# YOKOSUKA Cruise Report YK10-05

# "New insights into the oceanic lithosphere from petit-spot volcanoes around the Marcus Island"

Western Pacific around the Marcus Island



## May 16, 2010 to June 5, 2010

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

| Contents                                       | page                 |
|------------------------------------------------|----------------------|
| 1. Cruise Information                          | 1                    |
| 2. Researchers & Crews                         | 2                    |
| 3. Objectives & Background                     | 5                    |
| 4. Observation                                 | 8                    |
| 4.1. Activities                                | 8                    |
| 4.1.1. Cruise Log                              | 8                    |
| 4.1.2. 6K Dive Logs                            | 13                   |
| 4.1.3. Multibeam Survey                        | 13                   |
| 4.1.4. Magnetometer & Gravity Meter            | 13                   |
| 4.2. Methods & Instruments                     | 14                   |
| 4.2.1. R/V Yokosuka                            | 14                   |
| 4.2.2. Sea Beam, Magnetometers & Gravity Meter | 15                   |
| 5. Preliminary Results                         | confidential matters |
| 6. Future Studies & Research Interest          | confidential matters |
| 7. Bibliography                                | 18                   |
| 8. Notice of Using                             | 28                   |
| Appendix                                       |                      |
| A1. Dive Logs                                  | confidential matters |
| A2. Sample List                                | A2                   |
| A3. Sample Descriptions                        | confidential matters |
| A4. Rock Party                                 | A4                   |

confidential matters

A5. Sample photos

## 1. Cruise Information

| Cruise ID:             | YK10-05                                                                                         |
|------------------------|-------------------------------------------------------------------------------------------------|
| Name of vessel:        | R/V YOKOSUKA                                                                                    |
| Title of the cruise:   | New insights into the oceanic lithosphere from petit-spot volcanoes<br>around the Marcus Island |
| Title of the proposal: | New insights into the oceanic lithosphere from petit-spot volcanoes<br>around the Marcus Island |
| Cruise period:         | May 16 to June 5, 2010                                                                          |
| Ports of call:         | Yokosuka Branch, JAMSTEC to Takamatsu Port                                                      |
| Research area:         | Around the Marcus Island (Minami-torishima), western Pacific                                    |
| Research maps:         | Figs. 1-1, 1-2 and 1-3.                                                                         |







Fig. 1-2. Bathymetric map of survey areas around the Marcus Island (Minami-torishima).



Fig. 1-3. Nine dive sites of 6K#1201 to 1209 by submersible *SHINKAI6500* on the bathymetric map of Fig. 1-2.

## 2. Researchers & Crews

## Chief Scientist

Hirano, NaotoAssistant Professor, Tohoku University

Chief researcher of the project;

"New insights into the oceanic lithosphere from petit-spot volcanoes around the Marcus Island"

## Onboard Researchers

| Machida, Shiki    | Research Assistant, Waseda University                                                                                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Morishita, Taisei | Foreperson of Investigators, Japan Coast Guard                                                                                                                                                |
| Ishii, Teruaki    | Researcher, Fukada Geological Institute                                                                                                                                                       |
| Shimizu, Kenji    | Researcher, JAMSTEC                                                                                                                                                                           |
| Ijuin, Yu         | Postgraduate Student, Tohoku University                                                                                                                                                       |
| Machida, Satoshi  | Postgraduate Student, Tohoku University                                                                                                                                                       |
| Hosoi, Jun        | Postgraduate Student, Ibaraki University                                                                                                                                                      |
| Suzuki, Takahito  | Postgraduate Student, Kanazawa University                                                                                                                                                     |
| Kato, Jinya       | Postgraduate Student, Tokyo Institute of Technology                                                                                                                                           |
| Imada, Saori      | Postgraduate Student, Tokyo Institute of Technology                                                                                                                                           |
| Hosoya, Shinichi  | Nippon Marine Enterprises, Ltd.                                                                                                                                                               |
|                   | Machida, Shiki<br>Morishita, Taisei<br>Ishii, Teruaki<br>Shimizu, Kenji<br>Ijuin, Yu<br>Machida, Satoshi<br>Hosoi, Jun<br>Suzuki, Takahito<br>Kato, Jinya<br>Imada, Saori<br>Hosoya, Shinichi |

## Shore-based Researchers

| Scientist | Nakanishi, Masao    | Associate Professor, Chiba University            |
|-----------|---------------------|--------------------------------------------------|
| Scientist | Morishita, Tomoaki  | Adjunct Associate Professor, Kanazawa University |
| Scientist | Oikawa, Mituhiro    | Investigator, Japan Coast Guard                  |
| Scientist | Anthony Koppers     | Associate Professor, Oregon State University     |
| Scientist | Yamamoto, Junji     | Assistant Professor, Kyoto University            |
| Scientist | Matsubara, Noritaka | Research Assiatant, University of Hyogo          |

## Crews of the R/V YOKOSUKA

| Captain        | Ukekura, Eiko      |
|----------------|--------------------|
| Chief Officer  | Aoki, Takafumi     |
| 2nd Officer    | Shirayama, Tetsuo  |
| 3nd Officer    | Ito, Masashi       |
| Chief Engineer | Kikkawa, Hiroyoshi |
| 1st Engineer   | Matsukawa, Kimio   |
| 2nd Engineer   | Sakaemura, Saburo  |
| 3rd Engineer   | Ikeguchi, Kenta    |
|                |                    |

| Chief Radio Off. | Akama, Hideyuki     |
|------------------|---------------------|
| 2nd Elect. Off.  | Ishiwata, Hiroki    |
| 3rd Elect. Off.  | Minamoto, Mai       |
| Boatswain        | Abe, Kazuo          |
| Able Seaman      | Toguchi, Tadahiko   |
| Able Seaman      | Oda, Hatsuo         |
| Able Seaman      | Ichikawa, Nobuyuki  |
| Able Seaman      | Hirai, Saikan       |
| Sailor           | Yanagitani, Daisuke |
| Sailor           | Abe, Shun           |
| Sailor           | Miura, Kozo         |
| Oiler            | Kawai, Yoshinori    |
| Assistant Oiler  | Ueda, Masanori      |
| Assistant Oiler  | Suzuki, Yuta        |
| Assistant Oiler  | Matsui, Toshinori   |
| Chief Steward    | Miyauchi, Takeshi   |
| Steward          | Ariyama, Shigeto    |
| Steward          | Kirita, Koji        |
| Steward          | Abe, Takahiro       |
| Steward          | Ito, Kei            |

## Shinkai 6500 Operation team

| Senior pilot operation manager            | Sakurai, Toshiaki    |
|-------------------------------------------|----------------------|
| Pilot assistant operation manager         | Chiba, Kazuhiro      |
| Chief pilot mechanic                      | Yoshiume, Tsuyoshi   |
| Pilot chief mechanic                      | Matsumoto, Keita     |
| Pilot / mechanic chief acoustic navigater | Yanagitani, Masanobu |
| Pilot mechanic                            | Ueki, Hirofumi       |
| Pilot mechanic                            | Chida, Yosuke        |
| Co-pilot mechanic                         | Suzuki, Keigo        |
| Co-pilot mechanic / acoustic navigater    | Saitou, Fumitaka     |
| Co-pilot mechanic / acoustic navigater    | Oonishi, Takumi      |
| Mechanic                                  | Tayama, Yudai        |
| Mechanic                                  | Ikeda, Hitomi        |

#### 3. Objectives & Background

Until recently, no present-day volcanic activity had been documented on the cool, thick, and old Cretaceous lithosphere; however, Hirano et al. (2001; 2006; 2008) reported the presence of anomalously young alkali-basalt lavas (0 to 8 Ma Ar-Ar ages) on the subducting, ~130 Ma Pacific Plate. Volcanic eruption of the newly discovered lava field occurred on approximately 600 km ESE off the northern Japan Trench based on the present absolute motion of the Pacific Plate (Gripp and Gordon, 1990). This point coincides with the flexural part of the outer rise at present, so that we need to explain how and why such young lavas erupted on the aseismic ocean floor.

Hirano et al. (2006) proposed that magma from the asthenosphere may have escaped along plate fractures that occur in the flexed outer-rise of the Pacific Plate (Fig. 3-1). Based on their model, petit-spot volcanoes could be ubiquitous in the ocean basins, as a constant source of small-degree mantle melts may presently be stored in the asthenosphere, ready to escape to the surface whenever and wherever the oceanic plate flexes and forms fissures. In this paper we present the results of an exploratory search for petit-spot volcanoes on the outer-rises of subduction zones in the north- and southwest Pacific Ocean.



Fig. 3-1. Model of the formation of petit-spot volcanoes modified after Hirano et al. (2006).

The plate tectonics theory suggested by Morgan (1968) was breakthrough of the Earth Science to be able to explain many phenomena on the Earth (e.g. earthquake, volcanoes, oceanic plate evolution, continental moving). Plate motions are Earth's most important tectonic processes, because a tectonic plate moves on the nearly spherical surface of Earth and because a plate works as excellent approximation to be rigid, and plate motions can be represented simply as rigid body rotations. In the limiting case of geologically recent motion, the time derivative of rigid-body rotation can be described by angular velocity, which is an axial vector. The assumption of plate rigidity allows geometrically precise and rigorously testable predictions to be made. The observed near rigidity of the plates also permits the treatment of plate kinematics separately from dynamics. Abundant data describe the geologically recent motion across narrow boundaries linking nearly all the major plates, permitting many tests of plate tectonic predictions.

The dynamics of the Earth's interior is reflected in process at the Earth's surface: due to mantle convection, lithospheric plates experience stress and move in response, based on the overlaying rigid plate (lithosphere) on the ductile asthenosphere, which is the engine of the plate tectonics. The asthenosphere is approximately 200 km thick and, owing to its depth below the Earth's surface. Here the mantle deforms by plastic flow in response to applied pressures above 100 MPa (lithosphere). This zone is considered coincidental with the low-velocity zone of the upper mantle. The asthenosphere is solid even though it is at very hot temperatures of about 1600 °C due to the high pressures from above. However, at this temperature, minerals are almost ready to melt and they become ductile and can be pushed and deformed like silly putty in response to the warmth of the Earth. These rocks actually flow, moving in response to the stresses placed upon them by the churning motions of the deep interior of the Earth. The flowing asthenosphere carries the lithosphere of the Earth, including the continents, on its back. Although scientists had originally believed that asthenosphere will be melting when the plate tectonics theory suggested, a model that the hydrogens in water in determining the structure of the lithosphere- asthenosphere boundary behave as the role of phase transformation in controlling the density and plastic flow properties of Earth's materials and that the asthenosphere is not necessarily melting (Karato, 1990; Karato and Jung, 1998). However, we do not know "What is asthenosphere?" "Which is that melting or not?" yet.

It thus is important to search for other examples of petit-spot volcanoes. This may help us to address some important first order questions. For example, are the petit-spot volcanoes observed by Hirano *et al.* (2006) isolated features or are they a phenomenon that always accompanies plate flexure? In this cruise, we will look at acoustic reflective data (i.e., sidescan data) that was collected during modern shipboard bathymetrical surveys. These reflectivity data provide us with a powerful tool to help locate the petit-spot volcanoes, because they are too small to be reliably detected by multibeam bathymetry, as they are only 1 to 2 km in diameter and only a few hundred meters in height. In addition, the specific nature of the asthenosphere below the Cretacesou and/or Jurassic Pacific Plate, the geophysical data are ambiguous (Shimamura *et al.*, 1983; Shinohara *et al.*, 2008). The study and documentation of petit-spots on the Pacific Plate provide a practical way of establishing the Earth's asthenosphere as a zone of partial melting.

Oikawa and Morishita (2009) shows the precise bathymetric data acquired by Japan Coast Guard around the Marcus Island. The clusters of small conical volcanoes were discovered in this area located at southeast of Marcus Island (Minami–Tori Shima). Almost all cones which belong to the cluster are hundred meters in height and less than 10 km in diameter. They mentioned that their morphological characteristics are very similar to petit-spot volcanoes near Japan Trench, northwestern Pacific Plate (Hirano et al., 2006). The scope of this cruise is for searching the petit-spot volcanoes sites A & B near the Marcus Island (Minami-Tori Island), and observing the Cretaceous seamount volcano of the Marcus Island at the site C on the western Pacific Plate (Fig. 3-2). Strongly vesicular and undifferentiated lavas for petit-spot may have occurred the peculiar eruption on the abyssal plain. We observed the eruption style and the stratigraphy of volcanoes using the submersible *SHINKAI 6500*.



