# Cruise Report of NT04-05 (2004.5.19 – 2004.6.05)

## **JAMSTEC**

Mutsu Institute for Oceanography (MIO) High Latitude Time Series observatory (HiLaTS)

Nov. 2004

- 1. Outline of NT04-05
  - 1.1 Cruise Summary
  - 1.2 Cruise track and Schedule
  - 1.3 List of participants
- 2. Observation
  - 2.1 CTD Observations
  - 2.2 Hydrocast
    - 2.2.1 Salinity from Sampled Water
    - 2.2.2 Dissolved oxygen
    - 2.2.3 Nutrients
    - 2.2.4 TCO2 and Alkalinity
    - 2.2.5 Primary productivity
    - 2.2.6 Chlorophyll a
    - 2.2.7 Th-234 and POC
  - 2.3 Large Volume Pump (LVP)
  - 2.4 Surface underway observations
    - 2.4.1 Horizontal and vertical distributions of suspended particles
  - 2.5 Optical measurements
- 3. Appendix

## 1. Outline of NT04-05

### 1.1 Cruise Summary

Hajime KAWAKAMI (JAMSTEC, Mutsu Institute for Oceanography)

This cruise was manly carried out in order to study the biogeochemistry in northwestern North Pacific by following institutes and universities.

Mutsu Institute for Oceanography (MIO) of Japan Marin Science Technology Center (JAMSTEC)

National Institute for Environmental Science (NIES)

National Institute of Advanced Industrial Science and technology (AIST)

Tokai University

R/V Natsushima left Yokosuka on 19 May. Because the typhoon came to Japan, we could not leave Tokyo Bay soon. We departed from Tokyo Bay to the sampling stations on 22 May. Then, we couldn't go to Station K1 so as to lose the ship time.

Station K1 (51N, 165E)

All sampling was canceled because of the lack of ship time.

#### Station KNOT (44N, 155E)

## Hydrocast

We deploy water samplers (12L Niskin water sampler with CTD sensor) 2 times (Hydrocast). Water samples taken were or will be used for the following chemical analysis.

• the routine chemical analysis (Sal, DO, SiO<sub>2</sub>, PO<sub>4</sub>, NO<sub>3</sub>, NO<sub>2</sub>, TDIC, TALK)

## In situ pumping

The in situ pumping was canceled because of bad condition.

Station K2 (47N, 160E)

#### Hydrocast

We deploy water samplers (rossette multiple sampler with CTD sensor) 5 times (Hydrocast). Water samples taken were or will be used for the following chemical analysis.

• the routine chemical analysis (Sal, DO, SiO<sub>2</sub>, PO<sub>4</sub>, NO<sub>3</sub>, NO<sub>2</sub>, TDIC, TALK)

- Th-234, POC, PON, Chl. a analysis
- simulated in situ measurement of Primary production used by C-13

#### In situ pumping

In order to collect suspended particles in the water column, large volume pumping system (LVP) were used. 4 casts of LVP were practiced and 4 LVP were deployed at once for respective casts. The particulate samples from LVP were will be used for Th-234, POC, PON and trace metal analysis.

Station K3 (39, 160E)

We could also do the observations smoothly similarly to St. K2.

However a percentage of success of the sampling was not much higher in this cruise, it is very significant that we could take the biogeochemical samples and data in spring, in northwestern North Pacific.

## 1.2 Cruise track and schedule



NT04-05 Cruise Track

| UTC  |       | Posi   | tion    | Events                  |
|------|-------|--------|---------|-------------------------|
| Date | Time  | Lat.   | Long.   |                         |
| 5.19 | 00:00 | 35-19N | 139-39E | Departure from Yokosuka |
| 5.25 | 21:30 | 44-00N | 155-00E | Arrive at St. KNOT      |
| 5.26 | 03:10 | 44-00N | 155-00E | Departure from St. KNOT |
| 5.27 | 03:00 | 39-40N | 160-00E | Optical measurements    |
| 5.27 | 04:50 | 47-00N | 160-00E | Arrive at St. K2        |
| 5.27 | 21:00 | 47-00N | 160-00E | Departure from St. K2   |
| 5.29 | 17:30 | 39-00N | 160-00E | Arrive at St. K3        |
| 5.30 | 09:50 | 39-00N | 160-00E | Departure from St. K3   |
| 6.05 | 05:30 | 35-19N | 139-39E | Arrival at Yokosuka     |

## 1.3 List of Participants

|           |                     |         | Tel    |
|-----------|---------------------|---------|--------|
| Name      | Affiliation         | Address | Fax    |
|           |                     |         | E-mail |
| Hajime    | JAMSTEC             |         |        |
| KAWAKAMI  | Mutsu Institute for |         |        |
|           | Oceanography (MIO)  |         |        |
| Hiroaki   | JAMSTEC             |         |        |
| SAKO      | MIO                 |         |        |
| Kazuhiro  | JAMSTEC             |         |        |
| HAYASHI   | MIO                 |         |        |
| Takayoshi | Marine Works        |         |        |
| SEIKE     | Japan Ltd.<br>(MWJ) |         |        |
| Hirokatsu |                     |         |        |
| UNO       | MWJ                 |         |        |
| Kenichiro |                     |         |        |
| SATO      | MWJ                 |         |        |
| Taeko     |                     |         |        |
| OHAMA     | MWJ                 |         |        |

## 2. Observation

## 2.1 CTD Observations

## (1) Personnel

Hirokatsu Uno (MWJ): Operation Leader

## (2) Objective

Investigation of the oceanic structure and its time variation by measuring vertical profiles of temperature and salinity.

## (3) Methods

We observed vertical profile of temperature and salinity CTD/Rosette (Conductivity, Temperature and Depth Profiler/Rosette Multi Water Sampler). The sensors attached on CTD were for temperature, conductivity and pressure. Salinity was calculated by measuring value of pressure, conductivity and temperature. The CTD/Rosette was deployed from stern on working deck. Descending rate and ascending rate were kept about 1.0 m/sec respectively. Sea surface temperature (SST) measurement was carried out in each time, too.

The CTD raw data was acquired in real time by using CTD2000 provided by S.E.A. Co., Ltd. and stored on the hard disk of personal computer. Water samplings were made during up-cast by sending a fire command from the computer. In total, 14 casting were carried out (see Table 2.1).

The CTD raw data was processed using CTD2000.

Specifications of sensors are listed below.

| Under water unit:   | ICTD (P/N 8001-ICTD, S/N 13 | 57)      | Falmouth Scientific, Inc.  |
|---------------------|-----------------------------|----------|----------------------------|
| Deck unit: DT-200   | 0 Data Terminal (S/N 1357)  | Falmouth | Scientific, Inc.           |
| Water Sampler:      | GO Model 1016 -12 (S/N 1541 | )        | General Oceanics, Inc.     |
| Under water booster | 90165T (S/N 0010)           |          | Sea Bird Electronics, Inc. |

(4) Preliminary Results

Vertical profiles at each Station cast are shown in Fig. 2.1-1. ~3. Note that, in these figures, the correction of salinity and oxygen data by sampled water is not applied

| ~ .     |                                 |               | Start    |           |               | End      |           |                              |                           |
|---------|---------------------------------|---------------|----------|-----------|---------------|----------|-----------|------------------------------|---------------------------|
| Station | File Name                       | Date / Time   | Lat. [N] | Long. [E] | Date / Time   | Lat. [N] | Long. [E] | Water Sampling               | Remarks                   |
| KNOT    | KNOT CAST01.raw                 | 04/5/24 22:47 | -        | -         | 04/5/24 23:11 | 43-99.90 | 154-60.00 | Routine Shallow (~200m)      |                           |
| KNOT    | KNOT Cast02.raw                 | 04/5/25 0:16  | 44-00.00 | 154-60.00 | 04/5/25 2:27  | 44-00.10 | 154-59.90 | Routine Deep (~3,500m)       |                           |
| К2      | K2 Cast01.raw<br>K2 Cast01b.raw | 04/5/26 4:55  | 46-59.90 | 159-59.80 | 04/5/26 5:15  | 46-59.90 | 156-00.00 | Routine Shallow (~200m)      | Noisy<br>System re-start  |
| К2      | K2 Cast02.raw                   | 04/5/26 9:59  | 47-00.00 | 159-59.90 | -             | _        | -         | Th/POC Shallow (~60m)        | Water sampling<br>Failed. |
| K2      | K2 Cast03.raw                   | -             | -        | -         | 04/5/26 10:11 | 46-59.90 | 160-00.00 | Th/POC Shallow (~60m)        | Re-deploy                 |
| K2      | K2 Cast04.raw                   | 04/5/26 10:31 | 46-59.90 | 159-59.90 | 04/5/26 10:50 | 47-00.00 | 159-59.90 | Th/POC Deep (~200m)          |                           |
| K2      | K2 Cast05.raw                   | 04/5/26 11:10 | 46-59.90 | 160-00.00 | 04/5/26 11:21 | 46-59.90 | 160-00.00 | Primary Productivity         |                           |
| К2      | K2 Cast06.raw                   | 04/5/26 9:27  | 46-59.92 | 159-59.97 | 04/5/26 9:40  | 46-59.98 | 159-59.95 | Routine Deep<br>(500~3,500m) |                           |
| K2      | K2 Cast07.raw                   | 04/5/26 9:27  | 46-59.92 | 159-59.97 | 04/5/26 9:40  | 46-59.98 | 159-59.95 | Routine Deep (~500m)         |                           |
| K3      | K3 Cast01.raw                   | 04/5/28 18:12 | 39-00.10 | 159-59.90 | 04/5/28 18:33 | 39-00.00 | 160-00.00 | Routine Shallow (~200m)      |                           |
| K3      | K3 Cast02.raw                   | 04/5/28 22:24 | 39-00.00 | 160-00.00 | 04/5/28 22:35 | 39-00.00 | 160-00.00 | Th/POC Shallow (~60m)        |                           |
| K3      | K3 Cast03.raw                   | 04/5/28 22:53 | 39-00.10 | 159-59.90 | 04/5/28 23:12 | 39-00.10 | 160-00.00 | Th/POC Deep (~200m)          |                           |
| К3      | K3 Cast04.raw<br>K3 Cast04b.raw | 04/5/28 23:31 | 39-00.10 | 160-00.00 | 04/5/28 0:54  | 39-00.00 | 160-00.00 | Routine Deep (~3,500m)       | Noisy<br>System re-start  |
| K3      | K3 Cast05.raw                   | 04/5/29 9:28  | 38-59.90 | 160-00.00 | 04/5/29 9:40  | 39-00.00 | 160-00.00 | Primary Productivity         |                           |

Table 2.1 CTD cast table



## St.KNOT-Cast01



Fig.2.1-1. Vertical profiles at St.KNOT



St.K2-Cast01



Fig.2.1-2. Vertical profiles at St.K2



## St.K3-Cast01



Fig.2.1-3. Vertical profiles at St.K3

## 2.2 Hydrocast 2.2.1 Salinity from Sampled Water

## (1) Personnel

Hirokatsu UNO (MWJ): Operation Leader

## (2) Objective

Bottle salinity was measured in order to compare with CTD salinity to identify leaking of the bottles and to calibrate CTD salinity.

#### (3) Instrument and Method

The salinity analysis was carried out at laboratory after the cruise of NT04-05 using the Guildline AUTOSAL salinometer model 8400B (S/N 60132), with additional peristaltic-type intake pump, manufactured by Ocean Scientific International. We also used two Guildline platinum hermometers model 9450. One thermometer monitored an ambient temperature and the other monitored a bath temperature. The resolution of the thermometers was 0.001 deg C. The measurement system was almost same as Aoyama et al (2003). The salinometer was operated in the air-conditioned laboratory at a bath temperature of 24 deg C. An ambient temperature varied from approximately 23 deg C to 25 deg C, while a bath temperature is very stable and varied within +/- 0.002 deg C on rare occasion.

A double conductivity ratio was defined as median of 31 times reading of the salinometer. Data collection was started after 5 seconds and it took about 10 seconds to collect 31 readings by a personal computer. Data were taken for the sixth and seventh filling of the cell. In case the difference between the double conductivity ratio of this two fillings is smaller than 0.00002, the average value of the two double conductivity ratio was used to calculate the bottle salinity with the algorithm for practical salinity scale, 1978 (UNESCO, 1981).

#### (3-1) Standardization

AUTOSAL model 8400B was standardized at the beginning of the sequence of measurements using IAPSO standard seawater (batch P144, conductivity ratio; 0.99987, salinity; 34.995 23-Sep-2003). Because of the good stability of the AUTOSAL, calibration of the AUTOSAL was performed only once: The value of the Standardize Dial was adjusted at the time. Instead of the calibration in the middle and after the measurement, standard seawater was measured after the measurement of approximately 30 samples for the drift check. 7 bottles of standard seawater were measured in total, and their standard deviation to the catalogue value was 0.0001(PSU). The value is used for the calibration of the measured salinity.

