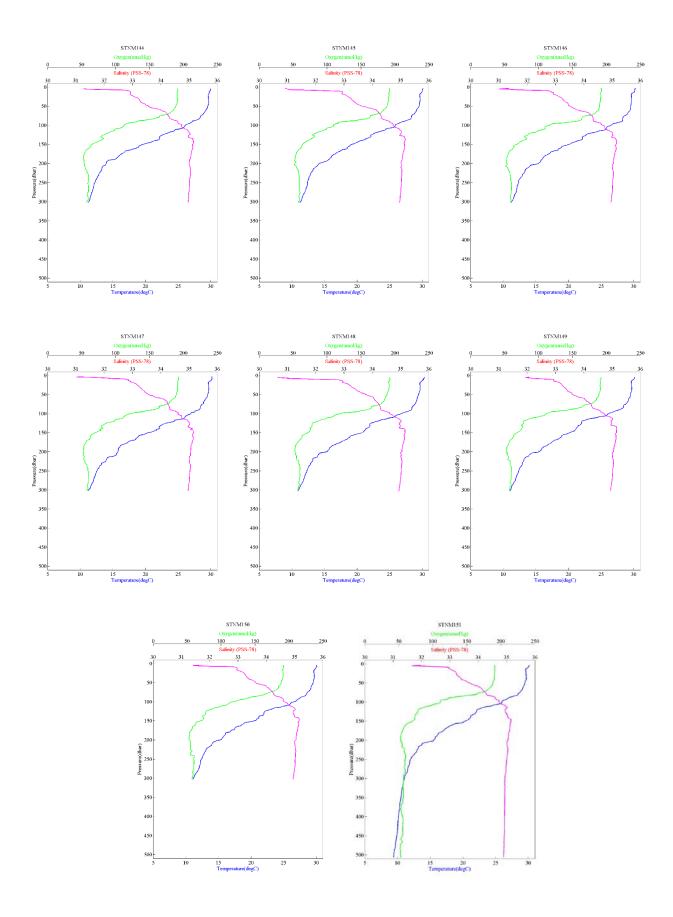



CTD profile (Fixed Point 6 Dec. 2015)

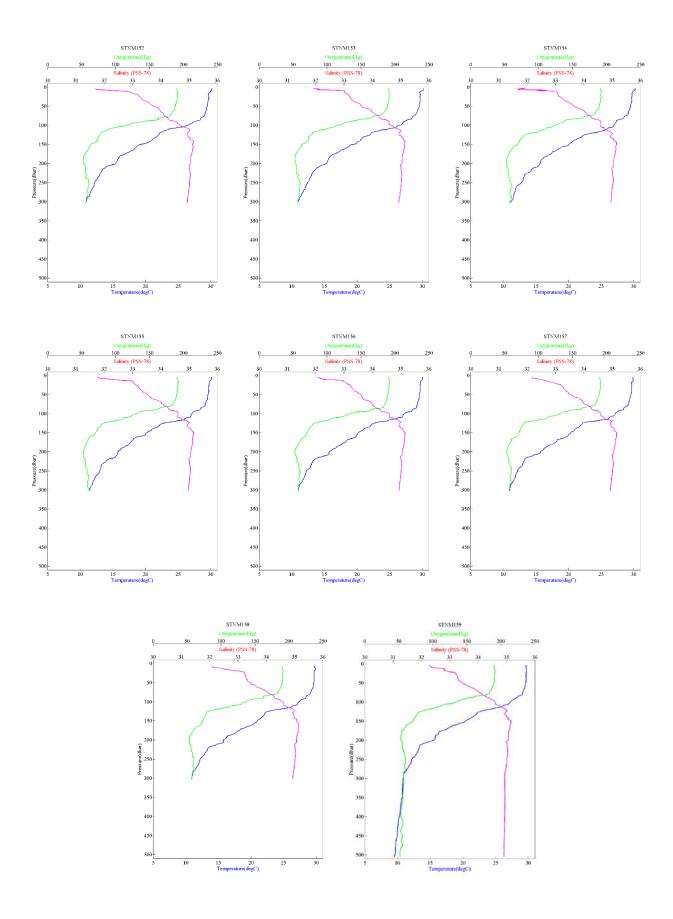



CTD profile (Fixed Point 7 Dec. 2015)

