R/V Mirai Cruise Report MR99-K06

October 13 - November 20, 1999 Tropical Ocean Climate Study (TOCS)

> Edited by Kentaro Ando

Japan Marine Science and Technology Center (JAMSTEC)

MR99-KO6 TRITON/TOCS CRUISE Oct. 13-Nov. 20, 1999 Sekinehama-Hachinohe-Guam-Guam

Good work!

Contents

- 1. Introduction
- 2. Summary
- 3. Cruise Track
- 4. Cruise Log
- 5. Participants List
- 6. General Observation
- 6.1 Meteorological measurement
- 6.1.1. Surface meteorological observation
- 6.1.2. Atmospheric sounding
- 6.1.3. Ceilometer
- 6.2. CTD/XCTD
- 6.2.1. CTD
- 6.2.2. XCTD
- 6.2.3. Salinity measurements of sampled seawater for validation of CTD salinity data
- 6.3. Surface thermosalinograph (TSG) measurement
- 6.3.1. TSG
- 6.3.2. Salinity measurement for validation of TSG salinity
- 6.4. Shipboard ADCP
- 6.5. Underway geophysics
- 6.5.1. Sea surface gravity
- 6.5.2. Surface three component magnetometer
- 6.5.3. Multi-narrow beam echo sounding system
- 7. Special Observation
- 7.1. TRITON mooring
- 7.1.1. TRITON mooring operation
- 7.1.2. Inter-comparison between shipboard CTD and TRITON transmitted data
- 7.1.3. Inter-comparison of surface meteorological data and current data between R/V Mirai
- and TRITON data
- 7.2. Doppler radar observation
- 7.3. Atmospheric and oceanic CO2 measurement
- 7.4. Lidar observation
- 7.5. ADCP subsurface mooring
- 7.6. TAO/ATLAS mooring

1. Introduction

The purpose of this cruise is to observe physical oceanographic conditions in the western tropical Pacific Ocean to achieve a better understanding of air-sea interaction affecting on the ENSO (El Nino/Southern Oscillation) phenomena and its related climate change. The surface layer in the western tropical Pacific Ocean is characterized by high sea surface temperature which plays major role in driving global atmospheric circulation. Especially, El Nino occurs when warm water migrates eastward, and causes short term climate changes in the world dramatically. For example, the western Pacific area has very few rainfall when the "El Nino" occurred, as in 1997-98. This atmospheric and oceanic systems is so complicated, and we still do not have enough knowledge about it. This climate system have the long time scale. To investigate the mechanism, we need precise and detailed data for the long period continuously. Therefore, ocean and atmosphere observing mooring array is effective to obtain such data set. The major mission of this cruise is to deploy TRITON buoys developed at JAMSTEC for the long term measurements of ocean and atmosphere in the western tropical Pacific Ocean. We have successfully deployed during this R/V Mirai cruise, although we must have recovered one TRITON buoy because of unexpected. It is the first step to establish long-term measurements for the TRITON program.

The other purposes of this cruise are,

1)CO2 measurements in the boundary layer by Meteorological Research Institute of Japan,

2)Lidar back scatter measurements of lower atmosphere by National Institute of Environment of Japan, Tohoku Institute of Technology and CRI and

3)Cloud and rainfall measurement by Doppler radar for comparison with TRMM satellite by Meteorological Institute of Japan.

These measurements are also made successfully during this cruise.

2. Summary

2.1 Ship

R/V Mirai Captain Takaaki Hashimoto Total 35 crew members

2.2 Cruise code

MR99-K06

2.3 Project name

Tropical Ocean Climate Study

2.4 Undertaking institution

Japan Marine Science and Technology Center (JAMSTEC) 2-15, Natsushima, Yokosuka, 237, Japan

2.5 Chief scientist

Kentaro Ando (JAMSTEC)

2.6 Period

October 13, 1999 - November 20, 1999

2.7 Ports of call

Sekinehama, Japan Hachinohe, Japan Guam, USA Guam, USA (October 13, 1999) (October 14, 1999) (October 19-20, 1999) (November 19, 1999)

2.8 Research participants

Total 21 scientists and technical stuff participated from 8 different institutions, universities

and companies.

2.9 Observation summary	
TRITON buoy deployment:	6 sites
TRITON buoy recovery:	2 sites
TRITON buoy repair:	1 sites
ADCP subsurface buoy deployn	nent:
	1 site
ADCP subsurface buoy recover	y: 1site
CTD(Salinity, Temperature, De	oth):
	20 casts down to 1000m
XCTD (Salinity, Temperature, I	Depth):
	18 times down to 1000m
Surface meteorology:	continuous
Atmospheric sounding:	?? times
ADCP measurements:	continuous
Doppler radar measurements:	continuous
Surface temperature, salinity me	easurements by intake method: continuous
Other specially designed observ	ations have been carried out successfully.

2.10 Observed oceanic and atmospheric conditions

This MR99-K06 cruise has been carried out under the still alive La Nina stage after the recovery from historical 1997-1998 El Nino event. The sea surface temperature (SST) along the equator (138E-156E) showed that higher temperature than 29 degree-C was found west of 147E. On the equator of 156E, the SST was lower than 29 and the temperature and salinity vertical section along 156E showed the strong upwelling and mixing in the mixed layer near the equator. The westward current in the surface layer is still strong (around 1.5 knot). The sea surface salinity (SSS) showed low salinity west of about 142E and higher to the east. This shows the fresh water pool is just confined in the far west region, and the atmospheric convection will be developed in the western region near Indonesia. Along the 156E line, the boundary layer atmosphere was rather dry, and the relative humidity sensor installed on the TRITON buoy often showed lower than usual relative humidity. The radio sonde data also shows the dry air in the lower layer. Under these conditions, the atmospheric convection would be suppressed, then SSS would be higher than usual.

3 Cruise Track

- (1) Cruise Track (Fig 3-1)
- (2) TRITON buoy site (Fig 3-2)
- (3) CTD/XCTD casting site (Fig 3-3)
- (4) Radiosonde launching site (Fig 3-4)

Fig 3-1

Fig 3-2

3-4

4. Cruise Log Oct. 13 (Wed.) 16:00 Departure from Sekine-hama (Japan) Oct. 14 (Th.) 08:00 Arrival at Hachinohe (Japan) Immigration for going abroad 14:00 Departure from Hachinohe 14:30-15:00 Boat drill 15:00-15:50 Instruction for safety life on Mirai 16:45-17:00 Konpira-san 18:00-All continuous observations start Oct. 15 (Fri.) 08:30-09:10 Meeting for this cruise 09:00-16:00 TRITON buoy preparation on deck (in Buoy House No.1) Oct. 16 (Sat.) 09:00-12:30 Test for the large CTD/Rosette system (24positions with 30 liters Niskin bottle) 13:30-13:45 First test for the small CTD/Carousel system (12 positions with 12 liters Niskin bottle) Failed due to disconnection of signal line 15:30-15:50 Second test for the small CTD/Carousel system (succeeded) 16:20-16:40 Test for the large CTD/Carousel system (24 positions with 30 liters Niskin Bottle) Oct. 17 (Sun.) 09:00-Preparation for this cruise Oct. 18 (Mon.) 09:00-Preparation for this cruise 22:00 Ship mean time adjustment (SMT=GMT+10 (JST+1)) Oct 19 (Tue.) 10:00 Arrival at Guam 11:30-12:00 Loading PMEL/NOAA gears Oct 20 (Wed.) 16:00 Departure from Guam 19:00-Doppler radar observation start Oct 21 (Th.) 09:30-10:30 Test for Sonde observation (Sonde-1) Oct. 22 (Fri.) 08:00-08:40 CTD01 (8N, 137E)

09:30 Sonde-2 (7-56.86N, 136-49.50E) 10:30-Seabeam bottom survey around 8N137E for future TRITON deployment Sonde-3 (7-21.25N, 136-57.53E) 21:30 23:03-23:41 CTD02 (7N, 137E) Oct. 23 (Sat.) 03:30 Sonde-4 (6-03.36N, 137-01.84E) 03:55-04:45 CTD03 (6N, 137E) 09:02-09:40 CTD04 (5N, 137E) 09:23 Sonde-5 (4-58.00N, 137-05.98E) 10:00-18:18 Seabeam bottom survey around 5N137E Sonde-6 (4-49.66N, 137-25.26E) 15:30 21:20 Sonde-7 (3-59.71N, 137-19.63E) 21:30 CTD05 (4N, 137-20E) Oct. 24 (Sun.) 04:05 Sonde-8 (2-59.63N, 137-34.60E) 07:57-08:35 CTD06 (3N, 137-33E) Sonde-9 (2-47.70N, 137-35.18E) 09:31 12:00-23:00 Seabeam bottom survey around 2N138E Oct. 25 (Mon.) 08:47-13:03 Deployment of TRITON buoy at 2N138E 09:30 Sonde-10 (2-00.58N, 138-01.81E) 13:36-14:22 CTD07 (2N, 138E) 14:22-18:10 Met. Sensor comparison Oct. 26 (Tue.) 08:53-09:29 CTD08 (1N, 138E) Sonde-11 (1-00.03N, 137-59.79E) 09:31 12:54-00:05 Seabeam bottom survey around 0N138E Oct. 27 (Wed.) 08:33-12:14 Deployment of TRITON buoy at 0N138E 09:33 Sonde-12 (0-03.88N, 137-59.75E) 12:31 Sonde-13 (0-04.58N, 138-02.26E) 13:48-14:33 CTD09 (0N, 138E) 13:50-18:15 Met. Sensor comparison 15:30 Sonde-14 (0-05.52N, 138-00.71E) 18:31 Sonde-15 (0-05.10N, 138-00.46E) Sonde-16 (0-00.24S, 138-40.64E) 21:32 23:00 XCTD01(0, 139E)

Oct. 28 (Th.)

00:31	Sonde-17 (0-00.26N, 139-20.15E)
03:22	Sonde-18 (0-00.18N, 139-56.31E)
03:51	XCTD02 (0, 140E)
06:31	Sonde-19 (0-00.31N, 140-30.73E)
08:48	XCTD03 (0, 141E)
09:31	Sonde-20 (0-01.46S, 141-06.92E)
13:43	XCTD04 (0, 142E)
15:30	Sonde-21 (0-00.57N, 142-21.62E)
18:36	XCTD05 (0, 143E)
23:07	XCTD06 (0, 144E)
Oct. 29 (Fri.)	
03:34	XCTD07 (0, 145E)
08:02	XCTD08 (0, 146E)
09:31	Sonde-22 (0-00.89S, 146-20.73E)
12:00-12:14	Sending Enable and Release commands to the 0N147E ADCP
	No response
14:20-17:52	Deployment of TRITON buoy at 0N147E
18:30-23:15	Met sensor comparison
18:34-19:18	CTD10 (0, 147E)
Oct. 30 (Sat.)	
09:00-12:45	Met sensor comparison
09:31	Sonde23 (0-03.13N, 146-50.41E)
12:10-12:45	CTD11 (0, 147E)
13:00-17:14	Recovery of TRITON buoy at 0N147E
21:08	XCTD09 (1N, 147E)
Oct. 31 (Sun.)	
00:00-07:15	Seabeam bottom survey around 2N147E
07:54-08:41	CTD12 (2N, 147E)
09:30	Sonde24 (2-11.01N, 146-58.86E)
12:29	XCTD10 (3N, 147E)
15:38	Sonde25 (3-48.76N, 147-04.46E)
16:24	XCTD11 (4N, 147E)
20:00-01:30	Seabeam bottom survey around 5N147E
21:33	Sonde26 (5-02.62N, 147-09.49E)
Nov. 1 (Mon.))
09:36	Sonde27 (4-51.67N, 146-56.26E)
06:40-14:05	Dragging system operation for the recovery of the lower part of the

5N147E TRITON buoy (one recovery buoy and two releasers)

21:31 Sonde28 (4-52.04N, 146-55.62E) Nov. 2 (Tue.) 07:56-15:05 Dragging system operation Failed to recover 09:33 Sonde29 (4-51.95N, 146-57.10E) 21:30 Sonde30 (4-59.89N, 146-55.79E) Nov. 3 (Wed.) 08:42-13:40 Deployment of TRITON buoy at 5N147E 09:31 Sonde31 (5-04.12N, 146-59.78E) 12:57-13:40 CTD13 (5N, 147E) 14:28-18:15 Met sensor comparison 21:31 Sonde32 (5-01.34N, 147-48.64E) Nov. 4 (Th.)-Nov. 5 (Fri.) cruising to 5S156E. Preparations for buoy deck work on 156E Nov. 6 (Sat.) 08:04-10:07 Recovery of ATLAS (reverse catenary) at 5S156E Sonde33 (5-00.41S, 155-58.45E) 09:36 11:00-13:13 Met sensor comparison with TRITON buoy at 5S156E 11:00-11:42 CTD14 (5S156E) 17:20 XCTD12 (4S156E) 21:06 XCTD13 (3S156E) Nov. 7 (Sun.) 01:00-03:12 Seabeam bottom survey 07:55-10:02 Recovery of ATLAS at 2S156E 10:58-11:43 CTD15 (2S156E) 11:00-14:12 Met sensor comparison 18:18 XCTD14 (1S156E) 21:48-22:27 Seabeam bottom survey around 0 156E Nov. 8 (Mon.) 07:00-09:00 Recovery of ADCP buoy at 0 156E 09:31 Sonde34 (0-00.24S, 156-02.51E) 10:53-12:06 Deployment of ADCP buoy at 0 156E 12:58-13:05 Sending commands to ATLAS releaser at 0 156E Nov. 9 (Tue.) 08:34-11:04 Deployment of TRITON buoy at 0 156E 09:31 Sonde35 (0-00.66N, 156-01.88E) 11:05-16:15 Met sensor comparison 12:57-13:39 CTD16 (0, 156E)

20:17 XCTD15 (1N, 156E)

23:30-01:20 Seabeam bottom survey around 2N156E Nov. 10 (Wed.) 08:33-11:19 Deployment of TRITON buoy at 2N156E 11:20-16:15 Met sensor comparison 12:54-13:39 CTD17 (2N, 156E) Nov. 11 (Th.) 07:57-08:35 CTD18 (2N, 156E) 08:36-11:52 Recovery of TRITON buoy at 2N156E Nov. 12 (Fri.) 08:22-10:41 Recovery of ATLAS buoy at 2N156E 14:26 XCTD16 (3N, 156E) 18:16 XCTD17 (4N, 156E) Nov. 13 (Sat.) 08:21-10:52 Recovery of ATLAS at 5N156E 08:38-15:15 Met sensor comparison 09:30 Sonde37 (4-59.26N, 156-03.42E) 13:01-13:39 Repair of TRITON buoy (replacement of wind sensor) 13:53-14:33 CTD19 (5N, 156E) 20:56 XCTD18 (6N, 156E) Nov. 14 (Sun.) 00:51 XCTD19 (7N, 156E) 04:00-06:50 Seabeam bottom survey around 8N156E 08:20-11:05 Recovery of ATLAS buoy at 8N156E 08:42-15:10 Met sensor comparison 09:31 Sonde-38 (8-05.08N, 156-01.06E) 12:56-13:41 CTD20 (8N, 156E) 14:36-14:57 CTD test cast down to 500m Nov. 15 (Mon.) 09:31 Sonde-39 (11-17.70N, 152-55.79E) 21:31 Sonde-40 (13-41.05N, 150-45.38E) Nov. 16 (Tue.) 09:30 Sonde-41 (14-33.11N, 150-04.35E) 21:33 Sonde-42 (14-29.94N, 150-00.69E) Nov. 17 (Wed.) 09:31 Sonde-43 (15-15.73N, 149-55.46E) 21:30 Sonde-44 (15-26.81N, 149-50.45E) Nov. 18 (Th.)

Nov. 19 (Fri.)

09:00 Arrival to pilot station in Guam After immigration, offloading PMEL gears

Nov. 20 (Sat.)

Disembarkation

R/V Mirai Scientists and Technical Staff during MR99-K06

Kentaro Ando	Japan Marine Science and Technology Center(JAMSTEC)
Ken Kawano Norifumi Ushijima	JAMSTEC JAMSTEC
Masaki Hanyuu	Global Ocean Development Inc. (GODI)
Satoshi Okumura	GODI
Masayuki Fujisaki	Marine Works Japan Ltd.(MWJ)
Nobuharu Komai	MWJ MWJ
Hirokatsu Uno Satoshi Ozawa	MWJ MWJ
Salosiii Ozawa Takao Matsumoto	IVI W J MANJ
Fujio Kobayashi	
Kajauka Wataki	
Ave Kete	
Aya Kalo Tadahika Shirata	
Ladaliko Shirato	MIWJ
Kentaro Shiraishi	MWJ
Haruya Adati	MWJ
Lant Saroso	Indonesia Navy
Muhammad Ilyas	Bandan Pengkajian dan Penerapan Teknologi(BPPT)
Stephen A. Smith	Pacific Marine Environmental Laboratory(PMEL) 7600
-	
Tetsuo Nakazawa	Meteorological Research Institute (MRI)
Masao Ishii	MRI
Ichiro Matsui	National Institute of Environmental Science
Shigeru Murata	National Electronics corporation (NEC)
Toshikazu Abe	Technosystem Ltd.
Takeharu Yamanaka	Showa optronics Ltd.

6. General Observation

- 6.1 Meteorological measurement
- 6.1.1 Surface meteorological observations

(1) Personnel

Tetsuo Nakazawa (MRI): Principal InvestigatorMasaki Hanyu (GODI): Operation LeaderSatoshi Okumura (GODI)

(2) Objective

The surface meteorological parameters are observed as a basic dataset of the meteorology. These parameters brings us the information about temporal variation of the meteorological condition surrounding the ship.

(3) Measured Parameters

The surface meteorological parameters were observed throughout MR99-K06 cruise from the departure of Sekinehama on 13 October 1999 to the arrival of Guam on 19 November 1999.

Measured parameters are:

Name	Sampling Interval	Acronyms in Table 6.1.1-2
Wind direction	6 sec./10 min. averaged	WD
Wind speed	6 sec./10 min. averaged	WS
Weather	3 hourly	Weather
Pressure (adjusted to the se	a surface level)	
	6 sec./10 min. averaged	Р
Air temperature	6 sec./10 min. averaged	Т
Dewpoint temperature	6 sec./10 min. averaged	DPT
Relative humidity	6 sec./10 min. averaged	RH
Sea surface temperature	6 sec./10 min. averaged	SST
Rainfall amount	3 hourly (accumulated)	Rain
Significant wave height	3 hourly (20 min. averaged)	Wv. Ht.
Significant wave period	3 hourly (20 min. averaged)	Wv. Pd.

(4) Methods

The meteorological sensors onboard R/V Mirai are listed in Table 6.1.1-1. Surface meteorological data were collected and processed by KOAC-7800 weather data processor and some sensors assembled by Koshin Denki, Japan.

	Table 6.1.1-1											
Sensors	Туре	Maker	Location (Altitude from surface)									
Anemometer:	KE-500	Koshin Denki, Japan	Foremast (24m)									
Thermometer:	FT	Koshin Denki, Japan	Compass Deck (19m)									
Dew point meter:	DW-1	Koshin Denki, Japan	Compass Deck (19m)									
Barometer:	F-451	Yokogawa, Japan	Weather observation room,									
			Captain Deck (13m)									
Rain gauge:	50202	Young, U.S.A.	Compass Deck (19m)									
Optical Rain gauge:	ORG-115DR	SCTI, U.S.A.	Compass Deck (19m)									
Radiometer:	MS-801 (short wave)	Eiko Seiki, Japan	Radar mast (28m)									
	MS-200 (long wave)											
Wave height meter:	MW-2	Tsurumi-seiki, Japan	Bow									

(5) Preliminary Results

Table 6.1.1-2 shows the part of the observation results for the permanent sensors.

We also provide the some weekly time-series of the observational results in Figure 6.1.1-2 to 6.1.1-5, from the week of 17 October to 7 November. We describe a brief summary of the characteristics feature each week below;

- From 17 October to 23 October:
 - Mostly calm with occasional showers.

In this week, from 00Z 19th to 06Z 20th, R/V Mirai was berthing at port of Guam. Before arriving at Guam, the diurnal variation of the air temperature and moisture was weak and became regular after departing from Guam. There were several episodes with abrupt cooling of the air and wind burst (easterlies in most of the cases), which were usually associated with shower events. For example, from 0457Z 21st October, the easterlies enhanced from 4 m/s to 10 m/s, the air temperature from 31 deg-C to 28 deg-C, the humidity from 62 % to 86 % and the rainfall of 2.1 mm in 7 minutes.

From Z to Z in 20th October, no observation was carried out due to the system maintenance.

From 24 October to 30 October:

Most disturbed week in this cruise.

Daily rainfall in 26 and 27 October was 30.3 mm and 61.7 mm, respectively. Observed by Optical Rain Gauge (See Fig.6.1.1-5). These are the second and the first largest daily precipitation record in this cruise. One hour maximum precipitation was 11.4 mm/hr recorded at 03Z and 04Z 27 October. The ship's positions were 1N 138E at 00Z 26 October and 0N 138E at 00Z 27 October.

A cloud cluster started developing at 00Z 26 October around 3N 138E, just several degrees north of R/V Mirai. Another cloud system, located north of New Guinea, was also developed from 15Z 26 October at 2S 136E. These two systems merged into one until 21Z 26 October and further developed in the next day. This system was responsible to bring us rain of more than 60 mm per day.

From 31 October to 6 November:

Calm week except for 31 October.

31 October was the third largest daily rainfall (22.2 mm) day in this cruise. The rapid cooling of the air (29 deg-C to 24 deg-C) and moistening (64 % to 92 %) was evident at 0455Z. At that time the ship was at 2N 147E. The GMS imagery (See Appendix) shows that the cloud system suddenly

Fig. 6.1.1-1 Daily rainfall amount

developed in 03Z at 3N 148E. As the system developed, the system merged to the ITCZ at 10N and the merged cloud belt was located between 5N and 10N.

MR99-K06

- From 7 November to 13 November:

Most calm and clear week of this cruise.

Every parameters of the air temperature, wind, solar radiation, relative humidity and rainfall indicate that that this week is the most calm week. Especially the relative humidity did not exceed over 80 %. There were a very few sudden cooling events in this week. The weather map shows that the region was covered by the downward motion by the ridge, which extended from the high pressure system in the mid-latitude.

(6) Data Archive

The dataset with 6 seconds and 10 minutes interval are available in the 3.5" magnetic optical (MO) disk. The dataset will be submitted to the DMO (Data Management Office), JAMSTEC and will be under their control.

Table 6.1.1-2

	Tir	ne		Pos	ition		WD	WS	Р	Т	DPT	RH	SST	Rain	Wv.Ht.	Wv.Pd.
UT	С	shi	р	Lat.	Long.	Weather	(deg)	(m/s)	(hPa)	(deg.C)	(deg.C)	(%)	(deg.C)	(mm/3h)	(m)	(sec)
12 Oct	0.00	12 Oct	18.00	41.22 N	141-20 E		160	10.5	1014.2	17.4	14.4	02	10.2	0.1	1.0	5
15-00	9.00 12.00	15-00	21.00	41-32 N	141-30 E	ı r	70	6.6	1014.5	1/.4	14.4	100	19.5	6.5	1.0	7
	12.00	14 Oct	21.00	41-03 N 41.01 N	142-29 E	r	80	6.7	1013.8	14.9	14.0	07	19.5	0.3	0.9	7
	13.00	14-001	3.00	40-54 N	142-15 E	1	40	24	10112.1	15.4	14.9	97	19.4	0.5	1.1	13
	21.00		6:00	40-41 N	141-38 E	0	310	5.6	1012.1	17.3	15.1	89	19.2	0.0	1.5	11
14-Oct	0.00		9.00	40-33 N	141-30 E	bc	80	8.4	1012.7	20.8	17.0	79	25.6	0.0	2.0	14
14-001	3.00		12.00	40-33 N	141-30 E	bc	300	6.5	1015.2	20.0	8.4	45	19.8	0.0	0.2	6
	6.00		15:00	40-33 N	141-45 E	0	300	12.1	1015.2	18.3	10.0	58	20.2	0.0	1.2	8
	9.00		18:00	40-33 N	142-18 E	c	10	10.9	1017.0	16.8	13.0	78	19.8	0.0	1.4	14
	12:00		21.00	39-05 N	142-32 E	hc	30	93	1018.8	16.6	12.6	79	18.4	0.0	1.8	20
	15:00	15-Oct	0:00	38-17 N	142-36 E	bc	40	8.2	1018.9	17.5	13.5	77	20.0	0.0	1.6	18
	18:00		3:00	37-30 N	142-40 E	bc	50	7.6	1017.7	18.9	14.3	75	21.7	0.0	1.8	20
	21:00		6:00	36-46 N	142-46 E	r	60	5.6	1017.8	18.9	16.3	85	25.2	5.7	1.6	14
15-Oct	0:00		9:00	36-06 N	142-48 E	0	230	4.6	1015.7	27.2	22.0	73	28.3	0.0	1.3	13
	3:00		12:00	35-22 N	142-51 E	0	120	8.6	1013.7	23.5	18.4	73	25.5	0.0	1.6	10
	6:00		15:00	34-35 N	142-55 E	0	160	5.0	1012.4	24.5	21.9	86	25.7	0.0	1.6	11
	9:00		18:00	33-47 N	142-59 E	bc	260	10.3	1012.6	25.7	21.9	80	26.4	0.0	1.4	11
	12:00		21:00	33-03 N	143-03 E	bc	250	9.1	1013.4	25.7	22.9	85	26.5	0.0	1.8	14
	15:00	16-Oct	0:00	32-19 N	143-06 E	bc	250	9.3	1013.5	26.6	22.5	78	27.7	0.0	1.5	12
	18:00		3:00	32-32 N	143-07 E	bc	260	9.3	1013.6	26.9	22.0	75	27.7	0.0	1.4	12
	21:00		6:00	30-46 N	143-09 E	bc	250	7.0	1014.9	26.8	22.5	77	28.1	0.0	1.3	11
16-Oct	0:00		9:00	23-59 N	143-04 E	bc	120	5.9	1014.3	27.1	23.9	83	28.8	0.0	1.3	9
	3:00		12:00	29-49 N	143-03 E	bc	220	3.0	1014.2	27.9	21.9	70	28.3	0.0	1.1	7
	6:00		15:00	29-24 N	143-09 E	bc	240	2.9	1013.5	27.7	20.8	66	28.7	0.0	1.0	10
	9:00		18:00	28-57 N	143-16 E	bc	230	2.6	1015.0	26.7	20.6	69	28.6	0.0	1.1	10
	12:00		21:00	28-11 N	143-26 E	b	170	1.5	1015.7	27.0	21.7	73	28.2	0.0	0.9	7
	15:00	17-Oct	0:00	27-24 N	143-32 E	bc	100	2.4	1014.8	26.9	22.5	77	28.6	0.0	1.0	9
	18:00		3:00	26-38 N	143-35 E	bc	80	5.6	1013.5	26.9	23.9	84	28.6	0.0	1.0	8
	21:00		6:00	25-52 N	143-39 E	0	110	12.7	1014.3	25.8	23.9	89	28.8	2.6	1.2	6
17-Oct	0:00		9:00	25-05 N	143-42 E	с	120	8.1	1014.0	29.3	25.0	78	29.5	0.0	1.1	8
	3:00		12:00	24-17 N	143-46 E	bc	90	5.2	1013.0	28.2	22.4	71	28.9	0.0	1.1	7
	6:00		15:00	23-28 N	143-49 E	bc	140	3.5	1012.2	28.0	22.7	73	29.4	0.0	1.2	8
	9:00		18:00	22-41 N	143-54 E	bc	140	4.7	1013.3	27.6	23.8	80	29.0	0.0	1.3	9
	12:00		21:00	21-52 N	143-56 E	bc	130	2.6	1014.4	27.6	24.3	83	28.9	0.0	1.1	9
	15:00	18-Oct	0:00	21-04 N	144-01 E	bc	70	2.8	1013.7	27.5	25.2	87	28.8	0.0	1.1	9
	18:00		3:00	20-17 N	144-05 E	bc	90	3.2	1012.1	27.7	25.3	87	29.3	0.0	1.0	8
	21:00		6:00	19-29 N	144-08 E	bc	90	6.2	1013.3	28.0	25.6	87	29.2	0.0	1.0	8
18-Oct	0:00		9:00	18-43 N	144-12 E	bc	110	6.1	1011.1	29.0	24.7	78	29.2	0.0	0.2	9
	3:00		12:00	17-56 N	144-15 E	bc	100	8.5	1011.3	28.8	24.1	76	29.4	0.0	1.4	9
	6:00		15:00	17-12 N	144-18 E	с	100	8.7	1010.5	28.5	25.0	81	29.4	0.0	1.6	10
	9:00		18:00	16-30 N	144-22 E	bc	100	10.1	1011.2	28.5	24.8	81	29.6	0.0	1.7	9
	12:00		21:00	15-48 N	144-24 E	bc	80	9.5	1011.9	28.3	25.0	83	29.3	0.0	1.9	10
	15:00	19-Oct	1:00	15-05 N	144-27 E	c	90	8.6	1011.3	27.8	23.9	79	29.4	0.0	1.8	11
	18:00		4:00	14-23 N	144-29 E	c	70	8.0	1009.5	27.2	25.0	88	29.3	0.0	1.9	12
	21:00		7:00	13-41 N	144-29 E	с	110	10.1	1010.0	27.6	23.9	80	29.2	0.0	1.6	11
19-Oct																

