

RV/Yokosuka and Shinkai 6500 Cruise Report YK11-04

Kuril Trench (Off South-East Hokkaido) Japan Trench (Off Sanriku)

August, 16th-20th, 2011

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

Contents

Acknowledgements						
1. Cruise Information	4					
1) Cruise ID, Name of Vessel	4					
2) Title of the Cruise	4					
3) Title of Proposal						
4) Cruise Period	4					
5) Port Call	4					
6) Research Area	4					
7) Cruise Log (JST)	6					
2. Participants List						
3. Observation	13					
4. Dive report	14					
1) Summary of the Shinkai 6500 Dive #1262	14					
2) Summary of the Shinkai 6500 Dive #1263	19					
5. Preliminary research reports						
1) Genome diversity of Calyptogena clams25						
2) Diversity of microorganisms on the deep sea floor near colony of Calyptogena						
and isolation of the microorganisms	26					
3) Isolation of a lectin from a clam Calyptogena phaseoliformis	27					
4) Analysis of genome size and chromosome of Calyptogena clam	28					
5) High-pressure adaptation of muscle actins of deep-sea fishe	29					
6) Deep-sea litter and floating litter Off Sanriku	30					

Acknowledgements

We are grateful to Captain Mr. Koji Samejima, Chief Officer Mr. Takafumi Aoki and Chief Engineer Mr. Hiroyoshi Kikkawa for their safe navigation and their skillful handling of "R/V Yokosuka". Great thanks are due to Commander Mr. Toshiaki Sakurai and "Shinkai 6500" operation team for their operations in sampling. We also thank Mr. Morifumi Takaesu, Nippon Marine Enterprises, Ltd., for his attentive supports. Finally, we would like to appreciate all the person who supported directly or indirectly this cruise.

1. Cruise Information

- 1) Cruise ID, Name of Vessel: YK11-04, R/V Yokosuka
- 2) Title of the Cruise: "Shinkai 6500" Research Dive, Deep-sea Research, FY2011
- Title of Proposal: Genome diversity in the chemoautotrophic symbiont of Calyptogena clams.
- 4) Cruise Period: August 16, 2011 ~ August 20, 2011
- 5) Port Call: from Hachinohe (August 16, 2011) to JAMSTEC (August 20, 2011)
- Research: Area: Off South-East Hokkaido, Kuril Trench and Off Sanriku, Japan Trench

Cruise track of R/V Yokosuka (YK11-04)

The dive position of Off South-East Hokkaido, Kuril Trench and Off Sanriku, Japan Trench

YK11-04 Shipboard Log (16.Aug, 2011 - 20.Aug, 2011)

CHISHIMA Trench JAPAN Trench

Date	Local Time	Note	Description	Position/Weather/
				Wind/Sea condition
16 Aug, 2011	00.55	Sail out and Transit	A GUIGINAL D	08/16 12:00 (UTC+9h)
	08:55	let go all shore line, left HACHINOHE	for CHISHIMA Trench	40-45.6'N, 142-21.5'E
	10:00	scientist meeting	1.0.00	Overcast
	10.30-11.00	onboard education and safety training	chief officer, 1st ratio	SW-4 (Moderate breeze)
	14.00	meeting for SHINKAI 6500 operation		2 (Sea smooth)
	17.55	scientist meeting		1 (Low swell short)
	18.00	arrived at research area	41.15.0000N 144.05.0041E	VISIDIY: 6
	18.10	Pleased ADI 41-15.0628N, 144-25.3641E		
	19.09-19.57	carried out MBES site survey	CHISHIMA Trench	
	20.15	commenced drifting		
17 Aug, 2011		SHINKAI 6500 dive 1262		08/17 12:00 (UTC+9h)
	09:38	hoisted up SHINKAI 6500		41-15.3'N, 144-38.6'E
	09:45	launched SHINKAI 6500		Overcast
	09:52	started 6K#1262 dive operation	CHISHIMA Trench	SW-4 (Moderate breeze)
	11:57	landed at sea bottom	Depth: 4816m	3 (Sea slight)
	15:25	left bottom	Depth: 4831m	2 (Low swell long)
	17:08	refloated SHINKAI 6500		Visibly: 5'
	17:30	hoisted up SHINKAI 6500		-
	17:39	recovered		
	18:10	commenced proceeding to JAPAN Trench		
	17:15	scientific meeting		
18 Aug, 2011		SHINKAI 6500 dive 1263		08/18 12:00 (UTC+9h)
	03:00	arrived at research area		39-06.3'N, 143-53.8'E
	08:42	hoisted up SHINKAI 6500		Overcast
	08:52	launched SHINKAI 6500		NW-3 (Gentle breeze)
	09:00	started 6K#1263 dive operation	JAPAN Trench	3 (Sea slight)
	11:08	landed at sea bottom	Depth: 5348m	2 (Low swell long)
	15:08	left bottom	Depth: 5354m	Visibly: 3'
	17:02	refloated SHINKAI 6500		
	17:21	hoisted up SHINKAI 6500		
	17:29	recovered		
	17:56-18:15	carried out figure eight turn measurement		
	18:20	commenced proceeding to JAMSTEC		
	18:20	scientific meeting		
19 Aug. 2011		Transit to JAMSTEC		08/19 12:00 (UTC+9h)
10114g, 2011	18:00	scientific meeting		35-20 0'N 140-40 0'E
	18:30	arrived at off JAMSTEC		Overcast
	10.00			NE-5 (Fresh breeze)
				4 (Sea moderate)
				2 (Low swell long)
				Visibly: 6'
20 Aug, 2011		Cruise completed		
0/	09:00	arrived at JAMSTEC		