We also used sub-standard seawater which was obtained from 2,000 m depth and filtered by Millipore filter (pore size of  $0.45 \,\mu$ m), which was stored in a 20 liter polyethylene container. It was measured every 12 samples in order to check the drift of the AUTOSAL.

#### (3-2) Salinity Sample Collection

Seawater samples were collected with 12 liter Niskin (Non Teflon coating) bottle. The salinity sample bottle of the 250ml brown grass bottle with screw cap was used to collect the sample water. Each bottle was rinsed three times with the sample water, and was filled with sample water to the bottle shoulder. Its cap was also thoroughly rinsed.

The kind and number of samples are shown in Table 2.2.1-1.

| Kind of Samples  | #  |
|------------------|----|
| Samples for CTD  | 81 |
| Samples for EPCS | 2  |
| Total            | 83 |

Table 2.2.1-1 Kind and number of sample

## (4) Preliminary Results

The preliminary results are shown in Table 2.2.1-2.

The average of difference between measurement data and CTD data were 0.0148 and the standard deviation was 0.0208.

As shown above, we took 3 pairs of replicate samples. The average of the absolute difference of replicate samples was 0.0197 (The values except bottle No.0501 and No.0502 are 0.0005.).

## (5) Reference

- Aoyama, M., T. Joyce, T. Kawano and Y. Takatsuki: Standard seawater comparison up to P129. Deep-Sea Research, I, Vol. 49, 1103–1114, 2002
- UNESCO: Tenth report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Papers in Mar. Sci., 36, 25 pp., 19

| Station | No. of | Pressure | Depth  | CTD      | No. of | AUTOSAL  | Difference  |
|---------|--------|----------|--------|----------|--------|----------|-------------|
| Station | Niskin | (db)     | (m)    | Salinity | Bottle | Salinity | CTD-AUTOSAL |
| KNOT    | Bucket | 0.0      | 0.0    | 33.1542  | 0493   | 33.1636  | -0.0094     |
| KNOT    | 1      | 200.4    | 198.7  | 33.6841  | 0494   | 33.6768  | 0.0073      |
| KNOT    | 2      | 152.6    | 151.3  | 33.4064  | 0495   | 33.4099  | -0.0035     |
| KNOT    | 3      | 123.6    | 122.6  | 33.2934  | 0496   | 33.2985  | -0.0051     |
| KNOT    | 4      | 100.7    | 99.9   | 33.2232  | 0497   | 33.2163  | 0.0069      |
| KNOT    | 5      | 80.1     | 79.4   | 33.3826  | 0498   | 33.3051  | 0.0775      |
| KNOT    | 6      | 70.0     | 69.4   | 33.1787  | 0499   | 33.1999  | -0.0212     |
| KNOT    | 7      | 60.8     | 60.3   | 33.1734  | 0500   | 33.1766  | -0.0032     |
| KNOT    | 8      | 49.0     | 48.6   | 33.2551  | 0501   | 33.2725  | -0.0174     |
| KNOT    | 8      | 49.0     | 48.6   | 33.2551  | 0502   | 33.1754  | 0.0797      |
| KNOT    | 9      | 39.3     | 39.0   | 33.1550  | 0503   | 33.2709  | -0.1159     |
| KNOT    | 10     | 29.1     | 28.9   | 33.1613  | 0504   | 33.1617  | -0.0004     |
| KNOT    | 11     | 18.4     | 18.3   | 33.1617  | 0505   | 33.1655  | -0.0038     |
| KNOT    | 12     | 9.0      | 8.9    | 33.1591  | 0506   | 33.1646  | -0.0055     |
| -       | EPCS   | 0.0      | 0.0    | -        | 0507   | 33.1727  | -           |
| KNOT    | 1      | 3559.0   | 3501.0 | 34.6766  | 0508   | 34.6799  | -0.0033     |
| KNOT    | 1      | 3559.0   | 3501.0 | 34.6766  | 0509   | 34.6796  | -0.0030     |
| KNOT    | 2      | 3046.2   | 3000.1 | 34.6674  | 0510   | 34.6682  | -0.0008     |
| KNOT    | 3      | 2535.7   | 2500.3 | 34.6448  | 0511   | 34.6476  | -0.0028     |
| KNOT    | 4      | 2026.2   | 2000.3 | 34.6055  | 0512   | 34.6090  | -0.0035     |
| KNOT    | 5      | 1516.2   | 1498.6 | 34.5354  | 0513   | 34.5386  | -0.0032     |
| KNOT    | 6      | 1009.3   | 1009.3 | 34.4171  | 0514   | 34.4199  | -0.0028     |
| KNOT    | 7      | 809.7    | 801.6  | 34.3384  | 0515   | 34.3403  | -0.0019     |
| KNOT    | 8      | 604.7    | 599.0  | 34.2703  | 0516   | 34.2766  | -0.0063     |
| KNOT    | 9      | 504.1    | 499.4  | 34.1085  | 0517   | 34.1142  | -0.0057     |
| KNOT    | 10     | 403.7    | 400.1  | 34.0220  | 0518   | 34.0279  | -0.0059     |
| KNOT    | 11     | 301.5    | 298.9  | 33.8839  | 0519   | 33.8907  | -0.0068     |
| KNOT    | 12     | 251.9    | 249.7  | 33.7811  | 0520   | 33.7876  | -0.0065     |
| K2      | Bucket | 0.0      | 0.0    | 33.0305  | 0521   | 33.0371  | -0.0066     |
| K2      | 1      | 201.2    | 199.5  | 33.8116  | 0522   | 33.8090  | 0.0026      |
| K2      | 2      | 151.2    | 149.9  | 33.5688  | 0523   | 33.5723  | -0.0035     |
| K2      | 3      | 126.9    | 125.8  | 33.2657  | 0524   | 33.2876  | -0.0219     |
|         |        |          |        |          |        |          |             |

Table 2.2.1-2 Difference between measured salinity and CTD salinity

| Station | No. of | Pressure | Depth  | CTD      | No. of | AUTOSAL  | Difference  |
|---------|--------|----------|--------|----------|--------|----------|-------------|
| Station | Niskin | (db)     | (m)    | Salinity | Bottle | Salinity | CTD-AUTOSAL |
| K2      | 4      | 100.9    | 100.0  | 33.0946  | 0525   | 33.1070  | -0.0124     |
| K2      | 5      | 81.3     | 80.6   | 33.0749  | 0548   | 33.0805  | -0.0056     |
| K2      | 6      | 70.1     | 69.5   | 33.0704  | 0527   | 33.0802  | -0.0098     |
| K2      | 7      | 60.8     | 60.3   | 33.0711  | 0528   | 33.0754  | -0.0043     |
| K2      | 8      | 49.9     | 49.9   | 33.0621  | 0529   | 33.0697  | -0.0076     |
| K2      | 8      | 49.9     | 49.9   | 33.0621  | 0530   | 33.0693  | -0.0072     |
| K2      | 9      | 39.5     | 39.2   | 33.0518  | 0531   | 33.0588  | -0.0070     |
| K2      | 10     | 31.8     | 31.5   | 33.0487  | 0532   | 33.0531  | -0.0044     |
| K2      | 11     | 19.6     | 19.4   | 33.0299  | 0533   | 33.0419  | -0.0120     |
| K2      | 12     | 9.7      | 9.6    | 33.0281  | 0534   | 33.0327  | -0.0046     |
| K2      | 1      | 3555.9   | 3506.9 | 34.6794  | 0535   | 34.6814  | -0.0020     |
| K2      | 1      | 3555.9   | 3506.9 | 34.6794  | 0536   | 34.6812  | -0.0018     |
| K2      | 2      | 3045.1   | 3006.6 | 34.6680  | 0537   | 34.6714  | -0.0034     |
| K2      | 3      | 2532.1   | 2503.1 | 34.6499  | 0538   | 34.6533  | -0.0034     |
| K2      | 4      | 2023.4   | 2002.6 | 34.6103  | 0539   | 34.6187  | -0.0084     |
| K2      | 5      | 1514.3   | 1500.5 | 34.5489  | 0540   | 34.5539  | -0.0050     |
| K2      | 6      | 1010.5   | 999.7  | 34.4398  | 0541   | 34.4449  | -0.0051     |
| K2      | 7      | 805.8    | 797.6  | 34.3749  | 0542   | 34.3767  | -0.0018     |
| K2      | 8      | 606.6    | 600.7  | 34.2769  | 0543   | 34.2811  | -0.0042     |
| K2      | 9      | 506.9    | 502.1  | 34.2041  | 0544   | 34.2197  | -0.0156     |
| K2      | 10     | 404.5    | 400.8  | 34.1311  | 0545   | 34.1327  | -0.0016     |
| K2      | 11     | 302.5    | 299.8  | 33.9832  | 0546   | 33.9930  | -0.0098     |
| K2      | 12     | 253.1    | 250.8  | 33.9237  | 0547   | 33.9252  | -0.0015     |
| -       | EPCS   | 0.0      | 0.0    | -        | 0549   | 33.0374  | -           |
| K2      | Bucket | 0.0      | 0.0    | 34.3453  | 0550   | 34.3553  | -0.0100     |
| K3      | 1      | 202.4    | 200.8  | 34.2023  | 0551   | 34.1788  | 0.0235      |
| K3      | 2      | 151.9    | 150.7  | 34.2683  | 0552   | 34.2323  | 0.0360      |
| K3      | 3      | 125.9    | 124.9  | 34.2958  | 0553   | 34.2595  | 0.0363      |
| K3      | 4      | 101.0    | 100.2  | 34.3231  | 0554   | 34.2833  | 0.0398      |
| К3      | 5      | 81.1     | 80.5   | 34.3400  | 0555   | 34.3015  | 0.0385      |
| K3      | 6      | 70.7     | 70.2   | 34.3408  | 0556   | 34.3025  | 0.0383      |
| K3      | 7      | 60.8     | 60.3   | 34.3455  | 0557   | 34.3037  | 0.0418      |
| K3      | 8      | 50.6     | 50.2   | 34.3676  | 0558   | 34.3345  | 0.0331      |
| K3      | 8      | 50.6     | 50.2   | 34.3676  | 0559   | 34.3356  | 0.0320      |
|         |        |          |        |          |        |          |             |

| Que tiene | No. of | Pressure | Depth  | CTD      | No. of | AUTOSAL  | Difference  |
|-----------|--------|----------|--------|----------|--------|----------|-------------|
| Station   | Niskin | (db)     | (m)    | Salinity | Bottle | Salinity | CTD-AUTOSAL |
| K3        | 9      | 40.5     | 40.2   | 34.3856  | 0560   | 34.3448  | 0.0408      |
| K3        | 10     | 30.2     | 30.0   | 34.4246  | 0561   | 34.3578  | 0.0668      |
| K3        | 11     | 20.0     | 19.8   | 34.4189  | 0562   | 34.3707  | 0.0482      |
| K3        | 12     | 10.5     | 10.4   | 34.3874  | 0563   | 34.3454  | 0.0420      |
| K3        | 1      | 3557.4   | 3501.0 | 34.6748  | 0565   | 34.6788  | -0.0040     |
| K3        | 1      | 3557.4   | 3501.0 | 34.6748  | 0566   | 34.6784  | -0.0036     |
| K3        | 2      | 3045.1   | 3000.4 | 34.6609  | 0567   | 34.6655  | -0.0046     |
| K3        | 3      | 2535.2   | 2500.9 | 34.6381  | 0568   | 34.6406  | -0.0025     |
| K3        | 4      | 2025.5   | 2000.5 | 34.5853  | 0569   | 34.5896  | -0.0043     |
| K3        | 5      | 1517.8   | 1500.8 | 34.5023  | 0570   | 34.5087  | -0.0064     |
| K3        | 6      | 1010.9   | 1000.8 | 34.3586  | 0571   | 34.3611  | -0.0025     |
| K3        | 7      | 807.4    | 799.7  | 34.2562  | 0572   | 34.2569  | -0.0007     |
| K3        | 8      | 606.0    | 600.5  | 34.0960  | 0573   | 34.0936  | 0.0024      |
| K3        | 9      | 504.3    | 499.9  | 33.9564  | 0574   | 33.9564  | 0.0000      |
| K3        | 10     | 403.1    | 399.7  | 33.8925  | 0575   | 33.8992  | -0.0067     |
| K3        | 11     | 303.2    | 26.5   | 33.9795  | 0576   | 33.9566  | 0.0229      |
| K3        | 12     | 252.1    | 250.0  | 34.0622  | 0577   | 34.0330  | 0.0292      |

## 2.2.2 Dissolved Oxygen

#### (1) Personnel

Takayoshi SEIKE (Marine Works Japan Ltd.)