Fig. 3-2. Research areas, Sites A and B, around the Marcus Island. Site C is northwestern part of the island. Bathymeric data are from Oikawa and Morishita (2009).

## 4. Observation

## 4.1. Activities

### 4.1.1. Cruise Log

#### 2010/05/16

| 13:00       | Onboard                                 |
|-------------|-----------------------------------------|
| 14:00       | Departure from YOKOSUKA(JAMSTEC)        |
| 15:00-15:30 | Briefing about ship's life and safety   |
| 15:30-16:00 | Scientific meeting                      |
| 16:40-17:00 | Pray for safety of cruise to KONPIRASAN |
| 10/05/17    |                                         |

#### 2010/05/17

Weather: fine but cloudy / Wind direction: NNE/ Wind force: 3/ Wave: 2 m/ Swell: 1 m/ Visibility: 8 nautical miles (12:00 JST)

09:00-09:30 Shinikai6500 team and scientists meeting

| 10:30-11:10 | Tour of ship |
|-------------|--------------|
|-------------|--------------|

- 13:30-15:30 Briefing about Shinikai6500
- 15:00-17:00 Setup the laboratory
- 18:30-19:00 Scientific Seminar (by Hirano) and Meeting

## 2010/05/18

Weather: fine but cloudy / Wind direction: NE/ Wind force: 6/ Wave: 4 m/ Swell: 4 m/ Visibility: 8 nautical miles (12:00 JST+1h)

| 10:00-11:30 | Tour of Shinikai6500                                     |
|-------------|----------------------------------------------------------|
| 14:00-15:00 | Engine room excursion                                    |
| 15:00-17:00 | Setup the laboratory                                     |
| 18:30-19:45 | Scientific Seminar (by Machida, Sa. & Hosoi) and Meeting |
|             |                                                          |

## 2010/05/19

Weather: cloudy / Wind direction: NE/ Wind force: 6/ Wave: 4 m/ Swell: 3 m/ Visibility: 9 nautical miles (12:00 JST+1h)

| 07:40       | Arrived at survey area "C"                         |
|-------------|----------------------------------------------------|
| 07:44       | XBT                                                |
| 07:50       | Proton magnetometer deployed                       |
| 08:54-11:08 | MBES mapping survey for 6K dive                    |
| 12:45       | Arrived at survey area "A"                         |
| 12:47       | XBT                                                |
| 13:20-20:24 | MBES mapping survey for 6K dive                    |
| 18:30-19:30 | Scientific Seminar (by Suzuki & Imada) and meeting |

21:36 Start of the geological survey

2010/05/20

Weather: fine but cloudy/ Wind direction: ENE/ Wind force: 5/ Wave: 4 m/ Swell: 4 m/ Visibility: 7 nautical miles (12:00 JST+1h)

| 05:30       | End of the geological survey    |
|-------------|---------------------------------|
| 06:21       | Proton magnetometer on deck     |
| 08:54       | Launch Sinkai6500 (6K#1201dive) |
| 11:13       | 6K lands (5,386m)               |
| 14:41       | 6K leaves the bottom (5,273m)   |
| 16:49       | 6K on deck                      |
| 17:20       | Proton magnetometer deployed    |
| 17:57-19:21 | MBES mapping survey for 6K dive |
| 19:30-20:30 | Scientific Meeting              |
| 20:32       | Start of the geological survey  |

## 2010/05/21

Weather: fine but cloudy/ Wind direction: ENE/ Wind force: 4/ Wave: 3 m/ Swell: 4 m/ Visibility: 8 nautical miles (12:00 JST+1h)

| 04:38       | End of the geological survey    |
|-------------|---------------------------------|
| 06:21       | Proton magnetometer on deck     |
| 09:00       | Launch Sinkai6500 (6K#1202dive) |
| 11:18       | 6K lands (5,430m)               |
| 14:51       | 6K leaves the bottom (5,396m)   |
| 17:03       | 6K on deck                      |
| 17:33       | Proton magnetometer deployed    |
| 19:30-20:30 | Scientific Meeting              |
| 19:48-20:20 | MBES mapping survey for 6K dive |
| 20:28       | Start of the geological survey  |
|             |                                 |

## 2010/05/22

Weather: fine but cloudy/ Wind direction: South/ Wind force: 2/ Wave: 2 m/ Swell: 2 m/ Visibility: 7 nautical miles (12:00 JST+1h)

| 06:12       | End of the geological survey    |
|-------------|---------------------------------|
| 06:24       | Proton magnetometer on deck     |
| 08:52       | Launch Sinkai6500 (6K#1203dive) |
| 11:00       | 6K lands (5,196m)               |
| 14:49       | 6K leaves the bottom (4,943m)   |
| 17:04       | 6K on deck                      |
| 17:44       | Proton magnetometer deployed    |
| 19:15-19:45 | Scientific Meeting              |

| 19:40-20:30 | MBES mapping survey for 6K dive |
|-------------|---------------------------------|
| 23:07       | Start of the geological survey  |

#### 2010/05/23

Weather: fine but cloudy/ Wind direction: West/ Wind force: 2/ Wave: 1 m/ Swell: 1 m/ Visibility: 8 nautical miles (12:00 JST+1h)

| 02:00       | End of the geological survey    |
|-------------|---------------------------------|
| 06:18       | Proton magnetometer on deck     |
| 08:53       | Launch Sinkai6500 (6K#1204dive) |
| 10:57       | 6K lands (5,194m)               |
| 14:50       | 6K leaves the bottom (4,808m)   |
| 17:04       | 6K on deck                      |
| 17:35       | Proton magnetometer deployed    |
| 19:15-19:45 | Scientific Meeting              |
| 19:34-20:07 | MBES mapping survey for 6K dive |
| 20:43       | Start of the geological survey  |
|             |                                 |

### 2010/05/24

Weather: fine but cloudy/ Wind direction: ENE/ Wind force: 4/ Wave: 3 m/ Swell: 3 m/ Visibility: 8 nautical miles (12:00 JST+1h)

| 03:02       | End of the geological survey    |
|-------------|---------------------------------|
| 05:34-05:46 | Eight figure turn               |
| 06:19       | Proton magnetometer on deck     |
| 08:52       | Launch Sinkai6500 (6K#1205dive) |
| 11:05       | 6K lands (5,463m)               |
| 14:52       | 6K leaves the bottom (5,233m)   |
| 17:06       | 6K on deck                      |
| 17:35       | Proton magnetometer deployed    |
| 19:15-19:45 | Scientific Meeting              |
| 18:58-19:31 | MBES mapping survey for 6K dive |
| 21:41       | Start of the geological survey  |

## 2010/05/25

Weather: fine but cloudy/ Wind direction: NE/ Wind force: 3/ Wave: 2 m/ Swell: 2 m/ Visibility: 8 nautical miles (12:00 JST+1h)

- 04:08 End of the geological survey
- 06:22 Proton magnetometer on deck
- 08:49 Launch Sinkai6500 (6K#1206dive)
- 11:07 6K lands (5,391m)
- 14:50 6K leaves the bottom (5,141m)
- 16:57 6K on deck

| 17:24       | Proton magnetometer deployed   |
|-------------|--------------------------------|
| 19:15-20:15 | Scientific Meeting             |
| 19:09-23:08 | Start of the geological survey |
| 23:10       | Transit to survey area "B"     |
| 25:10       | I ransit to survey area "B"    |

## 2010/05/26

Weather: fine but cloudy/ Wind direction: East/ Wind force: 3/ Wave: 2 m/ Swell: 3 m/ Visibility: 8 nautical miles (12:00 JST+1h)

| 05:45 Arrived at survey area |
|------------------------------|
|------------------------------|

06:17 Start of the geological survey

## 2010/05/27

Weather: fine but cloudy/ Wind direction: SE/ Wind force: 4/ Wave: 3 m/ Swell: 3 m/  $\,$ 

Visibility: 8 nautical miles (12:00 JST+1h)

Start of the geological survey

| 10:00       | Rock party                           |
|-------------|--------------------------------------|
| 12:35-13:25 | MBES mapping survey for 6K dive      |
| 14:00-15:30 | Scientific Seminar (by Ijuin & Kato) |
| 16:00-17:00 | Green Beach party                    |
| 16:52-17:06 | Eight figure turn                    |
|             |                                      |

## 2010/05/28

Weather: fine but cloudy/ Wind direction: SE/ Wind force: 3/ Wave: 2 m/ Swell: 2 m/ Visibility: 8 nautical miles (12:00 JST+1h)

| End of the geological survey    |
|---------------------------------|
| Proton magnetometer on deck     |
| Launch Sinkai6500 (6K#1207dive) |
| 6K lands (5,503m)               |
| 6K leaves the bottom (5,226m)   |
| 6K on deck                      |
| Proton magnetometer deployed    |
| MBES mapping survey for 6K dive |
| Scientific Meeting              |
| Start of the geological survey  |
|                                 |

## 2010/05/29

Weather: fine but cloudy/ Wind direction: South/ Wind force: 3/ Wave: 2 m/ Swell: 2 m/ Visibility: 8 nautical miles (12:00 JST+1h)

- 03:29 End of the geological survey
- 06:18 Proton magnetometer on deck
- 08:47 Launch Sinkai6500 (6K#1208dive)

| 11:09       | 6K lands (5,784m)              |
|-------------|--------------------------------|
| 15:00       | 6K leaves the bottom (5,637m)  |
| 17:23       | 6K on deck                     |
| 17:45       | Transit to survey area "B"     |
| 19:15-19:45 | Scientific Meeting             |
| 20:25       | Start of the geological survey |

#### 2010/05/30

Weather: overcast/ Wind direction:SW/ Wind force: 6/ Wave: 4 m/ Swell: 4 m/

| 03:04       | End of the geological survey    |
|-------------|---------------------------------|
| 07:00       | Arrived at survey area "C"      |
| 08:52       | Launch Sinkai6500 (6K#1209dive) |
| 10:29       | 6K lands (3,709m)               |
| 15:24       | 6K leaves the bottom (3,089m)   |
| 17:06       | 6K on deck                      |
| 17:30       | Transit to survey area "C"      |
| 18:45       | Arrived at survey area "A"      |
| 19:45-20:20 | Scientific Meeting              |
| 19:00       | Start of the geological survey  |
| 0 10 5 10 1 |                                 |

#### 2010/05/31

Weather: fine but cloudy/ Wind direction: SSW/ Wind force: 6/ Wave: 4 m/ Swell: 4 m/ Visibility: 8 nautical miles (12:00 JST+1h)

| 08:21       | End of the geological survey                     |
|-------------|--------------------------------------------------|
| 08:30       | Transit to "TAKAMATSU"                           |
| 18:30-20:00 | Scientific Seminar (by Machida, Sh.) and Meeting |

## 2010/06/01

```
Weather: rain/ Wind direction: NE/ Wind force: 5/ Wave: 3 m/ Swell: 4 m/ Visibility: 6 nautical miles (12:00 JST+1h)
```

Transit to "TAKAMATSU"

15:30-16:30 Scientific Seminar (by Morishita)

18:30-19:00 Scientific Meeting

#### 2010/06/02

Weather: cloudy / Wind direction: NE/ Wind force: 5/ Wave: 4 m/ Swell: 4 m/ Visibility: 7 nautical miles (12:00 JST)

Transit to "TAKAMATSU"

09:00-09:30 Seminar for crews

#### 2010/06/03

Weather: fine but cloudy / Wind direction: ENE/ Wind force: 5/ Wave: 3 m/ Swell: 3 m/

| Visibility: 10 n | autical miles (12:00 JST)                                               |
|------------------|-------------------------------------------------------------------------|
| Transit to "TAI  | KAMATSU"                                                                |
| 15:00-16:00      | Cleaning the laboratory                                                 |
| 2010/06/04       |                                                                         |
| Weather: fine b  | out cloudy / Wind direction: ESE/ Wind force: 2/ Wave: 1 m/ Swell: 1 m/ |
| Visibility: 7 na | utical miles (12:00 JST)                                                |
| 13:15            | Arrival at "TAKAMATSU", YK10-05 finish and disembarkation               |
| 2010/06/05       |                                                                         |
| Weather: fine    |                                                                         |
| 12:00            | All onboard researchers disembarked.                                    |

#### 4.1.2. 6K Dive Logs

YK10-05 cruise operated the nine dives 6K#1201 to 6K#1209, at the Sites A and B (see Fig. 3-2), and Site C (northwestern slope of Marcus Island), western Pacific. 6K#1201 to 1206 dives were conducted at Site A. 6K#1207 and 1208 dives were done at Site B. The last dive of this cruise, 6K#1209 dive, dove at Site C on the northwestern slope of Marcus Island (Minami-Torishima). The dive logs, related information and corrected samples, however, are confidential matters.