2. Participants List

Scientists

Principal Investigator

Takao Yoshida Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC)

Onboard Scientists

Yoshihiro Takaki Extremobiosphere Research Program Institute of Biogeosciences Japan Agency for marine-Earth Sciences \$ Technology (JAMSTEC)

Masaaki Konishi Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC)

Yukiko Nagai Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC)

Genki Ozawa Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC) School of Marine Biosciences Kitasato University

Masatoshi Tsukahara Biojet co. Ltd.

&

Akihiro Tame Marine Works Japan Ltd.

Koji Inoue Atmosphere and Ocean Research Institute (AORI), The University of Tokyo

Sei-ichi Okumura School of Marine Biosciences Kitasato University

Mitsuru Jimbo School of Marine Biosciences Kitasato University

Haruka Shibata School of Marine Biosciences Kitasato University

Kazuma Kimura School of Marine Biosciences Kitasato University

Kenta Adachi School of Marine Biosciences Kitasato University Kei Sato The University Museum The University of Tokyo

Shore base Scientists

Tadashi Maruyama Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC)

Shigeru Shimamura Extremobiosphere Research Program Institute of Biogeosciences Japan Agency for marine-Earth Sciences \$ Technology (JAMSTEC)

Yoshimitsu Nakamura Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC)

Shino Suzuki Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC) & School of Marine Biosciences Kitasato University

Yousuke Nomura Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC) & School of Marine Biosciences Kitasato University

Takashi Kaneko Marine Biodiversity Research Program Institute of Biogeosciences Japan Agency for marine-Earth Science and Technology (JAMSTEC)

Maiko Nezuo Biojet co. Ltd.

Morimi Teruya Okinawa Industrial Technology Center

Hiroshi Miyake School of Marine Biosciences Kitasato University

Marine Technician

M. TAKAESU

Nippon Marine Enterprises, LTD.

SHINKAI 6500 operation team

T. SAKURAI	Operation Manager
K. CHIBA	Sub Operation Manager
T. YOSHIUME	1st Submersible Staff
K. MATSUMOTO	1st Submersible Staff
M. YANAGITANI	1st Submersible Staff
K. SUZUKI	2nd Submersible Staff
A. ISHIKAWA	2nd Submersible Staff
T. ONISHI	2rd Submersible Staff
Y. TAYAMA	3rd Submersible Staff
H. IKEDA	3rd Submersible Staff
M. KATAGIRI	3rd Submersible Staff

R/V YOKOSUKA Officers and Crew

K. SAMESHIMA	Captain
T. AOKI	Chief Officer
S. FUJII	2nd Officer
Y. KOBAYASHI	3rd Officer
H. KIKKAWA	Chief Engineer
T. OTA	1st Engineer
K. KANEDA	Junior 1st Engineer
T. MORI	2nd Engineer
K. IKEGUCHI	3rd Engineer
T. NASU	Chief Radio Operator
Y. KURAMOTO	2nd Radio Operator
R. KOMATSU	3rd Radio Operator
S. ABE	Boat Swain
N. ICHIKAWA	Able Seaman
M. OHATA	Able Seaman
N. ISHIZUKA	Able Seaman
S. TAKUNO	Able Seaman
S. UZUKI	Sailor
S. SUZUKI	Sailor
K. NAKAI	No.1 Oiler
R. SATO	Oiler
K. MURASE	Oiler
K. HUNAWATARI Oiler	
M. FUJIWARA	Oiler
T. YOSHIKAWA	Chief Steward
T. ABE	Steward
S. TANAKA	Steward
M. NAKANO	Steward
T. WADA	Steward
K. KAWASE	Steward

