R/V Natsushima – Hyperdolphin NT06-05 Cruise in Sagami Bay

March 22 (Yokosuka) - March 29 (Yokosuka), 2006

CONTENTS

1. Introduction

- 1-1. General Introduction
- 1-2. Area of Investigation
- 1-3. General Purpose

2. Participants on board

- 2-1. Scientists
- 2-2. Crew members

3. Dive Results (pdf files in separated folders)

- 3-1. Dive log, Dive report, Abstract, Topography, Event list, Track chart
- 3-2. CTD data

4. Individual Scientific Report (Introduction, Method, Results and Future studies)

4-1. Bacterial endosymbiosis in foraminifera

Hiroshi Kitazato, Aiko Iwasaki, Takashi Toyofuku, Masashi Tsuchiya, Hiroyuki

Yamamoto, Katsuyuki Uematsu

4-2. Cruise report - "Denmark team"

RN Glud, M Middelboe, H Staahl, B Thamdrup, F Wenzhöfer (alphabetically)

4-3. In situ durability experiment of an O2-pH combined planar optode sensor foil

Kazumasa Oguri, Yutaka Amao, Hiroshi Kitazatao

4-4. Chemosynthetic community in deep-sea ecosystem of the Sagami Bay

Hiroyuki Yamamoto

4-5. Benthic carbon flow at the deep-sea -In situ tracer experimental study-

Hidetaka Nomaki, Hiroshi Kitazato

4-6. In situ marking experiment for estimation of shell growth rate of *Calyptogena* clams

Yohei Tada, Katsunori Fujikura, Hiroyuki Yamamoto, Hiroshi Kitazato

Appendix

- 1. List of Samples (Appendix_1_Samplelist.xls in the folder)
- 2. List of Videotapes
- 3. Photographs of payload for each dive
- 4. Shipboard log

1. Introduction

1-1. General Introduction

Marginal seas along continental margin are characterized by high accumulations of both organic and inorganic materials. The high rates of sedimentation at continental margin are thought to be sustained by both vertical input from sea surface primary production and lateral input from coastal area. This material transportation is more typically appeared at an arc-trench system where active material transportation is taken place both from water column and from land areas. High input of nutrients both from land areas and coastal upwelling keeps ocean surface in a eutrophic condition. Sagami Bay is a typical marginal sea where active depositional processes have taken place (Kitazato, ed., 2003).

Material budgets at sediment-water interface should control finally material cycle at oceans. Benthic activities occurred at sea floor play a key role for understanding material cycle at deep-sea floor. Thus, monitorings of benthic activities are required for getting basic data of material cycles at sediment-water interface. However, very rough estimation of material budgets was gotten at continental margins up to present, in particular to those at arc-trench systems. We should measure quantitatively *in situ* material fluxes at sediment-water interface of the sea floor. Detailed profiles of biogeochemical components at sediment-water interface with sediment core analyses, planer optode imaging, microelectrode measurements, benthic chamber measurements and *in situ* feeding experiments with ¹³C-labeled food materials should be suitable approaches for elucidating benthic processes at deep-sea floor.

Cold seepages are typically distributed in active contineltal margins. Seepage is thought to be outgoing locality of biogeochemical components at continental margin with active tectonic forcing. In Sagami Bay, *Calyptogena* colonies flourish at seepage sites. Activities of Calyptogena colonies give us important signal for understanding outgoing fluxes from sediment to seawater. Growth rates of *Calyptogena* may provide a good key for understanding vital condition of clams. Clear "daily" rings are developed in *Calyptogena* shell. However, it still is unknown actual meaning of rings.

Marking experiment with strontium sulfide and calcein is direct methods for estimating what kinds of environmental factors should relate to "daily" ring formation.

Multidisciplinary researches mentioned above plan to be done during and after the dive cruise NT06-05. I hope that we can draw clear images of continental margin processes through our collaborative studies. This dive cruiuse is partly supported by the Grant-in-Aid from Japan Society of the Promotion of Science, Fundamental Research A to H.K.

Cruise Coordinator for the cruise NT06-05

Hiroshi Kitazato (Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, Japan)

1-2. Area of Investigation

Sagami Bay is a deep-sea that situates in the central part of the Japanese Islands facing to the Pacific Ocean. A north-south extended deep trough lies at the central part of the bay where the water depth reaches at more than 2000 m. Sagami Bay is surrounded with land areas. Only the southern part opens to the Pacific.

Most diving campaigns were performed at a deep-sea permanent station (St. OBB II; 35°00.7'N, 139°22.5'E, depth 1450m) in the central part of Sagami Bay, Japan, which borders the Pacific Ocean. The station is located on a flat bottom of the Sagami Trough. The station is located on a flat bottom region of the Sagami Trough. Three water masses are recognized in the central part of Sagami Bay (Iwata, 1987). The upper a few hundreds of meters are occupied by relatively saline waters of the Kuroshio current (>34.6‰); the Subarctic Intermediate Water (= Intermediate Oyashio Water; 34.1‰) resides below this water to a depth of about 1000m, beneath which occurs the Pacific Deep Water. The North Pacific Deep Water overlies the station SB. The bottom water is characterized by temperatures of 2.3 ± 0.1 °C, salinities of 34.5 ± 0.2 %, and dissolved oxygen concentration of 1.1 ± 0.2 ml/L. Bottom temperatures in the central part of Sagami Bay do not change throughout the year (Miya and Nemoto, 1991; Momma et al., 1993). Both salinity and dissolved oxygen concentration may also be invariant throughout a year.

Cold seepage site at southeast off Hatsushima Island is another diving site. This seepage intimately connected with fault activity of Sagami Bay West fault, one of active submarine fault system for bordering western end of the Sagami Bay. *Calyptogena* colonies are distributed at the site. Microbial mat occasionally develop at specific area where outgoing flow may exist. Deep-sea Permanent Observatory that has established by JAMSTEC has been located at the site since 1993. Bottom water environments has monotired at the station.

1-3. General Purpose

For the aims to elucidate both ecological and biogeochemical processes at sediment-water interface in the continental margin environmental settings, we try to conduct *in situ* measurements on the sea floor with profiling lander, incubation with benthic chamber, *in situ* feeding experiments and faunal analyses of meiobenthos at the central part of Sagami Bay where decadal long observations of depositional processes have been carrying out at a permanent deep-sea station, OBB II. In addition to central Sagami Bay, we also work at cold seepage site off Hatsushima Island, western Sagami Bay for understanding outgoing flux from seep to seawater. Observation of *Calyptogena* activities is a good signal for estimating outgoing organic flux from seep to seawater. For the purpose, we have been carrying out marking experiment for Calyptogena individuals with calcein and strontium sulfide. Through the experiment, we can detect growth rates of Calyptogena shell.

2. Participants on board

2-1. Scientists

		Occupation	E-mail	Bording
Name	Affiliation	Institute	Mailing Address	Term
	Tel No. Fax No.			
		Program Director		06.3.22-29
Hiroshi Kitazato	JAMSTEC	IFREE 4		
	Ļ			
		Group Leader		06.3.22-29
Hiroyuki Yamamoto	JAMSTEC	XBR		
	+	. —	Ι	
		Researcher		06.3.22-29
Kazumasa Oguri	JAMSTEC	IFREE 4		
		PostDoc Researcher		06.3.22-29
Hidetaka Nomaki	JAMSTEC	IFREE 4		
		Ph.D Student		06.3.22-29
Youhei Tada	JAMSTEC	IFREE 4		
		Professor		06.3.22-29
Glud	University of	Marine Biological		
Ronnie	Copenhagen	Laboratory		
	+ –			
N(1) 11		Professor		06.3.22-29
Middelboe Mathiag	University of Copenhagen	Marine Biological		
114611145		Luoonutory	1	
	+ –	Scientist		06.3.22-29
Staahl	University of	Marine Biological	†	
Henrik	Copenhagen	Laboratory		

		Professor	 06.3.22-29
Thamdrup	University of	University of	
Во	Southery Denmark	Southery Denmark	
		Reader	 06.3.22-29
Manabaafan	Max Plank Institute	Max Plank Institute	
Wenzhoefer Frank	for Marine	for Marine	
	Microbiology	Microbiology	
		_	
		Marine Technician	 06.3.22-29
Maki	Nippon Marine		
Ito	Enterprises, LTD.	Marine Science Dept.	

2-2. Crew members (in Japanese)

HPD Operation Team

千葉	和宏	運行長	徳光 好廣	二等潜技士	近藤	友栄	二等潜技士
千葉	勝志	三等潜技士	菊谷茂	三等潜技士	戸塚	健介	三等潜技士
木戸	哲平	三等潜技士	梶原 祐太	三等潜技士			

Natsushima Crew

齋藤 房夫	船長	須左美智嗣	一等航海士	岩崎 芳治	次一等航海士
今井 松夫	二等航海士	紙屋一則	三等航海士		
吉川 博美	機関長	松川喜巳男	一等機関士	小谷 誠	二等機関士
森 雄司	三等機関士				
那須東輝登	電子長	梅谷 有一	二等電子士		
白井 義章	甲板長	宅野修二	甲板手	庄子 欣也	甲板手
久保田隆夫	甲板手	薩摩 敬二	甲板手	地本 強	甲板手
永井 大誠	甲板員				
八幡 喜好	操機長	椎野 正紀	操機手	丸太 良次	操機手
船渡 啓太	機関員	渡辺 昇太	機関員		
高島 香	司厨長	波左谷吉信	司厨手	平山和宏	司厨手
佐々木末人	司厨手	安部 崇裕	司厨員		

3. Dive results

Following pdf files exist in separated folders

3-1. Dive Results

Dive log, Dive report, Abstract, Topography, Event list, Track chart

3-2. CTD data

Dive Lo	g of HPI	D Dive #:	530	Area Sagami-bay	2005/3/
Time	Depth	Altitude	Heading		2005/5/2
(JST)	(m)	<u>(m)</u>	(Deg)	Description	Remark
13:56	310	1	270	17 稚園大群	
14:43	1448	2,3	270	着底	
14:43	1448	3.1	270	二2年)(赤) 稱) 稱水	
14:46	1499	2.7	270	四人移動開始	
14:49	1999	2.9	270	ゲンデ摘影 (HTV)	
14:52	1450	5.8	270	图本-2-推認. 現場培養装置確認.	
14:56	1453	0-0	245	現場共善其意而 1: 考慮.	f
14:59	1453	0.0	45	麓 現場培養、比與(シリンで 既い押妹 C3) 許思中止:	
15:06	1453	0.0	45	赤白現場培養生活モット	
15=10	1453	0.0	45	青白現場培養コアギゲガズを小粒に回収	
15:14	1453	0.0	45	青現場時表 回收.	7
15:15	1453	0.0	45	表现号塔赛 回收.	
15:19	1450	2.0	50 	OBB It to 約50mty 美质	· ~
15:23	1452	0.0	50	·新MBARISP 订样泥]]	
15:28	1452	0.0	50	著/MBARI (P) 採泥 時接	
15:30	1452	0.0	50	铩 MBARZ SP J H呢	
15:34	1452	0.0	50	末1 MBARI (m) で採泥	
15=37	1452	0.0	50	里 MARI (==) び住泥. ()をやび推電物 液下?)	
15:40	1452	0.0	50	6 MBARI (m) · 任派	· · · ·
15:42	1452	0.0	50	/m 前進	
15:44	1452	0.0	50	苦里MBARI (穴を)び採泥	
15:46	/452	0.0	50	去2MBARL ····年纪	
15- 49	1452	. 0.0	50	茜之MBARI TE 栏泥	
15:53	1452	0.0	50	绿之MBARI U 埃泥	
15:54	1452	0,0	50	OBBILA 鹅种	
16200	1451	1.8	256	OBBE TO THE	
16:08	7453	0.0	233		
16:12	1050	0.0	94	新吃	· ·
		0.00	<u> </u>		
		· .			
				<u> </u>	

ハイパードルフィン 潜航記録

			:					
平 成	18	年 NT	06-05 行	動		載者	菊谷	茂
潜航年	月日	2006/03/2	3			位置	作図	中心位置
潜航 回	数	1	口			緯度	<u>35 °</u>	<u>00.850 ′ N</u>
通算潜航	回数	530	□			経度	139°	21.700 'E
			, ·				· v	VGS-84
潜航浴	₩ 域	相模湾	· ·	相模トラフ	7			
潜航目	前的	調査潜航	現場計測 の解明	 と現場実	 険による堆積 特	 勿-水境界の	の動態と	≤物質循環
調査主	主任	北里 洋				Pilot	近藤	友栄
ビークル	指揮	千葉 和宏		_		Co. Pilot	菊谷	茂
	作	業経過	時刻		累	計時間		
	吊	揚	13:15		潜航照	上 目	3:1	1
	着	水	13:21	· ·	通算液	皆 航	2463:1	7
	344	士名日よん	10.00			ð		

11370/0	川刊外口	15.59	
着	底	14:43	
離	底	16:12	
浮	Ŀ	16:50	
揚収	完了	17:09	

j.

渚	嶜 航 時 間	3:11
[通算潜航	2463:17
ケ	ケーブルNo.	3
ーブル	使用時間	3:54
	通算時間	1065:13

- ¹

気象・海象

<u>最大潜航深度 1453 m</u> 着底深度 1449 m 離底深度 1450	天候 c		風向 NNE	風力 4	風浪 3	うねり 3	視程 7
着底深度 1449 m 離底深度 1450	最大潜航深周	<u>m</u>	E 1453				
	着底深图	m	E 1449		离准 口	毛深度	1450 m
着底底質 泥 離底底質 泥	着底底質		〔 泥		離」	医底質	泥

記事 海底を観察しながら航走し、採泥・採水及び現場培養装置の設置・回収を行った。

平成18年 ハイパー ドルフィン 調査潜航 #530DIVE 相模湾相模トラフ 2006年03月23日 1. 測地系 WGS-84(世界測地系) 2. 測 位 D-GPS (MX9400N LEICA) 3. X B T 計測済み S/V=1486.7m/s (D=1500m) A. XPONDER セジメントトラップ係留系取付 U/C:601 13.5KHz 5. 作図中心 35-00.850N ANGLE 0° 139-21.700E SCALE 1/3000 6. 着底点(特異点①) 35-00. 828N D=1450m 139 - 21.706E Co = 7. 潜航配置 指 揮:運航長 コンテナ PILOT : 近藤 菊谷 甲板PILOT : 戸塚 8. 潜航目的 現場計測と現場実験による堆積物-水境界の動態と物質循環の解 明 海底観察、採泥、採水、ランダー関連作業 9. 作業内容 (ニスキン採水器2本、MBARI採泥器5本、現場培養装置3本、デンマーク式 コア5本、ランダー回収索一式、カマキリカッター) 10. 日程 相模トラフ海城着 06:45 作業開始 セジメントトラップ係留系投入 着底確認、位置キャリブレーション ランダー投入 着底確認、位置キャリブレーション ビークル作動確認 10:00 潜航開始 No.1 2 16:30 ビークル浮上 17:00 揚収完了 終了後、付近海域漂泊 11. 備考 ・特異点は「別紙」参照 ・#4アルゴス送信機/2A-1 JXトランスポンダ ・セジメントトラップ係留系投入予定点69 35-00.850N 139-22.030E・ランダー投入予定点@ 35-00.850N **139-21**.840E ・ランダー測位機器 ベントストランスポンダ 14.0KHz ROV HOMER: ID = 46

DAY 530.jtd

06/03/22

CENTER 35-0.850N 139-21.840E

뷥[紙
ניג	/PLA

	特異点							
	緯度		経度	深さ m	備考			
0	35-00.	8 2 7 N	139-21.639	9E 1457 m	OBB II ステーション ROV HOMER (ID:59) OBB II マーカー			
3	35-00.	970N	139-21.640)E 1449 m	#199M. メシ゛ャーハ゜ー			
4								
5	35-00.	826N	139-21.63	LE 1449 m	#396M			
6	35-00.	898N	139-21.793	3E 1449 m	ソナー反応物体			
7	35-00.	980N	139-21.816	6E 1444 m	円筒物体			
8	35-00.	810N	139 - 21.593	3E 1449 m	シンカー付ロープ			
9	35-00.	955N	139 - 21.220	DE	立ち入り禁止区域			
10	35-00.	725N	139-21.380	DE	立ち入り禁止区域			
1	35-00.	8 0 5 N	139-21.623	3E 1453 m	現場培養装置 (HOMER ID:59から) #5,6=42.5m			
				:				
			· · ·					
15	35-00.	850N	139-22.030	DE 1427 m	セジメントトラップ係留系 投入予定点			
20	35-00.	850N	139-21.840	DE 1446 m	ランダー投入予定点			

_ i

3.30

Dive Log of HPD Dive #531			531	Area:Sagami-bay	2005/3/24
Time (IST)	Depth (m)	Altitude	Heading (Deg)	Description	Remarks
	<u>(II)</u>			トイレ、信シリンンビントンが下かていつってなしる	
11.22	300			15年泉の月上	
1201	1449	Ω	Q90	青夜	
1204	1444	3.0	1990	二九十七月水 (东)得)	
1206	1441	5.7	090	ランダー石作民	
12 20	1445	0.0	049	ランター石倒の ボッタンをチャア	
(2:22	1445	0.0	049	ラニター 圧倒の ホッタンを理す (電源の	N)
12:33	1439 1 443	7.8	124	ランダー海底面から 5mの戸テチリ降3万0	
				(一番初めの著庭位置から20m 位 移動	<u>)</u>
13:00	1439	3.9	372#	テニダー 再降下	
				(=度目の着底位置より10m位移動)	
13:01	1489	3.6	0	ラニター 移動 完了	
13:19	[483	0	270	OBBI南北 着庭	
13:29	<u> </u> 4\$3	0	270	LEDライト設置	
13232	[453	_0	12	#4 亿列看	
13:25	1453	Ò	[2	青白現場培養装置設置	
13:40	1453	ð	46	着底、村外、拆泥と閉始了3	
13:43	1453	0	46	Denmark 黄マア 拝泥	
13:47	1453	0	46	Denmark 赤コア推泥	
13:51	<u>[453</u>	0	46	Denmirk 6 JP FER,	
13:45	14,53	Ø	<u>47</u>	Annark 里2P抹泥	
13:59	1963	0	46	Denmark 親フア祥派 143450	
14.04	/4.t3	0	46	MARI黑黄採泥	
14207	1453	0	47	MBARI 累禄 择呢	
14210	1483	0	46	M BARI 寿白 拆泥	
<u>[92]3</u>	<u> </u> 453	0	47	MPARI 灰 推張 (ちょって晴いた)	
<u>/{:17</u>	14\$3	0	47	MBARI董东、 择泥,	
19219	1453	0	90	井川香へらちう	
14227	1453	0	266	井川に刻着	
/4:34	1953	0	266	黄于鲁视竭培養器国收	
19236	(45)	0	266	绿暗硬唱培香装置回收	_ ~
14:39	<i>[</i> ? <i>t</i> 3	0	266	ランダー (#20)へ(わかう	
14 44	450	2.(ካባ	そをのわられらん!	