#### (2) Objective

Precise determination of dissolved oxygen (below D.O.) using the Winkler titration with potentiometric detection.

(3) Instruments and Apparatus

Titrator:

Metrohm Model 716 DMS Titrino, capable of titrating Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution for 0.001cm<sup>3</sup>.

Detector:

Metrohm Pt Electrode 6.0401.100.

Software:

Data acquisition/ Metrohm, Tinet 2.4.

Sample flasks:

BOD flasks of 180cm<sup>3</sup> nominal capacity with glass stoppers.

**OPTIFIX:** 

Capable of dispensing 1cm<sup>3</sup> pickling reagents(Reagent I; Manganous chloride solution(3M), Reagent II; Sodium hydroxide(8M)/Sodium iodide solution(4M)).

Dispensers:

Metrohm Model 765 Multi Dosimat, capable of dispensing 10cm<sup>3</sup> and 1cm<sup>3</sup> standard KIO<sub>3</sub> solution.

(4) Methods

Sampling and analytical methods were based on the WHP Operations and Methods (Culberson, 1991, Dickson, 1994).

## (a) Sampling

Following procedure is based on the WHP Operations and Methods (Dickson, 1996).

Seawater samples were collected with Niskin bottle attached to the CTD-system. Seawater for oxygen measurement was transferred from Niskin sampler bottle to a volume calibrated flask (ca. 180cm<sup>3</sup>). Three times volume of the flask of seawater was overflowed. Temperature was measured by digital thermometer during the overflowing. Then two reagent solutions (Reagent I, II) of 1cm<sup>3</sup> each were added immediately into the sample flask and the stopper was inserted carefully into the flask. The sample flask was then shaken vigorously to mix the contents and to disperse the precipitate finely throughout. After the precipitate has settled at least halfway down the flask, the flask was shaken again vigorously to disperse the precipitate. The sample flasks containing pickled samples were stored in a laboratory until they were titrated.

#### (b) Analytical methods

The samples were analyzed by 1 sets of Metrohm titrator with 10 ml piston burette and Pt electrode. Titration values were determined by the potentiometeric methods, and the endpoint for titration was evaluated by the software of Metrohm, Tinet 2.4. From the titration values, we calculated concentration of dissolved oxygen by WHP Operations and Methods (Culberson, 1991, Dickson, 1994).

## (5) Result

#### (a) Reproducibility of sample measurement

Replicate samples were taken at every CTD cast; usually these were 10 % of seawater samples of each cast during this cruise. Results of the replicate samples were shown in Table 2.2.2. The standard deviation was calculated by a procedure (SOP23) in DOE (1994).

| Table 2.2.2 Results of the replicate sample measurement |
|---------------------------------------------------------|
|---------------------------------------------------------|

| Number of replicate | Oxygen concentration (mmol/kg) |
|---------------------|--------------------------------|
| sample pairs        | Standard Deviation.            |
| 12                  | 0.20                           |

## (b) Vertical profiles

The vertical profiles of dissolved oxygen were shown in Fig. 2.2.2.

## (6) References

- Culberson, C.H. (1991) Dissolved Oxygen, in WHP Operations and Methods, Woods Hole., pp1-15.
- Culberson, C.H., G.Knapp, R.T.Williams and F.Zemlyak (1991) A comparison of methods for the determination of dissolved oxygen in seawater. (WHPO 91-2)
- Dickson, A.G. (1994) Determination of dissolved oxygen in seawater by Winkler titration, in WHP Operations and Methods, Woods Hole., pp1-14.
- Murray, N., J.P.Riley and T.R.S. Wilson (1968) The solubility of oxygen in Winkler regents used for the determination of dissolved oxygen, Deep-Sea Res., 15, 237-238.



Fig. 2.2.2 Vertical profiles at each station.

## 2.2.3 Nutrients

Yukihiro NOJIRI (National Institute for Environmental Science) Kazuhiro HAYASHI (JAMSTEC MIO) Makio HONDA (JAMSTEC MIO)

#### (1) Sampling Procedures

Samples were drawn into polypropylene 100 ml small mouth bottles. These were rinsed twice before filling. The samples were quickly stored in a freezer under - 20 °C and kept by the day the nutrients analyses were conducted on land.

#### (2) Instruments and Methods

The nutrients analyses were performed on BRAN+LUEBBE continuous flow analytical system Model TRAACS 800 (4 channels). The laboratory temperature was maintained between 20-25 deg C.

Nitrite: The nitrite is determined by diazitizing with sulfanilamide and coupling with N-1-naphthylethylenediamine (NED) to form a colored azo dye which is measured at 550 nm using 5 cm length cell.

Nitrate: Nitrate in seawater is reduced to nitrite, which is determined by the method described above. Nitrite initially present in the sample is corrected.

Silicate: The standard AAII molybdate-ascorbic acid method was used. Tempreture of the sample was maintained at 45-50 deg C using a water bath to reduce the reproducibility problems encountered when the samples were analyzing at different temperatures. The silicomolybdate produced is measured spectrophotometrically at 630 nm using a 3 cm length cell.

Phosphate: The method by Murphy and Riley (1962) was used with separate additions of ascorbic acid and mixed molybdate-sulfuric acid-tartrate. Tempreture of the samples were adjusted to be 45-50 deg C using a water bath. The phospho-molybdate produced is measured at 880 nm using a 5 cm length cell.

## (3) Preliminary results

The results are shown in Appendix.

## 2.2.4 TCO2 and Alkalinity

Nubuo TSURUSHIMA (National Institute of Advanced Industrial Science and technology) Kazuhiro HAYASHI (JAMSTEC MIO) Makio HONDA (JAMSTEC MIO)

## (1) Sampling

We collected samples for on board measurements of total carbon dioxide (TC) and total alkalinity (TA). Water samples were collected with CTD rosette systems attached with Niskin bottles of 12 1 capacity. Sample waters for TC/TA were drawn from Niskin samplers into 250 (200 ?) ml glass bottles with plastic screw cap (Schott Duran). Sequentially, mercuric chloride solution (3 mg-HgCl<sub>2</sub> / 100 g-H<sub>2</sub>O) of 0.05 cm<sup>3</sup> was added as preservative. Samples collected on board were kept in refrigerator by the day the analysis was conducted

## (2) Analysis

TC and TA in seawater were determined by the methods similar to DOE (1994) with new automatic measurement system (KIMOTO ELECTRIC Co., LTD.). This system contain two devices, device for extraction of carbon dioxide and a device for determination of TA by titration, each in a 50x60x40cm console. This system is coupled to a CO<sub>2</sub> coulometric detector (model 5012, supplied by UIC Coulometrics Inc.), an Autoburette (ABU901, supplied by RADIOMETER Co., LTD.), two cooling units to maintain the sample water at constant temperature, and a personal computer. All procedures except exchange of the samples and rinsing of TA titration cell are operated automatically. Sample water for TC analyses were controlled at constant temperature (10°C). A known volume (about 30 ml) of seawater sample is dispensed into the stripping chamber and acidified with 8.5% reagent grade phosphoric acid, converting all carbonate species to free CO<sub>2</sub>. The evolved CO<sub>2</sub> is then extracted from seawater using ultra high purity nitrogen gas (99.9995%) for 10 minutes at a rate of 200 ml/min. The CO<sub>2</sub> gas is absorbed by a coulometer cell solution, containing ethanolamine, dimethylsulfoxide and thymolphthalein indicator, and quantified by coulometric titration. Seawater based reference materials were prepared by Hokkaido University used for calibration. The precision was 0.1%, which was obtaned from 10 replicate determinations on board the ship once a day. TA was determined by potentiometric titration. Sample water for determination of TA was controlled at constant temperature (20°C). A known volume (about 100 ml) of seawater sample is dispensed into closed titration cell containing two glass electrodes, a thermometer and a capillary tube that supplies acid from a burette. Sample seawater was titrated with 0.2 N hydrochloric acid past the carbonic acid endpoint. TA was calculated from titration data by the non-linear least-squares approach (DOE, 1994). The precision was 0.1%, which was obtained from 10 replicate determinations on board the ship once a day.

#### (3) Results

The results are shown in Appendix.

## (4) Reference

DOE (1994): Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater; version 2.0, A. G. Dickson and C. Goyet, editors, U. S. Department of Energy CO<sub>2</sub> Science Team

Report.

## 2.2.5 Primary productivity

Hiroaki SAKOH (JAMSTC MIO), Taeko OHAMA (Marine Works Japan Ltd.), Makio HONDA (JAMSTEC MIO)

## (1) Objective

The objective of this experiments was measured the primary production by simulated *in situ* incubation from uptake rate of labeled inorganic <sup>13</sup>C-carbon.

## (2)Collected Samples

Samples were collected from the surface and other five depths at K1 and K3. Samples were collected using a bucket for surface and Niskin sampler for five pre-defined depth. Samples were sieved through a 200 µm mesh to remove large-size zooplankton. The five depths were determined from the light intensity which measured by optical profiler (see optical measurements). These depths had 100%, 45%, 27%, 12%, 5%, 1% PAR light intensity relative to the surface light irradiance. The sample collection depths at each station were shown in Table 2.2.5-1.

| PAR light intensity (%) |    | 45 | 27 | 12 | 5  | 1  |
|-------------------------|----|----|----|----|----|----|
| Sampling                | K2 | 7  | 13 | 23 | 34 | 55 |
| depth (m)               | K3 | 7  | 13 | 22 | 32 | 50 |

Table 2.2.5-1 Sample collection depths at K1 and K3

#### (3) Simulated in situ incubation

Each sample was divided to 1 liter into Nalgen polycarbonate bottles with screw caps. 1 ml NaH<sup>13</sup>CO<sub>3</sub> solution as a tracer was added the 2 bottles of samples at each station. Sequentially, bottles except the surface sample were put into light shield nets and all samples place into deck incubators with light shield filter adjusting to the light levels at respective depth. Water temperature for each incubator was also adjusted to those at respective depth. Samples were incubated for 24 hours started before sunrise (3:20 at K2 and 3:40 at station K3). After incubation, samples were filtered through the Whatman GF / F glass-fiber filter (diameter: 25 mm, pore size:  $0.7 \mu$ m) pre-combusted with temperature of 450 °C for at least 6 hours. These filtered samples were frozen immediately until laboratory analysis.

## (4) <sup>13</sup>C analysis

On land, <sup>13</sup>C of samples were measured by using a mass spectrometer ANCA-SL system.

Before analysis, inorganic carbon of samples was removed by an acid treatment in a HCl vapor bath for 4 - 5 h. Table 3 shows total particulate organic carbon (POC) and concentrations of <sup>13</sup>C of POC for respective samples.

Based on the balance of <sup>13</sup>C, assimilated organic carbon ( $\Delta$ POC) is expressed as follows (Hama *et al.*, 1983):

$${}^{13}C_{(POC)} * POC = {}^{13}C_{(sw)} * \Delta POC + (POC - \Delta POC) * {}^{13}C_{(0)}$$

This equation is converted to the following equation;

$$\Delta POC = POC * ({}^{13}C_{(POC)} - {}^{13}C_{(0)}) / ({}^{13}C_{(sw)} - {}^{13}C_{(0)})$$

where  ${}^{13}C_{(POC)}$  is concentration of  ${}^{13}C$  of particulate organic carbon after incubation, *i.e.*, measured value (%).  ${}^{13}C_{(0)}$  is that of particulate organic carbon before incubation, *i.e.*, that for sample as a blank.

 ${}^{13}C_{(sw)}$  is concentration of  ${}^{13}C$  of ambient seawater with a tracer. This value for this study was determined to be 10.203 (10.636 for K-3) % based on the following calculation;

 ${}^{13}C_{(sw)}(\%) = [(0.002 * 0.011) + 0.000203] / (0.002 + 0.000203) * 100$ 

where 0.002 (0.0019 for K-3) is observed concentration of total dissolved inorganic carbon (TDIC: mol  $l^{-1}$ ) and 0.011 is concentration of  ${}^{13}C$  of natural seawater (1.1 %). 0.000203 is added  ${}^{13}C$  (mol) as a tracer.

Taking into account for the discrimination factor between  ${}^{13}C$  and  ${}^{12}C$  (1.025), primary productivity (PP) was, finally, estimated by

$$PP = 1.025 * \Delta POC$$

Table 2.2.5-2 also shows estimated primary productivity. The precision (repeatability: standard deviation / average) ranged from 2 % to 22 % with average of 9 %.