Member of onboard science party and SHINKAI 6500 operation team

3. Observation

To investigate the genome diversity of *Calyptogena* symbionts, we planned to two dives at Kuril trench and Japan trench. We departed Hachinohe Bay on morning of Aug 15th, and went toward Off South-East Hokkaido, Kuril Trench, and arrived there in the night of Aug 15th. On Aug 16th, we made the 6K#1262 dive in Kuril Trench. Diver was Dr. Takaki. After dive, we sailed toward Off Sanriku, Japan Trench. We arrived research area in the early morning of Aug 17th. We could perform 6K#1263 dive in Japan Trench. Diver was Dr. Yoshida. After dive, we sailed to Yokosuka. We arrived at JAMSTEC on morning of Aug 20th.

During the cruise, several biological samples, such as *Calyptogena* clams, Sea cucumber, etc., and segment by MBARI cores were collected. After dive, the clams were immediately dissected, and blood, serum, and other tissues were frozen in liquid nitrogen and stored at -80°C until used. Other samples were also stored at -80°C or fixed by paraformaldehyde. Detailed analyses of these samples will be performed after the cruise.

4. Dive report

1) Summary of the Shinkai 6500 Dive #1262

Date: Aug. 17, 2011 Site: Off South-East Hokkaido, Kuril Trench Landing: 41°15.2740'N, 144°38.5687'E, 4816 m (11:57) Leaving: 41°15.2578'N, 144°38.5960'E, 4831 m (15:25)

Purpose: Collection of *Calyptogena* clams

Payload Equipment: Suction sampler (multiple canister) 1 Scoop sampler 1 Sample box 2 (1 large, 1 small) MBARI-type core 3 Marker 2

Dive Summary ‡ Collected sea cucumber with suction sampler. The sampling site locate 41° 15.2740N, 144° 38.5687E, 4816 m

Collected *Calyptogena* clams and seq anemone with scoop sampler into large box
 (BoxD). The sampling site locate 41° 15.2185N, 144° 38.5931E, 4822 m

‡ Collected *Calyptogena* clams with scoop sampler into large box (BoxB). The sampling site locate 41° 15.2675N, 144° 38.5940E, 4821 m

Collected *Calyptogena* clams with scoop sampler into large box (BoxC). The sampling site locate 41° 15.2635N, 144° 38.5845E, 4820 m ‡ Collected *Calyptogena* clams with scoop sampler into small box (BoxA), and sediment cores with MBARI-type corer. The sampling site locate 41° 15.2678N, 144° 38.5824E, 4819 m

Deployment of the marker #128The site locate 41° 15.2720N, 144° 38.5843E, 4815 m

Payload of 6K#1262

Dive log of 6K#1262

SHINKAI 6500 Dive Log

YK11-04

Remarks

(position)

DATE : 2011/08/17 DIVE SITE : CHISHIMA Trench Alt. Head (m) (Deg) Dep. Description (m) 0.0 starting to go into the sea 4816.0 3.0 240reaching the bottom of sea 11:59 4816.0 1.0 228 brown muddy sediment, Temp. 1.5, no current.

DIVE NUMBER : 6K#1262

Time (LCT)

10:00

11:57

12:04	4816.0	1.0	193	sea cucumbar sampling using slurp gun started.	
12:09	4813.0	2.0	155	A sea cucumber into No.1 canister	
12:10	4811.0	3.0	154	A small colony of vesicomyids was found. (observation only)	
12:14	4818.0	5.0	242	Rocks? in the vision.	
12:24	4807.0	3.0	182	Rocky cliff-like structure	
12:26	4808.0	3.0	217	Looking around	
12:28	4803.0	2.0	319	Sea anemone on the rock	
12;32				-1200, -120 (Position)	
12;39	4801.0			-1170, 70	
12:44	4818.0	1.0	170	-1200, 90	
12:46	4821.0	3.0	118	Fish	
12:47	4822.0	1.0	118	Sokodara	
12;47				-1290, 110	
12:49	4821.0	3.0	136	Rocky slope	
12:50	4822.0	1.0	094	Vesicomyid-like shell.	
12:52	4822.0	3.0	075	Live vesicomyids were found. Observation.	
12:53	4822.0	3.0	075	Sampling of live vesicomyids using shovel. <box d=""></box>	
13:06	4822.0	2.0	074	star fish is found not collected	
13:15	4822.0	2.0	074	Sampling Sea anemone and Vesicomyid. <box d=""> using shovel</box>	
13:18				-1260,133	
13:25	4823.0	2.0	074	Rocks? in the vision.	
13:29	4821.0	1.0	016	Rocky slope	
13:31				-1180,140	
13:34	4822.0	3.0	276	Vesicomyid-like shell clony is found.	
13:42	4921.0	2.0	222	Sampling Vesicomyids <box b="" c="" or=""> using shovel.</box>	
14:03	4821.0	2.0	248	-1170,130	
14:07	4820.0	1.0	219	Sampling Vesicomyids <box b="" c="" or=""> using shovel.</box>	
14:27	4820.0	3.0	249	-1180,120	
14:27	4820.0	2.0	240	Move to another vesicomid colony.	
14:33	4819.0	2.0	199	Sampling Vesicomyids <box a=""> using shovel.(-1168,120)</box>	
14:54				finish sampling	
14:55				MBARI core(yellow) sampling at the site near vesicimid colony.	
14:59				finish sampling and move to another point.	
15:03		3.0	198	MBARI core (red) sampling at the site far from vesicomid coclony.	
15:06	4819.0	2.0	203	finish sampling and move to another point.	
15:14	4815.0	2.0	159	Setting of Marker 128	
15:16				try to sampling of sea cucumber	
15:19	1001.5			fail the sampling and move to another point	l
15:24	4831.0	3.0	323	Leave the sea bottom	l
1					1