#### 4.1.3. Multibeam Survey

Multi-narrow beam echo sounder (SeaBeam2112.004) surveyed bathymetry and acoustic reflectivity of western Pacific, which was powerful tool to search the volcanoes during YK10-05. The track lines are shown in Fig. 1-1. The data are confidential matters.

#### 4.1.4. Magnetometers & Gravity Meter

During the YK10-05 cruise, geophysical surveys, whose items included were gravity and geomagnetics, were conducted aboard the R/V Yokosuka. The aim of the geophysical surveys was to provide a detailed geophysical characterization of the lithosphere and seamounts in the western Pacific on and off-axis ridge flanks, which will be used to unravel tectonic evolution and crustal structure.

Shipboard gravity anomaly will be used for analysis of the crustal structure combined with bathymetry and seismic reflection data. Analysis of lithospheric flexure and deformation using satellite derived gravity anomaly combined with the shipboard gravity anomaly may be helpful as well.

#### 4.2. Methods & Instruments

#### 4.2.1. R/V Yokosuka

R/V Yokosuka is designed serve as the mother vessel for Shinkai 6500 and Autonomous Underwater Vehicle Urashima. It has silent engine an advanced acoustic navigation systems and an underwater telephone for its state of the art operations.

There are 4 laboratories on Yokosuka, No.1 $\sim$ No.3 laboratories and No.1 Study room. No.1 Lab. has dry space. permanent installations are video editing system, PC and printer. No.2 Lab. has semi - dry and wet space. There are two freezers (-40 & -80 deg.C), incubator, Milli-Q, fumigation chamber at dry one, and wet one has rock saw. No.3 Lab. has dry space with storage.No.1 Study room has dry space, there are gravity meter, data acquisition system of gravity meter, 3 axis fluxgate magnet meter and also proton magnet meter, work station for data processing, and A0 size plotter.

| Length overall              | 105.2 m                          |
|-----------------------------|----------------------------------|
| Beam overall                | 16.0 m                           |
| Depth                       | 7.3 m                            |
| Draft                       | 4.5 m                            |
| Gross tonnage               | 4,439 tons                       |
| Service speed               | 16knot                           |
| Complement                  |                                  |
| Crew                        | 27 persons                       |
| Submersible operation staff | 18 persons                       |
| Researchers                 | 15 persons                       |
| Total                       | 60persons                        |
| Main propulsion system      | Diesel engines: 2,206kW x 2      |
| Main propulsion method      | Controllable pitch propeller x 2 |

Table 4-2-1. The principal specifications of R/V Yokosuka

## 4.2.2. Sea Beam, Magnetometer & Gravity Meter

Yokosuka is equipped with various kinds of underway geophysical equipment, Multi Narrow Beam Echo Sounder (Sea Beam 2112.004, Sea Beam Instruments, Inc.), Gravity meter (Type S-63, LaCoste & Romberg Gravity Meters Inc.), Ship borne 3 axis magnet meter (Type SFG-1212, Tierra Technica Inc.), and Proton magnet meter (Type STC 10, Kawasaki Geological Engineering Co., Ltd.).

| measurement depth (m)      | 100~11,000                      |
|----------------------------|---------------------------------|
| measurement range (deg.)   | 90~150                          |
| measurement frequency(kHz) | 12                              |
| measurement method         | cross fan beam style            |
| accuracy                   | 0.2%(center) $\sim$ 0.5%(outer) |
| beam width(deg.)           | 2                               |
| beam interval(deg.)        | 1                               |
| swath width(deg.)          | 150(~300m)                      |
|                            | 120(~4500m)                     |
|                            | 100(~8,000m)                    |
|                            | 90(~11,000m)                    |
| sampling rate(m sec.)      | 1.33 or 2.67                    |
| roll(deg.)                 | ±20                             |
| pitch(deg.)                | ±7.5                            |

Table 4-2-2. The specifications of MBES

| measurement range (m Gal)                  | 12,000                  |
|--------------------------------------------|-------------------------|
| drift                                      | 3mGal per month or less |
| stabilized platform                        |                         |
| platform pitch(deg.)                       | ±22                     |
| platform roll(deg.)                        | ±25                     |
| platform period(min.)                      | 4 to 4.5                |
| beam interval(deg.)                        | 1                       |
| control system                             |                         |
| recording rate(Hz)                         | 1                       |
| serial out put                             | RS-232                  |
| system performance                         |                         |
| resolution(mGal)                           | 0.01                    |
| static repeatability(mGal)                 | 0.05                    |
| 50,000m Gal horizontal acceleration(mGal)  | 0.25                    |
| 100,000m Gal horizontal acceleration(mGal) | 0.50                    |
| 100,000m Gal vertical acceleration(mGal)   | 0.25                    |
| dimension(cm)                              | 71×56×84                |
| weight(kg)                                 | Meter:86, UPS:30        |

Table 4-2-3. The specifications of Gravity meter

## Table 4-2-4. The specifications of 3 axis magnet meter

| system                 | ring core fluxgate |
|------------------------|--------------------|
| number of component    | directly 3 axis    |
| cable length(m)        | 50                 |
| sensor dimension(mm)   | φ 280×130H         |
| measurement range (nT) | ±100000            |
| resolution (nT)        | 1                  |

| Table 4-2-5. | The | specifications | of | Proton | magnet | meter |
|--------------|-----|----------------|----|--------|--------|-------|
|              |     |                |    |        |        |       |

| measurement range (nT)       | $3 \sim 7 \times 10^4$            |
|------------------------------|-----------------------------------|
| resolution (nT)              | 0.01                              |
| sampling rate                | 10sec,20sec,1min,manual,external  |
| time of applying field(sec.) | 3 to 10                           |
| sensor dimension(mm)         | φ 200×1050                        |
| weight(kg)                   | 28.6(in the air), 6.2(in the sea) |

**5.** Preliminary Results

confidential matters

6. Future Studies & Research Interest

confidential matters

#### 7. Bibliography

- Abe, N., Hirano, N., Fujiwara, T., Machida, S., Araki, E., Baba, K., Ichiki, M., Nakanishi, M., Ogawa, Y., Sugioka, H., Suyehiro, K., Ishii, T., Suzuki, T., Takahashi, A., Takahashi, E., Yamamoto, J. and Onboard Scientists, K K (2005) An outline of the interdisciplinary survey on a new type intra-plate volcanism (abstract). *Eos Trans., AGU* 86 (52), V51A-1462.
- Allard, P., Carbonnelle, J., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M. C., Maurenas, J. M., Faivre-Pierret, R., Martin, D., Sabroux, J. C. and Zettwoog, P. (1991) Eruptive and diffuse emissions of CO<sub>2</sub> from Mount Etna. *Nature* 351, 387-391.
- Aramaki, S. and Hamuro, K. (1977) Geology of the Higashi-Izu monogenetic volcano group. *Bull. Earthquake Res. Inst.* **52**, 235-366. (in Japanese)
- Awaji, S., Nakamura, K., Moriguchi, E., Kato, Y. and Ishii, T. (2004) Chemical compositions of altered volcanic rocks in the western Pacific seamount, Uyeda Ridge. *Resource Geol.*, *Soc. Resource Geol.*, *Japan* 54, 125-138. (in Japanese with English abstract)
- Cadet, J. P., K. Kobayashi, J. Aubouin, J. Boulegue, C. Deplus, R. Von Huene, L. Jolivet, T. Kanazawa, J. Kasahara, K. Koizumi, S. Lallemand, Y. Nakamura, G. Pautoto, K. Suyehiro, S. Tani, H. Tokuyama and T. Yamazaki, The Japan Trench and its juncture with the Kuril Trench: cruise results of the Kaiko project, Leg 3, Earth Planet. Sci. Lett., 83, 267-284, 1987.
- Carlson, R. L. and Johnson, H. P. (1994) On modeling the thermal evolution of the oceanic upper mantle: An assessmento f the cooling plate model. J. Geophys. Res. 99, B2, 3201-3214.
- Caress, D. W. and Chayes, D. N., 1996, Improved processing of Hydrosweep DS multibeam data on the R/V Maurice Ewing: Marine Geophysical Research, v. 18, p. 631-650.
- Chang, Q., T. Mishima, S. Yabuki, Y. Takahashi, and H. Shimizu, Sr and Nd isotope ratios and REE abundances of moraines in the mountain areas surrounding the Taklimakan Desert, NW China, Geochem. J., 34, 407-427, 2000.Aramaki, S. and Hamuro, K., 1977, Geology of the Higashi-Izu monogenetic volcano group: Bulletin of Earthquake Research Institute, v. 52, p. 235-366. (in Japanese)
- Clague, D. A., and Dalrymple, G. B., 1989, Tectonics, geochronology, and origin of the Hawaiian-Emperor volcanic chain. *The Geology of North America, The eastern Pacific and Hawaii* (Winterer, E. L., *et al.*, eds.), 188-217, Decade of North American Geology, vol. N, Geol. Soc. Amer., Boulder, CO.
- Clague, D. A., Holcomb, R. T., Sinton, J. M., Detrick, R. S., and Torresan, M. E., 1990, Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands: Earth Planetary Science Letters, v. 98, p. 175-191.
- Clague, D. A., Uto, K., Satake, K. and Davis, A. S., 2002, Eruption style and flow

emplacement in the submarine North Arch Volcanic Field, Hawaii: in Hawaiian volcanoes, deep underwater perspectives, Geophysical Monograph, American Geophysical Union, v. 128, p. 65-84.

- Crisp, J. A. (1984) Rates of magma emplacement and volcanic output. *J. Volcanol. Geotherm. Res.* **20**, 177–211.
- Curewitz, D. and Karson, J. A. (1997): Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. Journal of Volcanology and Geothermal Research, 79, 149-168.
- DeMets, C., Oblique convergence and deformation along the Kuril and Japan trenches, J. Geophys. Res., vol. 97, no. B12, 17615-17625, 1992.
- Dixon, J. E., 1997, Degassing of alkalic basalts: American Mineralogist, v. 82, p. 368-378.
- Dupré B. and Allègre C. J. (1983) Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. *Nature* **303**, 142-146.
- Ebisawa, Noriko, Hirochika Sumino, Ryuji Okazaki, Yutaka Takigami, Naoto Hirano, Keisuke Nagao & Ichiro Kaneoka, 2004, Construction of I-Xe and 40Ar-39Ar dating system using a modified VG3600 noble gas mass spectrometer", Journal of Mass Spectrometry Society of Japan, vol.52, no.4, p.219-229.
- Evensen, N. M., Hamilton, P. J. and O'Nions, R. K., Rare-earth abundances in chondritic meteorites, Geochim. Cosmochim. Acta, 42, 1199-1212, 1978.
- Faul, U. H. and Jackson, I. (2005) The seismological signature of temperature and grain size variations in the upper mantle. *Earth Planet. Sci. Lett.* **234**, 119-134.
- Fisher, R. V. and Schmincke, H.-U. (1984) Pyroclastic Rocks. Springer Verlag, 472 pp.
- Fornari, D. J., Batiza, R. and Luckman, M. A., 1987, Seamount abundances and distribution near the East Pacific Rise 0-24 deg N based on Seabeam data: In Keating, B. H., Fryer, P., Batiza, R. and Boehlert, G. (eds.), Seamounts, Islands and Atolls, AGU Geophysical Monograph, v. 43, p. 13-21.
- Fujimaki, H., Tatsumoto, M. & Aoki, K. Partition coefficients of Hr, Zr and REE between phenocrysts and groundmasses. Proceedings of the fourteenth lunar and planetary science conference, Part 2. J. Geophys. Res. 89, Suppl. B662-B672 (1984).
- Fujiwara, T., Hirano, N., Abe, N. and Takizawa, K. (2007) Subsurface structure of the "petit-spot" volcanoes on the northwestern Pacific Plate. *Geophys. Res. Lett.* 34, L13305, doi: 10.1029/2007GL030439.
- Gaillard, F., Malki, M., Marziano, G. I.-, Pichavant, M. and Scaillet, B. (2008) Carbonatite melts and electrical conductivity in the asthenosphere. *Science* **322**, 1363-1365.
- Gonnerman, H. M. and Mukhopadhyay, S. (2007) Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. *Nature* **449**, 1037-1040.
- Gradstein, F. M., F. P. Agterberg, J. G. Ogg, J. Hardenbol, P. V. Veen, J. Thierry and Z. Huang, A Mesozoic time scale, J. Geophys. Res., 99, 24051-24074, 1994.