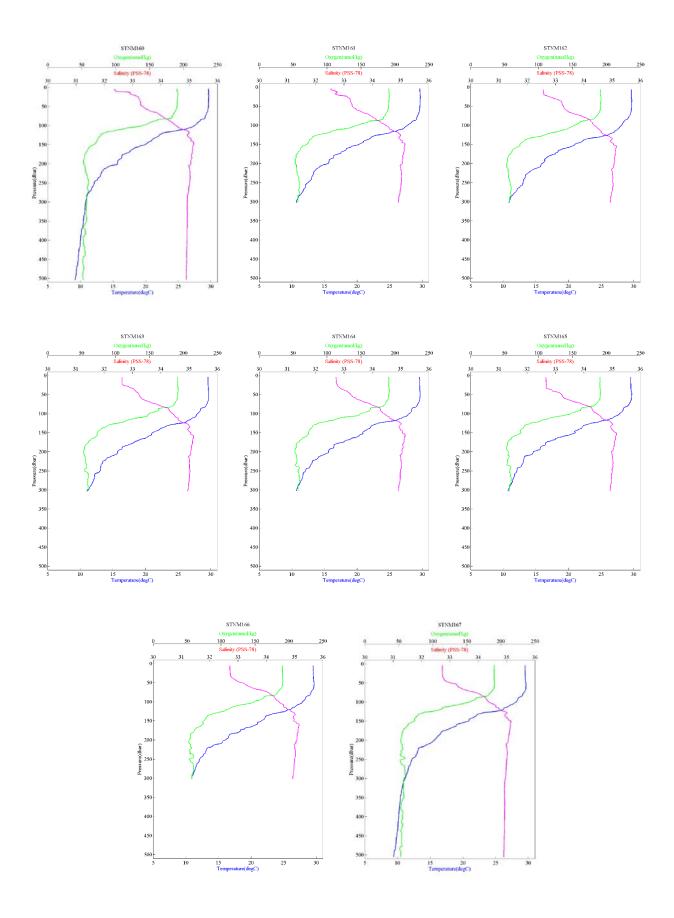



CTD profile (Fixed Point 8 Dec. 2015)

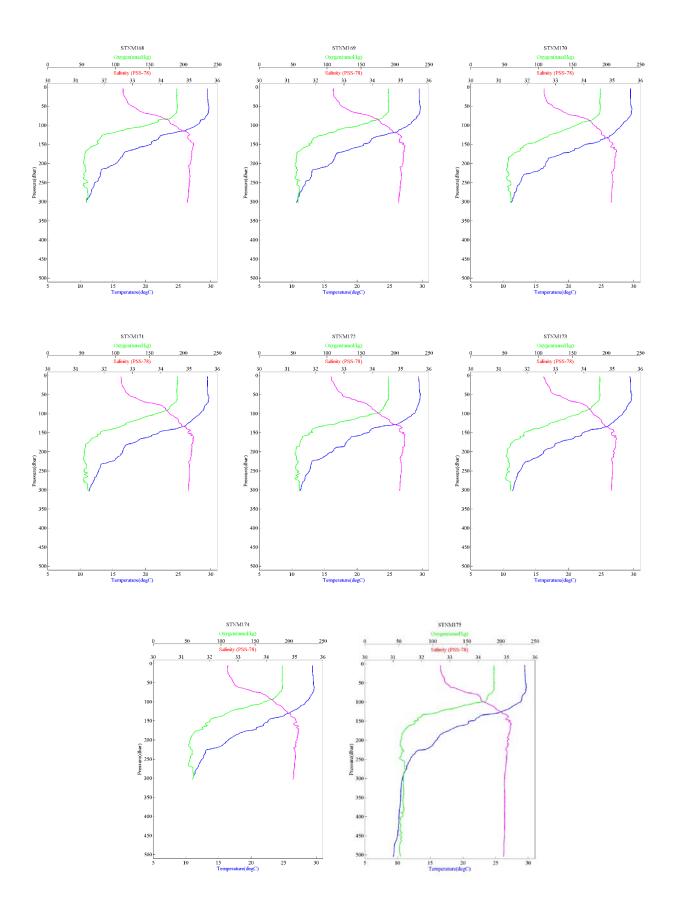



CTD profile (Fixed Point 9 Dec. 2015)