1/1

Event list of 6K#1262

		-
≇1262DIVE 高木 善弘 三陸沖海域 SkyFix(WGS-84)SSBL		
*** EVENT MARK LIST *		2011-08-17 15:34:02
ORIGIN (XY<->LATLON CONVERT) LAT 41°15.9000'N XY ORIGIN ((X,Y)=(0,0)) LAT 41°15.9000'N	LON 144°38.5000'E LON 144°38.5000'E	
NO. DAY TIME LAT LOR 1 2011-08-17 10:00:00 41° 15.2462' N 144° 38. Landing Farget	і X .6289'Е -1210.0	Y 180.0
2 2011-08-17 11:57:00 41° 15.2740' N 144° 38 Landing Sampling Sea cucumber D=4816m	.5687'E -1158.5	95.9
3 2011-08-17 13:17:00 41° 15.2185' N 144° 38 Sampling Calvptogena, Sea annemone D=4822m	.5931'E -1261.3	130.0
4 2011-08-17 14:03:00 41° 15.2675' N 144° 38 Finding Calvptogena Colony, Sampling Calvptogena	.5940'E -1170.6 D=4821m	131.2
5 2011-08-17 14:26:00 41° 15.2635' N 144° 38 Sampling Calvotogena (4) D=4820m	.5845'E -1178.0	117.9
6 2011-08-17 14:54:00 41° 15.2678' N 144° 38 Sampling Calvotogena (4), MBARI (1) D=4819m	1.5824'E -1170.0	115.0
7 2011-08-17 15:16:00 41° 15.2720' N 144° 38 Ser #128Marker D=4815m	3.5843'E -1162.2	117.7
8 2011-08-17 15:25:00 41° 15.2578' N 144° 34	B.5960'E -1188.5	134.0
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Dive track of 6K#1262

1262DIVE

2) Summary of the Shinkai 6500 Dive #1263

Date: Aug. 18, 2011 Site: Off Sanriku, Kuril Trench Landing: 39°6.2953'N, 143°53.8491'E, 5248 m (11:08) Leaving: 39°6.3768'N, 143°53.4051'E, 5354 m (15:08)

Purpose: Collection of *Calyptogena* clams

Payload Equipment: Suction sampler(多連キャニスター) 1 Scoop sampler 1 Sample box 2 (1 large, 1 small) MBARI-type core 3 Marker 2

Dive Summary

‡ Collected some organisms (sea cucumber, shrimp) with suction sampler. The sampling site locate 39° 6.2953N, 143° 53.8491E, 5348 m

‡ Collected sediment cores with MBARI-type corer from bacterial mat (core black) and non-bacterial mat (core red). Deployment of quadrat in bacterial mat. The sampling site locate 39° 6.3371N, 143° 53.5512E, 5346 m

‡ Collected *Calyptogena* clams with scoop sampler into small box (BoxA). Deployment of Marker #129. The sampling site locate 39° 6.3220N, 143° 53.6165E, 5347 m

Collected some organisms (polychaeta, fish, jellyfish) with suction sampler.The sampling site locate 39° 6.2978N, 143° 53.6928E, 5348 m

Collected *Calyptogena* clams with scoop sampler into large box (Box D).
 The sampling site locate 39° 6.2553N, 143° 53.5290E, 5352 m