- Gripp, A. E. and Gordon, R. G., 1990, Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model: Geophysical Research Letters, v. 17, p. 1109-1112.
- Gripp, A. E. and Gordon, R. G. (2002) Young tracks of hotspots and current plate velocities. *Geophys. J. International* **150**, 321-361.
- Hanyu T., Kaneoka I. & Nagao K. Noble gas study of HIMU and EM ocean island basalts in the Polynesian region Reading the Isotopic Code. Geochim. Cosmochim. Acta 63, 1181-1201 (1999).
- Hart, S. R., Staudigel, H., Koppers, A. A. P., Blusztajn, J., Baker, E. T., Workman, R., Jackson, M., Hauri, E., Kurz, M., Sims, K., Fornari, D., Saal, A. and Lyons, S. (2000) Vailulu'u undersea volcano: The new Samoa. *Geochem. Geophys. Geosyst.* 1, 1056, doi:10.1029/2000GC000108.
- Hasegawa, A., Horiuchi, S. & Umino, N. Seismic structure of the northwestern Japan convergent margin: A synthesis. J. Geophys. Res. 99, 22295-22311 (1994).
- Hashimoto, M., and D. D. Jackson, Plate tectonics and crustal deformation around the Japanese Islands, J. Geophys. Res., vol. 98, no. B9, 16149-16166, 1993.
- Hekinian, R., Cheminée, J-L., Dubois, J., Stoffers, P., Scott, S., Guivel, C., Garbe-Schönberg, C-D., Devey, C., Bourdon, B., Lackschewitz, K., McMurtry, G., Le Drezen, E., 2003, The Pitcairn Hotspot in the South Pacific: distribution and composition of submarine volcanic sequences: Journal of Volcanology and Geothermal Research, v. 121, p. 219-245.
- Hieronymus, C.F., & D. Bercovici, Non-hotspot formation of volcanic chains: control of tectonic and flexural stresses on magma transport. Earth Planet. Sci. Lett. 181, 539-554 (2000).
- Hirano, N., Kawamura, K., Hattori, M., Saito, K., and Ogawa, Y., 2001, A new type of intra-plate volcanism: young alkali-basalts discovered from the subducting Pacific Plate, northern Japan Trench: Geophysical Research Letters, v. 28, p. 2719-2722.
- Hirano, N., Clague, D. A., Hirata, T., Coombs, M. and Takahashi, E., 2003, Controls on eruptive style for North Arch lavas: Geochimica Cosmochimica Acta, v. 67, p. A148.
- Hirano, N., Ogawa, Y. and Saito, K. (2002): Long-lived early Cretaceous seamount volcanism in the Mariana Trench, Western Pacific Ocean. Marine Geol., 189, 371-379.
- Hirano, N., Abe, N. and the Shipboard Scientific Party (2004): Cruise report of R/V KAIREI, KR04-08. JASTEC.
- Hirano, N., Yamamoto, J., Kagi, H., and Ishii, T., 2004, Young alkali-basalt in the western Pacific containing xenocryst olivine from the lithospheric mantle: Contributions to Mineralogy and Petrology, v. 147, DOI: 10.1007/s00410-004-0593-z.
- Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S. P., Kaneoka, I., Kimura, J., Hirata, T., Ishii, T., Ogawa, Y., Machida, S. and Suyehiro, K. (2006) Volcanism in response to

plate flexure. Science 313, 1426–1428.

- Hirano, N., Koppers, A. A. P., Takahashi, A., Fujiwara, T. and Nakanishi, M. (2008)
  Seamounts, knolls and petit spot monogenetic volcanoes on the subducting Pacific Plate. *Basin Res.* 20, 543-553.
- Hirano, N., Abe, N., Yamamoto, J. and Machida, S. (2010) New insights into the oceanic lithosphere from petit-spot volcanoes and "Super-Mohole" project. *J. Geol. Soc. Japan* 116, 1-12. (in Japanese with English abstract)
- Hirschmann, M. M. (2000) Mantle solidus: Experimental constraints and the effects of peridotite composition. *Geochem. Geophys. Geosyst.* 1, 1042, doi: 10.1029/2000GC000070.
- Hirose, K. & Kushiro, I. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 114, 477-489 (1993).
- Hofmann, A. W. and Hart, S. R. (2007) Another Nail in Which Coffin?. *Science* **315**, 39-40, doi: 10.1126/science.315.5808.39c.
- Honda, M., McDougall, I., Patterson, D.B., Doulgeris, A. & Clague, D.A. Possible solar noble gas component in Hawaiian basalts. Nature 349, 149-151 (1991).
- Iwata, N. and Kaneoka, I. (2000) On the relationships between the <sup>40</sup>Ar-<sup>39</sup>Ar dating results and the conditions of basaltic samples. *Geochem. J.* **34**, 271-281.
- Jackson, E. D. and Wright, T. L., 1970, Xenoliths in the Honolulu volcanic series, Hawaii: Journal of Petrology, v. 11, p. 405-430.
- Johnson, R. H. (1970) Active submarine volcanism in the Austral Islands. *Science* **167**, 977-979.
- Kamikuri, S., Nishi, H., Motoyama, I. & Saito, S. Middle Miocene to Pleistocene radiolarian biostratigraphy in the Northwest Pacific Ocean, ODP Leg 186. The Island Arc 13, 191-226 (2004).
- Kaneoka, I. (2000) Earth's history trapped in the mantle. Science 288, 988 989.
- Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle. *Nature* **347**, 272–273.
- Karato, S. and Jung, H. (1998) Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. *Earth Planet. Sci. Lett.* 157, 193-207.
- Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E. and Suyehiro K. (2009) Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. *Science* **324**, 449-502.
- Kawamura, K. (2007) Occurrence of young basaltic rocks on the oceanward slope of the Japan Trench, off Miyako, NE Japan: discovery by KAIKO 10K#56 dive. J. Geol. Soc. Japan 113, VII-VIII.

- Keller, G., Benthic foraminifers and paleobathymetry of the Japan Trench area, Leg. 57, Deep Sea Drilling Project, in Initial Reports of the Deep Sea Drilling Project, edited by Scientific Party, pp. 835-865, U. S. Govt. Printing Office, Washington, D. C., 1980.
- Kimura, G., and K. Tamaki, The Kuril Arc and Kuril Basin the relationship between rotation of backarc plate and backarc spreading, J. Geography, vol. 94, no. 2, 69-83, 1985.
- Kinoshita, O., H. Ito, Southward movement and collision of northeast Japan against southwest Japan from the Cretaceous to the Paleogene, J. Geol. Soc. Japan, vol. 98, no. 3, 223-233, 1992.
- Kirby, S. H., 1983, Rheology of the lithosphere: Reviews of Geophysics and Space Physics, v. 21, p. 1458-1487.
- Kobayashi, K., J. P. Cadet, J. Aubouin, J. Boulegue, J. Dubois, R. Von Huene, L. Jolivet, T. Kanazawa, J. Kasahara, K. Koizumi, S. Lallemand, Y. Nakamura, G. Pautot, K. Suyehiro, S. Tani and H. Tokuyama, T. Yamazaki, Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3., Earth Planet. Sci. Lett., 83, 257-266, 1987.
- Kobayashi, K., Nakanishi, M., Tamaki, K. and Ogawa, Y., 1998, Outerslope faulting associated with the eastern Kuril and Japan Trenches: Geophysical Journal International, v. 134, p. 356-372.
- Koppers, A. A. P., Staudigel, H. and Wijbrans, J. R. (2000) Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the <sup>40</sup>Ar/<sup>39</sup>Ar incremental heating technique. *Chemical Geology* **166**, 139–158.
- Koppers, A. A. P., Staudigel, H., Pringle, M. S. and Wijbrans, J. R. (2003), Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? *Geochem. Geophys. Geosyst.* 4, 1089, doi:10.1029/2003GC000533.
- Koppers, A. A. P., Staudigel, H. & Duncan, R. A. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochem. Geophys. Geosyst. 4, doi:10.1029/2003GC000574 (2003).
- Koyama, M. and Umino, S. (1991) Why does the Higashi-Izu monogenetic volcano group exist in the Izu Peninsula?: relationships between late Quaternary volcanism and tectonics in the northern tip of the Izu-Bonin Arc. *J. Phys. Earth* **39**, 391–420.
- Lambert, I. B., and Wyllie, P. J., 1968, Stability of hornblende and a model for the low velocity zone: Nature, v. 219, p. 1240-1241.
- Le Bas, M. J., The role of aluminum in igneous clinopyroxenes with relation to their percentage, Am. J. Sci., 260, 267-288, 1962.
- Levitt, D. A., and Sandwell, D. T., 1995, Lithospheric bending at subduction zones based on depth soundings and satellite gravity: Journal of Geophysical Research, v. 100, n. B1, p. 379-400.
- Liu, C.-Q., A. Masuda, A. Okada, S. Yabuki, and Z.-L. Fan, Isotope geochemistry of

Quaternary deposits from the arid lands in northern China, Earth. Planet. Sci. Lett., 127, 25-38, 1994.