Trapezoidal integrated primary productivity in the euphotic layer (> 1 % light level) were also estimated (Table 2.2.5-1). Integrated primary productivity were estimated to be approximately 510 mg m<sup>-3</sup> day<sup>-1</sup> for station K2 and 767 mg m<sup>-3</sup> day<sup>-1</sup> for station K3. These were higher than integrated PP observed previously at station KNOT (Imai *et al.*, 2002).

It is noted that simulated *in-situ* incubation methods during this cruise had problem in the light and water temperature control. Especially there is much possibility that the light for surface sample was partly shielded. More precise experiment is requested in future.

| Ag Temp                        | Light level   | Water Denth | POC                     | 13C                | PP                 | average | stdev | PP(int)        |  |  |
|--------------------------------|---------------|-------------|-------------------------|--------------------|--------------------|---------|-------|----------------|--|--|
| (deg-C)                        | (%)           | (m)         | $(\mu \alpha^{\prime})$ | $(\Lambda tom \%)$ | $(m\sigma/m3/dav)$ | average | stuev | (mg m-2 day)   |  |  |
| Station K-2                    | (70)          | (111)       | $(\mu g/I)$             | (Atom / )          | (ing/ins/duf)      |         |       | (ing in 2 day) |  |  |
| Blank 13C · 1                  | 087           |             |                         |                    |                    |         |       |                |  |  |
| added 13C tracer: 0.000203 mol |               |             |                         |                    |                    |         |       |                |  |  |
| TDIC: 0.002                    | 0 mol/1       |             |                         |                    |                    |         |       |                |  |  |
| 13C(sw): 10.                   | 2033 %        |             |                         |                    |                    |         |       |                |  |  |
| 5                              | 100           | 0           | 118.5                   | 1.932              | 11.26              | 11.26   |       | 70.0           |  |  |
| 5                              | 100           | 0           | 143.0                   | 1.082              | -0.07              |         |       |                |  |  |
| 5                              | 45            | 7           | 101.4                   | 1.853              | 8.73               | 9.31    | 0.81  | 65.2           |  |  |
| 5                              | 45            | 7           | 110.8                   | 1.880              | 9.88               |         |       |                |  |  |
| 5                              | 27            | 13          | 129.8                   | 1.978              | 13.01              | 13.49   | 0.68  | 152.6          |  |  |
| 5                              | 27            | 13          | 133.7                   | 2.016              | 13.97              |         |       |                |  |  |
| 5                              | 12            | 23          | 126.9                   | 2.314              | 17.50              | 15.85   | 2.33  | 138.7          |  |  |
| 5                              | 12            | 23          | 122.7                   | 2.116              | 14.20              |         |       |                |  |  |
| 5                              | 5             | 34          | 85.1                    | 1.893              | 7.72               | 8.60    | 1.24  | 84.5           |  |  |
| 5                              | 5             | 34          | 103.0                   | 1.906              | 9.48               |         |       |                |  |  |
| 5                              | 1             | 55          | 90.6                    | 1.119              | 0.32               | 0.28    | 0.06  |                |  |  |
| 5                              | 1             | 55          | 58.8                    | 1.123              | 0.24               |         |       | 510.9          |  |  |
| Station K-3                    |               |             |                         |                    |                    |         |       |                |  |  |
| Blank 13C: 1                   | .087          |             |                         |                    |                    |         |       |                |  |  |
| added 13C tra                  | acer: 0.00020 | 3 mol       |                         |                    |                    |         |       |                |  |  |
| TDIC: 0.001                    | 9 mol/l       |             |                         |                    |                    |         |       |                |  |  |
| 13C(sw): 10.                   | 6362 %        |             |                         |                    |                    |         |       |                |  |  |
| 13                             | 100           | 0           | 161.6                   | 2.413              | 23.00              | 22.54   | 0.64  | 194.4          |  |  |
| 13                             | 100           | 0           | 144.0                   | 2.516              | 22.09              |         |       |                |  |  |
| 13                             | 45            | 7           | 163.2                   | 2.944              | 32.53              | 32.04   | 0.70  | 162.4          |  |  |
| 13                             | 45            | 7           | 161.1                   | 2.911              | 31.54              |         |       |                |  |  |
| 12                             | 27            | 13          | 148.1                   | 2.446              | 21.60              | 21.18   | 0.59  | 182.3          |  |  |
| 12                             | 27            | 13          | 144.8                   | 2.422              | 20.76              |         |       |                |  |  |
| 12                             | 12            | 22          | 146.6                   | 2.288              | 18.90              | 18.75   | 0.22  | 141.5          |  |  |
| 12                             | 12            | 22          | 149.2                   | 2.248              | 18.59              |         |       |                |  |  |
| 11                             | 5             | 32          | 122.9                   | 1.800              | 9.40               | 8.75    | 0.92  | 86.5           |  |  |
| 11                             | 5             | 32          | 121.9                   | 1.706              | 8.10               |         |       |                |  |  |
| 11                             | 1             | 50          | 95.0                    | 1.107              | 0.20               | 0.23    | 0.03  |                |  |  |
| 11                             | 1             | 50          | 93.1                    | 1.112              | 0.25               |         |       | 767.0          |  |  |

Table

Primary productivity

## (5) PP observed by HiLaTS project

We have measured PP during recent cruises (NT03-07 in July 2003, KR03-11 in September / October 2003, MR04-02 in March / April 2004, and this cruise of NT04-05 in May / June 2004). These data were summarized as follows:

## 1) Seasonal change in vertical profiles

Fig. 2.2.5 shows seasonal variability in vertical profiles at various stations.



Fig. 2.2.5 Seasonal variability in vertical profiles of PP at various stations

## 2) NPP/GPP

Based on PP data obtained during MR04-02 cruise, net primary productivity (NPP) that is PP for 24 hrs. incubation were compared with gross primary productivity (GPP) that is PP for 12 hrs. incubation in day time.

| Date                | April 13 2004    | April 8 2004   | April 8 2004   | April 8 2004   |
|---------------------|------------------|----------------|----------------|----------------|
| Location            | 34-02.53N        | K2 (47N, 160E) | K2 (47N, 160E) | K2 (47N, 160E) |
|                     | 150-47.27E       |                |                |                |
| Depth (m)           | 0                | 0              | 11.1           | 37.1           |
| Relative irradiance | 49               | 100            | 29             | 5.1            |
| (%)                 |                  |                |                |                |
| Temperature (°C)    | 17               | 1.7            | 1.6            | 1.6            |
| GPP (12hr) (µg/l)   | $13.88 \pm 3.65$ | 6.60           | 6.16           | 2.84           |
|                     | (n=5)            |                |                |                |
| NPP (24hr) (µg/l)   | $13.72 \pm 3.05$ | 6.55           | 5.55           | 0.93           |
|                     | (n=6)            |                |                |                |
| NPP / GPP           | 0.988            | 0.993          | 0.901          | 0.329          |

There is a tendency that the ratio of NPP to GPP (NPP/GPP) decreases with depth or light level.

## 3) Light utilization Index: $\Psi$

Light utilization index  $(\Psi)$  is defined as follows:

 $\Psi$  = depth-integrated PP / Chl-a<sub>(int)</sub> / PAR

where Chl-a(int) is integrated chl-a in the euphotic zone (mg-Chl-a m<sup>-2</sup>) PAR is dairy PAR (mol quanta m<sup>-2</sup> day<sup>-1</sup>). Par was observed once a day at solar noontime by using "Free fall sensor". Therefore dairy PAR was estimated with a following empirical equation:

 $\int PAR_{(T)} = \int PAR_{(max)} * (\sin (\pi / I * T))^2$ 

where  $PAR_{(max)}$  is PAR observed at noontime and I and T is time and day length, respectively.

|        | NT03-07   | KR03-11         | MR04-02   | NT04-05       |
|--------|-----------|-----------------|-----------|---------------|
|        | Jul. 2003 | Oct / Nov. 2003 | Apr. 2004 | May/Jun. 2004 |
| K1     |           |                 |           |               |
| PP     |           | 343.39          | 221.16    |               |
| Chl-a  |           | 34.79           | 25.81     |               |
| PAR    |           | 14.76           | 31.26     |               |
| $\phi$ |           | 0.6689          | 0.274     |               |
| K2     |           |                 |           |               |
| PP     | 366.73    |                 | 141.12    | 510.94        |
| Chl-a  | 40.89     |                 | 20.62     | 43.12         |
| PAR    | 16.55     |                 | 33.74     | 19.22         |
| $\phi$ | 0.542     |                 | 0.2029    | 0.6165        |
| K3     |           |                 |           |               |
| PP     | 220.99    | 419.89          |           | 767.01        |
| Chl-a  | 34.29     | 16.58           |           | 36.92         |

|      | PAR    | 10.961 | 9.08  |        | 36.15 |
|------|--------|--------|-------|--------|-------|
|      | $\psi$ | 0.588  | 2.789 |        | 0.575 |
| KNOT |        |        |       |        |       |
|      | PP     | 267.81 |       |        |       |
|      | Chl-a  | 37.63  |       |        |       |
|      | PAR    | 22.26  |       |        |       |
|      | $\psi$ | 0.320  |       |        |       |
| 35N  |        |        |       |        |       |
|      | PP     |        |       | 568.26 |       |
|      | Chl-a  |        |       | 19.16  |       |
|      | PAR    |        |       | 39.20  |       |
|      | $\psi$ |        |       | 0.757  |       |

It is note that  $\Psi$  reported by Imai et al. (2002) is approximately 0.3 and constant while  $\Psi$  reported by Shiomoto (2000) was ranged from 0.75 – 0.96 in summer to 0.33 – 0.53 in winter. Shiomoto (2000) reported that  $\phi$  increases with decrease of PAR.

## References

- Allen *et al.* (1996): New production and photosynthetic rates within and outside a cyclonic mesoscale eddy in the North Pacific subtropical gyre. Deep-Sea Research I 43, 917-936.
- Hama *et al.* (1983): Measurement of photosynthetic production of a marine phytoplankton population using a stable <sup>13</sup>C isotope. Marine Biology 73, 31-36.
- Imai *et al.* (2002): Time series of seasonal variation of primary productivity at station KNOT (44°N, 155°E) in the sub-arctic western North Pacific. Deep-Sea Research 49, 5395-5408.

Shiomoto, A. (2000) Efficiency of water-column light utilization in the subarctic northwestern Pacific. Limnology and Oceanography 45(4), 982-987.

## 2.2.6 Chlorophyll a

(1) PersonnelHajime KAWAKAMI (JAMSTEC)Kenichiro SATO (Marine Works Japan Ltd.)

## (2) Objective

The purpose of this study is to estimate the distributions of chlorophyll a at the Northwest pacific by fluorometric analysis. Chlorophyll-a measurements are carried out with broadband filter type fluorometer. Broadband filter type fluorometer is used in common, but it is recognized the errors related to the acidification technique when chlorophyll b is present.

#### (3) Materials and Methods

Seawater samples were collected at two sampling sites at the Northwest pacific. The samples were collected 0.5 liter at 7 depths from surface to 200 m with Niskin bottles, except for the surface water, which was taken by the bucket. The samples were gently filtrated by low vacuum pressure (< 15 mmHg) through GF/F filters (diameter: 25 mm) in the dark room. Phytoplankton pigments were immediately extracted in 7 ml of N,N-dimethylformamide after filtration and then, the samples were stored in the freezer (-80  $^{\circ}$ C) until the analysis of fluorometric determination. The measurements were performed at room temperature after the samples were taken out of the freezer. The Traditional acidification method was examined for the determinations of chlorophyll *a* with Turner design model 10-AU-005 fluorometer.

Analytical conditions of this method are indicated in Table 2.2.6, and the vertical profiles of chlorophyll *a* concentrations at stn. K2 and K3 with traditional method were showed in Figure 2.2.6.

Table 2.2.6 Analytical conditions of traditional acidification method for chlorophyll-*a* with Turner fluorometer.

| Method                | Traditional           |
|-----------------------|-----------------------|
| Excitation filter /nm | 5 - 60 (340 - 500 nm) |
| Emission filter /nm   | 2 - 64 (> 665 nm)     |
| Optical kit           | 10-037R               |
| Lamp                  | Daylight White F4R5D  |
| Acidification         | Yes                   |
|                       | (1M HCL, 1min.)       |



Fig. 2.2.6 Vertical profiles of chlorophyll-*a* concentrations at stn. K2 and K3.