Dive Lo	g of HPI	D Dive #	531	Area:Sagami-bay	2005/3/24
Time	Depth	Altitude	Heading	Description	Remarks
(JS1)	(m)	(m) 7 o	(Deg)	16 51 21 AG	
15 02	1420.4	7 5		102 24 11 013 buc tuy o Eir	
15:07	101107	2.0	707		·
15:13	1478 (7	<u>ຼຸ</u> າ4	70 (82)		
15:30	14406	00	614	8 灰田 o 魚 (ンコタ"ラの一種?) 選びたきめ	
15 :33	1440.0	4.0	65	ランダー 石屋 変ん	
15=56	\443,3	0	<u> </u>	右側のボッシンを押丁	
15:57	1443, 3	0	115	左俱りの " (2度1の 電源 nu)	
15:59	1439.6	3.6	115	5-5-7- 移動開始	
[6:0]	143527	7.2	0	ランダー移動物(10m)ゆっくり落とす	
16:05	42 14 82,2	0.9	D	Refe (B.	
			-	· · · · · · · · · · · · · · · · · · ·	
				·	
					_
		<u>. </u>			
				· · · · · · · · · · · · · · · · · · ·	
					.~ .

ハイパードルフィン 潜航記録

- 平成 18 年 NT06-05 行動
- 潜航年月日 2006/03/24
- 潜航回数
- 通算潜航回数 531 回
- 潜航海域 相模湾
- 潜航目的

- 相模トラフ

- 緯度 35°00.850'N

位置 作図中心位置

- 経度 139°21.700'E WGS-84
- 現場計測と現場実験による堆積物-水境界の動態と物質循環 調査潜航 の解明

記載者

- 調 査 主 任 北里 洋
- ビークル 指揮 千葉 和宏

作	業経	過時刻		
吊	揚	10:45		
着	水	10:50		
潜航	開始	11:06		
着	底	12:01		
離	底	16:05		
浮	上	16:45		
揚収	完了	17:02		

Pilot 菊谷 茂

木戸 哲平 Co. Pilot

	累計時	間
落	嗜 航 時 間	5:39
j	通算潜航	2468:56
ケ	ケーブルNo.	3
ーブ	使用時間	6:17
ル	通算時間	1071:30

気象・海象

天候	風向	風力	風浪	うねり	視程
С	NNE	5	3	2 .	7

最大潜航深度

着底深度 **着底底質**

離底深度 1442 m 離底底質

海底を観 しながら し、採泥・水及び現場培 置の設置・回収、ラン 一装置移動作業を行った。

	<u>平成18年</u> ハ <u>イパードルフィン</u> 調査潜航 # <u>531DI</u> VE							
1.	測地系	相 <u>模湾 相模トラ</u> フ 2006年03月24日 WGS-84(世界測地系)						
2.	測 位	D-GPS (MX9400N LEICA)						
3.	ХВТ	計測済み S/V=1486.7m/s (D=1500m)						
4.	XPONDER	セジメントトラップ係留系取付 U/C:601 13.5KHz						
5.	作図中心	35-00.850N ANGLE 0° 139-21.700E SCALE 1/3000						
6.	着底点(特異点①)	35-00.828N D=1450m 139-21.706E Co=						
7.	潜航配置	指 揮 : 運航長 コンテナ PILOT : 菊谷 木戸 甲板PILOT : 戸塚						
8.	潜航目的	現場計測と現場実験による堆積物-水境界の動態と物質循環の解 明						
9.	作業内容	海底観察、ベンシックチャンバー設置 (ベンシックチャンバー(HOMER:ID=41)、ランダー回収索一式、カマキリカッター)						
10.	日程	相模トラフ海域着 07:00 作業開始 ランダー投入						
		着底確認、位置キャリブレーション 07:50 ビークル作動確認 08:30 潜航開始 No.2						
		11:30 ビークル浮上12:00 揚収完了						
11.	備 考	 ・特異点は「別紙」参照 ・#4アルゴス送信機/2A-1 JXトランスポンダ ・ランダー投入予定点図 35-00.850N 139-21.840E ・ランダー測位機器 ベントストランスポンダ 14.0KHz ROV HOMER: ID=46 						

- i

»,___

, **t** .

XY ORIGIN 35-0.850N 139-21.700E

別	紙
/ .	

	特異点							
	緯 度	経度	深さm	備考				
2	35-00.827N	139-21.639E	1457 m	OBB II ステーション ROV HOMER (ID:59) OBB II マーカー				
3	35 - 00.970 N	1 3 9 - 2 1. 6 4 0 E	1449 m	#199M. メシ゛ャーハ゛ー				
4	35-00.837N	139-21.651E	1453 m	H526マーカー ROV HOMER:ID=45 (OBBIIから46m) 現場培養装置				
5	35-00.826N	139-21.631E	1449 m	#396M				
6	35-00.898N	139-21.793E	1449 m	ソナー反応物体				
7	35-00. 980N	139-21.816E	1444 m	円筒物体				
8	35-00.810 N	139-21.593E	1449 m	 シンカー付ロープ				
9	35-00. 955N	139-21.220E		立ち入り禁止区域				
10	35-00.725N	139-21.380E		立ち入り禁止区域				
Ū,	35-00. 805N	139-21.623E	1453 m	現場培養装置 (HOMER ID:59から) #5,6=42.5m				
15	35-00.899N	139-22.044E	1405 m	セジメントトラップ係留系				
20	35 - 00.850 N	1 3 9 - 2 1. 8 4 0 E	1446 m	ランダー投入予定点				

11

۰.,

Dive Log of HPD Dive #532 Area:Sagami-bay			2005/3/25		
Time (JST)	Depth (m)	Altitude (m)	Heading (Deg)	Description	Remarks
9:32	1445	6.4	6	チャンパー設置準備	
9:35	1450	2.8	6	チャンパー持ち上げ、前方へ出す	,
9:36	1452	0.7	6	チャンパー設置、ビークル着底	
9:41	1452	0.8	6	チャンパー設置你業級了(OBB C MG 70m 東)	-
9:55	j440	3-1	136	Lander 到着	
6.07	1442	Zi	102	嘉庄 佐菜開始	-
10,02	1444	0	102	Lander 竞证ON、 辐射開発	r .
10.13	441	6	21	港庭、下ろしをむし、	
10.16	1943	3.2	ld	trefs Lander 约约化美统子·ster,1	
					~
•					
					-
				· · · · · · · · · · · · · · · · · · ·	
		-			·
		-			

•

. ~

. . . .

J Ca

ι

5.21°

(

¢

١

5

.

.

ハイパードルフィン 潜航記録

-	平,	成	18	年	NTO	6-05 行	動		記載者		下 植	f平	
潜系	抗年	ミ月	日	2006/0)3/25					位置	作図	[中心(立置
<u>潜</u>	航	<u>回</u>	数		3[<u>□</u>				緯度	35°	00.85	0'N
通算	\$潜	航回]数		532 [亘				経度	139 °	21.70	0'E
											v	VGS-8	4
潜	航	海	堿	相模湾	,		相模トラフ						
潜	航	目	的	調査潜	航	現場計測と の解明	上現場実影	をによる地	積物一水	境界の)動態と	:物質征	盾環
調	査	主	任	北里 彩	恈				Pil	ot	木戸	哲平	
Ľ-	ークバ	レ指	揮	千葉	和宏				<u>Co. 1</u>	Pilot	近藤	友栄	
		F	作 	· 業 経 場	 	——— 時刻 8:17		**************************************	累計	時 間	2:1		,

115			
吊	揚	08:17	
着	水	08:22	
潜航	開始	08:39	
着	底	09:36	
離	底	10:16	
泘	上	10:57	
揚収	 完了	11:14	

	<u> </u>	们
溎	替 航 時 間	2:18
j	通算潜航	2471:14
ケ	ケーブルNo.	3
ーブ	使用時間	2:57
ル	通算時間	1074:27

気象・海象

天候 c	風向 NNE	風力 5	風浪 3	うねり 2	· 視程 7
最大潜航深度	<u>£ 1452 m</u>	<u>-</u>			
着底深度	<u>£ 1452 m</u>	<u>.</u>	<u>离推</u> 近	<u> </u>	<u> 1443 m</u>
着底底穹	£ 泥	_	離」	<u> </u>	泥
 記事 海底を 作業を		<u>「走し、ベンシッ</u>	<u>ックチャンバー0</u>	の設置及びラン	ダー装置移動

<u>平成18年</u> ハイパ<u>ードルフィ 調査</u> #<u>532DIVE</u> 相模トラフ

- 2006年03月25日
- 1. 測 地 系 WGS-84 (世界測地系)
- 2. 測 位 D-GPS (MX9400N LEICA)
- 3. X B T 計測済み S/V=1486.7m/s (D=1500m)
- 4. XPONDER セジメントトラップ係留系取付 U/C:601 3.5KHz
- 5.作図中心
 35-00.850N
 ANGLE
 0°

 139-21.700E
 SCALE
 1/3000
- 6. 着底点(特異点①) 35-00. 828N D=1450m 139-21. 706E Co=
- 7. 潜航配置 指 揮:運航長 コンテナ PILOT:木戸 近藤 甲板PILOT: 戸塚
- 8. 潜航目的 現場計測と現場実験による堆積物-水境界の動態と物質循環の解 明
- 9. 作業内容 ヘ*ンシックチャンハ^{*}−設置 (ヘ*ンシックチャンハ^{*}−(HOMER:ID=41)
- 10.日程
 相模トラフ海域着

 07:50
 ビークル作動確認

 08:30
 潜航開始

 11:30
 ビークル浮上

 12:00
 揚収完了
- 11.備考・特異点は「別紙」参照
 - #4アルゴス送信機(ID=2C69B35)
 - ・2A-1 JXトランスポンダ
 - ・ランダー測位機器
 ベントストランスポンダ 14.0KHz
 ROV HOMER: ID=46

, **t** .

XY ORIGIN 35-0.850N 139-21.700E

別	紙
/ .	110.0

	特異点				
	緯 度	経度	深さm	備考	
2	35-00.827N	139-21.639E	1457 m	OBB II ステーション ROV HOMER (ID:59) OBB II マーカー	
3	35 - 00.970 N	1 3 9 - 2 1. 6 4 0 E	1449 m	#199M. メシ゛ャーハ゛ー	
4	35-00.837N	139-21.651E	1453 m	H526マーカー ROV HOMER:ID=45 (OBBIIから46m) 現場培養装置	
5	35-00.826N	139-21.631E	1449 m	#396M	
6	35-00.898N	139-21.793E	1449 m	ソナー反応物体	
7	35-00. 980N	139-21.816E	1444 m	円筒物体	
8	35-00.810 N	139-21.593E	1449 m	 シンカー付ロープ	
9	35-00. 955N	139-21.220E		立ち入り禁止区域	
10	35-00.725N	139-21.380E		立ち入り禁止区域	
Ū,	35-00. 805N	139-21.623E	1453 m	現場培養装置 (HOMER ID:59から) #5,6=42.5m	
15	35-00.899N	1 3 9 - 2 2. 0 4 4 E	1405 m	セジメントトラップ係留系	
20	35-00. 850N	1 3 9 - 2 1. 8 4 0 E	1446 m	ランダー投入予定点	

11

۰.,

別	紙
<i>.</i>	114

	特異点					
	緯度	£	経度		深さm	備考
2	35-00.	8 2 7 N	139-21.	639E	1457 m	OBB II ステーション ROV HOMER (ID:59) OBB II マーカー LEDライト
3	35-00.	970N	139-21.	640E	1449 m	#199M. メシ゛ャーハ゜ー
4	35-00.	837N	139-21.	651E	1453 m	H526マーカー ROV HOMER: ID=45 (OBB II から46m) 現場培養装置2本
5	35-00.	826N	139-21.	631E	1449 m	#396M
6	35-00.	898N	1 3 9 - 2 1.	793E	1449 m	ソナー反応物体
7	35-00.	980N	139-21.	816E	1444 m	円筒物体
8	35-00.	810N	139-21.	593E	1449 m	シンカー付ロープ
9	35-00.	955N	139-21.	220E		立ち入り禁止区域
10	35-00.	725N	139-21.	380E		立ち入り禁止区域
1	35-00.	816N	139-21.	767E	1449 m	傾斜計
	,					
15	35-00.	899N	139-22.	044E	1405 m	セジ・メントトラップ 係留系
20	35-00.	868N	139-21.	858E	1439 m	ランダ゛ー

06/03/24

XY ORIGIN 35-0.850N 139-21.700E

CENTER 35-0.850N 139-21.840E

Pre. DWC

Dive Lo	Dive Log of HPD Dive #533Area:Sagami-bay2005/3/25				
Time	Depth	Altitude	Heading	Description	Remarks
(JST)	(m)	(<u>m)</u>	(Deg)		
18:40	i45 € 1	3.1	270	清 匠	
13:43	1451	1.7	270	=2+2課水(赤, 赤)	
4	67	· 7		現場培養装置付近着底、確認	
(ð : 48	1453	0	37	#4 付近着底	
13:50	F\$1453	0	37	Feeding Device 設置 (市、)	
(8:52	1453	0	37_	DB13 € EB1<	
13:53	1453	0	37	peeding Device PUX (Fi)	2
[3:55	1453	0	27	Feeding Device 国收 (市、角)	
14:03	(45	0	78	着唐、你类開始。	
14:04	1452	0	79	Denmark 黄그了採泥	
14:06	1452	0	79	Denmark 月29探波	
(4:08	1452	Ø	79	Denmark 击,27探泥	
14: (0	[452	0	79	Denmark 黑 - J 採泥	~
14=13	/452	0	77	Deningerk 張コア 探泥	
14:17	/452	0	79	MBARI 绿黑印採泥	
14:19	1452	0	14	MBARI 黄汞コア 採泥	
14:21	/452	U	79	MBARI FRE 2P FRIR	
14:22	1452	O	79	mBARI 庄色コア 北洋派	
1424	1452	Ĵ	79	MBARZ 畫墨 27 样统	
/4,29	1447	4.1	80	ラッチ 回転確認	
14539	1446	0		ランダー 持ちょしげ	
120 541	/435	(0.)	319	ジターの起で	
14142	14 135	(0.1	319		
					· ·
·					

______ _____

ハイパードルフィン 潜航記録

平成	18 年 NTG)6-05 行動	記載者	i	<u> 丘藤 友栄</u>
		· · ·			
潜航年月日	∃ 2006/03/28	<u>;</u>		位置	作図中心位置
潜航回数	<u></u> 4	П		緯度	35° 00.850 'N
通算潜航回数	数 533			経度	139° 21.700 ' E
	-				WGS-84
潜航海均	域 相模湾	相模トラフ			7
潜航目的	、 調査潜航	現場計測と現場実験 の解明	による堆積物-オ	、境界の	の動態と物質循環
				۰.	
			5.11		sum atten e . sse