20-Oct

	9:00		19:00	13-12 N	144-04 E	bc	110	4.5	1009.4	28.3	24.3	79	29.9	0.0	1.5	20
	12:00		22:00	12-53 N	143-20 E	bc	80	3.7	1010.6	28.2	24.6	81	29.8	0.0	1.4	20
	15:00	21-Oct	1:00	12-32 N	142-36 E	bc	100	3.4	1009.2	28.1	24.3	80	29.7	0.0	1.7	20
	18:00		4:00	12-12 N	141-52 E	bc	150	2.3	1008.0	27.5	24.2	82	29.8	0.0	1.4	18
	21:00		7:00	11-52 N	141-08 E	bc	180	1.5	1008.8	27.8	24.1	81	29.7	0.0	1.1	17
21-Oct	0:00		10:00	11-25 N	140-29 E	bc	30	2.9	1012.1	28.8	23.5	73	29.9	0.0	1.0	14
	3:00		13:00	11-01 N	139-47 E	bc	90	2.1	1008.3	30.2	23.5	68	29.9	0.0	1.5	18
	6:00		16:00	10-36 N	139-05 E	с	80	4.6	1007.7	28.9	24.5	77	30.5	2.1	1.5	20
	9:00		19:00	10-12 N	138-23 E	bc	90	0.5	1008.6	28.3	23.2	74	30.3	0.0	1.1	14
	12:00		22:00	9-49 N	137-40 E	bc	320	2.3	1010.4	28.2	23.7	77	30.1	0.0	1.4	19
	15:00	22-Oct	1:00	9-22 N	137-01 E	bc	30	1.8	1010.5	28.2	23.6	76	30.1	0.0	1.0	16
	18:00		4:00	8-34 N	136-59 E	bc	40	2.0	1009.0	28.0	23.4	76	30.1	0.0	1.1	18
	21:00		7:00	8-00 N	136-59 E	bc	20	3.7	1009.8	27.2	23.2	79	29.8	0.0	0.9	8
22-Oct	0:00		10:00	7-54 N	136-42 E	bc	350	1.8	1010.4	27.6	24.0	81	29.9	1.1	0.9	8
	3:00		13:00	7-50 N	136-28 E	bc	90	1.7	1010.0	29.7	23.6	70	30.0	0.0	0.9	9
	6:00		16:00	7-44 N	136-35 E	bc	30	1.7	1007.1	29.4	23.5	71	30.3	0.0	0.9	7
	9:00		19:00	7-37 N	136-38 E	bc	310	0.8	1009.0	28.7	22.7	70	30.2	0.0	0.8	11
	12:00		22:00	7-13 N	136-58 E	bc	270	2.3	1010.8	26.7	22.3	77	30.3	0.0	1.2	15
	15:00	23-Oct	1:00	6-41 N	137-00 E	с	340	1.6	1010.3	27.4	23.9	81	29.9	0.1	1.2	18

							Table	6.1.1-	-2							
	18:00		4:00	6-00 N	136-59 E	bc ba	360	4.2	1008.4	28.1	23.3	75 85	30.2	0.0	1.3	13
23-Oct	0.00		10.00	3-28 N 4-58 N	137-03 E 137-08 F	be	130	3.3	1009.1	27.0	24.2	85 74	30.0	0.0	1.1	17
25 000	3:00		13:00	4-54 N	137-27 E	c	360	5.5	1009.5	28.9	23.4	72	30.2	0.0	1.2	13
	6:00		16:00	4-49 N	137-32 E	с	70	4.0	1007.0	27.8	24.3	82	30.3	0.2	1.0	8
	9:00		19:00	4-35 N	137-10 E	с	20	8.5	1008.0	26.3	23.6	85	30.1	0.7	1.2	16
	12:00		22:00	3-59 N	137-20 E	0	50	4.8	1009.3	27.4	23.8	81	29.7	0.0	1.0	8
	15:00	24-Oct	1:00	3-17 N 2 50 N	137-29 E	bc	80 340	4.0	109.1	27.4	24.2	83 85	30.0	0.0	1.2	16
	21.00		4.00 7.00	2-39 N 3-00 N	137-34 E	bc	340 80	0.7	1007.3	20.2	23.3 24.7	85 86	30.0	0.0	0.9	9
24-Oct	0:00		10:00	N/A	N/A	bc	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.0 N/A	N/A	N/A
	3:00		13:00	2-07 N	137-59 E	bc	140	4.4	1007.8	29.2	22.9	69	30.2	0.0	0.9	8
	6:00		16:00	2-03 N	137-49 E	bc	170	4.0	1005.9	29.3	23.5	71	30.5	0.0	1.2	16
	9:00		19:00	1-56 N	138-13 E	bc	170	1.7	1006.6	28.1	23.0	74	30.5	0.0	1.2	16
	12:00	25 Oct	22:00	1-51 N	137-59 E	bc	150	4.4	1009.0	28.7	22.7	70 72	30.2	0.0	0.9	8
	13:00	25-061	4.00	2-05 N 2-01 N	138-04 E	be	80	3.4	1009.0	26.4 27.5	22.9	72	30.2	0.0	0.8	9
	21:00		7:00	2-01 N 2-02 N	138-00 E 138-05 E	bc	130	3.1	1007.0	28.3	23.7	76	30.0	0.0	0.8	9
25-Oct	0:00		10:00	2-01 N	138-02 E	bc	140	4.0	1010.1	29.0	23.8	73	29.9	0.0	0.9	8
	3:00		13:00	2-04 N	138-02 E	bc	110	3.7	1008.4	32.7	24.4	62	30.2	0.0	0.8	9
	6:00		16:00	2-02 N	138-04 E	bc	130	3.5	1005.9	30.7	23.3	65	30.3	0.0	1.0	9
	9:00		19:00	2-03 N	138-04 E	bc	110	3.2	1006.6	29.1	23.5	72	30.6	0.0	1.0	9
	12:00	26.0.4	22:00	2-01 N	138-04 E	bc	100	5.5	1008.7	28.5	23.7	75	30.3	0.0	0.9	9
	15:00	26-Oct	4:00	2-00 N 2-00 N	138-00 E 138-08 E	bc	80 70	5.1 2.9	1008.6	28.9	23.2	71 80	30.2 30.1	0.0	0.8	9
	21:00		7:00	1-28 N	138-03 E	bc	90	3.6	1007.2	27.0	23.7	84	30.0	0.0	1.1	15
26-Oct	0:00		10:00	0-54 N	137-59 E	bc	50	4.7	1009.6	28.0	25.1	84	30.0	0.0	1.0	14
	3:00		13:00	0-09 N	137-47 E	bc	90	5.2	1008.1	29.3	24.5	75	30.3	0.0	1.0	11
	6:00		16:00	0-06 N	138-04 E	bc	50	3.0	1006.0	27.8	23.4	77	30.2	0.0	1.0	17
	9:00		19:00	0-02 N	138-08 E	q	90	6.6	1007.2	27.2	23.9	82	30.1	3.1	0.7	6
	12:00		22:00	0-06 S	137-45 E	bc	90	6.1	1008.8	27.9	24.2	81	29.9	0.0	1.1	14
	15:00	27-Oct	1:00	0-01 N	138-06 E	с	70	6.8	1008.5	28.1	24.1	01	29.9	0.0	1.0	13
	21.00		4.00 7.00	0-01 N	137-39 E 138-01 F	r	130	6.0	1007.2	20.1	24.0	86	29.9	0.2	1.0	8
27-Oct	0:00		10:00	0-03 N	138-00 E	0	100	6.0	1010.4	27.0	23.5	81	29.8	0.0	0.9	6
	3:00		13:00	0-04 N	138-02 E	r	320	1.8	1009.1	24.9	23.7	93	29.8	11.4	1.0	7
	6:00		16:00	0-05 N	138-00 E	0	180	2.4	1007.5	24.9	23.2	90	29.8	6.3	0.8	6
	9:00		19:00	0-05 N	138-05 E	r	280	1.7	1009.0	25.0	23.8	94	29.7	0.0	0.9	6
	12:00		22:00	0-00 N	138-46 E	0	110	4.1	1010.1	25.6	23.0	86	29.7	0.5	0.8	6
	15:00	28-Oct	1:00	0-00 N	139-26 E	0	40	3.6	1008.7	25.7	24.2	91	29.8	0.2	0.8	4
	21.00		4:00	0-00 N	140-01 E 140-36 E	c	220	3.3	1007.2	26.5	23.5	83 88	29.8	0.0	0.8	4
28-Oct	0:00		10:00	0-00 N	141-11 E	0	120	6.5	1010.3	26.6	22.9	80	29.7	0.8	1.0	4
	3:00		13:00	0-00 N	141-50 E	0	130	13.6	1008.2	25.5	23.6	90	29.6	7.6	0.9	4
	6:00		16:00	0-00 N	142-26 E	0	140	2.9	1006.7	28.1	22.4	72	29.6	0.0	1.0	5
	9:00		19:00	0-00 N	143-04 E	bc	80	3.5	1007.9	28.2	23.7	77	29.6	0.0	1.0	5
	12:00		22:00	0-00 N	143-45 E	bc	110	4.0	1009.2	28.6	22.5	70	29.6	0.0	0.9	5
	15:00	29-Oct	1:00	0-00 N	144-25 E 145 05 E	bc	130	4.2	1008.6	28.4	23.2	73	29.6	0.0	1.0	5
	21.00		4:00 7:00	0-00 N	145-05 E 145-46 F	be	130	33	1007.0	20.4	22.2	78	29.3	0.1	0.9	5
29-Oct	0:00		10:00	0-00 N	146-27 E	bc	130	4.6	1009.3	28.9	23.3	72	29.6	0.0	0.9	6
	3:00		13:00	0-00 N	146-57 E	bc	120	6.4	1007.4	29.3	22.2	66	29.7	0.0	0.9	5
	6:00		16:00	0-02 S	146-59 E	bc	120	5.5	1006.8	29.1	21.7	64	29.7	0.0	1.0	6
	9:00		19:00	0-01 S	146-59 E	bc	120	4.6	1008.0	28.3	21.7	67	29.6	0.0	0.9	7
	12:00	20.0.	22:00	0-02 S	146-59 E	bc	120	5.3	1009.8	27.9	22.5	72	29.5	0.0	0.9	8
	15:00	30-Oct	1:00	0-03 5	140-38 E 146 57 E	bc	90	3.2 2.6	1008.1	27.1	22.4	70 80	29.4	0.0	0.9	9
	21:00		7:00	0-02 S 0-01 N	146-56 E	bc	100	2.0	1007.0	20.5	22.3	73	29.5	0.0	0.8	9
30-Oct	0:00		10:00	0-03 N	146-50 E	bc	90	1.8	1009.2	29.0	22.0	66	29.5	0.0	0.9	8
	3:00		13:00	0-04 N	146-50 E	bc	140	2.2	1007.0	29.5	22.0	64	29.8	0.0	0.9	8
	6:00		16:00	0-04 N	146-48 E	bc	120	3.5	1006.2	29.4	22.1	65	29.7	0.0	0.8	9
	9:00		19:00	0-28 N	146-51 E	bc	110	2.4	1007.7	28.1	21.2	66	30.1	0.0	0.9	7
	12:00		22:00	1-13 N	147-01 E	bc	110	2.7	1009.4	28.4	21.2	65	29.9	0.0	0.9	7
	15:00	31-Oct	1:00	1-46 N	146-49 E	bc	100	2.8	1007.8	27.9	21.9	70	29.7	0.0	1.1	13
	21.00		4.00 7.00	2-12 N 1-55 N	147-07 E 147-05 E	be	140	3.9	1008.0	27.0	21.8	69	29.0	0.0	0.9	7
31-Oct	0:00		10:00	2-18 N	146-58 E	bc	140	4.2	1008.6	29.1	21.9	65	29.7	0.0	1.0	7
	3:00		13:00	3-07 N	147-00 E	bc	160	4.8	1006.7	30.2	22.3	63	30.2	0.0	1.1	7
	6:00		16:00	3-53 N	147-04 E	r	110	6.7	1006.5	24.6	22.9	91	29.7	9.4	1.3	9
	9:00		19:00	4-36 N	147-09 E	r	100	1.8	1008.5	24.4	23.0	92	30.0	1.6	1.3	7
	12:00		22:00	5-09 N	147-09 E	r	150	3.6	1009.4	25.4	22.7	85	29.8	0.1	1.1	9
	15:00	1-Nov	1:00	4-43 N	146-59 E	0	190	2.9	1008.6	24.4	22.8	91	29.9	0.2	1.4	17
	18:00		4:00 7:00	5-02 N 4 51 N	140-57 E	0 bo	180	6.0 0.0	1006.5	25.8 26.7	22.7	83 81	29.8 20 /	0.0	1.1	8 7
1-Nov	0:00		10:00	4-52 N	146-56 E	bc	230	0.9	1008.9	29.1	23.1	70	29.4	0.0	1.1	, 7
	3:00		13:00	4-51 N	146-57 E	bc	290	0.2	1007.0	30.3	23.1	66	29.9	0.0	1.1	7
	6:00		16:00	4-51 N	146-55 E	с	260	2.9	1005.9	28.6	22.2	68	30.5	0.0	1.0	7
	9:00		19:00	4-50 N	146-58 E	с	20	1.7	1007.3	28.5	22.6	70	29.9	0.0	1.0	8

							Table	6.1.1	-2							
	12:00	2 N	22:00	4-52 N	146-55 E	bc	340	2.9	1008.6	28.7	22.7	70	29.7	0.0	1.2	8
	15:00	2-Nov	1:00	4-51 N	146-55 E	bc	250	1.0	1007.4	27.8	21.3	68 70	29.9	0.0	1.0	8
	21.00		4:00 7:00	4-51 N 4-51 N	140-38 E 146-57 E	bc	90 130	1.0	1006.0	20.5	22.5	79	29.9	0.0	1.0	0 8
2-Nov	0:00		10:00	4-51 N	146-57 E	bc	160	2.5	1007.2	29.7	23.0	68	30.1	0.0	1.1	8
	3:00		13:00	4-51 N	146-57 E	bc	170	1.7	1006.2	29.2	23.2	70	30.3	0.0	1.2	8
	6:00		16:00	5-01 N	146-56 E	с	240	3.5	1004.9	29.4	21.9	64	30.5	0.0	1.2	9
	9:00		19:00	5-01 N	146-54 E	bc	250	5.1	1006.6	28.7	22.3	68	30.1	0.0	1.1	8
	12:00		22:00	5-04 N	146-55 E	bc	210	4.5	1007.6	28.1	22.7	73	29.9	0.0	1.1	8
	15:00	3-Nov	1:00	5-02 N	146-59 E	bc	170	5.8	1006.1	27.8	22.8	74	29.9	0.0	1.1	8
	18:00		4:00	5-04 N	146-56 E	bc	240	6.0	1005.6	26.8	23.0	80	29.8	0.0	1.0	7
	21:00		7:00	5-04 N	146-56 E	с	260	3.6	1007.3	27.5	23.1	77	29.8	0.0	1.0	8
3-Nov	0:00		10:00	5-03 N	146-59 E	bc	180	6.1	1008.0	29.8	23.1	68	29.9	0.0	1.1	7
	3:00		13:00	5-03 N 5.02 N	146-50 E	bc	1/0	6.9 5.4	1005.5	29.8	23.2	68 74	30.1	0.0	1.0	7
	9.00		19:00	5-02 N	140-37 E 147-08 F	be	190	5.4	1004.3	28.3	23.5	72	30.1	0.0	1.0	8
	12:00		22:00	5-01 N	147-55 E	bc	170	5.0	1000.2	28.6	21.1	64	29.9	0.0	1.0	7
	15:00	4-Nov	1:00	4-57 N	148-03 E	bc	170	6.4	1006.5	28.4	22.3	70	29.9	0.0	0.9	7
	18:00		4:00	4-25 N	148-22 E	bc	150	4.9	1005.7	28.2	22.0	69	29.9	0.0	1.0	9
	21:00		7:00	3-45 N	148-48 E	bc	130	6.2	1007.3	28.4	22.1	69	29.9	0.0	1.0	9
4-Nov	0:00		10:00	3-05 N	149-13 E	bc	150	5.2	1008.1	29.6	22.3	65	29.8	0.0	0.9	9
	3:00		13:00	2-27 N	149-37 E	bc	140	5.5	1006.3	30.3	22.4	63	29.9	0.0	1.0	7
	6:00		16:00	1-49 N	150-01 E	bc	140	5.4	1006.0	28.7	22.5	69	29.6	0.0	1.1	7
	9:00		19:00	1-11 N	150-25 E	bc	140	4.6	1008.3	28.1	22.5	72	29.4	0.0	1.1	7
	12:00		22:00	0-33 N	150-49 E	bc	130	3.7	1009.9	28.0	22.5	72	29.2	0.0	1.0	8
	15:00	5-Nov	1:00	0-05 S	151-15 E	bc	140	2.6	1008.6	27.9	22.1	71	29.3	0.0	0.9	7
	18:00		4:00	0-44 S	151-38 E	bc	90 70	4.5	1007.6	27.2	23.3	79 72	29.1	0.0	0.8	/
5 Nov	21:00		10.00	1-20 5	152-05 E	be	100	0.9 5.6	1009.8	28.5	25.1	75 77	29.0	0.0	1.0	0
5-1101	3.00		13.00	2-29 S	153-01 E	be	120	5.5	1005.4	29.9	23.0	66	29.9	0.0	1.0	8
	6:00		16:00	2-58 S	153-36 E	bc	140	3.9	1005.7	29.7	22.8	67	30.3	0.0	0.9	8
	9:00		19:00	3-27 S	154-10 E	q	120	3.0	1007.9	27.8	24.0	80	30.3	0.0	0.9	10
	12:00		22:00	3-46 S	154-49 E	bc	80	6.0	1009.0	28.4	22.8	72	29.9	0.0	0.9	5
	15:00	6-Nov	1:00	3-55 S	155-32 E	bc	80	4.5	1007.2	28.2	22.6	72	29.9	0.0	1.0	6
	18:00		4:00	4-04 S	155-59 E	bc	90	5.5	1007.2	28.1	21.5	67	29.8	0.0	1.4	11
	21:00		7:00	4-52 S	155-59 E	bc	60	2.8	1009.0	28.9	22.6	69	29.8	0.0	1.3	14
6-Nov	0:00		10:00	5-00 S	155-58 E	bc	50	2.7	1009.1	31.3	22.9	61	29.9	0.0	0.8	8
	3:00		13:00	5-02 S	156-01 E	bc	10	3.1	1006.9	31.2	23.2	62	30.1	0.0	1.0	8
	6:00		16:00	4-20 S	156-00 E	bc	40	1.9	1006.7	29.4	22.3	66 66	30.6	0.0	0.9	6
	9:00		19:00	3-33 S	155-59 E	bo	00	2.3	1008.8	28.7	21.8	00 70	30.4	0.0	1.0	/
	12.00	7-Nov	1.00	2-43 S	155-55 E	be	90 170	0.8	1009.1	20.1	22.0	73	29.7	0.0	1.0	8
	18:00	7-1107	4:00	2-04 S	155-58 E	bc	250	0.7	1007.3	27.3	22.0	75	29.6	0.0	1.0	8
	21:00		7:00	2-05 S	155-58 E	bc	20	0.5	1009.2	28.6	22.4	69	29.5	0.0	0.8	8
7-Nov	0:00		10:00	2-04 S	156-00 E	bc	160	1.1	1009.8	28.6	22.0	68	29.5	0.0	1.0	9
	3:00		13:00	2-01 S	156-56 E	bc	280	1.5	1007.1	30.2	22.0	62	29.7	0.0	0.8	9
	6:00		16:00	1-36 S	156-00 E	bc	210	3.4	1005.8	29.0	22.4	68	30.0	0.0	1.0	9
	9:00		19:00	0-49 S	156-05 E	bc	180	2.1	1008.4	27.8	22.4	72	28.8	0.0	1.0	9
	12:00		22:00	0-03 S	156-10 E	bc	200	3.2	1009.2	27.3	22.7	76	29.0	0.0	1.0	9
	15:00	8-Nov	1:00	0-00 N	155-59 E	bc	260	3.3	1007.3	27.3	22.4	75	29.0	0.0	1.0	10
	18:00		4:00	0-00 N	155-54 E	bc	30	1.6	1007.4	27.1	22.4	76	29.0	0.0	1.0	10
0 N	21:00		7:00	0-00 N	155-59 E	bc	10	1.2	1009.6	28.5	23.0	72	29.0	0.0	1.0	8
0-INOV	3:00		10:00	0.00 N	156 09 E	be	320	2.4	1009.9	20.0	23.1	67	29.1	0.0	1.0	/ 8
	5.00 6:00		16:00	0-00 N	156-01 E	bc	150	13	1007.5	29.9	23.0	70	29.0	0.0	0.9	9
	9:00		19:00	0-01 N	156-02 E	bc	90	2.6	1009.5	28.1	22.2	71	29.2	0.0	0.8	9
	12:00		22:00	0-02 N	156-04 E	bc	360	1.3	1010.4	27.6	22.5	74	29.3	0.0	0.9	8
	15:00	9-Nov	1:00	0-03 N	156-01 E	bc	10	3.0	1008.1	27.5	22.4	74	29.1	0.0	0.9	9
	18:00		4:00	0-01 N	156-01 E	bc	40	4.1	1007.8	27.1	22.6	77	29.2	0.0	0.9	9
	21:00		7:00	0-00 N	156-03 E	bc	60	4.6	1009.5	28.6	22.7	71	29.2	0.0	0.9	8
9-Nov	0:00		10:00	0-00 N	156-02 E	bc	80	4.9	1009.9	29.8	22.0	63	29.4	0.0	1.0	8
	3:00		13:00	0-01 N	156-02 E	bc	80	4.8	1006.9	29.9	22.4	64	29.7	0.0	0.9	8
	6:00		16:00	0-00 N	165-01 E	bc	100	5.9	1006.8	29.9	22.1	63	29.7	0.0	1.0	8
	9:00		19:00	0-04 N	156-01 E	bc	100	6.2	1009.2	28.6	22.5	70	29.6	0.0	1.0	8
	12:00	10 N	22:00	1-26 N	156-01 E	bc h a	100	1.1	1010.1	28.4	22.8	72	29.5	0.0	1.1	9
	15:00	10-Nov	1:00	2-02 N 2.05 N	150-07 E	bo	110	0.4 6.0	1008.7	28.0	22.9	/4 60	29.4	0.0	1.5	10
	21.00		7:00	2-03 N	156-00 E	bc	90	6.6	1008.5	28.5	22.0	69	29.4	0.0	1.2	9
10-Nov	0:00		10:00	2-03 N	155-58 E	be	120	6.8	1010.4	30.0	22.3	64	29.4	0.0	1.2	9
10 1101	3:00		13:00	2-04 N	155-59 E	bc	120	6.2	1008.2	30.3	22.1	61	29.5	0.0	1.2	9
	6:00		16:00	2-04 N	156-00 E	bc	110	6.6	1007.2	29.9	21.6	61	29.5	0.0	1.2	9
	9:00		19:00	1-56 N	156-03 E	bc	110	6.3	1008.9	28.5	22.6	70	29.4	0.0	1.2	9
	12:00		22:00	1-57 N	156-01 E	bc	110	7.3	1009.2	28.1	22.8	73	29.3	0.0	1.2	7
	15:00	11-Nov	1:00	1-52 N	155-59 E	bc	110	5.9	1008.2	27.8	22.7	74	29.3	0.0	1.0	8
	18:00		4:00	1-52 N	155-57 E	bc	110	4.2	1008.8	28.0	21.9	70	29.2	0.0	1.0	8
	21:00		7:00	1-55 N	155-59 E	bc	120	2.7	1010.4	28.6	22.8	71	29.2	0.0	1.2	10
11-Nov	0:00		10:00	1-55 N	155-59 E	bc	140	2.1	1010.5	30.1	23.1	66	29.3	0.0	1.0	7
	3:00		13:00	1-57 N	156-03 E	bc	110	4.6	1008.7	29.2	22.1	65	29.7	0.0	1.0	7

							Table	611.	2							
	6:00		16:00	1-59 N	155-59 E	bc	110	5.0	1008.1	29.3	22.0	65	29.6	0.0	1.2	10
	9:00		19:00	1-58 N	156-01 E	bc	100	5.1	1010.6	28.6	21.6	66	29.5	0.0	1.0	9
	12:00		22:00	1-58 N	155-56 E	bc	110	5.3	1010.7	28.2	21.4	67	29.3	0.0	1.2	8
	15:00	12-Nov	1:00	1-57 N	155-58 E	bc	110	4.9	1009.2	27.5	22.0	72	29.3	0.0	1.0	8
	18:00		4:00	1-57 N	156-02 E	bc	130	4.6	1008.5	27.3	22.4	74	29.3	0.0	1.0	8
	21:00		7:00	1-59 N	156-00 E	bc	120	3.9	1010.5	28.5	22.3	69	29.3	0.0	0.9	9
12-Nov	0:00		10:00	2-01 N	155-58 E	bc	100	2.4	1010.8	29.0	21.6	64	29.3	0.0	0.9	9
	3:00		13:00	2-37 N	155-59 E	bc	110	4.1	1008.2	29.3	21.7	64	29.8	0.0	1.0	8
	6:00		16:00	3-24 N	156-02 E	bc	100	3.9	1008.1	28.6	21.5	65	29.8	0.0	1.2	9
	9:00		19:00	4-11 N	156-03 E	bc	80	3.7	1010.1	28.3	20.7	63	29.8	0.0	1.4	10
	12:00		22:00	4-56 N	156-04 E	bc	100	4.3	1010.8	27.8	21.2	67	29.7	0.0	1.4	10
	15:00	13-Nov	1:00	4-56 N	156-06 E	bc	100	2.6	1009.8	27.8	20.3	64	29.7	0.0	1.3	8
	18:00		4:00	4-56 N	156-05 E	bc	140	3.9	1009.6	27.5	21.1	68	29.7	0.0	1.4	11
	21:00		7:00	4-58 N	156-04 E	bc	120	3.8	1011.3	28.4	21.1	65	29.6	0.0	1.0	8
13-Nov	0:00		10:00	4-59 N	156-02 E	bc	100	3.9	1011.6	28.8	21.2	64	29.7	0.0	1.0	8
	3:00		13:00	5-01 N	155-58 E	bc	100	4.8	1009.0	29.8	20.7	58	29.8	0.0	1.1	8
	6:00		16:00	5-01 N	155-58 E	bc	100	3.8	1008.0	28.8	21.4	64	29.8	0.0	1.0	8
	9:00		19:00	5-29 N	155-58 E	bc	90	6.0	1009.5	28.2	20.2	62	29.6	0.0	1.1	10
	12:00		22:00	6-15 N	156-04 E	bc	70	4.1	1010.4	28.3	20.2	61	29.5	0.0	1.1	10
	15:00	14-Nov	1:00	7-01 N	156-11 E	bc	60	4.2	1009.4	28.0	22.0	70	29.5	0.0	1.0	10
	18:00		4:00	7-47 N	156-16 E	bc	60	5.5	1008.8	28.1	22.4	71	29.4	0.0	0.9	9
14.53	21:00		7:00	8-05 N	156-00 E	bc	50	6.4	1010.4	28.7	23.7	74	29.4	0.0	1.4	13
14-Nov	0:00		10:00	8-05 N	156-00 E	bc	60	5.3	1010.8	28.5	23.2	/3	29.4	0.0	1.1	9
	3:00		13:00	7-57 N	156-01 E	bc	90	3.0	1008.3	30.0	23.2	67	29.7	0.0	1.0	9
	6:00		16:00	7-57 N	156-02 E	bc	50	4.3	1008.1	28.7	23.3	73	29.7	0.0	1.4	10
	9:00		19:00	8-29 N	155-32 E	bc	80	6.4	1009.6	28.4	23.7	/6	29.5	0.0	2.0	11
	12:00	15 M	22:00	9-04 N	155-00 E	bc 1	/0	5.9	1010.6	28.0	24.5	82	29.3	0.0	1.9	10
	15:00	15-Nov	1:00	9-38 N	154-28 E	bc 1	80	7.3	1009.9	27.7	24.2	81	29.3	0.0	2.1	10
	18:00		4:00	10-13 N	153-56 E	bc 1	/0	5.0	1009.2	27.7	23.5	/8	29.3	0.2	2.2	10
15 N	21:00		7:00	10-49 N	153-23 E	DC 1	90	4.5	1011.4	28.5	22.7	71	29.1	0.0	2.4	10
15-NOV	0:00		10:00	11-22 N	152-50 E	DC 1	80	3.8 2.5	1012.0	28.9	23.5	/3	29.1	0.0	2.5	10
	5:00		15:00	11-36 N	152-18 E	be	120	3.5	1008.0	20.9	22.0	71	29.0	0.0	2.5	11
	0:00		10:00	12-55 N	151-45 E	be	150	2.1	1008.8	20.9	23.1	/1	29.8	0.0	2.4	11
	9:00		19:00	13-11 N	151-15 E	be	200	3.2	1010.0	20.4	22.2	09	29.9	0.0	2.9	10
	12.00	16 Nov	1:00	13-40 N	150.06 E	bo	200	2.0	1010.9	27.5	24.4	79	29.5	0.0	2.5	10
	18.00	10-1000	1.00	14-22 N	150.02 E	be	100	3.0	1009.9	27.7	23.5	86	29.3	0.9	2.1	10
	21.00		7:00	14-29 N	150.04 E	be	210	1.0	1011.0	27.0	24.5	80	29.5	0.0	1.7	11
16 Nov	0.00		10.00	14-31 N	150.04 E	be	210	1.0	1012.7	27.9	24.1	73	29.5	0.0	1.0	10
10-100	3.00		13.00	14-33 N	149-56 E	bc	340	24	1012.7	20.0	23.4	68	29.7	0.0	2.2	10
	6:00		16:00	14-35 N	150-00 E	bc	310	17	1009.0	29.5	22.0	69	30.1	0.0	1.6	10
	9.00		19:00	14-37 N	150-00 E	bc	330	2.5	1010.0	28.3	22.0	71	29.4	0.0	1.0	10
	12.00		22.00	14-37 N	150-00 E	bc	310	3.5	1010.0	20.5	22.5	75	29.5	0.0	1.5	9
	15.00	17-Nov	1.00	14-28 N	149-59 E	be	310	3.7	1010.7	27.8	22.5	73	29.5	0.0	1.6	9
	18:00	17 1101	4.00	14-29 N	149-59 E	bc	29	27	1009.3	27.9	22.5	73	29.4	0.0	1.5	9
	21.00		7:00	14-37 N	149-59 E	c	180	3.7	1010.2	26.6	24.9	90	29.3	0.0	1.5	8
17-Nov	0.00		10.00	15-20 N	149-59 E	c	120	7.1	1011.0	27.3	24.5	85	29.2	1.2	1.0	7
17 1101	3.00		13.00	15-30 N	149-57 E	bc	70	6.6	1008.8	30.1	23.8	69	29.4	0.0	1.8	10
	6:00		16:00	15-29 N	149-54 E	bc	50	7.0	1008.3	28.8	24.1	76	29.3	0.0	1.6	9
	9:00		19:00	15-28 N	149-52 E	bc	50	6.9	1009.5	27.5	23.5	79	29.2	0.0	1.8	9
	12:00		22:00	15-26 N	149-50 E	r	30	10.0	1010.4	26.0	23.9	88	29.2	0.1	1.9	9
	15:00	18-Nov	1:00	15-24 N	149-48 E	bc	60	8.2	1008.7	27.7	23.1	76	29.2	0.2	1.9	9
	18:00		4:00	15-23 N	149-46 E	bc	60	9.0	1007.8	27.5	21.5	70	29.2	0.0	1.9	9
	21:00		7:00	15-20 N	149-31 E	bc	70	6.8	1009.2	27.9	21.9	70	29.2	0.0	2.1	18
18-Nov	0:00		10:00	15-04 N	148-44 E	bc	90	8.4	1010.0	29.3	23.3	70	29.3	0.0	2.5	19

6 1 1-8

6.1.1-9

6.1.1-10

6.1.2 Atmospheric Sounding

(1) Personnel

Tetsuo Nakazawa (MRI): Principal Investigator Masaki Hanyu (GODI): Operation Leader Satoshi Okumura (GODI)

(2) Objective

Atmospheric soundings are measured using radiosonde.