## 2.2.7 Th-234 and POC

## Hajime KAWAKAMI (JAMSTEC, Mutsu Institute for Oceanography)

## (1) Purpose of the study

The fluxes of POC were estimated from Particle-reactive radionuclide (<sup>234</sup>Th) and their relationship with POC in the northwestern North Pacific Ocean.

## (2) Sampling

Seawater sampling for <sup>234</sup>Th and POC: 2 stations (St. K2 and St. K3) and 8 depths (10m, 20m, 40m, 60m, 80m, 100m, 150m and 200m) at each station.

Seawater samples (ca. 30 L) were taken from Hydrocast at each depth. The seawater samples were filtered with 47mm GF/F filter (for <sup>234</sup>Th: ca. 25L) and 25mm GF/F filter (for POC and PON: 2.5–5L) on board immediately after water sampling.

*In situ* filtering samples were taken from large volume pump sampler (LVP) at same depths as Hydrocast. The filter samples (150mm GF/F filter) were divided for <sup>234</sup>Th, POC and PON.

## (3) Chemical analyses

Dissolved <sup>234</sup>Th was separated using anion exchange method on board; all Hydrocast samples. Particulate <sup>234</sup>Th from Hydrocast and LVP samples were separated in land-based laboratory. Separated samples of <sup>234</sup>Th were absorbed on 25mm stainless steel disks electrically, and were measured by  $\beta$ -ray counter.

The determinations of POC and PON were used CHN analyzer in land-based laboratory.

## (4) Preliminary result

The distributions of dissolved and particulate <sup>234</sup>Th will be determined as soon as possible after this cruise. This work will help further understanding of particle dynamics at the euphotic layer.

## 2.3 Large Volume Pump (LVP)

## Kazuhiro HAYASHI (JAMSTEC MIO)

#### Instruments over vies

The Large volume pump (LVP) is *in-situe* pump, battery powered, single sample devices that filter large volumes of water through 142mm filters. Flow rate can be adjusted for filter types by exchanging pump head. Filtering volume is recorded from the external flow meter. And also, during sampling system continuously monitors pump performance, flow rate, filtration volume and battery voltage. For each cast four LVP systems was attached on wire. Locations along the wire were selected to sample the depth of interest. Depth sensors (SBE39: Sea bird Electronics inc.) were attached to the maximum and median depth instruments.

|              | Deployment | K-2     | K-2      | Deployment | K-3     | K-3      |
|--------------|------------|---------|----------|------------|---------|----------|
| Cast ID      | depth /m   | (RI) /L | (SPM)/L  | depth /m   | (RI) /L | (SPM)/L  |
| LVP#1        | 10         | 155.2   | 89.7     | 10         | 155.2   | 67.4     |
| LVP#2        | 20         | 190.0   | 73.4     | 20         | 205.1   | 48.8     |
| LVP#3        | 40         | 159.3   | 125.7    | 40         | 152.9   | 96.5     |
| LVP#4        | *60        | 196.4   | 173.0    | *60        | 207.4   | 173.4    |
| LVP#5        | 80         | 185.1   | 178.3    | 100        | 194.5   | 208.2    |
| LVP#6        | 100        | 171.8   | 208.2    | 120        | 179.0   | 226.7    |
| LVP#7        | 150        | 206.7   | 306.6    | 170        | 201.7   | 261.9    |
| LVP#8        | *200       | 197.6   | 294.5    | *220       | 199.8   | 287.7    |
|              |            |         |          |            |         |          |
| SBE_0389     | LVP-4      |         |          |            |         |          |
| Depth        | m          | 58.9    | 60.0     |            | 59.40   | 59.24    |
| Dev.         |            | 0.6     | 1.1      |            | 0.26    | 0.30     |
| SBE_0388     | LVP-8      |         |          |            |         |          |
| Depth        | m          | 203.87  | 204.50   |            | 224.32  | 223.32   |
| Dev.         |            | 0.50    | 1.00     |            | 0.32    | 0.37     |
|              |            |         |          |            |         |          |
| Each pumps   |            | 60min   | 120min   |            | 60min   | 120min   |
| working time |            | JUIIII  | 12011111 |            | JUIIII  | 12011111 |

## Table 1 LVP filtration volume and deployment depth.

#### 2.4 Surface underway observations

#### 2.4.1 Horizontal and vertical distributions of suspended particles

Kazuhiro HAYASHI (JAMSTEC MIO) Xuedonz XU (JAMSTEC MIO)

#### (1) Objectives

Understanding the seasonal variation of the trace metals in the particle matter at the ocean surface and euphotic layer is important for study of export fluxes by them. The contents of trace elements in particulate matter differ by dominant phytoplankton communities. The objectives of this investigation are to understand the seasonal variation relationship between chemical tracers and primary production at the northwestern Pacific, and obtain more knowledge of characteristics of the particulate matter and phytoplankton communities in this area.

#### (2) Sampling

Underway samples were collected at 50m from sea surface by continuous seawater pump on R/V Natushima. Underway seawater is introduced to stainless steel filter holder (SUS 316) for 142mm filters. Particulate matter was collected by Millipore-HA ( $0.45\mu$ m) (Table 2.4.1). Filtered volume was counted by flowmeter. After filtrated, each filter was rinsed over 3 times by milli-Q water. Millipore HA filters were moved to acid clean zip lock bag, which were stored in the refrigerator. In order to obtain horizontal nutrients distribution, seawater samples were collected for nutrients when each filtration started. Seawater samples were stored in freezer, and will analyze by autoanalyzer (TRAACS 800; BRAN+LUEBE) in near future.

Vertical suspended particulate matters (SPM) were collected on 142mm Millipore HA filter by Large volume pump systems. Samples were collected from St. K-2 and St. K-3. Filtered volume was counted by flowmeter. After filtrated, each filter was rinsed over 3 times by milli-Q water. Millipore HA filters were moved to acid clean zip lock bag, which were stored in the refrigerator.

## (3) Analytical method

Millipore HA filters are cut in half size by plastic cutter in the clean food, one is digested by using microwave digestion system (Ethoth: Milestone) with HNO<sub>3</sub> and HF. Dissolved samples are transferred to 50ml centrifuge tube. For ICP-AES samples, uptake of 5ml, add Sc as an internal standard, which take for major elements. These samples will be measured by ICP-AES (Optima 3300DV: Perkin-Elmer). After divided for ICP-AES, almost 45ml sample is added spikes, transferred to Teflon beaker, and evaporated to small drop. Teflon beaker wall is rinsed by conc. HNO<sub>3</sub> 3 or 4 times. Sample will be measured by ICP-MS with dessolvator (modified Cullen *et al.*, 2001).

#### (4) Reference

Cullen *et al.*, (2001) Determination of elements in filtered suspended marine particulate material by sector field HR-ICP-MS, J. Anal. At. Spectrom. , 2001, 16, 1307-1312

## 2.5 Optical Measurements

Hiroaki SAKOH (JAMSTC MIO)

## (1) Objective

The objective of this measurement is to investigate the air and underwater light conditions at respective stations and to determine depths for simulated *in situ* measurement of primary production using labeled inorganic <sup>13</sup>C-carbon.

#### (2) Description of instruments deployed

The instrument consisted of the SeaWiFS Profiling Multichannel Radiometer (SPMR; and SeaWiFS Multichannel Surface Reference (SMSR). The SPMR was deployed in a free fall mode through the water column. The profiler has a 13 channel irradiance sensor (Ed), a 13 channel radiance sensor (Lu), tilt sensor, and fluorometer. The SMSR has a 13 channel irradiance sensor (Es), tilt meter. These instruments observed the vertical profiles of visible and ultra violet light and chlorophyll concentration.

Table 1.Center wavelength of the SPMR/SMSR

|    |       |       | <u> </u> |       |       |       |       |       |       |       |       |       |       |
|----|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Es | 379.5 | 399.6 | 412.2    | 442.8 | 456.1 | 490.9 | 519.0 | 554.3 | 564.5 | 619.5 | 665.6 | 683.0 | 705.9 |
| Ed | 380.0 | 399.7 | 412.4    | 442.9 | 455.2 | 489.4 | 519.8 | 554.9 | 565.1 | 619.3 | 665.5 | 682.8 | 705.2 |
| Lu | 380.3 | 399.8 | 412.4    | 442.8 | 455.8 | 489.6 | 519.3 | 554.5 | 564.6 | 619.2 | 665.6 | 682.6 | 704.5 |

The profiler was deployed twice at respective stations to a depth of 200 m. The reference (SMSR) was mounted on the compass deck and was never shadowed by any ship structure. The profiler descended at a rate from 0.7 to 1.1 m/s with tilts of almost less than 4 degrees.

### (3) Calculation of photosynthetically available radiation (PAR)

These measurements provide data for the computation of quantities of photosynthetically available radiation (PAR) by software "Satlantic PROSOFT6". PAR is integrated quantum yield between 400 and 700 nm. Quantum yield between two wavelengths ( $\lambda 1$  and  $\lambda 2$ ) ( $Q_{((\alpha/\alpha))}$ ) are estimated with Ed of respective wavelengths (Ed<sub>( $\alpha$ )</sub> and Ed<sub>( $\alpha 2$ )</sub>) and the following equation:

$$Q_{((1/2))}) (\text{quanta cm}^{-2} \text{sec}^{-1}) = (\text{Ed}_{(12)} + \text{Ed}_{(12)}) * ((\lambda 2) - (\lambda 1)) / 2 * 10^{-6} / \text{h} / \text{c} * ((\lambda 1) + (\lambda 2)) / 2 * 10^{-9} / (\lambda 1) + (\lambda 2)) / 2 * 10^{-9} / (\lambda 1) / (\lambda 2) / (\lambda 1) /$$

where Ed  $_{(3)}$  and Ed  $_{(2)}$  are irradiance of wave length of  $\lambda 1$  and  $\lambda 2$  nm, respectively. Therefore (Ed  $_{(3)}$  + Ed  $_{(2)}$ ) \* (( $\lambda 2$ ) - ( $\lambda 1$ )) / 2 \* 10<sup>-6</sup> is integrated Ed (W·cm<sup>-2</sup> or joule·cm<sup>-2</sup>) between wavelength of  $\lambda 1$  and  $\lambda 2$  nm. (( $\lambda 1$ ) + ( $\lambda 2$ )) / 2 \* 10<sup>-9</sup> is average wavelength (m). The h and c are the Planck constant and light velocity, and 6.626 \* 10<sup>-34</sup> joule·sec·m<sup>-1</sup> and 3.0 \* 10<sup>8</sup> m·sec<sup>-1</sup>, respectively.

The preliminary results were shown in Figs. 2.5-1 and 2.5-2.



Fig.2.5-1. Vertical profiles of underwater light field at station K2.

- a: downwelling spectral irradiance
- b: upwelling spectral radiance
- c: calculated chlorophyll concentration and photosynthetically available radiation (PAR)



Fig.2.5-2. Vertical profiles of underwater light field at station K3.