- 調査主任北里洋
- ビークル指揮 千葉 和宏

作	業 経	過時刻		
吊	揚	12:21		
着	水	12:26		
潜航	開始	12:42		
着	底	13:40		
離	底	14:39		
浮	Ŀ	15:33		
揚収	完了	15:53		

Ρ	i	1	0	t	近藤	友栄

<u>Co. Pilot 菊谷茂</u>

	累計時	百日
褚	替 航 時 間	2:51
ì	恿 算 潜 航	2474:5
ケ	ケーブルNo.	3
ーブ	3:32	
ル	通算時間	1077:59

気象・海象

天候 bc	風向 NNE	風力 3	風浪 2	うねり 2	視程 7
最大潜航深度	1453 m				
着底深度	1451 m	а.	离推 「」	<u> 新深度</u>	1 44 6 m
着底底質	 泥		離」	<u> 底 質</u>	泥

記事 海底を観察しながら航走し、採泥、採水、現場培養装置の設置・回収及びラン ダー装置の回収を行った。 <u>平成18年</u> イパードルフィン 調査潜航 #533DIVE

/

#<u>533DIVE</u> 相<u>模湾 相模トラ</u>フ

2006年03月25日

-.:

1.	測 地 系	WGS-84 (世界測地系)
2.	測 位	D-GPS (MX9400N LEICA)
3.	ХВТ	計測済み S/V=1486.7m/s (D=1500m)
4	X P O N D E R	セジメントトラップ係留系取付 U/C:601 13.5KHz
5.	作図中心	35-00.850N ANGLE 0° 139-21.700E SCALE 1/3000
6.	着底点(特異点①)	35-00.828N D=1450m 139-21.706E Co=
7.	潜航配置	指 揮:運航長 コンテナ PILOT : 近藤 菊谷 甲板PILOT : 戸塚
8.	潜航目的	現場計測と現場実験による堆積物-水境界の動態と物質循環の解 明
9.	作業内容	海底観察、採泥、採水、現場培養装置設置・回収、ランダ-関連作 業・回収 (ニスキン採水器2本、MBARI採泥器5本、デンマーク式採泥器5本、現場培 養装置1本、ランダー回収索ー式、カマキリカッター)
10.	日程	13:00 潜航開始 No.4 2 16:30 ビークル浮上 17:00 揚収完了 終了後、付近海域漂泊
11.	備考	・特異点は「別紙」参照
		・#4アルゴス送信機(ID=2C69B35)
		・2A-1 JXトランスポンダ
		 ・ランダー測位機器 ベントストランスポンダ 14.0KHz ROV HOMER・ID=46

DAY 533.jtd

5

XY ORIGIN 35-0.850N 139-21.700E

CENTER 35-0.850N 139-21.840E

Pre. DWC
別	紙
<i>.</i>	114

	特異点							
	緯度	£	経度		深さm	備考		
2	35-00.	8 2 7 N	139-21.	639E	1457 m	OBB II ステーション ROV HOMER (ID:59) OBB II マーカー LEDライト		
3	35-00.	970N	139-21.	640E	1449 m	#199M. メシ゛ャーハ゜ー		
4	35-00.	837N	139-21.	651E	1453 m	H526マーカー ROV HOMER: ID=45 (OBB II から46m) 現場培養装置2本		
5	35-00.	826N	139-21.	631E	1449 m	#396M		
6	35-00.	898N	1 3 9 - 2 1.	793E	1449 m	ソナー反応物体		
7	35-00.	980N	139-21.	816E	1444 m	円筒物体		
8	35-00.	810N	139-21.	593E	1449 m	シンカー付ロープ		
9	35-00.	955N	139-21.	220E		立ち入り禁止区域		
10	35-00.	725N	139-21.	380E		立ち入り禁止区域		
1	35-00.	816N	139-21.	767E	1449 m	傾斜計		
	,							
15	35-00.	899N	139-22.	044E	1405 m	セジ・メントトラップ 係留系		
20	35-00.	868N	139-21.	858E	1439 m	ランダー		

06/03/24

Dive Lo	g of HPI	D Dive #	534	Area:Sagami-bay	2005/3/26
Time	Depth	Altitude	Heading	Description	Remarks
(JST)	(m)	(m)	(Deg)	· · · · · · · · · · · · · · · · · · ·	
10:00	1450	1.6	270		
l0:03	1451	2.5	270		· ·
10:05	(452	1.7	270	#4 着窗	
10:09	1453	0	271	Feeding Device 禄章	
[0:[0	1453	0	27/	> ヒロンを 板く	
(2-12-	- (म् ५३	Q	27/-	Box 0 131 [= [] 173	
[0:14	1453	0	27/	現場暗養装置 (蘇靜,自) 国収	
10:21	1453	0	49	Box or BIT= E Al +3	
(0:25	1453	0	50	採泥	
(0:27	14#53	0	50	2回目标泥	
[0:30	1450	0	50	3国保泥	
(0:33	1453	0	50	態平仁-13保泥完了	
[0:37	[446	4.7.	70	ランダー 石屋 言れ~	``
10:44	1451	0	262	ランダー 石銀 スケッチ 押す	
10:43	1451	0	262	" 压俱" (電源 oN)	
10:49	(446		 _263	うニダー 永多動	
(0:56	1450		225	チャンハーる作言へ	
(120)	1452	0	313	チャンパーにコックを引っかける。	
(1 04	(452		3()	aiic	
11:06	1420	10.1	314	チャンパー ついてくるのを石隆記し~	
				(11:50 >\$43定)	
				· /	
					<u> </u>

ハイパードルフィン 潜航記録

	平	成	18	_年	NT	06-05	行動			記載者	- 7	<u> 木戸 </u>	≨平	_
潜	航了	年月	日	2006,	/03/26	<u>}</u>					位置	作図	中心位	置
潜	航	旦	数		5						緯度	35°	00.850	' N
通	算褚	航回	数		534						経度	139°	21.700	' <u>E</u>
												V	VGS-84	
潜	航	海	域	相模	湾			トラフ						
潜	航	目	的	調査	潜航	現場計 の解明	・測と現場	島実験に	よる堆	積物一	水境界0	つ動態と	物質循調	環
調	查	主	任	北里	洋					P i	lot	菊谷	茂	
Ľ∽	-ク,	ル指	揮	千葉	和宏					<u>Co.</u>	. Pilot	木戸	哲平	

作	業 経	過 時 刻
吊	揚	08:40
着	水	08:44
潜航	開始	09:00
着	底	10:00
離	底	11:04
浮	上	11:55
揚収	完了	12:12

	累計時	間	
潜	替 航 時 間	2:55	
ì	通算潜航	2477:0	
ケ	ケーブルNo.	3	
ーブ	使用時間	3:32	
ル	通算時間	1081:31	

•___

気象・海象

天候 bc	風向 SW	風力 3	風浪 2	うねり 2	視程 6	
最大潜航深度	€ 1453 m	•	肉化 厅	★ V72 PF	1450	
者 氐 深 虏	<u>t 1450 m</u>		<u> </u>	<u> 3 休 <u>皮</u> 7 </u>	<u>1452 m</u> ਅਦ	
着底底質			西田 上	式 <u>広員</u>	VĽ	

記事 海底を観察しながら航走し、採泥、採水、海底現場培養装置の設置・回収、ラン ダー装置移動作業及びベンシックチャンバーの回収を行った。 <u>平成18年</u> ハ<u>イパードルフィン</u> 調査潜航 #<u>534DIVE</u> 相模湾 相模トラフ

2006年03月26日 1. 測 地 系 WGS-84(世界測地系) 2. 測 位 D-GPS (MX9400N LEICA) 3. X B T 計測済み S/V=1486.7m/s (D=1500m) 4. XPONDER 設置せず 0° 5. 作図中心 35 - 00.850 N ANGLE 139 - 21.700ESCALE 1/3000 6. 着底点(特異点①) 35-00.828ND = 1450 mヘンシックチャンパー 139 - 21.706EC o =(HOMER: ID=41) 7.潜航配置 揮 : 運航長 指 コンテナ PILOT : 菊谷 木戸 甲板PILOT : 戸塚 8. 潜航目的 現場計測と現場実験による堆積物-水境界の動態と物質循環の解 明 9. 作業内容 |海底観察、採水、採泥、現場培養装置設置・回収、ランダ−関連作| 業、ベンシックチャンバー回収 (BOX、熊手、現場培養装置、ニスキン採水器2本、チャンハー回収索一 式) 10.日程 相模トラフ海域着 作業開始 07:00 ランダー投入 着底確認、位置キャリブレーション 07:50 ビークル作動確認 08:30 潜航開始 No.5 2 11:30 ビークル浮上 12:00 揚収完了 終了後、初島南東沖向け 11. 備考 ・特異点は「別紙」参照 ・#4アルゴス送信機(ID=2C69B35) ・2 A-1 JXトランスポンダ ・ランダー測位機器 ベントストランスポンダ 14.0KHz ROV HOMER : ID = 46・ランダー投入予定点⑳ 35-00.905N 139-21.841E

DAY 534.jtd

XY ORIGIN 35-0.850N 139-21.700E

CENTER 35-0.850N 139-21.840E

別	紙

特異点 深さm 緯 度 経 度 備考 2 35 - 00, 827 N 139 - 21.639E1457 m OBB II ステーション ROV HOMER (ID: 59) OBB II マーカー LEDラ个 3 35 - 00.970 N 139 - 21.640E#199M. メシ ャーハ ー 1449 m **(4)** 35-00.837N139 - 21.651E1453 m H526マーカー ROV HOMER: ID=45 (OBB**II**から46m) 現場培養装置 6 35 - 00.826 N 139 - 21.631E1449 m | #396M 6) 35 - 00.898 N 139 - 21.793E1449 m ソナー反応物体 (7)35 - 00.980 N 円筒物体 139 - 21.816E1444 m シンカー付ロープ 8 35 - 00.810 N 139 - 21.593E1449 m 立ち入り禁止区域 9 35 - 00.955 N 139 - 21.220E立ち入り禁止区域 10 35 - 00.725 N 139 - 21.380E1449 m | 傾斜計 35-00.816N⊕ 139 - 21.767E139 - 21.841Eランダー 投入予定点 20 35 - 00.905 N m (HOMER: ID=46)

-⁻¹

Dive Lo	Dive Log of HPDDive #535Area:Sagami-bay2005/3/26						
Time (JST)	Depth (m)	Altitude (m)	Heading (Deg)	Description	Remarks		
14:34	it83	2,4	<u>70</u> د	着底 #16~向かう			
88 14:第	1178	6.7	270	マスキー「キャー」 シロラリカックコロニー			
)4 : 44	(172	2,3	90	<u>ニスキンチネ水 (あ、話ま)</u>			
14:46	1173	گر)	_ 89	ブシックラ Box 確認へ (In Situ Morking 装置)	-		
[4:5]	1175	0	101	正本式現場上 ドシロウリかいイ オリ 国リス (キ	528)		
14:54	匡 [175	0	102	シロラリセッイ孫取 (熊子)	-		
15=01	1175-	0	.(01	Sample Box 79 Pal U'			
(5: [2	1175	0	4E]	シロラリヤック子采取 (#525)			
15:33	l (75	0	136	ショウリガイキング報子 Sample Box フタ閉じ			
15 = 36	1175	0	136	里MBARI 2P 株田·			
15:38	1175	0	136	ショウリガイ」進走防止カゴ 国北2 (#525,528)			
15:42	1175	ð	136	莲MBARI 27 梓翔.			
15:46	1175	D	136	赤MBARIOP探泥	τ.		
15:48	1125	0	13 B	グレ-MBARI OP 样泥			
15:80	1175	0	13 B	将MBARI 2P样泥			
15:53	1195	Ð	(3 B	开白MBARIJP样派			
18256	1175	0	138	In Situ Morking 掃影			
16:00	1175	0	138	and the second s			
		ι.					

ハイパードルフィン 潜航記録

	平。	成	18	年	NT06-05	行動	記載者				
潜∮	抗年	ミ月	日	2006/0	3/26			位置	作図]中心位置	
潜	航	回	数					緯度	35 °	00.200 '	1
通貨	〕 潜	航回	数					経度	139°	13.450 '	
									۷	VGS-84	
潜	航	海	域	相模湾		初島南東沖	3				
潜	航	目	的	調查潜	航 現場計 の解明	測と現場実験	による堆積物-7	大境界0	の動態と	:物質循環	

調查主任北里洋

ビークル 指揮 千葉 和宏

作	業経	過時刻		
吊	揚	13:20		
着	水	13:24		
潜航	開始	13:38		
着	底	14:34		
鹛	底	16:01		
浮	上	16:34		
揚収	完了	16:54		

Pilot 木戸 哲平

Ν

Ε

Co. Pilot 近藤 友栄

	累計時	間				
潜航時間 2:56						
ì	通算潜航	2479:56				
ケ	ケーブルNo.	3				
ーブ	使用時間	3:34				
ir	通算時間	1085:5				

気象・海象

天候	風向	風力	風浪	うねり	視程
с	S	3	3	2	7

最大潜航深度

着底深度

着底底質

<u>離底深度</u> 1174 m 離底底質

西江东又已

<u>半成</u> 18年
ハイパードルフィン 調査潜航
<u>535DIVE</u>
相模湾初島南東沖

1	. 測 地 系	2006年03月26日 WGS-84(世界測地系)
2	. 測 位	D-GPS (MX9400N LEICA)
3	ХВТ	計測 S/V= . m/s (D= m)
4	. XPONDER	設置せず
5	.作図中心	35-00.200N ANGLE 0 139-13.450E SCALE 1/3000
6	. 着底点(特異点①)	35-00.049N D=1186m 139-13.548E Co=
7	. 潜航配置	指 揮 : 運航長 コンテナ PILOT : 木戸 近藤 甲板PILOT : 戸塚
8	. 潜航目的	現場計測と現場実験による堆積物-水境界の動態と物質循環の解 明
9	. 作業内容	海底観察、生物採集、採泥、採水 (=スキン採水器2本、熊手、BOX2個、MBARI採泥器6本)
1 0	. 日 程	初島南東沖着 13:00 潜航開始 No.6 2 16:30 ビークル浮上 17:00 揚収完了 終了後、付近海域漂泊
'1 1	. 備 考	・特異点は「別紙」参照
		・#4アルゴス送信機:ID=2C69B35
		・2A-1 JXトランスポンダ

別 紙

1/3

5

_*(

		特異点		~ .
	緯度	経度	深さ m	備考
2	35-00.210N	139-13.473E	1170 m	「日ステーション ROVホーマー(ID=38)
3	35-00.197N	139-13. 594E	1216 m	H091マーカー
4	35-00.254N	139–13.457E	1163 m	新ヘルメットフ [*] イ コテ [*] ラート ROVホーマー(ID=10)
5	35-00.319N	139-13.412E	1138 m	シロウリカ゛イコロニー #323-2M チューフ゛ワーム(ヤキソハ゛)
6	35 - 00.177N	139-13. 488E	1178 m	<mark>ሳ</mark> エイト
7	35 - 00.070 N	139-13.411E	1144 m	仲大王ブイ
8				
9				
9	35-00.453N	139-13. 336E	10 2 1 m	#325マーカーフ゛イ シンカイヒハ゛リカ゛イ シロウリカ゛イ
1	35-00.310N	139-13.422E	1129 m	#325M シロウリカ゛イコロニー
12				
13	35-00.255N	139-13.464E	1149 m	チューフ [、] ワーム #323-1M
4	35-00.078N	139-13.434E	1167 m	フジツボ岩 ROVホーマー(ID=53) 2K記念マーカー
15	35-00.185N	139-13.495E	1187 m	電位差計Etンサー

06/03/25

別 紙

Г

2/3

- `

		特異点		
	緯度	経度	深さ m	備考
ß	35-00. 105N	139-13.467E	1180 m	#244(MB-2) #498(MB-1) ROVホーマー(ID:31) H528マーキング BOX (藤倉式) H525,H528 シロウリカ イ逃走防止カコ
17	35 - 00.070 N	139-13.496E	1169 m	#246(MB-3)
	35-00. 182N	139-13.480E	1182 m	長期観測ステーション ROVホーマー(ID=36) ハクヨウマーカー 赤色域 JAMSTECフ [*] イ (275 [°] 10m) ROV HOMER: ID=39 LINUX BOX 海底重力計 S-OBEM (HOMER: ID=43)
19	35-00.200N	139-13.480E	1179 m	電位差計Ntンサー
2	35-00.256N	139 - 13.508E	1177 m	#242M(付着板付)
21	35 - 00.374 N	139-13.259E		生物コロニー
22	35-00.401N	139-13. 331E		#144M
23	35-00.049 N	139-13.548E	1186 m	#1087M
24	35-00.092N	139-13.400E	1134 m	#908M
25	35-00.096N	139-13.426E	1163 m	#829M 放流栅(青) #830M 放流栅(白)
29	35-00.403N	1 3 9 - 1 3. 2 1 0 E		立入禁止区域
30	34-59.865N	139 - 13.210E		立入禁止区域