(3) Measured Parameters

Pressure Temperature Relative humidity Wind speed / direction

(4) Methods

We observed vertical profiles of pressure, temperature, relative humidity and wind speed/direction using VAISALA DigiCORA MW11 semi-automatic radiosonde system and VAISALA RS80-15G radiosonde. The surface data was measured by handy humidity and temperature meter (VAISALA HMI41/45), onboard resonator digital barometer (YOKOGAWA AP-100) and anemometer (KOSHIN KC1570A). From RS-01 to RS-09, we also utilized a VAISALA GC kit which check the 0 % point of relative humidity. After RS-10, we used VAISALA HMI41/45 as GC reference. After calibrating by a VAISALA GC kit, we experienced that a humidity of a radiosonde was always lower than that of the VAISALA HM141/45. As the humidity data at the surface is referred from the referenced data, the moisture at the surface has a positive/wet (sometimes greater than 10%) bias. This tendency can be easily found in the EMAGRAM in the Appendix before RS-09. After RS-10 there was no large bias between the surface reference and the upper sounding data just above the surface.

Table 6.1.2-1 shows radiosonde launch log.

(5) Preliminary results

Profiles of temperature and dew point temperature are plotted on the thermodynamic chart (EMAGRAM) and shown in the Appendix. Wind profile is also shown there.

The disturbed conditions in this cruise was in 27 Oct. and 31 Oct. These two cases were under the convective and stratiform clouds with showers. In 27 Oct. we performed 3-hourly operation from 00Z, 27 Oct. to 00Z, 28 Oct. The difference between air temperature and dew point temperature was small during the period, telling that the radiosonde was inside the precipitating clouds. In 31 Oct. the radiosonde was released every 6 hours from 00Z, 31 Oct. to 12Z, 31 Oct. The distinct difference is found if we compare the vertical moisture

profile between 00Z and 06Z. In 00Z the atmosphere was dry up to 300 hPa. However, in 06Z the radiosonde was inside the cloud and the humidity was almost 100% from 950 hPa to 500 hPa.

(6) Data archives

All sounding data have been sent to the world through GTS by Japan Meteorological Agency.

Radiosonde data obtained during this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be under their control.

Tabl	le	6.1	1.2-1

No.		Time(UTC)			Pos	ition	Р	Т	RH	WD	WS	Max. A	Altitude	Cloud	Cloud
	YY	MM	DD	HH	Lat.		Long.	(hPa)	(deg-C)	(%)	(deg)	(m/s)	(hPa)	(m)	Amount	Туре
1	99	10	21	00	11.60	Ν	140.72 E	1008.7	28.8	71	46	2.5	141.6	14527	3	Cs,Cu
2	99	10	22	00	7.99	Ν	136.94 E	1010.1	28.1	76	53	2.8	50.9	20516	5	Cu,Ci
3	99	10	22	12	7.28	Ν	136.97 E	1009.0	28.1	73	348	2.6	32.2	23379	2	Cu,Sc,Ci
4	99	10	22	18	6.18	Ν	137.00 E	1006.6	28.1	77	5	3.8	158.8	13864	7	Ci,Cb
5	99	10	23	00	4.97	Ν	137.10 E	1008.7	27.2	74	84	0.8	52.8	20256	8	Cu,Cb,Ac
6	99	10	23	06	4.83	Ν	137.30 E	1005.3	29.3	71	35	4.1	75.5	18113	9	Cu,Cb
7	99	10	23	12	4.03	Ν	137.32 E	1007.2	27.5	79	16	5.2	27.8	24234	8	Cu,Cs,Ci
8	99	10	23	18	2.99	Ν	137.58 E	1005.4	26.1	85	352	1.3	26.3	24583	2	Cs,Ci
9	99	10	24	00	2.83	Ν	137.58 E	1007.9	28.4	77	114	2.3	35.6	22705	1	Cb
10	99	10	25	00	2.00	Ν	138.02 E	1008.1	29.3	72	145	4.4	74.3	18183	3	Cu,Ac
11	99	10	26	00	1.00	Ν	138.00 E	1008.0	27.6	84	60	5.9	32.2	23369	8	Ns,Cu,Cb
12	99	10	27	00	0.06	Ν	138.00 E	1008.3	27.6	80	89	7.1	40.2	22066	10	As,Ci
13	99	10	27	03	0.07	Ν	138.05 E	1007.8	27.2	84	94	1.6	532.8	5358	10	Ns
14	99	10	27	06	0.08	Ν	138.02 E	1005.6	26.1	87	202	5.0	348.6	8606	10	Ns
15	99	10	27	09	0.08	Ν	138.01 E	1006.5	24.9	92	307	3.0	70.7	18545	10	Ac
16	99	10	27	12	0.03	Ν	138.53 E	1008.1	25.8	85	101	4.1	100.0	16553	10	As
17	99	10	27	15	0.00	Ν	139.25 E	1007.6	26.2	88	50	4.1	36.9	22511	10	As
18	99	10	27	18	0.00	Ν	139.88 E	1005.9	26.7	84	153	1.2	44.7	21302	3	Ac,Ci,As
19	99	10	27	21	0.00	Ν	140.50 E	1005.9	24.9	90	212	1.8	177.8	13174	10	Ns,As,Cu
20	99	10	28	00	0.00	Ν	141.04 E	1008.5	27.1	79	115	7.8	49.8	20697	10	Ns,Sc
21	99	10	28	06	0.00	Ν	142.27 E	1004.8	28.2	71	134	4.0	47.5	20929	9	As
22	99	10	29	00	0.00	Ν	146.24 E	1007.5	28.8	73	130	4.6	91.7	17037	4	Cu
23	99	10	30	00	0.06	Ν	146.84 E	1007.9	28.3	70	95	2.3	35.2	22807	8	Ci
24	99	10	31	00	2.10	Ν	147.00 E	1007.2	28.2	70	137	4.3	31.0	23598	2	Cu,Ac,Ci
25	99	10	31	06	3.77	Ν	147.08 E	1004.4	27.9	79	101	6.7	40.8	21856	-	-
26	99	10	31	12	5.01	Ν	147.16 E	1007.5	26.1	82	157	3.7	58.7	19659	-	-
27	99	11	1	00	4.85	Ν	146.94 E	1007.2	28.2	70	117	0.6	38.2	22304	2	Ac,Cu,Ci
28	99	11	1	12	4.87	Ν	146.91 E	1007.0	28.5	70	332	1.1	39.8	22022	-	-
29	99	11	2	00	4.86	Ν	146.94 E	1006.3	28.5	72	169	2.9	37.2	22450	3	Cb,Ci
30	99	11	2	12	5.00	Ν	146.92 E	1006.0	28.6	70	214	4.8	47.0	21020	2	Cu
31	99	11	3	00	5.07	Ν	147.00 E	1006.3	29.3	71	180	6.6	42.3	21645	7	Cu
32	99	11	3	12	5.01	Ν	147.70 E	1006.0	28.2	66	165	4.6	34.2	22932	-	-
33	99	11	6	00	5.00	Ν	155.98 E	1007.6	30.4	62	56	2.3	30.1	23735	-	-
34	99	11	8	00	0.00	Ν	155.95 E	1008.1	28.1	72	338	1.9	35.6	22684	8	As
35	99	11	9	00	0.01	Ν	156.03 E	1007.9	28.7	68	75	5.1	41.2	21787	1	Cu
36	99	11	10	00	2.07	Ν	155.97 E	1009.2	29.4	66	119	6.9	32.0	23353	1	Cu
37	99	11	13	00	4.98	Ν	156.06 E	1009.7	30.5	60	102	2.6	36.9	22493	3	Cu
38	99	11	14	00	8.09	Ν	156.02 E	1009.5	28.4	77	61	4.7	24.7	24956	2	Cu
39	99	11	15	00	11.24	Ν	153.01 E	1010.2	28.3	79	62	3.8	30.8	23571	2	Cu
40	99	11	15	12	13.59	Ν	150.83 E	1009.2	27.8	81	234	1.4	48.1	20854	-	-
41	99	11	16	00	14.55	Ν	150.08 E	1011.1	29.0	77	249	1.9	49.5	20687	2	Cb,Cu,Cc
42	99	11	16	12	14.50	Ν	150.01 E	1009.1	28.2	76	329	2.3	38.3	22253	2	Cu
43	99	11	17	00	15.16	Ν	149.96 E	1009.4	27.4	87	112	7.9	33.0	23146	10	Ns,As
44	99	11	17	12	15.46	Ν	149.85 E	1008.5	28.1	78	65	9.6	38.8	22151	-	-

^{6.1.2-4}

6.1.2-5

6.1.2-6

r

31

6.1.2-7

25

× 6.1.2-8

33

6.1.2-9

ł

١

6.1.3 Ceilometer

(1) Personnel

Masaki Hanyu (GODI) : Operation Leader Satoshi Okumura (GODI)

(2) Parameters

- (2.1) Cloud base height [m]
- (2.2) Backscatter profile, sensitivity and range normalized at 30m resolution

(3) Methods

We measured cloud base height and backscatter profiles using CT-25K (Vaisala, Finland) ceilometer throughout MR99-K06 cruise from the departure of Sekinehama, Japan on 13 October 1999 to the arrival of Guam, U.S.A. on 19 November 1999.

Major parameters for the measurement configuration are as follows;

Laser source :	Indium Gallium Arsenide (InGaAs) Diode
Transmitting wave length :	905 +-5 nm at 25deg-C
Transmitting average power :	8.9 mW
Repetition rate :	5.57 kHz
Detector :	Silicon avalanche photodiode (APD)
	Responsibility at 905 nm : 65 A/W
Measurement range :	0-7.5 km
Resolution :	50 ft in full range
Sampling rate :	60 sec

(4) Preliminary results

The results will be public after the analysis.

(5) Data archives

Ceilometer data obtained during this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be under their control.

6.2 CTD / XCTD

6.2.1 CTD

(1) Personnel

Masayuki Fujisaki (MWJ) : Operation leader Nobuharu Komai (MWJ) Satoshi Ozawa (MWJ) Fujio Kobayashi (MWJ) Aya Kato(MWJ) Keisuke Wataki (MWJ)

(2) Objectives

Investigation of the oceanic (down to 1000m) structure.

(3) Parameters

- Temperature
- Conductivity
- Pressure

(4) Methods

CTD/Carousel Water Sampling Systems were used during this cruise. It was the 12-liters 12-positions Carousel water sampler with Sea-Bird Electronics Inc. CTD (SBE9plus). The sensors attached on CTD were temperature sensor, conductivity sensor, pressure sensor, and altimeter sensor. Salinity was calculated by measurement values of pressure, conductivity and temperature. The CTD/CWS was deployed from starboard on working deck. We kept the descending rate of 1.2 m/s respectively.

The CTD raw data was acquired on real time by using the SEASAVE utility from the SEASOFT software (ver.4.232) provided by SBE and stored on the hard disk of an Windows personal computer. Water samplings were made during up-cast by sending a fire command from the computer. In ordinary cast we sampled water at two layers (500,1000m) to calibrate salinity data. In several casts sea water at 12 layer were sampled for Oceanic Carbon analysis

The CTD raw data was processed by using SEASOFT (ver.4.232). Data processing procedures and used utilities of SEASOFT were as follows:

DATCNV: Converts the binary raw data to output on physical units.

- Output items are scan number, pressure, temperature, conductivity, salinity, potential temperature, altimeter, descent rate, sigma-t, depth. Simultaneously, this utility selects the CTD data when bottles closed to output on another file.
- SECTION: Remove the unnecessary data.

WILDEDIT: Obtain an accurate estimate of the true standard deviation of the data.

Std deviations for Pass1: 2

- Std deviations for Pass2: 10
- Points per block: 100
- BINAVG: Calculates the averaged data in every 1 db.
- ROSSUM: Edits the data of water sampled to output a summary file.

SPLIT: Splits the data made by DATCNV into down cast data.

ASCIIOUT: Change into ASCII data.

Specifications of the sensors are listed below.

CTD: SBE 911plus CTD system

Under water unit: CTD 9plus (S/N 09P9833-0280, Sea-Bird Electronics, Inc.).

Calibrated Date: 02.Jan.1997

Temperature sensor: SBE3-04/F Primary Sensor (S/N 031524, Sea-Bird Electronics, Inc.) Calibrated Date: 08.Sep.1999

Conductivity sensor: SBE4-04/0 Primary Sensor (S/N 041202, Sea-Bird Electronics, Inc.) Calibrated Date: 08.Sep.1999

Deck unit: SBE11 (S/N 11P8010-0308, Sea-Bird Electronics, Inc.)

Carousel water sampler: SBE32 (S/N 329833-0026, S/N Sea-Bird Electronics, Inc.)

(5) Result

See the attached figures. (Fig2.1.6-1)

(6) Trouble

While observing, it was found that No.2 Niskin bottle was miss-tripped from the analysis of oceanic carbon. While investigating in detail, we found the trigger of Carousel water sampler and armored cable seemed to touch each other after command. We hold armored cable tightly to the frame so as not to touch a trigger. The results fo test cast showed the No.2 bottle fired normally.

(7) Data archive

All raw and processed CTD data files were copied onto magnetic optical disks (MO) and will be submitted to JAMSTEC Data Management Office (DMO) and will be under their control.

	Table6.2.1-1 CTD Cast Table									
Stn.	Date(UTC)	Time	(UTC)	Start I	osition	Filename	Water Sampling	Remarks		
		Start	End	Latitude	Longitude					
0001	10/21/99	21:52	22:35	08-00.08N	136-59.92E	0001501	0			
0002	10/22/99	13:05	13:40	06-59.99N	137-00.04E	0002501	0			
0003	10/22/99	17:56	18:44	06-00.06N	1 36-59.91 E	0003501	0			
000-1	10/22/99	23:02	23:40	0.1-57.89N	137-05.91E	0004501	0			
0005	10/23/99	11:19	12:16	03-59.99N	137-19.8-1E	0005S0I	0			
0006	10/23/99	21:57	22:34	02-59.94N	137-33.13E	0006S0I	0			
0007	10/25/99	03:36	04:21	02-03,75N	138-05.02E	0007S0I	0	TRITON 12001 cast		
0008	10/25/99	22:53	23:23	00-59.96N	137-59.96E	0008501	0			
0009	10/27/99	03:48	0.4:31	00-04.98	138-02.01E	0009501	0	TRITON 13001 Cast		
0010	10/29/99	08:34	09.16	00-01.515	147-00.14E	0010501	0	TRITON 09002 cast		
0011	10/30/99	02:10	02:4-1	00-04.19N	146-49.75E	0011501	×	TRITON 09001 cast		
0012	10/30/99	21:54	22:40	01-59.93N	146-59.9-IE	0012501	0			
0013	11/03/99	02:57	0,1:39	05-03.30N	146-56.70E	0013501	0	TRITON 07002 Cast		
001:1	11/06/99	00:59	01:40	05-03-335	156-02,15E	0014501	0	TRITON 06001 cast		
0015	11/07/99	00:56	01:41	02-0L.5LS	155-56.69E	0015501	0	TRITON 05001 cast		
0016	11/09/99	02:57	03:38	00-01.67N	156-02.27E	0016501	0	TRITON 04003 Cast		
0017	11/10/99	02:53	03:37	02-04.35N	155-59.72E	0017501	0	TRITON 03003 Cast		
0018	11/10/99	21:56	22:24	01-55.33N	155-59.52E	0018501	0	TRITON 03002 Cast		
0019	11/13/99	03:52	0.4:32	05-02.08N	155-58.21E	0019501	0	TRITON 02002 cast		
0020	11/13/99	02:55	0.3:40	07-57.82N	156-01.20E	0020501	0	TRITON 01002 cast		

Fig6.2.1 : CTD profile

Fig6.2.1 : CTD profile (Continue)

Fig6.2.1 : CTD profile (Continue)

6.2.2 XCTD Observation

(1) Personnel

Kentaro Ando (JAMSTEC):Principal InvestigatorMasaki Hanyu (GODI):Operation LeaderSatoshi Okumura (GODI)Naoto Morioka (Mirai crew)

(2) Parameters

The range and accuracy of parameters measured by the XCTD are as follows;

Parameter	Range	Accuracy
Conductivity	0 - 70 mS/cm	+/- 0.03 mS/cm
Temperature	-2 – 35 deg-C	+/- 0.02 deg-C
Depth	0 – 1000 m	

(3) Methods

We observed the vertical profiles of the sea water measured by XCTD. The signal was converted by MK-100, Tsurumi Seiki and was recorded by WinXCTD software made by Tsurumi Seiki.

Table 6.2.2-1 shows the summary of XCTD observation log.

Table 6.2.2-1 XCTD observation log

Station	Date	Time	Lat	Long	HDG	SPD	SST	SSS	Т	RH	WH	WP	WD	WS	CD	CS	MD	Probe S/N
XC01	19991027	1300	0-01.22N	138-59.96E	90	10.9	29.4	33.4	25.9	83	1.1	5.6	82	3.7	257	1.1	1036	99012716
XC02	19991027	1751	0-00.23N	140-00-03E	91	9.5	29.7	34.2	26.4	83	1.1	4.8	159	1.6	280	1.6	1027	99012717
XC03	19991027	2248	0-00.11N	141-00.08E	91	9.5	29.7	34.3	25.8	90	1.2	4.8	130	8.9	265	2.3	1034	99012718
XC04	19991028	0343	0-00.22N	142-00.00E	90	9.6	29.6	34.6	25.4	90	1.4	4.8	138	7.0	269	1.9	1035	99012719
XC05	19991028	0836	0-00.14N	143-00.02E	91	9.4	29.6	34.4	27.8	76	1.3	4.6	51	1.0	260	2.1	914	99012711
XC06	19991028	1734	0-00.09S	143-59.98E	88	10.5	29.5	34.6	26.8	82	1.1	5.6	79	3.5	276	1.6	1032	99012712
XC07	19991028	1307	0-00.09N	144-59.58E	90	10.0	29.6	34.7	28.5	69	1.2	5.3	103	4.0	264	1.9	1035	99012715
XC08	19991028	2156	0-00.04N	146-00.00E	90	10.8	29.5	34.8	28.3	76	0.1	5.5	122	4.7	274	1.2	976	99012710
XC09	19991030	1108	1-00.02N	146-59.93E	14	12.0	29.9	34.7	28.3	66	1.2	7.0	110	2.6	285	1.2	972	99012709
XC10	19991031	0229	3-00.05N	147-00.03E	5	12.5	30.2	34.6	30.2	63	1.2	7.5	151	4.7	4	0.8	870	99012706
XC11	19991031	0624	4-00.04N	147-05.89E	11	11.6	29.8	33.5	24.3	92	1.2	7.5	157	4.5	121	0.6	960	99012707
XC12	19991106	0720	3-59.51S	155-59.96E	4	12.0	30.4	35.0	28.9	65	1.1	6.5	49	1.7	301	0.6	967	99012708
XC13	19991106	1106	3-00.05S	155-58.75E	357	12.5	30.0	35.3	28.4	67	1.1	7.0	109	2.4	290	0.9	1035	99063665
XC14	19991107	0818	1-00.08S	156-04.64E	9	12.4	28.8	35.3	27.9	71	1.1	8.0	185	2.1	273	0.6	1028	99063666
XC15	19991109	1017	1-00.01N	156-00.89E	357	12.1	29.5	34.9	28.6	71	1.2	7.9	104	7.8	271	1.6	960	99063661
XC16	19991112	0426	3-00.01N	156-01.62E	3	12.2	29.8	34.3	28.8	66	1.3	8.5	104	3.7	282	0.6	1035	99063660
XC17	19991112	0816	3-59.98N	156-03.34E	2	12.2	29.8	33.9	28.3	64	1.3	9.0	91	4.1	41	0.1	1009	99063663
XC18	19991113	1056	6-00.01N	156-01.16E	6	12.0	29.5	33.6	28.2	64	1.1	9.8	74	4.1	318	0.6	1036	99063657
XC19	19991113	1451	6-59.99N	156-11.37E	7	12.5	29.6	33.5	27.9	71	1.1	9.7	71	4.5	62	0.8	1035	99063656

Acronyms in Table 6.2.2-1 are as follows;

HDG:	Ship's	heading	[deg.]
------	--------	---------	--------

- SPD: Ship's speed [knot]
- SST: Sea surface temperature [deg-C]

SSS:	Sea surface salinity [PSU]
T:	Air temperature [deg-C]
RH:	Relative humidity [%]
WH:	Wave height [m]
WP:	Wave period [sec.]
WD:	Wind direction [deg]
WS:	Wind speed [m/s]

- CD: Current direction [deg]
- CS: Current speed [knot]
- MD: Maximum measured depth [m]

(4) Preliminary results

Each profiles are shown in the Appendix. Some contour of XCTD data combined with CTD data are shown in the following figures. Fig 6.2.2-1 and Fig 6.2.2-2 are temperature and salinity plots along 137/138E, Fig 6.2.2-3 and Fig 6.2.2-4 are those along the equator, Fig 6.2.2-5 and Fig 6.2.2-6 are along 147E, and Fig 6.2.2-7 and Fig 6.2.2-8 are along 156E respectively.

(5) Data archives

XCTD data obtained during this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be under their control.

Fig 6.2.2-1 Temperature along 137/138E

Fig 6.2.2-2 Salinity along 137/138E

Fig 6.2.2-6 Salinity along 147E

Fig 6.2.2-7 Temperature along 156E

Fig 6.2.2-8 Salinity along 156E

CAST=019 LAT=6'59'59N LON=156'11'22E

6.2.3. Salinity measurements of sampled seawater for validation of CTD cast data

(1) Personnel

Kentaro Ando (JAMSTEC) : Principal Investigator Masayuki Fujisaki (MWJ) : Operation Leader Hirokatsu Uno (MWJ) Fujio Kobayashi (MWJ)

(2) Objectives

To check the quality of CTD salinity.

(3) Parameters

Salinity of sampled water

(4) Method

Seawater samples were collected with 12 liter Niskin bottles for two layers, 500 m and 1000 m. Samples in the Surface Water Monitoring System in the "Surface Seawater Monitoring Lab." were also collected. They were stored in 250 ml Phoenix brown glass bottles. The salinity measurements were carried out using the laboratory salinometer (Model 8400B AUTOSAL; Guildline Instruments Ltd.), which was modified by addition of an Ocean Scientific International peristaltic-type sample intake pump, with a bath temperature 24 deg-C. The instrument was operated in the "AUTOSAL Room" of R/V Mirai. A double conductivity ratio was defined as a median of 31 readings of the salinometer. Data collection was started after 5 seconds and it took about 10 seconds to collect 31 readings by a personal computer. The salinometer standardizations were made with IAPSO Standard Seawater batch P135 (Ocean Scientific International Ltd.) whose conductivity is 0.99992 (salinity 34.9969). Sub-standard seawater was used to check the drift of the Autosal and measured in every 10 samples.

(5) Results

Analysis data of all samples were shown in Table 6.2.3-1. The standard deviation of difference was 0.0025. As the difference of salinity between with CTD and AUTOSAL for No. 2 Niskin bottle was sometimes large (Fig. 6.2.3-1), we excluded the values of No. 2 Niskin bottle. The shadow lines in Table 6.2.3-2 show duplicate samples. These 21 pairs of duplicate samples taken by the same Niskin bottle were analyzed to estimate the precision of this method. The standard deviation of difference in duplicate samples was 0.00062.

(6) Data archive

The data of sample will be submitted to the Data Management Office (DMO) in JAMSTEC togather with the MO disk of CTD data in this cruise.