‡ Collected *Calyptogena* clams with scoope sampler into large box (Box B and C). The sampling site locate 39° 6.2759N, 143°53.4722E, 5352 m

Payload of 6K#1263

Dive log of 6K#1263

SHINKAI 6500 Dive Log

DIVE N	UMBER	: 6K	#1263		YK11-04
DATE : 2011/08/18 DIVE SITE : JAPAN Trench					
Time	Dep.	Alt.	Head		
(LCT)	(m)	(m)	(Deg)	Description	(position)
9:00	0.0	Variation of the second	(2 °B)	starting to go into the sea	(position)
11:07	5348.0	3.0	10	sea cucumbar observed.	
11:08	5348.0	3.0	13	reaching the bottom of sea(-380.650).	
		0.0		muddy bottom, 1.6 deg C.	
11:11				try to sampling sea cucumbar by slurp gun.	
11:15				finish sampling sea cuxumbar (No.1 canister).	
				moving to another point.	
11:22	5347.0	4.0	275	unknown animal observed.(-350, 600)	
11:26	5347.0	3.0	275	sokodara observed.	
11:28	5346.0	3.0	275	-300,500	
11:34	5347.0	3.0	267	-330,420	
11:37	5347.0	1.0	272	unknown fish?? observed.	
11:38	5347.0	3.0	272	-350,360	
11:40	5348.0	1.0	293	sokodara observed.	
11:42	5347.0	3.0	293	-320.320	
11:47	5346.0	2.0	284	-310, 260	
11:56	5346.0	3.0	3	-220.210	
12:01	5345.0	3.0	2	-140.210	
12:06	5345.0	3.0	91	-140.320	
12:08	5344.0	3.0	152	120,360	
12:14	5345.0	2.0	240	-220.350	
12:19	5346.0	3.0	259	-300.270	
12:22	5346.0	3.0	289	-290.220	
12:22	5346.0	3.0	80	sokodara observed	
12:24	5346.0	3.0	5	Bacteria mat observed	
12:20	5346.0	3.0	320	-300.220	
12:20	5346.0	3.0	325	MBARL core(black) compling at the bacteria mat	
12.02	5246.0	2.0	220	MBARI core(orack) sampling at the site far from bacteria mat.	
12:34	5946.0	1.0	220	Sat the Quadrat and Markor No 199?	
12:43	5345.0	2.0	327	unknown animal? observed	
12:40	5246.0	2.0	07	coledano obcomrod	
12:44	5346.0	1.0	196	-220 200	
12:47	5947.0	2.0	210	Sampling Vacioomyida (Pay PS using shovel often cheerwation (-220,210)	
12.00	0047.0	5.0	310	sampling vesicomylus (Box B) using shover after observation. (550,510)	
13.10	5946.0	1.0	100	-240, 260	
12.01	5346.0	1.0	120	Sampling a manm ²² using alum gun (No 2 conjeter)	
10.21	5547.0	3.0	120	Sampling a Unarid using slurp gun (No.2 canister).	
12.95	5248.0	2.0	114	Sampling a july fish using slurp gun (No.5 canister).	
13:32	5349.0	3.0	120	-390 480	
13:40	5352.0	3.0	192	-520, 500	
13:43	5353.0	2.0	280	-550, 500	
13:50	5350.0	3.0	317	-560, 410	
13:52	5350.0	3.0	320	Jelly fish ??and fish observed.	
13:53	5350.0	3.0	318	-490, 350	
13:56	5349.0	3.0	288	-450, 310	
14:01	5350.0	3.0	276	-450, 250, white matter observed	
14:05	5352.0	1.0	283	trace of something moved on the sandy bottom; it may be clam?	
11.00	000000	210	235	-480, 160; landed to look at something vesicomyid-like	
14:09	5352.0	1.0	295	samplingof the clam? into the box C using the shovel	
14:13	000010	2.10	200	Tried again.	
14:00				Sampling finished; -480, 190 (Why position changed during sampling?)	
14:20	E950.0	2.0	990	460 140' besterie met' eneb of the see floor?	
14:24	5352.0	3.0	338	400, 140, bacteria mat, crack of the sea floor?	
14:27	5351.0	0.0	ð 907	A marker found (#1223/), '440, 100	
14:30	5351.0	3.0	307	Startea to move again.	
14:34	5352.0	3.0	321	+400. 110: Landed for sampling	