-'i

. * _

		特異点		
	緯度	経度	深さm	備考
31	35-00. 359N	139-13. 310E		コンクリーション
32	35-00.313N	139-13.312E	1055 m	F1-7` IJ-4
33	35-00.074 N	139-13.507E	1175 m	#1400M
34	34-59.969N	139-13.571E	1203 m	#409植木鉢マーカー
35				,
36				
				v
-				

DAY 初島ST.jtd

06/03/25

139°13.45E

35°00.20N

 1. 14:34 着底 D=1183m (35-00.107N 139-13.535E)
 2. 14:45 D=1173n ニスキン深水 (2本) (35-00.089N 139-13.507E)
 15:33 D=1175m 外色したシロウリがイ採集
 15:35 D=1175m MBARI採泥(属・1本)
 15:37 D=1175m MBARI採泥(黄・1本)
 15:42 D=1175m MBARI採泥(志・1本)
 15:44 D=1175m MBARI採泥(志・1本)
 15:49 D=1175m MBARI採泥(緑・1本)
 15:52 D=1175m MBARI採泥(緑・1本)
 15:52 D=1175m MBARI採泥(台・1本)
 15:52 D=1175m MBARI採泥(台・1本)
 15:52 D=1175m MBARI採泥(白赤・1本)
 15:52 D=1175m MBARI採泥(白赤・1本)
 15:52 D=1175m MBARI採泥(白赤・1本)
 15:52 D=1175m MBARI採泥(白赤・1本)
 15:52 D=1174m
 (35-00.094N 139-13.516E)

D-GPS(MX9400 LEICA) WGS-84 DATUM(世界測地系) 1 4 8 7 . 8 m/s (D=1 2 0 0 m)

300m ※ 緯度、経度の1目盛りは、0.1分を示します。

Dive Lo	g of HPI	D Dive #:	536	Area:Sagami-bay	2005/3/27
Time (JST)	Depth (m)	Altitude (m)	Heading (Deg)	Description	Remarks
9:30	1193	2.4	2.70		
9:32	[/87	25	275	二天+>保水 (th.).	
<i>4</i> ·	1187	2:5	175	CCD (= カレイ書	
9:46	1179.	3,8	288	海底重もまちのケーフリレ (1ハリント #18)	-
9:54	1175	0 ==7=	305	HBARI コア 採泥(黄赤)	
9:57	1176	Ø	303	MBARI // (黃)	-
9:59	1176	0	302	長期観測ステーション CCD	
10:03	1172	0	302	サヤッションシャカット	
10:17	1174	<i>5</i> 15	250	S-OBEM 视题	-
10:32	[170	4.0	172	ステーションケーブル観察終了	
10:38	1178	6,0	30	27-is:105 40° 50m 藉庄	
10:41	1/1785	0.0	30	黄黑MBARZ 样泥	
10:42	1178	0.0	30	赤白MBARI 样泥	
10:47	1186	0,0	139	ステーションガら おち 50m	
10:49	1186	0.0	139	32-MBARI 牂泥	
10-50	1186	0.0	139	将 MBARI 择泥 with Jhr 棲管	
10:50	(185	3.0	-139	BEE	
			_		
			-		
	· · · ·				

ハイパードルフィン 潜航記録

	平	成	18	年 NT	06-05	行動			記載者		菊谷	茂	_
潜	航	年月	日	2006/03/2	7	,				位置	作図]中心位	置
潜	航	回	数	7	回					緯度	35°	00.200	<u>' N</u>
通	算滩	أ	國数	536	回					経度	139°	13.450	<u>'</u> E
											V	VGS-84	
潜	航	海	域	相模湾		<u>初</u> 島	南東沖						
潜	航	目	的	調査潜航	現場計 の解明	測と現ま	昜実験に	よる堆	積物一水	、境界0	う動態と	と物質循	環
調	査	主	任	北里 洋					Ρil	o t	近藤	友栄	
<u>ک</u>	ーク	ル指	揮	千葉 和宏		_			Co. I	Pilot	菊谷	茂	

ビークル 指揮 千葉 和宏

作	業経	過時刻
吊	掦	08:12
着	水	08:17
潜航	開始	08:31
着	底	09:30
辭	底	10:50
浮	Ł	11:20
揚収	完了	11:37

	•	
	累 計 時	間
溎	替 航 時 間	2:49
ì	通算潜航	2482:45
ケ	ケーブルNo.	3
 ブ	使用時間	3:25

1088:30

通算時間

気象・海象

天候 c	風向 NNE	風力 5	風浪 3	うねり 2	視程 6
最大潜航深度	1193 m				
着底深度	. 1193 m		離原	底深度	<u>1185 m</u>
着底底質	泥		離正	<u> </u>	泥
記事 海底を	観察しながら射	i走し、採泥・採	水及び長期ス	、テーションの観	際を行った。

ル

<u>平成18年</u> ハイパ<u>ードルフィン</u>調査潜航 #536DIVE 相模湾 初島南東沖

- 、 2006年03月27日
- 1. 測 地 系 WGS-84(世界測地系)
- 2. 測 位 D-GPS (MX9400N LEICA)
- 3. X B T 計測済み S/V=1487.8m/s (D=1200m)
- 4. XPONDER 設置せず
- 5.作図中心
 35-00.200N
 ANGLE

 139-13.450E
 SCALE
 1/3000
- 6.着底点(特異点①)
 35-00.180N
 D=1195m

 139-13.550E
 Co=
- 7. 潜航配置
 揮:運航長

 コンテナ PILOT:近藤
 菊谷
 甲板PILOT: 戸塚
- 8. 潜航目的 現場計測と現場実験による堆積物一水境界の動態と物質循環の解 明
- 9. 作業内容
 海底観察、生物採集、採泥、採水

 (ニスキン採水器2本、熊手、BOX、MBARI採泥器6本)
- 10.日程
 初島南東沖着

 07:50
 ビークル作動確認

 08:30
 潜航開始

 No.7

 11:30
 ビークル浮上
 - 12:00 揚収完了
 終了後、相模トラフ向け
- 11.備考・特異点は「別紙」参照
 - #4アルゴス送信機:ID=2C69B35
 - ・2A-1 JXトランスポンダ

The second

73°3 /12-4

		特異点		
	緯度	経度	深さm	備考
0	35-00.210N	139-13. 473E	1170 m	旧ステーション ROVホーマー(ID=38)
3	35-00.197N	139-13.594E	1216 m	H091マーカー
4	35-00.254N	139-13.457E	1163 m	新ヘルメットフ [・] イ コテ [・] ラート ROVホーマー(ID=10)
5	35-00. 319N	139-13.412E	1138 m	シロウリカ [*] イコロニー #323-2M チューフ [*] ワーム(ヤキソハ [*])
6	35-00. 177N	139-13. 488E	1178 m	ሳ工イト
1	35-00. 070N	139-13. 411E	1144 m	仲大王ブィ
8				
9				
® `	35-00. 453N	139-13.336E	1021 m	#325マーカーフ [®] イ シンカイヒハ*リカ [®] イ シロウリカ [®] イ
1	35-00.310N	139-13.422E	1129 m	#325M シロウリカ゛イコロニー
12				
13	35-00.255N	139-13.464E	1149 m	ƒュ−7°ӯ−ь #323−1М
4	35-00.078N	139-13. 434E	1167 m	フジツボ岩 ROVホーマー(ID=53) 2K記念マーカー
15	35-00. 185N	139-13.495E	1187 m	電位差計Etzy

別 紙

		特異点		
	緯度	経度	深さ m	備考
16	35-00. 105N	139-13.467E	1180 m	#244 (MB-2) #498 (MB-1) ROVホーマー(ID:31) H528マーキング BOX (藤倉式)
Ø	35-00.070N	139-13. 496E	1169 m	#246 (MB-3)
13	35-00. 182N	139-13.480E	1182 m	長期観測ステーション ROVホーマー(ID=36) ^クヨウマーカー 赤色域 JAMSTECプイ (275° 10m) ROV HOMER:ID=39 LINUX BOX 海底重力計 S-OBEM (HOMER:ID=43)
19	35-00.200N	139-13. 480E	1179 m	電位差計Ntンサー
0	35-00.256N	139-13. 508E	1177 m	#242M(付着板付)
21	35-00.374N	139-13. 259E		生物コロニー
22	35-00. 401N	139-13. 331E		#144M
23	35-00. 049N	139-13. 548E	1186 m	#1087M
24	35-00.092N	139-13. 400E	1134 m	#908M
25	35-00.096N	139-13.426É	1163 m	#829M 放流栅(青) #830M 放流栅(白)
29	35-00.403N	139-13.210E	·	立入禁止区域
30	34-59. 865N	139-13.210E		立入禁止区域

別 紙

		特異点		
	緯度	経度	深さ m	備考
31	35-00. 359N	139-13. 310E		コンクリーション
32	35-00. 313N	139-13. 312E	1055 m	f1-7° U-4
33	35-00. 074N	139-13. 507E	1175 m	#1400 M
34	34-59.969N	139-13. 571E	1203 m	#409植木鉢マーカー
35				
36				
		5		
		21		
- 4				
		er e		

	Dive Lo	g of HP	D Dive #	537	Area:Sagami-bay	2005/3/27
	Time	Depth	Altitude	Heading	Description	Remarks
	<u>(JST)</u>	(<u>m)</u>	(m)	(Deg)	<u></u>	<u>_</u>
4-0	HT-02					
	(4202	[449	3,2	280		
	14-04	[453	0	278	Denmark HE (F)	
	14208	[453	0	279	《黑)	
	14:11	1453	0	278 _	//(育)	
	14:20	1450	1.0	(84	イベント 井牛 到着	
	[4:22	1453	0	194	Peeding Device 篩 图収(青)	f
	[ૡ ે 25	{ 4 \$ ⁻ 3	0	(93	ROV HOMER (ID:45) DUR	
	1429	1452	0	حدر	LED FIT ZE Z	
	(પ્રક(11	+1	H	"DUX	
	14:39	1448	4.1	90	ランダーネ見記	
	14:46	1453	0.0	89 10-89	ランターのゆしっの感じ	
	(5:38	50		300	赤ニュキン採水	1
				<u> </u>		
					· · · · · · · · · · · · · · · · · · ·	┥───
	 _					┥──
		L				┿━━
						-
					· · · ·	┦
						_
•						

ハイパードルフィン	潜航記録
-----------	------

平成 18	年 NT06-05	行動	己載者	木戸 哲平
潜航年月日	2006/03/27		· · · · · · · · · · · · · · · · · · ·	立置 作図中心位置
潜航回数	8回		3	緯度 35°00.850 N
通算潜航回数	537 回		j	経度 139°21.700'E
			_	WGS-84
潜航海域	相模湾			,
潜航目的	調査潜航 現場書 の解り	↑測と現場実験による堆積 ∃	遺物一水均	竟界の動態と物質循環
調査主任· ビークル指揮	 北里洋 千葉和宏		Pilo Co.Pi	ot
<u> </u>				

作	業 経	過時刻
吊	揚	12:46
着水		12:50
潜航開始		13:04
着	底	14:00
離	底	14:46
浮	上	15:42
揚収	完了	16:04

	累計時	間			
潜航時間 2:38					
ì	恿 算 潜 航	2485:23			
ケーブル	ケーブルNo.	3			
	使用時間	3:18			
	通算時間	1091:48			

-52°

気象・海象

	,	114 141	-			
天	定	風向	風力	風浪	うねり	視程
201		N	0	2	2	7
C	2		4		<u> </u>	
			•			
最大港	航深周	ت 1454 r	n			
<u> </u>	W40140		<u></u>	南任	虎 泖 莳	1/153 m
着 底	深月	ぼ 1450 1	n	 	広 休 及	1405 11
	 	as <u>ve</u>	-	腐住	底 底 質	泥
看 氐	低 1	〔 <u>犯</u> _	_	<u></u>		_
_						
=⊐ ar [海南之	と細索したがら	新去」 探泥 推	采水及7ド現場	培養装置・ROV	-HOMER·LE
記事	御広る	1 開会しながり	影の回知を行って	本小人 0 0.000		
	D71	ト・フィクー表	国収を行う			
				-		
					,	

<u>平成18年</u> ハ<u>イパードルフィン</u> 調査潜航 #<u>537DIVE</u> 相模湾 相模トラフ

2006年03月27日 1. 測地系 WGS-84(世界測地系) 2. 測 位 D-GPS (MX9400N LEICA) 3. X B T 計測済み S/V=1486.7m/s (D=1500m) 4. XPONDER 設置せず 5. 作図中心 35-00.850N ANGLE 0° 139 - 21.700ESCALE 1/3000 6. 着底点(特異点①) 35-00.828N D = 1450 m139 - 21.706E $C \circ =$ 揮 : 運航長 7. 潜航配置 指 コンテナ PILOT : 菊谷 木戸 甲板PILOT : 戸塚 現場計測と現場実験による堆積物-水境界の動態と物質循環の解 8. 潜航目的 阴 6. 作業内容 海底観察、現場培養装置・ROV HOMER・LEDライト・ランダー回収 (ニスキン採水器2本、回収箱、ランターの収索一式) 相模トラフ海域着 10. 日程 13:00 潜航開始 No.8 16:30 ビークル浮上 17:00 揚収完了 終了後、付近海域漂泊 ・特異点は「別紙」参照 11. 備考 ・#4アルゴス送信機(ID=2C69B35) ・2A-1 JXトランスポンダ ・ランダー測位機器 ベントストランスポンダ 14.0KHz ROV HOMER: ID = 46

XY ORIGIN 35-0.850N 139-21.700E

CENTER 35-0.850N 139-21.840E

別	紙
	11.4

	特異点						
	緯度	経度	深さ m	備考			
0	35-00.827N	139-21.639E	1457 m	OBB II ステーション ROV HOMER (ID: 59) OBB II マーカー LEDライト			
3	35-00.970N	139-21.640E	1449 m	#199M. メシ゛ャーハ゛ー			
4	35-00.837N	139–21.651E	1453 m	H526マーカー ROV HOMER:ID=45 (OBBIから46m) 現場培養装置			
5	35-00.826 N	139-21.631E	1449 m	#396M			
6	35-00. 898N	139-21.793E	1449 m	ソナー反応物体			
7	35-00.980N	139-21.816E	1444 m	円筒物体			
8	35-00.810N	139-21.593E	1449 m	シンカー付ロープ			
9	35 - 00.955N	139-21.220E		立ち入り禁止区域			
0	35-00.725N	139-21.380E		立ち入り禁止区域			
0	35-00.816N	139-21.767E	1449 m	傾斜計			
20	35-00.897N	1 3 9 – 2 1. 7 8 2 E	1450 m	ランダ [*] ー (HOMER:ID=46)			
-							

_''

Dive Log of HPD Dive #538 Area:Sag				Area:Sagami-bay	2005/3/28
Time	Depth	Altitude	Heading	Description	Remarks
(JST)	(m)	(m)	(Deg)		
9:30	1450	2	'	清 魚	
9:41	1/	1	*	Benthic Chamber 影音	
10:06	<u> </u>	2	40	=7+2 探水級了 (緑·赤)	
11:39	1	~	-	"WARNING"の文字や音やれに未確認例	₹
15:37	1452	(,2	86.2	Benthic Chamber ZE 22	
16:02	1453	11	215	最後のシリンジ	-
[6=[]	17	1	157	Benthic Chambor 1948	,
tr	l r	U.	17	BE G	
	*				

-1

ハイパードルフィン 潜航記録

平成 18	年 NT06-05	行動	者7	大戸 哲平
潜航年月日	2006/03/28		位置	作図中心位置
潜航回数	9 回	·	緯度	<u>35°</u> 00.850 'N
通算潜航回数	538 回		経度	<u>139° 21.700 ' E</u>
				WGS-84
潜航海域	相模湾	_ 相模トラフ		
潜航目的	<u>調査潜航</u> 現場計 の解明	測と現場実験による堆積物)動態と物質循環
調査主任	北里 洋	F	llot	木戸 哲平
ビークル 指揮	千葉 和宏	<u> </u>	Co. Pilot	近藤 友栄

作	業 経	過時刻	
吊	揚	08:17	
着	水	08:22	
潜航開始		08:35	
着	 底	09:31	
腐惟	底	£ 16:11	
浮	Ŀ	16:55	
揚収完了		17:12	

潜航時間 8:20				
通算潜航 2493:43				
ケーブル	ケーブルNo.	3		
	使用時間	8:55		
	通算時間	1100:43		

気象・海象

天候 o	風向 NNE	風力 3	風浪 3	うねり 1	視程 5
最大潜航深度	1453 m				
着底深度	1450 m		離し	底 深 度	1453 m
着底底質	 〔 泥		离准 し	底 匠 質	泥
記事 海底を 回収を	観察しながら射 行った。	「走し、採水、中	「層観察及び」	ベンシックチャン	/バーの設置・

<u>平成18年</u> ハ<u>イパードルフィン</u> 調査潜航 #<u>538DIVE</u> 相<u>模湾 相模トラ</u>フ

[`] 1.	測 地 系	2006年03月28日 WGS-84(世界測地系)
2.	測 位	D-GPS (MX9400N LEICA)
З.	ХВТ	計測済み S/V=1486.7m/s (D=1500m)
4.	XPONDER	設置せず
5.	作図中心	35-00.850N ANGLE 0° 139-21.700E SCALE 1/3000
6.	着底点(特異点①)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7.	潜航配置	指 揮:運航長 コンテナ PILOT : 木戸 近藤 甲板PILOT : 戸塚
8.	潜航目的	現場計測と現場実験による堆積物-水境界の動態と物質循環の解 明
9.	作業内容	海底観察、採泥、ベンシックチャンバー設置・回収 (ベンシックチャンバー(HOMER:ID=41)、チャンバー回収索一式、MBARI採泥器 3本)
10.	日程	相模トラフ海域着 07:50 ビークル作動確認 08:30 潜航開始 No.9
		16:30 ビークル浮上 17:00 揚収完了 終了後、機構向け
11.	備考	・特異点は「別紙」参照
		・#4アルゴス送信機(ID=2C69B35)
		・2A-1 JXトランスポンダ

XY ORIGIN 35-0.850N 139-21.700E

· ...