Stn.	Niskin No.	Date	Pressure (db)	CTD-Sal. (PSU)	Bottle No.	AUTOSAL-1 (PSU)	AUTOSAL-2 (PSU)	Avg. AUTOSAL (PSU)	Difference (PSU)	Ex. Niskin No.2 (PSU)
0001	1	21 Oct. 1999	1000.513	34.5457	001	34,5435	34,5439	34,5437	0.0020	0.0020
					002	34.5441	34.5439	34.5440	0.0017	0.0017
	2		500.142	34.5447	003	34.5423	34.5427	34.5425	0.0022	
0002	1	22 Oct. 1999	1010.185	34.5454	004	34.5449	34.5445	34.5447	0.0007	0.0007
	6		504.157	34.5601	005	34.5586	34.5590	34.5588	0.0013	0.0013
0003	1		1000.462	34.5445	006	34.5435	34.5431	34.5433	0.0012	0.0012
	2	1	500 316	3/ 53/0	007	34.5443	34.5443	34.5443	-0.0002	0.0002
0004	1		1008 203	34 5519	009	34 5519	34 5521	34 5520	-0.0010	-0.0001
			1000.200	5110017	010	34.5516	34.5512	34.5514	0.0005	0.0005
	7		504.641	34.5559	011	34.5559	34.5561	34.5560	-0.0001	-0.0001
0005	1	23 Oct. 1999	1000.838	34.5510	012	34.5519	34.5521	34.5520	-0.0010	-0.0010
	2		500.063	34.5536	013	34.5569	34.5571	34.5570	-0.0034	
0006	1		1008.822	34.5538	014	34.5547	34.5543	34.5545	-0.0007	-0.0007
	7		504 292	24 5 6 25	015	34.5559	34.5555	34.5557	-0.0019	-0.0019
0007	/	25 Oct. 1000	504.285 1000 132	34.5625	010	34.3010	34.3012	34.5014	0.0011	0.0011
0007	2	25 Oct. 1999	500 131	34.6019	018	34 8064	34 8062	34 8063	-0.2044	-0.0020
0008	1		1009.625	34.5500	010	34.5516	34.5516	34.5516	-0.0016	-0.0016
	-				020	34.5519	34.5523	34.5521	-0.0021	-0.0021
	7		504.521	34.5871	021	34.5918	34.5918	34.5918	-0.0047	-0.0047
0009	1	27 Oct. 1999	1000.115	34.5475	022	34.5508	34.5504	34.5506	-0.0031	-0.0031
	2		499.804	34.5888	023	34.5932	34.5930	34.5931	-0.0043	
0010	1	29 Oct. 1999	1000.147	34.5476	024	34.5510	34.5508	34.5509	-0.0033	-0.0033
	2		500 141	24.57(0	025	34.5510	34.5508	34.5509	-0.0033	-0.0033
0011	2 No S	omnling	500.141	34.5769	026	34.5798	34.5802	34.5800	-0.0031	
0011	1	30 Oct 1999	- 1000 323	- 34 5450	- 027	- 34 5484	- 34 5484	- 34 5484	-0.0034	-0.0034
0012	2	50 000 1777	500.424	34.5831	028	34.5824	34.5824	34.5824	0.0007	0.000
0013	1	3 Nov. 1999	1001.956	34.5497	030	34.5527	34.5527	34.5527	-0.0030	-0.0030
	2		499.624	34.5667	031	34.5684	34.5682	34.5683	-0.0015	
0014	1	6 Nov. 1999	999.763	34.5234	032	34.5280	34.5278	34.5279	-0.0044	-0.0044
					033	34.5264	34.5264	34.5264	-0.0030	-0.0030
	2		500.128	34.6484	034	34.6496	34.6500	34.6498	-0.0016	0.000
0015	1	7 Nov. 1999	999.971	34.5342	036	34.5380	34.5376	34.5378	-0.0036	-0.0036
	2	1	400.010	34 6075	037	34.3388	34.3380	34.5387	-0.0045	-0.0045
0016	1	9 Nov. 1999	1001.050	34.5495	039	34.5527	34.5525	34.5526	-0.0031	-0.0031
0010	3	, 11011 1,,,,,	499.650	34.5935	040	34,5965	34,5965	34,5965	-0.0030	-0.0030
	2		4.418	34.8862	041	34.8979	34.8981	34.8980	-0.0118	
0017	1	10 Nov. 1999	1000.747	34.5453	042	34.5482	34.5480	34.5481	-0.0028	-0.0028
					043	34.5486	34.5484	34.5485	-0.0032	-0.0032
	3		499.644	34.6010	044	34.6016	34.6014	34.6015	-0.0005	-0.0005
0018	1		499.834	34.6214	049	34.6164	34.6162	34.6163	0.0051	0.0051
	2		400 800	24 6215	050	34.6160	34.6164	34.6162	0.0052	0.0052
	2		499.099	54.0215	051	34.7758	34.7756	34.7757	-0.1540	
	3		500 169	34 6219	052	34 6197	34 6193	34 6195	0.0024	0.0024
	5		2001107	5	054	34.6191	34.6191	34.6191	0.0028	0.0028
	4		499.903	34.6218	055	34.6203	34.6203	34.6203	0.0015	0.0015
					056	34.6205	34.6207	34.6206	0.0012	0.0012
	5		499.647	34.6218	057	34.6221	34.6217	34.6219	-0.0001	-0.0001
					058	34.6217	34.6215	34.6216	0.0002	0.0002
	6		499.914	34.6220	059	34.6213	34.6217	34.6215	0.0005	0.0005
	7		500 162	34 6210	060	34.6215	34.6217	34.6216	0.0004	0.0004
	/		500.103	54.0219	061	34.6213	34.6213	34.0215	0.0004	0.0004
	8		500.034	34.6217	063	34.6219	34.62213	34.6220	-0.0003	-0.0003
	5				064	34.6215	34.6219	34.6217	0.0000	0.0000
	9		499.832	34.6218	065	34.6219	34.6215	34.6217	0.0001	0.0001
					066	34.6217	34.6217	34.6217	0.0001	0.0001
	10		499.848	34.6217	067	34.6221	34.6221	34.6221	-0.0004	-0.0004
					068	34.6221	34.6225	34.6223	-0.0006	-0.0006
	11		500.090	34.6216	069	34.6219	34.6217	34.6218	-0.0002	-0.0002
	10		400.061	34 6219	070	34.6211	34.6207	34.6209	-0.0007	0.0007
	12		479.901	34.0218	071	34.0225	34.0225	34.0225	-0.0007	-0.0007
0019	1	13 Nov. 1999	999.712	34,5514	045	34.5539	34.5537	34.5538	-0.0024	-0.0024
	3		500.504	34.5781	046	34.5794	34.5791	34.5793	-0.0012	-0.0012
	2		10.051	33.5613	047	33.5687	33.5685	33.5686	-0.0073	
0020	1	14 Nov. 1999	1001.298	34.5558	048	34.5586	34.5584	34.5585	-0.0027	-0.0027
	3		499.541	34.5703	049	34.5677	34.5677	34.5677	0.0026	0.0026
	9		100.361	34.8593	051	34.8686	34.8690	34.8688	-0.0095	-0.0095
	2		9.937	33.6100	050	33.6148	33.6146	33.6147	-0.0047	0.00077
								S D	-0.0097	-0.00076

Table 6.2.3-1 Salinity comparison between CTD and AUTOSAL

Note: The shadow lines show the duplicate samples.

Stn.	Niskin No.	Date	Pressure (db)	Bottle No.	AUTOSAL-1 (PSU)	AUTOSAL-2 (PSU)	Avg. AUTOSAL (PSU)	Difference (PSU)
0001	1	21 Oct. 1999	1000.513	001	34.5435	34.5439	34.5437	-0.0003
				002	34.5441	34.5439	34.5440	
0003	1	22 Oct. 1999	1000.462	006	34.5435	34.5431	34.5433	-0.0010
				007	34.5443	34.5443	34.5443	
0004	1		1008.203	009	34.5519	34.5521	34.5520	0.0006
				010	34.5516	34.5512	34.5514	
0006	1	23 Oct. 1999	1008.822	014	34.5547	34.5543	34.5545	-0.0012
				015	34.5559	34.5555	34.5557	
0008	1	25 Oct. 1999	1009.625	019	34.5516	34.5516	34.5516	-0.0005
				020	34.5519	34.5523	34.5521	
0010	1	29 Oct. 1999	1000.147	024	34.5510	34.5508	34.5509	0.0000
				025	34.5510	34.5508	34.5509	
0014	1	6 Nov. 1999	999.763	032	34.5280	34.5278	34.5279	0.0015
				033	34.5264	34.5264	34.5264	
0015	1	7 Nov. 1999	999.971	036	34.5380	34.5376	34.5378	-0.0009
				037	34.5388	34.5386	34.5387	
0017	1	10 Nov. 1999	1000.747	042	34.5482	34.5480	34.5481	-0.0004
				043	34.5486	34.5484	34.5485	
0018	1		499.834	049	34.6164	34.6162	34.6163	0.0001
				050	34.6160	34.6164	34.6162	
	2		499.899	051	34.7756	34.7754	34.7755	-0.0002
				052	34.7758	34.7756	34.7757	
	3		500.169	053	34.6197	34.6193	34.6195	0.0004
				054	34.6191	34.6191	34.6191	
	4		499.903	055	34.6203	34.6203	34.6203	-0.0003
	_			056	34.6205	34.6207	34.6206	
	5		499.647	057	34.6221	34.6217	34.6219	0.0003
				058	34.6217	34.6215	34.6216	0.0004
	6		499.914	059	34.6213	34.6217	34.6215	-0.0001
	-		500 1 60	060	34.6215	34.6217	34.6216	0.0000
	1		500.163	061	34.6215	34.6215	34.6215	0.0003
	0		500.024	062	34.6211	34.6213	34.6212	0.0002
	8		500.034	063	34.6219	34.6221	34.6220	0.0003
	0		400.022	064	34.6215	34.6219	34.6217	0.0000
	9		499.832	065	34.6219	34.6215	34.6217	0.0000
	10		400.040	066	34.6217	34.6217	34.6217	0.0002
	10		499.848	067	34.6221	34.6221	34.6221	-0.0002
	11		500.000	068	34.6221	34.6225	34.6223	0.0000
	11		500.090	069	34.6219	34.6217	34.6218	0.0009
	12		400.061	070	34.6211	34.6207	34.6209	0.0004
	12		499.961	0/1	54.6225	54.6225	34.6225	0.0004
				0/2	54.6223	54.6219	34.6221	0.000014
							Avg. Difference	-0.000014
							S.D.	0.00062

Table 6.2.3-2 Salinity comparison between duplicate samples

Note: The shadow lines show the duplicate samples.

6.3 Surface thermosalinograph (TSG) measurement 6.3.1. TSG

(1) Personnel name and affiliation

Kentaro Ando(JAMSTEC): Principal InvestigatorNobuharu Komai(MWJ): Operation leaderKeisuke Wataki(MWJ)

(2) Objectives

To monitor continuously the physical, chemical and biological characteristics of near-sea surface water.

(3) Parameters

Temperature, salinity, dissolved oxygen, fluorescence, particle size of plankton in the near-surface water.

(4) Methods

The *Continuous Sea Surface Water Monitoring System* (Nippon Kaiyo co., Ltd.) is located in the "*sea surface monitoring laboratory*" on R/V Mirai. It can automatically measure temperature, salinity, dissolved oxygen, fluorescence and particle size of plankton in the near-surface water every 1-minute. Measured data are saved every one-minute together with time and the position of ship, and displayed in the data management PC machine. This system is connected to shipboard LAN-system and provides the acquired data for p-CO₂ measurement system, etc. Geodetic reference system for the positioning was used by WGS 84 at this cruise.

The uncontaminated seawater intake is 4.5m below the sea surface. Near-surface water was continuously pumped up about 200L/min from the intake to the laboratory and then flowed into *the Continuous Sea Surface Water Monitoring System* and p-CO₂ measurement system etc. through a steel pipe. The flow rate of surface water for this system was 12L/min, which controlled by some valves and passed through some sensors except with fluorometer (about 0.3L/min) through vinyl-chloride pipes.

The Continuous Sea Surface Water Monitoring System has six kinds of sensors. In the system, TSG comprises of two SBE sensor modules. Sea surface temperature is measured by a ship bottom oceanographic thermometer situated on the suction side of the uncontaminated seawater supply in the forward hold. Specification and calibration date of the each sensor in this system are listed below.

a-1) Temperature and salinity sensors

	SEACAT THERMOS	ALINOGRAPH	
	Model:	SBE-21, SEA-BIRD ELECTRON	ICS, INC.
	Serial number:	2113117-2641	
	Measurement range:	Temperature -5 to $+35$ deg-C,	Salinity 0 to 6.5 S/m
	Accuracy:	Temperature 0.01 deg-C/6month,	Salinity 0.001 S/m/month
	Resolution:	Temperature 0.001 deg-C,	Salinity 0.0001 S/m
	Calibration date:	08-Sep-99 (mounted on 15-Oct-99	9 in this system)
a-2) Ship	bottom oceanographic	thermometer (mounted at the back	of the pump for surface water)
	Model:	SBE 3S, SEA-BIRD ELECTRON	NICS, INC.
	Serial number:	032607	
	Measurement range:	-5 to +35 deg-C	
	Initial Accuracy:	0.001 deg-C per year typical	
	Stability:	0.002 deg-C per year typical	
	Calibration date:	29-Apr-99 (mounted on 24-Aug-	99 in this system)
b) Disso	lved oxygen sensor		
	Model:	2127, Oubisufair Laboratories Jap	pan INC.
	Serial number:	31757	•
	Measurement range:	0 to 14 ppm	
	Accuracy:	\pm 1% at 5 deg-C of correction rat	nge
	Stability:	1% per month	0
	Calibration date:	15-Oct-99	
		6.3-1	

c) Fluor	ometer	
	Model:	10-AU-005, TURNER DESIGNS
	Serial number:	5562 FRXX
	Detection limit:	5 ppt or less for chlorophyll a
	Stability:	0.5% per month of full scale
d) Partic	ele size sensor	
	Model:	P-05, Nippon Kaiyo LTD.
	Serial number:	P5024
	Accuracy:	$\pm 10\%$ of range
	Measurement range:	0.02681mm to 6.666mm
	Reproducibility:	± 5%
	Stability:	5% per week
e) Flow	meter	
	Model:	EMARG2W, Aichi Watch Electronics LTD.
	Serial number:	8672
	Measurement range:	0 to 30 L/min
	Accuracy:	±1%
	Stability:	± 1% per day

(5) Preliminary Result

5-1 Calibration

Temperature sensor

To check the value of the temperature of TSG, we compared the value of the temperature between TSG and CTD (Muller and Schenk, 1991). Temperature of CTD was used both of the pressure at 5 db (about the same depth of the seawater intake) and the average of 4 to 6 db at the each downcast on CTD stations. The result was shown in Table 6.3.1-1 and Figure 6.3.1-1. Average and standard deviation of the difference of temperature (TSG-CTD, temperature of CTD was used by the average of the 4-6 db) was 0.037 and 0.064, respectively. So CTD temperatures at the downcast were not used as reference.

Dissolved Oxygen (D.O.) sensor

D.O. sensor of this system was calibrated just before this cruise. To estimate of accuracy of the sensor, we collected the 14 samples from the course of the system and analyzed by Winkler method. The samples for the titration method were analyzed by Metrohm piston burette of 10ml with Pt Electrode using Whole bottle titration. The standardization and pure water blank determination have been performed before the sample titration. Concentration of D.O. was calculated by equation (8) of WHP Operations and Methods (Culberson, 1991). The amount of D.O. in the reagents was used the value (=0.0027 ml at 21 deg-C) measured at 1995 WOCE cruise.

The results were shown in Table 6.3.1-2 and Figure 6.3.1-2 and 6.3.1-3. D.O. value of the sensor was always higher than the values analyzed by the Winkler method. The Root Mean Squares (R.M.S.) of differences of the value was 0.639 ml/l (one sigma). This value is higher than R.M.S. (0.255 ml/l) at the MR99-K02 cruise. So we wondered if we made a mistake in the procedure of calibration of sensor or the sensor was not in good condition during this cruise. The reason is not unclear.

Fluorometer

In order to calibrate the data of fluorescence from this system, surface seawater samples were collected from the drain of *continuous Dissolved Inorganic Carbon (DIC) measurement system* each day. We cleaned the flow cell of fluorometer at Sekinehama port just before this cruise. We also cleaned the flow cell 7 times (19-Oct-99 at Guam port, 22-Oct-99, 25-Oct-99, 06-Nov-99, 13-Nov-99, and 16-Nov-99) during this cruise. We determined the concentrations of chlorophyll *a* on board. The method of measurement was indicated below.

Sea surface water samples (1L) were filtered through a glass fiber filter at under 20 cmHg pressure. Filters were used Whatman GF/F (glass fiber filter, 25mm diameter).

Chlorophyll *a* on the filters were extracted with 5 ml (16-Oct-99 to 5-Nov-99) or 6 ml (6-Nov-99 ~ 17-Nov-99) of N,N'-Dimethylformamide (DMF) overnight in a dark and -20 place.

6.3-2

Fluorescence of extracts were measured by Turner fluorometer (10-AU-005, TURNER DESIGNS). The fluorometer was calibrated against a known concentration of pure chlorophyll *a* standard (Sigma Chemical Company) as determined by the spectrophotometic method (Porra *et al.*, 1989). A half minutes after the each measurement, the extracts were acidified with 1 or 2 drops of 1N HCl and the second measurement was made.

The concentration of chlorophyll a was calculated from the following equation:

chlorophyll a (**m**g/L) = Fs · r · (Fo-Fa) · v / V

where:

Fs = response factor for sensitivity setting, S (0.22)

- r = the before-to-after acidification ratio of a pure chlorophyll*a*solution (1.75)
- Fo = fluorescence of seawater sample before acidification
- Fa = fluorescence of seawater sample after acidification
- v = extraction volume
- V = filtered sample volume

The results were shown in Table 6.3.1-3. We took the 25 duplicate samples (took from the same sample bottle) during this cruise. R.M.S for the samples of 5 ml extraction volume was 0.034 μ g/l (one sigma), but for the 6 ml was 0.003 μ g/l (one sigma). So 5 ml of extraction volume was not enough volume for the measurements of fluorometer. Therefore we didn't use the data of 5 ml extraction, which took from 16-Oct-99 to 5-Nov-99 for the calibration and we compared that the fluorescence and concentration of chlorophyll *a* for only 6 ml extraction volume in Figure 6.3.1-4.

5-2 result

Preliminary data in every 10 minutes from Hachinohe to Guam, and along 137E and 138E line, 147E line, 156E line, the equator line (from 138E to 147E), the line form 5N, 147E to 5S, 156E were shown in Figure 6.3.1-5 ~ Figure 6.3.1-10, respectively. They showed the respective trend of temperature, salinity, D.O. and fluorescence distributions on the ship's track. Compared with three lines of 137 and 138E, 147E and 156E, the temperature was getting higher and salinity was getting lower westward. There was a front of salinity at about 3N in both 147E and 156E. At 156E line, Salinity was high (about 35PSU) from 5S to 3N. There was the significant peak of chlorophyll *a* from about 1S to the equator. At the same area, temperature was lower (about 29 deg-C) than other area. We seemed that the equatorial upwelling was caused from about 1S to the equator. In Figure 6.3.1-10, fluorescence peak was found at the same the equatorial area (151-152E). Along the equator line, temperature and salinity were low at 139E.

Compared with February, 1999 of MR99-K02 cruise, at 147E line the temperature and salinity was a little higher in this cruise. In comparison with 156E line, there was a trend which temperature was low and salinity was high at 2S to 4N at February, 1999.

(6) Other remarks

References:

Culberson, C. H. (1991) Dissolved Oxygen, in WHP Operations Methods, Woods Hole, pp.1-15. Porra R. J., W. A. Thompson and P. E. Kriedemann (1989) Biochem. Biophys. Acta, 975, 384 – 394.

(7) Data archive

All the files of raw data, Microsoft excel files of raw data, excel files divided into each 10minutes data were stored on a magnetic optical disk. All the data will be submitted to the DMO at JAMSTEC.

6.3.2. Salinity measurement for validation of TSG salinity

We sampled almost each day (except with 31-Oct-99) for salinity validation and in situ salinity calibration during this cruise. The samples were taken while on station or from regions with weak horizontal gradients. All salinity samples were drawn from the drain valve of surface water for the *continuous Dissolved Inorganic Carbon* (*DIC*) measurement system. All samples were analyzed on the Guildline 8400B using standard seawater batch P135 (see section 6.2.3).

We also cleaned the conductivity cell for 5 times (19-Oct-99 at Guam port, 24-Oct-99, 29-Oct-99, 6-Nov-99, and 16-Nov-99) during this cruise. The method of cleaning of the cell was to was the inside of the cell by the 1L fresh water and then wash again by the 250ml distilled water.

6.3-3

To estimate the accuracy of the conductivity, we calculated the conductivity from bottle samples and the conductivity sensor at the same sampling time. We calculated the conductivity at a pressure of 0dbar and at the temperature of the CT sensor. The data were shown in Table 6.3.2-1 and Figure 6.3.2-1 and Figure 6.3.2-2, and the results were shown in Table 6.3.2-2.

Table 6.3.2-2 Precision of Salinity and Conductivity of TSG at MR99-K06

	Sctd-Ssal	Cctd-Csal
Average	0.0039	0.0006
Standard Deviation	0.0076	0.0011
Average of absolute difference	0.0057	0.0008
Standard Deviation of absolute difference	0.0064	0.0009
R.M.S.	0.0060	0.0009
Min	-0.0124	-0.0019
Max	0.0327	0.0049
n	40	40

We calculated the Root Mean Squares (R.M.S.) of difference of salinity and conductivity value for 40 samples. R.M.S. of salinity and conductivity (one sigma) were 0.0060 and 0.0009, respectively. There were 6 samples which difference were over 0.01 PSU at this cruise (Figure 6.3.2-1). We suspected that these differences may be caused by the timing of sampling water and TSG measurement. The final results omitted the six samples were shown in Table 6.3.2-3.

Table 6.3.2-3 Precision of Salinity and Conductivity at TSG omitted 6 samples

	Sctd-Ssal	Cctd-Csal
Average	0.0029	0.0004
Standard Deviation	0.0030	0.0004
Average of absolute difference	0.0035	0.0005
Standard Deviation of absolute difference	0.0022	0.0003
R.M.S.	0.0029	0.0004
Min	-0.0051	-0.0007
Max	0.0084	0.0013
n	34	34

Our final results showed that the validation of salinity of TSG was about 0.006 PSU (two sigma of standard deviation) during this cruise. From our results, it is not clear if washing the conductivity cell reduced the drift of conductivity or not.

Reference:

T. J. Muller and H. -W. Schenk (1991) Near-Surface Temperature, salinity, and Bathmetry Measurements, in WHP Operations Methods, Woods Hole, pp.1-4.

6.3-4

Stn.	Stn. Date&Time of CTD Pressure		Depth	T at 5db	Average of T from 4 to 6db	Date&Time of TSG	T of TSG	differen	ce of Temperature	
	(UTC)	(db)	(m)	(deg-C)	(deg-C)	(UTC)	(deg-C)	TSG-CTD (5db)	TSG-CTD (avg. of 4-6db)	
C01	10/21/99 21:54:23	5	4.972	29.8475	29.8311	10/21/99 21:53:58	29.8049	-0.043	-0.026	
C02	10/22/99 13:04:06	5	4.972	30.0464	30.0421	10/22/99 13:03:48	30.1172	0.071	0.075	
C03	10/22/99 17:56:37	5	4.972	30.1981	30.1962	10/22/99 17:57:02	30.1559	-0.042	-0.040	
C04	10/22/99 23:03:31	5	4.972	29.9047	29.9048	10/22/99 23:03:58	29.9055	0.001	0.001	
C05	10/23/99 11:29:52	5	4.972	29.7309	29.7354	10/23/99 11:29:51	29.7484	0.017	0.013	
C06	10/23/99 21:57:54	5	4.972	29.9084	29.9082	10/23/99 21:57:59	29.9143	0.006	0.006	
C07	10/25/99 3:37:20	5	4.972	30.2827	30.3029	10/25/99 3:36:58	30.2996	0.017	-0.003	
C08	10/25/99 22:53:34	5	4.972	29.8534	29.8558	10/25/99 22:53:56	29.8353	-0.018	-0.020	
C09	10/27/99 3:49:13	5	4.972	29.7809	29.7836	10/27/99 3:48:53	29.8033	0.022	0.020	
C10	10/29/99 8:35:18	5	4.972	29.5632	29.5625	10/29/99 8:34:52	29.5765	0.013	0.014	
C11	10/30/99 2:11:19	5	4.972	29.5606	29.5479	10/30/99 2:10:54	29.6234	0.063	0.075	
C12	10/30/99 21:55:18	5	4.972	29.5100	29.5172	10/30/99 21:54:59	29.5179	0.008	0.001	
C13	11/3/99 2:57:33	5	4.972	30.0450	30.0298	11/3/99 2:57:58	30.0336	-0.011	0.004	
C14	11/6/99 1:00:08	5	4.972	29.9723	29.9789	11/6/99 1:00:03	30.1296	0.157	0.151	
C15	11/7/99 0:58:29	5	4.972	29.5619	29.5676	No data	No data	No data	No data	
C16	11/9/99 2:57:24	5	4.972	29.4998	29.4622	11/9/99 2:56:54	29.5891	0.089	0.127	
C17	11/10/99 2:54:23	5	4.972	29.4669	29.4766	11/10/99 2:53:56	29.4968	0.030	0.020	
C18	11/10/99 21:57:40	5	4.972	29.2097	29.2091	11/10/99 21:57:58	29.2256	0.016	0.016	
C19	11/13/99 3:52:38	5	4.972	29.6013	29.6051	11/13/99 3:52:53	29.8041	0.203	0.199	
C20	11/14/99 2:56:16	5	4.972	29.5214	29.5242	11/14/99 2:56:54	29.5888	0.067	0.065	

Table 6.3.1-1 Comparison of temperature between CTD and TSG

Sampling Date an	id Time	Sampling Positon		Salinity	T of SBE21 D.O. sensor		Winkler	difference	Remarks
(UTC)		Latitude	Longitude	(PSU)	(deg-C)		(ml/l)		
10/21/99	1:56	11-10.687N	140-02.798E	34.2895	29.9513	5.363	4.436	0.927	took the sample from the system
10/21/99	1:59	11-10.280N	140-02.113E	34.3202	29.9794	5.360	4.435	0.925	took the sample from the system
10/23/99	7:59	04-45.908N	137-13.296E	33.7042	30.0685	5.344	4.480	0.864	took the sample from the system
10/23/99	8:02	04-45.906N	137-12.522E	33.6599	30.0246	5.334	4.468	0.866	took the sample from the system
10/26/99	11:31	00-01.972S	137-48.397E	34.0836	29.9915	5.333	4.493	0.840	took the sample from the system
10/26/99	11:34	00-01.977S	137-47.553E	34.0827	29.9978	5.330	4.489	0.841	took the sample from the system
10/28/99	23:48	00-01.083S	146-24.382E	34.7855	29.5898	5.410	4.484	0.926	took the sample from the system
10/28/99	23:52	00-01.024S	146-25.290E	34.7821	29.5905	5.404	4.501	0.903	took the sample from the system
11/6/99	6:01	04-20.069S	156-00.424E	34.9323	30.5726	5.348	4.445	0.903	took the sample from the system
11/6/99	6:05	04-19.017S	156-00.369E	34.9395	30.6634	5.352	4.433	0.919	took the sample from the system
11/11/99	8:21	01-57.817N	156-02.405E	34.7841	29.4899	5.469	4.502	0.967	took the sample from the system
11/11/99	8:25	01-57.902N	156-02.329E	34.7849	29.4706	5.465	4.508	0.957	took the sample from the system

Table 6.3.1-2 Comparison of D.O. values between a D.O. sensor of *Sea Surface Monitoring System* and water samples from the system using Winkler method.

Sampling Date a	and Time	Samplin	g Positon	Fluorescence	extraction Vol.	concentraion of chl a (µg/l)					
(UTC)		Latitude	Longitude		(ml)	Sample 1	Sample 2	Avg.	difference		
10/16/99	2:10:52	29-49.781N	143-03.326E	0.664	5	0.072	-	0.072	_		
10/17/99	4:24:52 23-54.107		143-47.715E	0.647	5	0.099	-	0.099	-		
10/21/99	1:24:54	11-14.922N	140-09.951E	0.660	5	0.039	0.060	0.050	-0.021		
10/22/99	3:18:54	07-50.910N	136-33.163E	0.666	5	0.058	0.090	0.074	-0.032		
10/23/99	6:38:54	04-45.996N	137-34.887E	0.690	5	0.258	0.157	0.208	0.101		
10/24/99	1:33:56	02-15.592N	137-42.167E	0.678	5	0.216	0.122	0.169	0.094		
10/25/99	4:12:58	02-03.847N	138-05.197E	0.699	5	0.140	0.092	0.116	0.048		
10/26/99	0:29:53	00-46.324N	137-57.461E	0.690	5	0.093	0.066	0.080	0.027		
10/27/99	3:16:53	00-04.375N	138-01.749E	0.700	5	0.151	0.097	0.124	0.054		
10/28/99	4:07:54	00-00.268N	142-04.864E	0.703	5	0.159	0.105	0.132	0.054		
10/29/99	10:05:51	00-01.676S	146-59.497E	0.706	5	0.080	0.073	0.076	0.007		
10/30/99	2:27:54	00-04.253N	146-49.639E	0.698	5	0.101	0.077	0.089	0.024		
10/31/99	3:14:54	03-11.646N	147-01.074E	0.666	5	0.058	-	0.058	-		
11/1/99	2:55:56	04-51.610N	146-57.680E	0.686	5	0.111	0.095	0.103	0.016		
11/2/99	4:58:56	04-52.663N	146-57.765E	0.707	5	0.091	0.093	0.092	-0.002		
11/3/99	3:04:58	05-03.262N	146-56.767E	0.702	5	0.070	0.089	0.080	-0.019		
11/4/99	8:17:57	01-20.885N	150-19.947E	0.740	5	0.078	0.134	0.106	-0.056		
11/5/99	9:04:57	03-28.133S	154-11.575E	0.769	5	0.053	-	0.053	-		
11/6/99	0:16:04	05-00.971S	155-58.593E	0.741	6	0.057	0.060	0.059	-0.003		
11/6/99	12:09:56	02-43.121S	155-57.966E	0.832	6	0.098	0.106	0.102	-0.008		
11/7/99	1:28:59	02-01.656S	155-56.713E	0.765	6	0.127	0.122	0.124	0.005		
11/7/99	9:07:55	00-47.680S	156-05.974E	0.977	6	0.172	0.182	0.177	-0.010		
11/8/99	0:17:54	00-00.111S	156-07.859E	0.708	6	0.141	-	0.141	-		
11/9/99	1:35:55	00-01.685N	156-02.019E	0.695	6	0.098	-	0.098	-		
11/10/99	3:11:55	02-04.483N	155-59.647E	0.701	6	0.088	-	0.088	-		
11/11/99	3:06:55	01-57.142N	156-03.543E	0.698	6	0.081	0.083	0.082	-0.002		
11/12/99	1:42:53	02-16.484N	155-57.133E	0.710	6	0.089	0.086	0.088	0.003		
11/13/99	3:14:53	05-01.209N	155-58.183E	0.700	6	0.049	0.049	0.049	0.000		
11/14/99	3:07:54	07-57.859N	156-01.222E	0.690	6	0.047	-	0.047	-		
11/15/99	8:08:52	13-01.165N	151-22.191E	0.700	6	0.039	0.037	0.047	0.002		
11/16/99	9:34:56	14-33.449N	150-00.131E	0.705	6	0.042	0.041	0.042	0.001		
11/17/99	4:37:51	15-29.705N	149-55.823E	0.716	6	0.056	0.054	0.056	0.002		

Table 6.3.1-3 Results of fluorescence and chl.a concentraion for the sea surface samples.