SHINKAI 6500 Dive Log

DIVE N	JMBER	: 6K	#1263		YK11-04
DATE : 2	2011/08/	18		DIVE SITE : JAPAN Trench	
Time	Dep.	Alt.	Head	Description	Remarks
(LCT)	(m)	(m)	(Deg)	Description	(position)
				Some clams have a trace of movement. They may have come here from	
				somewhere?	
14:41				Sampling using the shovel started.	
				The surface layer of the sediment is light brown but the deeper layer is	
14:48				black.	
14:50				-410, 100;	
14:52		3.0	324	Some clams look shorter than typical Calyptogena phaseoriformis.?	
14;52	5352.0	3.0	323	Started to move again.	
14:57	5352.0	3.0	323	Rocks and something like sea anemone?	
14:59	5353.0	3.0	323	-300, 70	
15:02	5355.0	3.0	0	Rocky bottom	
15:06	5354.0	3.0	18	-230, 10; Left the bottom.	

Event list of 6K#1263

#1263DIVE 吉田 尊雄 日本海溝 SkyFix(WGS-84)SSBL *** EVENT MARK LIST *** 2011-08-18 15:17:25
 ORIGIN (XY<->LATLON CONVERT)
 LAT 39°06.5000'N
 LON 143°53.4000'E

 XY ORIGIN ((X,Y)=(0,0))
 LAT 39°06.5000'N
 LON 143°53.4000'E
 NO. DAY TIME LAT LON 1 2011-08-18 09:00:00 39° 6.3400'N 143° 53.8000'E NO. -296.0 576.5 Landing target 2011-08-18 11:08:00 39° 6.2953'N 143° 53.8491'E -378.7 Landing ,Sampling Animals D=5348m イマコ 4、エビュ (スラープヴンキャミユターNo.1) 2 2011-08-18 11:08:00 647.3 3 2011-08-18 12:38:00 39° 6.3371'N 143° 53.5512'E -301.3 217.9 Finding Bacteria mat, Sampling MBARI(Red,Black) D=5346m Plack: 法定诉, Pad: Con, Frod 4 2011-08-18 12:38:00 39° 6.3371' N 143° 53.5512' E -301.3 217.9 Deployment Quadrat, #129 Marker D=5346m 5 2011-08-18 13:10:00 39° 6.3220'N 143° 53.6165'E -329.3 Sampling Calyptogena, Deployment #130 Marker D=5347m モデオが box (A) 312.0 6 2011-08-18 13:24:00 39° 6.2978'N 143° 53.6928'E -374.0 422.0 Sampling Animals D=5348m アドイチャンジェートル・ユノノ R、 (チャニシタートル・ユノノ ハー・チン 7 2011-08-18 14:19:00 39° 6.2553' N 143° 53.5290' E Sampling calyptogena D=5352m $P_{0\times}$ (D) -452.7 185.9 8 2011-08-18 14:25:00 39° 6.2488' N 143° 53.4948' E Finding Bacteria mat D=5352m -464.7 136.6 9 2011-08-18 14:28:00 39° 6.2593' N 143° 53.5105' E -445.3 159.2 Finding 122 Maker D=5350m 10 2011-08-18 14:49:00 39° 6.2759' N 143° 53.4722' E Sampling calyptogena D=5352m Kox (B·⊂) -414.6 104.0 11 2011-08-18 15:08:00 39° 6.3768'N 143° 53.4051'E -227.9 7.3 Left Bottom D-5354m 12 13 14 15 16 17 18 19 20

Dive track of 6K#1262

5. Preliminary research reports

1) Genome diversity of *Calyptogena* clams.

Takao Yoshida¹, Yoshihiro Takaki¹, Yukiko Nagai¹, Genki Ozawa¹, Shigeru Shimamura¹, Yoshimitsu Nakamura¹, Shino Suzuki¹, Yousuke Nomura¹, Takashi Kaneko¹, Masaaki Konishi¹, Tadashi Maruyama¹, Akihiro Tame², Masatoshi Tsukahara³, Maiko Nezuo³ (Biojet co. Ltd.), Morimi Teruya⁴, Sei-ichi Okumura⁵, Kazuma Kimura⁵, Kenta Adachi⁵ (School of Marine Biosciences, Kitasato University)

¹ Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

² Marine Works Japan, Ltd.

³ Biojet co. Ltd.