<u>}</u>.-

CENTER 35-0.850N 139-21.840E

別	紙
77.7	- 7F N

特異点				
	緯度	経度	深さm	備考
2	35-00.827 N	139-21.639E	1457 m	OBB II ステーション ROV HOMER (ID:59) OBB II マーカー
3	35-00.970N	139-21. 640E	1449 · m	#199M. メシ゛ャーハ゛ー
4	35-00. 837N	139-21.651E	1453 m	H526マーカー (OBB II から46m)
6	35-00.826N	139-21.631E	1449 m	#396M
6				
7	35 - 00.980N	1 3 9 – 2 1. 8 1 6 E	1444 m	円筒物体
8	35-00.810 N	139-21.593E	1449 m	シンカー付ロープ
9	35-00.955N	139-21.220E		立ち入り禁止区域
10	35-00.725N	139-21. 380E		立ち入り禁止区域
1	35-00.816N	1 3 9 - 2 1. 7 6 7 E	1449 m	傾斜計
				(
	· ·			

4. Individual Scientific Report

(Introduction, Method, Results and future studies)

4-1. Bacterial endosymbiosis in foraminifera

Hiroshi Kitazato, Aiko Iwasaki, Takashi Toyofuku, Masashi Tsuchiya, Hiroyuki Yamamoto and Katsuyuki Uematsu (JAMSTEC)

Introduction

Recently, bacterial symbiosis has reported for foraminifers that are dwelling in extreme environments such as oxygen depleted environment with existence of hydrogen sulfide and oligotrophic abyssal plains (Bernhard *et al.*, 2002; Gooday *et al.*, accepted). Bacterial endosymbiosis should be a key phenomenon for foraminifera that are dwelling at extreme environments. What kinds of bacterial groups do exist in foraminiferal cells? What kind of function do they have among food webs or biogeochemical cycles? How do foraminifers catch bacteria in their cells? What is a meaning of bacterial symbiosis in evolution of foraminifera? For answering these series of questions, we are investigating foraminifera that are dwelling in extreme environments. Bacterial cells are commonly occurred in foraminiferal cells that live in extreme environments. We focus to collect living foraminifera from extreme environments, such as cold seepage, hydrothermal vent, and also from normal sediments, for documenting variety of bacterial species in foraminiferal cells.

Method

Foraminiferal individuals are picked from samples immediately after sample collections are finished at extreme environments. Individuals are sorted at species level under stereo-microscope and are carried out pre-fixed procedure with glutaraldehyde solution. The specimens will be fixed again with osmic acid in laboratory, then observed with Transmission Electron Microscope of JAMSTEC. DNA will be extracted from living foraminifera and will be analyzed nucleotide

sequences of 16s SSU sites for identifying bacterial groups in foraminiferal cell.

Results on board

During the Dive #535 of NT06-05 cruise, we have collected MBARI core samples from south colony at Hatsushima cold seepage site. We picked four species, *Bulimina striata, Bulimina subornata, Rutherfordoides cornuta* and *Chilostomella oolina/ovoidea*, from Red coloured core. These species are commonly reported from oxygen minimum zone or cold seepage sites of the Pacific Ocean (Akimoto *et al.*, 2003; Rathburn *et al.*, 2005). All the specimens belonging to four species were fixed with glutaraldehyde solution, were linsed three times with bottom waters and were stored in a refrigerator until after-fix procedure will be made.

Future study

We systematically plan to collect benthic foraminifera from different extreme environments, such as salt brines, anoxic basins, oxygen minimum zones, deep trenches, salty aquifers and others. We shall analyze these foraminifera with both DNA and TEM. Then, we try to categorize endosymbiosis of foraminifera in relation to environmental characters with data sets and to discuss adaptive strategy of foraminifera against extreme environments. Relationship of bacterial symbiosis with biogeochemical cycle is another topic for understanding ecology of foraminifera. Through these approaches, we can understand role of foraminifera in benthic food web. Finally, we are dreaming to explain evolution of foraminifera through the Earth History in relation to bacterial symbiosis.

4-2. Cruise report - "Denmark team"

RN Glud, M Middelboe, H Staahl, B Thamdrup, F Wenzhöfer (alphabetically)

Introduction

The efficiency of the benthic mineralization processes, primarily driven by microbes, determines the fractions of C and N that are remobilized or retained in the sediment record. The sediment on one hand acts as a source of nutrients and dissolved inorganic carbon and thereby sustain the continued organic carbon production in the overlying water, however, on the other hand the sediment also acts as a sink in the C and N cycle by removing organic material via burial and transforming fixed N to N_2 by denitrification and anammox. The microbial activity of marine sediments thus plays a central role for the local as well as global C and N cycle. Most studies on benthic degradation processes have been confined to coastal settings and to a lesser extent the abyssal plains, but very little focus has been given to the continental slopes. These areas - especially to the extent they are situated close to land - could play a key role by receiving large input of down-slope transported organic material and from the intensified water column production following upwelling. The central Sagami Bay represents such a location and the established database and logistic for the area (Kitazato et al. 2003) offers a unique opportunity to evaluate the importance of deep slope sediments for regional (and global) element cycling.

During autumn 2003 detailed studies of the spatial variation in benthic O_2 dynamics and virus activity were performed in central Sagami Bay (Glud et al. 2005, Middelboe et al. 2006). The very large database on oxygen distribution documented an extensive small-scale variability (mainly expressed at spatial scales below 2 cm) in the O_2 penetration depth (a proxy for the benthic diagenetic activity) and a surprisingly high benthic activity with an average O_2 uptake of $2.6 \pm 1.6 \text{ mmol m}^{-2} \text{ d}^{-1}$ (n=45) which is equivalent to 8% of the estimated average primary production for the area (Nakatsuka et al. 2003). The average O_2 penetration depth amounted to $3.9 \pm 1.5 \text{ mm}$ (n=347). The small scale variability was also expressed in the horizontal variability in virus and bacterial abundances. Anoxic incubations documented that virus production was positively correlated to the metabolic activity of the bacteria and that virus infections were responsible for a prokaryotic mortality rate equivalent to 7-48% of the bacterial

production.

Together with the suspected importance of the deeper slope sediments these findings called for a more thorough investigation of the biogeochemistry and the microbial ecology of the sediments in central Sagami Bay.

The aims of the present study in the sediments of central Sagami Bay were to quantify:

- The in situ O₂ dynamics,

- The total degradation of organic material,

- The relative importance of the different heterotrophic degradation pathways,

- The relative importance of denitrification and anammox for the N₂ production,

- The virus and bacterial abundance and production,
- The importance of the viral loop,

- and the sedimentation rates of organic material, living bacteria and virus

Materials & Methods

Lander system

To follow the in situ O_2 dynamics we applied a benthic lander system hosting two modules for measuring microprofiles (O_2 , pH, H₂S) and O_2 -images, respectively. The lander was deployed at an approximate sinking speed of 40 m min⁻¹. Once standing on the seafloor, the measuring cycles were initiated by the ROV pressing two magnetic switches. The instrument was repeatedly repositioned by the ROV to obtain as many measuring cycles as the diving schedule allowed. Subsequently the lander was hooked up to the ROV and brought back to the sea surface where it was taken onboard the ship.

The profiling module is a slightly modified version of the original module (Gundersen and Jørgensen 1990) carrying four O_2 -, two pH-, two H₂S-microelectrodes, and one resisitivity sensor, the latter was used for an independent determination of the position of the sediment surface relative to the microsensors. Positioned at the sediment surface the central cylinder gradually moved the sensors downwards in increments of 100 µm for a total distance of 15 cm and the sensor recordings were

stored internally. Afterwards the sensors were moved back to the starting position where they waited until a new measuring cycle was initiated by the ROV. Sensors were calibrated prior to deployment and for the O_2 sensors the readings in the bottom water of know O_2 concentration and in the anoxic sediment was used to cross-check the calibration curves.

The planar optode module was a slightly upgraded version of the module described in (Glud et al. 2001, Glud et al. 2005). The periscope was equipped by a transparent porphyrin-based sensor foil (Oguri et al. 2006) and green LED's were used as excitation light. The O_2 distribution in front of the sensor foil was quantified by two-windows lifetime-based fluorescent sensing. Once settled at the seafloor the periscope was moved down in steps of various lengths (7.5 – 2.0 cm) and a series of images were recorded at a frequency of 30 sec after an equilibration time of 22 min. In most instances images were obtained both in the bottom water and in the fully anoxic sediment allowing for a subsequent pixel-to-pixel calibration. After the measuring session had ended, the periscope moved back to the original position awaiting the initiation of a new measuring cycle.

Benthic Chamber

A small frame equipped with a central, stirred cylindrical chamber (i.d. 19 cm) was used to measure the total benthic exchange of O_2 , NO_3^- , NH_4^+ , and Dissolved Inorganic Carbon (DIC). Oxygen was measured continuously by two Elinor-microelectrodes, while five spring-loaded syringes were used to collect water from the chamber for later quantification of concentration changes in NO_3^- , NH_4^+ and DIC. The chamber was placed by the ROV and the water height inside the chamber was determined by the ROV-cameras. After the incubation the chamber was recovered by the ROV and brought back to the ship.

The total core incubation

The total exchange rates of O_2 , NO_3^- , NH_4^+ and DIC were also measured in five recovered Push-cores (i.d. 7.4 cm) placed at in situ temperature and O_2 concentration. After 12 h pre-incubation the cores were capped and water samples were recovered to monitor the concentration changes of the respective solutes. Another five push-cores were used to determine the denitrification rate by the Isotope Pairing technique (IPT)

(Nielsen 1992). Combined with a "bag-incubation-approach" (see below) these data can also used to access the relative importance of anammox for the benthic N_2 production (Dalsgaard and Thamdrup 2002, Risgaard-Petersen et al. 2005).

Bag incubations for biogeochemistry and virus/bacteria production

A set of five push cores were cut into 6 slices at a depth resolution of 1 to 4 cm. The slices from the different cores were pooled and homogenized in gastight Würgler bags (Hansen et al. 2000). During the anoxic incubations, samples were extracted to follow the production of DIC, NH_4^+ , Fe^{2+} , Mn^{2+} , (H_2S) , and consumption of NO_3^- and SO_4^{2-} in the respective bags. The data will be used to quantify the total degradation of organic material and together with denitrification and sulphate reduction measurements the data will be used to evaluate the relative importance of the respective heterotrophic pathways in the respective sediment horizon (Canfield et al. 1993, Thamdrup & Canfield 1996).

A similar set of bags was established from five other cores for the 0-2, 2-4, and 4-6 cm depth horizons, but here the sediment was exposed to three different treatment - addition of; i)¹⁵NO₃⁻, ii) ¹⁵NH₄ and iii) ¹⁵NH₄ + ¹⁴NO₃. Samples were extracted to follow the accumulation rates of $^{28}N_2$, $^{29}N_2$ and $^{30}N_2$ in each bag. The data will allow us to quantify the rates and relative importance of the anammox process for the total N₂ production in these sediments (Dalsgaard & Thamdrup 2002) findings that will be complemented by and compared to values extracted from the IPT procedure (Risgaard-Petersen et al. 2005).

Four sediment cores were sliced at a depth resolution of 0.5-4.0 cm down to a sediment depth of 18 cm. The porewater was extracted for measuring concentration profiles of: DIC, NO_3^- , NO_2^- , NH_4^+ , Fe^{2+} , Mn^{2+} , H_2S , and SO_4^{2-} , while the solid phase will be used to quantify the distribution of iron oxides, manganese oxides and iron sulfides. Three cores were recovered and will be brought back to Denmark for determination of sulphate reduction rate profiles (Fossing & Jørgensen 1989), porosity, Corg and C/N ratios.

Sediment trap

A sediment trap array with four traps was deployed 25 m above the sediment surface and it collected sediment for 3 days. After recovery the collected material was filtered and the sedimentation rate of organic carbon (POC), bacteria and virus will be determined after analysis in Denmark.

Virus/bacteria analysis

Samples for quantifying the bacteria and virus abundance in bottom and surface water, sediment trap material and at various sediment depth were obtained. Further, samples for following changes in abundance during water and sediment incubations were taken. The bacteria and virus were extracted from sediments and particles by sonication and previously described washing procedures (Danovaro et al. 2001, Middelboe et al. 2003, Glud & Middelboe 2004). Additionally, alternative washing procedures were tested to evaluate the optimal approach providing the most efficient extraction. After extraction bacteria and virus were stained with SYBR gold, mounted on glass slides and stored in the freezer for later enumeration.

Preliminary Scientific results

Lander system:

The in situ equipment worked perfectly and a total of 12 O_2 microprofiles were obtained. The data confirmed the high spatial variability of the Sagami Bay sediments resolved in 2003 with an O_2 penetration depth ranging from 4.5 to 11.1 mm with an average of 6.3 ± 2.1 mm (Fig 1).

Fig 1. The resolved in situ profiles during NT06-05, Y=0 indicates the position of the sediment surface

As expected this is somewhat deeper than the values measured during autumn 2003 (3.9 ± 1.5 mm) probably reflecting the lower input of labile organic matter during winter and early spring. We have not yet calculated the diffusive exchange from the

profiles this will be done upon our return to Denmark. The H_2S profiles documented that there was no free H_2S down to a sediment depth of 10 cm. The pH profiles remain to be analysed.

A total of 500 O_2 images were obtained at four sites. The data were obtained with variable frequency and we have thus resolved any O_2 dynamics with frequencies of 30 sec and 20-30 min. These data also confirmed a high degree of small scale spatial variability but generally the images resolved the same O_2 penetration depths as measured by the O_2 microelectrodes (Fig 2). On several occasions activity of meio- and macrofauna was observed along with the effect on the O_2 distribution.

In many instances a flocculent layer of detritus covered the sediment surface. This layer was often vibrated/undulated by the water movements and presumably convection added to the solute transport within this zone. Consequently the O_2 distribution at the very surface was very dynamic and the vertical profiles in such areas were irregular. Obviously the many images await a full analysis that will be performed back in Denmark.

Benthic chamber

Two deployments were performed - but only one has been analyzed - this resolved a total O_2 uptake of 0.7 mmol m⁻² d⁻¹. This is lower than expected and indicate that the settling material has a low "feeding quality". The in situ measurements were complemented by total exchange determinations in recovered sediment cores (n=5). The total O_2 uptake measured in the laboratory amounted to 2.8 ± 1.3 mmol m⁻² d⁻¹ this is higher than the in situ data which probably reflect the extreme spatial variability of the Sagami Bay sediments (Potential effects of recovery artefacts – will be evaluated later (Glud et al. 1994)). But again it was confirmed that the activity in sediments during winter/early spring is lower than during the autumn.

Fig 2 An example of a black-white image and the corresponding O_2 image. An example of an O_2 profiles extracted along the black line in panel 2 is included. The grey zone indicate the position of a fluff layer.