	_		-								
Sampling Date	Sampling Time	Sampling	g Position	Tctd	Sctd	Ssal	Sctd-Ssal	Cctd	Csal	Cctd-Csal	Remarks
(UTC)	(UTC)	latitude	longitude	(IPTS-68)	(PSS78)	(PSS78)	(PSS78)	(S/m)	(S/m)	(S/m)	
10/15/99	12:51	32-51.350N	143-04.671E	27.4439	34.0042	33.9867	0.0175	5.4222	5.4198	0.0024	shifting
10/16/99	01:35	29-49.706N	143-03.212E	28.3617	34.4489	34.4430	0.0059	5.5811	5.5802	0.0009	stoppage
10/17/99	01:03	24-48.782N	143-43.764E	29.0874	34.6065	34.5981	0.0084	5.6802	5.6789	0.0013	shifting
10/20/99	12:08	12-52.462N	143-18.170E	29.8929	34.5511	34.5459	0.0052	5.7571	5.7563	0.0008	shifting
10/21/99	01:27	11-14.655N	140-09.504E	29.9113	34.2246	34.2196	0.0050	5.7106	5.7099	0.0007	shifting
10/22/99	13:12	06-59.978N	137-00.089E	30.1482	33.4602	33.4275	0.0327	5.6216	5.6167	0.0049	stoppage
10/23/99	11:38	03-59.853N	137-19.977E	29.7811	33.5861	33.5828	0.0033	5.6025	5.6020	0.0005	stoppage
10/24/99	01:30	02-16.650N	137-41.932E	30.3038	33.9611	33.9595	0.0016	5.7125	5.7122	0.0003	shifting
10/25/99	04:11	02-03.840N	138-05.180E	30.3526	34.0251	34.0201	0.0050	5.7271	5.7264	0.0007	stoppage
10/26/99	00:32	00-45.804N	137-57.273E	30.1317	33.9427	33.9384	0.0043	5.6918	5.6912	0.0006	shifting
10/27/99	03:14	00-04.346N	138-01.798E	29.8469	34.1675	34.146	0.0215	5.6954	5.6923	0.0031	stoppage
10/28/99	04:04	00-00.263N	142-03.982E	29.6341	34.6182	34.6166	0.0016	5.7396	5.7393	0.0003	shifting
10/29/99	04:00	00-02.737S	146-59.227E	29.7537	34.7343	34.7346	-0.0003	5.7694	5.7694	0.0000	shifting
10/29/99	13:58	00-03.215S	146-58.557E	29.5021	34.7278	34.7282	-0.0004	5.7417	5.7418	-0.0001	stoppage
10/30/99	02:26	00-04.246N	146-49.650E	29.6219	34.7085	34.7065	0.0020	5.7516	5.7513	0.0003	stoppage
11/1/99	13:02	04-53.329N	146-57.789E	29.8884	33.377	33.3784	-0.0014	5.5825	5.5827	-0.0002	stoppage
11/2/99	04:56	04-52.637N	146-57.704E	30.1285	33.4587	33.458	0.0007	5.6193	5.6192	0.0001	shifting
11/2/99	21:52	05-04.750N	146-57.100E	29.8316	33.4169	33.4142	0.0027	5.5826	5.5822	0.0004	stoppage
11/3/99	04:18	05-01.280N	146-56.295E	30.1406	33.4626	33.4587	0.0039	5.6212	5.6206	0.0006	stoppage
11/4/99	08:16	01-21.320N	150-19.690E	29.4508	34.6371	34.6359	0.0012	5.7230	5.7228	0.0002	shifting
11/5/99	12:46	03-48.723S	155-00.331E	29.9623	35.0308	35.0431	-0.0123	5.8353	5.8372	-0.0019	shifting
11/6/99	00:14	05-00.838S	155-58.334E	29.8884	34.7637	34.7664	-0.0027	5.7880	5.7884	-0.0004	stoppage
11/6/99	12:12	02-42.579S	155-57.944E	29.7939	35.4459	35.4583	-0.0124	5.8784	5.8802	-0.0018	shifting
11/6/99	23:48	02-05.024S	156-00.824E	29.4835	35.4274	35.4325	-0.0051	5.8422	5.8429	-0.0007	stoppage
11/7/99	02:58	02-02.020S	155-56.409E	29.6661	35.4378	35.4351	0.0027	5.8634	5.8630	0.0004	stoppage
11/8/99	00:07	00-00.058S	156-08.068E	29.0964	34.8875	34.8824	0.0051	5.7220	5.7213	0.0007	shifting
11/9/99	01:35	00-01.693N	156-02.018E	29.5059	34.8784	34.8754	0.0030	5.7642	5.7638	0.0004	stoppage
11/10/99	03:10	02-04.480N	155-59.646E	29.5386	34.7365	34.7345	0.0020	5.7469	5.7466	0.0003	stoppage
11/11/99	03:05	01-57.145N	156-03.602E	29.6974	34.8156	34.8107	0.0049	5.7754	5.7747	0.0007	stoppage
11/12/99	01:34	02-14.006N	155-56.955E	29.6085	34.8209	34.8167	0.0042	5.7667	5.7660	0.0007	shifting
11/13/99	03:13	05-01.209N	155-58.192E	29.8009	33.5810	33.5815	-0.0005	5.6038	5.6038	0.0000	shifting
11/14/99	00:57	08-04.127N	155-59.777E	29.5841	33.6474	33.6459	0.0015	5.5913	5.5911	0.0002	stoppage
11/15/99	02:42	11-55.169N	152-22.302E	29.4469	34.8262	34.8264	-0.0002	5.7503	5.7503	0.0000	stoppage
11/16/99	01:30	14-34.292N	150-03.821E	29.4001	34.8302	34.8178	0.0124	5.7459	5.7441	0.0018	stoppage
11/16/99	16:24	14-28.155N	150-00.072E	29.3763	34.8613	34.8541	0.0072	5.7480	5.7469	0.0011	stoppage
11/17/99	02:22	15-30.787N	149-58.014E	29.3172	34.8398	34.8348	0.0050	5.7385	5.7378	0.0007	stoppage
11/17/99	06:51	15-28.755N	149-53.707E	29.2998	34.8392	34.8326	0.0066	5.7366	5.7356	0.0010	stoppage
11/18/99	02:57	14-50.975N	147-57.397E	29.2638	34.7708	34.764	0.0068	5.7228	5.7218	0.0010	shifting

 Table 6.3.2-1 Comparison of salinity between salinity sensor of Sea Surface Monitoring System and samples analyzed by Autosal salinometer.

Figure 6.3.1-1 Comparison between the temperature value measured by *Sea Surface Monitoring System* and by CTD at the down cast (CTD temperatures were used at the pressure of 5db and average of 4 to 6db).

Figure 6.3.1-2 Comparison between the D.O. value measured by D.O. sensor of *Sea Surface Monitoring System* and by the Winkler method for 14 samples during MR99-K06 Cruise.

Note: The value of both axis in this figure were different.

Figure 6.3.1-3 difference of D.O. value between D.O. sensor of *sea Surface Monitoring System* and the Winkler method during MR99-K06 Cruise.

Figure 6.3.1-4 Comparison between the concentraion of chl. *a* and fluorescence of *Sea Surface Monitoring System* for 14 samples during MR99-K06 Cruise. Note: The samples in this Figure were only 6ml of extraction volume.

Fig 6.3.1-5 Ship's track (A), temperature (B), salinity (C), D.O. (D) and fluorescence (E) of surface water from Hachinohe to Guam.

Fig 6.3.1-6 Ship's track (A), temperature (B), salinity (C), D.O. (D) and fluorescence (E) of suface water from 8N to 0N along 137E and 138E line.

Fig 6.3.1-7 Ship's track (A), temperature (B), salinity (C), D.O. (D) and fluorescence (E) of suface water from 0 to 5N along 147E line.

Fig 6.3.1-8 Ship's track (A), temperature (B), salinity (C), D.O. (D) and chl. a (E) of suface water from 5S to 8N along 156E line.

Fig 6.3.1-10 Ship's track (A), temperature (B), salinity (C), D.O. (D) and fluorescence (E) of suface water from 5N, 147E to 5S, 156E.

Figure 6.3.2-1 difference between the salinity values measured by TSG (Sctd) of *the Sea Suraface Monitoring System* and by Autosal salinometer (Ssal) for 40 samples. Arrow denote washing the conductivity sensor.

Figure 6.3.2-2 difference between the conductivity values calculated from TSG (Cctd) of *the Sea Suraface Monitoring System* and Autosal salinometer (Csal) for 40 samples. Arrow denote washing the conductivity sensor.

6.4 Shipboard ADCP

(1) Personnel

Masaki Hanyu (GODI): Operation Leader Satoshi Okumura (GODI)

(2) Parameters

(2-1) N-S (North-South) and E-W (East-West) velocity components of each depth cell [cm/s]

(2-2) Echo intensity of each depth cell [dB]

(3) Methods

We measured current profiles by VM-75 (RD Instruments, Inc. U.S.A.) shipboard ADCP (Acoustic Doppler Current Profiler) throughout MR99-K06 cruise from the departure of Sekinehama, Japan on 13 October 1999 to the day before arrival of Guam, U.S.A. on 18 November 1999.

Major parameters for the measurement configuration are as follows;

Frequency :	75kHz
Average :	every 300 sec
Depth cell length :	1600 cm
No. of depth cells :	40
First depth cell position :	30.9 m
Last depth cell position :	654.9 m
ADCP ensemble time :	32.4 sec
Ping per ADCP raw data :	8

(4) Preliminary results

Two-hourly current vectors of 2-hour running mean averaged data are plotted. (Fig 6.4-1: from Sekinehama to Guam; Fig.6.4-2 and -3: from Guam to Guam). We could not plot whole cruise data in one sheet because of the software limitation.

(5) Data archives

ADCP data obtained in this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be under their control.

11:10:55 10/13/1999

6.4-2

6,4-3

6.5 Underway geophysics

6.5.1 Sea surface gravity

(1) Personnel

Masaki Hanyu (GODI), Operation leader Satoshi Okumura(GODI) Naoto Morioka(Mirai crew)

(2) Method

We measured relative gravity values by LaCoste-Romberg onboard gravity meter S-116 throughout MR99-K06 cruise from the departure of Sekinehama, Japan on 13 October 1999 to the day before arrival of Guam, U.S.A. on 18 November 1999 except Indonesian EEZ.

To obtain absolute gravity values, we also measured relative value by portable gravity meter(Scintrex gravity meter CG-3M) at compareable points, Sekinehama gravity base and Guam port reference points, already known absolute gravity values. Moreover, measured values are corrected based on the bathymetry (free-air) and ship movement (etoveth). Consequently, the corrected gravity data should involve the information of crustal and upper mantle structures how they compensate the discrepancy from isostatic balance.

(3) Preliminary results

The absolute gravity values caliculated in comparison with absolute values of reference points at Sekineham and Guam port are shown in Table 6.5.1-1.

(4)Data archives

Gravity data obtained in this cruise will be submitted to the DMO (Data Management Office), JAMSTEC and will be under their control.

Gravity Variations on each Port of R/V MIRAI, MR99-K06 Cruise

Station	date	time	Go	ih	G _c	B-O	G _{abs}	SLH	Draft	Gs
	(JST)		mgal	cm	mgal	mgal	mgal	cm	cm	mgal
Sekinehama JAMSTEC G-Base	1999.10.13	12:53:02	3965.006	44.9	3965.145		980,368.07		+	GODI measured
Sekinehama Port	1999.10.13	12:34:29	3968.644	45.3	3968.784	-3.639	980,371.71			
L & R	1999.10.13	12:30:00	12639.100	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	275	620	980,372.60
							i 			
	I	;		l l		!	l · - ····		·]	······································
Sekinehama-Guam (L & R)			1844.300						-	1,843.15
Guam-Guam(L&R)			-1.300				· · · · · · · · · · · · · · · · · · ·			2.08
		· ·								•
Sekinehama-Guam-Guam							1,844.96			
		: 					·		+	
								1	1	· · · · · · · · · · · · · · · · · · ·

Go : Observation Value og Gravity Meter, Gc : Correction of instrumental height, B-O : Gravity Base - Go, Gabs : Absolute G-Values SLH : Sea Level Height, Gs : Absolute G-Values of Sea Gravity Meter

6.5.1-2

6.5.2 Surface three component magnetometer

(1) Personnel

Masaki Hanyu (GODI), Operation leader Satoshi Okumura(GODI)

(2) Objective

In order to continuously obtain the geomagnetic field vectors on the sea surface, a three component magnetometer is a very useful equipment. The magnetic force on the sea is affected by induction of magnetized body beneath the subbottom in addition to the earth dipole magnetic field. The magnetic measurement on the sea is, therefore, one of utilities for geophysical reconstruction of crustal structure and so on. The geomagnetic field can be divided into three components, i.e., two horizontal (x & y)and one vertical (z) moments. Three-component observation instead of total force includes much information of magnetic structure of magnetized bodies.

(3) Method

The sensor is a three axes fluxgate magnetometer on the top of foremast and sampling period is 8Hz. The timing of sampling is controlled by the 1pps standard clock of GPS signal. Every one second data set which consists of 310 bytes; navigation information, 8 Hz three component of magnetic forces and VRU data were recorded in the external hard disk. The data set is simultaneously fed to the Mirai network server through ethernet LAN system.

(4)Preliminary results

During MR99-K06 cruise, the magnetic force is continuously measured from Sekinehama to Guam except Indonesian EEZ. Data obtained on the sea will be analyzed in near future. The procedure of quality control is mainly to eliminate the effect of ship's magnetized vector condition.

(5)Data archives

Magnetic force data obtained during this cruise will be submitted to DMO (Data Management Office), JAMSTEC and will be under their control.

6.5.3 Multi narrow beam echo sounding system

(1)Personnel

Masaki Hanyu (GODI), Operation leader Satoshi Okumura(GODI) Naoto Morioka(Mirai crew)

(2)Objective

R/V Mirai has installed a multi narrow beam echo sounding system manufactured by SeaBeam Inc., SeaBeam 2100 system. This system utilized bathymetry mapping. The newest one can measure more than 120 degrees wider swath and available all depth of the world ocean floor.

(3)Method

We carried out gridding survey for bathymetry mapping around four TRITON bouy deployment sites, 8° N137°E, 5° N137°E, 2°N138° and 0°N138°E, and additional survey at seven area where the bathymetry maps had been created during the previous cruises, MR98-02 and MR99-K01. Each area is approximately 200 n.m. square or less, and depth from 5800m to 1500m. After the gridding survey, the bathymetry data were fed to post processing W/S by ftp command. The post processing system furnished on this MNBES has two high performance W/S Indigo² which have "mb-system" software on the basis of the Genetic Mapping Tool (GMT) called SeaView. Consequently, measured data can easily be edited on W/S by automatically or manually to provide gridding data and map images. Finally colored map from A to E size were used to decide to buoy deployment locations.

(4)Results

The bathymetrical contour maps have been utilize for mooring TRITON buoy. The accuracy seems to be enough to deploy the mooring at any depth. It is, of course, required to keep high accuracy that precise correction of sound speed of the target area can be performed based on the temperature profiles of water column. During this cruise, CTD/XCTD casts have done at the deployment sites or very close to the sites, we could use the CTD/XCTD data to derive sound velocity. The newest system has continuously measured the surface water sound velocity in real time, because sound velocity at the hydrophone alley is a very important factor to determine the angle of acoustic ray path which affects the outer beam of wider swath. Unfortunately, the SSV meter had a trouble whole of the cruise, so we input the newest sound velocity data site by site.

(5)Data archives

Bathymetry data obtained during this cruise will be submitted to DMO (Data Management Office), JAMSTEC and will be under their control.

7 Special Observation

7.1 1	FRITON	moorings
-------	---------------	----------

7.1.1 TRITON Mooring Operation

(1) Personnel

Yoshifumi Kuroda	(JAMSTEC)	Principal Investigator (not on board)
Kentaro Ando	(JAMSTEC)	
Masayuki Fujisaki	(MWJ):	Operation leader
Norifumi Ushijima	(JAMSTEC)	Leader of meteorological sensor validation
Katsuhiro Uno	(MWJ):	Technical staff
Takeo Matsumoto	(MWJ):	Technical staff
Aya Kato	(MWJ):	Technical staff
Tadahiko Shirato	(MWJ):	Technical staff
Satoshi Ozawa	(MWJ):	Technical staff
Fujio Kobayashi	(MWJ):	Technical staff
Haruya Adachi	(MWJ):	Technical staff
Kentaro Shiraishi	(MWJ):	Technical staff
Nobuharu Komai	(MWJ):	Technical staff
Keisuke Wataki	(MWJ):	Technical staff

(2) Objectives

The air-sea interaction over the warmest sea surface temperature region in the western tropical Pacific Ocean called warm pool affects the global atmosphere and causes El Nino phenomena. The formation mechanism has not been well understood. Long term data sets of temperature, salinity, currents, so on are required at fixed locations. In particular, the oceanic change to the winds in the western tropical Pacific is important in that region of origin of El Nino and rain fall over the ocean is also important parameter to study El Nino and Asia-Australian Monsoon. The TRITON program aims to obtain the basic data to improve the predictions of El Nino and variations of Asia-Australian Monsoon system.

TRITON will be integrated with the existing TAO(Tropical Atmosphere Ocean) array, which is presently operated by the Pacific Marine Environmental Laboratory/National Oceanic and Atmospheric Administration of the United States in cooperation with France, Chinese Taipei and Japan. TRITON is a component of international research program of CLIVAR (Climate Variability and Predictability), which is a major component of World Climate Research Program sponsored by the World Meteorological Organization, the International Council of Scientific Unions, and the Intergovernmental Oceanographic Commission of UNESCO. TRITON will also contribute to the development of GOOS (Global Ocean Observing System) and GCOS (Global Climate Observing System).

The six TRITON buoys have been successfully deployed during this R/V Mirai cruise (MR99-K06), and recovered two TRITON buoys.

(3) Measured parameters

-	
Meteorological parameters:	wind speed, direction, atmospheric pressure, air temperature, relative
	humidity, radiation, precipitation.
Oceanic parameters:	water temperature and conductivity at 1.5m, 25m, 50m, 75m, 100m,
	125m, 150m, 200m, 300m, 500m 750m, depth at 300m and 750m,
	currents at 10m.

7.1.1.-1

Four TRITON buoys will be recovered five month after and replaced by newbuoys, as well as two TRITON buoys will be recovered one year after and replaced by newbuoys. The recovered buoy will be maintained at JAMSTEC Mutsu-Branch where is the mother port of R/V Mirai.

(4) Instrument	
1) CTD and CT	
SBE-37 IM MicroCAT	
A/D cycles to average :	4
Sampling Interval :	600sec
Measurement range Temperature :	-5 ~ +35
Measurement range Conductivity :	0 ~ +7
Measurement range Pressure :	0 ~ full scale range
2) CRN	
SonTek Argonaut ADCM	
Sensor frequency :	1500kHz
Sampling Interval :	600sec
Average Interval :	120sec
3) Floating Sensor	
SCTI ORG-115DX	
Precipitation	
PARPSCIENTIFIC. Inc. DIGIQUARTZ	FLOATING BAROMETER 6000SERIES
Atmospheric pressure	
Woods Hole Institution ASIMET	
Relative humidity/air temperature	
Shortwave radiation	
Wind speed/direction	
Sampling Interval :	60sec
Data analysis :	600sec averaged

(5) Locations of TRITON Buoys

Six TRITON buoys have been successfully deployed in the EEZs of Federated States of Micronesia,Indonesia and Papua New Guinea using R/V Mirai.

1) TRITON deployed

Nominal location	2N,138E
ID number at JAMSTEC	12001
Number on surface float	T16
ARGOS PTT number	9771
Deployed date	25 .Oct. 1999
Exact location	2 03.95 N, 138 03.78 E
Depth	4265 m
Nominal location	0,138E
ID number at JAMSTEC	13001
Number on surface float	T17
ARGOS PTT number	9772

Deployed date	27 .Oct. 1999	
Exact location	0 00.09 N, 138	02.92 E
Depth	4216 m	
Nominal location	0,147E	
ID number at JAMSTEC	09002	
Number on surface float	T04	
ARGOS PTT number	11826	
Deployed date	29 .Oct. 1999	
Exact location	0 02.19N, 146	59.99 E
Depth	4550 m	
Nominal location	5NI 147E	
ID symbos at LA METEC	JN,147E	
Number on surface flast	07002 T02	
A DCOS DTT number	105	
ARGOS PTT humber	11825 02 New 1000	
Deployed date	05 .INOV. 1999	57 07 F
Exact location	5 02.301N, 140	37.07 E
Depth	4203 III	
Nominal location	0,156E	
ID number at JAMSTEC	04003	
Number on surface float	T02	
ARGOS PTT number	11824	
Deployed date	09 .Nov. 1999	
Exact location	0 00.98N,156	02.52 E
Depth	1953 m	
Nominal location	2NI 156E	
ID sumber at LAMSTEC	21N,130E	
ID number at JAMSTEC	03005 T01	
A D C O S DTT manual an	101	
ARGOS PTT number	11823	
Deployed date	10 .Nov. 1999	00.02 E
Exact location	2 03.48 IN, 150	00.03 E
Depth	2397 m	
2) TRITON recovered		
Nominal location	2N,156E	
ID number at JAMSTEC	03002	
Number on surface float	T07	
ARGOS PTT number	3594	
Deployed date	01 .Mar. 1999	
Recovered date	11 .Nov. 1999	
Exact location	1 54.97 N, 156	00.13 E
Depth	2550 m	

7.1.1.-3

Nominal location	0,147E
ID number at JAMSTEC	09001
Number on surface float	T13
ARGOS PTT number	7961
Deployed date	20 .Feb. 1999
Recovered date	30 .Oct. 1999
Exact location	0 05.44S, 156 01.95 E
Depth	4307 m
3) Changed WND Sensor	
Nominal location	5N,156E
ID number at JAMSTEC	02002
Number on surface float	T06
ARGOS PTT number	3593
Deployed date	27 .Feb. 1999
Changed Sensor date	14 .Nov. 1999
Change Sensor	Wind speed/direction sensor S/N 316 303
Exact location	5 01.15N, 155 58.09E

(6) Data archive

Those hourly averaged data transmitted through ARGOS satellite data transmission system in near real time. The real time data will be provided to meteorological organizations via Global Telecommunication System and utilized for daily weather forecast. The data will be also distributed world wide through Internet from JAMSTEC and PMEL home pages. All data will be archived at JAMSTEC Mutsu Branch.

7.1.2 Intercomparison between shipboard CTD and TRITON data

(1) Personnel

Kentaro Ando(JAMSTEC) Takeo Matsumoto (MWJ) Tetsuya Nagahama (MWJ) not on board

(2) Objectives

TRITON CTD data validation.

(3) Measured parameters

- Temperature
- Conductivity
- Pressure

(4) Methods

We used the same CTD system with general CTD observation. We conducted 1 CTD casts at each TRITON buoy site. The cast was performed immediately after the deployment.

(5) Results

The temperature, Conductivity and salinity data from TRITON buoy showed good agreement with CTD data in each comparision.

See the attached figures and tables.(fig.7.1.2-1 ~ fig.7.1.2-14,table.7.1.2-1 ~ fig.7.1.2-4)

(6) Data archive

All of raw and processed CTD data files were copied into 3.5 inch magnetic optical disks and submitted to JAMSTEC Data Management Office. All original data will be stored at JAMSTEC Mutsu brunch. (see 6.2.1)

Buoy No.	<u>T16</u>	Position	<u>2N 138E</u>
Observation No.	12001	Comparision Time	<u>3:40(UTC)</u>
Operation	After Deploy		
		TRITON-CTD	
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)
1.5	-0.15	-0.003	0.0884
25	****	****	*****
50	0.04	0.004	0.0041
75	-0.31	-0.056	-0.1597
100	0.01	0.001	0.0049
125	-0.04	-0.008	-0.0221
150	-0.02	-0.005	-0.0158
200	-0.01	-0.003	-0.0110
250	0.19	0.032	0.1315
300	0.24	0.017	-0.0547
500	0.12	0.012	0.0125
750	0.06	0.006	0.0034
750	0.00	0.000	0.0051
Buoy No	T17	Position	0 138F
Observation No.	13001	Comparision Time	4.00(UTC)
Observation No.	After Deploy	Comparision Time	4.00(01C)
Operation	<u>Alter Deploy</u>	TDITON CTD	
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(nsu)
15	-0.16	-0.062	-0.3026
25	0.00	0.002	0.0119
50	-0.01	-0.001	0.0061
75	-0.06	-0.007	0.0001
100	-0.00	-0.007	0.1233
125	-0.12	-0.021	0.0282
125	-0.23	-0.021	0.0202
200	-0.52	-0.047	0.0391
200	-0.01	-0.003	-0.0130
230	0.04	0.162	0.0066
500	0.10	0.013	0.0000
300	0.01	0.000	-0.0080
/50	-0.01	0.000	0.0112
Duoy No	T 04	Desition	0 147E
Observation No.	$\frac{104}{00002}$	Comparision Time	$\frac{0.147L}{8.40(UTC)}$
Observation No.	<u>09002</u> After Depley	Comparision Time	<u>8.40(01C)</u>
Operation	Alter Deploy	TDITON CTD	
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(nsu)
15		0.022	0.1606
25	-0.02	-0.004	-0.0097
50	-0.01	-0.002	-0.0005
75	-0.57	-0.062	-0.0014
100	-0.09	-0.002	0.0218
125	-0.18	-0.014	0.0416
150	-0.02	-0.006	-0.0269
200	-0.05	-0.013	-0.0599
250	0.63	0.063	0.0131
300	0.51	0.000	-0 4667
<u> </u>			
טאר	0.25	0.024	0.0195
<u> </u>	0.25	0.024	0.0195

Table.7.1.2-1 Difference between TRITON Buoy and CTD

Buoy No.	<u>T13</u>	Position	<u>0 147E</u>
Observation No.	<u>09001</u>	Comparision Time	<u>3:00(UTC)</u>
Operation	Before Recovery		
		TRITON-CTD	
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)
1.5	0.27	0.032	0.0296
25	-0.02	-0.004	-0.0026
50	0.04	-0.012	-0.1060
75	0.55	0.060	0.0181
100	0.00	0.004	0.0283
125	-0.48	-0.057	-0.0425
150	-0.23	-0.028	-0.0266
200	-0.14	-0.017	-0.0232
250	-0.09	-0.011	-0.0206
300	0.04	0.003	-0.0047
500	0.13	0.011	-0.0126
750	0.02	0.001	-0.0078
Buoy No.	<u>T03</u>	Position	<u>5N 147E</u>
Observation No.	07002	Comparision Time	<u>3:20(UTC)</u>
Operation	<u>After Deploy</u>		
		TRITON-CTD	
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)
1.5	0.08	0.009	0.0153
25	0.01	0.002	0.0126
50	-0.05	-0.012	-0.0421
75	0.01	-0.006	-0.0413
100	-0.05	-0.023	-0.1156
125	-0.31	-0.032	0.0077
150	-0.51	-0.050	0.0237
200	-0.35	-0.037	-0.0289
250	-0.04	-0.006	-0.0141
300	-0.02	-0.002	-0.0007
500	0.02	0.001	-0.0081
750	-0.03	-0.003	-0.0051
Buoy No.	<u>T10</u>	Position	<u>5S 156E</u>
Observation No.	06001	Comparision Time	<u>2:00(UTC)</u>
Operation	<u>During Visit</u>		
		TRITON-CTD	
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)
1.5	0.16	0.018	0.0136
25	-0.01	0.015	0.1170
50	0.01	0.007	0.0473
75	-0.06	-0.002	0.0364
100	0.00	0.005	0.0417
125	-0.15	-0.008	0.0601
150	0.52	0.049	-0.0431
200	2.32	0.247	0.0423
250	1.25	0.139	0.1424
300	0.33	0.035	0.0337
500	0.00	0.000	-0.0002
750	0.07	0.008	0.0169