⁴ Okinawa Industrial Technology Center

⁵ School of Marine Biosciences, Kitasato University

Objective and achievement in this cruise

Vesicomyid clams, including *Calyptogena* spp., form dense communities on the deep sea floor near hydrothermal vents and seeps. These clams have vestigial digestive tracts and are nutritionally dependent on chemoautotrophic sulfur-oxidizing symbiotic bacteria, which are harbored within their gill epithelial cells. *Calyptogena* symbionts are vertically transmitted via eggs, and are thought to have co-evolved with the *Calyptogena* clams. Recently, the genomes of two symbionts in *C. okutanii* and *C. magnifica* respectively, belonging to these different *Calyptogena* symbiont clades, were reported. However, the genome diversity of host clam and symbiont in *Calyptogena* was still unknown. To investigate the diversity, we planned to collect the *Calyptogena* clams at Kuril trench and Japan trench. During the cruise, *Calyptogena* clams were collected at several colonies. After dive, the clams were immediately dissected, and blood, serum, and other tissues were frozen in liquid nitrogen and stored at -80°C until used. Other samples were also stored at -80°C. Detailed analyses of these samples will be performed after the cruise.

Future studies

*Analysis of genome diversity of Calyptogena host and symbiont

- *Analysis of genome size and chromosome of Calyptogena clam
- *Analysis of expression of several genes in Calyptogena clam
- *Analysis of blood cells of *Calyptogena* clam

2) Diversity of microorganisms on the deep sea floor near colony of *Calyptogena* spp. and isolation of the microorganisms

Masaaki Konishi¹, Takao Yoshida¹, Yoshihiro Takaki¹, Yukiko Nagai¹, Genki Ozawa¹, Tadashi Maruyama¹, Akihiro Tame²

¹ Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

² Marine Works Japan, Ltd.

Objective and achievement in this cruise

Chemoautotrophic ecosystem is observed on the surface of the deep sea. There is little information of the diversity of microorganisms related to the ecosystem. Vesicomyid clams, including *Calyptogena* spp., form dense communities on the deep sea floor near hydrothermal vents and seeps. These clams have vestigial digestive tracts and are nutritionally dependent on chemoautotrophic sulfur-oxidizing symbiotic bacteria, which are harbored within their gill epithelial cells. Therefore, the clams are one of indexes for location of the chemoautotrophic ecosystem. We then attempted to investigate diversity of microorganisms in sediments near colonies of *Calyptogena* spp. at Kuril and Japan Trench. Furthermore, we tried isolate living microorganisms from the sediments.

At Kuril Trench, sediments near a *Calyptogena* spp. colony were also collected for investigating the diversity of microorganisms including bacteria, fungi and yeast. After dive, parts of sediments were immediately inoculated in growth media for isolating microorganisms. Other sediments were stored at 4 and -80°C for chemical and molecular biological analyses. The stored sediments will be analyzed in detail after the cruise.

At Japan Trench, sediment core which observed white bacteria mat on the deep sea floor was collected by MBALI core sampler for investigating diversity of microorganisms. The other sediment core was also collected as the control sample. After the dive, parts of sediments were inoculated to growth media. Other sediments were stored at 4 and -80°C for chemical and molecular biological analyses. The stored sediments will be analyzed in detail after the cruise.

Future studies

*Analysis of diversity of microorganisms in sediments near Calyptogena colonies.

*Analysis of diversity of microorganisms in sediments at white bacteria mat.

*Isolation of living microorganisms from sediments by culture dependent method.

3) Isolation of a lectin from a clam Calyptogena phaseoliformis

Mitsuru Jimbo

School of Marine Biosciences, Kitasato University

Objective and achievement in this cruise

Many deep sea animals obtain nutrients from symbionts which they harbor. Since the host harbored the specific symbiont species, they must select symbionts. Invertebrates usually use lectins, which binds to some carbohydrate chains, as a first step of self defense mechanism instead of antibodies. If the lectin bound substance was attacked or removed from hosts. Some reports suggested that a lectin of host animals like corals or clams involved in the establishment or maintenance of symbiosis. In the case of *Calyptogena* clams, symbionts were harbored in the cells of host gill. Although they were non-self organisms, they were not rejected by host, and were symbiosed. We previously purified a lectin from *Calyptogena okutanii*, and the lectin agglutinated symbiotic bacteria, and it distributed their gills, suggested that the lectin involved in the symbionts. The objective is the purification and characterization of a lectin from hemolymph of *Calyptogena phaseoliformis* determination of lectin distribution.

In this cruise, I collected hemolymph from 19 individuals of *C. phaseoliformis* and foot, mantle, hemolymph, blood cells and gonads from three individuals.