Degradation processes and N cycling

Whereas O_2 only offers a proxy for total organic carbon degradation it provides no insight in the importance of the respective partway by which the material is oxidized. This can be evaluated from our bag incubations. However, any conclusion must await chemical analysis of the samples and the sulphate reduction measurements that will be performed back home. At present we can not provide any results from these efforts.

The same goes for our measurements of denitrification and anammox that will be analysed later. However, this is the first time that anammox is measured at depth below 700m and it will be exciting to see the importance of this process in deeper slope sediments. In order to evaluate the potential importance of nitrate-accumulating foraminifera for the benthic N cycling, eight species (and approximately 280 individuals) from different sediment depth horizons were collected by H Kitazato, the intracellular concentration of nitrate as a function of species and sediment depth will be evaluated later.

Benthic ecology (bacteria, virus)

The sediment trap samples still await analysis but preliminary microscopic investigations indicate that the marine snow particles were enriched with virus and bacteria as compared to the free water masses. The vertical transport of bacteria and virus is, however, probably of minor importance when compared the inherent benthic production. The production rates of virus in the benthic water masses were very low and lower than the corresponding rates for the sediment. These, however, appeared to be lower than the measurements performed during autumn – again confirming a seasonality in the benthic activity. Overall the virus (and bacteria) abundance was related to the metabolic activity of the communities as also encountered in other environments. Final quantitative conclusions await a large enumeration task.

Future studies

Obviously the analysis and the full evaluations of the current efforts will inspire to future studies in Sagami Bay – especially in relation to benthic N-cycling (e.g. anammox, denitrification coupling, between N and metal cycles, importance of nitrate accumulating meiofauna).

However, from the work in 2003 and the present study it is obvious that the Sagami Bay sediment express high spatial and temporal dynamics. The existing possibility to connect our measuring modules (microprofiler, planar optode, "intelligent" chamber) to the Hatsushima sea-floor observatory for power supply and data transfer offers a unique opportunity to study the temporal and spatial variability in benthic solute distribution (O_2 , H_2S , pH). This potential ought to be explored. Such an effort would, however, at present be constrained to work at the seep sites – to establish a similar possibility in central Sagami Bay would been extremely interesting for studying more representative deep slope sediments. Small scale benthic variability could be

investigated by transecting vehicles and temporal dynamics in solute distribution of important biogeochemical constituents could be studied on scales from seconds to seasonal changes. We would be very interested in a collaboration adapting our instrumentations to such platforms and to explore the potential for transecting instrumentation.

Despite a prime interest in the more "normal" sediments of Sagami Bay the diversity in biogeochemical processes around the seeps sites as evident from the different microbial mats and sediment coloration (and fauna occurrence), also has our interest. The microprofiling and planar optode facilities could easily be deployed at such sites and would provide detailed information on the chemical conditions at these locations, the functioning of the different microbial communities and the seeps themselves. This includes virus-bacterial interactions in microbial communities with a relatively low diversity.

It appears that the benthic macrofauna play a key role in the function of the sediment. The sediment is densely populated by a diverse fauna dominated by polychaets. They must be important for the bioturbation (maintaining a high microbial metal respiration?), for structuring the patchiness in microbial activity, and for the initial phases in the degradation cascade. Detailed laboratory based investigations with "state of the art" O_2 microsensing equipment around recovered specimens of infauna would complement the in situ work extremely well. This would allow making a coupling between benthic O_2 dynamics and fauna behaviour (bioirrigation and bioturbation) and would provide important background information for detailed biogeochemical studies of the sediments. We propose to undertake such efforts.

Financial support

The described activities were sponsored by JAMSTEC, The Science Foundation for Nature and Universe – DK (including the Galathea-project) - (RG, MM, BT), the European commission (TREAD) (RG, HS) and the Max Planck Society (FW).

References

Canfield DE, Jørgensen BB, Fossing H, Glud RN, Gundersen JK, Ramsing NB, thamdrup B, JW Hansen, LP Nielsen, POJ Hall (1993) Mar Geol 113:27-40

Danovaro RA, Dell'anno A, Trucco M, Serresi, Vanussi S (2001) Appl Environ Microb

68: 1857-1861

Dalsgaard T, Thamdrup (2002) Appl Environ Microbiol 68:3802-3808

- Fossing H, Jørgensen BB (1989) Biogeochemistry 8:223-245
- Glud RN, Wenzhöfer F, Tengberg A, Middelboe M, Oguri K, Kitazato H (2005) Deep-Sea Res 52:1974-1987
- Glud RN, Tengberg A, Kühl M, Hall POJ, Klimant I, Holst G (2001) Limnol Oceanogr 46:2073-2080
- Glud RN, Middelboe M (2004) Limnol Oceanogr 49:2073-2081
- Glud RN, Gundersen JK, Jørgsensen BB, Revsbech NP (1994) Deep-sea Res 41:1767-1788
- Gundersen JK, Jørgsensen BB (1990) Nature 345:604-607
- Hansen JW, Thamdrup B, Jørgensen BB (2000) Mar Ecol Prog Ser 208:273-282
- Kitazato H, Nakatsuka T, Shimanaga M, Kanda J, Soh W, Kato Y, Okada Y, Yamaoka A, Masuzawa T, Suzuki K, Shiriyama Y (2003) Prog Oceanogr 57:3-16
- Middelboe M, Glud RN, Wenzhöfer F, Oguri K, Kitazato H (2006) Deep-Sea Res 53:1-13
- Middelboe M, Glud RN, Finster K(2003) Limnol Oceanogr 48:1447-1456
- Nakatsuka T, Masuzawa T, Kanda J, Kitazato H, Shiriyama Y, Shimanaga M, Yamoaka A (2003) Prog Oceanogr 57:31-47
- Nielsen LP (1992) Microb Ecol 86:357-362
- Oguri K, Kitazato H, Glud RN (2006) Mar Chem (in press)
- Risgaard-Petersen N, Nielsen LP, Rysgaard S, Dalsgaard T, Meyer RL (2003) Limnol Oceanogr 1:63-73

Thamdrup B, Canfield DE (1996) Limnol Oceanogr 41:1629-1650

4-3. *In situ* durability experiment of an O₂-pH combined planar optode sensor foil

Kazumasa Oguri¹, Yutaka Amao² and Hiroshi Kitazatao¹

¹ Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology

² Department of Engineering, Oita University

Introduction

 O_2 is a key element for understanding biological respiration and organic carbon degradation at sediment water interface (SWI). Because macro-meio benthic activities at SWIs make heterogeneous O_2 distributions and causes time-series changes, bio-geochemical processes at sea bottom are not simple. To understand such processes, planar optode technique measuring two-dimensional and time-series O_2 profiles was developed (e.g., Glud et al., 1996; Wenzhöfer and Glud, 2004; Precht et al., 2004; Oguri et al., in press). Recently, pH planar optodes have also introduced (Hulth et al., 2002; Zhu et al., 2005; Staahl et al, in press), and a combination of two-dimensional O_2 and pH profiles are expected to extend knowledge on bio-geochemical cycles at sea floor (Arvidsson, 2000). Such sensor foils, however, degradation effect during long time measurement at sea bottom has not yet explored at all. In this cruise, we perform an *in situ* light excitation test for newly developed combined sensor foil and examine how optical characteristics change after the excitation. The result from this experiment must provide basic and significant information for long-term O_2 -pH monitoring at SWI, which will be deployed in near future.

Material and method

Planar optode sensor foil

In this experiment, two O_2 -pH combined planar optode sensor foils (prototype) were prepared on the slide glass (50x50x2 mm). In the sensor foils, two luminophores were contained in the ethylcellulose membrane: Platinum (II) meso-Tetrapentafluorophenylporphyrin (PtTFPP) for O_2 and 8 Hydroxypyrene 1,3,6, trisulphonic acid salt (HPTS) for pH measurements, respectively. Sensing schemes for O_2 was based on measuring phosphorescence lifetime (Holst et al., 1998), and for pH

was luminescence intensity ratio obtained by exciting two different wavelengths (Wolfbeis ed., 1992), respectively. Before experiment, quenching of red phosphorescence from PtTFPP and green luminescence from HPTS were confirmed by a multigateable CCD camera (Hamamatsu Photonics K.K.) to excite the sensor foil with respective light sources. However, luminescence from HPTS was weak. To solve the problem is in progress.

Light source and the electronics

The sensor foil was attached on a window of a pressure cylinder modified from video camera system (Figure 1). In the cylinder, excitation light source, timer circuit and batteries were installed. The light source was made from 10 pieces of high-power three-color LEDs (PARA light). Since PtTFPP and HPTS were excited by 535 nm, 405 nm and 450 nm, respectively (Amao et al., 2000; Wolfbeis ed., 1991), both green and blue LEDs were used. Red LEDs were not used for this experiment. For LEDs, DC 20 mA per single LED (i.e., 400mA total) was supplied through a constant current regulator circuit.

Timer circuit consisted of a peripheral interface controller chip, and the timings for LED switching were programmed using a serial port with dedicated software runs on MS Windows (TriState Technology). The timer configurations for the experiment were as follows: LEDs were switched on after 2 hours when the timer was started, and the excitation was continued for 24 hours.

For batteries, rechargeable Ni-MHs were used. Total battery capacity was 10.8 A/hour. Therefore, the LEDs are capable of more than 24 hours illumination.

Experimental procedure

One sensor foil was attached on a plexyglass window of the light source cylinder. The window part was put into the sediment with a ROV operation. Lighting of the sensor foil was started before the deployment. Excitation light from LEDs were confirmed when light source was put on sediment (Figure 2). The window part of the cylinder was put in the sediment. Deployed site was a side of station OBB II (35°00'827" N 139°21'639" E water depth 1457 m). Dive number and the time for a series of the experiment are shown in table, respectively. Total deployment time was 73 hours and 7 minutes. Photographs taken at the deployment are shown in figures 1 and 2.

Figure 1. Pressure cylinder of the light source. Left square box is a basement of station OBB II.

Figure 2. Sensing foil attached on the window (fixed by white tapes). Illumination of blue-green LEDs were confirmed before the deployment.

Dive	Date	Ll	ED	Deployment		
No.		On	Off	Start	End	
531	24.Mar.2006	12:05	-	13:24	-	
-	25.Mar.2006	-	12.05	-	-	
537	27.Mar.2006	-	-	-	14:31	

Table. Dive number, date, switching times of the LEDs and the deployment time.

3. Future works

After recovery of the sensor foil, both phosphorescence lifetime from PtTFPP and intensity ratio of the luminescence from HPTS will be measured in laboratory, respectively. Durability of the sensor foil is examined to compare these results with the same sensor foil which is stored in the laboratory. These data provides significant information to determine the lifetime of the sensor foil itself, or hint for the findings of another useful luminophore or gas permeable membrane for long-term *in situ* O_2 and pH monitoring.

References

- Amao, Y., Asai, K. and Okura, I. 2000. Optical oxygen sensing based on Platinum Porphyrin-Polystyrene film using time-resolved spectroscopy. J. Porphyrins Phthalocyanines, 3:292-299.
- Arvidsson. 2000. An optical multi-element fluorosensor for the simultaneous detection of oxygen and pH in marine sediments. Dept. Chem. Göteborg Univ., Master Thesis, p21.
- Glud, R.N., Ramsing, N.B., Gundersen, J.K. and Klimant, I. 1996. Planar optrodes: a new tool for fine scale measurements of two-dimensional O₂ distribution in benthic communities. Mar. Ecol. Prog. Ser., 140:217-226.
- Holst, G., Kohls, O., Klimant, I., König, B., Kühl, M. and Richter, T. 1998. A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples. Sens. Actuators B, 51:163-170.
- Hulth, S., Aller, R.C., Engström, P. and Selaner, E. 2002. A pH fluorosensor (optode) for early diagenetic studies of marine sediments, Limnol. Oceanogr. 47, 1, 212-220.

- Oguri, K., Kitazato, H. and Glud R.N, 2006, Platinum octaetylporphyrin based planar optodes combined with an UV-LED excitation light source: an ideal tool for high-resolution O₂ imaging in O₂ depleted environments. Mar. Chem., in press.
- Staahl, H., Glud, A., Schröder, C.R., Klimant, I., Tengberg, A. and Glud, R.N., 2006. Time-resolved pH imaging in marine sediments with a luminescent planar optode. Limnol. Oceanogr. Methods, in press.
- Wenzhöfer, F. and Glud, R.N. 2004. Small-scale spatial and temporal variability in coastal benthic O₂ dynamics: Effects of fauna activity. Limnol. Oceanogr. 49, 5: 1471-1481.
- Wolfbeis, O.S. ed., 1991. Fiber optical chemical sensors and biosensors volume I. CRC press, Boca Raton, Florida.
- Zhu, Q., Aller, R.C., and Fan, Y. 2005. High-performance planar pH fluorosensor for two-dimensional pH measurements in marine sediment and water. Environ. Sci. Tech. 39, 22:8906-8911.

4-4. Chemosynthetic community in deep-sea ecosystem of the Sagami Bay

Hiroyuki Yamamoto

(Marine Ecosystem Research Program, XBR, JAMSTEC)

Introduction

The Sagami Bay is recognized as the very productive area with deep sea (max 1500 m depth). The sedimentation, followed with abundant photosynthetic production in surface layer, could suspend the activity of benthopelagic organisms. The chemical resources from the seafloor such as cold seepages maintain the chemosynthetic community, which is another primary productive part of deep-sea ecosystem. The contiguous existence of two-type energy supplying is a remarkable feature of Sagami Bay deep-sea. These productions transfer to predators and deliver to other organisms through the microbial loop and food chain system. The data of population size and growth activities may be a reliable index to estimate the production of the deep-sea ecosystem. The physicochemical conditions of benthopelagic water column and sediment are not only regulates their growth activities but also extents of habitats and size of community. Therefore, the long-term observation of deep-sea environment could provide a valuable data to understand the mechanism of ecosystem. The main purpose of this cruise is to collect the samples, primary data of environment and to examine several technical issues on determination of bio-production in chemosynthetic community.

Preliminary Scientific Results

Sample collection

The following samples will be used for preliminary examination to determine the microbial population size and structure, and to detect lactobacilli harboring in marine sediments. Those subjects will be performed with several collaborators; Hideto Takami (XBR/JAMSTEC), and Hidtoshi Morita (Azabu University).

#530 sediment sample of MBARI core, 10ml, microbiological study

#533 head space water of in situ feeding device, 100ml, microbiological study

#533 head space water of MBARI core, 100ml, microbiological study

#535 head space water of MBARI core, 100ml, microbiological study

#535 sediment sample of MBARI core, 10ml, microbiological study

Observation of *in situ* incubator in the clam colony of off Hatushima

The *in situ* incubator in the colony of deep-sea clam *Calyptogena*, which deployed by chief researcher Katunori Fujikura in NT06-04, completed the operation to open the vent flaps by electrolysis trigger. The fluorescent regents within the incubator, which were released into as the first operation in NT05-04, has flowed out through the vents. All of the clams appear to held normal condition in the incubator. This incubator and clams will be collected in the cruise of December 2006.

The in situ incubator in the colony of deep-sea clam Calyptogena

4-5. Benthic carbon flow at the deep-sea *-In situ* tracer experimental study-

Hidetaka Nomaki, Hiroshi Kitazato (Institute for Research on Earth Evolution, JAMSTEC)

Introduction

Phytodetritus, originated from primary production, transports substantial amount of carbon from ocean surface to the seafloor. The phytodetritus and its degraded components are thought to be major food sources for deep-sea benthic ecosystems. At the same time, organic carbon produced at the seafloor by microbial activity from dissolved organic carbon (DOC) is also an important food source for the deep-sea benthic ecosystems. Thus the fate of phytodetritus and bacterial carbon at the deep-sea floor is important information to understand carbon cycle in the ocean. To know the carbon pathways originated from phytodetritus and bacteria on the seafloor, we operated a stable carbon isotope labeled experiment *in situ*. Incorporation of labeled algal carbon and glucose into benthic organisms will be analyzed each organic compound level.

Materials and Methods

Total 6 culture cores were prepared for the experiment (Figure 1, Table 1). The surface sediment area of the core is 52.8 cm² (ϕ =8.2cm). Every core has couple of 5ml syringes that can contain ¹³C-labeled algae, *Chlorella sp.*, and uniformly ¹³C-labeled glucose (Cambridge Isotope Co. ltd). Hereafter, the culture cores are named C-*n* and G-*n*, where C and G indicate ¹³C-labeled food materials (Chlorella and Glucose, respectively), and *n* indicates incubation time (d).