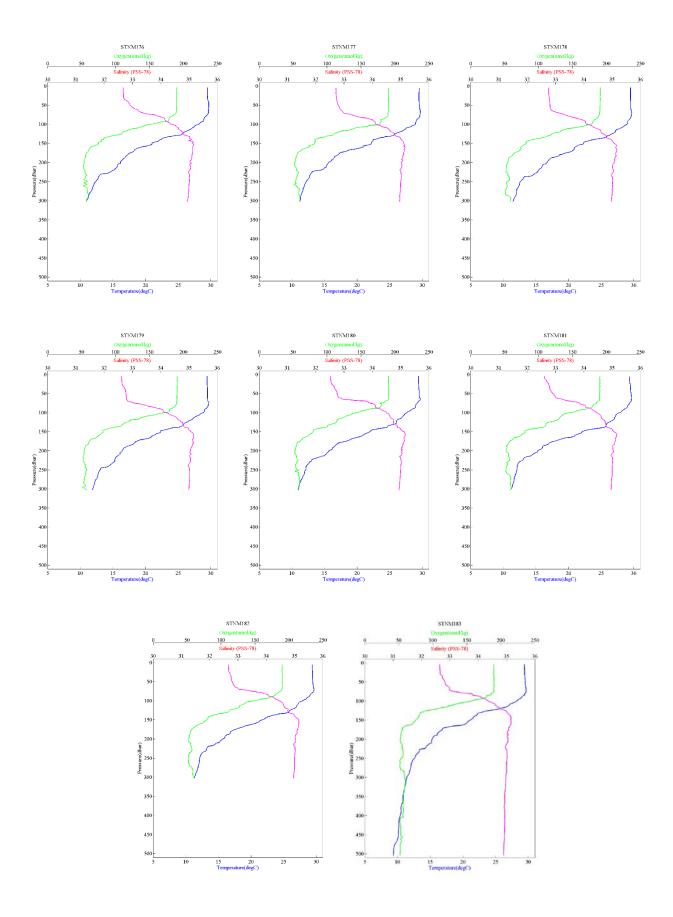



CTD profile (Fixed Point 10 Dec. 2015)

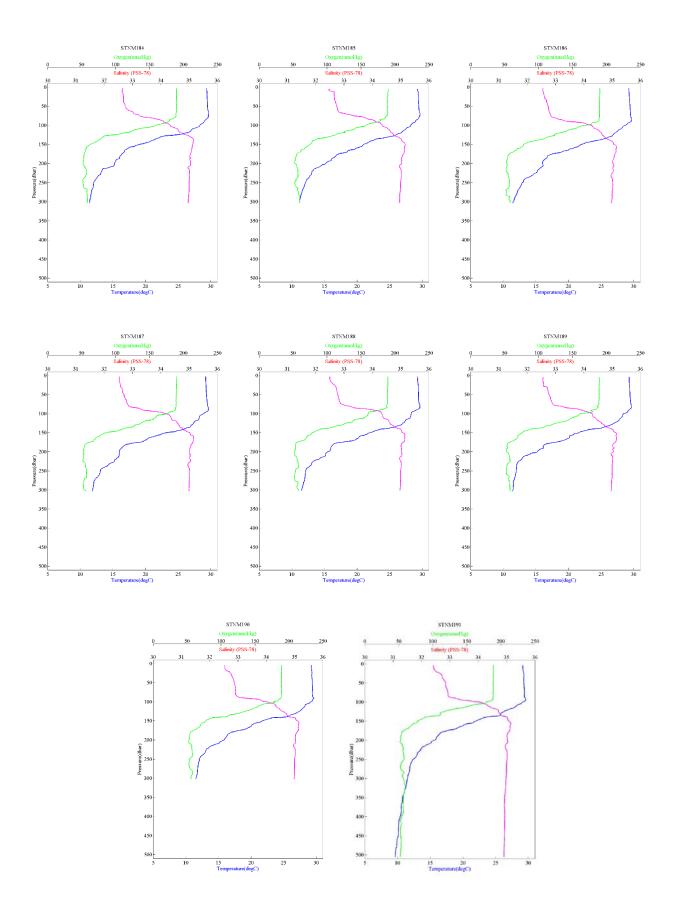



CTD profile (Fixed Point 11 Dec. 2015)

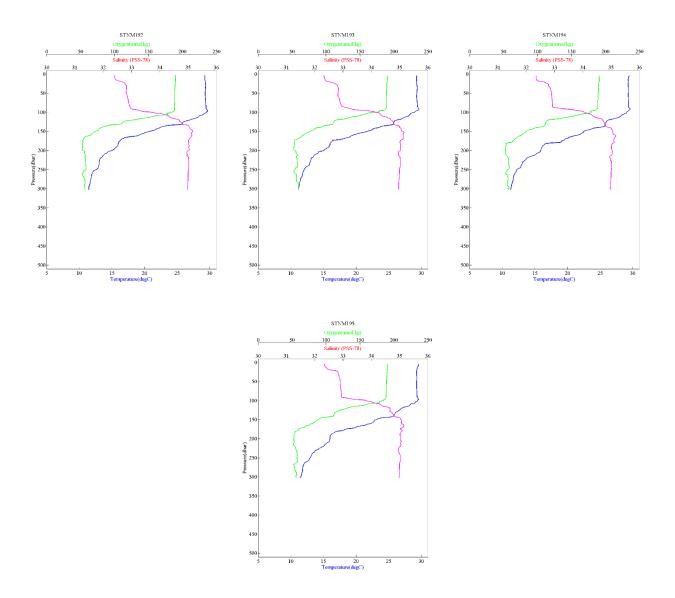



CTD profile (Fixed Point 12 Dec. 2015)




CTD profile (Fixed Point 13 Dec. 2015)




CTD profile (Fixed Point 14 Dec. 2015)



CTD profile (Fixed Point 15 Dec. 2015)



CTD profile (Fixed Point 16 Dec. 2015)



CTD profile (Fixed Point 17 Dec. 2015)