Table. 7.1.2-2 Difference between TKTTON Duby and CTL	Та	ble	.7.1	.2-2	Differ	ence	between	TR	ITON	Buoy	and	CTD
---	----	-----	------	------	--------	------	---------	----	------	------	-----	-----

Buoy No.	<u>T09</u>	Position	<u>2S 156E</u>	
Observation No.	05001	Comparision Time	2:00(UTC)	
Operation	During Visit			
		TRITON-CTD		
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)	
1.5	0.60	0.094	0.2092	
25	-0.05	-0.003	0.0176	
50	-0.09	-0.016	-0.0400	
75	-0.09	-0.017	-0.0511	
100	-0.19	-0.021	0.0062	
125	-0.12	-0.011	0.0172	
150	-0.11	-0.009	0.0245	
200	-1.01	-0.116	-0.1247	
250	0.02	-0.001	-0.0242	
300	0.02	0.002	0.0047	
500	-0.09	-0.009	-0.0056	
750	-0.05	-0.005	-0.0020	
Buoy No.	<u>T02</u>	Position	<u>0 156E</u>	
Observation No.	<u>04003</u>	Comparision Time	<u>3:00(UTC)</u>	
Operation	<u>After Deploy</u>			
	TRITON-CTD			
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)	
1.5	0.09	0.010	0.0092	
25	-0.17	-0.018	0.0048	
50	-0.02	-0.003	-0.0034	
75	-0.01	-0.004	-0.0132	
100	-0.02	-0.003	0.0010	
125	0.02	-0.001	-0.0182	
150	0.23	0.021	-0.0253	
200	0.09	0.016	0.0665	
250	-0.40	-0.043	-0.0298	
300	-0.03	-0.004	-0.0142	
500	-0.03	-0.006	-0.0264	
750	0.00	0.000	0.0023	
Buoy No.	<u>T01</u>	Position	<u>2N 156E</u>	
Observation No.	03003	Comparision Time	<u>3:00(UTC)</u>	
Operation	<u>After Deploy</u>			
	TRITON-CTD			
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)	
1.5	-0.04	-0.004	0.0071	
25	-0.03	-0.005	-0.0064	
50	-0.02	-0.002	0.0073	
75	-0.01	-0.001	0.0069	
100	0.01	0.001	0.0037	
125	0.01	0.000	-0.0007	
150	-0.02	-0.004	-0.0037	
200	0.14	0.006	-0.0680	
250	0.01	0.001	0.0005	
300	-0.01	-0.002	-0.0077	
500	0.06	0.005	-0.0022	
750	-0.02	-0.002	0.0018	

Table.7.1.2-3 Difference between TRITON Buoy and CTD

Buoy No.	<u>T07</u>	Position	<u>2N 156E</u>	
Observation No.	03002	Comparision Time	22:00(UTC)	
Operation	Before Recovery			
	TRITON-CTD			
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)	
1.5	0.00	-0.009	-0.0562	
25	0.00	0.001	0.0117	
50	0.00	0.001	0.0113	
75	-0.01	-0.003	-0.0086	
100	0.00	0.002	0.0169	
125	0.02	0.007	0.0446	
150	0.74	0.104	0.2098	
200	0.54	0.053	0.0073	
250	-0.01	-0.002	-0.0098	
300	-0.08	-0.009	-0.0081	
500	-0.24	-0.024	-0.0150	
750	-0.05	-0.005	-0.0005	
Buoy No.	<u>T06</u>	Position	<u>5N 156E</u>	
Observation No.	02002	Comparision Time	<u>4:00(UTC)</u>	
Operation	<u>During Visit</u>			
		TRITON-CTD		
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)	
1.5	0.17	0.022	0.0391	
25	0.00	0.007	0.0512	
50	-0.04	0.003	0.0497	
75	0.02	0.003	0.0091	
100	-0.03	0.005	0.0590	
125	-0.40	-0.040	0.0240	
150	-0.48	-0.051	-0.0061	
200	0.24	0.021	-0.0204	
250	0.32	0.028	-0.0214	
300	0.05	0.003	-0.0103	
500	-0.08	-0.008	-0.0080	
750	0.08	0.007	-0.0029	
Buoy No.	<u>T05</u>	Position	<u>8N 156E</u>	
Observation No.	01002	Comparision Time	<u>3:00(UTC)</u>	
Operation	<u>During visit</u>			
	TRITON-CTD			
Pressure(db)	Tempareture()	Conductivity(S/m)	Salinity(psu)	
1.5	0.20	0.026	0.0431	
25	0.02	0.014	0.0868	
50	-0.07	0.015	0.1581	
75	-0.11	-0.005	0.0500	
100	0.02	0.006	0.0372	
125	-0.29	-0.031	-0.0035	
150	****	****	*****	
200	-0.05	-0.008	-0.0217	
250	-0.01	-0.002	-0.0074	
300	0.06	0.006	0.0012	
500	0.03	0.002	-0.0056	
750	0.14	0.012	-0.0062	

Table.7.1.2-4 Difference between TRITON Buoy and CTD

Lat.2N Long.138E Date 99/10/25 Time 03:40(UTC) After Deploy

fig.7.1.2-1 Compare TRITON with CTD

Lat.EQ Long.138E Date 99/10/27 Time 04:00(UTC) After Deploy

fig.7.1.2-2 Compare TRITON with CTD

Lat.EQ Long.147E Date 99/10/29 Time 08:40(UTC) After Deploy

fig.7.1.2-3 Compare TRITON with CTD

Lat.EQ Long.147E Date 99/10/30 Time 03:00(UTC:Hourly average) Before Recovery

fig.7.1.2-4 Compare TRITON with CTD

Lat.5N Long.147E Date 99/11/03 Time 03:20(UTC) After Deploy

fig.7.1.2-5 Compare TRITON with CTD

Lat.5S Long.156E Date 99/11/6Time 02:00(UTC:Hourly average) During Visit

fig.7.1.2-6 Compare TRITON with CTD

Lat.2S Long.156E Date 99/11/7Time 02:00(UTC:Hourly average) During Visit

fig.7.1.2-7 Compare TRITON with CTD

Lat.EQ Long.156E Date 99/11/09 Time 03:00(UTC) After Deploy

fig.7.1.2-8 Compare TRITON with CTD

Lat.2N Long.156E Date 99/11/10 Time 03:00(UTC) After Deploy

fig.7.1.2-9 Comparision TRITON with CTD

Lat.2N Long.156E Date 99/11/10Time 22:00(UTC:Hourly average) Before Recovery

fig.7.1.2-10 Compare TRITON with CTD

Lat.5N Long.156E Date 99/11/13Time 04:00(UTC:Hourly average) During Visit

fig.7.1.2-11 Compare TRITON with CTD

Lat.8N Long.156E Date 99/11/14 Time 03:00(UTC:Hourly average) During Visit

fig.7.1.2-12 Compare TRITON with CTD

T-S Diagram

fig.7.1.2-13 Comparision TRITON with CTD

T-S Diagram

fig.7.1.2-14 Comparision TRITON with CTD

7.1.3 Inter-comparison of surface meteorological data and current data between TRITON buoy and R/V Mirai

(1) Personnel

Norifumi Ushijima (JAMSTEC): Principal Investigator. Masaki Hanyu (GOJI): Shipboard measurements. Hirokatsu Uno (MWJ): Assembling meteorological sensors on albedo boom at the bow .

(2) Objectives

Data of TRITON buoys is expected to improve the prediction of El Nino and daily weather forecast. For that purpose, it is important to provide qualified data. The shipboard meteorological observation in this report aims to obtain the data for TRITON buoy data validation. During this R/V Mirai cruise (MR99-K06), shipboard meteorological measurements were carried out for a few hours after each deployment, before recovery and during mooring of TRITON buoy.

(3) Measured parameters

TRITON buoy: wind speed, wind direction, air temperature, relative humidity, solar radiation, atmospheric pressure, current speed, current direction.
 R/V Mirai : wind speed, wind direction, air temperature, relative humidity, solar radiation , atmospheric pressure, current speed, current direction.

(4) Methods

Location, sampling interval and data analysis are as follows.

TRITON buoy:	 sampling interval 	10min. (without precipitation)
		continuous (precipitation)
	• data analysis	hourly averaged (without precipitation)
		1-hour total precipitation (precipitation)
Mirai :	 location 	albedo boom at the bow (wind vane/anemometer,
(automatic obs.)		thermometer, hygrometer, pyranometer)
		Weather observation room on the captain deck
		(resonator digital barometer)
		Top of the fore mast (wind vane/anemometer)
		Compass deck (thermometer, hygrometer)
		Top of the main mast (pyrometer)
		Roof top on the anti rolling system room, which is
		as almost same as compass deck level (rain gauge)
		bottom of the ship (Doppler sonar)
	 sampling interval 	1 min.
	• data analysis	hourly averaged
		hourly total precipitation (precipitation)

(5) Results

Results of this observation are as follows. The following tables are all data and the following figures are results of from TRITON T01 to TRITON No.17.

	Observation No.	Buoy No.	Location	table	figure
TRITON	12001	T16	2N-138E	Table 7.1.3-1	Figure 7.1.3-1a to 7.1.3-1h
TRITON	13001	T17	0N-138E	Table 7.1.3-2	Figure 7.1.3-2a to 7.1.3-2f
TRITON	09002	T04	0N-147E	Table 7.1.3-3	Figure 7.1.3-3a to 7.1.3-3h
TRITON	09001	T13	0N-147E	Table 7.1.3-4	Figure 7.1.3-4a to 7.1.3-4f
TRITON	07002	T03	5N-147E	Table 7.1.3-5	Figure 7.1.3-5a to 7.1.3-5h
TRITON	06001	T10	5S-156E	Table 7.1.3-6	Figure 7.1.3-6a to 7.1.3-6f
TRITON	05001	T09	2S-156E	Table 7.1.3-7	Figure 7.1.3-7a to 7.1.3-7f
TRITON	04003	T02	0N-156E	Table 7.1.3-8	Figure 7.1.3-8a to 7.1.3-8h
TRITON	03003	T01	2N-156E	Table 7.1.3-9	Figure 7.1.3-9a to 7.1.3-9h
TRITON	02002	T06	5N-156E	Table 7.1.3-10	Figure 7.1.3-10a to 7.1.3-10h
TRITON	01002	T05	8N-156E	Table 7.1.3-11	Figure 7.1.3-11a to 7.1.3-11h

• wind speed

The height of wind vane on TRITON buoy was different from that at the albedo boom of R/V Mirai (TRITON buoy: 3.5m, albedo boom: 10.0m, above the sea surface). So, wind speed obtained at the albedo boom was generally larger than at TRITON buoy.

During 2-3 hours observations, R/V Mirai were to keep her head against to the wind in the condition of almost drifting, and also to keep the distance from the position of the TRITON buoy within 2 sea miles.

In most cases, averaged difference was from 0.2 to 0.3 m/s between TRITON and the albedo boom data.

For verification of the data at albedo boom, we compared the wind speed at foremast of R/V Mirai and albedo. They showed almost the same wind speed tendancy.

wind direction

In most cases, averaged difference was from 10 to 20 degrees between TRITON and the albedo boom data.

For verification of the data at albedo boom, we compared the wind direction at foremast of R/V Mirai and albedo. They showed almost the same wind direction.

· Air temperature and relative humidity

The height of thermometer and hygrometer on the TRITON buoy was different from that of thermometer and hygrometer at albedo boom (TRITON buoy: 2.2m, albedo boom: 9.8m, above the sea surface). So, air temperature and relative humidity at albedo boom were generally lower than those on TRITON buoy.

The air temperature and relative humidity on TRITON buoy showed similar time change at albedo boom. The temperature differences between TRITON and albedo data were about 0.2-0.3 degree C. There was a case of which albedo temperature was a little higher than TRITON temperature, when the wind weakened and the time was in the middle of the daytime. It may be caused by ship heating. Generally, the temperature change was small.

In most case, the relative humidity on TRITON was about 2-8% higher than that at albedo boom.

There was a case of which albedo humidity was a little higher than TRITON humidity, when the wind weakened and the time was in the middle of the daytime. It may be caused by ship heating. Generally, the humidity was also small.

solar radiation

Solar radiation on TRITON buoy showed almost same value comparing with that at albedo boom except in the rainy periods or cloudy periods when the measurements may be affected by small scale cloud movement.

atmospheric pressure

The height of resonator digital barometer on TRITON buoy was different from the height of resonator digital barometer on R/V Mirai (TRITON buoy: 2.0m, captain deck: 13.4m, above the sea surface). Then the observed pressure on R/V Mirai was adjusted to the pressure at mean sea level. As a result of correction to mean sea level, the pressure on TRITON buoy showed almost same value.

· current speed and current direction

Current speed and current direction data obtained from TRITON at 10m depth and Doppler sonar at 8 m depth on R/V Mirai were hourly averaged. The differences were 0.2 to 0.5 knots between the data on TRITON buoy and on R/V Mirai .

(6) Data archive

All data will be archived at JAMSTEC Data Management Office.

(7) Remarks

We will plan the following analysis.

• We will calculate momentum, sensible heat and latent heat flux and roughness to check data of wind speed, air temperature and relative humidity exactly.

Time	Wind S	Speed	Wind Di	irection	Air Tem	perature	Relative l	Humidity	Solar Ra	adiation	Atmospher	ic Pressure	Current	Speed	Current I	Direction
(UTC)	(m/	(sec)	(de	eg)	()	(%	6)	(W/n	n• m)	(hl	Pa)	(ko	nts)	(de	eg)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/10/24 23:00	4.3		286		29.1		76.4		919.6		1009.8					
1999/10/25 0:00	3.5		319		29.3		73.1		1012.4		1009.2		1.1		198	
1999/10/25 1:00	2.7		309		28.3		79.9		150.7		1009.6	1010.0	1.2	0.6	196	166
1999/10/25 2:00	2.6		270		28.9		77.5		799.8		1008.7	1009.5	1.3	0.5	178	164
1999/10/25 3:00	2.1		280		29.3		74.7		985.2		1008.3	1008.7	0.6	0.6	178	176
1999/10/25 4:00	2.8	3.9	293	266	29.2	28.7	75.1	78.1	758.8	949.3	1007.6	1007.7	0.4	0.6	178	177
1999/10/25 5:00	2.4	2.4	270	280	29.1	28.7	76.9	77.9	793.3	468.0	1006.7	1006.8	0.5	0.6	180	184
1999/10/25 6:00	2.9	3.1	294	319	29.4	29.1	73.6	74.5	599.1	528.5	1006.0	1006.0	0.5	0.6	179	189
1999/10/25 7:00	3	3.0	287	317	29.5	29.3	72.3	71.7	408.7	444.6	1005.8	1005.9	0.5	0.6	186	196
1999/10/25 8:00	2.6	3.0	261	279	29.0	29.1	75.7	75.3	80.5	226.1	1005.9	1005.9	0.5	0.5	177	201
1999/10/25 9:00	2.4	2.0	250	229	29.1	28.8	77.3	76.3	10.6	22.6	1006.2	1006.2	0.4	0.4	172	203
1999/10/25 10:00	3.4		256		29.3		73.6		0.2		1007.2	1007.1	0.3	0.4	195	210
1999/10/25 11:00	3.9		250		29.4		74.4		0.0		1007.9	1007.9	0.3	0.4	240	207
1999/10/25 12:00	4.2		259		29.4		73.9		0.1		1008.4	1008.4	0.2	0.5	232	194
1999/10/25 13:00	4.2		259		29.4		74.9		0.1		1008.9	1008.9	0.2	0.5	197	198
99/10/25 14:00	3.8		256		29.4		74.9		0.1		1009.1	1009.1	0.3	0.5	181	186
99/10/25 15:00	3.9		244		29.4		75.3		0.1		1008.9	1008.9	0.3	0.4	213	211
99/10/25 16:00	3.2		236		29.2		74.9		0.0		1008.2	1008.3	0.4	0.4	216	212
99/10/25 17:00	2.7		257		29.1		74.0		0.1		1007.6	1007.6	0.4	0.5	217	228
99/10/25 18:00	2.0		267		29.0		75.3		0.1		1007.2	1007.2	0.4	0.5	219	227
99/10/25 19:00												1007.1		0.5		215
Average for 4H	2.7	29	278.0	298.6	29.3	29.0	74.6	74 8	470.4	416.8	1006-1	1006-1	0.5	0.6	180.2	192.3
Standard deviation	0.3	0.3	15.2	22.4	0.2	0.3	2.1	2.6	303.7	131.9	0.4	0.4	0.0	0.0	3.9	77
for TRITON&MIR	41	-5.0%	15.2	-7%	0.2	0.8%	2.1	-0.3%	505.7	12.9%	0.1	0.0%	0.0	-14 2%	5.7	-6.3%
for fidfortaline		5.070		, ,0		0.070		0.570		12.970		0.070		11.270		0.570

Table 7.1.3-1 Comparison of data observed at TRITON T16 (12001:2N138E) against data observed at Mirai

Time	Wind	Speed	Wind D	irection	Air Ten	perature	Relative	Humidity	Solar Ra	adiation	Atmospher	ic Pressure	Current	Speed	Current I	Direction
(UTC)	(m/	(sec)	(de	eg)	()	(%	6)	(W/n	n• m)	(hl	Pa)	(ko	nts)	(de	eg)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/10/26 19:00	0		0		-20.0		0.0		0.0		850.0					
1999/10/26 20:00	0		0		-20.0		0.0		0.0		850.0					
1999/10/26 21:00	4.2		279		26.4		85.9		23.0		1007.9		1.1		239	
1999/10/26 22:00	3.1	4.3	268	266	26.4	26.2	87.6	87.3	35.1	39.6	1008.1	1008.8	0.9	1.0	279	247
1999/10/26 23:00	3.6	5.2	257	273	27.0	26.7	84.5	84.2	124.1	59.9	1010.0	1009.7	0.6	1.0	276	245
1999/10/27 0:00	6.2	6.8	264	267	27.6	27.2	79.5	83.0	288.3	161.6	1010.6	1010.0	1.7	1.1	259	247
1999/10/27 1:00	4.8	6.3	267	284	27.6	27.4	80.9	80.1	211.3	160.9	1010.4	1010.3	0.9	1.1	257	248
1999/10/27 2:00	3.7	3.8	274	298	27.2	27.3	85.7	82.3	223.6	161.1	1009.9	1010.1	4.1	1.2	262	248
1999/10/27 3:00	0.7	2.4	315	286	25.6	26.5	92.2	87.4	171.9	111.6	1009.5	1009.6	1.2	1.3	251	252
1999/10/27 4:00	1.6	2.1	0	338	26.1	24.9	88.3	91.5	595.8	138.1	1008.4	1008.9	1.2	1.4	248	252
1999/10/27 5:00	1.7	1.7	3	26	26.8	26.1	86.6	87.2	294.7	394.8	1008.0	1008.0	1.2	1.4	248	252
1999/10/27 6:00	4.1	3.5	6	22	26.0	25.8	90.4	89.1	83.1	65.4	1007.6	1007.5	1.1	1.3	246	249
1999/10/27 7:00	1.2	3.1	335	359	25.4	25.1	92.4	92.3	33.6	30.7	1007.9	1007.7	0.9	1.1	244	240
1999/10/27 8:00	2.1	2.4	164	190	25.4	25.1	89.8	90.7	12.3	11.2	1008.3	1008.1	0.8	1.0	239	238
1999/10/27 9:00	1.9		128	134	26.0		89.2		2.8		1008.7	1008.5	0.9	1.0	245	247
Average for 4H Standard deviation for TRITON&MIRA	2.2 1.3 AI	2.6 0.8 -17.1%	86.0 166.0	186.4 187.5 -53.9%	26.1 0.6	25.5 0.6 2.3%	89.4 2.5	90.0 2.3 -0.7%	251.8 255.8	157.2 164.6 60.1%	1008.0 0.3	1008.0 0.6 0.0%	1.1 0.2	1.3 0.1 -14.8%	247 2	248 6 -0.7%

Table 7.1.3-2 Comparison of data observed at TRITON T17 (13001:0N138E) against data observed at Mirai

	pecu	willu Di	rection	Air Tem	perature	Relative I	Humidity	Solar Ra	diation	Atmospher	ic Pressure	Current	Speed	Current I	Direction
(m/s	sec)	(de	g)	()	(%	b)	(W/n	n• m)	(hl	Pa)	(koi	nts)	(de	eg)
TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
0.0		0		-20.0		0.0		0.0		850.0					
1.2		325		29.4		57.2		114.7		1006.3					
1.2		325		29.4		57.2		114.7		1006.3	1007.7	1.0	1.6	110	265
5.9		307		28.7		64.2		540.9		1005.7	1007.2	0.0	1.6		265
5.2		274		28.5		63.6		434.0		1006.5	1006.6	1.5	1.8	327	264
5.2		279		28.4		64.2		247.2		1006.7	1006.4	1.6	1.7	293	262
4.5		270		28.4		61.7		144.3		1007.0	1006.7	1.4	1.7	280	265
5.0		265		28.0		65.7		0.7		1007.4	1006.9	1.8	1.6	170	264
4.7	4.2	283	293	28.1	28.5	66.5	69.6	0.0	0.5	1008.0	1007.5	1.7	1.6	168	262
5.0	4.4	272	295	28.0	28.5	65.2	70.5	0.0	0.6	1008.7	1008.3	1.6	1.6	168	256
4.7	4.3	272	307	28.0	28.3	67.3	72.2	0.0	0.5	1009.0	1008.9	1.7	1.7	164	256
4.8	4.5	271	302	28.0	28.3	68.0	72.9	0.0	0.7	1009.6	1009.6	1.6	1.7	166	258
4.5	4.4	270	293	27.8	28.1	69.2	74.1	0.0	0.5	1009.6	1009.6	1.6	1.5	163	260
4.1	3.1	272	292	27.7	28.0	68.3	73.9	0.0	0.4	1009.0	1009.1	1.6	1.6	164	258
2.8	1.7	267	286	27.6	27.9	68.2	74.7	0.0	0.3	1008.4	1008.5	1.6	1.5	166	259
1.9	1.2	273	289	27.5	27.7	67.9	74.5	0.0	0.5	1007.6	1007.7	1.6	1.7	166	265
1.7	1.5	283	285	27.3	27.6	69.7	74.8	0.0	0.9	1007.1	1007.1	1.7	1.8	169	268
2.3	2.6	272	288	27.2	27.5	69.8	74.3	0.0	1.0	1006.9	1006.9	1.7	1.7	167	268
2.7	2.1	270	292	27.1	27.4	70.4	76.5	0.0	0.8	1007.0	1007.0	1.7	1.7	168	269
3.0	4.7	268	285	27.2	27.5	70.3	76.0	2.2	1.9	1007.5	1007.4	1.6	1.6	165	265
2.9	4.4	254	227	27.6	27.6	67.5	74.7	109.5	84.8	1008.2	1008.1	1.5	1.4	165	260
17	1 1	273 6	208	28.0	28.2	67.2	71.0	0.0	0.6	1000.0	1008 8	1.6	1.6	166	250
4.7	4.4	5 2	270	20.0	20.5	1.5	1 9	0.0	0.0	0.7	1000.0	1.0	0.1	100	230
0.2	0.1 8 7%	5.5	8.2%	0.1	1.2%	1.5	1.0 6.5%	0.0	100.0%	0.7	0.9	0.0	1.7%	2	35.8%
	0.770		-0.270		-1.270		-0.370		-100.0%		0.070		1./70		-33.870
T	(m/s <u>RITON</u> 0.0 1.2 1.2 5.9 5.2 4.5 5.0 4.7 5.0 4.7 4.8 4.5 4.1 2.8 1.9 1.7 2.3 2.7 3.0 2.9 4.7 0.2	$\begin{array}{c c c c c c c } \hline (m/sec) \\ \hline \hline RITON & Mirai \\ \hline 0.0 \\ 1.2 \\ 1.2 \\ 5.9 \\ 5.2 \\ 5.2 \\ 4.5 \\ 5.0 \\ \hline 4.7 & 4.2 \\ 5.0 \\ 4.7 & 4.2 \\ 5.0 \\ 4.7 & 4.2 \\ 5.0 \\ 4.7 & 4.4 \\ 4.1 & 3.1 \\ 2.8 & 1.7 \\ 1.9 & 1.2 \\ 1.7 & 1.5 \\ 2.3 & 2.6 \\ 2.7 & 2.1 \\ 3.0 & 4.7 \\ 2.9 & 4.4 \\ \hline 4.1 & 4.7 \\ 1.9 & 1.2 \\ 1.7 & 1.5 \\ 2.3 & 2.6 \\ 2.7 & 2.1 \\ 3.0 & 4.7 \\ 2.9 & 4.4 \\ \hline 4.7 & 4.4 \\ 0.2 & 0.1 \\ 8.7\% \\ \hline \end{array}$	(m/sec) (de RITON Mirai TRITON 0.0 0 0 1.2 325 325 1.2 325 5.9 1.2 325 5.9 5.9 307 5.2 5.2 274 5.2 5.2 279 4.5 4.5 2700 5.0 5.0 265 4.7 4.5 270 265 4.7 4.2 283 5.0 4.4 272 4.8 4.5 271 4.8 4.5 271 4.5 4.4 270 4.1 3.1 272 2.8 1.7 267 1.9 1.2 273 1.7 1.5 283 2.3 2.6 272 2.7 2.1 270 3.0 4.7 268 2.9 4.4 254 <tr< td=""><td>$\begin{tabular}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c$</td><td>$\begin{tabular}{ c c c c c c c } \hline (deg) & ((\end{tabular}{length{\belowdown}{ll c c c c }} & IRITON & Mirai & TRITON \\ \hline RITON & Mirai & TRITON & 0 & -20.0 \\ \hline 1.2 & 325 & 29.4 \\ \hline 1.2 & 274 & 285 \\ \hline 5.2 & 279 & 28.4 \\ \hline 4.5 & 270 & 288 \\ \hline 4.7 & 4.2 & 283 & 293 & 28.1 \\ \hline 5.0 & 4.4 & 272 & 295 & 28.0 \\ \hline 4.7 & 4.2 & 283 & 293 & 28.1 \\ \hline 5.0 & 4.4 & 272 & 295 & 28.0 \\ \hline 4.7 & 4.3 & 272 & 307 & 28.0 \\ \hline 4.8 & 4.5 & 271 & 302 & 28.0 \\ \hline 4.8 & 4.5 & 271 & 302 & 28.0 \\ \hline 4.5 & 4.4 & 270 & 293 & 27.8 \\ \hline 4.1 & 3.1 & 272 & 292 & 27.7 \\ \hline 2.8 & 1.7 & 267 & 286 & 27.6 \\ \hline 1.9 & 1.2 & 273 & 289 & 27.5 \\ \hline 1.7 & 1.5 & 283 & 285 & 27.3 \\ \hline 2.3 & 2.6 & 272 & 288 & 27.2 \\ \hline 2.7 & 2.1 & 270 & 292 & 27.1 \\ \hline 3.0 & 4.7 & 268 & 285 & 27.2 \\ \hline 2.7 & 2.1 & 270 & 292 & 27.1 \\ \hline 3.0 & 4.7 & 268 & 285 & 27.2 \\ \hline 2.9 & 4.4 & 273.6 & 298 & 28.0 \\ \hline 0.2 & 0.1 & 5.3 & 6 & 0.1 \\ \hline 8.7\% & -8.2\% & -8.2\% \\ \hline \end{tabular}$</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td>$\begin{array}{ c$</td><td></td><td></td></tr<>	$\begin{tabular}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c } \hline (deg) & ((\end{tabular}{length{\belowdown}{ll c c c c }} & IRITON & Mirai & TRITON \\ \hline RITON & Mirai & TRITON & 0 & -20.0 \\ \hline 1.2 & 325 & 29.4 \\ \hline 1.2 & 274 & 285 \\ \hline 5.2 & 279 & 28.4 \\ \hline 4.5 & 270 & 288 \\ \hline 4.7 & 4.2 & 283 & 293 & 28.1 \\ \hline 5.0 & 4.4 & 272 & 295 & 28.0 \\ \hline 4.7 & 4.2 & 283 & 293 & 28.1 \\ \hline 5.0 & 4.4 & 272 & 295 & 28.0 \\ \hline 4.7 & 4.3 & 272 & 307 & 28.0 \\ \hline 4.8 & 4.5 & 271 & 302 & 28.0 \\ \hline 4.8 & 4.5 & 271 & 302 & 28.0 \\ \hline 4.5 & 4.4 & 270 & 293 & 27.8 \\ \hline 4.1 & 3.1 & 272 & 292 & 27.7 \\ \hline 2.8 & 1.7 & 267 & 286 & 27.6 \\ \hline 1.9 & 1.2 & 273 & 289 & 27.5 \\ \hline 1.7 & 1.5 & 283 & 285 & 27.3 \\ \hline 2.3 & 2.6 & 272 & 288 & 27.2 \\ \hline 2.7 & 2.1 & 270 & 292 & 27.1 \\ \hline 3.0 & 4.7 & 268 & 285 & 27.2 \\ \hline 2.7 & 2.1 & 270 & 292 & 27.1 \\ \hline 3.0 & 4.7 & 268 & 285 & 27.2 \\ \hline 2.9 & 4.4 & 273.6 & 298 & 28.0 \\ \hline 0.2 & 0.1 & 5.3 & 6 & 0.1 \\ \hline 8.7\% & -8.2\% & -8.2\% \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{array}{ c $		