Two culture cores (C-9 and G-9) were settled on the seafloor (water depth 1453 m) by the ROV Hyperdolphin at dive #526 (14th March, NT06-04). Culture cores were placed 46m away from the OBB2 station and kept some tens cm away from each other (Figure 1, 2). After positioning the culture cores, ¹³C-labeled food materials were introduced onto the surface sediments. On the dive # 530 (23rd March, NT06-05), C-9 and G-9 cores were recovered, and another culture device (G-2) was placed some tens

cm away from the previous cores. On the dive #531 (24th March, NT06-05), C-2 core was placed on the seafloor one meter away from G-2. G-2 and C-2 cores were recovered on board on the dive #533 (25th March) and dive #534 (26th March), respectively. G-1 core was placed on the dive #534 (26th March) and recovered on the dive #537 (27th March). G-0 core was recovered as "time-zero" control on the dive #533, immediately after the injection of the ¹³C-labeled glucose onto seafloor.

Preliminary results: On board processing

On board, recovered culture cores were kept at 4°C prior to core processing (within one hour). Overlying water was collected for the determination of ¹³C concentration in dissolved inorganic carbon (DIC). They were fixed by adding a drop of AgCl₂ solution and preserved at 4°C. Sediments were sliced at 1-cm intervals from 0 to 5 cm in depth followed by 5-7, 7-10, 10-15cm sediment depth samples (Table 1). Subsamples (15 cm³) of the sediments were used for an analysis of bulk organic matter. These samples were kept frozen at -80° C until the analysis. The remaining sediments of 0 to 5cm in depth were used for the determination of carbon isotopic compositions of lipid compounds in benthic organisms. They were sieved on a 125-µm mesh with seawater and then stored at -80° C prior to the isolation of benthic organisms from the sediments.

Future works

Mineralization rate of organic carbon by total benthic community will be evaluated from ¹³C concentrations in DIC of the overlying water. Benthic foraminifera and metazoans will be picked out from the sieved sediments. Lipids will be extracted from both bulk sediment and organism samples. Identification and quantification of separated lipids will be performed by GC/MS. Compounds specific carbon isotopic compositions will be determined by using GC/C/MS. Using these data, incorporation and alteration of algae (phytodetritus) and glucose (DOC) by organisms will be examined.

Core name	C-9	G-9	C-2	G-2	G-1	G-0
Recovered Dive #	530	530	534	533	537	533
Set Dive #	526	526	531	530	534	533
Overlying water	3 samples	3 samples	3 samples	(3 samples)	3 samples	3 samples
0-1cm	BS+Foram	BS+Foram	BS+Foram	(BS)	BS+Foram	BS+Foram
1-2cm	BS+Foram	BS+Foram	BS+Foram	—	BS+Foram	BS+Foram
2-3cm	BS+Foram	BS+Foram	BS+Foram	—	BS+Foram	BS+Foram
3-4cm	BS+Foram	BS+Foram	BS+Foram	—	BS+Foram	BS+Foram
4-5cm	BS+Foram	BS+Foram	BS+Foram	—	BS+Foram	BS+Foram
5-7cm	BS	BS	BS	—	BS	BS
7-10cm	BS	BS	BS	—	BS	BS
10-15cm	BS	BS	BS (10-13)	_	BS (10-14)	BS

Table 1. Sample list of *in situ* experimental sediment cores.

BS = bulk sediment sample

Foram = foraminifera and metazoan meio-macrofauna samples

-- = no sample

Figure 1. I-K type in situ feeding cores before setting (left) and after setting on the deep-sea floor (right).

Figure 2. Positions of the feeding cores on the deep-sea floor.

4-6. In situ marking experiment for estimation of shell growth rate of *Calyptogena* clams

¹Yohei Tada, ²Katsunori Fujikura, ²Hiroyuki Yamamoto and ³Hiroshi Kitazato ¹Department of Earth and Planetary Science, The University of Tokyo

²Marine Ecosystem Research Program, XBR, JAMSTEC

³Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology

Introduction

Several workers estimated the growth rates and ages of the cold seep giant clam *Calyptogena*. The growth rates, estimated from the shell dissolution experiment and the shell radio isotope analyses, included large error and disagreement. We observed micro growth rings from the polished shell sections of *Calyptogena soyoae* by SEM analysis. Similar growth rings of inner and lower tidal bivalves are formed with lunar day cycle, and the growth rate of these bivalves can be estimated to count those rings. In NT06-04 and NT06-05 cruise, we will perform in situ marking experiment during 2 weeks, and reveal the growth rate of *Calyptogena* clams by the counting of the micro growth rings formed during this experiment.

Proposals

In situ marking experiment to calculate the growth rate of the shells of *Calyptogena* was performed with new *in situ* culture chambers, "I-K type" and "In Situ Marking". The shells were stained with calcein and SrCl2 solution at two points (#525 and #528) during the last cruise, NT06-04. In this cruise (NT06-05), we collected them, grew for 2 weeks after *in situ* marking experiment.

Methods

The details for in situ marking experiment are described in Cruise Report of NT06-04. In present cruise, we collected the marked clams by the Japanese submersible Hyper Dolphin. To obtain the environmental parameters, we collect the sea surface and bottom water (for $\delta^{18}O_{water}$, $\delta^{13}C_{DIC}$ and DO analyses) by Niskin type water sampler and

the pore water (for $\delta^{18}O_{water}$ and $\delta^{13}C_{DIC}$ analyses) by MBARI type core.

Preliminary Scientific Results

The stained clams were collected from sea floor on Off Hatsushima Island (35°00'5"N, 139°13'30"E) at 1,175 m depth on 26 March 2006, by a dive HPD 535 of the Hyper Dolphin. After removing the cages for *Calyptogena*, set during NT06-04 cruise to prevent from escape of clams, stained clams were got with sediments and un-marking clams. 16 and 15 living clams are collected from the point #525 and #528 (Fig. 1), respectively. The soft tissues of 8 specimens of them were dissected and frozen for stable carbon isotope analysis. Their shells were washed and air-dried. The shells of other specimens were frozen with soft tissues. Parts of each clam leg were separated and frozen for DNA analysis to classify *Calyptogena* species. The thermometers attached to cages were recorded bottom water temperatures at intervals of 10 minutes during *in situ* marking experiment.

To extract the pore water, three sediment samples were collected by MBARI type cores. One (HC-01, see Fig. 1) was collected from near by *Calyptogena* colony ($35^{\circ}00^{\circ}5^{\circ}N$, $139^{\circ}13^{\circ}30^{\circ}E$) at 1,175 m depth on 26 March 2006 by a dive HPD535, and others (HC-02 and HC-03, see Fig. 2) were near by Hatsushima Deep Sea Station ($35^{\circ}00^{\circ}11^{\circ}N$, $139^{\circ}13^{\circ}18^{\circ}E$) at 1,176 m depth on 27 March 2006 by a dive HPD 536. Both cores had H₂S smell. 4 pore water samples were extract from HC-01 and 2 samples were from HC-02 and HC-03, respectively. Each of these samples was divided to several 2 ml vials for $\delta^{18}O_{water}$ analysis. The surface waters of the cores were divided to several 2 ml and 20 ml vials for $\delta^{18}O_{water}$ and $\delta^{13}C_{DIC}$ analyses. For fixation, HgCl₂ solution was added to the samples for $\delta^{13}C_{DIC}$ analysis.

The water samples for analysis of DO concentrations were collected from sea surface $(35^{\circ}00'8"N, 139^{\circ}13'37"E \text{ at }50 \text{ m depth})$ and bottom $(35^{\circ}00'5"N, 139^{\circ}13'60"E \text{ at }1173 \text{ m depth}$ and $35^{\circ}00'10"N, 139^{\circ}13'32"E \text{ at }1188 \text{ m depth})$ on Off Hatsushima Island. The DO concentrations of sea surface and bottom waters calculated by the Winkler titration with no corrections were from 4.89 to 4.52 ml/L and from 1.63 to 1.34 ml/L, respectively.

Proposal for Future Studies

Collected shells will be cut along the growth axis, and polished. From the fluorescence microscope, scanning electron microscope and stereoscopic microscope observations, we will detect the shell growth rate of *Calyptogena* clams during 2 weeks. To count the micro growth rings formed during 2 weeks, we can calculate the cycle of the growth ring formation of *Calyptogena* clams. The shell δ^{18} O values of bivalves are varied by the changes of ambient seawater temperatures and δ^{18} O_{water} values. Using the δ^{18} O_{water} values of bottom seawater and pore waters, we can estimate the records of ambient water temperatures of *Calyptogena* clams and compare to actual temperatures of bottom water.

Figure 1. Two cage points are neighbored, and the core sample HC-01 is adjacent to point #525.

Figure 2. HC-02 and HC-03 cores were collected from reductive seafloor. The red color of the seafloor is presented by the mat of filamentous bacteria.

Appendix 1. Sample List

Appendix_1_Samplelist.xls exists in the folder.

3. 採取サンプル	のインベントリ情報	※船上分析で終了し	した(データが得られた)ものは対象外	です。それ以外のサンプル	について記載して下さい。	航海番号:	NT06-05	ブロボーザル番号:	S05-15		課題提案者氏名:北里 洋
Sample name	Sampling instrument	Date (UTC)	Sampling point	Number of subsamples	Purpose	精度管理情報 ※1	Person responsible	E-mail Adress	公開留保時期 ※3	Picture	Note
Seawater	Niskin Bottle	2006/3/23 14:43	Latitude	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	Amount分取量は1本の採水器から採取したサンプル
Seawater	Niskin Bottle	2006/3/23 14:43	Latitude <u>緯度:35-00.854</u> N Longitude <u>経度:139-21.743</u> E Water depth: 深度:1449 m	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Sediment	I-K type feeding core	2006/3/23 15:15	Latitude 緯度:35-00.837 N Longitude 経度:139-21.651 E Water depth:深度:1453 m	8	Chemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1つの現場培養装置から採取したサンプルの
Sediment	I-K type feeding core	2006/3/23 15:15	Latitude	а	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1つの現場培養装置から採取したサンプルの
Sediment	MBARICore	2006/3/23 15:23	Latitude 緯度:35-00.845 N Longitude 経度:139-21.676 E Water depth:深度:1452 m	18	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment(1-530	push-core DK	2006/3/23 15:25	Latitude 緯度:35-00.845 N Longitude 経度:139-21.676 E Water depth:深度:1452 m	core 7.4 id	combined biogeochem & virus incubati	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(2-530	push-core DK	2006/3/23 15:29	Latitude 緯度:35-00.845 N Longitude 経度:139-21.676 E Water depth:深度:1452 m	core 7.4 id	combined biogeochem & virus incubati	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(3-530	push-core DK	2006/3/23 15:34	Latitude 緯度:35-00.845 N Longitude 経度:139-21.676 E Water depth: 深度:1452 m	core 7.4 id	combined biogeochem & virus incubati	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(4-530	push-core DK	2006/3/23 15:35	Latitude	core 7.4 id	combined biogeochem & virus	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(5-530	push-core DK	2006/3/23 15:39	Latitude	core 7.4 id	combined biogeochem & virus incubati	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment	MBARICore	2006/3/23 15:44	Latitude	1	Chemical analysis	陸上にて補正予定	Hidetaka Nomaki	r,	3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/23 15:46	Latitude 緯度:35-00.845 N Longitude 経度:139-21.676 E Water depth:深度:1452 m	1	Chemical analysis	陸上にて補正予定	Hidetaka Nomaki	_	3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/23 15:50	Latitude	1	Chemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/23 15:53	Latitude	1	Chemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Seawater	Niskin Bottle	2006/3/24 12:04	Latitude	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/24 12:04	Latitude kongitude Water depth: 深度: 1442 m	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Sediment(1-531	push-core DK	2006/3/24 13:43	Latitude	core 7.4 id	porewater profiles	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(2-531	push-core DK	2006/3/24 13:48	Latitude	core 7.4 id	porewater profiles	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(3-531	push-core DK	2006/3/24 13:52	Latitude 緯度:35-00.844 N Longitude 経度:139-21.667 E Water depth: 深度:1453 m	core 7.4 id	denitrification & anammox	陸上にて補正予定	Ronnie N Glud		3 年後	あり	

3. 採取サンブルの	採取サンプルのインベントリ情報 ※船上分析で終了した(データが得られた)ものは対象外です。それ以外のサンプルについて記載して下さい。					航海番号:	NT06-05	プロポーザル番号:	S05-15		課題提案者氏名:北里 洋	
Sample name	Sampling instrument	Date (UTC)	Sa	mpling point	Number of subsar	nples Purpose	精度管理情報 ※1	Person responsible	E-mail Adress	公開留保時期 ※3	Picture	Note
Sediment(4-531)	push-core DK	2006/3/24 13:56	Latitude Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 7.4 id	denitrification & anammox	陸上にて補正予定	Ronnie N Glud		3年後	あり	
Sediment(5-531)	push-core DK	2006/3/24 14:00	Latitude Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 7.4 id	denitrification & anammox	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(6-531)	MBARICore	2006/3/24 14:04	Latitude Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 6.8 id	denitrification & anammox	陸上にて補正予定	Ronnie N Glud		3 年後	なし	
Sediment(7-531)	MBARICore	2006/3/24 14:08	Latitude Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 6.8 id	denitrification & anammox	陸上にて補正予定	Ronnie N Glud		3 年後	なし	
Sediment(8-531)	MBARICore	2006/3/24 14:11	Latitude Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 6.8 id	denitrification & anammox	陸上にて補正予定	Ronnie N Glud		3 年後	なし	
Sediment	MBARICore	2006/3/24 14:05	Latitude Longitude Water depth:	<u>緯度:35-00.837 N</u> <u>経度:139-21.651 E</u> <u>深度:1453 m</u>	-	18 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/24 14:08	Latitude Longitude Water depth:	緯度:35-00.837 N 経度:139-21.651 E 深度:1453 m	-	1 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/24 14:11	Latitude Longitude Water depth:	緯度:35-00.845 N 経度:139-21.676 E 深度:1452 m		1 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/24 14:15	Latitude Longitude Water depth:	緯度:35-00.845 N 経度:139-21.676 E 深度:1452 m		1 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/24 14:18	Latitude Longitude Water depth:	緯度:35-00.845 N 経度:139-21.676 E 深度:1452 m		1 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	I-K type feeding core	2006/3/25 14:37	Latitude Longitude Water depth:	緯度:35-00.808 N 経度:139-21.629 E 深度:1453 m		8 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1つの現場培養装置から採取したサンプルの数
Sediment	I-K type feeding core	2006/3/25 14:37	Latitude Longitude Water depth:	緯度:35-00.808 N 経度:139-21.629 E 深度:1453 m		8 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1つの現場培養装置から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/25 13:43	Latitude Longitude Water depth:	<u>緯度:35-00.841</u> N <u>経度:139-21.665</u> E <u>深度:1450</u> m		2 Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/25 13:43	Latitude Longitude Water depth:	緯度:35-00.841 N 経度:139-21.665 E 深度:1450 m		2 Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Sediment	I-K type feeding core	2006/3/25 13:53	Latitude Longitude Water depth:	緯度:35-00.843 N 経度:139-21.652 E 深度:1453 m		8 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1つの現場培養装置から採取したサンプルの数
Sediment	I-K type feeding core	2006/3/25 13:55	Latitude Longitude Water depth:	緯度:35-00.843 N 経度:139-21.652 E 深度:1453 m	-	8 Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1つの現場培養装置から採取したサンプルの数
Sediment(1-533)	push-core DK	2005/3/25 14:06	Latitude Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 7.4 id	total exchange rates	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(2-533)	push-core DK	2005/3/25 14:08	Latitude Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 7.4 id	total exchange rates	陸上にて補正予定	Ronnie N Glud		3年後	あり	
Sediment(3-533)	push-core DK	2005/3/25 14:10	Latitude Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 7.4 id	total exchange rates	陸上にて補正予定	Ronnie N Glud		3年後	あり	