- a: downwelling spectral irradiance
- b: upwelling spectral radiance
- c: calculated chlorophyll concentration and photosynthetically available radiation (PAR)

3. Appendix

List of Hydrocast

#### Station: KNOT

|            | Start           | End             |
|------------|-----------------|-----------------|
| Date/Time: | 2004/5/25 22:47 | 2004/5/25 23:11 |
| Lat.:      | No data         | 43-99.90N       |
| Long .:    | No data         | 154-60.00E      |
| Depth (m): | -               | -               |

Remarks: Cast for Routine SHALLOW (~200m) 開始位置は、後部操舵室ハイブリッド表示機の不調の為確認できなかった。□

|          |       | C        | TD data   |          |          | A   | UTOSAL   |         | Chemical a | nalysis (uncorrec | cted data) |         |         |         |
|----------|-------|----------|-----------|----------|----------|-----|----------|---------|------------|-------------------|------------|---------|---------|---------|
| Bottle # | Depth | Pressure | Pot-Temp. | Salinity | Sigma-0  | Sal | Salinity | DO      | TA         | TDIC              | NO2        | NOx     | PO4     | SiO4    |
|          | [m]   | [db]     | [°Ë]      | [PSU]    | [kg/m^3] | B/N | (PSU)    | µmol/kg | µmol/kg    | µmol/kg           | µmol/kg    | µmol/kg | µmol/kg | µmol/kg |
| 1        | 198.7 | 200.4    | 2.7765    | 33.6760  | 26.853   | 494 | 33.6768  | 128.07  |            | 2272.0            | 0.12       | 37.50   | 2.80    | 80.35   |
| 2        | 151.3 | 152.6    | 2.2634    | 33.3937  | 26.675   | 495 | 33.4099  | 242.12  |            | 2195.5            | 0.13       | 29.07   | 2.29    | 55.62   |
|          |       |          |           |          |          |     |          | 241.91  |            |                   |            |         |         |         |
| 3        | 122.6 | 123.6    | 2.4224    | 33.2810  | 26.572   | 496 | 33.2985  | 308.38  |            | 2144.5            | 0.14       | 23.90   | 1.93    | 42.87   |
| 4        | 99.9  | 100.7    | 2.0299    | 33.2081  | 26.546   | 497 | 33.2163  | 325.06  |            | 2141.1            | 0.31       | 23.63   | 1.95    | 41.53   |
| 5        | 79.4  | 80.1     | 3.3604    | 33.3758  | 26.562   | 498 | 33.3051  | 319.44  |            | 2128.8            | 0.46       | 21.35   | 1.78    | 37.90   |
| 6        | 69.4  | 70.0     | 2.5993    | 33.1666  | 26.465   | 499 | 33.1999  | 328.9   |            | 2135.0            | 0.50       | 22.43   | 1.86    | 39.25   |
| 7        | 60.3  | 60.8     | 2.7388    | 33.1619  | 26.450   | 500 | 33.1766  | 331.47  |            | 2131.0            | 0.49       | 22.37   | 1.86    | 38.60   |
| 8        | 48.6  | 49.0     | 3.8252    | 33.2501  | 26.416   | 501 | 33.2725  | 325.11  |            | 2117.4            | 0.43       | 20.20   | 1.71    | 36.73   |
|          |       |          |           |          |          | 502 | 33.2709  |         |            |                   |            |         |         |         |
| 9        | 39.0  | 39.3     | 4.7398    | 33.1542  | 26.242   | 503 | 33.1754  | 330.34  |            | 2106.4            | 0.37       | 19.01   | 1.67    | 36.53   |
| 10       | 28.9  | 29.1     | 4.8030    | 33.1609  | 26.240   | 504 | 33.1617  | 330.76  |            | 2101.3            | 0.34       | 17.11   | 1.59    | 34.51   |
| 11       | 18.3  | 18.4     | 4.8218    | 33.1614  | 26.238   | 505 | 33.1655  | 330.87  |            | 2098.3            | 0.36       | 18.85   | 1.63    | 36.31   |
| 12       | 8.9   | 9.0      | 4.8265    | 33.1588  | 26.235   | 506 | 33.1646  | 330.58  |            | 2102.5            | 0.36       | 18.77   | 1.64    | 36.06   |
|          |       |          |           |          |          |     |          | 330.57  |            |                   |            |         |         |         |
| bucket   | 0     | 0        | 4.829     | 33.1561  | 26.110   | 493 | 33.1636  | 329.97  |            | 2098.5            | 0.37       | 19.16   | 1.65    | 37.08   |

|            | Start          | End            |
|------------|----------------|----------------|
| Date/Time: | 2004/5/26 0:16 | 2004/5/26 2:27 |
| Lat.:      | 44-00.00N      | 44-00.10N      |
| Long.:     | 154-60.00E     | 154-59.90E     |
| Depth (m): | -              | -              |

| Remarks: Cast for Routine DEEP (~3500m) |           |
|-----------------------------------------|-----------|
|                                         |           |
|                                         |           |
|                                         | Data File |

#### Name: KNOT Cast02.raw

Data File Name: KNOT CAST01.raw

|          |        | С        | TD data   |          |          |     | AUTOSAL  |         | Chemical | analysis (uncorre | cted data) |         |         |         |
|----------|--------|----------|-----------|----------|----------|-----|----------|---------|----------|-------------------|------------|---------|---------|---------|
| Bottle # | Depth  | Pressure | Pot-Temp. | Salinity | Sigma-0  | Sal | Salinity | DO      | TA       | TDIC              | NO2        | NOx     | PO4     | SiO4    |
|          | [m]    | [db]     | [°Ċ]      | [PSU]    | [kg/m^3] | B/N | (PSU)    | µmol/kg | µmol/kg  | µmol/kg           | µmol/kg    | µmol/kg | µmol/kg | µmol/kg |
| 1        | 3501.0 | 3559.0   | 1.1945    | 34.6735  | 27.772   | 508 | 34.6799  | 142.90  |          | 2328.1            |            | 36.32   | 2.53    | 150.88  |
|          |        |          |           |          |          | 509 | 34.6796  |         |          |                   |            |         |         |         |
| 2        | 3000.1 | 3046.2   | 1.3002    | 34.6650  | 27.758   | 510 | 34.6682  | 129.61  |          | 2334.6            |            | 37.20   | 2.60    | 154.55  |
|          |        |          |           |          |          |     |          | 129.64  |          |                   |            |         |         |         |
| 3        | 2500.3 | 2535.7   | 1.4583    | 34.6416  | 27.728   | 511 | 34.6476  | 107.98  |          | 2350.5            |            | 38.29   | 2.71    | 158.49  |
| 4        | 2000.3 | 2026.2   | 1.6999    | 34.6017  | 27.679   | 512 | 34.6090  | 80.41   |          | 2363.6            |            | 40.12   | 2.84    | 158.31  |
| 5        | 1498.6 | 1516.2   | 2.0612    | 34.5319  | 27.595   | 513 | 34.5386  | 54.16   |          | 2360.3            |            | 41.62   | 2.97    | 156.27  |
| 6        | 1009.3 | 1009.3   | 2.4981    | 34.4132  | 27.464   | 514 | 34.4199  | 33.35   |          | 2370.0            |            | 42.50   | 3.06    | 147.52  |
| 7        | 801.6  | 809.7    | 2.7812    | 34.3368  | 27.377   | 515 | 34.3403  | 25.80   |          | 2366.5            |            | 43.11   | 3.08    | 138.16  |
| 8        | 599.0  | 604.7    | 3.4277    | 34.2708  | 27.263   | 516 | 34.2766  | 41.84   |          | 2336.7            |            | 41.33   | 2.98    | 120.58  |
|          |        |          |           |          |          |     |          | 41.75   |          |                   |            |         |         |         |
| 9        | 499.4  | 504.1    | 2.9683    | 34.1056  | 27.176   | 517 | 34.1142  | 41.81   |          | 2343.5            |            | 39.64   | 2.96    | 114.97  |
| 10       | 400.1  | 403.7    | 3.1436    | 34.0182  | 27.091   | 518 | 34.0279  | 49.05   |          | 2331.8            |            | 41.67   | 3.02    | 108.06  |
| 11       | 298.9  | 301.5    | 3.1499    | 33.8791  | 26.981   | 519 | 33.8907  | 77.97   |          | 2305.0            |            | 39.56   | 2.88    | 95.80   |
| 12       | 249.7  | 251.9    | 2.9864    | 33.7724  | 26.913   | 520 | 33.7876  | 94.94   |          | 2239.8            |            | 38.88   | 2.80    | 89.72   |

|            | Start        | End          |
|------------|--------------|--------------|
| Date/Time: | 04/5/27 4:55 | 04/5/27 5:15 |
| Lat.:      | 46-59.90N    | 46-59.90N    |
| Long.:     | 159-59.80E   | 156-00.00E   |
| Depth (m): | -            | -            |

#### Remarks: Cast for Routine SHALLOW (~200m) Down Cast中、140m付近でConductivityにノイズ。続いてPressureにもノイズが入り、ソフト中断。デッキユニットをリ セットして、ソフトを再立ち上げ。以降エラー無し。□

Data File Name: K2 Cast01.raw, K2 Cast01b.raw

|          |       |          |           |          |          |     |          |         | <i>a</i> , , , , | 1                 |           |         |         |         |
|----------|-------|----------|-----------|----------|----------|-----|----------|---------|------------------|-------------------|-----------|---------|---------|---------|
|          |       | _        | CID data  |          |          | AU  | TOSAL    |         | Chemical a       | nalysis (uncorrec | ted data) |         |         |         |
| Bottle # | Depth | Pressure | Pot-Temp. | Salinity | Sigma-0  | Sal | Salinity | DO      | TA               | TDIC              | NO2       | NOx     | PO4     | SiO4    |
|          | [m]   | [db]     | [·Ċ]      | [PSU]    | [kg/m^3] | B/N | (PSU)    | µmol/kg | µmol/kg          | µmol/kg           | µmol/kg   | µmol/kg | µmol/kg | µmol/kg |
| 1        | 199.5 | 201.2    | 3.1013    | 33.8060  | 26.9262  | 522 | 33.8090  | 71.82   |                  | 2314.9            | 0.10      | 41.53   | 2.94    | 91.12   |
| 2        | 149.9 | 151.2    | 2.5379    | 33.5587  | 26.7817  | 523 | 33.5723  | 150.64  |                  | 2254.6            | 0.10      | 36.42   | 2.66    | 74.68   |
|          |       |          |           |          |          |     |          | 149.82  |                  |                   |           |         |         |         |
| 3        | 125.8 | 126.9    | 1.8484    | 33.2498  | 26.5936  | 524 | 33.2876  | 261.04  |                  | -                 | 0.14      | 28.75   | 2.20    | 54.27   |
| 4        | 100.0 | 100.9    | 1.7421    | 33.0771  | 26.4641  | 525 | 33.1070  | 327.88  |                  | 2134.8            | 0.49      | 23.82   | 1.91    | 41.62   |
| 5        | 80.6  | 81.3     | 2.0579    | 33.0591  | 26.4252  | 548 | 33.0805  | 333.26  |                  | 2126.0            | 0.41      | 23.19   | 1.86    | 40.91   |
| 6        | 69.5  | 70.1     | 2.1689    | 33.0552  | 26.4131  | 527 | 33.0802  | 333.62  |                  | 2125.5            | 0.40      | 23.08   | 1.85    | 40.46   |
| 7        | 60.3  | 60.8     | 2.2559    | 33.0564  | 26.4070  | 528 | 33.0754  | 334.39  |                  | 2123.3            | 0.38      | 22.96   | 1.85    | 40.16   |
| 8        | 49.9  | 49.9     | 2.3899    | 33.0481  | 26.3890  | 529 | 33.0697  | 335.77  |                  | 2118.7            | 0.37      | 22.88   | 1.83    | 40.84   |
|          |       |          |           |          |          | 530 | 33.0693  |         |                  |                   |           |         |         |         |
| 9        | 39.2  | 39.5     | 2.7730    | 33.0399  | 26.3496  | 531 | 33.0588  | 337.40  |                  | 2113.9            | 0.35      | 22.74   | 1.84    | 41.26   |
| 10       | 31.5  | 31.8     | 2.9285    | 33.0376  | 26.3339  | 532 | 33.0531  | 339.07  |                  | 2111.5            | 0.33      | 20.80   | 1.77    | 38.34   |
| 11       | 19.4  | 19.6     | 3.2981    | 33.0207  | 26.2861  | 533 | 33.0419  | 338.21  |                  | 2108.5            | 0.35      | 22.27   | 1.81    | 40.59   |
| 12       | 9.6   | 9.7      | 3.4342    | 33.0196  | 26.2722  | 534 | 33.0327  | 336.49  |                  | 2111.6            | 0.35      | 22.27   | 1.90    | 40.49   |
|          |       |          |           |          |          |     |          | 336.82  |                  |                   |           |         |         |         |
|          |       |          |           |          |          |     |          |         |                  |                   |           |         |         |         |
| bucket   | 0     | 0        | 3.435     | 33.0305  | 26.594   | 521 | 33.0371  | 336.30  |                  | 2111.1            | 0.30      | 16.35   | 1.62    | 32.69   |

|            | Start          | End            | Remarks: Cast for Routine DEEP (~3500m) |
|------------|----------------|----------------|-----------------------------------------|
| Date/Time: | 2004/5/27 9:27 | 2004/5/27 9:40 |                                         |
| Lat.:      | 46-59.92N      | 46-59.98N      |                                         |
| Long .:    | 159-59.97E     | 159-59.95E     |                                         |
| Depth (m): | -              | -              | Data File Name: K2 Cast06.raw           |