Table 7.1.3-3 Comparison of data observed at TRITON T04 (09002:0N147E) against data observed at Mirai

Time	Wind	Speed	Wind D	irection	Air Ten	nperature	Relative	Humidity	Solar Ra	adiation	Atmospher	ic Pressure	Current	t Speed	Current I	Direction
(UTC)	(m/	(sec)	(de	eg)	()	(9	%)	(W/n	n• m)	(h	Pa)	(ko	nts)	(de	eg)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/10/29 13:00	4.7	4.4	295	293	28.4	28.1	74.2	74.1	0	0.5	1009.6					
1999/10/29 14:00	3.9	3.1	292	292	28.3	28.0	73.6	73.9	0	0.4	1009.0					
1999/10/29 15:00	3.1	1.7	294	286	28.1	27.9	73.6	74.7	0	0.3	1008.4					
1999/10/29 16:00	2.3	1.2	297	289	27.9	27.7	74.0	74.5	0	0.5	1007.6					
1999/10/29 17:00	1.8	1.5	310	285	27.8	27.6	73.8	74.8	0	0.9	1007.1	1007.1		1.8		268
1999/10/29 18:00	1.7	2.6	301	288	27.7	27.5	72.3	74.3	0	1.0	1006.8	1006.9		1.7		268
1999/10/29 19:00	2.5	2.1	311	292	27.7	27.4	74.2	76.5	0	0.8	1007.0	1007.0		1.7		269
1999/10/29 20:00	2.9	4.7	296	285	27.7	27.5	75.6	76.0	2.2	1.9	1007.5	1007.4		1.6		265
1999/10/29 21:00	2.7	4.4	282	227	27.8	27.6	74.3	74.7	98.2	84.8	1008.2	1008.1		1.4		260
1999/10/29 22:00	2.2	3.5	277	172	28.1	27.9	72.9	73.4	212.7	224.4	1009.1	1008.9		1.4		257
1999/10/29 23:00	2.5	2.2	270	262	28.1	28.0	71.3	72.6	433.9	335.5	1009.7	1009.6		1.4		250
1999/10/30 0:00	2.4	2.3	274	281	28.2	28.1	69.9	71.4	542	459.7	1009.5	1009.6		1.3		246
1999/10/30 1:00	1.9	1.8	266	258	28.2	28.2	69.6	70.0	797.5	773.4	1009.0	1009.1		1.3		253
1999/10/30 2:00	1.8	1.7	288	269	28.2	28.1	69.7	70.4	840.5	798.5	1008.1	1008.2		1.4		259
1999/10/30 3:00	2	2.6	296	286	28.2	28.1	70.3	70.4	816.6	832.5	1007.2	1007.3		1.6		266
99/10/30 4:00	0.1	2.1	270	294	28.2	28.1	70.3	71.1	0.3	795.8	1006.8	1006.9		1.6		267
Average for 4H	2.1	2.1	278.8	271	28.2	28.1	70.2	70.9	686.1	639.9	1008.7	1008.8		1.4		255
Standard deviation	0.3	0.4	12.7	12	0.0	0.1	0.7	1.1	185.5	226.5	1.0	1.0		0.1		8
tor TRITON&MIR/	41	0.8%		2.8%		0.3%		-1.1%		7.2%		0.0%		-100.0%		-100.0%

Table 7.1.3-4 Comparison of data observed at TRITON T13 (09001:0N147E) against data observed at Mirai

Time	Wind S	Speed	Wind D	irection	Air Tem	perature	Relative l	Humidity	Solar Ra	diation	Atmospher	ric Pressure	Current	Speed	Current I	Direction
(UTC)	(m/	(sec)	(de	eg)	()	(%	6)	(W/n	n• m)	(h	Pa)	(ko	nts)	(de	eg)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/11/2 19:00	0		0		-20.0		0.0		0.0		850.0					
1999/11/2 20:00	0		0		-20.0		0.0		0.0		850.0					
1999/11/2 21:00	1.2		80		28.2		76.8		111.1		1006.7	1006.9	0.5	0.4	43	68
1999/11/2 22:00	4.7		327		28.8		71.4		231.4		1006.8	1007.5	0.3	0.8	113	64
1999/11/2 23:00	4.7		7		29.1		71.3		702.9		1008.2	1008.0	1.1	0.8	83	67
1999/11/3 0:00	4.7		15		29.0		71.6		401.6		1008.0	1008.0	1.3	0.7	76	66
1999/11/3 1:00	5.5		13		29.1		73.2		959.3		1007.6	1007.7	0.9	0.8	77	70
1999/11/3 2:00	6		18		28.6		75.9		812.5		1006.7	1006.9	3.8	0.7	69	66
1999/11/3 3:00	5.6		350		29.0		72.4		759.8		1005.8	1006.0	0.8	0.7	71	72
1999/11/3 4:00	6.2	6.3	23	16.6	28.5	28.3	76.8	74.9	951.5	417.7	1005.2	1005.2	0.7	0.6	51	72
1999/11/3 5:00	5.6	7.1	9	17.7	28.6	27.9	73.2	74.5	669.5	645.3	1004.6	1004.6	0.8	0.5	67	77
1999/11/3 6:00	4.7	4.7	354	5.2	28.8	28.2	74.1	74.2	499.6	457.3	1004.6	1004.5	0.6	0.6	65	74
1999/11/3 7:00	5.3	5.2	10	33.3	28.4	27.3	75.2	79.1	220.8	147.9	1005.0	1004.8	0.5	0.4	66	85
1999/11/3 8:00	4.8	4.1	7	16.8	28.4	27.6	76.8	79.6	35.2	42.2	1005.4	1005.2	0.5	0.5	68	75
Average for 4H Standard deviation for TRITON&MIRA	5.3 0.6 M	5.5 1.2 -3.1%	80.6 153.0	18 10 349.5%	28.5 0.2	27.9 0.4 2.4%	75.2 1.6	76.5 2.7 -1.6%	475.3 361.8	342.1 244.2 39.0%	1005.0 0.4	1004.9 0.3 0.0%	0.6 0.1	0.5 0.1 15.3%	63 7	77 5 -17.4%

Table 7.1.3-5 Comparison of data observed at TRITON T03 (07002:5N147E) against data observed at Mirai

Time	Wind	Speed	Wind D	irection	Air Tem	perature	Relative l	Humidity	Solar Ra	adiation	Atmospher	ic Pressure	Current	t Speed	Current D	Direction
(UTC)	(m/	(sec)	(de	eg)	()	(9	6)	(W/n	n• m)	(hl	Pa)	(ko	nts)	(de	g)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/11/5 10:00	2		299		28.4		77.4		0.0		1008.9					
1999/11/5 11:00	3.7		290		28.1		81.5		0.0		1009.4					
1999/11/5 12:00	3.6		266		27.7		80.6		0.0		1009.4					
1999/11/5 13:00	3.4		285		28.3		77.5		0.0		1009.0					
1999/11/5 14:00	2.8		265		28.3		78.2		0.0		1008.2					
1999/11/5 15:00	2.9		256		28.2		78.7		0.0		1007.4					
1999/11/5 16:00	2.8		240		28.3		77.7		0.0		1006.9					
1999/11/5 17:00	3.7		219		28.7		73.1		0.0		1006.7					
1999/11/5 18:00	4.2		226		28.7		71.5		0.0		1006.7					
1999/11/5 19:00	3.8		211		28.7		70.8		0.0		1007.4					
1999/11/5 20:00	3.7		214		28.8		69.7		59.4		1007.8					
1999/11/5 21:00	2.6		225		29.2		68.7		282.6		1008.8					
1999/11/5 22:00	2.2		212		29.2		70.1		489.2		1009.3					
1999/11/5 23:00	2.4		223		29.2		69.3		677.9		1009.5	1009.4		0.3		120
1999/11/6 0:00	2.1		223		29.2		70.6		749.3		1009.4	1009.3		0.4		103
1999/11/6 1:00	1.5	3.8	203	240	29.2	29.2	71.3	70.4	961.4	729.1	1009.0	1008.9		0.5		112
1999/11/6 2:00	1.9	2.0	214	208	29.2	29.0	71.2	71.6	753.4	939.5	1008.3	1008.4		0.3		80
1999/11/6 3:00	2.3	2.6	199	205	29.3	29.0	71.6	71.8	754.2	761.2	1007.3	1007.3		0.2		70
1999/11/6 4:00		7.5		186		29.2		69.9		851.2		1006.9		0.2		97
99/11/6 5:00												1006.8		0.4		281
Average for 4H	1.9	2.8	205.3	217.6	29.2	29.1	71.4	71.3	823.0	809.9	1008.2	1008.2		0.3		87.2
Standard deviation	0.4	0.9	7.8	19.1	0.1	0.1	0.2	0.8	119.9	113.4	0.9	0.8		0.2		22.0
for TRITON&MIR	AI	-31.6%		-5.6%		0.5%		0.1%		1.6%		0.0%				

Table 7.1.3-6 Comparison of data observed at TRITON T10 (06001:5S156E) against data observed at Mirai

Time	Wind	Speed	Wind D	irection	Air Tem	perature	Relative	Humidity	Solar Ra	adiation	Atmospher	ic Pressure	Current	t Speed	Current I	Direction
(UTC)	(m/	(sec)	(de	eg)	()	(%	%)	(W/r	m• m)	(h	Pa)	(ko	onts)	(de	eg)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/11/6 3:00	1.9		291		28.5		68.0		955.7		1007.8					
1999/11/6 4:00	1.7		283		28.6		67.9		748.6		1007.2	1006.9		0.2		97
1999/11/6 5:00	2.4		286		28.7		67.7		599.9		1006.8	1006.8		0.4		281
1999/11/6 6:00	2.5		306		28.8		68.0		340.0		1006.8	1006.6		0.5		292
1999/11/6 7:00	2.2		305		28.8		68.8		150.2		1007.2	1006.9		0.8		287
1999/11/6 8:00	2.4		299		28.5		71.0		3.4		1008.0	1007.6		0.8		293
1999/11/6 9:00	2.9		320		28.5		71.3		0.0		1008.6	1008.3		0.9		295
1999/11/6 10:00	2.2		307		28.5		72.1		0.0		1008.9	1008.8		1.0		300
1999/11/6 11:00	2.5		331		28.4		70.6		0.0		1009.1	1009.1		1.1		287
1999/11/6 12:00	2.5		329		28.4		71.6		0.0		1009.1	1009.0		1.0		305
1999/11/6 13:00	2.2		327		28.3		72.6		0.0		1008.8	1008.8		0.8		310
1999/11/6 14:00	1.8		323		28.1		72.9		0.0		1008.2	1008.2		0.8		295
1999/11/6 15:00	1		338		28.0		73.1		0.0		1007.6	1007.6		1.0		295
1999/11/6 16:00	0.4		346		27.8		72.7		0.0		1007.2	1007.2		1.0		279
1999/11/6 17:00	0		0		27.7		73.3		0.0		1006.8	1006.9		0.8		260
1999/11/6 18:00	0.3		71		27.6		73.7		0.1		1007.1	1007.0		0.7		292
99/11/6 19:00	0.2		90		27.6		73.6		0.2		1007.8	1007.7		0.6		294
99/11/6 20:00	0.2		63		28.0		71.8		59.4		1008.3	1008.2		0.5		281
99/11/6 21:00	0.2		0		28.6		69.8		174.9		1008.9	1008.7		0.5		275
99/11/6 22:00	0.8		270		28.5		70.6		386.7		1009.8	1009.6		0.5		253
99/11/6 23:00	0.9		302		28.4		70.6		572.0		1010.1	1010.1		0.4		245
99/11/7 0:00	1.3		324		28.4		70.7		809.2		1009.9	1009.9		0.4		240
99/11/7 1:00	1.0	3.1	338	34	28.5	28.0	71.1	70.2	951.3	958.1	1009.3	1009.3		0.5		244
99/11/7 2:00	1.4	1.7	8	33	28.4	28.3	71.4	69.9	963.6	949.2	1008.4	1008.4		0.4		247
99/11/7 3:00	2.1	2.1	59	72	28.6	28.4	71.3	69.9	896.4	861.3	1007.4	1007.5		0.6		230
99/11/7 4:00	2.6	2.9	41	63	28.8	28.5	71.3	68.9	741.5	722.2	1006.3	1006.3		0.6		233
Average for 4H	2.0	2.2	36.0	56.0	28.6	28.4	71.3	69.6	867.2	844.2	1007.4	1007.4		0.5		236.7
Standard deviation	0.6	0.6	25.9	20.1	0.2	0.1	0.1	0.5	113.9	114.5	1.1	1.1		0.1		8.7
for TRITON&MIRA	AI .	-8.6%		-35.8%		0.7%		2.5%		2.7%		0.0%		-100.0%		-100.0%

Table 7.1.3-7 Comparison of data observed at TRITON T09 (05001:2S156E) against data observed at Mirai

Time	Wind	Speed	Wind D	irection	Air Tem	perature	Relative	Humidity	Solar Ra	adiation	Atmospher	ic Pressure	Current	Speed	Current I	Direction
(UTC)	(m/	(sec)	(de	eg)	()	(%	6)	(W/n	n• m)	(hl	Pa)	(ko	nts)	(de	eg)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/11/8 19:00	0		0		-20.0		0.0		0.0		850.0					
1999/11/8 20:00	0.7		180		29.5		65.3		397.5		1008.9					
1999/11/8 21:00	0.7		180		29.5		65.3		397.5		1008.9		1.1		344	
1999/11/8 22:00	2.3		244		28.6		70.2		43.7		1009.1		0.4		0	
1999/11/8 23:00	4.6	4.8	248	236	28.5	28.2	71.8	72.4	777.7	55.4	1010.2		1.2		19	
1999/11/9 0:00	4.9	5.3	257	233	28.5	28.3	69.4	71.7	923.4	58.2	1009.7		1.5		311	
1999/11/9 1:00	4.9	4.9	246	246	27.9	28.4	73.7	70.3	1025.6	207.2	1009.1	1009.3	3.9	1.2	287	234
1999/11/9 2:00	5.4	4.2	250	247	28.5	28.3	70.8	72.7	872.1	986.8	1007.9	1008.4	1.4	1.1	264	240
1999/11/9 3:00	5.2	4.4	255	249	28.6	28.3	70.7	71.8	952.1	917.0	1007.0	1007.3	1.4	1.1	258	236
1999/11/9 4:00	3.7	4.0	262	256	28.7	28.4	69.6	70.7	772.0	836.9	1006.5	1006.7	1.5	1.0	264	237
1999/11/9 5:00	4.1	3.8	268	261	28.7	28.5	69.1	70.0	640.9	490.2	1006.6	1006.5	1.5	1.1	261	236
1999/11/9 6:00	5.1	4.9	268	279	28.8	28.6	70.7	71.8	392.2	433.3	1006.8	1006.6	1.5	1.2	259	233
1999/11/9 7:00												1007.0		1.1		237
Average for 4H	4.7	4.3	260.6	258.1	28.7	28.4	70.2	71.4	725.9	732.9	1007.0	1007.1	1.4	1.1	261.2	236.2
Standard deviation	0.8	0.4	8.0	12.8	0.1	0.1	0.8	1.0	219.8	253.9	0.6	0.8	0.1	0.0	3.0	23
for TDITON & MID	0.0	0.4	0.0	1 2.0	0.1	0.1	0.0	1.0	217.0	1.00/	0.0	0.0	0.1	20.00/	5.0	10.60/
IOF TRITONAMIRA	41	9.9%		1.0%		0.8%		-1./%		-1.0%		0.0%		50.0%		10.6%

Table 7.1.3-8 Comparison of data observed at TRITON T02 (04003:0N156E) against data observed at Mirai

Time	Wind S	Speed	Wind D	irection	Air Tem	perature	Relative l	Humidity	Solar Ra	adiation	Atmospher	ic Pressure	Current	Speed	Current I	Direction
(UTC)	(m/	sec)	(de	eg)	()	(%	6)	(W/n	n• m)	(hl	Pa)	(ko	nts)	(de	;g)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/11/9 19:00	0		0		-20.0		0.0		0.0		850.0	1008.7		1.3		291
1999/11/9 20:00	5.3		268		29.4		70.4		424.0		1009.9	1009.3		1.4		299
1999/11/9 21:00	5.3		268		29.4		70.4		424.0		1009.9	1010.0	1.0	1.1	32	296
1999/11/9 22:00	1.1		315		29.7		68.2		598.2		1009.9	1010.8	0.6	1.2	251	294
1999/11/9 23:00	5.6		267		29.2		71.9		751.9		1010.9	1011.0	0.0	1.2		290
1999/11/10 0:00	6.9		273		29.1		73.4		919.7		1010.6	1010.8	1.6	1.2	288	289
1999/11/10 1:00	6.8	6.3	272	267	27.8	28.8	80.8	68.9	910.5	65.5	1009.7	1010.1	3.8	1.1	293	285
1999/11/10 2:00	6.2	5.6	272	289	29.0	28.7	73.6	68.1	927.7	843.5	1009.1	1009.3	1.4	1.1	276	284
1999/11/10 3:00	6.5	5.8	275	303	29.1	28.7	74.0	67.8	896.2	909.4	1008.2	1008.5	1.4	1.1	285	286
1999/11/10 4:00	6.9	6.0	268	297	29.1	28.7	74.6	68.8	742.7	806.1	1007.8	1008.0	1.6	1.0	277	284
1999/11/10 5:00	6.6	6.4	268	297	29.1	28.7	74.0	69.1	529.9	610.0	1007.4	1007.4	1.5	1.0	282	283
1999/11/10 6:00	6.8	6.4	270	293	29.3	28.8	72.6	67.6	385.3	422.1	1007.3	1007.2	1.7	1.2	281	290
1999/11/10 7:00	6.4		268		29.1		74.8		132.7			1007.3	1.8	1.4	283	287
1999/11/10 8:00												1007.7		1.4		291
1999/11/10 9:00												1008.5		1.3		289
1999/11/10 10:00												1009.0		1.3		292
	ļ															
Average for 4H	6.7	6.1	270.3	297.7	29.2	28.7	73.8	68.3	638.5	686.9	1007.7	1007.8	1.6	1.1	281.5	286.0
Standard deviation	0.2	0.3	3.3	4.0	0.1	0.0	0.8	0.7	226.0	215.8	0.4	0.6	0.1	0.1	3.1	2.8
for TRITON&MIRA	I.	9.0%		-9.2%		1.4%		8.0%		-7.0%		0.0%		43.7%		-1.6%

Table 7.1.3-9 Comparison of data observed at TRITON T01 (03003:2N156E) against data observed at Mirai

Time	Wind	Speed	Wind D	irection	Air Tem	perature	Relative I	Humidity	Solar Ra	diation	Atmospher	ic Pressure	Current	Speed	Current I	Direction
(UTC)	(m/	(sec)	(de	eg)	()	(%	6)	(W/n	n• m)	(hl	Pa)	(koi	nts)	(de	eg)
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/11/12 23:00	2.3	1.1	2	288	28.8	29.2	63.9	62.1	625.8	760.1	1011.8	1011.7	0.5	0.7	98	128
1999/11/13 0:00	2.1	1.6	346	274	28.8	29.0	66.3	63.9	703.3	829.5	1011.6	1011.7	0.3	0.6	71	111
1999/11/13 1:00	3	2.3	319	266	28.7	28.8	66.8	65.2	865.1	922.1	1011.0	1011.2	0.3	0.6	72	110
1999/11/13 2:00	3.2	1.7	315	246	28.6	28.7	66.4	65.8	921.9	900.5	1010.1	1010.2	0.3	0.4	69	104
1999/11/13 3:00	4.2	4.2	320	270	28.6	28.2	66.4	64.4	865.1	893.4	1009.4	1009.4	0.3	0.5	72	91
1999/11/13 4:00	3.5	4.4	278	271	28.6	28.2	68.0	65.1	687.7	786.7	1008.6	1008.7	0.3	0.6	83	87
1999/11/13 5:00	4.4	4.3	286	287	28.6	28.2	68.0	65.5	457.5	605.2	1008.1	1008.1	0.5	0.6	68	86
1999/11/13 6:00	4.1	4.4	286	293	28.7	28.2	67.7	65.9	294.5	379.2	1008.1	1008.0	0.5	0.7	62	86
1999/11/13 7:00	4.3		276		28.6		66.9		97.3		1008.3	1008.2	0.5	0.8	53	92
1999/11/13 8:00												1008.5		0.8		90
Average for 4H	3.7	2.9	317.5	257.7	28.6	28.5	66.4	65.1	893.5	897.0	1009.8	1009.8	0.3	0.5	70.7	97.2
Standard deviation	0.7	1.8	3.5	17.0	0.0	0.3	0.0	1.0	40.2	5.0	0.5	0.6	0.0	0.1	2.2	9.2
for TRITON&MIR/	AI	25.9%	0.0	23.2%	0.0	0.4%	0.0	2.0%		-0.4%		0.0%	0.0	-31.0%	212	-27.2%
																/
Average for 4H	4.0	4.3	283.3	283.6	28.6	28.2	67.9	65.5	479.9	590.4	1008.3	1008.3	0.4	0.6	71.1	86.3
Standard deviation	0.5	0.0	4.6	11.6	0.1	0.0	0.2	0.4	197.6	204.2	0.3	0.4	0.1	0.0	10.8	0.7
for TRITON&MIRA	AI	-8.0%		-0.1%		1.4%		3.6%		-18.7%		0.0%		-30.8%		-17.6%

Table 7.1.3-10 Comparison of data observed at TRITON T06 (02002:5N156E) against data observed at Mirai

Time	Wind Speed		Wind Direction		Air Temperature		Relative Humidity		Solar Radiation		Atmospheric Pressure		Current Speed		Current Direction	
(UTC)	(m/sec)		(deg)		()		(%)		(W/m•m)		(hPa)		(konts)		(deg)	
	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai	TRITON	Mirai
1999/11/13 10:00	2.3		252		28.7		74.2		0.0		1010.6		0.2		51	
1999/11/13 11:00	3.1		251		28.6		75.3		0.0		1010.7		0.4		73	
1999/11/13 12:00	3.1		259		28.5		76.1		0.0		1010.6		0.3		63	
1999/11/13 13:00	2.2		234		28.4		76.1		0.0		1010.4		0.4		70	
1999/11/13 14:00	2.8		235		28.4		76.8		0.0		1010.0		0.3		89	
1999/11/13 15:00	2.7		217		28.4		76.7		0.1		1009.8		0.3		87	
1999/11/13 16:00	4.2		225		28.5		75.5		0.0		1009.2		0.4		84	
1999/11/13 17:00	4.1		224		28.4		74.5		0.0		1008.8		0.3		93	
1999/11/13 18:00	4		214		28.4		75.6		0.0		1008.8		0.3		109	
1999/11/13 19:00	3.9		234		28.4		75.2		0.0		1009.2		0.4		95	
1999/11/13 20:00	4.2		225		28.5		76.5		29.6		1009.7		0.3		107	
1999/11/13 21:00	3.8		246		28.9		74.5		224.3		1010.3		0.2		47	
1999/11/13 22:00	4		240		28.7		75.9		269.1		1010.8		0.5		20	
1999/11/13 23:00	4.3		241		28.9		76.3		664.0		1011.2	1011.1	0.4	0.7	14	67
1999/11/14 0:00	3.8	2.8	240	230	28.9	29.1	75.9	73.1	668.2	739.4	1011.0	1011.1	0.3	0.9	75	70
1999/11/14 1:00	3.4	1.9	228	232	28.9	29.4	76.8	72.2	829.7	850.7	1010.2	1010.4	0.4	1.1	109	92
99/11/14 2:00	3.5	6.2	214	261	28.5	28.3	77.6	75.9	702.5	703.1	1009.5	1009.6	0.4	0.9	99	98
99/11/14 3:00	2.9	2.8	246	243	28.9	28.5	76.6	76.7	743.4	896.3	1008.6	1008.7	0.4	0.6	109	94
99/11/14 4:00	4	3.9	254	248	28.9	28.6	77.1	76.8	587.6	595.9	1008.0	1008.0	0.5	0.7	85	86
99/11/14 5:00	3.6	4.0	212	227	28.5	28.1	79.3	79.1	315.7	429.5	1007.8	1007.8	0.5	0.9	85	98
99/11/14 6:00	3.8	4.0	231	217	28.6	28.5	77.3	76.0	260.6	281.6	1008.1	1007.9	0.6	0.8	79	67
99/11/14 7:00												1008.2		0.8		72
Average for 4H	3.6	3.7	235.8	233.5	28.7	28.4	77.6	77.2	476.8	550.8	1008.1	1008.1	0.5	0.8	89.4	86.1
Standard deviation	0.5	0.6	18.5	14.5	0.2	0.2	1.2	1.4	228.1	263.7	0.3	0.4	0.1	0.1	13.1	13.8
for TRITON&MIRA	AI	-2.7%		1.0%		1.1%		0.5%		-13.4%		0.0%		-36.1%		3.9%

Table 7.1.3-11 Comparison of data observed at TRITON T05 (01002:8N156E) against data observed at Mirai

Fig.7.1.3-1a ~ 1d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T16(12001) and Mirai

TRITON vs. Mirai <2N138E>

TRITON vs. Mirai <2N138E>

TRITON vs. Mirai <2N138E>

Fig.7.1.3-1e ~ 1h Time series of solar radiation, atmospheric pressure, current speed & direction at TRITON T16(12001) and Mirai

TRITON vs. Mirai <0N138E>

TRITON vs. Mirai <0N138E>

Fig.7.1.3-2a ~ 2d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T17(13001) and Mirai

TRITON vs. Albedo <0N138E>

TRITON vs. Mirai <0N138E> TRITON vs. Mirai <0N138E> + TRITON CSPD 1.6 360 + TRITON CD <0N138E> <0N138E> Mirai CSPD Mirai CD <0N138E> <0N138E> 0.0 0 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 7 03 7 04 7 05 7 06 7 07 7 08 7 09 7 03 7 04 7 05 7 06 7 07 7 08 7 09 Date Date

Fig.7.1.3-2e ~ 2h Time series of solar radiation, atmospheric pressure, current speed & direction at TRITON T17(13001) and Mirai

TRITON vs. Mirai <0N147E> TRITON vs. Mirai <0N147E> 31.0 100 + TRITON AT Air temperature(degree) 95 <0N147E> 30.0 <0N147E> Relative humidity(%) Mirai Albedo RH Mirai Albedo AT 90 29.0 <0N147E> <0N147E> 85 28.0 80 27.0 75 26.0 70 25.0 65 24.0 60 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 99/10/2 9 1 4 9 10 9 11 9 12 9 08 9 0 9 9 1 3 9 10 9 08 9 0 9 9 1 1 9 1 2 9 1 3 9 1 4 Date Date

Fig.7.1.3-3a ~ 3d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T04(09002) and Mirai

TRITON vs. MIrai <0N147E>

TRITON vs. Mirai <0N147E>

TRITON vs.Mirai <0N147E>

TRITON vs. Mirai <0N147E>

Fig.7.1.3-3e ~ 3h Time series of solar radiation, atmospheric pressure, current speed & direction at TRITON T04(09002) and Mirai

TRITON vs. Mirai <0N147E Recovery>

TRITON vs. Mirai <0N147E Recovery>

TRITON vs. Mirai <0N147E Recovery> TRITON vs. Mirai <0N147E Recovery> ට 31.0 100 Air temperature 30.0 29.0 29.0 28.0 27.0 26.0 25.0 25.0 24.0 95 Relative humidity(%) <0N147E> 90 ----- Mirai Albedo RH 85 <0N147E> 80 75 <0N147E> 70 - Mirai Albedo AT 65 <0N147E> 60 99/10/29 99/10/30 99/10/30 99/10/30 99/10/30 99/10/29 99/10/29 99/10/30 99/10/30 99/10/30 99/10/30 99/10/29 22 23 00 01 02 03 22 23 00 01 02 03 Date Date

Fig.7.1.3-4a ~ 4d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T13(09001) and Mirai

Fig.7.1.3-4e ~ 4f Time series of solar radiation, atmospheric pressure at TRITON T13(09001) and Mirai

Fig.7.1.3-5a ~ 5d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T03(07002) and Mirai

Fig.7.1.3-5e ~ 5h Time series of solar radiation, atmospheric pressure, current speed & direction at TRITON T03(07002) and Mirai

TRITON vs. Mirai <5S156E>

TRITON vs. Mirai <5S156E>

TRITON vs. Mirai <5S156E>

TRITON vs. Mirai <5S156E>

Fig.7.1.3-6a ~ 6d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T10(06001) and Mirai

Fig.7.1.3-6e ~ 6f Time series of solar radiation, atmospheric pressure at TRITON T10(06001) and Mirai

TRITON vs. Mirai <2S156E>

TRITON vs. Mirai <2S156E>

Fig.7.1.3-7a ~ 7d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T09(05001) and Mirai

Fig.7.1.3-7e ~ 7f Time series of solar radiation, atmospheric pressure at TRITON T09(05001) and Mirai

Fig.7.1.3-8a ~ 8d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T02(04003) and Mirai

TRITON vs. Mirai <0N156E>

Fig.7.1.3-8e ~ 8h Time series of solar radiation, atmospheric pressure, current speed & direction at TRITON T03(04003) and Mirai

TRITON vs. Mirai <2N156E>

TRITON vs. Mirai <2N156E>

Fig.7.1.3-9a ~ 9d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T01(03003) and Mirai

Fig.7.1.3-9e ~ 9h Time series of solar radiation, atmospheric pressure, current speed & direction at TRITON T01(03003) and Mirai

TRITON vs. Mirai <5N156E>

TRITON vs. Mirai <5N156E>

Fig.7.1.3-10a ~ 10d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T06(02002) and Mirai

TRIOTN vs. Mirai <5N156E>

TRITON vs. Mirai <5N156E>

TRITON vs. Mirai <5N156E>

Fig.7.1.3-10e ~ 10h Time series of solar radiation, atmospheric pressure, current speed & direction at TRITON T06(02002) and Mirai

TRITON vs. Mirai Albedo <156E8N>

Fig.7.1.3-11a ~ 11d Time series of wind speed, wind direction, air temperature and relative humidity at TRITON T05(01002) and Mirai

TRITON vs. Mirai <156E8N>

Fig.7.1.3-11e ~ 11h Time series of solar radiation, atmospheric pressure, current speed & direction at TRITON T05(01002) and Mirai

7.2 Doppler radar observation

(1) Personnel

Tetsuo Nakazawa (MRI): Principal InvestigatorMasaki Hanyu (GODI): Operation LeaderSatoshi Okumura (GODI)

(2) Objective

The Doppler radar is operated to obtain spatial and temporal distribution of rainfall amount, and structure of precipitating cloud systems.