- Machida, S., Hirano, N. and Kimura, J. (2009) Evidence for recycled plate material in Pacific upper mantle unrelated to plumes. *Geochim. Cosmochim. Acta* **73**, 3028–3037, doi: 10.1016/j.gca.2009.01.026.
- Masalu, D. C. P. and Tamaki, K. (1997): Paleomagnetism of the Joban Seamount Chain: its origin and tectonic implications for the Pacific Plate. J. Geophys. Res., 102, 5145-5155.
- Masalu, D.C.P., Ogawa, Y., and Kobayashi, K. (2001): Bathymetry of the Joban seamount chain, northwestern Pacific. Marine Geology, 173, 87-96.
- Matsuzaka, S., et al., Detection of Philippine sea plate motion by very long baseline interferometry, Geophys. Res. Lett., vol. 18, no. 8, 1417-1419, 1991.
- McAdoo, D. C. & Martin, C. F. (1984) Seasat observation of lithospheric flexure seaward of trenches. J. Geophys. Res. 89, B5, 3201-3210.
- McAdoo, D. C., Martin, C. F. and Poulouse, S., 1985, Seasat observations of flexure: Evidence for a strong lithosphere: Tectonophysics, v. 116, p. 209-222.
- McDougall I. and Harrison T. (1988) *Geochronology and thermochronology by the* <sup>40</sup>Ar/<sup>39</sup>Ar *method*. Oxford University Press, 212 pp.
- McKenzie, D. P. and Parker, R. L. (1967) The north Pacific: an example of tectonics on a sphere. *Nature* **216**, 1276–1280.
- McNutt, M. K. (2006) Another Nail in the Plume Coffin? *Science* **313**, 1394, doi: 10.1126/science.1131298.
- McNutt, M. K., Caress, D. W., Reynolds, J., Jordahl1, K. A. and Duncan, R. A. (1997) Failure of plume theory to explain midplate volcanism in the southern Austral islands. *Nature* 389, 479-482.
- Mierdel, K., Keppler, H., Smyth, J. R. and Langenhorst, F. (2007) Water solubility in aluminous orthopyroxene and the origin of Earth's Asthenosphere. *Science* **315**, 364-368.
- Moore, J. G., Normark, W. R. and Lipman, P. W. (1979) Loihi seamount–a young submarine Hawaiian volcano (abstract). *Hawaii Symposium Intraplate Volcanoes & Submarine Volcanoes*, 127.
- Moore, J. G., Fornari, D. J. & Clague, D. A. Basalts from the 1877 submarine eruption of Mauna Loa, Hawaii: new data on the variation of palagonitization rate with temperature. US Geol. Surv. Bull. 1663, 1-11 (1985).
- Morgan, W. J. (1971) Convection plumes in the lower mantle. Nature 230, 42-43.
- Motoyama, I. and Maruyama, T., 1998, Neogene diatom and radiolarian biochronology of the middle-to-high latitudes of the Northwest Pacific region: Calibration to the Cande and Kent's geomagnetic polarity time scales (CK 92 and CK95). Journal of Geological Society of Japan, v. 104, p. 171-183. (in Japanese with English abstract)

- Nakanishi, M. (1993): Topographic expression of five fracture zones in the northwestern Pacific Ocean. In The Mesocoic Pacific: Geology, Tectonics, and Volcanism, (edited by M. S. Pringle et al.,) Geophys. Monogr. Ser., AGU, 77, 121-135.
- Nakanishi, M. and Winterer, E. L., 1998, Tectonic history of the Pacific-Farallon-Phoenix triple junction from Late Jurassic to Early Cretaceous: An abandoned Mesozoic spreading system in the Central Pacific Basin: Journal of Geophysical Research, v. 103, p. 12453-12468.
- Nakanishi, M., Sager, W. W. and Klaus, A. (1999): Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: implications for hotspot-triple junction interaction and oceanic plateau formation. J. Geophys. Res., 104, 7359-7556.
- Nakanishi, M., Tamaki, K. & Kobayashi, K. Mesozoic magnetic anomaly lineations and seafloor spreading history of the Northwestern Pacific. J. Geophys. Res. 94, 15437-15462 (1989).
- Nakanishi, M., Tamaki, K. and Kobayashi, K. (1992a) Magnetic anomaly lineations from late Jurassic to Early Cretaceous in the west-central Pacific Ocean. Geophys. J. International, 144, 535-545.
- Nakanishi, M., Tamaki, K. and Kobayashi, K. (1992b): A new Mesozoic isochron chart of the northwestern Pacific Ocean: paleomagnetic and tectonic implications. Geophys. Res. Lett., 19, 693-696.
- Nakanishi, M., and Winterer, E.L. (1996): Tectonic events of the pacific Plate related to formation of Ontong Java Plateau (abstract), EOS Trans, AGU 77 (46), Fall Meeting, Suppl., F713.
- Natland, J. H., 1980, The progression of volcanism in the Samoan liner volcanic chain: American Journal of Science, v. 280-A, p. 709-735.
- Niitsuma, N., Noegene tectonic evolution of southwest Japan, Modern Geology, vol. 12, no. 1-4, 497-532, 1989.
- Ogawa Y., Hirano, H. and the Shipboard Scientific Party (2003): Cruise report of R/V KAIREI, KR03-07. JASTEC.
- Ogawa, Y. and K. Kobayashi, Mud ridge on the crest of the outer swell off Japan Trench. Marine Geology, 111, 1-6, 1993.
- Ogawa, Y., Kobayashi, K., Hotta, H. and Fujioka, K., 1997, Tension cracks on the oceanward slopes of the northern Japan and Mariana Trenches: Marine Geology, v. 114, p. 111-123.
- Ohki, J., Watanabe, N., Shuto, K., and Itaya, T., Shifting of the volcanic fronts during Early to Late Miocene in the northeast Japan arc, The Island Arcs, 2, 87-93, 1993.
- Oikawa, M. and Morishita, T., 2009, Submarine topography in the east sea to the Minami–Tori Shima Island, Northwest Pacific Ocean. *Rept. Hydrogr., Oceanogr. Res.* 45, 13-22.
- Okino, K. and Fujioka, K., 2003, The Central Basin Spreading Center in the Philippine Sea:

Structure of an extinct spreading center and implications for marginal basin formation: Journal of Geophysical Research, v. 108, 2040, doi:10.1029/2001JB001095.

- Owens, W. B. & Warren, B. A. Deep circulation in the northwest corner of the Pacific Ocean. Deep-Sea Res. I 48, 959-993 (2001).
- Ozawa, A., Tagami, T. and Garcia, M. (2005) Unspiked K–Ar dating of the Honolulu rejuvenated and Ko'olau shield volcanism on O'ahu, Hawai'i. *Earth. Planet. Sci. Lett.* **232**, 1-11.
- Ozima M. & Podosek F. A. Noble gas geochemistry. Cambridge University Press, Cambridge (2002).
- Ozima, M., Honda, M. and Saito, K., 40Ar/39Ar ages of guyots in the western Pacific and discussion of their evolution, Earth Planet. Sci. Lett., 51, 475-485, 1977.
- Papale, P., 1999, Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids: American Mineralogist, v. 84, p. 477-492.
- Parsons, B., and Sclater, J.G., 1977, An analysis of the variation of ocean floor bathymetry and heat flow with age: Journal of Geophysical Research, v. 82, p. 803-827.
- Ranero, C. R., Villaseñor, A., P. J., Morgan and Weinrebe, W. (2005) Relationship between bend-faulting at trenches and intermediate-depth seismicity. *Geochem. Geophys. Geosyst.* 6, Q12002, doi: 10.1029/2005GC000997.
- Sager, W.W., Kim, J., Kalus, A., Nakanishi, M., and Khankishieva, L.M.(1999): Bathymetry of Shatsky Rise, northwestern pacific Ocean: Implications for ocean plateau development at a triple junction. J. Geophys. Res., 104, 7557-7576.
- Saito, K., Otomo, I. and Takai, T., K-Ar dating of the Tanzawa tonalitic body and some restrictions on the collision tectonics in the south Fossa Magna, cantral Japan, J. Geomag. Geoelectr., 43, 921-935, 1991.
- Sakai, T., 1980, Radiolarians from Sites 434, 435, and 436, Northwest Pacific, Leg 56, Deep Sea Drilling Project: In Scientific Party, Initial Reports of the Deep Sea Drilling Project, 56/57, Pt. 2, Washington, D.C., U.S. Government Printing Office, p. 695-733.
- Sakai, T., 1980, Radiolarians from Sites 434, 435, and 436, Northwest Pacific, Leg 56, Deep Sea Drilling Project: In Scientific Party, Initial Reports of the Deep Sea Drilling Project, 56/57, Pt. 2, Washington, D.C., U.S. Government Printing Office, p. 695-733.
- Sandwell, D. T. and Smith, W. H. F., 1997, Marine gravity anomaly from Geosat and ERS-1 satellite altimetry: Journal of Geophysical Research, v. 102, p. 10039-10054.
- Sarda P., Staudacher T. & Allegre C.J. Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 73-88 (1988).
- Seno, T., Is northern Honshu a microplate?, Tectonophys., vol. 115, no. 3.4, 177-196, 1985.
- Seno, T., Y. Ogawa, H. Tokuyama, E. Nishiyama, and A. Taira, Tectonic evolution of the triple junction off central Honshu for the past 1 million yeara, Tectonophys., vol. 160, 91-116, 1989.

- Seno, T., and T. Sakurai, Can the Okhotsk plate be discriminated from the North American Plate, J. Geophys. Res., vol. 101, no. B5, 11305-11315, 1996.
- Shen-Tu, B., and W. E. Holt, Interseismic horizontal deformation in northern Honshu and its relationship with the subduction of the Pacific plate in the Japan trench, Geophys. Res. Lett., vol. 23, no. 22, 3103-3106, 1996.
- Shimamura, H., Asada, T., Suyehiro, K., Yamada, T., and Inatani, H. (1983) Longshot experiments to study velocity anisotropy in the oceanic lithosphere of the northwestern Pacific. *Phys. Earth Planet. Interiors* **31**, 348-362.
- Shinohara, M., Fukano, T., Kanazawa, T., Araki, E., Suyehiro, K., Mochizuki, M., Nakahigashi, K., Yamada, T., and Kimihiro, M. (2008) Upper mantle and crustal seismic structure beneath the Northwestern Pacific Basin using a seafloor borehole broadband seismometer and ocean bottom seismometers. *Phys. Earth Planet. Interiors* 170, 95-106.
- Shoberg, T., and C. R. Bina, Some effect of anisotropy on velocity contrasts between subducting lithosphere and overriding mantle, Geophys. Res. Lett., vol. 21, no. 18, 1951-1954, 1994.
- Smith, J. R., Satake, K. and Suyehiro, K., 2001, Deepwater multibeam sonar surveys along the southeastern Hawaiian Ridge: Guide to the CD-ROM: Geophysical Monograph, American Geophysical Union, v. 128, p. 3-9.
- Staudacher, T. & Allègre, C. J. Terrestrial xenology. Earth Planet. Sci. Lett. 60, 389-406 (1982).
- Stein, C.A., and Stein, S. (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. *Nature* **359**, 123-129, 1992.
- Takahashi, E & Kushiro, I. Melting of a dry at high pressures and basalt magma genesis. Am. Mineral. 68, 859-879 (1983).
- Takahashi, E. Origin of basaltic magmas –implications from peridotite melting experiments and an olivine fractionation model–. Bull. Volcanol. Soc. Jap. 30, S17-S40 (1986).
- Takahashi, E., Nakajima, K. and Wright, T. L. (1998) Origin of the Columbia River Basalts: Melting model of a heterogeneous plume head. *Earth Planet. Sci. Lett.* **162**, 63-80.
- Takigami, Y, I. Kaneoka, T. Ishi, Y. Nakamura, 40Ar-39Ar ages of igneous rocks recovered from Daiichi-Kashima and Erimo Seamounts during the KAIKO project, Palaeogeography, Palaeoclimatology, Palaeoecology, 71, 71-81, 1989.
- Taylor, B., Crook, K., and Sinton, J. (1994) Extensional transform zones and oblique spreading centers. J. Geophys. Res., 99 (B10), 19,707-19,718.
- Valentine, G. and Hirano, N. (2010) Mechanisms of low-flux intraplate volcanic fields –Basin and Range (North America) and Northwest Pacific Ocean. *Geology* 38, 55–58, doi: 10.1130/G30427.1.
- von Huene, R., M. Langseth, N. Nasu, and H. Okada, Summary, Japan Trench transect, in

Initial Reports of the Deep Sea Drilling Project, edited by Scientific Party, pp. 473-503, U.S.Govt. Printing Office, 1980.

- von Huene, and N. Nasu, Japan Trench transected, on Leg 57, Geotimes, vol. 23, no. 4, 16-21, 1978.
- Wang, D., Mookherjee, M., Xu, Y. and Karato, S. (2006) The effect of water on the electrical conductivity of olivine. *Nature* 443, 977–980.
- Watts, A. B. Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge (2001).
- Watts, A. B. and Zhong, S., 2000, Observations of flexure and the rheology of oceanic lithosphere: Geophysical Journal International, v. 142, p. 855-875.
- Wessel, P. and Smith, W. H. F., 1998, New version of the Generic Mapping Tools released: EOS Transactions, AGU, v. 76, p.329.
- Wessel, P., 1992, Thermal stresses and the bimodal distribution of elastic thickness estimates of the oceanic lithosphere: Journal of Geophysical Research, v. 97, p. 14177-14193.
- Wetherill, G. W. Variations in the isotopic abundances of neon and argon extracted from radioactive minerals. Phys. Rev. 96, 679-683 (1954).
- Wyllie, P. J. Magma genesis, plate tectonics, and chemical differentiation of the Earth. Rev. Geopohys. 26, 370-404 (1988).
- Wyllie, P. J. (1995) Experimental petrology of upper mantle materials, processes and products. J. Geodynamics 20, 429-468.
- Yamamoto, J., Hirano, N., Hanyu, T., Kagi, H., and Kaneoka, I, 2003, Noble gases in mantlederived xenocrysts in an alkali basalt from Japan Trench oceanward slope: in Plumes and problems of deep structures of alkaline magmatism, Russian Academy of Sciences,
- Yoshino, T., Matsuzaki, T., Yamashita, S. and Katsura, T. (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. *Nature* **443**, 973–976.
- Yoshino, T., Matsuzaki, T., Shatskiy, A. and Katsura, T. (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. *Earth Planet. Sci. Lett.* 288, 291–300.
- Zhang, J., K. Takahashi, H. Wushiki, S. Yabuki, J.-M.. Xiong, and A. Masuda, Water geochemistry of the rivers around the Taklimakan Desert (NW China): Crustal weathering and evaporation processes in arid land, Chem. Geol., 119, 225-237, 1995.