3. 採取サンブルのイ	ンベントリ情報 ※船上分析で	終了した(データが	得られた)ものは	対象外です。それ以外のサン	ブルについて記録	載して下さい。	航海番号:	NT06-05	プロポーザル番号:	S05-15		課題提案者氏名:北里 洋
Sample name	Sampling instrument	Date (UTC)	Si	ampling point	Number of su	Purpose	精度管理情報 ※1	Person responsibl	E-mail Adress	公開留保時期 ※3	Picture	Note
Sediment(4-533)	push-core DK	2005/3/25 14:12	Latitude 2 Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 7.4 id	total exchange rates	陸上にて補正予定	Ronnie N Glud		3年後	あり	
Sediment(5-533)	push-core DK	2005/3/25 14:14	Latitude 4 Longitude Water depth:	<u>維度:35-00.844</u> N 経度:139-21.667 深度:1453 m	core 7.4 id	total exchange rates	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(6-533)	MBARICore	2005/3/25 14:10	Latitude Longitude Water depth:	<u>維度:35-00.844</u> N 経度:139-21.667 E 深度:1453 m	core 6.8 id	Porewater profiles	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(7-533)	MBARICore	2005/3/25 14:11	Latitude Longitude Water depth:	純度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 6.8 id	Porewater profiles	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment(8-533)	MBARICore	2005/3/25 14:19	Latitude Longitude Water depth:	褌度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 6.8 id	Porewater profiles	陸上にて補正予定	Ronnie N Glud		3年後	あり	
Sediment	MBARICore	2006/3/25 14:17	Latitude Longitude Water depth:		18	Chemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/25 14:18	Latitude Longitude Water depth:	構度:35-00.860 N 経度:139-21.716 E 深度:1452 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/25 14:20	Latitude Longitude Water depth:	構度:35-00.860 N 経度:139-21.716 E 深度:1452 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/25 14:22	Latitude 2 Longitude Water depth:	<u>維度:35-00.860</u> N 経度:139-21.716 E 深度:1452 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/25 14:24	Latitude Longitude Water depth:	維度:35-00.860 N 経度:139-21.716 E 深度:1452 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Seawater	Niskin Bottle	2006/3/26 10:03	Latitude Longitude Water depth:	<u>維度:35-00.836</u> N <u>経度:139-21.674</u> E <u>深度:1450</u> m	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/26 10:03	Latitude 3 Longitude Water depth:	構度:35-00.836 N 経度:139-21.674 E 深度:1450 m	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Sediment	I-K type feeding core	2006/3/26 10:14	Latitude Longitude Water depth:	<u>料度:35-00.841 N</u> 経度:139-21.666 E <u>深度:1453 m</u>	8	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1つの現場培養装置から採取したサンプルの数
Sediment	Kumade Scoop Sampler	2006/3/26 10:33	Latitude Longitude Water depth:	<u>料度:33-00.877 N</u> 経度:139-21.698 E 深度:1453 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1つのサンプラーから採取したサンプルの数
Seawater	Niskin Bottle	2006/3/26 14:4	Latitude Longitude Water depth:	<u>料度:35-00.089</u> N 経度:139-13.507 E 深度:1173 m	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/26 14:45	Latitude Longitude Water depth:	縦度:35-00.089 N 経度:139-13.507 E 深度:1173 m	7	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Calyptogena clam	Kumade Scoop Sampler	2006/3/26 15:33	Latitude Longitude Water depth:	構成:35-00.089 N 経度:139-13.507 E 深度:1175 m	31 ind.	Biogeochemical analysis	陸上にて補正予定	Yohei Tada		3年後	あり	
Sediment	MBARICore	2006/3/26 15:38	Latitude Longitude Water depth:	構成:35-00.089 N 経度:139-13.507 E 深度:1175 m	4	Biogeochemical analysis	陸上にて補正予定	Yohei Tada		3年後	あり	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/26 15:42	Latitude 2 Longitude Water depth:	<u>料度:35-00.089</u> N <u>経度:139-13.507</u> E <u>深度:1175</u> m	18	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数

3. 採取サンブルの	インベントリ情報 ※船上	分析で終了した(テ	=一タが得られた)も	のは対象外です。それ以外	外のサンプルにつ	いて記載して下さい。	航海番号:	NT06-05	プロポーザル番号:	S05-15		課題提案者氏名: 北里 洋
Sample name	Sampling instrument	Date (UTC)	Sar	npling point	Number of su	Purpose	精度管理情報 ※1	Person responsible	E-mail Adress	公開留保時期 ※3	Picture	Note
Sediment	MBARICore	2006/3/26 15:44	Latitude Longitude Water depth:	緯度:35-00.089 N 経度:139-13.507 E 深度:1175 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/26 15:47	Latitude Longitude Water depth:	緯度:35-00.089 N 経度:139-13.507 E 深度:1175 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/26 15:49	Latitude Longitude Water depth:	緯度:35-00.089 N 経度:139-13.507 E 深度:1175 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/26 15:52	Latitude Longitude Water depth:	緯度:35-00.089 N 経度:139-13.507 E 深度:1175 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数
Seawater	Niskin Bottle	2006/3/27 8:36	Latitude Longitude Water depth:	緯度:35-00.138 N 経度:139-13.608 E 深度:50 m	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3年後	なし	分取量は1本の採水器から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/27 9:32	Latitude 2 Longitude Water depth:	緯度:35-00.172 N 経度:139-13-531 E 深度:1188 m	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3年後	なし	分取量は1本の採水器から採取したサンプルの数
Sediment	MBARICore	2006/3/27 9:55	Latitude Longitude Water depth:	<u>緯度:35-00.180 N</u> <u>経度:139-13.476</u> E <u>深度:1176 m</u>	2	Biogeochemical analysis	陸上にて補正予定	Yohei Tada		3 年後	あり	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/27 9:57	Latitude / Longitude Water depth:	<u>緯度:35-00.180 N</u> <u>経度:139-13.476</u> E <u>深度:1176 m</u>	3	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/27 10:40	Latitude Longitude Water depth:	<u>緯度:35-00.205 N</u> 経度:139-13.499 E <u>深度:1178 m</u>	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/27 10:42	Latitude 2 Longitude Water depth:	<u>緯度:35-00.205 N</u> 経度:139-13.499 E 深度:1178 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/27 10:48	Latitude Longitude Water depth:	緯度:35-00.189 N 経度:139-13.513 E 深度:1186 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数
Sediment	MBARICore	2006/3/27 10:50	Latitude Longitude Water depth:	緯度:35-00.189 N 経度:139-13.513 E 深度:1186 m	1	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3年後	なし	分取量は1本のコアから採取したサンプルの数
Seawater	Niskin Bottle	2006/3/27 14:01	Latitude Longitude Water depth:	<u>緯度:35-00.831 N</u> <u>経度:139-21.672</u> E <u>深度:1451 m</u>	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3 年後	なし	分取量は1本の採水器から採取したサンプルの数
Sediment(1-537)	push-core DK	2006/3/27 14:06	Latitude 6 Longitude Water depth:	緯度:35-00.844 N 経度:139-21.667 E 深度:1453 m	core 7.4 id	total exchange rates	陸上にて補正予定	Ronnie N Glud		3年後	あり	
Sediment(2-537)	push-core DK	2006/3/27 14:08	Latitude 8 Longitude Water depth:	<u>緯度:35-00.844 N</u> 経度:139-21.667 E <u>深度:1453 m</u>	core 7.4 id	total exchange rates	陸上にて補正予定	Ronnie N Glud		3年後	あり	
Sediment(3-537)	push-core DK	2006/3/27 14:10	Latitude Longitude Water depth:	<u>緯度:35-00.844 N</u> 経度:139-21.667 E 深度:1453 m	core 7.4 id	total exchange rates	陸上にて補正予定	Ronnie N Glud		3 年後	あり	
Sediment	I-K type feeding core	2006/3/27 14:23	Latitude Longitude Water depth:	緯度:35-00.849 N 経度:139-21.661 E 深度:1453 m	8	Biogeochemical analysis	陸上にて補正予定	Hidetaka Nomaki		3 年後	なし	分取量は1つの現場培養装置から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/27 15:38	Latitude Longitude Water depth:	緯度:35-00.845 N 経度:139-21.811 E 深度:50 m	2	Chemical analysis	陸上にて補正予定	Kazumasa Oguri		3年後	なし	分取量は1本の採水器から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/28 10:06	Latitude Longitude Water depth:	緯度:35-00.863 N 経度:139-21.658 E 深度:1449 m	1	Chemical analysis	陸上にて補正予定	Ronnie N Glud		3年後	なし	分取量は1本の採水器から採取したサンプルの数
Seawater	Niskin Bottle	2006/3/28 10:06	Latitude Longitude Water depth:	緯度:35-00.863 N 経度:139-21.658 E 深度:1449 m	1	Chemical analysis	陸上にて補正予定	Ronnie N Glud		3年後	なし	分取量は1本の採水器から採取したサンプルの数

	IEI		Denmark team (2 tapes for each)				
Dive no.	11'1	ALL 4					
	HTV	CCD	HTV	CCD			
#530 (20060323)	120min x2	120min x2	120min x2	120min x2			
#531 (20060324)	120min x3	120min x3	120min x3	120min x3			
#532 (20060325)	120min x2	120min x2	120min x2	120min x2			
#533 (20060325)	120min x2	120min x2	120min x2	120min x2			
#534 (20060326)	120min x2	120min x2	120min x2	120min x2			
#535 (20060326)	120min x2	120min x2	120min x2	120min x2			
#536 (20060327)	120min x2	120min x2	120min x2	120min x2			
#537 (20060327)	120min x2	120min x2	120min x2	120min x2			
#538 (20060328)	120min x4	120min x4	120min x4	120min x4			

Appendix 2. Videotape List

Appendix 3. Payload Pictures

Dive #530 (20060323)

3 feeding devices, 5 Denmark core, 5 MBARI core, 2 Niskin bottles, CTD-DO

Dive #531 (20060324)

2 feeding devices, 5 Denmark core, 5 MBARI core, 1 Oguri's O2-pH double sensor film test device, 2 Niskin bottles, CTD-DO

Dive #532 (20060325) Benthic chamber, CTD-DO

Dive #533 (20060325)

2 feeding devices, 5 Denmark core, 5 MBARI core, 2 Niskin bottles, CTD-DO

Dive #534 (20060326)

Sample box, 1 feeding device, 2 Niskin bottles, CTD-DO

Dive #535 (20060326)

Dive #536 (20060327)

1 sample box, 6 MBARI core, 2 Niskin bottles, CTD-DO

Dive #537 (20060327)

1 Feeding device socket, 2 Niskin bottles, CTD-DO

Dive #538 (20060328)

Benthic chamber, 2 Niskin bottles, CTD-DO

Appendix 4. Shipboard log

March 22, 2006

- 13:00 All scientists embarked on R/V Natsushima.
- 14:00 R/V Natsushima departed from JAMSTEC Pier
- 19:30 stay at off Hiratsuka City, northern Sagami Bay.

March 23, 2006

Because of bad weather, initial dive plan has delayed until it becomes better condition.

Mooring sediment-trap at Central Sagami Bay Site

11:30-12:10 Start to throw down sediment-trap

13:00 Sediment trap on bottom (50m north from throw point

Hyperdolphin #530 Dive, Central Sagami Bay Site depth of 1450m, deploying and recovering in situ feeding experimental devices at OBB II station. (Payload: 3 feeding devices, 5 Denmark core, 5 MBARI core, 2 Niskin bottles, CTD-DO)

- 13:00 ROV stand by
- 13:40 ROV started down
- 14:43 ROV on bottom 1450m
- 14:44 two Niskin bottle sampling

14:59~15:15 One feeding device set on sea floor near OBB II station. Two were failed. Two devices recovered.

15:20~15:54 Ten Push core samplings (Green-black, D-Yellow, D-green, D-red, D-black, D-white, Yellow-black, Red, Yellow, Green)

16:00 OBB II station was precisely observed. ROV homer set again on OBB II.

16:12 left bottom

March 24, 2006

Because of strong northern wind, we should wait until wind is coming down.

Throw Lander System

9:30 stand by for throw down lander system

09:51 Lander started down

Hyperdolphin #531 Dive, central Sagami Bay Site, depth of 1450m, deploying profiling lander, benthic chamber and water sampling with Niskin bottles. (Payload: 2 feeding devices, 5 Denmark core, 5 MBARI core, 1 Oguri's O2-pH double sensor film test device, 2 Niskin bottles, CTD-DO)

10:42 stand by

- 11:05 ROV start down
- 12:00 ROV on bottom, 1451m
- 12:03 Niskin water sampling
- 12:06 watch profiling lander
- 12:20-22 lander switched on

12:35 moved profiling lander 20m from settling position. Free falled from altitude 3.5m

12:56 moved lander again to 10m north from the last position. Bring slowly down onto bottom and release

- 13:10 OBB II station. Put O2-pH film test device beside OBB II
- 13:34 set feeding device. One sticked on sea floor.
- 13:43~14:18 Ten push core samplings
- 14:35 Two old feeding devices recovered
- 15:30 Sit in front of lander
- 15:58 Lander switched on again
- 16:02 Lander set again 10m north from the former position
- 16:05 ROV left bottom
- 17:00 ROV on deck

March 25, 2006

Hyperdolphin # 532 Dive, central Sagami Bay Site, depth of 1455m, push cores and bottom water sampling by Niskin bottles and recover experimental devices.

- 08:40 ROV start down with benthic chamber
- 09:36 ROV on bottom, 1450m and set benthic chamber (15 cm)
- 10:02 Lander switch on
- 10:16 move lander 30m north from the last position
- 10:18 ROV left bottom

11:10 ROV on deck

Hyperdolphin #533 Dive, central Sagami Bay Site, depth of 1450m (Payload: 2 feeding devices, 5 Denmark core, 5 MBARI core, 2 Niskin bottles, CTD-DO), Lander recovery

- 12:15 ROV stand by
- 12:45 ROV start down
- 13:40 ROV on bottom, 1451m
- 13:43 Two Niskin bottle samplings (2m above sea floor)

13:52 1 feeding device (Red) set and recover. 1 feeding device (White-Red) that was set two days before is also recovered.

14:04~14:23 Ten push core samplings

- 14:39 pick up lander and leave bottom
- 15:25 ROV on deck
- 15:40 Lander on deck

16:34 sediment trap release remotely from sea surface connecting part between mooring system and weight part.

16:55 sediment trap on deck

19:00

March 26, 2006

Throw lander

- 07:08 Lander throw in
- 08:00 Lander on bottom

Hyperdolphin #534 Dive, central Sagami Bay, depth of 1450m (Payload: 1 feeding device, 2 Niskin bottles, CTD-DO), both benthic chamber and Oguri device recovery

08:00 CTD-DO calibration using both zero and saturated seawater

- 08:37 ROV stand by
- 08:59 ROV go down
- 10:00 ROV on bottom, 1450m
- 10:03 Niskin bottles (2m above sea floor)
- 10:09 Feeding device(blue) set and one device (Blue-white) recovered
- 10:18~33 surface sediment collected with scoop
- 10:43 Lander switched on and move 22 m west

- 11:02 Benthic chamber was connected with recovery rope of ROV
- 11:04 ROV leave bottom with benthic chamber
- 11:50 ROV on deck

Hyperdolphin #535 Dive, south of Hatsushima Island, depth 1170m (Payload: 2 sample boxes, 6 MBARI core, 2 Niskin bottles, CTD-DO)

- 13:38 ROV started down
- 14:34 ROV on bottom, 1392m
- 14:45 Niskin bottles at south colony (1.7m above sea floor)
- 14:50~58 H528 cage sampling
- 15:10~33 H525 cage sampling
- 15:35 MBARI core (black) beside H528 colony
- 15:37 Two cages recovered
- 15:37~53 Five MBARI cores
- 15:55~ Fujikura box observation
- 16:00 ROV left bottom
- 16:39 ROV on deck
- 18:30 drift at close to Ito City, Izu Peninsula

March 27, 2006

Hyperdolphin #536 Dive, south east from Hatsushima Island, depth 1170m, observing station, landscapes and colonies.

- 08:10 ROV stand by
- 08:30 ROV start down
- 08:35 Niskin bottle (50m deep)
- 09:30 ROV on bottom, depth 1193m Niskin bottle (2m above sea floor) Red carpet of bacterial colony (2 MBARI cores) visit deep-sea station
- 10:40 Two cores at 47m northeast from the station
- 10:48 Two cores at 50m east from the station
- 10:51 ROV left bottom
- 11:30 ROV on deck

Hyperdolphin #537 Dive, central Sagami Bay site, depth 1450m, recovering feeding device, Oguri device and profiling lander, (Payload: 1 Feeding device socket, 2 Niskin bottles, CTD-DO).

- 12:44 ROV stand by
- 13:05 ROV start down
- 14:01 ROV on bottom, 1450m
- 14:02 Niskin bottle (2m above sea floor)
- 14:04~11 Three Denmark type core (Red, Black and White)
- 14:22 One feeding device recovered. ROV homer #45 recovered.
- 14:31 Oguri device recovered
- 14:45 Lander was connected with ROV recovery rope
- 14:57 ROV left bottom with profiling lander
- 15:55 ROV on deck (Lander moves from main deck to upper deck with clane)
- 18:30 Drift at northern part of Sagami Bay off Hiratsuka

March 28, 2006

Hyperdolphin #538 Dive, central Sagami Bay site, depth 1455m, (benthic chamber measurement)

- 08:10 ROV stand by
- 08:34 ROV start down with benthic chamber
- 09:32 ROV on bottom and benthic chamber set on bottom, 1450m
- 10:06 Niskin bottles (2m above sea floor)
- 15:39 ROV sat in front of benthic chamber and waited for the last syringe was pulled.

16:11 Benthic chamber was connected with ROV by recovery rope and left bottom

- 17:15 ROV and benthic chamber on deck
- 20:30 Natsushima anchored in front of JAMSTEC

March 29, 2006

R/V Natsushima ported at JAMSTEC pier at 09:00. We unloaded every equipments and then disembarked from the ship. NT06-05 cruise has ended with great success.