|          |        |          | CTD data  |          |          | AU  | TOSAL    |         | Chemical | analysis (uncorre | cted data) |         |         |         |
|----------|--------|----------|-----------|----------|----------|-----|----------|---------|----------|-------------------|------------|---------|---------|---------|
| Bottle # | Depth  | Pressure | Pot-Temp. | Salinity | Sigma-0  | Sal | Salinity | DO      | TA       | TDIC              | NO2        | NOx     | PO4     | SiO4    |
|          | [m]    | [db]     | [°Ē]      | [PSU]    | [kg/m^3] | B/N | (PSU)    | µmol/kg | µmol/kg  | µmol/kg           | µmol/kg    | μmol/kg | µmol/kg | µmol/kg |
| 1        | 3506.9 | 3555.9   | 1.1919    | 34.6794  | 27.7761  | 535 | 34.6814  | 143.53  |          | 2325.5            |            | 36.18   | 2.53    | 147.69  |
|          |        |          |           |          |          | 536 | 34.6812  |         |          |                   |            |         |         |         |
| 2        | 3006.6 | 3045.1   | 1.2841    | 34.6680  | 27.7614  | 537 | 34.6714  | 131.91  |          |                   |            | 36.79   | 2.58    | 152.67  |
|          |        |          |           |          |          |     |          | 131.63  |          |                   |            |         |         |         |
| 3        | 2503.1 | 2532.1   | 1.4227    | 34.6499  | 27.7376  | 538 | 34.6533  | 113.69  |          |                   |            | 38.65   | 2.83    | 158.34  |
| 4        | 2002.6 | 2023.4   | 1.6445    | 34.6103  | 27.6900  | 539 | 34.6187  | 84.32   |          |                   |            | 39.72   | 2.83    | 161.40  |
| 5        | 1500.5 | 1514.3   | 1.9560    | 34.5489  | 27.6170  | 540 | 34.5539  | 50.13   |          |                   |            | 41.49   | 2.99    | 163.85  |
| 6        | 999.7  | 1010.5   | 2.4434    | 34.4398  | 27.4896  | 541 | 34.4449  | 25.58   |          |                   |            | 43.19   | 3.11    | 153.64  |
| 7        | 797.6  | 805.8    | 2.7099    | 34.3749  | 27.4144  | 542 | 34.3767  | 22.09   |          |                   |            | 43.00   | 3.12    | 145.84  |
| 8        | 600.7  | 606.6    | 3.0298    | 34.2769  | 27.3070  | 543 | 34.2811  | 24.25   |          |                   |            | 42.75   | 3.11    | 132.79  |
|          |        |          |           |          |          |     |          | 24.14   |          |                   |            |         |         |         |

|            | Start          | End            | آ         | Remarks: Cast for         | r Routine DEEP | P (~3500m) |          |                  |                 |         | 1       |         |
|------------|----------------|----------------|-----------|---------------------------|----------------|------------|----------|------------------|-----------------|---------|---------|---------|
| Date/Time: | 2004/5/27 9:27 | 2004/5/27 9:40 |           |                           |                |            |          |                  |                 |         |         |         |
| Lat.:      | 46-59.92N      | 46-59.98N      |           |                           |                |            |          |                  |                 |         |         |         |
| Long.:     | 159-59.97E     | 159-59.95E     |           |                           |                |            |          |                  |                 |         |         |         |
| Depth (m): | -              | -              |           |                           |                |            |          | Data File Name   | : K2 Cast07.raw |         |         |         |
|            |                |                | _         |                           |                |            |          |                  |                 |         |         |         |
|            |                |                | CTD data  | AUTOSAL Chemical analysis |                |            |          | analysis (uncorr | corrected data) |         |         |         |
| Bottle #   | Depth          | Pressure       | Pot-Temp. | Salinity                  | Sigma-0        | Sal        | Salinity | DO               | TA              | TDIC    | NO2     | NOx     |
|            | [m]            | [db]           | [·Ē]      | [PSU]                     | [kg/m^3]       | B/N        | (PSU)    | μmol/kg          | µmol/kg         | µmol/kg | µmol/kg | µmol/kg |
| 1          | 502.1          | 506.9          | 3.1832    | 34.2041                   | 27.2347        | 544        | 34.2197  | 22.97            |                 |         |         | 43.01   |
| 2          | 400.8          | 404.5          | 3.3009    | 34.1311                   | 27.1631        | 545        | 34.1327  | 23.58            |                 |         |         | 43.04   |
| 3          | 299.8          | 302.5          | 3.2920    | 33.9832                   | 27.0494        | 546        | 33.9930  | 39.28            |                 |         |         | 42.28   |
| 4          | 250.8          | 253.1          | 3.3022    | 33.9237                   | 27.0013        | 547        | 33.9252  | 40.88            |                 |         |         | 42.98   |

|            | Start        | End           |
|------------|--------------|---------------|
| Date/Time: | 04/5/27 9:59 | 04/5/27 10:11 |
| Lat.:      | 47-00.00N    | 46-59.90N     |
| Long.:     | 159-59.90E   | 160-00.00E    |
| Depth (m): | -            | -             |

Remarks: Cast for Th/POC Shallow (~60m) このSic でのCast 目 (20 Cast02.ram) でDown Cast 52mでConductivityにスパイク状のノイズ。そのまま観測を続けたが、40mでの採水を行うためにボトル#4の採水信号を送ったが、コマンドエラー が表示され、そのままフアトが専調不能となった。システンA再ざむ上げを行い、ホームコマンドを送信せずに、採水を統行した。揚収したとろ、#10~12が採水されていなかト ^ 化技術局に離信が好くないとい、異Casteでった。

Data File Name: K2 Cast02.rawは破棄 K2 Cast03.rawを使うこと。□

PO4

µmol/kg

3.12

3.12

3.07

3.08

SiO4

µmol/kg

126.09

117.51

105.17

99.94

|          |       |          | CTD data  |          |          |
|----------|-------|----------|-----------|----------|----------|
| Bottle # | Depth | Pressure | Pot-Temp. | Salinity | Sigma-0  |
|          | [m]   | [db]     | [°Ē]      | [PSU]    | [kg/m^3] |
| 1        | 59.0  | 59.5     | 2.2210    | 33.0561  | 26.4096  |
| 2        | 59.8  | 60.3     | 2.2144    | 33.0599  | 26.4131  |
| 3        | 60.0  | 60.5     | 2.2169    | 33.0585  | 26.4118  |
| 4        | 39.4  | 39.7     | 2.8399    | 33.0432  | 26.3462  |
| 5        | 38.6  | 38.9     | 2.8535    | 33.0408  | 26.3431  |
| 6        | 40.1  | 40.4     | 2.8359    | 33.0420  | 26.3457  |
| 7        | 19.5  | 19.7     | 3.3961    | 33.0223  | 26.2779  |
| 8        | 19.7  | 19.9     | 3.4051    | 33.0239  | 26.2783  |
| 9        | 19.8  | 20.0     | 3.4036    | 33.0230  | 26.2777  |
| 10       | 9.5   | 9.6      | 3.4132    | 33.0218  | 26.2759  |
| 11       | 10.0  | 10.1     | 3.4127    | 33.0220  | 26.2762  |
| 12       | 10.1  | 10.2     | 3.4102    | 33.0209  | 26.2754  |

|            | G             | E 1           |           | 1 0 1             |               |
|------------|---------------|---------------|-----------|-------------------|---------------|
|            | Start         | End           | K         | cemarks: Cast for | r In/POC DEEI |
| Date/Time: | 04/5/27 10:31 | 04/5/27 10:50 |           |                   |               |
| Lat.:      | 46-59.90N     | 47-00.00N     |           |                   |               |
| Long.:     | 159-59.90E    | 159-59.90E    |           |                   |               |
| Depth (m): | -             | -             |           |                   |               |
|            | -             |               |           |                   |               |
|            |               |               | CTD data  |                   |               |
| Bottle #   | Depth         | Pressure      | Pot-Temp. | Salinity          | Sigma-0       |
|            | [m]           | [db]          | [·Ē]      | [PSU]             | [kg/m^3]      |
| 1          | 201.3         | 203.1         | 3.1947    | 33.8251           | 26.9325       |
| 2          | 200.5         | 202.3         | 3.1947    | 33.8280           | 26.9359       |
| 3          | 199.6         | 201.3         | 3.1958    | 33.8263           | 26.9345       |
| 4          | 150.6         | 151.9         | 2.6380    | 33.6058           | 26.8111       |
| 5          | 149.5         | 150.8         | 2.6326    | 33.6011           | 26.8078       |
| 6          | 150.4         | 151.7         | 2.6345    | 33.6034           | 26.8095       |
| 7          | 99.5          | 100.3         | 1.6372    | 33.1043           | 26.4936       |
| 8          | 99.1          | 99.9          | 1.6592    | 33.0953           | 26,4849       |
| 9          | 99.9          | 100.8         | 1.6456    | 33.1039           | 26,4927       |
| 10         | 79.9          | 80.6          | 2.0914    | 33.0796           | 26.4388       |
| 11         | 79.8          | 80.5          | 2.1044    | 33.0824           | 26.4400       |
| 12         | 79.8          | 80.5          | 2.1064    | 33.0803           | 26.4382       |

|            | Start         | End           |
|------------|---------------|---------------|
| Date/Time: | 04/5/27 11:10 | 04/5/27 11:21 |
| Lat.:      | 46-59.90N     | 46-59.90N     |
| Long.:     | 160-00.00E    | 160-00.00E    |
| Depth (m): | -             | -             |

| nd      | Remarks: Cast for Primary Productivity |
|---------|----------------------------------------|
| 7 11:21 |                                        |
| 9.90N   |                                        |
| 0.00E   |                                        |
|         | Data File Name: K2 Cast05.raw          |

|          |       |          | CTD data  |          |          |  |
|----------|-------|----------|-----------|----------|----------|--|
| Bottle # | Depth | Pressure | Pot-Temp. | Salinity | Sigma-0  |  |
|          | [m]   | [db]     | [°Ē]      | [PSU]    | [kg/m^3] |  |
| 1        | 54.8  | 55.3     | 2.3022    | 33.0539  | 26.4012  |  |
| 2        | 55.2  | 55.7     | 2.2887    | 33.0565  | 26.4043  |  |
| 3        | 54.6  | 55.1     | 2.2872    | 33.0559  | 26.4040  |  |
| 4        | 35.3  | 35.6     | 2.8592    | 33.0467  | 26.3473  |  |
| 5        | 34.2  | 34.5     | 2.8752    | 33.0370  | 26.3382  |  |
| 6        | 32.8  | 33.1     | 2.8768    | 33.0387  | 26.339   |  |
| 7        | 21.9  | 22.1     | 3.0770    | 33.0474  | 26.328   |  |
| 8        | 23.2  | 23.4     | 3.1204    | 33.0399  | 26.3180  |  |
| 9        | 12.7  | 12.8     | 3.3175    | 33.0255  | 26.288   |  |
| 10       | 12.8  | 12.9     | 3.3355    | 33.0265  | 26.287   |  |
| 11       | 8.6   | 8.7      | 3.3398    | 33.0234  | 26.2842  |  |
| 12       | 8.2   | 8.3      | 3.3408    | 33.0263  | 26.2864  |  |
| bucket   | 0     | 0        | 3.292     | 33.0347  | 26.30    |  |

|            | Start         | End           | Rem |
|------------|---------------|---------------|-----|
| Date/Time: | 04/5/29 18:12 | 04/5/29 18:33 |     |
| Lat.:      | 39-00.10N     | 39-00.00N     |     |
| Long.:     | 159-59.90E    | 160-00.00E    |     |
| Depth (m): | -             | -             |     |