## 8. Notice of Using

This cruise report is a preliminary documentation as of the end of the cruise.

This report may not be corrected even if changes on contents (i.e. taxonomic classifications) may be found after its publication. This report may also be changed without notice. Data on this cruise report may be raw or unprocessed. If you are going to use or refer to the data written on this report, please ask the Chief Scientist for latest information.

Users of data or results on this cruise report are requested to submit their results to the Data Management Group of JAMSTEC.

The rock samples and data during 6K dives and onboard multibeam surveys on this cruise are absolutely confidential matters during 2 years after YK10-05 cruise.

| Sample<br>No. | х | Diamiter (mm)<br>( Y Z |     |       | Wt (g) |
|---------------|---|------------------------|-----|-------|--------|
| #1201-R01     |   | 160                    | 130 | 80    | 1750   |
| #1201-R02     |   | 110                    | 85  | 30    | 600    |
| #1201-R03     |   | 250                    | 240 | 50    | 4800   |
| #1201-R04     |   | 175                    | 125 | 40    | 950    |
| #1201-R05SC   |   |                        |     |       | 20     |
| #1201-unknown |   |                        |     |       | 140    |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     |       |        |
|               |   |                        |     | total | 8260   |

| Sample<br>No. | Х | Diam<br>Y | niter (mm)<br>Z |     | Wt (g) |
|---------------|---|-----------|-----------------|-----|--------|
| #1202-R01     |   |           |                 |     |        |
| #1202-R02     |   |           |                 |     |        |
| #1202-R03     |   | 43        | 27              | 27  | 23     |
| #1202-R04     |   | 170       | 115             | 90  | 990    |
| #1202-R05     |   | 135       | 75              | 75  | 280    |
| #1202-R06     |   | 130       | 95              | 50  | 520    |
| #1202-R07     |   | 130       | 130             | 55  | 700    |
| #1202-R08     |   | 105       | 85              | 45  | 530    |
| #1202-R09     |   | 135       | 125             | 55  | 880    |
| #1202-R10     |   | 80        | 60              | 40  | 150    |
| #1202-R11     |   | 65        | 50              | 20  | 60     |
| #1202-R12     |   | 95        | 80              | 40  | 310    |
| #1202-R13     |   | 120       | 70              | 60  | 440    |
| #1202-R14     |   | 200       | 118             | 105 | 1600   |
|               |   |           |                 |     |        |
|               |   |           |                 |     |        |
|               |   |           |                 |     |        |
|               |   |           |                 |     |        |
|               |   |           |                 |     |        |

total 6483

| Sample      |   | Diam | niter (mm) |       | $W_{t}(\alpha)$ |
|-------------|---|------|------------|-------|-----------------|
| No          | Х | Y    | Z          |       | wr (g)          |
| #1203-R01   |   | 250  | 150        | 85    | 1600            |
| #1203-R02   |   | 105  | 90         | 80    | 400             |
| #1203-R03   |   | 100  | 45         | 40    | 200             |
| #1203-R04   |   | 240  | 270        | 115   | 2250            |
| #1203-R05   |   | 130  | 90         | 50    | 340             |
| #1203-R06   |   | 440  | 360        | 125   | 10700           |
| #1203-R07   |   | 160  | 160        | 60    | 1320            |
| #1203-R08   |   | 400  | 230        | 90    | 6200            |
| #1203-R09   |   | 100  | 80         | 40    | 180             |
| #1203-R10   |   | 470  | 300        | 180   | 10200           |
| #1203-R11   |   | 290  | 240        | 90    | 5580            |
| #1203-R12   |   | 330  | 300        | 90    | 7750            |
| #1203-R13   |   | 220  | 180        | 70    | 2320            |
| #1203-R14   |   | 260  | 210        | 70    | 1750            |
| #1203-R15   |   | 315  | 110        | 170   | 10600           |
| #1203-R16SC |   |      |            |       | 650             |
| #1203-R17   |   | 360  | 260        | 200   | 15200           |
| #1203-R18   |   | 330  | 200        | 160   | 9200            |
| #1203-R19   |   | 110  | 70         | 50    | 330             |
| #1203-R20   |   | 170  | 150        | 100   | 2400            |
| #1203-R21   |   | 220  | 140        | 90    | 2800            |
| #1203-R22   |   | 170  | 130        | 120   | 2350            |
| #1203-R23   |   | 200  | 170        | 120   | 3700            |
| #1203-R24   |   | 230  | 200        | 130   | 4600            |
| #1203-R25   |   | 240  | 170        | 160   | 6500            |
| #1203-R26   |   | 155  | 125        | 120   | 1800            |
| #1203-R27   |   | 200  | 180        | 120   | 3550            |
| #1203-R28   |   | 270  | 185        | 200   | 10200           |
| #1203-R29   |   | 290  | 155        | 45    | 1600            |
| #1203-R30   |   | 185  | 180        | 40    | 900             |
| #1203-R31   |   | 85   | 90         | 65    | 750             |
|             |   |      |            | total | 127920          |

| Sample    |   | Diam | niter (mm) |       | M + (n) |
|-----------|---|------|------------|-------|---------|
| No.       | Х | Y    | Z          |       | wi (g)  |
| #1204-R01 |   | 180  | 145        | 80    | 1530    |
| #1204-R02 |   | 90   | 85         | 40    | 210     |
| #1204-R03 |   | 55   | 55         | 9     | 50      |
| #1204-R04 |   | 53   | 24         | 15    | 30      |
| #1204-R05 |   | 180  | 135        | 95    | 1500    |
| #1204-R06 |   | 170  | 135        | 130   | 900     |
| #1204-R07 |   | 120  | 90         | 35    | 350     |
| #1204-R08 |   | 245  | 140        | 120   | 2530    |
| #1204-R09 |   | 100  | 75         | 75    | 410     |
| #1204-R10 |   | 150  | 110        | 95    | 1320    |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            |       |         |
|           |   |      |            | total | 8830    |

| Sample         |   | Diami | ter (mm) |     | $M_{+}(\alpha)$ |
|----------------|---|-------|----------|-----|-----------------|
| No.            | Х | Y     | Z        |     | wi (g)          |
| #1205-R01      |   | 230   | 180      | 130 | 6300            |
| #1205-R02      |   | 100   | 92       | 66  | 650             |
| #1205-R03      |   | 160   | 125      | 40  | 1200            |
| #1205-R04      |   | 235   | 155      | 60  | 2100            |
| #1205-R05      |   | 220   | 100      | 80  | 2200            |
| #1205-R06      |   | 135   | 85       | 40  | 380             |
| #1205-R07      | ? | ?     | ?        |     | 420             |
| #1205-R08      | ? | ?     | ?        |     | 250             |
| #1205-R09      |   | 270   | 205      | 155 | 10000           |
| #1205-R10      |   | 240   | 160      | 65  | 2750            |
| #1205-R11SC    |   |       |          |     | 150             |
| #1205-R12      |   | 195   | 190      | 145 | 7700            |
| #1205-unknown1 |   | 210   | 190      | 22  | 900             |
| #1205-unknown2 |   |       |          |     | 200             |
|                |   |       |          |     |                 |
|                |   |       |          |     |                 |
|                |   |       |          |     |                 |
|                |   |       |          |     |                 |
|                |   |       |          |     |                 |
|                |   |       |          |     |                 |
|                |   |       |          |     |                 |
|                |   |       |          |     |                 |

total 35200

| No.         X         Y         Z         WI (g)           #1206-R01         200         170         80         2200           #1206-R02         215         140         80         1600           #1206-R03         370         300         125         4450           #1206-R04         360         125         45         1900           #1206-R05         250         210         140         8650           #1206-R06         130         85         70         600           #1206-R07         180         140         50         1450           #1206-R08         250         195         120         3550           #1206-R09         420         330         250         22500 | Sample    |   | Diam | niter (mm) |       | $M_{+}(\alpha)$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|------|------------|-------|-----------------|
| #1206-R01       200       170       80       2200         #1206-R02       215       140       80       1600         #1206-R03       370       300       125       4450         #1206-R04       360       125       45       1900         #1206-R05       250       210       140       8650         #1206-R06       130       85       70       600         #1206-R07       180       140       50       1450         #1206-R08       250       195       120       3550         #1206-R09       420       330       250       22500                                                                                                                                                    | No.       | Х | Y    | Z          |       | wi (g)          |
| #1206-R02       215       140       80       1600         #1206-R03       370       300       125       4450         #1206-R04       360       125       45       1900         #1206-R05       250       210       140       8650         #1206-R06       130       85       70       600         #1206-R07       180       140       50       1450         #1206-R08       250       195       120       3550         #1206-R09       420       330       250       22500                                                                                                                                                                                                              | #1206-R01 |   | 200  | 170        | 80    | 2200            |
| #1206-R03       370       300       125       4450         #1206-R04       360       125       45       1900         #1206-R05       250       210       140       8650         #1206-R06       130       85       70       600         #1206-R07       180       140       50       1450         #1206-R08       250       195       120       3550         #1206-R09       420       330       250       22500                                                                                                                                                                                                                                                                        | #1206-R02 |   | 215  | 140        | 80    | 1600            |
| #1206-R04       360       125       45       1900         #1206-R05       250       210       140       8650         #1206-R06       130       85       70       600         #1206-R07       180       140       50       1450         #1206-R08       250       195       120       3550         #1206-R09       420       330       250       22500                                                                                                                                                                                                                                                                                                                                   | #1206-R03 |   | 370  | 300        | 125   | 4450            |
| #1206-R05       250       210       140       8650         #1206-R06       130       85       70       600         #1206-R07       180       140       50       1450         #1206-R08       250       195       120       3550         #1206-R09       420       330       250       22500                                                                                                                                                                                                                                                                                                                                                                                             | #1206-R04 |   | 360  | 125        | 45    | 1900            |
| #1206-R06       130       85       70       600         #1206-R07       180       140       50       1450         #1206-R08       250       195       120       3550         #1206-R09       420       330       250       22500                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #1206-R05 |   | 250  | 210        | 140   | 8650            |
| #1206-R07 180 140 50 1450<br>#1206-R08 250 195 120 3550<br>#1206-R09 420 330 250 22500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #1206-R06 |   | 130  | 85         | 70    | 600             |
| #1206-R08 250 195 120 3550<br>#1206-R09 420 330 250 22500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #1206-R07 |   | 180  | 140        | 50    | 1450            |
| #1206-R09 420 330 250 22500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #1206-R08 |   | 250  | 195        | 120   | 3550            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #1206-R09 |   | 420  | 330        | 250   | 22500           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |   |      |            |       |                 |
| total 46900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |   |      |            | total | 46900           |