In this cruise we made synchronized observations with the TRMM (Tropical Rainfall Measurement Mission) satellite. The TRMM satellite has several remote sensing rainfall measuring sensors, such as precipitation radar and visible infrared radiometer and microwave radiometer. The objective of the synchronized observation with TRMM satellite is to validate the satellite rainfall measurement by comparing with Doppler radar data obtained by R/V Mirai.

(4) Parameters

Spatial and temporal distribution of two parameters, radar reflectivity and Doppler velocity, are obtained for 100km radius and 7.5 minute intervals by 17-elevations volume scan. The horizontal radar reflectivity fields are also obtained for 200 km radius and 7.5 minute intervals by one elevation (0.7 degrees) PPI (Plan Position Indicator) scan.

(4) Methods

The hardware specification of this shipborne Doppler radar (RC-52B, made by Mitsubishi Electric Co. Ltd., Japan) are;

Frequency:	5290MHz
Beam Width:	better than 1.5 degrees
Output Power:	250 kW (PEP)
Signal Processor:	RVP-6 (Sigmet Inc., U.S.A.)
Inertial Navigation Unit:	DRUH (Honeywell Inc., U.S.A.)
Application Software:	IRIS/Open (Sigmet Inc., U.S.A.)

The hardware is calibrated by checking (1) frequency, (2) mean power output, (3) pulse repetition frequency for once par a day, and (4) transmitting pulse width and (5) receiver linearity for twice, at the beginning and at the end of this cruise.

On the operation, on the other hand, the programmed "tasks" are repeated every 7.5 minutes. One cycle consists of one volume scan (consists of PPIs for 17 elevations) with Doppler-mode (100-km range for reflectivity, Doppler velocity), one-elevation PPI with Intensity-mode (200-km range for reflectivity). Occasionally we operated RHI (Range Height Indicator) scan with Doppler-mode.

The parameters for the above three tasks are shown in Table 7.2-1.

Table 7.2-1: Parameters for each tasks

	Intensity-mode PPI	Volumu Scan	RHI			
Pulse Width	2 [us]	0.5 [us]				
Scan Speed	18 [de	g./sec.]	automatically determined			
PRF	260 [Hz]	900 / 72	20 [Hz]			
Sweep Integration		32 samples				
Ray Spacing	about 1.	.0 [deg.] 0.2 [deg.]				
Bin Spacing	250 [m]	125 [m]				
Elevations	0.7	0.7, 1.4, 2.1, 3.0, 4.0, 5.0, 6.0, 7.1, 8.2, 9.5, 11.0, 12.5, 14.5, 17.0, 20.0, 24.0, 30.0	0.0 to 84.0			
Azimuths	Full (Circle Optional				
Filters	Speckle filter for Z	Speckle filter for Z				
		Dual-PRF velocity unfolding				
Gain Control		Fixed				

(5) Preliminary Results

The synchronized observations with the TRMM satellite were performed in 16 cases during the cruise, summarized in Table 7.2-2. Out of 16 cases there were 7 cases with rain, 9 cases with no rain. Out of 7 rain cases there were 3 convective/stratiform rain cases, other 3 cases for scattered cumulus and 1 case for squall line/vortex type. The horizontal radar maps with the TRMM satellite orbits of these 7 rain cases were presented in from Fig. 7.2-1 to Fig. 7.2-7.

Table 7.2-2 Synchroniz	zed observation	on with the	TRMM satellite
------------------------	-----------------	-------------	----------------

Observation time	Latitude	Longitude	Matching with TRMM	Cloud type
26 Oct. 11:52Z	0N	138E	PR	Scattered
26 Oct. 23:15Z	0N	138E	TMI	Convective/stratiform
29 Oct. 09:53Z	0N	147E	PR	No cloud
31 Oct. 09:05Z	2N	147E	TMI	Convective/stratiform
31 Oct. 20:27Z	2N	147E	PR	Stratiform
02 Nov. 08:17Z	5N	147E	PR	Scattered
03 Nov. 18:26Z	5N	148E	PR	No cloud
05 Nov. 17:40Z	4S	156E	PR	No cloud
08 Nov. 04:16Z	0N	156E	TMI	No cloud
08 Nov. 15:39Z	0N	156E	TMI	Mostly clear
10 Nov. 03:27Z	2N	156E	TMI	No cloud
10 Nov. 14:50Z	2N	156E	TMI	No cloud
13 Nov. 12:49Z	5N	156E	PR	Mostly clear
14 Nov. 01:51Z	8N	156E	PR	Scattered
16 Nov. 10:46Z	14.5N	150E	PR	No cloud
17 Nov. 01:27Z	15.5N	150E	PR	Squall line

PR: Precipitation Radar, TMI: TRMM Microwave Imager

(6) Data Archive

The inventory information of the Doppler radar data obtained in this cruise will be submitted to the DMO (Data Management Office) of JAMSTEC. The original data will be archived at Ocean Research Department of JAMSTEC.

Fig.7.2-1

Fi8.7.2-2

Fig.7.2-3

Fig. 7.2-4

Fig. 7.2-5

Fig.7.2-6

Fig.7.2-7

7.3. Atmospheric and oceanic CO_2 measurements

(1) Personnel

Masao Ishii*, Hisayuki Y. Inoue, and Shu Saito Geochemical Research Department, Meteorological Research Institute

* on board personnel

(2) Objectives

Carbon dioxide (CO₂), known as a major greenhouse gas, has been increasing in the atmosphere as result of the anthropogenic emission. Its current concentration is approximately 30% higher than that in the preindustrial era (280 ppm). In order to predict the future atmospheric CO₂ variation due to the anthropogenic emission and the potential alteration of the carbon cycle as a result of the climate change, it is necessary to understand the processes which are controlling the fluxes among the global carbon reservoirs, the atmosphere, the terrestrial biosphere and the ocean, as well as to estimate the present CO₂ inventory among these reservoirs.

The eastern and the central equatorial Pacific is now known to act as a significant source of the CO_2 to the atmosphere due primarily to the equatorial upwelling. The western equatorial Pacific, where warm water prevails in the surface layer, also occasionally exhibits a large CO_2 emission from the sea to the atmosphere. Flux of CO_2 from the equatorial Pacific has been reported to show a significant interannual variability that is associated with the ENSO event. However, the temporal and spatial variation in the whole CO_2 system in seawater enough to elucidate its controlling mechanism has not been well documented.

In this cruise, we made concurrent underway measurements of CO_2 concentration in the atmosphere and in surface seawater and total inorganic carbon (TCO₂) in surface seawater. We also measured TCO₂ and pH in water columns at hydrographic stations. The purpose of these observations is to describe the oceanic CO₂ system in the western equatorial Pacific and to clarify the controlling factors that are responsible for its variation in space and time as well as to investigate the air-sea CO₂ flux in this region.

(3) Parameters

(a) CO_2 concentration (*x*CO₂) in marine boundary air and in the air equilibrated with surface seawater.

(b) Total inorganic carbon (TCO₂) in surface seawater.

(c) Total inorganic carbon (TCO₂) in the water column above the depth of 1000 m.

(d) pH (total hydrogen ion scale) in the water column above the depth of 1000 m.

(4) Methods

(a) Underway measurements of CO₂ concentration in marine boundary air and in the air equilibrated with surface seawater:

We made measurements of the CO₂ concentration (mole fraction of CO₂ in air; xCO₂) in marine boundary air twice every 1.5 hour and that in the air equilibrated with the great excess of surface seawater four times every 1.5 hour during the whole cruise using the automated CO₂ measuring system (Nippon ANS Co.). Marine boundary air was taken continuously from the foremast. Seawater was taken continuously from the seachest located ca.5 m below the sea level and introduced into the MRI-shower-type equilibrator. Non-dispersive infrared (NDIR) gas analyzer (BINOS 4) was used as a detector. It was calibrated with four CO₂ reference gases (306ppm, 356ppm, 405ppm, 456ppm in air, Nippon Sanso Co.) once every 1.5 hour. Concentration of CO₂ will be published on the basis of the WMO X85 mole fraction scale after the cruise. Corrections for the temperature-rise from the seachest to the equilibrator and the drift of CO₂ concentration in reference gases are also to be made. Partial pressure of CO₂ will be calculated from xCO₂ by taking the water vapor pressure and the atmospheric pressure into account.

(b) Underway measurement of total inorganic carbon (TCO₂) in surface seawater:

We made underway measurement of TCO_2 in surface seawater using the automated TCO_2 analyzer (Nippon ANS Co.) equipped with carbon coulometer 5012 (UIC Co.). Seawater was taken continuously from the seachest and a portion of the seawater (~ 22 cm³) was introduced into the water-jacketed pipette of the analyzer twice every 1.5 hour for the analysis. I also analyzed TCO_2 in the reference seawater prepared in MRI that is traceable to the CRM provided by Dr. A. Dickson in Scripps Institution of Oceanography. The analysis of the reference seawater was made at least once during the each run of the coulometric cathode- and anode-solutions.

(c)(d) Measurement of TCO_2 and pH (total hydrogen ion scale) in the water column:

Discrete samples for TCO₂ and pH analyses were taken from Niskin bottles on CTD/carousel sampler at the total of 14 hydrographic stations:

stn.1 (8N,137E),stn.3 (6N, 137E),stn.5 (4N, 137-20E), stn.7 (2N, 138E),stn.9 (0, 138E),stn.10 (0, 147E),stn.11 (2N, 147E),stn.12 (5N, 147E),stn.13 (5S, 156E),stn.14 (2S, 156E),stn.15 (0,156E),stn.16 (2N, 156E),stn.17 (5N,156E),stn.18(8N, 156E).

Nominal depths of the sampling were 10m, 25m, 50m, 75m, 100m, 125m, 150m, 200m, 300m, 400m, 500m, 1000m.

Samples for TCO₂ analysis were collected in 250cm³ borosilicate glass bottles (Sibata) with ground-glass stopcock lubricated with Apiezon L grease, and were poisoned with 0.2 cm³ of saturated HgCl₂ solution. Duplicate samples were routinely taken from the depths of 1000m and 10m or 25m. TCO₂ was determined by coulometry at 20 deg-C using a automated TCO₂ sampling

system (MRI-Nippon ANS) equipped with carbon coulometer 5012 (UIC Co.). It was standardized using a suite of Na₂CO₃ solution and the reference seawater prepared in MRI that is traceable to the CRM provided by Dr. A. Dickson in Scripps Institution of Oceanography. The analysis of the reference seawater was made twice during the each run of the coulometric cathode- and anode-solutions. All samples were analyzed within 8 h after the CTD/carousel arrived on deck. A correction for the addition of HgCl₂ solution is to be made.

Samples for pH analysis were collected in 500cm³ borosilicate glass bottles (Sibata) with ground-glass stopcock lubricated with Apiezon L grease, and were poisoned with 0.4 cm³ of saturated HgCl₂ solution. Duplicate samples were routinely taken from the depths of 500m and 25m or 50m. pH was measured by spectrophotometry at 25.0 deg-C after adding a dye m-cresol purple using a MRI-Nippon ANS automated system equipped with spectrophotometer Cary 50 (Varian, Co). The analysis of the reference seawater was made once at the end of each run of the system. All samples were analyzed within 8 h after the CTD/carousel arrived on deck. Corrections for the addition of HgCl₂ solution and m-cresol purple solution are to be made.

(5) Results

Data analyses will be made soon.

(6) Data archive

The original data will be archived at Geochemical Research Department, Meteorological Research Institute. Data will be also submitted to Data Management Office at JAMSTEC within 3 years.

7.4. Lidar observation

(1)Personnel name and affiliation (* indicates on board personnel)

Ichiro Matsui (NIES)* Nobuo Sugimoto (NIES) Isao Tamamushi (TIT) Kazuhiro Asai (TIT)

(2)Objectives

Shipborne Mie scattering lidar observation of aerosols and clouds have been started this year using R/V Mirai. The purposes of the observation are to obtain global distribution and optical characteristics of aerosols and clouds which are used in the climatological study and in the study on the data reduction algorithms and data methods for space borne lidars.

(3)Parameters

Aerosols:	Density distribution, Backscatter coefficient,
	Depolarization, Optical depth.
Clouds:	Height of cloud bottom, Backscatter coefficient,
	Depolarization, Optical depth.

(4)Method

The lidar employs a compact flashlamp pumped second-harmonics Nd:YAG laser. Mie scattering at 1064 nm and 532 nm, and depolarization ratio at 532 nm were recorded. System parameters are as follows;

Laser: Big Sky Laser CFR-200

Output power: 532nm 50mJ/Pulse, 1064nm 100mJ/pulse

Repetiton rate: 10Hz Beam div.: 0.5mrad

Receiver: Schmidt cassegrainian

Diameter: 280mm Field of view: 1mrad

Detector: PMT(532nm), APD(1064nm)

Data collection: LeCroy LC574AL

Measurement range: 0-24km Range resolution: 6m

Sampling rate: 10sec

(5)Results

Figure 1 shows a temporal variation of vertical profile. The range-corrected lidar signal at 532 nm is indicated with a gray scale. Diurnal variation of boundary layer is not significant as seen in Fig.1. Low clouds are frequently observed at the top of the planetary boundary layer. Cirrus clouds are also frequently observed in an altitude range of 10 to 15 km.

Fig.1 Temporal variation of range-corrected lidar signal at 532 nm.

(6) Data archive

All data will be archived at NIES and TIT.

7.5 ADCP subsurface mooring

(1) Personnel

Masayuki Fujisaki	(MWJ): Operation Leader
Nobuharu Komai	(MWJ): Technical Staff
Hirokatsu Uno	(MWJ): Technical Staff
Satoshi Ozawa	(MWJ): Technical Staff
Takeo Matsumoto	(MWJ): Technical Staff
Fujio Kobayashi	(MWJ): Technical Staff
Aya Kato	(MWJ): Technical Staff
Keisuke Wataki	(MWJ): Technical Staff
Tadahiko Shirato	(MWJ): Technical Staff
Haruya Adachi	(MWJ): Technical Staff
Kentaro Shiraishi	(MWJ): Technical Staff
Kentaro Ando	(JAMSTEC): Principal investigator
Yoshifumi Kuroda	(JAMSTEC): not onboard
Yuji Kashino	(JAMSTEC): not onboard

(2) Objectives

The purpose is to get the knowledge of upper ocean circulation in the western equatorial pacific. In this cruise (MR99-K06), we recovered and deployed one ADCP subsurface moorings at Eq.-156E.

(3) Parameters

• Current profiles

- · Echo intensity
- · Temperature and Conductivity

(4) Instruments

1) ADCP

RDI BB-ADCP

Distance to first bin:	8m
Pings per ensemble:	16 (Recovered ADCP), 12 (Deployed ADCP)
Time per ping:	2.00s
Bin length:	8.00m
Sampling Interval:	3600s

Recovered ADCP

• Serial Number : 1150 (Mooring No. 980825-00156E)

Deployed ADCP

• Serial Number : 1154 (Mooring No. 991108-00156E)

2) CTD

SBE-16

Sampling Interval: 1800s

Recovered CTD

• Serial Number : 1284 (Mooring No. 980825-00156E)

Deployed CTD

• Serial Number : 1285 (Mooring No. 991108-00156E)

(5) Deployment

One ADCP subsurface mooring was deployed at Eq.-156E. The mooring was designed to moor the ADCP at about 270m. After we dropped the anchor, we monitored depth of the acoustic releaser. The descending rate was about 2.1m/sec. Each position of the mooring was showed below.

Results of calibration

• Mooring No.991108-00156E Latte: 0° 00.04N Long: 156° 07.58E

(6) Recovery

We recovered one ADCP moorings at Eq.-156E, which was deployed on Aug.1998 (KY98-10). We monitored depth of acoustic releaser after we released the anchor.

After the recovery, we uploaded ADCP and CTD data into a computer, and then raw data were converted into ASCII code. Results were shown in the figures on following pages. Fig.7.5-1 shows timeseries of CTD depth, temperature, and salinity. Figure7.5-2, 3 shows the velocity data (eastward and northward component) at 50m (29bins), 100m (22bins), 150m (16bins), and 200m (10bins) depth.

(7) Data archive

The data will be created using CTD depth data. The data will be archived by member of TOCS project at JAMSTEC. The data at Eq.-156E will be submitted to TAO project office as a component of TAO current meter array after the quality check.

All data will be submitted to DMO at JAMSTEC within 3 years after each recovery.

DEPLOYMENT & RECOVERY

			MOORIN	G N	io. 9808	<u>25 -</u>	00156E
PROJECT TO	ĊS	· .	TIME		UTC		
AREA Western	Pacific		RECORDER	D)	T. Shi	-ibiki	
POSITION (). 156°E		(1	R)	A.K	átri.	
Depth	1956n						
PERIOD 25.	Aug. 98 m	NA	VIGATION SYST	EM	: WG	S 84	
No.of DAYS							1
IENGTH :	m DEPT	H of BUOY :	m	E	UOYANCY	<u>(1</u>	ing _
		ACOUSTI	C RELEASER				
TYPE	Benthos (Up	per)	THE		Benthou	e (Lower)
S,N	662		S/N		60	92	
RECEIVE F.	13.0	kHz	RECEIVE F.		/3	0	kHz
TRANSMIT F.	13.5	kHz	TRANSMIT F.		4		kHz
ENABLE C.	B		ENZE C.	1	· .	6	
TLEASE C.	A	•	RELEASE C.			Ð	
DATTERY	2 years.		BATTERY	1.	Zyea	2.1	
TEST on DECK		ه . 	TEST OF DECK		· · ·		
		DEPL	OYMENT				
DATE 75	Aua. 98	,	SHIP K/	AIY		USE No. K	19810
WEATHER bo	CONDITIONS	12Ph-950 1	DIR. of WEND 144	101	VEL. c	FWIND 2	mlmc_
DEPTH 1961	m DEPTH o	fAR. /20.	3 m DES	CEN	d. Rate	2.5 m/s	
POS. of STRT	0.00.021 N 15	5 59,03	4 <u>E</u> HOR.RA	NGE		m	
POS. of DEP.	0.00.023N 12	6 00.163	F SINKER	23	:07 DI	SAPPEAR	23:14
POS. of MOORIN	G Q 00.007H	156 00	IZh F		1	ANDING	23:19
NOTE					TIME	S/R	DEPTH
アンワー 上 Nylen	(125 - 100 m KR			S	23107		327
美京 2319	(0)(0)			[S]_	23:11		553
- Depth 1961	m			B	23:13		943
		1		L	23:16		1425
					23:19		1803
		ور بغد عند المحالي الم					
		RE	COVERY				
DATE	Nov. 99		SHIP	HIR	A) C	RUISE No.	MR99-KOK
WEATHER b	CONDITIONS	5 lm	DIR. of WIND	 ג	K° VEL	of WIND	2.2 mlicon
START of RELE	ASE 20 : 1	H	FINISH of REI	LEAS	SE 2	20 : 59	(1回日)
POS. of DISCOV	ÆRY 0°0C	425 15	5 29.23E	(Time 21	: 01)
DIRECTION	DIST	ANCE	m		ASCEN	DING RAT	E m/s
NOTE			<u></u>		TIME	S/R	DEFEH
21:01 - 22	B it		FERITER AL	s	21:00	2520	1522
21:15 +52		yper n. K.	TSUBON UF.	s	<u>د مع</u>	25%	11202 1
21 55 小学会	→ (-)、	8 3:12		В	: 03	2526	1121 ···
22:04 0-7	ידרוקד			L	107	1,2200	
7555 10: 55	的雨烟季素				209	1 2202	
22 = 14 ADC	p stapp					1-4303	<u>+ 482m</u>
	The second s			. 1		1	· •

MOORING NO. 980825 - 00/56E

		DEPLOYNENT		RECOVERY (Date: 8	Nov 99)
		start : 22:26 pinish : 23:07		START : 22≥07 FINISH : 22≥54	
ITEM	S/N etc.	TIME	мемо	TIME	MEMO
ADCP	ADCP 11.50	22:28		22:17	*=P4 22×14
WIRE	50 m	22:28		22:19 - 22:22	
ABS BUOY	2	22:3)		72:14-	
· y	2	22:31		~	
"	2	22·32			
WIRE	200m	22:32~22:39		22:26-22:33	
KEVLER	976 m	22:39-22.50	K1019	22:33 - 22:48	
"	188 m	22,50-22;55	k2-01	22-48-22-52	- 1
"	88 m	22;55-23:00	K1-05	22:52-22:54	
GLASS BALL	12	23:09 - 23:0)		22:59	
BENTOS A.R.	S/N 662	23,0		22=59	
. 1,	692	23;01		22:58	
NYLON	125 m	23:01-23:06	100 11 #2		
RAIL ANCHOR	1.8t	23;07			
		· · · · · · · · · · · · · · · · · · ·			
					{
23'14 全沒 所1707 23:19 考 <u>店</u> 1961 m 光深	9m)			21:55 作業般美 22:04 ロープ取 22:07 ひきませ素 22:14 ADCP >	i木 1つり (参刊)開始 (かり)

朔、秋马加国权

00-156 (Summer) '98

7 5-8

DEPLOYMENT & RECOVERY

			MOORI	NG	No. 99	1108 - 0	0156F
PROJECT	TOCS		TIME		j	JTC	
AREA W	estern Pacific		RECORDER	RECORDER (D) A K		Kato	
POSITION	0, 156 E			(R)			
DEPTH	1950 m						
PERIOD		NA	VIGATION SY	STE	M : N	WGS 84	
No.of DAYS							
LENGTH :	m DEPTH o	of BUOY :	m		BUOYAN	CY :	kg
	A(COUSTIC	C RELEASEF	2		· • •	
TYPE	Benthos (Up	per)	TYPE		Bentho	s (low	er)
S/N	908	·	S/N			685	
RECEIVE F.	11.0	kHz	RECEIVE F.			13.0	kHz
TRANSMIT F.	14.5	kHz	TRANSMIT F.			14.5	kHz
ENABLE C.	A		ENABLE C.			C	
RELEASE C.	Ð		RELEASE C.			G	
BATTERY	l venh		BATTERY		1	VAar	
TEST on DECK	8. Nov. 99		TEST on DECH		8	Nov 99	7
		DEPLO	OYMENT				
DATE	8, Nov, 99		SHIP	MR		RUISE No. þ	1R99K06
WEATHER be CONDITIONS I M DIR. of WIND 3/6° VEL. of WIND 3,3 m/s						3,3 m/sec.	
DEPTH 1950	m DEPTH of A.R. /7	7/2 m	DESCEND. RA	TE	m	s BUOY	0:54
POS. of STRT	<u>0°00.658 156</u> °	06.46E	HOR.RA	NG	E	<u>m</u>	
POS. of DEP.	0°00.04.N 156°	07 6,5E	SINKER		<u>:47 c</u>	ISAPPEAR.	:
POS. of MOORING	<u>} 0°00.04.N</u>	156° 07	58E			LANDING	.2 : 00
NOTE	vît.			╽╽	TIME	S / R	DEPTH
F71157 210	えい。			S	1:52		7∞
2013 . 1210				S	1 = 53		800
				B	1:54		1 000
				l└	1:57	·	1500
				╽┟	2:00		17/2
:				LL			
		REC	OVERY				
DATE			SHIP		C	RUISE No.	
WEATHER	CONDITIONS	D	IR. of WIND		VEL.	of WIND	
START of RELEA	<u>SE :</u>		FINISH of REL	EAS	SE	:	
POS. of DISCOVE	<u>RY</u>				ASCEN	DING RATI	Em/s
DIRECTION		W .	DISTANCE	·	m		1
NOTE					TIME	S/R	DEPTH
							<u> </u>
							<u> </u>
				B		<u> </u>	
							<u> </u>

TIME RECORD

No. 991109-17156E

			DEP	LOYMENT	R	
			DATE	8. Nov. 99	<u>├───</u>	·
			START	0:53	1	
			FINISH	1:47	1	
ITEM	S/N	etc	TIME	MEMO	TIME	MEMO
APCP	ADCP 1154 CTD 1285		0:54			
TRANSPONDE	R 57039		0:54) 	
WIRE		Ø10×50m	0:51-0:5	2	 	
ABS BUDY	2		0:58) 		
~				<u> </u>]	
~		, ,	"			1
WIRE		\$10x200	n 0:58-1:0	3	•••••	
KEVLER	k10-01 49	0.012.x490.	1=03-1=1	¢		
	K10-01-20-43	@12x433r	<u>n = 10 - 1=</u>	17		
*	k.2-06	¢12. × 187	1-17-1-2	<u></u>		
•	K1-01	¢12 x 87	n1:20-1=	23		
GLASS BALL	12 pc.		1:27			
Benthes A.B.	908		1:27			
Bonthos A.R.	<u>-599</u> . (\$5	1:27			
NYLON		614×170	m 1:27-1:3	2		· · · · · · · · · · · · · · · · · · ·
RAIL ANCHO	<u>1.8 ten</u>		1:47			
						· · · · · · · · · · · · · · · · · · ·
						en a de la companya d
		<u></u>				
		• •			. İ	
	111 . JL. 1			·		
• TRANSPOL			4			
SN. 57039				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Receive 13	O KHz					
Transmit 14	. O ktłz					
著座 2=0	0					
1510-深度	270 m					
ינא זיג וגות	4.00					

 \sim

υ

L.

7 5-11

7.6. TAO/ATLAS mooring

- (1) Ship: R/V MIRAI (JAMSTEC)
- (2) Cruise Dates: Oct.20, to Nov.19,1999

(3) Personnel: Steve Smith (PMEL)

- (4) Port: Guam to Guam
- (5) Operation summary: (Recover Only) 5 atlas buoys on 156E

(6) Pre-cruise import

The Mirai arrived at the Coast Guard base at 0900 Oct. 19. I had arrived at 0800 and met up with Chief John Howk our main contact in Guam. After the ship arrived Chief Howk called the freight agent and the 20ft container arrived with in 45min. It was quickly unloaded with the help of the ships crew and the forklift provided by the coast guard. The crew had all the gear stowed and secured on the ship in a vary short time. The ship sailed on time Oct. 20, at 1600.

(7) Moorings:

5s 156E Reverse Catenary Release fired 21:53 (GMT) Time on deck 0:05 Depth 1551m

2s 156E Standard Atlas Release fired 21:57 (GMT) Time on deck 0:00 Depth 1756m

0 156E Next Generation Buoy adrift no recovery

2n 156E Standard Atlas Release fired 22:25 (GMT) Time on deck 0:40 Depth 2600m

5n 156E Standard Atlas Release fired 22:23 (GMT) Time on Deck 0:50 Depth 3606m

8n 156E Standard Atlas Release fired 22:23 (GMT) Time on deck 1:04 Depth 4915m

(8) Mooring Operations:

All five buoy recoveries went smoothly. All sensors were recovered except for 2n and 8n. The 2n wind sensor had been broken off with other evidence that it had been visited by a fishing vessel. The 8n

buoy was deployed in January '98 and has been in the water for 22 months. It stopped transmitting the 22nd of January '99. It was spotted 24 Feb. and the wind sensor and mast were missing. After recovery, it was discovered that water had entered the tube and destroyed the batteries and circuit boards. There was plenty of evidence that a fishing vessel had spent some time there. Between the professional ship handling of the officers and the dedication and experienced crews, the recoveries of the TAO moorings were a success. I would like to thank all of the officers and crews of the Mirai for all their help in the recoveries of the Atlas buoys along 156E.