#### Remarks: Cast for Routine SHALLOW (~200m)

Data File Name: K3 Cast01.raw

|          |       |          | CTD data  |          |          | AU  | JTOSAL   |         | Chemical | analysis (uncorrec | ted data) |         |         |         |
|----------|-------|----------|-----------|----------|----------|-----|----------|---------|----------|--------------------|-----------|---------|---------|---------|
| Bottle # | Depth | Pressure | Pot-Temp. | Salinity | Sigma-0  | Sal | Salinity | DO      | TA       | TDIC               | NO2       | NOx     | PO4     | SiO4    |
|          | [m]   | [db]     | [°Ċ]      | [PSU]    | [kg/m^3] | B/N | (PSU)    | µmol/kg | µmol/kg  | µmol/kg            | µmol/kg   | µmol/kg | µmol/kg | µmol/kg |
| 1        | 200.8 | 202.4    | 9.4568    | 34.2023  | 26.3987  | 551 | 34.1788  | 253.58  |          | 2089.8             | 0.03      | 13.04   | 0.97    | 19.73   |
| 2        | 150.7 | 151.9    | 10.0940   | 34.2683  | 26.3410  | 552 | 34.2323  | 242.49  |          | 2098.7             | 0.05      | 12.92   | 0.96    | 18.01   |
|          |       |          |           |          |          |     |          | 242.38  |          |                    |           |         |         |         |
| 3        | 124.9 | 125.9    | 10.4262   | 34.2958  | 26.3040  | 553 | 34.2595  | 252.88  |          | 2093.4             | 0.06      | 11.46   | 0.85    | 16.92   |
| 4        | 100.2 | 101.0    | 10.6859   | 34.3231  | 26.2789  | 554 | 34.2833  | 256.26  |          | 2088.3             | 0.07      | 10.70   | 0.80    | 15.93   |
| 5        | 80.5  | 81.1     | 10.9177   | 34.3400  | 26.2500  | 555 | 34.3015  | 258.82  |          | 2075.9             | 0.09      | 10.22   | 0.76    | 14.96   |
| 6        | 70.2  | 70.7     | 11.0344   | 34.3408  | 26.2293  | 556 | 34.3025  | 261.40  |          | 2072.8             | 0.26      | 9.82    | 0.74    | 14.38   |
| 7        | 60.3  | 60.8     | 11.1336   | 34.3455  | 26.2147  | 557 | 34.3037  | 261.93  |          | 2071.0             | 0.33      | 9.60    | 0.73    | 14.43   |
| 8        | 50.2  | 50.6     | 11.3637   | 34.3676  | 26.1891  | 558 | 34.3345  | 258.41  |          | 2073.2             | 0.29      | 9.45    | 0.71    | 13.76   |
|          |       |          |           |          |          | 559 | 34.3356  |         |          |                    |           |         |         |         |
| 9        | 40.2  | 40.5     | 11.6379   | 34.3856  | 26.1515  | 560 | 34.3448  | 262.93  |          | 2062.8             | 0.59      | 8.43    | 0.64    | 12.72   |
| 10       | 30.0  | 30.2     | 12.4085   | 34.4246  | 26.0327  | 561 | 34.3578  | 270.21  |          | 2049.9             | 0.38      | 6.72    | 0.55    | 11.59   |
| 11       | 19.8  | 20.0     | 13.0123   | 34.4189  | 25.9076  | 562 | 34.3707  | 270.93  |          | 2042.7             | 0.24      | 5.39    | 0.45    | 10.09   |
| 12       | 10.4  | 10.5     | 13.1316   | 34.3874  | 25.8591  | 563 | 34.3454  | 272.13  |          | 2044.5             | 0.25      | 5.44    | 0.46    | 10.46   |
|          |       |          |           |          |          |     |          | 272.20  |          |                    |           |         |         |         |
|          |       |          |           |          |          |     |          |         |          |                    |           |         |         |         |
| bucket   | 0     | 0        | 13.123    | 34.3453  | 17.211   | 550 | 34.3553  | 271.63  |          | 2039.8             | 0.27      | 5.57    | 0.47    | 10.52   |

|            | Start         | End          |
|------------|---------------|--------------|
| Date/Time: | 04/5/29 23:31 | 04/5/29 0:54 |
| Lat.:      | 39-00.10N     | 39-00.00N    |
| Long.:     | 160-00.00E    | 160-00.00E   |
| Depth (m): | -             | -            |

| Remarks: Cast for Routine DEEP (~3500m)<br>上昇中の水深1,876mで全センサーが異常値。制御不能になったのでリセットして観測再開。□ |
|------------------------------------------------------------------------------------------|
| Data File Name: K3 Cast04.raw, K3 Cast04b.raw                                            |

|          | CTD data |          |           |          |          | AU  | AUTOSAL Chemical analysis (uncorrected data) |         |         |         |         |         |         |         |
|----------|----------|----------|-----------|----------|----------|-----|----------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| Bottle # | Depth    | Pressure | Pot-Temp. | Salinity | Sigma-0  | Sal | Salinity                                     | DO      | TA      | TDIC    | NO2     | NOx     | PO4     | SiO4    |
|          | [m]      | [db]     | [·Ċ]      | [PSU]    | [kg/m^3] | B/N | (PSU)                                        | µmol/kg | µmol/kg | µmol/kg | µmol/kg | μmol/kg | µmol/kg | µmol/kg |
| 1        | 3501.0   | 3557.4   | 1.2181    | 34.6748  | 27.7705  | 565 | 34.6788                                      | 140.10  |         | 2325.7  |         | 36.34   | 2.55    | 146.79  |
|          |          |          |           |          |          | 566 | 34.6784                                      |         |         |         |         |         |         |         |
| 2        | 3000.4   | 3045.1   | 1.3350    | 34.6609  | 27.7518  | 567 | 34.6655                                      | 125.16  |         | 2337.6  |         | 32.75   | 2.51    | 144.40  |
|          |          |          |           |          |          |     |                                              | 125.34  |         |         |         |         |         |         |
| 3        | 2500.9   | 2535.2   | 1.5162    | 34.6381  | 27.7211  | 568 | 34.6406                                      | 102.14  |         | 2348.6  |         | 37.96   | 2.70    | 153.49  |
| 4        | 2000.5   | 2025.5   | 1.8330    | 34.5853  | 27.6550  | 569 | 34.5896                                      | 68.75   |         | 2365.5  |         | 40.92   | 2.91    | 157.94  |
| 5        | 1500.8   | 1517.8   | 2.2500    | 34.5023  | 27.5550  | 570 | 34.5087                                      | 42.52   |         | 2373.5  |         | 42.17   | 3.03    | 149.02  |
| 6        | 1000.8   | 1010.9   | 3.2299    | 34.3586  | 27.3515  | 571 | 34.3611                                      | 41.17   |         | 2348.0  |         | 41.28   | 3.01    | 124.29  |
| 7        | 799.7    | 807.4    | 3.7724    | 34.2562  | 27.2159  | 572 | 34.2569                                      | 46.98   |         |         |         | 40.46   | 2.96    | 110.26  |
| 8        | 600.5    | 606.0    | 4.5815    | 34.0960  | 27.0015  | 573 | 34.0936                                      | 82.81   |         |         |         | 36.43   | 2.71    | 84.93   |
|          |          |          |           |          |          |     |                                              | 82.85   |         |         |         |         |         |         |
| 9        | 499.9    | 504.3    | 4.9116    | 33.9564  | 26.8535  | 574 | 33.9564                                      | 127.67  |         |         |         | 32.08   | 2.39    | 66.72   |
| 10       | 399.7    | 403.1    | 5.9255    | 33.8925  | 26.6790  | 575 | 33.8992                                      | 190.12  |         |         |         | 24.77   | 1.91    | 45.95   |
| 11       | 26.5     | 303.2    | 7.5773    | 33.9795  | 26.5199  | 576 | 33.9566                                      | 249.62  |         |         |         | 16.38   | 1.27    | 26.15   |
| 12       | 250.0    | 252.1    | 8.4169    | 34.0622  | 26.4575  | 577 | 34.0330                                      | 267.66  |         |         |         | 12.31   | 1.06    | 18.80   |

10 11 12

|            | Start         | End           | R         | emarks: Cast fo | r Th/POC Shall | ow (~60m) |                               |
|------------|---------------|---------------|-----------|-----------------|----------------|-----------|-------------------------------|
| Date/Time: | 04/5/29 22:24 | 04/5/29 22:35 |           |                 |                |           |                               |
| Lat.:      | 39-00.00N     | 39-00.00N     |           |                 |                |           |                               |
| Long .:    | 160-00.00E    | 160-00.00E    |           |                 |                |           |                               |
| Depth (m): | -             | -             |           |                 |                |           | Data File Name: K3 Cast02.raw |
|            |               |               |           |                 |                |           |                               |
|            |               |               | CTD data  |                 |                |           |                               |
| Bottle #   | Depth         | Pressure      | Pot-Temp. | Salinity        | Sigma-0        |           |                               |
|            | [m]           | [db]          | [·Ē]      | [PSU]           | [kg/m^3]       |           |                               |
| 1          | 60.132        | 60.6          | 11.0231   | 34.3039         | 26.2028        |           |                               |
| 2          | 60.033        | 60.5          | 11.0086   | 34.3055         | 26.2066        |           |                               |
| 3          | 59.934        | 60.4          | 10.9947   | 34.3026         | 26.2070        |           |                               |
| 4          | 40.09         | 40.4          | 11.7034   | 34.3171         | 26.0861        |           |                               |
| 5          | 40.487        | 40.8          | 11.6903   | 34.3152         | 26.0870        |           |                               |
| 6          | 40.189        | 40.5          | 11.6894   | 34.3152         | 26.0873        |           |                               |
| 7          | 19.947        | 20.1          | 12.7153   | 34.3697         | 25.9295        |           |                               |
| 8          | 20.145        | 20.3          | 12.7203   | 34.3680         | 25.9271        |           |                               |
| 9          | 19.947        | 20.1          | 12.7213   | 34.3691         | 25.9278        |           |                               |
|            |               |               |           |                 |                |           |                               |

25.8621

25.8558 25.8572

|            | Start         | End           |
|------------|---------------|---------------|
| Date/Time: | 04/5/29 22:53 | 04/5/29 23:12 |
| Lat.:      | 39-00.10N     | 39-00.10N     |
| Long.:     | 159-59.90E    | 160-00.00E    |
| Depth (m): | -             | -             |

9.924

9.924 9.726

|       | ] [ | Remarks: Cast for Th/POC DEEP (~200m) |
|-------|-----|---------------------------------------|
| 23:12 |     |                                       |
| lON   |     |                                       |
| 00E   |     |                                       |
|       |     | Data File Name: K3 Cast03.raw         |

|          |       |          | CTD data  |          |          |
|----------|-------|----------|-----------|----------|----------|
| Bottle # | Depth | Pressure | Pot-Temp. | Salinity | Sigma-0  |
|          | [m]   | [db]     | [°Ē]      | [PSU]    | [kg/m^3] |
| 1        | 201.2 | 202.8    | 9.2460    | 34.1925  | 26.4261  |
| 2        | 202.0 | 203.6    | 9.1895    | 34.1721  | 26.4195  |
| 3        | 201.4 | 203.0    | 9.2031    | 34.1877  | 26.4294  |
| 4        | 150.2 | 151.4    | 9.8022    | 34.2337  | 26.3648  |
| 5        | 150.3 | 151.5    | 9.8112    | 34.2355  | 26.3646  |
| 6        | 150.6 | 151.8    | 9.8122    | 34.2313  | 26.3612  |
| 7        | 100.6 | 101.4    | 10.3047   | 34.2667  | 26.3029  |
| 8        | 99.9  | 100.7    | 10.3078   | 34.2662  | 26.3020  |
| 9        | 100.2 | 101.0    | 10.3037   | 34.2637  | 26.3008  |
| 10       | 80.3  | 80.9     | 10.5604   | 34.2796  | 26.2677  |
| 11       | 80.5  | 81.1     | 10.5599   | 34.2759  | 26.2650  |
| 12       | 80.8  | 81.4     | 10.5589   | 34.2798  | 26.2681  |

10.0

10.0 10.0 9.8

13.0551

13.0816 13.0802

34.3711

34.3700 34.3714

|            | Start        | End          |
|------------|--------------|--------------|
| Date/Time: | 04/5/30 9:28 | 04/5/30 9:40 |
| Lat.:      | 38-59.90N    | 39-00.00N    |
| Long.:     | 160-00.00E   | 160-00.00E   |
| Depth (m): | -            | -            |

| Remarks: Cast for Primary Productivity |                               |
|----------------------------------------|-------------------------------|
|                                        |                               |
|                                        |                               |
|                                        | Data File Name: K3 Cast05.raw |

|          |        |          | CTD data  |          |          |
|----------|--------|----------|-----------|----------|----------|
| Bottle # | Depth  | Pressure | Pot-Temp. | Salinity | Sigma-0  |
|          | [m]    | [db]     | [°Ē]      | [PSU]    | [kg/m^3] |
| 1        | 50.707 | 51.1     | 12.0399   | 34.5696  | 26.0523  |
| 2        | 51.897 | 52.3     | 11.8848   | 34.5689  | 26.1140  |
| 3        | 51.302 | 51.7     | 11.9189   | 34.5676  | 26.1110  |
| 4        | 32.351 | 32.6     | 12.8436   | 34.5661  | 25.9143  |
| 5        | 32.251 | 32.5     | 12.8426   | 34.5023  | 25.9160  |
| 6        | 32.648 | 32.9     | 12.8276   | 34.3586  | 25.9176  |
| 7        | 22.725 | 22.9     | 13.2822   | 34.2562  | 25.8571  |
| 8        | 22.428 | 22.6     | 13.2914   | 34.0960  | 25.8498  |
| 9        | 13.695 | 13.8     | 13.6206   | 33.9564  | 25.7963  |
| 10       | 12.901 | 13.0     | 13.5942   | 33.8925  | 25.8074  |
| 11       | 7.344  | 7.4      | 13.6645   | 33.9795  | 25.7891  |
| 12       | 7.939  | 8.0      | 13.6649   | 34.0622  | 25.7885  |
| bucket   | 0      | 0        | 13.675    | 34.4333  | 25.792   |