| Sample      |   | Dian | niter (mm) |       | $M + \langle n \rangle$ |
|-------------|---|------|------------|-------|-------------------------|
| No.         | Х | Y    | Z          |       | wi (g)                  |
| #1207-R01   |   | 80   | 110        | 90    | 850                     |
| #1207-R02   |   | 100  | 90         | 70    | 800                     |
| #1207-R03   |   | 100  | 70         | 70    | 750                     |
| #1207-R04   |   | 70   | 70         | 90    | 700                     |
| #1207-R05   |   | 80   | 75         | 90    | 750                     |
| #1207-R06SC |   |      |            |       | 540                     |
| #1207-R07   |   | 210  | 90         | 80    | 2150                    |
| #1207-R08   |   | 120  | 80         | 35    | 550                     |
| #1207-R09   |   | 200  | 140        | 160   | 5200                    |
| #1207-R10   |   | 200  | 140        | 120   | 5500                    |
| #1207-R11   |   | 90   | 50         | 35    | 200                     |
| #1207-R12   |   | 90   | 60         | 40    | 400                     |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            |       |                         |
|             |   |      |            | total | 18390                   |

| Sample    |   | Diam | iter (mm) |       | $M_{+}$ |
|-----------|---|------|-----------|-------|---------|
| No.       | Х | Y    | Z         |       | wi (g)  |
| #1208-R01 |   | 130  | 90        | 45    | 400     |
| #1208-R02 |   | 80   | 60        | 50    | 250     |
| #1208-R03 |   | 95   | 65        | 55    | 250     |
| #1208-R04 |   | 125  | 100       | 65    | 850     |
| #1208-R05 |   | 130  | 110       | 70    | 1150    |
| #1208-R06 |   | 125  | 110       | 70    | 1000    |
| #1208-R07 |   | 105  | 95        | 85    | 750     |
| #1208-R08 |   | 145  | 115       | 70    | 1200    |
| #1208-R09 |   | 140  | 140       | 65    | 1050    |
| #1208-R10 |   | 120  | 100       | 60    | 650     |
| #1208-R11 |   | 180  | 125       | 110   | 2000    |
| #1208-R12 |   | 160  | 85        | 40    | 550     |
| #1208-R13 |   | 70   | 60        | 50    | 200     |
| #1208-R14 |   | 230  | 150       | 140   | 4000    |
| #1208-R15 |   | 160  | 150       | 120   | 2050    |
|           |   |      |           |       |         |
|           |   |      |           |       |         |
|           |   |      |           |       |         |
|           |   |      |           |       |         |
|           |   |      |           |       |         |
|           |   |      |           |       |         |
|           |   |      |           |       |         |
|           |   |      |           |       |         |
|           |   |      |           |       |         |
|           |   |      |           | total | 16350   |

| Sample        |   | Diam | iter (mm) |     | $M_{t}$ |
|---------------|---|------|-----------|-----|---------|
| No.           | Х | Y    | Z         |     | wi (g)  |
| #1209-R01     |   | 210  | 140       | 55  | 2250    |
| #1209-R02     |   | 180  | 115       | 100 | 3500    |
| #1209-R03     |   | 150  | 90        | 60  | 1850    |
| #1209-R04     |   | 160  | 80        | 65  | 950     |
| #1209-R05     |   | 225  | 185       | 20  | 2400    |
| #1209-R06     |   | 340  | 190       | 80  | 6800    |
| #1209-R07     |   | 120  | 90        | 55  | 1000    |
| #1209-R08     |   | 110  | 90        | 80  | 1100    |
| #1209-R09     |   | 110  | 75        | 70  | 600     |
| #1209-R10     |   | 140  | 120       | 65  | 1400    |
| #1209-R11     |   | 50   | 40        | 39  | 100     |
| #1209-R12     |   | 180  | 95        | 70  | 1850    |
| #1209-R13     |   | 300  | 220       | 170 | 10750   |
| #1209-R14     |   | 430  | 210       | 210 | 21450   |
| #1209-R15     |   | 130  | 100       | 90  | 1100    |
| #1209-R16     |   | 150  | 110       | 60  | 1200    |
| #1209-R17     |   | 350  | 220       | 110 | 9650    |
| #1209-R18     |   | 540  | 350       | 220 | 18500   |
| #1209-R19     |   | 200  | 150       | 150 | 6050    |
| #1209-R20     |   | 220  | 130       | 94  | 4150    |
| #1209-unknown |   |      |           |     | ?       |
|               |   |      |           |     |         |
|               |   |      |           |     |         |
|               |   |      |           |     |         |

total 96650

| 6K #1201              |            |       |            |       |           |       |           |         |            |       |            |       |           |       |            |       |           |         |           |       |            |       |         |
|-----------------------|------------|-------|------------|-------|-----------|-------|-----------|---------|------------|-------|------------|-------|-----------|-------|------------|-------|-----------|---------|-----------|-------|------------|-------|---------|
|                       | Hirano     |       | Machida \$ | Shiki | Ishii     |       | Shimizu   |         | Morishita  |       | Suzuki     |       | Hosoi     |       | ljuin      |       | Machida   | Satoshi | Imada     |       | Kato       |       | archive |
| Rock No.              | weight (g) | style | weight (g) | style | weight (g | style | weight (g | ) style | weight (g) | style | weight (g) | style | weight (g | style | weight (g) | style | weight (g | ) style | weight (g | style | weight (g) | style |         |
| 6K #1201-R01          | 1000       |       |            |       |           |       |           |         |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1201-R02          | 300        |       |            |       |           |       |           |         |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1201-R03          | 2000       |       |            |       |           |       | 1700      | block   |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1201-R04          | 400        | block | 300        | block | 100       | block |           |         |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1201-R05 (archive | e)         |       |            |       |           |       |           |         |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1201-unknown      | 0          |       |            |       |           |       |           |         |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |

| 6K #1202            |              |        |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        |         |
|---------------------|--------------|--------|------------|-------|-----------|-----------|-----------|-----------|------------|-------|------------|-------|-----------|-------|------------|-------|------------|---------|-----------|-------|------------|--------|---------|
|                     | Hirano       |        | Machida 3  | Shiki | Ishii     |           | Shimizu   |           | Morishita  |       | Suzuki     |       | Hosoi     |       | ljuin      |       | Machida \$ | Satoshi | Imada     |       | Kato       |        | archive |
| Rock No.            | weight (g) s | style  | weight (g) | style | weight (g | style     | weight (g | ) style   | weight (g) | style | weight (g) | style | weight (g | style | weight (g) | style | weight (g) | style   | weight (g | style | weight (g) | style  |         |
| 6K #1202-R01 (lost) |              | $\sim$ |            |       |           | $\square$ | $\sim$    | $\square$ |            |       |            |       |           |       |            |       |            |         | $\sim$    |       |            | $\sim$ |         |
| 6K #1202-R02 (lost) |              | $\sim$ |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            | $\sim$ |         |
| 6K #1202-R03        | 10 b         | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R04        | 250 b        | lock   | 500        | block |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R05        | 100 b        | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R06        | 250 b        | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R07        | 350 b        | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R08        | 100 b        | lock   |            |       |           |           |           |           |            |       | 50         | chip  | 100       | block |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R09        | 400 b        | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R10        | 100 b        | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R11        | 40 b         | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R12        | 150 b        | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R13        | 250 b        | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-R14        | 800 b        | lock   |            |       |           |           |           |           |            |       |            |       |           |       |            |       |            |         |           |       |            |        | 0       |
| 6K #1202-unknown    |              |        | 1          | 1     |           | 1         |           | 1         |            |       | 1          |       |           | 1     | 1          |       | 1          |         |           | 1     | 1          |        | 0       |

| 6K #1203         |                  |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       |         |
|------------------|------------------|---------------|--------|------------|-------|------------|-------|-----------|-------|------------|-------|------------|-------|------------|-------|------------|---------|-----------|-------|------------|-------|---------|
|                  | Hirano           | Machida Shi   | iki Is | shii       |       | Shimizu    |       | Morishita |       | Suzuki     |       | Hosoi      |       | ljuin      |       | Machida S  | Satoshi | Imada     |       | Kato       |       | archive |
| Rock No.         | weight (g) style | weight (g) st | tyle w | veight (g) | style | weight (g) | style | weight (g | style | weight (g) | style   | weight (g | style | weight (g) | style |         |
| 6K #1203-R01     | 350 block        | 500 bl        | lock   | 50 (       | chip  |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R02     | 250 block        |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R03     | 150 block        |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R04     | 500 block        | 750 bl        | lock   |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R05     | 180 block        |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R06     | 3000 block       | 3500 bl       | lock   | 50 (       | chip  | 550        | block | 440       | block |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R07     | 250 block        |               |        |            |       |            |       |           |       |            |       | 500        | block |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R08     | 3500 block       |               |        | 50 (       | chip  |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R09     | 70 chip          |               |        |            |       | 50         | chip  |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R10     | 3000 block       | 2500 bl       | lock   |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R11     | 3500 block       |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R12     | 3750 block       |               |        |            |       |            |       |           |       |            |       | 4000       | block |            |       |            |         |           |       |            |       | ×       |
| 6K #1203-R13     | 1500 block       |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R14     | 1100 block       |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R15     | 2500 block       | 3000 sla      | lab    | 700 s      | slab  | 500        | slab  | 350       | slab  |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R16     | 400 block        |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R17     | 3500 block       | 5500 bl       | lock   | 50 (       | chip  |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | ×       |
| 6K #1203-R18     |                  | 2500 bl       | lock   | 300 s      | slab  |            |       | 2000      | chip  |            |       | 2000       |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R19     | 100 block        | 150 bl        | lock   | 50 (       | chip  |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R20     | 700 block        | 800 bl        | lock   |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R21     | 450 block        | 1000 bl       | lock   |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R22     | 700 block        | 600 bl        | lock   |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R23     | 800 block        | 900 bl        | lock   |            |       |            |       | 350       | chip  | 50         | chip  |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R24     | 1300 block       | 1500 bl       | lock   |            |       | 300        | slab  |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R25     | 1200 block       | 1500 bl       | lock   | 50 (       | chip  |            |       | 280       | chip  |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R26     | 800 block        |               |        |            |       |            |       |           |       |            |       | 1000       | block |            |       |            |         |           |       |            |       | ×       |
| 6K #1203-R27     | 650 block        | 800 bl        | lock   |            |       | 400        | slab  |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R28     | 2000 block       | 3500 bl       | lock   | 500 s      | slab  |            |       | 300       | chip  | 50         | chip  |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R29     | 950 block        |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | Ō       |
| 6K #1203-R30     | 500 block        |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-R31     | 400 block        |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1203-unknown | ?                |               |        |            |       |            |       |           |       |            |       |            |       |            |       |            |         |           |       |            |       | Ō       |

| 6K #1204         |           |         |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       |         |
|------------------|-----------|---------|------------|-------|-----------|-------|-----------|---------|-----------|-------|------------|-------|------------|-------|------------|-------|------------|---------|-----------|-------|------------|-------|---------|
|                  | Hirano    |         | Machida S  | Shiki | Ishii     |       | Shimizu   |         | Morishita |       | Suzuki     |       | Hosoi      |       | ljuin      |       | Machida \$ | Satoshi | Imada     |       | Kato       |       | archive |
| Rock No.         | weight (g | ) style | weight (g) | style | weight (g | style | weight (g | ) style | weight (g | style | weight (g) | style   | weight (g | style | weight (g) | style |         |
| 6K #1204-R01     | 700       | block   |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R02     | 100       | block   |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R03     | 20        | block   |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R04     | whole     | block   |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R05     | 500       | block   | 600        | block |           |       | 50        | ) slab  | 120       | block |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R06     | 400       | block   | 200        | block |           |       |           |         |           |       |            |       | 200        | block |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R07     | 200       | block   |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R08     | 1000      | block   |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R09     | 150       | block   |            |       |           |       |           |         | 50        | block |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-R10     | 400       | block   |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |
| 6K #1204-unknown | ?         |         |            |       |           |       |           |         |           |       |            |       |            |       |            |       |            |         |           |       |            |       | 0       |