Future studies

- 1. Optimization of hemagglutinating activity
- 2. Purification and cDNA cloning of the lectin.
- 3. Measurement of haemaggutinating activity of each organs.
- 4. Comparition of property of the lectins to C. okutanii lectin

4) Analysis of genome size and chromosome of Calyptogena clam

Takao Yoshida¹, Yoshihiro Takaki¹, Yukiko Nagai¹, Genki Ozawa¹, Shigeru Shimamura¹, Yoshimitsu Nakamura¹, Shino Suzuki¹, Yousuke Nomura¹, Takashi Kaneko¹, Tadashi Maruyama¹, Akihiro Tame², Masatoshi Tsukahara³, Maiko Nezuo³ (Biojet co. Ltd.), Morimi Teruya⁴, Sei-ichi Okumura⁵, Kazuma Kimura⁵, Kenta Adachi⁵ (School of Marine Biosciences, Kitasato University)

¹ Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

² Marine Works Japan, Ltd.

³ Biojet co. Ltd.

⁴ Okinawa Industrial Technology Center

⁵ School of Marine Biosciences, Kitasato University

Objective and achievement in this cruise

Vesicomyid clams are very important deep sea shellfish for biology. For development of the deep sea biology, a wide range of knowledge is required. However, few fundamental biological studies have been conducted on Vesicomyid clams. Genome size and chromosomal studies, which are important with regard to the genetics of the clams, are also scarce.

In this cruise, we collected some *Calyptogena* clams, and treated these samples for genome size and chromosome analysis. For the genome size analysis, the mantle and gill tissues were fixed with Carnoy's solution. For the chromosome analysis, the gill tissues were treated with colchicin, KCl, and Carnoy's solutions. Moreover, in this cruise, we obtained some other deep sea invertebrates, such as sea cucumbers, worms, sea anemones, and shrimps. We also treated these samples for genome size or chromosome analysis.

Future studies

*Determination of genome size and chromosome number and karyotype of *Calyptogena* clams.

5) High-pressure adaptation of muscle actins of deep-sea fishes

Koji Inoue and Masaru Kato

Atmosphere and Ocean Research Institute, The University of Tokyo)

Objective and achievement in this cruise

High hydrostatic pressure is one of the major obstacles for organisms to inhabit deep-sea environment because it changes the three-dimensional structure of proteins, resulting in altering the functions of proteins. Thus, it is supposed that the organisms inhabiting the deep sea have developed special mechanisms to adapt to high pressure. Morita (2003) isolated a special actin gene from some deep-sea macrourid fishes, and identified some amino acid substitutions that are likely to be involved in high-pressure adaptation in the sequence. In this study, we try to find similar actin genes in another group of deep-sea fish, Liparidae, to know whether the adaptation mechanism to high pressure is common among distantly related groups of fishes. We also try to reveal the evolutionary history of the deep-sea specific actin genes by phylogenetic and comparative genomic analyses. Fortunately, a liparid fish was obtained in the dive 1263. We sampled the muscle pieces for analyses of actin genes and mitochondrial DNA sequence, and fixed other parts in formaldehyde for morphological analysis.

Future studies

*Analysis of mitochondrial DNA sequence for species identification

*Morphological analysis for species identification

*Analysis of actin gene or cDNA sequences

*Identification of special amino acid substitutions responsible for high-pressure adaptation.

6) Deep-sea litter and floating litter Off Sanriku

Haruka Shibata¹, Hiroshi Miyake¹, Yasuo Furushima² ¹ School of Marine Biosciences, Kitasato University

² Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

Objective and achievement in this cruise

Marine litter is found in the oceans of the world. Marine litter is classified into beach litter, floating litter and benthic litter. Floating litter drifts to the beach or sinks to the bottom. Marine litter causes environmental, human health and aesthetic problems.

Enormous Tsunami caused by the Tohoku-Pacific Ocean Earthquake on 11th March, 2011. The Tsunami flowed out a large number of houses, cars, ships and all property of people lived at Sanriku Coast to the ocean. Satellite imagery shows us the existence of floating litter on the surface of the ocean. However, it was unknown what kind of object in these floating litter. Information of floating litter by the Tsunami off Tohoku is poor after the Earthquake. Therefore we thought that in-site investigation was necessary to identify kind of floating litter and benthic litter. The aim of this cruise is to observe floating litter and deep-sea litter in situ and understand transportation of marine litter to deep-sea floor.

Video recording was conducted for getting quantitative data of floating litter on day time. A video camera (Sony, HDR-SR7) was set at navigation bridge deck. At the same time, kind of litter was checked by visual observation and photo images of floating litter were taken. Some deep-sea litter was collected by the manipulator of *Shinkai 6500*. These collected debris were taken pictures, measured the size, and observed the attached organisms. After observation, Sample was preserved in deep freezer (-80 °C). After this cruise, deep-sea litter will be weigh and attached organisms will be identified.

Future studies

* analysis of the biological and physico-chemical environments
*analysis of the video footages that recorded by *Shinkai6500* camera