| 6K #1205          |                  |                  |                  |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       |         |
|-------------------|------------------|------------------|------------------|------------------|------------|-------|------------|-------|-----------|-------|------------|-------|-----------|---------|-----------|-------|------------|-------|---------|
|                   | Hirano           | Machida Shiki    | Ishii            | Shimizu          | Morishita  |       | Suzuki     |       | Hosoi     |       | ljuin      |       | Machida   | Satoshi | Imada     |       | Kato       |       | archive |
| Rock No.          | weight (g) style | weight (g) style | weight (g) style | weight (g) style | weight (g) | style | weight (g) | style | weight (g | style | weight (g) | style | weight (g | style   | weight (g | style | weight (g) | style |         |
| 6K #1205-R01      | 2000 block       | 1000 slab        | 50 chip          |                  | 300        | slab  |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R02      | 200 block        | 200 slab         | 50 chip          |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R03      | 400 block        | 400 slab         | 50 chip          |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R04      | 600 block        | 600 slab         | 50 chip          |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R05      | 600 block        |                  | 100 slab         |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R06      | 100 block        | 100 slab         |                  |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R07      | 150 block        |                  |                  |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R08      | 100 block        |                  |                  |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R09      | 2000 block       | 5000 slab        | 50 chip          |                  | 300        | slab  |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R10      | 800 block        | 1000 slab        | 50 chip          |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R11      | 50 block         |                  |                  |                  | 30         | block |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-R12      | 2000 block       | 2000 slab        | 50 chip          |                  | 330        | slab  |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-unknown1 | 300 block        |                  | 50 chip          |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |
| 6K #1205-unknown2 | whole block      |                  |                  |                  |            |       |            |       |           |       |            |       |           |         |           |       |            |       | 0       |

| 6K #1206         |                  |                  |                  |                  |                 |            |          |                  |                  |                  |         |             |            |       |         |
|------------------|------------------|------------------|------------------|------------------|-----------------|------------|----------|------------------|------------------|------------------|---------|-------------|------------|-------|---------|
|                  | Hirano           | Machida Shiki    | Ishii            | Shimizu          | Morishita       | Suzuki     |          | Hosoi            | ljuin            | Machida Satos    | hi Imad | 1           | Kato       |       | archive |
| Rock No.         | weight (g) style | weight (g) style | weight (g) style | weight (g) style | weight (g) styl | e weight ( | g) style | weight (g) style | weight (g) style | weight (g) style | weigh   | t (g) style | weight (g) | style |         |
| 6K #1206-R01     | 700 block        | 500 slab         | 50 chip          | 10 slab          | 150 slal        | b          |          | 500 block        |                  |                  |         |             |            |       | 0       |
| 6K #1206-R02     | 500 block        |                  | 50 chip          | 50 block         | 100 sla         | 0          |          | 700 block        |                  |                  |         |             |            |       | 0       |
| 6K #1206-R03     | 1200 block       | 1200 slab        | 50 chip          | 10 slab          | 200 slal        | 0          |          | 1250 block       |                  |                  |         |             |            |       | 0       |
| 6K #1206-R04     | 600 block        |                  | 50 chip          | 20 chip          |                 |            |          | 400 block        |                  |                  |         |             |            |       | 0       |
| 6K #1206-R05     | 2800 block       | 800 slab         | 50 chip          | 10 slab          | 800 sla         | 0          |          | 4450 block       |                  |                  |         |             |            |       | 0       |
| 6K #1206-R06     | 200 block        |                  | 50 chip          |                  |                 |            |          | 250 block        |                  |                  |         |             |            |       | 0       |
| 6K #1206-R07     | 500 block        |                  | 50 chip          |                  |                 |            |          | 750 block        |                  |                  |         |             |            |       | 0       |
| 6K #1206-R08     | 1000 block       | 600 slab         | 50 chip          |                  |                 |            |          | 1000 block       |                  |                  |         |             |            |       | 0       |
| 6K #1206-R09     | 7000 block       | 4000 slab        | 50 chip          | 10 chip          |                 |            |          | 10000 block      |                  |                  |         |             |            |       | 0       |
| 6K #1206-unknown | whole block      |                  |                  |                  |                 |            |          |                  |                  |                  |         |             |            |       | 0       |

| 6K #1207         | Hirano Machida S |       |               |       |              |              |           |         |           |         |           |        |            |       |            |       |                 |         |           |         |            |       |         |
|------------------|------------------|-------|---------------|-------|--------------|--------------|-----------|---------|-----------|---------|-----------|--------|------------|-------|------------|-------|-----------------|---------|-----------|---------|------------|-------|---------|
|                  |                  |       | Machida Shiki |       | Ishii        |              | Shimizu   |         | Morishita |         | Suzuki    |        | Hosoi      |       | ljuin      |       | Machida Satoshi |         | Imada     |         | Kato       |       | archive |
| Rock No.         | weight (g)       | style | weight (g)    | style | weight (g    | style        | weight (g | ) style | weight (g | ) style | weight (g | )style | weight (g) | style | weight (g) | style | weight (g       | ) style | weight (g | ) style | weight (g) | style |         |
| 6K #1207-R01     |                  |       | 475           | block |              |              | 450       | block   | T         |         |           |        |            |       |            |       |                 |         |           |         |            |       | ×       |
| 6K #1207-R02     | 400              | block | 400           | block |              | 1            | 1         |         | T         |         |           |        |            |       |            |       | 1               | 1       | 1         |         |            |       | ×       |
| 6K #1207-R03     |                  |       |               |       | 700 (half of | this for 6K) | 390       | block   | T         |         |           |        |            |       |            |       |                 |         | 375       | block   |            |       | ×       |
| 6K #1207-R04     |                  | 1     |               | ſ     |              | 1            | 1         |         | T         |         |           |        |            |       |            |       | 1               | 1       | 1         |         |            |       | ×       |
| 6K #1207-R05     |                  |       |               |       |              |              |           |         |           |         | 375       | slab   | 375        | block |            |       |                 |         |           |         |            |       | ×       |
| 6K #1207-R06     | 160              | block | 170           | block | 50           | chip         |           |         |           |         |           |        |            |       |            |       |                 |         |           |         |            |       | 0       |
| 6K #1207-R07     | 450              | block | 530           | block | 50           | chip         |           |         |           |         |           |        |            |       |            |       |                 |         |           |         |            |       | 0       |
| 6K #1207-R08     | 100              | block | 150           | block | 50           | chip         |           |         |           |         |           |        |            |       |            |       |                 |         |           |         |            |       | 0       |
| 6K #1207-R09     | 500              | block | 750           | block | 50           | chip         |           |         | T         |         |           |        |            |       |            |       |                 |         |           |         |            |       | 0       |
| 6K #1207-R10     | 800              | block | 970           | block | 50           | chip         | 1         |         | T         |         |           |        |            |       |            |       | 1               | 1       | 1         |         |            |       | 0       |
| 6K #1207-R11     |                  |       |               |       |              |              |           |         |           |         |           |        |            |       |            |       |                 |         |           |         |            |       | 0       |
| 6K #1207-R12     |                  |       | 200           | block |              |              |           |         |           |         |           |        |            |       |            |       |                 |         |           |         |            |       | 0       |
| 6K #1207-unknown |                  |       |               | ſ     |              |              |           |         |           |         |           |        |            |       |            |       |                 |         |           |         |            |       | 0       |

| 6K #1208         |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |         |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------|
|                  | Hirano           | Machida Shiki    | Ishii            | Shimizu          | Morishita        | Suzuki           | Hosoi            | ljuin            | Machida Satoshi  | Imada            | Kato             | archive |
| Rock No.         | weight (g) style |         |
| 6K #1208-R01     | 170 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R02     | 130 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R03     | 150 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R04     | 180 block        |                  |                  |                  |                  | 200 slab         |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R05     | 280 slab         |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R06     | 560 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R07     | 410 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R08     | 280 slab         |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R09     | 630 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R10     | 360 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R11     | 480 block        |                  |                  |                  | 530 block        | 200 slab         |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R12     | 260 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R13     | 100 block        |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R14     |                  |                  |                  | 2000 block       |                  |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-R15     | 450 slab         |                  |                  |                  | 500 slab         |                  |                  |                  |                  |                  |                  | 0       |
| 6K #1208-unknown |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 0       |

| 6K #1209         |            |       |            |       |            |         |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         |   |
|------------------|------------|-------|------------|-------|------------|---------|------------|-----------|-----------|--------|------------|-------|-----------|-------|------------|-----------------|------------|-------|------------|-------|------------|---------|---|
|                  | Hirano     |       | Machida S  | Shiki | Ishii      | Shimizu |            | Morishita |           | Suzuki |            | Hosoi |           | ljuin |            | Machida Satoshi |            | Imada |            | Kato  |            | archive |   |
| Rock No.         | weight (g) | style | weight (g) | style | weight (g) | style   | weight (g) | style     | weight (g | style  | weight (g) | style | weight (g | style | weight (g) | style           | weight (g) | style | weight (g) | style | weight (g) | style   |   |
| 6K #1209-R01     | 1100       | block |            |       | 50         | chip    |            |           | 210       | slab   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R02     | 800        | block | 900        | block | 50         | chip    |            |           | 50        | chip   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R03     | 450        | block | 500        | block | 50         | chip    |            |           | 50        | chip   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R04     | 200        | block | 300        | block | 50         | chip    |            |           | 50        | chip   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R05     | 1300       | block |            |       | 50         | chip    |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R06     | 3500       | block |            |       |            |         |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R07     | 600        | block |            |       |            |         |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R08     | 650        | block |            |       |            |         |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R09     | 130        | block | 150        | block | 50         | chip    |            |           | 50        | chip   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R10     | 300        | block | 380        | block |            |         |            |           | 50        | chip   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R11     |            |       |            |       | 50         | chip    |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R12     | 950        | block |            |       |            |         |            |           | 50        | chip   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R13     | 5700       | block |            |       | 350        | slab    |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R14     | 5100       | block | 5500       | block | 350        | slab    |            |           | 300       | slab   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R15     | 700        | block |            |       |            |         |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R16     | 600        | block |            |       |            |         |            |           | 180       | slab   |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R17     | 1500       | block | 1600       | block | 1000       | block   | 1000       | block     |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | 0 |
| 6K #1209-R18     | 3800       | block | 5500       | block | 350        | slab    |            |           | 400       | slab   |            |       |           |       |            |                 |            |       |            |       |            |         | Ō |
| 6K #1209-R19     | 1500       | block | 1700       | block | 50         | chip    |            |           | 50        | chip   |            |       |           |       |            |                 |            |       |            |       |            |         | Ō |
| 6K #1209-R20     | 1500       | block | 1500       | block | 50         | chip    |            |           | 50        | chip   |            |       |           |       |            |                 |            |       |            |       |            |         | Ō |
| 6K #1209-unknown |            |       |            |       |            |         |            |           |           |        |            |       |           |       |            |                 |            |       |            |       |            |         | Ō |

|          | Hirano     | Machida Shiki | Ishii      | Shimizu    | Morishita  | Suzuki     | Hosoi      | ljuin      | Machida Satoshi | Imada      | Kato       |
|----------|------------|---------------|------------|------------|------------|------------|------------|------------|-----------------|------------|------------|
| DIVE No. | weight (g) | weight (g)    | weight (g) | weight (g) | weight (g) | weight (g) | weight (g) | weight (g) | weight (g)      | weight (g) | weight (g) |
| 6K #1201 | 3700       | 300           | 100        | 1700       |            |            |            |            |                 |            |            |
| 6K #1202 | 2800       | 500           |            |            |            | 50         | 100        |            |                 |            |            |
| 6K #1203 | 38050      | 29000         | 1800       | 1800       | 3720       | 100        | 7500       |            |                 |            |            |
| 6K #1204 | 3470       | 800           |            | 50         | 170        |            | 200        |            |                 |            |            |
| 6K #1205 | 9300       | 10300         | 500        |            | 660        |            |            |            |                 |            |            |
| 6K #1206 | 14500      | 7100          | 450        | 110        | 1250       |            | 19300      |            |                 |            |            |
| 6K #1207 | 2410       | 3645          | 950        |            |            | 375        | 375        |            |                 | 375        |            |
| 6K #1208 | 4440       |               |            | 2000       | 1030       | 400        |            |            |                 |            |            |
| 6K #1209 | 30380      | 18030         | 2500       | 1000       | 1490       |            |            |            |                 |            |            |
| total    | 109050     | 69675         | 6300       | 6660       | 8320       | 925        | 27475      |            |                 | 375        |            |